ATMOSPHERIC CO₂ AND O₃ ALTER THE FLOW OF ¹⁵N IN DEVELOPING FOREST ECOSYSTEMS

DONALD R. ZAK,¹,²,⁴ WILLIAM E. HOLMES,¹ AND KURT S. PREGITZER³

¹School of Natural Resources & Environment, University of Michigan, Ann Arbor, Michigan 48109 USA
²Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109 USA
³Ecosystem Science Center, School of Forest Resources & Environmental Science, Michigan Technological University, Houghton, Michigan 49931 USA

Abstract. Anthropogenic O₃ and CO₂-induced declines in soil N availability could counteract greater plant growth in a CO₂-enriched atmosphere, thereby reducing net primary productivity (NPP) and the potential of terrestrial ecosystems to sequester anthropogenic CO₂. Presently, it is uncertain how increasing atmospheric CO₂ and O₃ will alter plant N demand and the acquisition of soil N by plants as well as the microbial supply of N from soil organic matter. To address this uncertainty, we initiated an ecosystem-level ¹⁵N tracer experiment at the Rhinelander (Wisconsin, USA) free air CO₂-O₃ enrichment (FACE) facility to understand how projected increases in atmospheric CO₂ and O₃ alter the distribution and flow of N in developing northern temperate forests. Tracer amounts of ¹⁵NH₄⁺ were applied to the forest floor of developing Populus tremuloides and P. tremuloides–Betula papyrifera communities that have been exposed to factorial CO₂ and O₃ treatments for seven years. One year after isotope addition, both forest communities exposed to elevated CO₂ obtained greater amounts of ¹⁵N (29%) and N (40%) from soil, despite no change in soil N availability or plant N-use efficiency. As such, elevated CO₂ increased the ability of plants to exploit soil for N, through the development of a larger root system. Conversely, elevated O₃ decreased the amount of ¹⁵N (−15%) and N (−29%) in both communities, a response resulting from lower rates of photosynthesis, decreases in growth, and smaller root systems that acquired less soil N. Neither CO₂ nor O₃ altered the amount of N or ¹⁵N recovery in the forest floor, microbial biomass, or soil organic matter. Moreover, we observed no interaction between CO₂ and O₃ on the amount of N or ¹⁵N in any ecosystem pool, suggesting that O₃ could exert a negative effect regardless of CO₂ concentration. In a CO₂-enriched atmosphere, greater belowground growth and a more thorough exploitation of soil for growth-limiting N is an important mechanism sustaining the enhancement of NPP in developing forests (0–8 years following establishment). However, as CO₂ accumulates in the Earth’s atmosphere, future O₃ concentrations threaten to diminish the enhancement of plant growth, decrease plant N acquisition, and lessen the storage of anthropogenic C in temperate forests.

Key words: atmospheric CO₂; atmospheric O₃; Betula papyrifera; forest floor; microbial immobilization; N cycling; ¹⁵N; plant N uptake; Populus tremuloides; root system size; soil organic matter; Wisconsin, USA, developing forest.

INTRODUCTION

Will greater rates of terrestrial net primary productivity (NPP) be sustained as CO₂ accumulates in Earth’s atmosphere? This question lies at the heart of our ability to predict the extent to which carbon (C) storage in terrestrial ecosystems might counterbalance anthropogenic CO₂ emissions over the next century (Houghton et al. 2001). Nevertheless, a clear answer to this simple question remains elusive, despite concerted efforts to understand the mechanisms by which atmospheric CO₂ might alter the C balance of terrestrial ecosystems (Luo et al. 2006). Although short-term exposure (i.e., years) to elevated CO₂ increases the growth of many plants, much of the uncertainty surrounding this issue stems from potential interactions between atmospheric CO₂ and other environmental factors that may, over longer periods of time (i.e., decades and centuries), offset the positive effect of CO₂ on plant growth. Anthropogenic O₃ and CO₂-induced declines in soil nitrogen (N) availability (i.e., progressive N limitation sensu Luo et al. 2004) are two factors that could potentially diminish or eliminate greater plant growth in a CO₂-enriched atmosphere, thus constraining the long-term storage of anthropogenic CO₂ in terrestrial ecosystems.

Over the next century, O₃ in Earth’s lower atmosphere is expected to attain concentrations (~65 nL/L) that will elicit phytotoxic effects across the Northern Hemisphere (Fowler et al. 1998, 1999). Recent analyses indicate that O₃ concentrations already present in this region (~40 to 70 nL/L) can reduce plant growth by 5–18%, with the
largest reduction occurring in the belowground growth of temperate and boreal trees (Grantz et al. 2006). Boreal and temperate forests in the Northern Hemisphere are a globally important C sink (Ciais et al. 1995), and by 2100, ~60% of them could be exposed to damaging O$_3$ concentrations (Fowler et al. 1999).

Because atmospheric CO$_2$ and O$_3$ will increase concomitantly over this period, it is plausible that future O$_3$ concentrations could lessen or nullify the effect of elevated CO$_2$ on plant growth, also diminishing the potential to store anthropogenic CO$_2$ in northern temperate forests.

