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Abstract. Plant communities on nutrient-poor soils are thought to use nutrients more
efficiently to produce biomass than plant communities on nutrient-rich soils. Yet, increased
efficiency with declining soil nutrients has not been demonstrated empirically in lowland
tropical rain forests, where plant growth is thought to be strongly limited by soil nutrients,
especialy phosphorus (P). We tested for higher P uptake and use efficiency across a 16-
fold soil P gradient in lowland Borneo by measuring the P content of aboveground net
primary productivity (fine litter production plus new tree growth; ANPP) for 24 months.
Extractable soil P was positively related to litter production, tree growth, and ANPP. Ef-
ficiency of P response (ANPP/available soil P), uptake (P uptake/available soil P), and use
(ANPP/P uptake) increased monotonically with declining soil P and was significantly higher
on P-rich soil than P-poor soil. Increased P uptake and use efficiency with declining soil
P enabled higher than expected plant productivity on low P soils and thus strongly influenced
spatial patterns of aboveground productivity throughout this lowland landscape.

A complementary P use efficiency index, the integrated canopy P (P.) use efficiency of
production (ANPP/P, X residence time of P,), was similar across the P gradient, but un-
derlying dynamics varied significantly with soil P: on rich soils, ANPP/P, was high and P,
residence time was low, while the converse held on poor soils. These contrasting strategies
enabled rapid tree growth on nutrient-rich soils, where P limitation is relatively weak, and
higher P conservation on nutrient-poor soils, where P limitation is relatively strong. The
occurrence of contrasting P use strategies on high and low P soils hasimportant implications
for understanding spatial patterns of aboveground productivity, P cycling, and canopy tree

species composition across the P gradient.
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INTRODUCTION

Over the past two decades, plant nutrient use effi-
ciency (NUE) has emerged as a central concept for
understanding how declining resources determine spa-
tial patterns of aboveground productivity, litter chem-
istry, and nutrient cycling in terrestrial ecosystems
(Chapin 1980, Vitousek 1982). The fundamental tenet
of NUE theory is that plant communities on nutrient-
poor soils are less productive, but more efficient intheir
use of nutrients than communities on nutrient-rich
soils. Species-level comparisons in temperate ecosys-
tems support many key predictions of this theory—
dominant plants on nutrient-poor soils tend to have
lower maximum growth rates, low tissue nutrient con-
centrations, and leaf traits correlated with high plant-
level NUE (Chapin 1980, Aerts 1998, Aertsand Chapin
1999). Likewise, community-level studies in a variety
of temperate systems where the NUE of aboveground
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net primary productivity (litter production plus tree
growth; ANPP) was quantified have shown that nitro-
gen use efficiency (dry weight of ANPP per N content)
increases as soil N availability declines (Gray and
Schlesinger 1983, Pastor et al. 1984, Berendse et al.
1987).

In contrast to temperate ecosystems, few compre-
hensive studies of plant NUE have been conducted in
diverse lowland tropical rain forests. Previous lowland
studies have focused exclusively on the NUE of fine-
litter production (Vitousek 1984, Silver 1994, Kitay-
ama et al. 2000), which represents only 57—-78% of
ANPP in mature lowland forests (Clark et al. 2001a),
and rarely quantified soil nutrients directly. The NUE
of litter and tree growth components of ANPP in low-
land forests have been quantified only in experimental
model communities with one species of canopy dom-
inant (Hiremath and Ewel 2001). Consequently, it is
unknown to what extent increased plant NUE serves
to maintain high ANPP in lowland tropical forests,
where nutrient limitations to plant growth are consid-
ered widespread (Cuevas and Medina 1988, Ashton and
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Hall 1992, Baker et al. 2003) and diverse species as-
semblages might create qualitatively different relation-
ships than in temperate systems dominated by fewer
species. The present study addresses this research need
by quantifying the community-level phosphorus (P) up-
take and use efficiency of litter production and tree
growth across a 16-fold P gradient in species-rich low-
land Bornean rain forest.

Ecological studies on the efficiency of plant nutrient
uptake and use span multiple levels of biological or-
ganization—from leaves to ecosystems—and use a cor-
responding diversity of terminology (Grubb 1989).
Even the usage of common terms, such as nutrient use
efficiency, may differ among authors, leading to fun-
damental disagreement over interpretation of the same
data (e.g., Knopps et al. 1997, Vitousek 1997). Bridgh-
am et al. (1995) resolved much of this ambiguity by
defining three distinct types of nutrient efficiency and
explaining how variation in these parameters determine
changes in aboveground productivity across nutrient
gradients. Bridgham et al. (1995) define nutrient re-
sponse efficiency as ecosystem productivity (PR) per
quantity of nutrientsin the soil (R,,). Nutrient response
efficiency is defined by the relationship between eco-
system productivity and soil nutrient availability (Fig.
1A); the slope from the origin to any point on the
productivity curve depicts how response efficiency
changes with soil nutrients (Fig. 1B). Bridgham et al.
(1995) then define nutrient uptake efficiency asthe pro-
portion of available soil nutrients acquired by plants
(R/R,,) and nutrient use efficiency astotal net primary
productivity (PR) per quantity of nutrients acquired
during the same period (R.). Thus defined, nutrient

Nutrient availability (R,,)

response efficiency is the product of nutrient uptake
and use efficiency:

PR R, PR
— ==X —,
R

Ry Ra

A decline in ecosystem productivity with decreasing
soil nutrients can thus be mitigated if nutrient response
efficiency (PR/R,,) increases through more efficient nu-
trient uptake (R /R,,), nutrient use (PR/R,) or both.

Nutrient response efficiency is thought to increase
as nutrients decline in natural systems, but the form of
this relationship and its appropriate quantification is
contentious (Knopps et al. 1997, Vitousek 1997, Pastor
and Bridgham 1999). Vitousek’'s (1982) formulation
implied that NUE increases monotonically as resources
decline, but this assumption is unrealistic as nutrients
approach zero. Bridgham et al. (1995) countered that
along nutrient gradients with a nutrient-poor extreme,
efficiency is more likely to be unimodal, because on
the poorest soils nutrient supply becomes inadequate
to maintain plant growth for all but a few extremely
stress-tolerant plant species. Bridgham et al. (1995)
confirmed the prediction of unimodal response effi-
ciency in nutrient-poor peatlands of North Carolina,
using the litterfall NUE index of Vitousek (1982). Pas-
tor and Bridgham (1999) also demonstrated mathe-
matically that response efficiency across broad gradi-
ents is necessarily unimodal if two assumptions hold:
(1) productivity is a positive, saturating function of
resource availability; and (2) aresourcethreshold (Ry,.)
greater than zero isrequired for positive net production
(both properties depicted in Fig. 1).

