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Abstract. In ecological theory species interaction strengths are typically described by
constants or functions that depend on the densities of the two interacting species. However,
if species’ traits (phenotypes) are plastic, then modifications in these traits (induced by the
presence of another species) could affect interaction strengths of the focal species with a
number of other species in the system. The magnitudes of such higher-order effects on
interaction strengths have not been reported and are not straightforward to measure. We
present a methodology to quantify changes in consumer—resource interaction coefficients
(a metric of interaction strength) due to effects of predators on consumer (i.e., the prey of
the predator) phenotype (e.g., nonlethal or trait-mediated effects). Application of this meth-
od to studies in diverse systems indicates that predators can strongly reduce consumer—
resource interaction coefficients, often in the range of 20—-80%. We use analytic and sim-
ulation models to show that effects on interaction coefficients of this magnitude can lead
to trait-mediated effects that contribute more strongly than density-mediated effects to the
net effects of predators on consumers and their resources, and even qualitatively change
model predictions. Our results strengthen previous claims that trait-mediated effectsstrongly
influence species interactions and suggest that recent calls to quantify interaction strengths
must be broadened to include examination of the variation in interaction strengths due to

their dependence on densities of other species (most notably predators) in food webs.
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INTRODUCTION

Interactions among species are one of the principal
processes generating patterns in ecological communi-
ties. Accordingly, much of the theory of community
ecology relies on equations describing species popu-
lation growth rates as a function of coefficients rep-
resenting the strength of species-pair interactions.
Clearly, any predictions of community properties based
on this foundation must rest on an appropriate descrip-
tion of the direct interactions between species.

Due to the fundamental role of the interaction co-
efficient in theoretical conceptualizations of commu-
nities, there have been renewed calls for empirical mea-
surement of the strength of species interactions (Paine
1992, Osenberg et al. 1997, Wootton 1997, Laska and
Wootton 1998, McCann et al. 1998, Berlow et al 1999,
Abrams 2001). Laska and Wootton (1998), for exam-
ple, argue that interaction coefficients (which they de-
note as ' per capitainteraction strengths’”) are the most
useful empirical metric quantifying the impact of one
species on another. This metric underlies various other
measures of interaction strength used in theory (e.g.,
elements of the community matrix, the Jacobian matrix,
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or the inverse Jacobian matrix) to quantify the direct
and indirect effects of species on each other (Bender
et al. 1984). Correspondingly, many empirical studies
have estimated interaction coefficients by directly mea-
suring consumption rates (Goldwasser and Roughgar-
den 1993, Wootton 1997), or from time series of pop-
ulation densities (Pfister 1995, Ives et al. 1999).

A fundamental assumption that underlies both the
majority of community theory and the empirical mea-
surement of interaction strengths is that species-pair
interactions are independent of other speciesin the sys-
tem. However, if a target species responds to another
species by modifying its phenotype (reviewed in Lima
and Dill 1990, Kats and Dill 1998, Lima 1998, Tollrian
and Harvell 1999), this modification can potentially
affect the interaction strength of the target species with
a number of other species in the food web (reviewed
in Werner and Peacor 2003). Thus, interaction coeffi-
cients may vary dynamically as a function of the den-
sity of other species in the food web (Abrams 1987,
Werner 1992, Wootton 1993), which can strongly affect
species population dynamics (reviewed in Bolker et al.
2003). Theoretically, this variation represents a higher-
order interaction (sensu Vandermeer 1969) because
terms in population growth rate equations are com-
posed of three or more species densities.
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It istherefore of considerable importance to quantify
the magnitude of higher-order effects on interaction
coefficients. Are these effects large enough to warrant
inclusion in ecological theory? Although empirical ev-
idence strongly suggests that a third species can affect
the interaction coefficient between two other species
(e.g., Werner and Peacor 2003), there have been no
explicit measurements of the magnitude of this effect.
To address this issue, we present a method quantifying
the effects of a predator on consumer—resource inter-
action coefficients in a three-species food chain. Based
on this method, estimates derived from the literature
indicate that phenotypic responses of consumers to
predators often strongly affect the consumer—resource
interaction coefficient magnitude. We further present
theoretical analyses indicating that the estimated ef-
fects are large enough to contribute substantially to the
net effect of the predator on both the consumer pop-
ulation and the consumer’s resources. Although we fo-
cus on how predators affect consumer—resource inter-
actions, analogous methods likely would provide sim-
ilar results in other three-species configurations in
which higher-order interactions have been reported
(Werner and Peacor 2003). When viewed in concert
with their nonlinear nature, our estimates of the vari-
ation in interaction coefficient magnitude underscore
the potential importance of higher-order effects arising
from phenotypic plasticity on the structural and dy-
namical properties of food webs.