Although anthropogenic O$_3$ can diminish the positive effect of atmospheric CO$_2$ on plant growth (King et al. 2005), it is not clear how these trace gases will combine to alter plant N demand and whether the supply of soil N can satisfy plant demand over the short and long term. Developing an understanding of this interaction is important, because plants in N-poor soil increase growth to a lesser extent under elevated CO$_2$ than those in N-rich soil (Zak et al. 2000; Reich et al. 2006). This observation implies that the supply of soil N will constrain plant growth enhancement, and hence ecosystem C storage, in a CO$_2$-enriched atmosphere. Furthermore, if elevated CO$_2$ alters plant detritus in such a way that decomposition slows and N availability to plants declines as some have argued (Field 1999; Luo et al. 2004, Hungate et al. 2006), then such a response could dampen future plant growth as atmospheric CO$_2$ accumulates. Nevertheless, empirical evidence for this argument is variable (Luo et al. 2006), and it is uncertain how exposure to both CO$_2$ and O$_3$ will alter the supply of N from soil organic matter as well as plant N demand.

In the Rhinelander (Wisconsin, USA) free air CO$_2$-O$_3$ enrichment (FACE) experiment, greater NPP has been sustained in developing forest communities exposed to elevated CO$_2$, but elevated O$_3$ has counteracted this response (King et al. 2005). Moreover, elevated CO$_2$ has increased gross N mineralization and microbial N immobilization to an equivalent extent, leading to more rapid rates of soil N cycling but no change in the supply of soil N to plants (Holmes et al. 2006). In contrast, elevated O$_3$ has reduced gross N mineralization, but it has not altered microbial N immobilization (Holmes et al. 2006), suggesting a decline in the supply of N to plants. Our primary objective was to quantify the extent to which changes in soil N cycling elicited by elevated CO$_2$ and O$_3$ have altered the flow of N among plants, soil microorganisms, and soil organic matter in developing northern temperate forests. Specifically, we set out to answer the following questions. Does exposure to elevated CO$_2$ after plant N-use efficiency, and hence N demand? Do plants acquire equivalent amounts of soil N under ambient and elevated CO$_2$? Or, does greater belowground growth under elevated CO$_2$ increase the acquisition of soil N by plants? Do plants exposed to elevated O$_3$ acquire lower amounts of soil N due to a decline in belowground growth (King et al. 2005), a decreased supply of soil N (Holmes et al. 2006), or a combination of both? To accomplish our objective and answer the aforementioned questions, we initiated an ecosystem-scale 15N-labeling experiment to trace the flow of mineralized NH$_4^+$ into plants, soil microorganisms, and soil organic matter in young forests exposed to elevated atmospheric CO$_2$ and O$_3$.

METHODS

Research site

Our study was conducted at the Rhinelander FACE (free air CO$_2$-O$_3$ enrichment) facility located near Rhinelander, Wisconsin, USA (49°40.5′ N, 89°37.5′ E, 490 m elevation). Mean annual temperature is 4.9°C, mean annual precipitation totals 810 mm, and wet atmospheric-N deposition (from 1987 to 2005) averages 4.5 ± 0.84 kg N ha$^{-1}$yr$^{-1}$ (mean ± SD). The experiment was established on a site with level topography and sandy-loam soil. Twelve 30-m-diameter FACE rings were constructed in a 32-ha field, with a minimum distance of 100 m between any two rings. Each ring was assigned to factorial CO$_2$ ($n = 2$) and O$_3$ ($n = 2$) treatments in a randomized complete-block ($n = 3$) design (Dickson et al. 2000). Target concentrations of CO$_2$ and O$_3$ were applied during daylight hours throughout the growing season (May through October). Elevated CO$_2$ was maintained near 560 ppm (200 ppm above ambient) and elevated O$_3$ was maintained at an average 50–60 nL/L (30–40 nL/L above ambient; Karnosky et al. 2005). Each ring was divided into east and west halves. The east half of each FACE ring was planted with five genotypes of trembling aspen (Populus tremuloides Michx.) that differ in O$_3$ sensitivity and CO$_2$ responsiveness. The west half of each ring was further divided into north and south quadrants. Northwest quadrants were planted with alternating aspen (genotype 216) and sugar maple (Acer saccharum Marsh.), and the southwest quadrant was planted with aspen (genotype 216) and paper birch (Betula papyrifera Marsh.) (details available online). Small individuals of each species (~10–15 cm tall) were planted in 1997 at a 1-m spacing, and, by 2003, canopy closure occurred in mixed aspen and aspen-birch sections. At that time, trees had attained heights of ~5 m.

At the initiation of the experiment, one ceramic-cup tension lysimeter was located at depths of 5, 30, and 125 cm in each plant community to sample soil water and quantify leaching losses. Soil-water samples were collected twice a month throughout the 2004 growing season. Prior to the first collection date and on each subsequent collection date, a tension equivalent to soil matric potential for that sampling interval (~0.05 to ~0.06 MPa) was applied to each lysimeter (King et al. 2001). We used water from the lysimeters placed at 125

5 (http://aspenface.mtu.edu/ring_maps.htm)
cm in each FACE ring (n = 3, one in each ring section) to estimate leaching losses of N and 15N.