nutrient response efficiency =

@
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Whether in most natural systems response efficiency
increases unimodally or monotonically along nutrient
gradients has important biological implications. From
an ecosystem perspective, unimodal response efficien-
cy implies that the severity of soil nutrient limitation
on the poorest soils exceeds the capacity of the most
efficient species to further adjust nutrient use and ac-
quisition strategies and resist resource-based declines
in productivity. Plant productivity on such soils will,
consequently, be extremely low. From a community
perspective, unimodal efficiency implies that changes
in community membership along the nutrient gradient
are likely to be determined by different ecological pro-
cesses on opposite sides of the efficiency peak. At
points to the right of the peak, where response effi-
ciency increases with declining nutrients, shiftsin com-
munity composition likely reflect the balance between
ecological trade-offs of growth potential and nutrient
conservation; community membership to the left of the
peak likely reflects plant tolerance to extreme nutrient
scarcity. Despite the potential importance of unimodal
response efficiency in determining ecological patterns,
and despite mathematical proof that response efficiency
must be unimodal across broad gradients (Pastor and
Bridgham 1999), unimodal efficiency has been tested
for in only one natural system that did not examine
tree growth (Bridgham et al. 1995). Thus, the generality
of unimodal efficiency is unclear.

In this study, we quantify the community-level P
uptake and use efficiency of rain forest trees across a
16-fold soil P gradient in lowland Borneo to test for
evidence of increased efficiency with declining soil R,
and to determine the form of this functional relation-
ship. We focus on soil P given evidence for P limita-
tions on plant growth in lowland forests (Vitousek
1984, Mirmanto et al. 1999, Baker at al. 2003) and
documented covariation between soil P and plant spe-
cies distributions throughout the tropics (Sollins 1998,
Potts et al. 2002). We use the analytical framework of
Bridgham et al. (1995) and Pastor and Bridgham (1999)
because it enables (1) an unbiased statistical test of the
form of the response efficiency curve, which suffers
from autocorrelated axes; and (2) the decomposition of
response efficiency into its component uptake and use
efficiencies, which are controlled by different plant
traits. We also compare strategies of canopy P allo-
cation and use across the P gradient, and itsrelationship
with productivity, by quantifying the integrated canopy
P use efficiency (CPUE) of production. Integrated
CPUE measures the cumulative net primary production
earned per unit P investment in the canopy summed
over its lifetime in the canopy. This parameter is a
fundamental attribute of plant resource use strategy,
reflecting the balance between contradictory pressures
to minimize P losses via death of photosynthetic struc-
tures and maximizing plant growth potential. Variation
in integrated CPUE and the plant traits underlying it,
e.g., net assimilation rates, leaf lifespan, and nutrient
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resorption proficiency from leaves, have important im-
plications for understanding spatial patterns of eco-
system dynamics and species distributions across nu-
trient gradients.

We test three hypotheses: (1) the P response effi-
ciency of ANPP in lowland Bornean rain forest varies
unimodally with soil P; (2) unimodal P response effi-
ciency reflects underlying unimodal patterns of P up-
take and P use efficiency across the P gradient; and (3)
integrated CPUE increases with declining soil B re-
flecting the joint effects of longer leaf life spans and
canopy P residence times on P-poor soils.

METHODS
Study site

Our study was conducted at the Cabang Panti Re-
search Station (~15 km?) in Gunung Palung National
Park (GPNP; 90 000 ha) in West Kalimantan, Indonesia
(1°00'-1°20" S, 109°-110°25" E). Annua rainfall at
GPNPis 4125 = 950 mm (mean * sp for 1985-2002),
with marked interannual variation corresponding to El
Niflo Southern Oscillation (ENSO) events. The core of
the park contains two interconnected mountain peaks
(1080 m and 1116 m above sea level [as.l.]), with
western slopes that form a ridge system demarcating
the watershed of the research site.

GPNP contains adiversity of distinctivelowland for-
est formations including peat swamps, freshwater
swamps, and mixed dipterocarp forest on well-drained
mineral soilsupto~300 m a.s.l. (Cannon and Leighton
2004). Underlying the well-drained lowlands is a va-
riety of parent materials, including recent alluvial de-
posits, fine- to coarse-grained sedimentary rocks, and
granite. Alluvial deposits are restricted to river banks
from 5-15 m as.l. along the western river bank. Ex-
tending eastward up the mountain slopes to 40—-140 m
as.l. is a heterogeneous zone of sedimentary rock, be-
yond which forest is underlain by granite. Total soil N
and cation content is significantly higher in alluvium
than granite soils, and sedimentary soils are interme-
diate; soil texture is similar throughout the study area
(G. D. Paoli, L. M. Curran, and D. R. Zak, unpublished
manuscript). Local topography differs among parent
materials, most notably between the largely flat allu-
vium at the base of the mountain and the sedimentary
and granite substrates, which include narrow stream
channels, broad gullys, gradual to steep slopes, and
ridges and plateaus of variousform. Soil depth is great-
er on the alluvium and sedimentary substrates than
throughout the granite (G. Paoli, personal observation).

Thelowland flora of GPNP is extremely speciesrich,
reflecting the variety of parent materials and its influ-
ence on the species composition of woody plants (Can-
non and Leighton 2004; G. D. Paoli, L. M. Curran, and
D. R. Zak, unpublished manuscript). Forests on dif-
ferent parent material s share anumber of plant families
in common, but they differ markedly in species com-
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position. The alluvium and sedimentary substrates
share only 15% of their woody plant species (=10 cm
dbh) in common with the granite (22% in common with
each other), and only two species, Srombosia ceylan-
ica Gardner (Olacaceae) and Dipterocarpus sublamel-
latus Foxworthy (Dipterocarpaceae), are among the 10
most abundant species on all three parent materials
(Cannon and Leighton 2004). G. D. Paoli, L. M. Cur-
ran, and D. R. Zak (unpublished manuscript) found that
turnover in dominant species of the Dipterocarpcaeae,
which compose 61-79% of canopy tree basal area in
lowland GPNP (Curran and Leighton 2000), was most
strongly related to soil P. Soils of the alluvium and
granite thus represent extremes of a habitat gradient
and support distinct woody plant communities, espe-
cialy in the canopy tree stratum.