METHODS TO ESTIMATE PREDATOR EFFECTS ON
CoONSUMER—RESOURCE INTERACTION COEFFICIENTS

Consider athree-speciesfood chain, in which apred-
ator, P, preys on a consumer, C, which preys on a
resource, R. The population growth rates of the three
species can be expressed in general form as

R
‘Z—t = f(R) — ixRC
Z—? = irRC — iceCP — d.C
P
o = ieeCP 4P @

where d. and dy are per capita mortality rates of the
consumer and predator, respectively, due to external
factors. The interaction coefficients, irc and ics, are
functions that define the per capita effect of the con-
sumer on resource population growth rate and resource
on consumer population growth rate, respectively, and
ice and ipc describe analogous functions for the pred-
ator-consumer interaction.

In the absence of phenotypic responses to the pred-
ator, inc is a constant, as in the Lotka-Volterra equa-
tions, or afunction of resource and/or consumer density
(i.e, ire = ire(RC)). For example, if handling time
constrains intake of the resource, a Holling Type 11
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functional response can be used to describe ip.. How-
ever, if predator-induced changes in consumer pheno-
type affect the consumer—resource interaction, then in
contrast to traditional models, i also will beafunction
of predator density. We represent the interaction co-
efficient in predator presence relative to predator ab-
sence as

irc = (1 — Ardifc: 2
The prime designates the parameter value in absence
of the predator. Agc is the fractional amount that pres-
ence of the predator affects igc. For example, a Agc of
0.6 indicates that predator presence reduces the con-
sumer—resource interaction coefficient by 60%. Here
we evaluate the predator effect at a particular predator
density, though the method can be extended to incor-
porate the functional dependence of A, on predator
density, Agc(P).

We can estimate Ag:. empirically by measuring the
effect of the consumer on the resource in the presence
and absence of the predator. Let p be the reduction in
resource level due to the consumer (which isthe initial
minus the final level if resources do not grow). For
small time intervals, t, p is approximately equal to the
product of t and the removal rate by the consumer in
Eq. 1:

p = ircRCL. ©)

Here we abstract the interaction coefficient, which of-
ten aggregates interactions over the entire life history
of a species, to describe short-term effects that result
from interactions occurring during specific life history
stages. The ratio of the resource reduction in predator
presence and absence is then

P ircRC

p irRC’
The resource and consumer density are assumed to be
equivalent when the predator is absent and present, i.e.,
we are analyzing the effect of changes in consumer
phenotype in otherwise equivalent systems. Employing
Egs. 2 and 4, we arrive at an equation that can be used
to estimate Agc:

4

1- A =2 ®)
P
The effect of predator presence on the mean indi-
vidual consumer growth rate can be used to estimate
the effect of the predator on the interaction coefficient
icr- We represent the predator effect on ik in asimilar
manner as on igc:

icr = (1 — Acp). (6)

Acr definesthe fractional amount that predator presence
reduces ir. For small time periods, t, the mean growth
of an individual consumer, g, will be equal to the prod-
uct of t and the gain due to resource consumption, and
therefore, we obtain the following:
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g =~ i=RCL. (7

Using Egs. 6 and 7, and performing a similar operation
as in the derivation of Eq. 5, we arrive at

g
g (8)

1-Agr=
Predator presence can affect i through effects on the
traits that affect consumer foraging rate (asin the pre-
vious case for igc), and also through effects on the
efficiency of converting resources into consumer
growth (Loose and Dawidowicz 1994, McPeek et al.
2001).
We made several assumptionsin deriving Egs. 5 and
8 that must be considered if these equations are applied
to experimental data. First, we assumed that resource
level was equivalent in predator presence and absence.
However, if resource reduction is lower in presence of
the predator (due to reduced consumer foraging rates)
this will result in underestimates of Ag- and Ag using
Egs. 5 and 8. Second, effects of the predator on con-
sumer density, and therefore on p and g and the esti-
mates of Agc and Az were also assumed to be negli-
gible. Thisassumption clearly will be satisfied in many
experiments using ‘‘nonlethal’’ predators to examine
trait-mediated effects of predators, e.g., by providing
chemical cues of predators (Huang and Sih 1991, Turn-
er 1997) or incapacitating predators (Wissinger and
McGrady 1993, Beckerman et al. 1997). Finaly, we
assumed that differences in consumer foraging rates
due to differences in consumer size in predator pres-
ence and absence are small. If consumersgrow to larger
sizes in absence of the predator, Eq. 8 will overestimate
the predator effect.