15N tracer experiment

In June 2003 each 30-m-diameter FACE ring was labeled with tracer quantities of 15N. Backpack sprayers were used to evenly dispense (0.034 L/m2) a dilute solution of 15NH4Cl (99.98% 15N) over the forest floor. We applied 15NH4+ to follow the movement of NH4+ released during microbial mineralization into plants, the soil microbial community, and soil organic matter. The isotope was applied at the rate of 15 mg 15N/m2, which represents ~3% of the inorganic N pool in mineral soil (0–10 cm depth). Immediately following application to the forest floor, 1.6 L/m2 of water was applied to rinse the 15N into mineral soil. Soil and plant samples were collected one week prior to and one year following (June 2004) isotope addition. This enabled us to determine the natural abundance of 15N in plant and soil pools, and the extent to which they had been enriched by tracer 15N. We allowed this tracer to flow among plant and soil pools for one year, and then we quantified the amount and distribution of 15N and N in aspen and aspen–birch communities. Below, we describe the collection of plant, forest-floor, and mineral-soil samples as well as how we calculated the amount of tracer 15N each ecosystem pool.

N and 15N in aboveground plant pools.—To account for vertical variation in N and 15N content within the overstory canopy, we sampled current-year shoots (20–25 cm in length) at four canopy levels: 75% to maximum canopy height, 50% to 75%, 25% to 50%, and below 25%. Canopy access was gained using a scaffold (7 m in height) located in each FACE ring that extended into each community type; canopy levels were identified using a height pole marked at 0.5-m intervals. At each canopy level, we collected one shoot sample from a randomly selected individual of each aspen genotype (n = 5) in the aspen community. From randomly selected individuals in the aspen–birch community we collected two aspen shoot samples and two birch shoot samples. Shoot samples consisted of newly formed leaves, 4–6 mature leaves, and the small appending twigs; these plant tissues were frozen and transported to the laboratory for analysis. Following the collection of these samples, the vertical distribution of leaf area in aspen and aspen–birch communities was determined using a laser range finder (D. S. Ellsworth, unpublished data); leaf area profiles were measured in all FACE rings.

In the laboratory, leaf mass per area (LMA) was measured by removing 5–8 disks (0.5 cm in diameter) from each leaf. Leaves were separated from associated twigs; both were dried at 65°C, weighed, and ground to a fine powder. Leaves and twigs were analyzed for N concentration and δ15N using a Delta plus isotope ratio mass spectrometer (Thermo-Finnigan, San Jose, California, USA) interfaced to a NC2500 elemental analyzer (CE Elantech, Lakewood, New Jersey, USA).

Using the diameter of each tree in aspen and aspen–birch communities, total leaf biomass was estimated using species-specific allometric equations derived from the destructive harvest of whole trees in 2004 (King et al. 2005). We then used the vertical distribution of leaf area and LMA determined for each canopy level to partition total leaf biomass, generated via allometric equations, among the four canopy levels. Total twig biomass was estimated by multiplying the twig-to-leaf ratio in each canopy level by leaf biomass. In each canopy level, leaf and shoot N content (g N/m2) were calculated as the product of tissue N concentration (in milligrams of N per gram, mg N/g) and biomass (in grams per square meter, g/m2). Additionally, we estimated 15N in leaves and twigs in each canopy level as the product of atom percent (hereafter, atom %) excess 15N, tissue N concentration, and biomass (in grams per square meter, g/m2). For each tissue, atom % excess 15N was calculated as the difference between the atom % 15N one year after isotope addition and the atom % 15N prior to isotope addition. Values were summed across canopy height levels to generate total canopy N and 15N content.

The N concentration and δ15N of new stem tissue were determined by collecting a 15-mm diameter core, which extended from the stem surface into the newly formed bark and wood. This portion of the stem was easily penetrated by the sharpened coring device, unlike the harder wood produced from the previous year’s growth (D. R. Zak, personnel observation). One stem core was removed from two individuals of each aspen genotype in the aspen community. In the aspen–birch community, stem samples were collected from two aspen and two birch, the same individuals used for canopy sampling. The N concentration and δ15N of each stem sample was determined as described above. We estimated stem increment as the difference in stem biomass between 2004 and 2003, a value determined using the diameter of each tree in the aspen and aspen–birch communities and allometric equations for stem biomass (King et al. 2005).

Understory vegetation also was sampled prior to, and one year following, isotope addition (Bandeff et al. 2006). This enabled us to estimate the amount of N and 15N contained in this portion of the aspen and aspen–birch communities. The aboveground biomass of understory vegetation was harvested from four 0.5-m2 areas randomly located in each community. Harvested plants were sorted by species and analyzed for N and 15N as described by Bandeff et al. (2006).

Recovery of 15N (%) in overstory leaves, twigs, stem increment, and roots was the amount of 15N in each pool (mg 15N/m2), relative to the total amount we applied (15 mg 15N/m2); recovery in understory vegetation was calculated in the same manner.

N and 15N in root and soil pools.—At the time of canopy sampling, we collected forest floor and mineral-
soil samples to determine the distribution of 15N in these pools. We randomly located two points in each ring section to sample forest floor. A 26 × 26 cm sampling frame was placed on the forest floor, and Oi and Oe material was removed, placed on ice while in the field, and then frozen. This material was thawed at a later date, dried at 60°C, and analyzed for N and 15N.