The soil P gradient at GPNP covaries with elevation
and other soil nutrients; however, three lines of evi-
dence suggest that soil P is the stronger determinant
of ecological patterns. First, continuous monitoring of
climate throughout the elevational gradient from Feb-
ruary 2000 to March 2001 showed no significant var-
iation in rainfall volume or frequency, or maximum
and minimum temperature (G. Paoli, unpublished
data). This suggests that rainfall and temperature in-
fluences on productivity are similar throughout the low-
land watershed. Second, extractable surface soil Pisa
better predictor of litter production, tree growth, and
ANPP throughout the watershed than any single ex-
changeable or total nutrient parameter, or multivariate
combinations thereof (Paoli 2004). Third, extractable
soil P explains >70% of the covariation between soil
factors and dipterocarp species composition throughout
the watershed (G. D. Paoli, L. M. Curran, and D. R.
Zak, unpublished manuscript). These findings suggest
that soil P exerts stronger control on plant community
structure and ecosystem dynamics throughout the study
area than elevation or other edaphic factors.

Methodological approach

A complete accounting of ecosystem productivity
and nutrient dynamics across this gradient requires
measuring above- and belowground patterns of bio-
mass increment, turnover, and nutrient content. How-
ever, as a first approximation of ecosystem-level pat-
terns, we focus on aboveground dynamics and draw
tentative conclusions based on these findings.

To examine how aboveground net primary produc-
tivity (ANPP) and P efficiency varies with soil P, three
parameters are required: ANPR, P uptake by plants, and
soil P content. It is extremely difficult to measure com-
munity-level nutrient uptake in intact natural com-
munities, so we estimated total P uptake indirectly as
the sum of P contained in fine litter production and
new wood. This estimation relies on the assumption
that P used for aboveground litter production and new
wood is offset by an equal quantity acquired from soil
during the same period.
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A complete accounting of ANPP in large-stature
tropical forests also presents unique challenges (Clark
et al. 2001b), especially if al ANPP components are
measured, including fine litter production, biomass in-
crement, and biomass losses through herbivory, vola-
tilization, and leaching. Here, we measured two com-
ponents of ANPP—fine litter (Ieaves, reproductive ma-
terial, and miscellaneous material <2 cm diameter) and
live biomass increment—because these fractions com-
pose 84-92% of ANPP in lowland tropical forests (data
in Clark et al. 2001a).

To quantify ANPP and soil P pools, we established
30 circular plots of 30 m diameter (0.071 ha) between
5and 240 m as.l. (study area ~340 ha). Ten plotswere
located on alluvial soils, eight on sedimentary soils,
and 12 on granite soils (total sample area = 2.12 ha).
Within each substrate, plots were positioned randomly
with the requirement that recent gaps represented
<30% of total plot area. Median distance between plots
was 678 m (range 51-1747 m).

Soil sampling and P analysis

Soil samples were collected from surface (0—20 cm)
and subsoil (40-50) layers. Using a stratified random
design, six sampling points were positioned in each
plot (5-24 m between points), and five soil cores (2
cm diameter) were collected at each point—one at the
center and four at 2 m in cardinal directions. The five
surface cores at each point were bulked (N = 6 surface
samples/plot), as were all subsoil cores (N = 1 subsoil
sample/plot). Soils were air dried, lightly ground, and
sieved to remove particles >2 mm. The mineral frac-
tion (=2 mm) was subsampled (~150 g), and stored
in polythene bags for transport to the USA for analysis.

Extractable soil P was assayed using the Olsen meth-
od. We extracted 3 g of soil with 50 mL of 0.5 mol/L
NaHCO,. Total P was determined by digesting 500 mg
of finely ground soil in sequential additions of con-
centrated hydroflouric acid, hydrochloric acid and hy-
drogen peroxide (Bowman 1990). Phosphorus concen-
tration was determined colorimetrically using an as-
corbic acid-molybdate complex measured at 880 nm
on a MiltonRoy Spectronic20 spectrophotometer (Mil-
ton Roy, lvyland, Pennsylvania, USA).

In most tropical soils, the total P pool is dominated
by fractions unavailable to plants. Olsen extractable P,
however, represents a relatively labile fraction of soil
P adsorbed to mineral and organic surfaces of soil col-
loids. We analyzed P efficiency in relation to Olsen and
total B, but present results of Olsen P only, as both were
similar. In plant ecological studies, soil P concentration
(rg/g) is avalid relative index of availability only if
soil bulk density is uniform across sites. We instead
use soil P content (kg P/ha) as arelative index of avail-
able B, computed as the product of P concentration (p.g/
0), bulk density (g/cm?3), and sampling depth (cm). Bulk
density was estimated using Raw!’s (1983) regression
method, based on soil organic matter, sand, and clay
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content. We also present soil P in wg/g for comparison
with other sites.

Aboveground productivity

Total ANPP, defined asfine litter production pluslive
biomass increment, was monitored from March 1999
until March 2001 within all 30 plots.

Aboveground live biomass increment.—To quantify
live biomass increment, all stems =10 cm dbh (N =
1150) were tagged, and diameter growth was monitored
over 24 months. Stems <20 cm dbh (N = 665) were
measured using a diameter tape and permanent red
paint to mark the point of initial measurement; stems
=20 cm dbh (N = 485) werefit with dendrometer bands
made in the field using steel banding (modified from
Brady 1944 and Liming 1957). Bands were installed
in November 1998 and allowed four months to settle
before initial measurements were taken in March 1999.
Final growth measurements were taken 24 months later
in March 2001.

Aboveground biomass increment was estimated fol-
lowing Clark et al. (2001a). Net increment in each plot
was defined as the cumulative growth of all trees that
survived through the observation interval plus the cu-
mulative biomass of ingrowth of new recruits (trees
=10 cm dbh) beyond the 10 cm dbh threshold (i.e.,
cumulative net biomass >10 cm dbh of new recruits).
Choosing an appropriate allometric equation is critical
to estimate biomass change from diameter increment.
Brown's (1997) moist forest equation Y = exp(—2.134
+ 2.53 X In[D]), designed for siteswith annual rainfall
of 1500—-4000 mm and a distinct dry season, best
matched the climate and forest structure of GPNP (Pa-
oli 2004). Liana biomass increment was estimated us-
ing the equation of Putz (1983).

Aboveground fine litter production.—The moist for-
est equation of Brown (1997) estimates increments of
stem wood, branches, and leaf biomass for individual
trees. However, if initial and final measurements are
widely spaced in time (24 months in our case), much
leaf and twig biomass is produced and shed during the
measurement interval and, therefore, unaccounted for
in the regression estimate (Clark et al. 2001b). We
therefore measured fine litter production directly and
added thisto regression estimates of biomassincrement
to estimate total ANPP,

Aboveground fine litter production was quantified
using eight 0.49-m? litter traps made from polyester
cloth of an extremely fine mesh (~0.3 mm) suspended
1 m above ground on wooden poles. All 240 traps were
collected bimonthly. Contents were dried at 70°C for
three days and then sorted into four fractions: leaf and
leaf fragments (=1 cm), fine woody debris (<2 cm
diameter), reproductive parts and residual fine material.
For each collection in each plot, the leaf fraction was
sorted by trap, weighed separately, and then bulked;
the remaining fractions were first bulked across traps
and then weighed. Leaves were weighed separately by

GARY D. PAOLI ET AL.