ESTIMATES OF PREDATOR EFFECTS ON CONSUMER—
RESOURCE INTERACTION COEFFICIENTS

We identified studies in the literature that isolated
the nonlethal effect of predators on consumer growth
or resource density and that satisfied the requirements
in the previous section. We then estimated A (e.g., Agc
or Acg) by applying Egs. 5 or 8. In some cases we
suspected that changes in resource levels were large
enough to reduce estimates of A, but we include them
because they provide a conservative estimate. In order
to avoid overestimating the magnitude of the predator
effect when individual consumer growth was large, we
assumed consumer growth rate was exponential and
proportional to size, and computed A for small chang-
esin growth (i.e., using growth rate rather than growth
in Eq. 8). This procedure provides a conservative es-
timate of the predator effect. We also present the es-
timates of Acg without this correction to provide an
upper boundary on the estimate of Az We highlight
the cases in Tables 1 and 2 where we suspect that these
two factors may influence the estimates.

We found 17 studies that permitted estimates of A.
Table 1 presents estimates of Agc derived from predator
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effects on resource level using Eq. 5, and Table 2 pre-
sents estimates of A derived from predator effects on
consumer growth using Eq. 8. These estimates of A
ranged from 0.95 (i.e., a 95% reduction in interaction
coefficient magnitude) to negligible, with the majority
of estimates falling between 0.2 and 0.8 (median value
of 0.45, Tables 1 and 2). Six of the studies, representing
four distinct species interactions, were performed in
the field with representative predator density. Values
of A from field studies were similar to the laboratory
and mesocosm studies, suggesting that the tabulated
values are indicative of those in natural systems. In one
study (Beckerman et al. 1997), Agc was negative, in-
dicating that presence of the predator increased the
magnitude of the consumer—resourceinteraction, which
Beckerman et al. attribute to an induced habitat shift
in the consumer. Unfortunately, there are not yet
enough studies to make any rigorous comparisons of
the magnitude of A between habitats or species. How-
ever, the values of A indicate that the predator effect
can bequitelargein diversetaxa, including those found
in freshwater, marine, and terrestrial systems.

MODEL ANALYSIS

In this section, we use two models to examine wheth-
er the estimated magnitude of A is large enough to
strongly influence the net effect of the predator in a
three-species food chain. In the first model, we examine
the predator effect on equilibrium densities of the con-
sumer and its resource; in the second, we examine the
short-term predator effects on consumer growth rate
and resource level.

Consider the three species food chain in which pred-
ator presence causes a reduction in the consumer—re-
source interaction coefficients. We assume that re-
source growth rate in absence of the consumer follows
aconvex curvethat can be approximated by the logistic
growth equation. In the simplest form, the species pop-
ulation growth rates in a system with constant predator
density then are

dR R N

a = I’R(l - E) - (1 - A)IRCRC

%—? = (1 — A)i%xRC — iCP — d.C

dP

$-0 (P-P) ©

where i'rc and i’ are now constants. The intrinsic
growth rate of resources is represented with r, and K
is the carrying capacity. P, is the (constant) density of
the predator, and other symbols are asin Egs. 1 and 2.
We assume that the predator effect on i’z and i'rc are
equivalent (as in, e.g.,, Abrams 1987). Note that the
magnitude of i will likely be affected by phenotypic
responses of the consumer to predator presence, and
thereforeisalso afunction of predator density. It would
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be necessary to include this functional dependence in
a system in which predator densities change (Abrams
1987). Here, however, we simply examine the predator
effect on R and C as a function of i at a constant
predator density.