In each plant community we also collected eight soil cores (5 cm in diameter and 20 cm deep) at previously established random locations. Soil samples consisted of Ap- and B-horizon material; they were composted within each community and immediately placed on ice. Composite soil samples were immediately processed to separate roots from mineral soil. Roots were initially removed by hand, placed in a polyethylene bag, and frozen. A subsample of the remaining soil was elutriated to remove the remaining fine roots (sensu Pregitzer et al. 2000). Roots initially removed by hand and those elutriated from the subsample were sorted into size classes for further analysis (<0.5 mm, 0.5–1.0 mm, >1.0–2.0 mm, and >2.0 mm). Roots in each size class were dried, ground, and separately analyzed for N and 15N using a using a Delta Plus isotope-ratio mass spectrometer interfaced to a NC2500 elemental analyzer (Thermo Finnigan, San Jose, California, USA). We report root N and 15N as the summation of values across all size classes.

The remaining root-free soil was used to determine the distribution of N and 15N among mineral-soil pools. To accomplish that task, we used a sequential extraction method to separate inorganic N, dissolved organic N, microbial N and soil organic N (sensu Holmes et al. 2003). Extractable NH$_4^+$, NO$_3^-$, and dissolved organic nitrogen (DON; depth, 0–20 cm) were initially separated from microbial N and soil organic N. A 12-g (fresh mass) soil subsample from the composite collected in each community was placed in a 30-mL glass vial to which we added 20 mL of 2 mol/L KCl. The vials were capped, placed on a shaker 30 minutes, and centrifuged for 15 minutes at 800 rpm (136g). The supernatant was decanted into a 120-mL specimen cup. This extraction was repeated with an additional 20-mL aliquot of K$_2$SO$_4$, and the extracts were frozen until they were digested to determine microbial N. The soil samples remaining in the vials were dried to a constant mass at 60°C in a forced-air oven. The dried soils were transferred to grinding jars, pulverized with stainless steel pins (0.5 cm diameter × 13.8 cm length) in a roller mill (Model 755RMV [U.S. Stoneware, East Palestine, Ohio, USA]), and stored for analysis of organic N.

Microbial N within the K$_2$SO$_4$ extracts was determined by alkaline persulfate digestion (Cabrera and Beare 1993). Blanks and glycine standards were digested simultaneously with samples. A 3-mL aliquot of each digest was used to determine NO$_3^-$-N concentration, as described above. Nitrate-N in the remaining digest was captured on acid traps during a 5-d diffusion with MgO and Devarda’s alloy (Fisher Scientific, Fair Lawn, New Jersey, USA). The acid traps were analyzed for atom % 15N by isotope-ratio mass spectrometry. Soil organic-N concentration was measured using a CE Instruments NC2500 elemental analyzer (CE Elantech, Lakewood, New Jersey, USA), and atom % 15N was then determined by isotope-ratio mass spectrometry. Nitrogen concentration, atom % 15N, and bulk density were used to calculate recovery of 15N (in percentage, %) and estimate the N pool (in grams of N per square meter, g N/m2) in extractable NH$_4^+$, extractable NO$_3^-$, extractable DON, microbial N, and soil organic N.

Recovery of 15N (%) in forest-floor and soil pools was calculated as the amount of 15N in each pool (mg 15N/m2), relative to the total amount we applied to (15 mg 15N/m2) to forest floor and mineral soil.

Leaching of N and 15N.—We quantified the N concentration and 15N of NH$_4^+$, NO$_3^-$, and DON in soil water collected at a depth of 125 cm in each FACE ring. Soil-water samples composited across plant communities and were processed using the diffusion procedure described above to separate NH$_4^+$, NO$_3^-$, and DON.

Statistical analyses

We used an ANOVA for a split-plot, randomized, complete-block design to determine whether CO$_2$, O$_3$ or
Table 1. The main effects of atmospheric CO2 and O3 on the biomass, nitrogen concentration, and nitrogen content for overstory and understory plants.

<table>
<thead>
<tr>
<th>Ecosystem component</th>
<th>Biomass (g/m²)</th>
<th>N concentration (mg N/g)</th>
<th>N content (g N/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>−CO2</td>
<td>+CO2</td>
<td>−CO2</td>
</tr>
<tr>
<td>Overstory</td>
<td>1099a (240.5)</td>
<td>1644b (315.7)</td>
<td>12.4a (2.93)</td>
</tr>
<tr>
<td>Leaves</td>
<td>421.9a (78.9)</td>
<td>592.2b (132.3)</td>
<td>21.6a (1.91)</td>
</tr>
<tr>
<td>New twigs</td>
<td>194.6a (41.9)</td>
<td>289.1b (41.3)</td>
<td>8.4a (0.95)</td>
</tr>
<tr>
<td>Stem increment</td>
<td>300.0a (111.1)</td>
<td>452.0b (156.3)</td>
<td>4.8a (0.54)</td>
</tr>
<tr>
<td>Roots</td>
<td>183.2a (50.7)</td>
<td>291.1b (55.6)</td>
<td>7.4a (0.80)</td>
</tr>
<tr>
<td>Understory</td>
<td>59.1a (17.1)</td>
<td>53.0a (31.5)</td>
<td>20.3a (1.48)</td>
</tr>
<tr>
<td>Total plant</td>
<td>1158a (231.6)</td>
<td>1697b (304.3)</td>
<td>13.6a (2.75)</td>
</tr>
</tbody>
</table>

Notes: There was no two-way interaction of community type with either CO2 or O3, nor was there a significant three-way interaction among these factors. Values are main-effect means with standard deviations in parentheses; within rows, main-effect means with the same superscript lowercase letter are not significantly different at α = 0.05. Blank cells indicate results were not possible.