Ecology, Vol. 86, No. 6

trap to quantify within-plot spatial heterogeneity in a
separate study (G. Paoli, unpublished manuscript).

The relationship between ANPP and soil P content
was analyzed following Bridgham et al. (1995), which
provides a novel, statistically unbiased test of both the
direction (increase or decrease) and form (unimodal or
monotonic) of the relationship between response effi-
ciency and soil nutrients. ANPP is modeled as a func-
tion of soil P using a modified Michaelis-Menten equa-
tion to test for (1) a saturating relationship between
soil P and ANPP; and (2) a positive x-intercept (i.e.,
minimum nutrient requirement >0). Together, these
two traits indicate unimodal response efficiency (Fig.
1; Pastor and Bridgham 1999). The model is

(Pa< — I:)min) X PRmax
(Pex - Pmin + 0L)

where PR is productivity, P, is extractable B, P, is
the estimated minimum P requirement for positive
growth, PR, is the production asymptote and « is the
half-saturation constant. Eq. 2 was parameterized using
field data for PR and P,, and nonlinear regression to
estimate P, PR ahd « (using SPSS 10.0; SPSSInc.,
Chicago, Illinois, USA). A negative x-intercept (P, <
0) does not imply that positive net production could
occur at levels of soil P = 0; this is impossible bio-
logically. Rather, it indicates that P deficiency at the
low end of the soil P gradient is insufficient to drive
net production toward zero.

Because the response efficiency curve (PR/P,, vs. P,
in Fig. 1B) is defined by the relationship between pro-
ductivity and available P (Fig. 1A), we parameterized
this curve by dividing the parameterized function of
Eq. 2 by P,, (Pastor and Bridgham 1999). The precise
form of this curve is potentially affected by autocor-
relation of axes, so we assessed autocorrelation with a
randomization procedure. We shuffled the pairing of
independent and dependent variables, recomputed the
variance explained using the same function derived
form Eq. 2 and then repeated the procedure 1000 times
recording the frequency of observing a simulated R? >
observed R?. We emphasize, however, that our primary
test for unimodal response efficiency uses Eq. 2, which
is not biased by autocorrelated axes.

PR =

@)

P content of fine litter and biomass increment

Because P response efficiency is the product of P
uptake and use efficiency (Eq. 1), we examined how
variation in P response efficiency reflects these under-
lying parameters. This required estimating P uptake,
defined here as the P content of fine litter and new
wood.

P content of fine litter.—Chemical analyses of fine
litter fractions were conducted at different temporal
resolutions. For leaf litter, two consecutive collections
(one month) were combined and then analyzed. For the
woody debris and fine miscellaneous fraction, four con-
secutive collections (representing two months) were
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TaBLE 1.
Gunung Palung National Park, Indonesia.

P EFFICIENCY OF RAIN FOREST PRODUCTIVITY

1553

Extractable soil P in lowland rain forest on three contrasting parent materials at

P concentration (.g/g)

P content (kg/ha)

Parent Surface Subsoil Surface Subsoil

material (0—20 cm) (40-50 cm) (0—20 cm) (40-50 cm)
Alluvium 27.02 (0.9)*** 4,72 (0.9)*** 47.92 (2.9)***  11.92 (2.4)****
Sedimentary 9.9 (1.0) 2.2 (1.2) 21.6 (3.3) 4.8 (2.4)
Granite 5.3°(0.8) 0.6° (0.2) 12.1¢ (2.7) 1.6° (0.4)

Notes: Values are mean Olsen P in surface (0—20 cm) and subsoils (40-50 cm) surveyed in
multiple 0.07-ha plots (n = 6 samples per plot) in each parent material (alluvium, n = 10;
sedimentary, n = 8; granite, n = 12 plots), expressed on a mass and area basis (standard errors
are reported in parentheses). Surface soils were compared using a two-factor nested ANOVA,
with sample nested within plot; subsoils were compared using one-way ANOVA. Means with
different superscript letters are significantly different (Scheffé test).

*** P < 0.001; **** P = 0.0001.

combined and then analyzed. Reproductive material
was not analyzed, because we focused on litter frac-
tions representing an investment in plant growth struc-
tures, and because reproductive material was <2% of
total fine litter during the 24-month period. Samples
were ground in the field and a 30 g subsample was
taken for analysis.

The dry combustion method (Allen 1989, Jones et
al. 1990) was used to analyze litter chemistry. Tissues
were ground in a Tecator mill, and 500-mg samples
were combusted at 400°C in a muffle furnace for 5 h.
Ash was dissolved in a 20-mL solution of 20% HCI
and 18% HNO;. The solution was diluted 2:1 and P
concentration was determined colorimetrically as de-
scribed for soils. Two replicate samples from the so-
lution were measured and the mean recorded, unless
replicates differed by >5%, in which case a third rep-
licate was measured.

For all plots, the P litter content in each fraction was
defined asthe product of litter mass and P concentration
for that period. The P content of each fraction was
summed over the 24-month period and then summed
across fractions to estimate total P content of fine litter.

P content of live biomass increment.—New stem
wood production represents ~90% of the estimated
biomass increment of mature lowland forests in south-
ern Borneo (Yamakura et al. 1986). Thus, rather than
measure the P content of new leaves, branches, and
stem wood separately, we measured the P content of
wood and used thisto estimate the P content of biomass
increment. This approach underestimates the actual
quantity of P used to produce biomass by an amount
equal to the percentage of biomassincrement composed
of stems and leaves times the difference in P content
between wood and senesced stems and leaves (i.e., the
quantity P lost in production of these tissues). Because
stems and leaves represent <10% of biomass incre-
ment, and the difference in P content between leaf and
wood tissue varied similarly along the gradient, the
estimation method used here does not likely affects our
results.

Within this national park, we were not permitted to
harvest wood samples from all of the 30 plots. Rather,
we collected wood samples from a random subsample
of tree species in the alluvium (N = 13, 32-112 cm
dbh), sedimentary (N = 5, 37-86 cm dbh) and granite
habitats (N = 12, 42—96 cm dbh). Wood samples (~200
g) were collected from the outer 2 cm of sapwood at
two points on opposite sides of the bole. Samples were
oven dried and transported to the USA for analysis
using the methods described for litterfall. Sapwood
samples were then used to estimate the mean P con-
centration of wood from each habitat. Although wood
sampling on sedimentary soils was limited, estimated
wood P concentration in this habitat (0.01%) was in-
termediate between wood of the alluvium and granite,
consistent with the intermediate P content of sedimen-
tary soils (Table 1; Appendix). We consider this a ten-
tative validation of estimated wood P on sedimentary
soils, and therefore use this value in subsequent cal-
culations. To estimate the P content of biomass incre-
ment in each plot, we multiplied plot-wide biomass
increment times the wood P concentration for the ap-
propriate habitat. P content of litter and biomass in-
crement was summed to estimate P use and, by defi-
nition, P uptake.