A simple manipulation of the consumer growth rate
in Eq. 9 indicates that the values of A derived from
empirical studies are of sufficient magnitude to influ-
ence the net effect of the predator on consumer density.
If we divide by the population growth rate of the con-
sumer in the absence of the predator and any back-
ground mortality, i’ zRC, then,

dC/dt icrCP d.C
icrRCR icRCR  itrCR’
Consider a nonlethal predator effect leading to A =
0.5, which is near the modal value we estimated (Tables
1 and 2). Then consumer population growth will be
negative if the loss due to predation and background
mortality exceed 0.5 (i.e., the third and fourth termsin
Eqg. 10). Therefore, assuming that the consumer pop-
ulation growth rate is positive or near zero, the negative
effect of the predator-induced reduction in i’ zxRC will
be equal to or greater than the negative effect due to
direct predation on consumer growth rate. For values
of A from the upper range of those derived (i.e., A >
0.5), the importance of the nonlethal effect relative to
direct predation (i.e., density effects) will be even larg-
er. For values from the lower range, the contribution
of the nonlethal effect will be smaller but still consid-
erable. Thus, based on our estimates of A, the nonlethal
effect of the predator on consumer population growth
rate is predicted to be on the same order of magnitude
as the lethal effect. A similar argument can be made
to demonstrate that the nonlethal (trait-mediated) in-
direct effect on the resource is of the same order of
magnitude as the density-mediated indirect effects due
to predation.
These predictions are supported by analysis of re-
source and consumer densities at equilibrium, which
are

=(1-A7) - (10)

Py + dg
R 0- ik
. r .
(1 — A)iger — R('cppo + d;)
C= (11)

(1 = A)Yircicr
In Fig. 1 we plot resource and consumer density at
equilibrium as a function of the lethal (density) and
nonlethal effect of the predator on the consumer—re-
source interaction coefficients. The isopleths indicate
the combination of lethal and nonlethel effects which
lead to the specified resource or consumer densities.
This representation, which we denote the ‘‘ predator-
effect phase space’” (Peacor and Werner 2001), is de-
signed to clarify and make explicit the two components
of the predator’s effect on system responses.
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Fic. 1. Results of the analytical model (Eq. 9) presented
in the predator-effect phase space; i.e., as a function of pre-
dation rate (x-axis) and reduction of the consumer—resource
interaction coefficient (A, y-axis). Isopleths indicate the (a)
resource and (b) consumer equilibrium densities. To make
this representation general, the predation rate is expressed in
the unitless metric of i.,P, normalized to the maximum per
capita consumer growth rate, igK. Also for generality, the
resource density is normalized to the carrying capacity K, and
the consumer density is normalized to the density in predator
absence (i.e., the ordinate value). The dashed and solid arrows
exemplify the effect of a predator with a high predation rate
and low A, and the effect of a predator with low predation
rate and intermediate A, respectively (see Model analysis).
The background mortality of the consumer, d., is zero.

Results indicate that at both low and high predation
rates, nonlethal effects of the predator in the range of
those estimated from empirical studies (Tables 1 and
2) have a large impact on consumer and resource den-
sity at equilibrium. Consider, for example, the effect
of a predator which removes consumers at a high rate,
i.e., ipPlicgK = 0.8, and has a relatively small non-
lethal effect with A = 0.3 (illustrated by dashed arrows
in Fig. 1). In the absence of any nonlethal effect, the
predator will decrease consumer density from 1 to 0.2,
and increase resource density from 0 to 0.8K (this can
be seen in Fig. 1 by evaluating the consumer and re-
source density on the x-axes where A = 0). However,
the addition of the nonlethal effect with A = 0.3 dra-
matically alters the predator effect: the predator will
drive an extant consumer population extinct, and re-
sources will increase to K. Next consider a predator
with lower density effects, iP/icgK = 0.1, but an in-
termediate nonlethal effect, A = 0.5. The lethal effect
alone will reduce consumer density to 0.8 and increase
resource density to 0.1K. However, the addition of a
nonlethal effect of A = 0.5 leads to a doubling of the
resource level, and consumer density increases from
0.8 to nearly 2. In fact, the nonlethal effect reverses
the net predator effect on consumer density from neg-
ative to strongly positive.