Results

Ecosystem N pools

Community type did not interact with atmospheric CO2 or O3 to influence the biomass, N concentration, or N content of any ecosystem pool, indicating that aspen and aspen–birch communities responded in the same manner to these gases. There also was no significant interaction between atmospheric CO2 and O3 on the biomass, N concentration, or N content of plant and soil pools.

However, atmospheric CO2 and O3 exerted significant main effects on plant biomass and N content (Table 1), but not on tissue N concentration. For example, elevated CO2 increased overstory biomass by 46%; increases of similar magnitude also occurred in leaves, twigs, stem increment, and roots (Table 1). Although elevated CO2 did not increase the biomass of understory plants, it did significantly increase total plant biomass (overstory + understory) by 46% (Table 1). We observed no effect of atmospheric CO2 (main effect) on forest-floor biomass or soil organic matter (Table 2). In contrast, elevated O3 caused significant declines in the biomass of leaves (−25%), twigs (−17%), stem increment (−27%), and roots (−18%), which resulted in a significant overall decrease in overstory biomass (−23%; Table 1). Elevated O3 did not influence the biomass of understory plants, nor did it alter forest floor or soil organic matter (Tables 1 and 2).

Elevated CO2 did not alter the N concentration (in milligrams of N per gram, mg N/g) of any ecosystem pool (Tables 1 and 2), whereas elevated O3 only reduced the N concentration of understory plants and soil extractable NH4+ and NO3− pools (Tables 1 and 2). Although these atmospheric gases exerted little influence on N concentration, they did exert significant main effects on the N content (g N/m²) of overstory trees, albeit in opposite directions. For example, the N content of overstory biomass increased 45% under elevated CO2, whereas elevated O3 resulted in a 29% decline (Table 1).

These are directional responses that can be observed in all components of overstory biomass. Because neither CO2 nor O3 altered the N concentration of leaves, twigs,
wood, or roots, changes in overstory N content can be attributed to increases and decreases in overstory growth under elevated CO2 and O3, respectively. Despite their relatively large effect on overstory N content, CO2 and O3 (as main effects) did not alter the N content of understory plants, forest floor or mineral soil pools (Tables 1 and 2).

Recovery of 15N in ecosystem pools

Mean total recovery of 15N ranged from 78% to 79% and did not differ significantly from 100% across treatments (Table 3), indicating that we could account for the majority of isotope added to the aspen and aspen–birch communities. One year after application, the majority of added 15N resided in forest floor (40%) and soil organic matter (25%), with much smaller amounts in plant (12%) and microbial (1%) biomass (Table 3). The recovery of 15N in ecosystem pools was not influenced by any two-way or three-way interaction among community type, CO2, or O3.

However, as a main effect, atmospheric CO2 significantly increased 15N recovery in the overstory trees, but it did not alter 15N recovery in any other ecosystem pool. Under elevated CO2, canopy leaves contained 28% more 15N than did leaves grown at ambient CO2 (Table 3). Although twigs, stem increment, and fine roots contained more 15N under elevated CO2, those increases were not significant (Table 3). However, in combination, these trends amounted to a 35% increase in the amount of 15N recovered in overstory trees growing under elevated CO2, a response that was statistically significant (Table 3). The recovery of 15N in understory vegetation was relatively small (2–3%) and was not influenced by atmospheric CO2. Elevated CO2 increased 15N recovery by 29% in total plant biomass (overstory plus understory), but that increase was not significant. Atmospheric CO2 had no effect on 15N recovery in forest floor or in any soil pool (Table 3).

As a main effect, atmospheric O3 did not influence 15N recovery in any plant or soil pool (Table 3), with the exception of the small, but significantly greater, recovery of 15N in extractable NH4+/NO3−/DON pools (Table 3). Concentrations of NH4+ (0.04 ± 0.01 ug N/mL; mean ± SD), NO3− (0.1 ± 0.08 ug N/mL) and DON (0.3 ± 0.22 ug N/mL) in soil water collected from lysimeters were routinely low in all treatment combinations, suggesting that leaching loss of N was minimal. For example, if we assume that all annual precipitation (74 cm in 2004) moved below the rooting zone, then leaching of NO3− (0.06% of applied 15N) and DON (0.08% of applied 15N) can only account for a small proportion of the isotope we applied.

DISCUSSION

Greater plant growth in a CO2-enriched atmosphere could increase the storage of anthropogenic C in terrestrial ecosystems, but projected O3 concentrations and CO2-induced declines in soil N availability could
Table 3. The main effect of atmospheric CO₂ and O₃ on the recovery of ¹⁵N in ecosystem pools one year following isotope addition.