Estimated P uptake was used to compute the effi-
ciency P uptake (P uptake/P available) and use (ANPP/
P uptake). The extractable P pool was used as an index
of soil P availability. We modeled relationships be-
tween P uptake and P availability (uptake efficiency)
and between ANPP and P uptake (use efficiency) by
modifying Eqg. 2 as in Bridgham et al. (1995). For P
uptake efficiency, the productivity term (PR) was re-
placed with P uptake (P,,), so that

P = (Pex - F)min) X Pup»max
® (Pex - Pmin + OL)

where Py, ..o iS the predicted asymptote of P uptake.
For P use efficiency, production was modeled asafunc-
tion of P uptake by replacing the P,, term of Eq. 2 with
P, to obtain the following:

(©)
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(Pup B Pmin) X PRmax

PR =
(Pup - I:>min + 0‘)

(4)

As with response efficiency, we tested for unimodal P
uptake and use efficiency by testing for an asymptotic
shape and positive x-intercept in the curves derived
from Egs. 3 and 4, respectively. Also asabove, P uptake
and use efficiency functions were estimated not by fit-
ting new functions, but by dividing parameterized Egs.
3 and 4 by P, and P, respectively. The same random-
ization procedure was used to assess autocorrelation of
the relationships.

Integrated canopy P use efficiency

Canopy P (P,) productivity, defined as the ratio of
ANPP to P alocated to the canopy (ANPP/P,), is a
parameter widely used to quantify instantaneous pho-
tosynthetic returns to investment in canopy P (Har-
rington et al. 2001, Kitayama and Aiba 2001). How-
ever, this static measure is of limited value for under-
standing efficiency relationships, because canopy P is
a dynamic property requiring continuous P investment
as leaves senesce and are replaced, often at rates that
vary with soil nutrients (Herbert and Fownes 1999).
We therefore computed the integrated canopy P use
efficiency (CPUE) of production, which is the product
of canopy P productivity (ANPP/P,) and canopy P res-
idence time (cf. Cordell et al. 2001). This parameter
integrates the productivity of P, summed over its life-
span in the canopy.

Total P, (g P/Im?) was estimated as the product of
canopy leaf area (m?m?) and foliar P concentration per
unit leaf area (g P/m?), and then scaled to kg P/ha
Canopy leaf area was estimated for 28 of the 30 plots
by analyzing hemispherical canopy photographs taken
at the end of the study. Photographs were taken at plot
centers ~1 m above ground, digitized, and analyzed
using Hemiview 2.0 software (Delta-T Devices, Bur-
well, Cambridge, UK) to estimate canopy leaf area.
The P concentration of fresh adult |eaveswas quantified
for 58 trees throughout the study area. Fresh leaves
were collected either from trees climbed specifically
for this purpose (N = 14) or opportunistically within
<24 h of new tree falls (N = 31) or large limb breaks
(N = 13). Seven to 24 (median = 9) fully expanded
leaves per tree were collected randomly from the upper
crown. Sampling among substrates was uneven (25 in
aluvium, eight in sedimentary, 24 in granite). Leaves
were pressed, dried at 70°C for three days, traced to
determine leaf area, weighed, and then bulked into one
sample per tree. Pre-and post-drying leaf area did not
differ significantly for 12 species tested individually
(G. D. Paoli, unpublished data). Phosphorus concen-
tration was determined as for fine litter. Total P, for
each plot was computed as the product of canopy |eaf
area and mean leaf P concentration of the appropriate
habitat. Canopy P productivity was computed as the
ratio of ANPP to total P..
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Canopy P residence time was estimated for each plot
as the ratio of P, (kg P/ha) to rate of P losses in |eaf
litter (kg P-ha-t-yr-1). This P loss rate combines the
effects of variation in leaf lifespan and leaf litter P,
which varies with the efficiency of P resorption. This
approach assumes that P translocated from senescing
leaves stays in the canopy and is not used for other
physiological functionsin the plant, and thus represents
a conservative estimate of P residence time. The in-
tegrated CPUE of each plot (Mg dry mass/kg P,) was
then computed as the product of ANPP/P,
(Mg-ha tyr-Ykg P.-ha-*) and P, residence time (years).
We also estimated leaf lifespan to assess its influence
on P, residence time, defined as the ratio of standing
leaf biomassto leaf litter production. Leaf biomass was
estimated as the product of canopy leaf area and mean
specific leaf mass (g/cm?; inverse of SLA) of the ap-
propriate habitat (Paoli 2004).

Data analysis

Nonlinear modeling of P response, uptake and use
efficiency was performed as described above. Com-
parisons among parent materials of soil P, productivity,
and leaf canopy characteristics were conducted using
one-way ANOVA, and nested two-factor ANOVA in
the case of surface soil extractable P, with soil sample
nested within plot. Significant differences between
groups were tested using Scheffé's post hoc test. Litter
production was compared using nested two-factor, re-
peated-measures ANOVA. Relationships between can-
opy characteristics and soil P were analyzed using stan-
dard linear and non-linear regression techniques. All
analyses were performed using SPSS version 10.

REsuLTS
Soil phosphorus

Soil P content differed markedly among parent ma-
terials, creating a 16-fold gradient of surface soil ex-
tractable P (kg/ha; Fig. 2A). In a rank order of plots
from high to low extractable P, P-rich soilswere mainly
in the alluvium whereas P-poor soils were predomi-
nately found in the granite. Mean extractable P varied
significantly among parent materials and was highest
in the alluvium, intermediate in the sedimentary, and
lowest in the granite (Table 1). Surface soil extractable
P was positively related to total P (r2 = 0.462, P <
0.001; Fig 2B), but the relationship was nonlinear. Sub-
soil extractable P varied similarly across parent ma-
terials (Table 1).

ANPP and P response efficiency

Aboveground net primary productivity (ANPP;
kg-ha tyr-1) increased with soil P and was well de-
scribed by Eq. 2 (R? = 0.802; Fig. 3A). Contrary to
expectations, this relationship did not saturate and the
predicted x-intercept (P,;,) was negative (Fig 3A).
Thus, P response efficiency—the ratio of ANPP to soil
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P—increased monotonically, not unimodally, with de-
clining P (Fig. 3D). P response efficiency was well
described (R? = 0.863) by the curve derived from the
function in Fig. 3A (see Methods). The form of the
response efficiency curve as depicted (Fig. 3D) was not
an artifact of autocorrelated axes (1000 randomiza-
tions, P = 0.024).