The mechanism responsible for the net positive ef-
fect on consumer density is straightforward. At high
consumer foraging rates and consequently low resource
levels, a predator-induced reduction in foraging rate
can cause a proportionately larger increase in resource
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FiG. 2. Results of the simulation model presented in the
predator-effect phase space. The isopleths indicate the com-
bination of predation rates (x-axis) and induced reduction in
the consumer—resourceinteraction coefficients (A; y-axis) that
lead to the indicated resource density (left panels) and con-
sumer production (total biomass gain of all surviving indi-
viduals; right panels). The values are presented relative to
their value at the ordinate where there is no predator effect.
Results are shown for low (upper figures) and high (lower
figures) initial consumer densities. The geometrically increas-
ing predation rates of 1, 2, 4, and 8 led to a total reduction
in consumer density of 22%, 40%, 64%, and 88%, respec-
tively. The letter a indicates the position in predator-effect
phase space where there is a 40% reduction in the consumer—
resource interaction coefficient but no density effect, and the
letter b represents a 40% reduction in consumer density, but
no nonlethal effect.

renewal rates due to the nonlinear relationship between
resource level and resource growth rate (Abrams 1987,
Abrams and Rowe 1996, Peacor 2002). The predator’s
presence effectively acts to oppose the consumer pop-
ulation’s propensity to overexploit the resources. Thus,
though every individual forages at a reduced rate, each
individual acquires more resources due to theincreased
resource levels.

We next use a simulation model to examine the non-
lethal predator effect on the average individual con-
sumer growth rate and resource levels. This model,
which does not assume equilibrium, more closely par-
allels most empirical work performed within the gen-
eration time of at least some of the interacting species.
Further, species densities in natural and experimental
systems often deviate strongly from the equilibrium
condition used in the previous analysis. In the simu-
lation model, resource level, mean consumer size, and
consumer density, were updated at discrete time steps.
Mean consumer growth was proportional to resource
consumption, which was equal to the product of the
consumer—resource interaction coefficient, i, and re-
source level. Growth was thus size independent, but
including size-dependent growth did not affect the
qualitative nature of the results. As in the previous
model, the logistic equation was used to describe re-
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source growth. A fraction of the resources (one-tenth
the carrying capacity) was not accessible for con-
sumption, i.e., served as a refuge. Predation rate was
constant (as in the previous model) and independent of
consumer size, and therefore a constant fraction of con-
sumer density was removed at each time step. Here we
present results performed at two (low and high) initial
consumer densities. The response variables measured
were consumer production (product of mean individual
growth and final density) and resource density. Sim-
ulations were performed over alarge range of nonlethal
effects (A) and predation rates, i.e., over a broad range
of the predator-effect phase space.

The simulation model results indicate that the non-
lethal effect of the predator can strongly influence the
net effect of the predator on short-term consumer pro-
duction over a wide range of parameter values (Fig.
2). At low consumer densities, a predator-induced re-
duction in the consumer—resource interaction coeffi-
cient had a negative effect on consumer production
approximately equal to an equivalent reduction in con-
sumer density. For example, a reduction in igc of A =
0.4 and a predation rate that reduced consumer density
by 40% both reduced consumer production by ~40%
(compare points a and b on the upper right panel of
Fig. 2). In contrast, at high initial consumer densities,
a reduction in the consumer—resource interaction co-
efficient opposed the negative effect of predation on
consumer production, especially at lower predation
rates. As in the equilibrium model, there were com-
binations of lethal and nonlethal magnitudes that led
to a net positive effect on the consumer. This positive
effect was larger and spanned a larger region of the
predator-effect phase space when initial consumer den-
sity was even higher than that illustrated.