<table>
<thead>
<tr>
<th>Ecosystem component</th>
<th>¹⁵N recovery (%) −CO₂</th>
<th>¹⁵N recovery (%) +CO₂</th>
<th>¹⁵N recovery (%) −O₃</th>
<th>¹⁵N recovery (%) +O₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overstory</td>
<td>7.40 (1.34)</td>
<td>10.00 (2.08)</td>
<td>9.40 (2.35)</td>
<td>8.00 (1.80)</td>
</tr>
<tr>
<td>Leaves</td>
<td>5.00 (0.94)</td>
<td>6.40 (1.38)</td>
<td>6.10 (1.2)</td>
<td>5.20 (1.31)</td>
</tr>
<tr>
<td>New twigs</td>
<td>0.90 (0.38)</td>
<td>1.26 (0.38)</td>
<td>1.10 (0.37)</td>
<td>1.10 (0.45)</td>
</tr>
<tr>
<td>Stem increment</td>
<td>0.50 (0.21)</td>
<td>0.60 (0.30)</td>
<td>0.50 (0.19)</td>
<td>0.50 (0.32)</td>
</tr>
<tr>
<td>Roots</td>
<td>1.00 (0.48)</td>
<td>1.80 (1.46)</td>
<td>1.60 (1.47)</td>
<td>1.20 (0.68)</td>
</tr>
<tr>
<td>Understory</td>
<td>2.80 (0.83)</td>
<td>3.20 (2.08)</td>
<td>2.80 (1.49)</td>
<td>3.20 (1.68)</td>
</tr>
<tr>
<td>Total plant</td>
<td>10.20 (1.66)</td>
<td>13.20 (2.88)</td>
<td>12.20 (2.87)</td>
<td>11.30 (2.67)</td>
</tr>
<tr>
<td>Forest floor</td>
<td>40.10 (12.36)</td>
<td>37.60 (10.09)</td>
<td>42.00 (11.10)</td>
<td>35.70 (10.63)</td>
</tr>
<tr>
<td>Soil organic matter</td>
<td>20.10 (8.34)</td>
<td>26.10 (7.68)</td>
<td>22.40 (7.96)</td>
<td>24.00 (9.06)</td>
</tr>
<tr>
<td>Microbial biomass</td>
<td>0.80 (0.56)</td>
<td>0.90 (0.24)</td>
<td>0.90 (0.54)</td>
<td>0.70 (0.31)</td>
</tr>
<tr>
<td>Extractable NH₄⁺</td>
<td>0.20 (0.14)</td>
<td>0.20 (0.11)</td>
<td>0.20 (0.14)</td>
<td>0.10 (0.10)</td>
</tr>
<tr>
<td>Extractable NO₃⁻</td>
<td>0.00 (0.01)</td>
<td>0.00 (0.03)</td>
<td>0.00 (0.02)</td>
<td>0.00 (0.00)</td>
</tr>
<tr>
<td>Extractable DON</td>
<td>0.50 (1.10)</td>
<td>0.10 (0.10)</td>
<td>0.20 (0.18)</td>
<td>0.40 (1.11)</td>
</tr>
<tr>
<td>Total recovery</td>
<td>78.20 (14.39)</td>
<td>78.70 (11.48)</td>
<td>78.70 (14.08)</td>
<td>79.20 (11.90)</td>
</tr>
</tbody>
</table>

Notes: Data are means (with SD in parentheses). The recovery of isotope in each pool was calculated as the amount of ¹⁵N in that pool (mg ¹⁵N/m²), relative to the total amount applied to forest floor and soil (15 mg ¹⁵N/m²). There was no significant interaction between community type and either atmospheric CO₂ or O₃, nor was there a significant three-way interaction among these factors. Values are main-effect means with standard deviations in parentheses; within rows; main-effect means with the same superscript lowercase letter are not significantly different at α = 0.05.

counteract this effect (Fowler et al. 1999, Luo et al. 2004). After eight years of CO₂ exposure, developing aspen and aspen–birch forests obtained greater amounts of soil N as well as ¹⁵N, despite no apparent increase in soil N availability (Holmes et al. 2006). Therefore, elevated CO₂ increased the ability of plants to exploit soil for this growth-limiting nutrient, which appears to result from a larger root system. This response has undoubtedly sustained higher rates of net primary productivity (NPP) in aspen and aspen–birch communities exposed to elevated CO₂, relative to those growing at the ambient atmospheric concentration (King et al. 2005). In contrast, elevated O₃ had an opposite effect, wherein plants exposed to this trace gas experience a decline in growth and acquired less soil N and ¹⁵N. Because CO₂ and O₃ did not interact to influence plant growth (King et al. 2005) or the amount of N and ¹⁵N in plant and soil pools, our results imply that elevated O₃ could reduce the ability of plants to grow and acquire N from soil as CO₂ increases in the atmosphere. The fact that plants exposed to elevated CO₂ obtained greater amounts of soil N indicates that progressive N limitation (sensu Luo et al. 2004) has not occurred in these developing forest communities—at least not yet.

Greater rates of plant growth under elevated CO₂ could be sustained by an increase in N-use efficiency (Gill et al. 2002, Hungate et al. 2006); however, several pieces of evidence indicate that elevated CO₂ did not increase the efficiency of N use (biomass produced per unit of N assimilated) in aspen and aspen–birch communities. First, elevated CO₂ has not altered biomass allocation in these communities or fine-root turnover (Pregitzer et al. 2000, King et al. 2005), indicating above- and belowground litter production under elevated CO₂ increases proportionally with plant biomass. If elevated CO₂ had increased plant N-use efficiency, then such a response would be accompanied by a measurable decrease in the N concentration of some plant tissue. In contrast to this prediction, the N concentration of overstory leaves, twigs, stem increment and roots was unaltered by elevated CO₂; the same was true for the aboveground portion of understory plants. In our experiment, plants exposed to elevated CO₂ grew to a greater extent via enhanced rates of photosynthesis (Karnosky et al. 2003, King et al. 2005) and a greater exploration of soil for limiting resources (i.e., N as well as ¹⁵N), rather than an increase in plant N-use efficiency.