Aboveground productivity was significantly higher
in the alluvium than sedimentary or granite habitats,
reflecting a nearly two-fold difference in tree biomass
increment between forest on the alluvium and other
substrates (Table 2). Fine litter production also was
significantly higher in the alluvium (Table 2), but the
difference was smaller in absolute and relative terms,
suggesting a stronger effect of soil P on tree growth
than litter production.

P uptake efficiency

Total P uptake (kg P/ha) increased with the Olsen
index of soil P and was well described (R?> = 0.904)
by Eqg. 3 (Fig. 3B). The relationship was weakly non-
linear but, again contrary to expectations, the predicted
x-intercept (P, was negative. Thus, despite the
breadth of the P gradient, the efficiency of P uptake—
the ratio of acquired P to available P—also increased
monotonically with declining P (Fig. 3E). As in the
case of P response efficiency, thisrelationship waswell
described (R? = 0.889) by the curve derived from the
function of Fig. 3B. The form of the relationship be-
tween P uptake efficiency and soil P (Fig. 3E) was not
an artifact of autocorrelated axes (1000 randomiza-
tions; P = 0.002). P uptake efficiency varied signifi-
cantly among parent materials and was lower in the
alluvium than other substrates (Table 3).

P use efficiency

ANPP increased with P uptake and was well de-
scribed (R? = 0.866) by the curve derived from Eq. 4
(Fig. 3C). The relationship was clearly linear over the
four-fold range of P uptake and the predicted x-inter-
cept was again negative. Thus, P use efficiency—the
ratio of ANPP to P uptake—also increased monoton-
ically with declining P uptake (Fig. 3F). As with P
response and uptake efficiency, the form of the rela-
tionship between P use efficiency and P uptake was not
an artifact of autocorrelated axes (1000 randomiza-
tions; P = 0.048). Phosphorus use efficiency varied
significantly among parent materials, and was higher
on P-poor granite soils than other substrates (Table 3).

The overall increase in P use efficiency with declin-
ing P uptake reflected higher efficiency in the produc-
tion of both fine litter and wood on P-poor soils. The
P efficiency of litter production (kg dry mass/kg litter
P content) increased monotonically with declining P
(Fig. 4) and was significantly higher in forest on granite
than other substrates (Table 3). The P efficiency of
wood production showed the same trend, and was on
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average 22% higher on the granite substrate than the
aluvium (Kruskal-Wallis test, P = 0.102; Table 3).

Integrated canopy P use efficiency

Total P, (kg P/ha) was positively related to soil P
(Fig. 5A) and significantly higher in the alluvium than
other substrates (Table 4). This pattern reflected atrend
toward higher leaf P concentrations (p.g P/m? leaf area)
on P-rich soils (P = 0.057; Table 4), not differences
in leaf area, which did not vary significantly with sub-
strate or soil P (Table 4; Fig. 5B). Estimated residence
time of P, declined with soil P (Fig. 5C) and was sig-
nificantly shorter in the alluvium than other substrates
(Table 4), reflecting shorter leaf life spans on P-rich
soils (Fig. 5D). In contrast, canopy productivity
(ANPP/P,) increased with soil P (Fig. 5E) and was
significantly higher in the alluvium than other sub-
strates (Table 4). Consequently, integrated canopy P
use efficiency (Mg ANPP/kg P,), defined as the product
of ANPP/P, and P, residence time, did not vary with
substrate (Table 4) or soil P (Fig. 5F).

DiscussioN

Three main objectives in this study were (1) to test
for evidence that P response, uptake, and use efficiency
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increases with declining soil P in lowland tropical for-
est; (2) to determine the form of the relationships be-
tween P efficiency and soil P; and (3) to test for evi-
dence of divergent canopy P use strategies across the
P gradient. Phosphorus response efficiency increased
significantly with declining soil P, but contrary to our
expectation of a unimodal relationship, response effi-
ciency increased monotonically across the 16-fold gra-
dient. Increasing P response efficiency reflected mono-
tonic increases in underlying efficiencies of P uptake
and use as soil P declined, suggesting adjustments in
plant strategy to enhance both P acquisition and its
conversion to biomass. These findings provide direct
evidence for increasing community-level efficiency

with declining P in lowland tropical forest, and suggest
that unimodal response efficiency (Pastor and Bridgh-
am 1999) may not be a general feature of lowland
Bornean forests.

The integrated canopy P use efficiency (CPUE) of
production did not vary systematically with soil P
across the gradient, but underlying dynamics indicated
divergent canopy P use strategies on contrasting soils.
Plant communities on P-rich soils favored rapid growth
at the expense of short leaf life spans and rapid canopy
P turnover, while plant communities on P-poor soils
used a more conservative P use strategy that favored
long leaf life spans and low P loss rates at the expense
of rapid growth. That integrated CPUE was similar on

TABLE 2. Aboveground net primary productivity (ANPP) in lowland rain forest on three
contrasting parent materials at Gunung Palung National Park, Indonesia.

Aboveground tree

Parent Litter production biomass increment Total ANPP

material (Mg-ha~tyr-1) (Mg-ha~tyr-1) (Mg-hatyr1)
Alluvium 8.122 (0.24)**** 16.02 (1.6)**** 24.12 (1.6)****
Sedimentary 7.30° (0.65) 8.6 (1.9) 15.9° (1.2)
Granite 5.96° (0.18) 7.8 (0.8) 13.7° (0.8)

Notes: All parameters were monitored continuously over 24 months in multiple 0.07-haplots
in each parent material (alluvium, n = 10; sedimentary, n = 8; granite, n = 12 plots). All data
are presented as means, with se in parentheses. Tree biomass increment includes all stems =10
cm dbh. Litterfall was compared using two-way repeated-measures mixed-model ANOVA.
Aboveground growth and total productivity were compared using one-way ANOVA. Total fine
litter is the sum of leaves, twigs, and bark (<2 cm), and miscellaneous fine material (<1 cm).
Means with different superscript letters are significantly different (Scheffé test).

**x% P < 0.0001.
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TaBLE 3. The efficiency of P uptake and use in lowland rain forest on three contrasting parent
materials at Gunung Palung National Park, Indonesia.