Finally, consider the positive indirect effect of the
predator on resource density (Fig. 2). The nonlethal
effect of the predator had a stronger impact on resource
density than a proportionately equivalent reduction in
consumer density. For example, a 40% reduction in the
consumer—resource interaction coefficient had a stron-
ger positive effect on resource level than a 40% re-
duction in consumer density regardless of whether ini-
tial consumer density was low or high (compare points
aand b on the left panelsin Fig. 2). The reasons behind
this result are straightforward. The total impact of the
consumer on the resource is a function of the density
of the consumer and the attack rate of each individual.
Predator presence causes reductionsin both, which then
are transmitted to the resource. Over a finite period of
time, the foraging reduction is immediate, affects the
entire population, and occurs over the entire interval.
Thus the cumulative indirect effect of the predator-
induced foraging reduction over the cohort lifetime can
be very significant. The density reduction, on the other
hand, occurs gradually over time and is transmitted
only in proportion to the individuals removed and not
the entire population. Thus, we can expect nonlethal
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TaBLE 1. Estimates of Ag. derived from consumer effect on resources in the presence and absence of predation risk
(Eq. 5).
Experi-
Error ment
Predator cue Consumer (prey) Resource Arc (1 se) Venue duration Source
Fish isopod leaves 0.40 0.11 lab 7d Short and Holomuzki
(1992)
Fish salamander larvae isopod 0.591% 0.05 lab 1h Huang and Sih
(1991)
Fish stonefly larvae mayfly larvae 0.72% 0.06 lab 24 h Soluk and Collins
(1988)
Spider grasshopper grass 0.731 0.22 field 2mo Beckerman et al.
(1997)
herb§ —0.84t 0.55
Spider grasshopper field 2mo Schmitz (1998)
Chorthippus grass NS
curtipennis herb NS
Melanoplus grass 0.61]| 0.39
feurrubrum herbg NS
Stonefly larvael mayfly larvae periphyton lab 24 h Peckarsky et al.
(1993)
Kogotus 1989 0.26 0.08
modestus 1990 0.54 0.08
Megarcys 1989 0.33 0.07
Signata 1990 0.49 0.08
Fish karimone damselfly: Daphnia pulex lab 4d McPeek et al. (2001)
Ischnura verti- 0.54 0.20
calis
Enallagma la- 0.48 0.14
terale
E. divagans 0.74 0.15

Notes: Assumptions that may have been violated are indicated (see Methods to estimate predator effects on consumer—
resource interaction coefficients). The standard error of Agx. was calculated by error propagation. Unless indicated with Ns,
Arc Was derived from data in which the predator effect on consumer phenotype significantly affected resource level.

T Resource differences in predator presence and absence may cause a conservative estimate of Axc (regarded as potentially
important if resources were reduced by >20% in the herbivore-no predator treatment).

¥ The magnitude of Ag. may be affected by a phenotypic change of the resource in addition to that of the consumer.

§ Heterogeneous resource base of grass and herbs. Effects on grass and herbs were measured independently.

|| The significant effect observed for M. femurrubrum was not observed in a separate treatment where enclosures only

contained grass.

9 The experiment was performed for two species in two different years.

effects (i.e., trait-mediated effects) of the predator to
contribute strongly to its net indirect effects, even when
predator effects on consumer density are quite large.

DiscussioN

This study indicates that phenotypic responses of
consumers to presence of predators can strongly affect
consumer—resource interaction coefficients across di-
verse taxa and systems (Tables 1 and 2). Estimates of
A fall primarily in the range 0.2-0.8, indicating a 20—
80% reduction in consumer—resource interaction co-
efficients in predator presence. The large magnitude of
the nonlethal predator effects therefore provides direct
quantitative evidence that interaction strengths may
vary strongly over space and time as species’ densities
or community composition vary.

Model results show that reductions of the magnitude
estimated from experiments will contribute strongly to
the net direct and indirect effects of a predator in a
food chain. In fact, values from the middle to higher
end of this range in a simple model had larger effects
on consumer and resource growth rate than density
effects. Further, both an analytical model evaluating

species’ equilibria, and a simulation model evaluating
short-term dynamics, showed that the estimated pred-
ator-induced reduction in interaction coefficients can
strongly affect consumer production, consumer density
and resource density. In the simulation model, predator-
induced reductions in consumer—resource interaction
coefficients had larger indirect effects on resource level
than proportionately equivalent reductions in consumer
density due to predation, and were not overwhelmed
by density effects even at high predation rates. In ad-
dition, these trait-mediated effects can either reinforce
or counter the lethal effects of the predator depending
on circumstances.

The magnitude of the predator effect on the consum-
er—resource interaction strength estimated hereislikely
representative of many other species interactions. For
example, there are numerous studies reporting sub-
stantial predator effects on species traits associated
with foraging. Lima (1998) reviews over 100 recent
studies demonstrating behavioral responses (decrease
in activity, increased refuge use, and habitat shifts) of
awide range of taxa on exposure to predators (see also
reviews by Lima and Dill 1990, Kats and Dill 1998,
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TaBLE 2. Estimates of A derived from consumer growth in the presence and absence of predation risk.