Our observations are consistent with those in young sweet gum (Liquidambar styraciflua) and loblolly pine (Pinus taeda) forests exposed to elevated CO₂ (Finzi et al. 2006, Norby and Iversen 2006); in both cases, elevated CO₂ increased the N content (as g N/m²) of overstory trees via greater belowground growth, with no or minimal change in plant N-use efficiency (Finzi et al. 2006, Norby and Iversen 2006). Moreover, elevated CO₂ has not altered soil N availability in our experiment as well as beneath sweet gum or loblolly pine in the experiments mentioned above (Zak et al. 2003, Finzi et al. 2006). If soil N availability has not increased under elevated CO₂, then how did plants growing under elevated CO₂ obtain more N from soil to sustain NPP?

In all three rapidly developing forests, greater rates of NPP under elevated CO₂ appear to have been sustained, in part, by a more thorough exploitation of soil by a larger root system (Matamala and Schlesinger 2000, Norby et al. 2004, King et al. 2005). In our experiment, it is unlikely that the increment of N plants acquired under elevated CO₂ resulted from greater specific root uptake (i.e., ug N/g root⁻¹·s⁻¹), because elevated CO₂ does not alter the uptake kinetics in the fine roots of either aspen or birch (Rothstein et al. 2000; A. Friend, unpublished data). Rather, elevated CO₂ may have
enabled a larger root system to more effectively encounter and penetrate N-rich microsites, thereby facilitating foraging for this limiting resource (Johnson et al. 2006). Additional support for this idea comes from the positive relationship between annual N uptake and cumulative fine-root length in sweet gum, further suggesting that plants obtained greater amounts of soil N under elevated CO2 by occupying soil to a greater extent (Norby et al. 2004). Despite these responses, greater soil occupancy will diminish through time as forests mature and fine roots exploit soil to a full extent. This point will be a critical juncture determining whether greater rates of NPP will be sustained in a CO2-enriched atmosphere. If elevated CO2 does not increase plant N-use efficiency or soil N supply when roots have fully occupied soil, then plant growth enhancement may be constrained by soil N availability at this point in development.

However, one does not need to invoke mechanisms creating a greater N supply under elevated CO2 (e.g., greater N2 fixation or organic-N uptake) to account for the additional N obtained by plants in our experiment. The additional N obtained by plants growing under elevated CO2 was much less than the variability that exists in the supply of soil N to plants (i.e., net N mineralization). For example, plants growing under elevated CO2 acquired \(\sim 0.7 \text{ g N m}^{-2} \text{yr}^{-1} \) more than those growing under ambient CO2. Net N mineralization in Lake States forests ranges from 5 to 12 g N m\(^{-2}\) yr\(^{-1}\) and coefficients of variation are 20 to 45% \((n = 59 \text{ stands}; \text{Zak and Pregitzer 1990, Reich et al. 1997)}\). Inasmuch, the additional N plants acquired under elevated CO2 lies well within the bounds of variability for even the most N-poor forests in this region (e.g., 1 SD ranges from 1.0 to 2.2 g N m\(^{-2}\) yr\(^{-1}\)). Although annual net N mineralization has not been measured in our experiment, evidence suggests this soil is not N poor.

Rates of gross N mineralization and immobilization in Rhinelander (Wisconsin, USA) FACE soil are equivalent to those in Lakes States forests with relatively high net N mineralization (8–10 g N m\(^{-2}\) yr\(^{-1}\); Holmes and Zak 1999, Holmes et al. 2006). These higher rates and their associated variability further suggest that spatial variation in N supply can well account for the additional N obtained by a plant under elevated CO2. Our argument implies that N loss via leaching should be greater under ambient CO2; however, variation in plant water use between communities and treatments as well as variation in soil properties (e.g., thickness of a clay-rich subsurface horizon) make it difficult to resolve whether N leaching differs between ambient and elevated CO2.

Although substantial amounts (~60%) of \(^{15}\text{N} \) were recovered in forest floor and soil organic matter after one year, we have no evidence that greater litter production under elevated CO2 has accelerated the net microbial immobilization of N into soil organic matter. Such a response would presage a decline in soil N availability, and this clearly has not occurred in our experiment. For example, elevated CO2 did not alter the recovery of \(^{15}\text{N} \) in forest floor or soil organic matter, nor did it alter the N content of any soil pool. If elevated CO2 had increased the net microbial immobilization into forest floor or soil organic matter, then one would expect to find greater amounts of \(^{15}\text{N} \) in these pools, which is inconsistent with our observations. Rather, the responses we observed likely arose due to an equivalent increase in gross N mineralization and microbial immobilization elicited by elevated CO2 (Holmes et al. 2006). Our data clearly demonstrate that greater plant growth under elevated CO2 and the subsequent production of litter have not fostered a decline in soil N availability over the first eight years of our experiment.