P uptake efficiency P use efficiency P efficiency of P efficiency of

Parent (kg P uptake- (kg dry wood production  litter production
material yr-Ykg P-ha?) mass’kg P) (kg dry mass/kg P) (kg dry mass/kg P)
Alluvium 0.2662 (0.043)** 38982 (158)*** 8656 (1493) 22752 (82)***

Sedimentary ~ 0.405b (0.048) 38052 (177) 9621 (1121) 24107 (106)
Granite 0.532" (0.039) 49090 (144) 10587 (870) 30160 (95)

Notes: Efficiency of P uptake is the ratio of P taken up to extractable P in surface soils. P
use is the ratio of ANPP to P taken up by plants. P efficiency of wood and litter production
is the ratio of dry mass to P content. All data are presented as means, with se in parentheses.
Efficiencies of P uptake, use, and litter production are means among multiple plots in each
parent material (alluvium, n = 10; sedimentary, n = 8; granite, n = 12 plots) and were compared
using one-way ANOVA. P efficiency of wood is the mean of multiple samples (alluvium, n =
13; sedimentary, n = 5; granite, n = 12 samples) and was compared using Kruskall-Wallis
nonparametric test. Means with different superscript letters are significantly different (Scheffé
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test).
** P < 0.01; *** P < 0.001.

rich and poor soils appeared to reflect community-level
trade-offs of equal magnitude between canopy P pro-
ductivity (ANPP/kg P,) and canopy P residence times
across the gradient. Divergent canopy P use strategies
on contrasting soils directly influence spatial patterns
of ecosystem productivity, leaf litter chemistry, and
possibly community composition across the P gradient.

Efficiency of P response, uptake, and use

Our finding that P response efficiency increased
monotonically with declining P across the 16-fold gra-
dient was inconsistent with our prediction of unimodal
P response efficiency, and strongly determined patterns
of ANPP throughout the watershed. For example, as-
suming a constant P response efficiency across the gra-
dient based on the mean of the 15 most P-rich plots of
Fig. 3D (~600 kg-ha *-yr-%/kg soil P-hat), predicted
ANPP in the most P-poor plot of Fig. 3A (5 kg P-ha™?)
would be only 3 Mg-ha *-yr=1. This value is less than
one-third of observed ANPP in this plot. Thus, com-
munity-level changes in P response efficiency, and its
underlying P uptake and use efficiencies, mitigated the
effect of declining soil P on productivity and increased
observed ANPP, especially on the poorest soils.

Bridgham et al. (1995) speculated that the declining
segment of unimodal response efficiency might be ob-
served only in extremely nutrient deficient ecosystems,
such as the North Carolina peat swamps they studied.
Thus, one possible explanation for the absence of un-
imodal response efficiency at GPNP is that, despite the
breadth of the P gradient, the P content of poor granite
soilsisrelatively high. In comparison to the P gradient
quantified by Bridgham et al. (1995), thetotal P content
of the poorest soils at GPNP is, indeed, 50% higher
than that of the peat swamps they studied (~90 kg P/
ha vs. 138 kg P/ha). However, in comparison to other
tropical sites, the total P concentration of the poorest
plotsat GPNP (~60 wg/g) are lower than those reported
across Borneo on sedimentary soils in Sabah, shale-
derived soils in Brunei, and a variety of substrates in

Sarawak (Proctor et al. 1983, Burghouts 1993, Pendry
and Proctor 1997). Moreover, total P concentrations of
most granite soils at GPNP are only slightly higher
than the poorest soils on highly weathered Tertiary sed-
iments in Central Kalimantan (Mirmanto et al. 1999)
and the extremely P-poor white-sand soils of caatinga
forest in Venezuela (Herrera 1979). Thus, even though
the P status of granite soils at GPNP is low by tropical
standards, the severity of P deficiency was insufficient
to cause a unimodal response efficiency. This suggest
that, while it is impossible for response efficiency to
increase monotonically without limits as nutrients de-
cline, relatively few nutrient gradients, even in the P-
deficient tropics, may include sufficiently poor ex-
tremes to cause unimodal response efficiency in natural
communities.

Another possible explanation for the absence of un-
imodal response efficiency at GPNP is that, in contrast
to the peat swamp communities studied by Bridgham
et al. (1995), species turnover was continuous across
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Fic. 4. The P use efficiency of litter production along a

P gradient in lowland rain forest at Gunung Palung National
Park, Indonesia
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the P gradient and may reflect the competitive replace-
ment of relatively inefficient species by more efficient
ones as soil P declined. Such a phenomenon would
create acommunity-level pattern of monotonicincreas-
ing P response efficiency with declining P (Pastor and
Bridgham 1999). In contrast to GPNP, low- and inter-
mediate-P soilsin the peat swamp studied by Bridgham
et al. (1995) were dominated by communities that dif-
fered in stature (short vs. tall Pocosin) but not in species
composition. Thus, the declining portion of the re-
sponse efficiency curve observed by Bridgham et al.
(1995) largely reflects a plastic, intraspecific pheno-
typic response to P deficiency. A similar plastic re-
sponse was found by Lennon et al. (1985), who doc-
umented unimodal N response efficiency in sugar ma-
ple plantations along a soil N gradient using analytical

methods similar to those formulated by Bridgham et
al. (1995). This suggests that in diverse plant com-
munities, such as lowland tropical forests, where the
species pool and, hence, variety of plant nutrient use
strategies is relatively high, deterministic species re-
placement along nutrient gradients may render mono-
tonic patterns of response efficiency more common
than unimodal ones.

Our finding of monotonic response efficiency also
indicates that the capacity of tropical plantsto increase
P uptake and use efficiency through physiological and
other adjustments exceeded the severity of Plimitations
to growth. At GPNP, both P uptake and use efficiency
increased significantly with declining P and together
contributed to higher P response efficiency on poor
soils (Figs. 3E and F). But, qualitatively, at low soil P,

TaBLE 4. Canopy leaf characteristics in lowland rain forest on three contrasting parent materials.

Canopy P
Leaf P Canopy productivity Integrated canopy
Parent content leaf area Canopy P (Mg ANPP/kg Canopy P resi- P efficiency
material (rglcm?) (m?/m?) mass (kg/ha) canopy P) dence time (yr) (Mg dry mass/kg P)
Alluvium 11.3 (0.7)  6.07 (0.29) 6.62 (0.3)** 3.74% (0.24)* 2.892 (0.29)** 10.36 (0.75)
Sedimentary 9.9 (1.3) 5.80(0.32) 5.4 (0.3) 2.95% (0.27) 2.90%® (0.32) 8.39 (0.84)
Granite 8.9 (0.7)  6.46 (0.29) 5.3° (0.3) 2.76° (0.24) 3.93° (0.29) 10.66 (0.75)

Notes: Leaf P content is the mean among multiple trees within each parent material (alluvium, n = 25; sedimentary, n =
8; granite, n = 24 trees). All other parameters are means among multiple 0.07-ha plots (alluvium, n = 10; sedimentary, n
= 8; granite, n = 10 plots). All data are means (with standard errors in parentheses) and were compared using one-way
ANOVA. Differences in leaf P content were almost significant (P = 0.057). Means with different superscript letters are
significantly different (Scheffé test).