Acr
Predator Consumer if exponential
cue (prey) Resource growth 1se
Crayfish snail periphyton 0.29t% 0.004
Crab snail green alga 0.828 0.03
Crushed snail shail periphyton
4/d 0.181 Ns 0.38
1/d 0.21t1 Ns 0.59
4/d 0.341 0.59
Whelk: clam suspension
Caged 0.53 0.06
Lethal 0.65 0.08
Fish Chironomus artificial food|
midge low 0.40% 0.26
larvae medium 0.32% 0.13
high 0.28% 0.10
Fish Damselfly: Daphnia pulex
Ischnura verticalis 0.44 0.11
Enallagma laterale 0.66 0.15
E. divagans 0.95 0.12
Salamander grey tree plankton and 0.16t1% 0.13
larvae frog larvae detritus
Natural pond green frog periphyton and 0.32t% 0.03
background{ larvae detritus
Dragonfly wood frog rabbit chow, 0.14% 0.04
larvae larvae periphyton, and
detritus
Dragonfly green frog periphyton and 0.19% 0.02
larvae larvae detritus
Fish karimone Daphnia green algae
concentration magna Scenedesmus acutus
0.0002 —0.03 Ns 0.03
0.001 0.03 Ns 0.05
0.002 —0.02 Ns 0.03
0.01 0.31 0.04
0.02 0.43 0.04
0.1 0.58 0.03
0.2 0.62 0.02

Notes: A conservative estimate is provided by assuming exponential growth proportional to size (see Methods to estimate
predator effects on consumer—resource interaction coefficients). The se of A was calculated by error propagation. Ac; was
also calculated with the assumption that growth was independent of size (Eq. 8). Assumptions that may have been violated
are indicated (see text). Unless indicated with Ns, Ak was derived from data in which the predator had a significant effect

on consumer growth.

T Resource differences in predator presence and absence may cause a conservative estimate of Ar (regarded potentially
important if resources were reduced by >20% in the herbivore-no predator treatment).
F Consumer size-dependent growth can affect estimates (see text).

8§ No predator effect was observed for a nonfeeding crab.
|| Predator effect was examined at three resource levels.

9 The effect of natural levels of predator cue in pond water was determined with in situ experiments performed open to
pond water. Aged pond water, in which predator cues have degraded, was used as a control.

Tollrian and Harvell 1999, Werner and Peacor 2003).
Although it is not possible to calculate effects on spe-
cies interaction strengths from most of these studies,
there is no reason to believe that these effects are less
than those estimated from the studies examined here.
Further, while we have focused on a food chain in our
analyses, in principal, our results should be general to
other food web configurations in which one species
affects the interaction between two others (reviewed in
Werner and Peacor 2003). For example, if resource
density affects consumer phenotype (Abrams 1991,
Werner and Anholt 1993, Anholt and Werner 1995,
Grand and Dill 1999), then the predator—consumer in-

teraction coefficients (icp and ipc in Eq. 1) would de-
viate from conventional theory and be a function of
resource density.

Theoretical studies predict that the dynamic nature
of interaction coefficients introduced by phenotypic
plasticity can either stabilize or destabilize population
dynamics of species in simple three- and four-species
model systems (Bolker et al. 2003). However, these
analyses do not present the variation in interaction co-
efficient magnitude responsible for the results. Thus it
is difficult to infer how our estimated values of A will
influence the general stability and diversity properties
of multi-species food webs. In addition, the functional



October 2004

TaBLE 2. Extended.

VARIATION IN INTERACTION STRENGTH

2761

Fraction size Ay if Time
increase linear growth Venue (d) Source
4.78 0.33 lab 43 Lewis (2001)
1.55 0.85 lab 34 Yamada et al. (1998)
mesocosm 14 Turner (1997)
1.21 0.19
0.23
0.36
field
<1.1 0.54 36 Nakoaka (2000)
0.67
lab 25 Ball and Baker (1996)
12.3 0.57
8.6 0.55
4.3 0.55
lab 4 McPeek et al. (2001)
1.11 0.45
1.04 0.66
1.10 0.95
16.0 0.38 field 14 Skelly (1992)
4.3 0.49 field 5 S. D. Peacor, M.
Fraker, and E. E.
Werner, unpublished data
2.56 0.21 mesocosm 5 S. D. Peacor,
unpublished data
18.9 0.44 mesocosm 12 S. D. Peacor and
E. E. Werner,
unpublished data
lab 4 Loose and
Dawidowicz (1994)
8.9 -0.07
7.8 0.08
8.7 -0.04
4.3 0.56
3.3 0.69
2.4 0.81
2.3 0.83

relationship between predator density and interaction
coefficient magnitude will strongly affect model pre-
dictions, and therefore there is a need for empirical
measurements of this functional relationship (Abrams
2001, Bolker et al. 2003). To our knowledge, only the
study of Loose and Dawidowicz (1994), who measured
the effect of fish karimone on Daphnia growth rate,
provides this functional relationship, and indeed it is
strongly nonlinear (Table 2). Presenting theoretical and
empirical results in terms of the magnitude of the
change of the interaction coefficients would help to
bridge the gap between theoretical and empirical stud-
ies of the role of phenotypic plasticity in ecological
communities.