Our observations contrast with a greater net immobilization of \(^{15}\text{N} \) into the forest floor of scrub oak woodland exposed to elevated CO2 (Hungate et al. 2006), a community which sprouted from an established root system following fire. In that ecosystem, elevated CO2 also initially increased the acquisition of soil N by plants, but this response diminished after seven years of exposure. In combination with a greater incorporation of N into forest floor, this decline in plant N acquisition was reported to indicate the onset of progressive N limitation (Hungate et al. 2006). These responses differ from those in our experiment and may be due to differences in forest development, the extent to which a newly developing or preexisting root system has exploited soil, or native soil N availability. Regardless of this disparity, elevated CO2 has not elicited greater rates of microbial N immobilization, a decline in soil N availability, or the onset of progressive N limitation in our experiment (Holmes et al. 2006); this also appears to be the case in other young, developing forests dominated by sweet gum and loblolly pine (Zak et al. 2003, Finzi et al. 2006, Norby and Iversen 2006).

In contrast, elevated O3 damaged leaves, which led to declines in photosynthesis, above- and belowground growth, plant N demand, and the acquisition of soil N. Ozone also had no effect on plant N-use efficiency, evidenced by equivalent tissue-N concentrations in plants exposed to ambient and elevated concentrations. It is possible that aspen and aspen–birch communities exposed to elevated O3 obtained lower amounts of soil N due to an overall decline in growth. We are unable to discern if concomitant declines in soil N availability (Holmes et al. 2006) partially contributed to this response, but it appears unlikely given the overall decline in growth, plant N demand, and acquisition of soil N elicited by elevated O3. Taken together, these observations indicate that elevated O3 has reduced the rate at which N cycles among plant and soil pools, an effect directly opposed to that of elevated atmospheric CO2.

Notwithstanding a reduction in forest-floor mass and N content, diminished plant growth in an O3-enriched atmosphere was insufficient to alter the N content or flow of \(^{15}\text{N} \) among soil pools. This result was somewhat
surprising, because microbial communities beneath plants exposed to elevated concentrations of both O\textsubscript{3} and CO\textsubscript{2} can metabolize greater amounts of recent photosynthate than those exposed elevated to CO\textsubscript{2} alone (Loya et al. 2003). These presumably labile substrates should increase rates of microbial immobilization, and subsequently the incorporation of N into forest floor and soil organic matter. However, such a response is inconsistent with the equivalent amounts of 15N recovered in forest floor under ambient and elevated O\textsubscript{3}; soil organic matter exhibited the identical response. The fact that elevated O\textsubscript{3} did not influence 15N recovery in either of these pools implies that it also did not influence rates of microbial N immobilization, at least over the eight-year duration of our experiment. This reasoning is further supported by a recent analysis, in which elevated O\textsubscript{3} had no effect on microbial N immobilization (Holmes et al. 2006). It also appears that lower rates of gross N mineralization (~16%; Holmes et al. 2006) under elevated O\textsubscript{3} were insufficient to alter 15N recovery in soil organic matter. Overall, the most apparent influence elevated O\textsubscript{3} had on soil pools was to decrease leaf-litter production, thereby lowering the mass and N content of forest floor.

In these developing aspen and aspen-birch, higher rates of NPP have been sustained by a more thorough exploitation of soil for N, evidenced by the greater amount of N and 15N obtained by plants growing in a CO\textsubscript{2}-enriched atmosphere. This response occurred despite no apparent change in soil N availability or plant N-use efficiency. We conclude that progressive N limitation is presently not a factor governing plant growth response to elevated CO\textsubscript{2} in these young, developing forest communities. On the other hand, elevated O\textsubscript{3} exerted a substantial negative influence on plant growth, plant N demand, and the amount of N plants obtained from soil. The absence of a significant interaction between atmospheric CO\textsubscript{2} and O\textsubscript{3} on plant growth or N content suggests that O\textsubscript{3} could elicit a negative effect regardless of the atmospheric CO\textsubscript{2} concentration. However, such a response might be moderated by plant species or genotypes that are insensitive to the effects of O\textsubscript{3} (Coleman et al. 1995a, b). Because damaging O\textsubscript{3} concentrations are expected to occur across broad regions in the Northern Hemisphere (Fowler et al. 1998, 1999), our observations indicate that future O\textsubscript{3} concentrations have the potential to diminish the enhancement of plant growth, decrease plant N acquisition, and lessen the storage of anthropogenic C in temperate forests as CO\textsubscript{2} accumulates in Earth’s atmosphere.

Acknowledgments
Our work was supported by grants (DE-FG02-93ER61666 and DE-FG02-95ER62125) from the Office of Science (BER), U.S. Department of Energy and the U.S. Forest Service Global Change Research program. We sincerely thank Becky Mau, Jana Gastellum, John Hassett, Wendy Loya, Michelle Martin, and Angela Picket for their work in the field and laboratory; their contributions made this large-scale isotopic labeling experiment possible. John King, Mark Kubiske, and Dave Ellsworth generously provided us with plant biomass and leaf area distribution data, which were integral to assembling the N and 15N budgets for this experiment. Rich Norby reviewed an earlier version of this manuscript, and we have benefited from his insights and suggestions. We also gratefully acknowledge Dave Karnosky, George Hendry, John Nagy, Keith Lewin, and Judd Issebrands, who were instrumental in establishing and maintaining the Rhinelander FACE facility.

Literature Cited
Dickson, R. E., et al. 2000. Forest atmosphere carbon transfer storage-II (FACTS II)—the aspen free-air CO\textsubscript{2} and O\textsubscript{3} enrichment (FACE) project: an overview. General Technical Report NC-214. USDA Forest Service North Central Experiment Station, Saint Paul, Minnesota, USA.