* P < 0.05; ** P < 0.01.
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the pattern of increasing P uptake efficiency was more
pronounced than P use. One possible explanation for
relatively high P uptake efficiency at GPNP may be the
prevalence of canopy tree species with ectomycorrhizal
mutualisms. Members of the Dipterocarpaceae, the
dominant family of canopy trees throughout Borneo,
are obligate ectomycorrhizal plants (Smits 1994). Ec-
tomycorrhizal fungi enhance plant acquisition of soil
P through more extensive soil exploration and im-
proved access to occluded, primary mineral, and or-
ganic forms of soil P (Dighton 1991, Fox and Com-
erford 1992a, b, Blum et al. 2002). Thus, the predom-
inance of ectomycorrhizal canopy trees at GPNP and
benefits of the mutualism may explain strongly in-
creasing P uptake efficiency. Similar community-level
NUE studies in other rain forest communities, partic-
ularly those where ectomycorrhizal plants are rare or
absent, are necessary to assess whether monotonic in-
creases in P uptake efficiency are a general feature of
lowland tropical forests. Likewise, extending the P-
poor end of the gradient at GPNP by including nutrient-
poor peat swamp forests, which also occur at our site,
would explore the generality of our findings on organic
substrates.

Efficiency of canopy P use

Integrated canopy P use efficiency (CPUE) did not
vary systematically across the P gradient. However,
underlying strategies of canopy P conservation differed
on P-rich and P-poor soils, resulting in divergent pat-
terns of tree growth rate and canopy P cycling across
the P gradient. Integrated CPUE estimates the cumu-
lative net biomass earned by P investment in the canopy
as the product of standing canopy P productivity
(ANPP/kg P,) and the residence time of P.. Across the
P gradient, estimated P, residence time increased with
declining soil P, and was on average 40% higher in
forest on granite than the alluvium. However, canopy
P productivity decreased with declining P and was on
average 36% lower in forest on granite than the allu-
vium (Table 4; Fig. 5D). Thus, increased P, residence
time with declining P was completely offset by losses
in P, productivity, resulting in similar integrated CPUE
across substrates and soil P conditions (Table 4; Fig.
5D). Notably, this finding conforms well to predictions
made by Berendse and Aerts (1987) about an inverse
relationship between whole-plant nutrient residence
time and nutrient productivity, though here we focus
on canopy P dynamics only.

Similar integrated CPUE across the P gradient, but
variable P, productivity and residence time, impliesthe
occurrence of fundamentally divergent plant growth
strategies on contrasting soils. The aluvium strategy
enables rapid conversion of P, to net biomass gain,
favoring rapid aboveground growth at the expense of
frequent canopy P replacement, while the granite strat-
egy minimizes P, losses by reducing the rate of P,
turnover at the expense of lower plant growth potential.

P EFFICIENCY OF RAIN FOREST PRODUCTIVITY
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Changes in the efficiency of canopy P productivity
(ANPP/kg P,) across the gradient indicate that lower
ANPP on poor soils was caused jointly by reduced soil
P availability and more conservative canopy P use
strategy. This implies a measure of abiotic and biotic
control on ecosystem productivity.

Higher canopy P productivity on P-rich soils was
related to higher leaf P concentrations and shorter |eaf
life spans (Table 4, Fig. 5D). These traits are positively
correlated with maximum photosynthetic rates in trop-
ical trees (Reich et al. 1991, Reich and Walters 1994,
Raaimakers et al. 1995) and contributed directly to
higher rates of tree growth in forest on alluvium. Higher
canopy P residence time on granite soils resulted from
longer leaf life spans (Fig. 5D) and lower leaf litter P
concentrations (Fig. 4), thelatter reflecting ~25% more
efficient retranslocation of foliar P on granite soilsprior
to leaf senescence (Paoli 2004). These two traits are
common mechanisms by which plants reduce nutrient
losses and, accordingly, the minimum rate of nutrient
supply required to survive (Aerts and Chapin 1999).

The occurrence of divergent canopy P use strategies
on contrasting soils directly influences ecosystem-lev-
el, and potentially community-level, patterns acrossthe
P gradient. Higher rates of leaf turnover and leaf litter
P concentrations on P-rich soils caused rates of P de-
position through leaf litter that were on average ~80%
higher in forest on alluvium than the granite (3.62 =
0.18 vs. 2.01 = 0.12 kg P-hatyr-%; averages taken
from Fig. 4). Higher P deposition rates and leaf litter
P concentrations in the alluvium likely cause more rap-
id P return to soil through decomposition, thereby re-
inforcing spatial variation in soil P content due to un-
derlying differences in geological substrate (Table 1).

From a community perspective, conservative P, use
strategies combined with higher P uptake efficiency on
P-poor soils (Fig. 4) may be the cause of magjor shifts
in tree species composition across the P gradient. For-
ests on the alluvium and granite substrates are domi-
nated by different canopy tree species, whose distri-
butions were significantly related to soil P (G. D. Paali,
L. M. Curran, and D. R. Zak, unpublished manuscript).
Ecological studiesintemperate plant communitieshave
shown that trade-offs related to nutrient use strategy,
especially maximum growth rate and minimum nutrient
requirements, can be major determinants of speciesdis-
tributions across nutrient gradients (Aerts 1990, Ber-
endse 1994). If community-level differences at GPNP
reflect intrinsic differences between dominant species
on rich vs. poor soils, then trade-offsrelated to nutrient
use strategy may drive species turnover across the gra-
dient. Alternatively, contrasting canopy P use strategies
by plants on the alluvium and granite substrates may
simply reflect a plastic phenotypic response to con-
trasting soil P levels, as found in Metrosideros poly-
mor pha dominated montane rain forest along a P gra-
dient in Hawaii (Herbert and Fownes 1999, Harrington
et al. 2001). This distinction between intrinsic vs. phe-



1560

notypic responses, and the interaction between them,
has major implications for understanding the causes of
species turnover across the P gradient and the relative
importance of plant- vs. soil-mediated controls on eco-
system dynamics throughout GPNP. These subjects are
important areas of future research.
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APPENDIX

A figure showing mean wood P content (%) vs. extractable soil P in lowland rain forest at Gunung Palung National Park,
Indonesia, underlain by three parent materials, is presented in ESA’'s Electronic Data Archive: Ecological Archives E086-

084-A1.