Only the data of McPeek et al. (2001) allowed an
estimate of both A and Axc. In two of the three dam-
selfly species examined, Az was considerably larger
than Agc (Tables 1 and 2). This difference could be a
result of physiological responses to predator presence
that affect metabolic rates or factors affecting conver-
sion of resources into consumer biomass, i.e., factors
that would affect Acg but not Agc (McPeek et al. 2001).
The difference may also arise if a large amount of

resources are used for maintenance rather than growth
(in both predator presence and absence). Any predator-
induced reduction in resource acquisition then would
have a proportionately larger negative effect on con-
sumer growth than on the quantity of resources re-
moved, and therefore Az would be greater than Aqc.
While such differences will unlikely affect the quali-
tative nature of the model results presented here (where
we assumed A, and Agc were equivalent), these results
highlight the fact that predator-induced changesin con-
sumer phenotype can have different effects on ig and
i re-

The method proposed here enables an estimate of
the predator effect on interaction coefficients that
would be difficult to derive directly from consumer trait
changes. The relationship between traitsand interaction
strength is difficult to quantify, there are likely a suite
of consumer traits that combine in complex ways to
determine interaction strength, and these traits may
vary strongly as a function of environmental factors
(e.g., time of day). The method developed here, how-
ever, resolves this problem by quantifying a response
(i.e., change in consumer effect on resource density or
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on consumer growth) that effectively aggregates the
effects of all of consumer trait changes integrated over
time.

The accuracy of the protocol presented here to es-
timate A depends critically on the duration of the ex-
periment. Parameters describing rates must be derived
from experiments that are brief relative to feedbacks
in the system (Billick and Case 1994, Osenberg et al.
1997). Specifically in the case addressed here, as du-
ration of the experiment increases, factors such as di-
minishing returns and indirect effects through other
species in the system have increasingly pronounced
effects on the consumer and resource. For example, the
effect on growth rate of equivalent predator-induced
reductionsin consumer foraging rate can vary strongly,
and even differ in sign, depending on consumer density,
competitor density, resource dynamics, and the dura-
tion of the interactions (Peacor and Werner 2004).
These effects will obscure the impact of the predator
on the consumer—resource interaction coefficient.
Therefore, experiments must be short enough to min-
imize such confounding factors. One also must be
aware, however, that phenotypic responses to predators
occurring over short exposure periods may deviate
from those occurring over longer exposure periods for
two reasons. First, the need to feed may cause animals
to decrease phenotypic responses to predator presence
as they become more frequent or lengthy (Lima and
Bednekoff 1999) and second, the expression of some
phenotypic changes may take longer than others (e.g.,
morphological responses may be slower than behav-
ioral responses). This problem can be addressed em-
pirically by using short-term experiments with organ-
isms that have been exposed to predators prior to in-
troduction into a system.

A goal of community theory is to understand how
species interactions influence properties such as diver-
sity and stability. Theory plays a vital role in this be-
cause it is not possible to empirically address long-
term dynamics in many systems given the relatively
long generation times of organisms in these systems.
Clearly such theory must capture the essential char-
acteristics of speciesinteractionsthat ultimately dictate
the manner in which species affect one another’s abun-
dance and dynamics. Our preliminary survey of the
literature indicates that higher-order interactions due to
phenotypic plasticity may often be an important influ-
ence on interaction strengths and strongly affect species
abundances and dynamics. Our results therefore
strengthen previous claims that trait-mediated effects
strongly influence species interactions, and extend the
calls to quantify and determine the distribution of in-
teraction strengths in food webs (Paine 1992, Laska
and Wootton 1998, Berlow et al. 1999) to also quantify
how these interaction strengths vary as a function of
species densities in the food web.
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