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Nitrogen turnover in the leaf litter and fine roots of sugar maple
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Abstract. In order to better understand the nitrogen (N) cycle, a pulse of 15NO3
� was

applied in 1998 to a sugar maple (Acer saccharum) dominated northern hardwood forest
receiving long-term (1994–2008) simulated atmospheric N deposition. Sugar maple leaf litter
and live fine-root 15N were quantified for four years prior to labeling and for 11 subsequent
years. Continuous sampling of 15N following addition of the tracer enabled calculation of leaf
litter and fine-root N pool turnover utilizing an exponential decay function. Fine-root 15N
recovery peaked at 3.7% 6 1.7% the year the tracer was applied, while leaf litter 15N recovery
peaked in the two years following tracer application at ;8%. These results suggest shoots are
primarily constructed from N taken up in previous years, while fine roots are constructed from
new N. The residence time of N was 6.5 years in leaf litter and 3.1 years in fine roots. The
longer residence time and higher recovery rate are evidence that leaves were a stronger sink for
labeled N than fine roots, but the relatively short residence time of tracer N in both pools
suggests that there is not tight intra-ecosystem cycling of N in this mature forest.

Key words: Acer saccharum; experimental NO3
� deposition; fine roots; leaf litter; long-term tracer
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INTRODUCTION

The fate and consequences of atmospheric nitrogen

(N) deposition are of great scientific and social interest

(Schlesinger 2009). Because soil N availability often

limits the productivity of temperate forests (LeBauer

and Treseder 2008), N deposition could potentially

increase carbon (C) storage in these ecosystems. Excess

N in soil can also directly suppress litter decay (Zak et

al. 2008), thereby providing an additional mechanism

for greater ecosystem C storage. Nitrogen not internally

stored or cycled in plant tissues or soil organic matter

can leach to groundwater, with an oversupply of N

eventually leading to N saturation and further conse-

quences for downstream aquatic and marine ecosystems

(Aber et al. 1989, Pregitzer et al. 2004). Understanding

the mechanisms that control N cycling in forests is the

most powerful approach to informed predictions and

policy decisions aimed at forecasting and mitigating the

consequences of anthropogenic N supplied through the

production and use of fertilizer and combustion of fossil

fuels.

In forests, N can be cycled within trees through

remobilization from one plant module to another, such

as in the re-translocation of N from senescing leaves to

storage in woody tissues in autumn and the redeploy-

ment of this stored N to developing shoots in spring

(Wetzel et al. 1989, Stepien et al. 1994). Nitrogen can

also be internally cycled within the soil in many different

ways, e.g., from litter decay to soil solution or from soil

solution into the microbial community (Zak et al. 2004).

Finally, N can be cycled from soil to plant and back to

soil, e.g., taken up by roots/mycorrhizae from the soil,

internally cycled in the tree, and then eventually

deposited back to the soil via litter production. Nitrogen

that is not stored or cycled within the plant–soil system

must ultimately be transferred to some other ecosystem

(herbivory, leaching, erosion, harvest, and similar fluxes)

or lost back to the atmosphere (Chapin et al. 2002).

Trees and soil are the dominant pools of N in forests,

and the incorporation of N into biomass is one potential

sink for atmospheric N deposition (Zak et al. 2004).

During the growing season, most of the N in trees is

found either in the canopy (leaves and reproductive

parts) or in fine roots (,1 mm in diameter) because these

are the most metabolically active plant modules and

they contain the highest concentrations of N-rich

proteins and enzymes (Reich et al. 2008). Trees return

most of their N to soil primarily through the death and

decay of leaves, fine roots, and reproductive parts. Stem

mortality and foliar leaching are normally very minor

fluxes of N from plant to soil (Nave et al. 2009).

In order to examine the cycling of anthropogenic N,

we applied tracer amounts of 15NO3
� in 1998 to plots in

a mature forest receiving experimental NO3
� additions

(Zak et al. 2004). 15N is often used to evaluate terrestrial

N cycling, but the decadal fate of added 15N has rarely

been assessed (Nadelhoffer et al. 2004, Schlesinger 2009)

and even long-term studies have sampled 15N dynamics

infrequently. Because we sampled leaves and fine roots

four years prior to the pulse of 15NO3
� and for 11
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subsequent years, we were able to describe the rate at

which the internal pool of N turns over within these
mature trees. Our objective was to detail the movement

of 15N from trees to the soil by following its turnover in
leaf litter and fine roots in order to determine how

strongly the N supply to these pools is influenced by soil
N.

METHODS

Study site and experimental design

The study site is located in northern Lower Michigan

(458330 N, 848520 W). The northern hardwood forest is
dominated by sugar maple (Acer saccharum Marsh.),

which accounts for 86% of the total overstory biomass
(total aboveground overstory biomass ¼ 301 Mg/ha;

Zak et al. 2008). The dominant trees are ;32 m tall,
total stand basal area is 33 m2/ha, and the dominant

trees are 91 years old, on average (as of 2004). Soils are
sandy (86% sand) Typic Haplorthods of the Kalkaska
series. The A horizon has a pH of 5.0 and the mineral

soil exhibits a high degree of base saturation (.80%;
MacDonald et al. 1993). Net soil N mineralization

during the growing season is ;6.8 g N�m�2�yr�1
(calculated from Zogg et al. 1996). Mean annual

temperature is 6.08C and the mean annual precipitation
is 871 mm, which is evenly distributed throughout the

year. Annual wet þ dry NO3
�-N atmospheric N

deposition averages 0.58 g�m�2�yr�1 and wetþ dry total

atmospheric N deposition averages 0.91 g�m�2�yr�1 (Zak
et al. 2008).

Three plots receiving ambient atmospheric N deposi-
tion were established in 1987, and three plots receiving

experimental NO3
� deposition were established in 1993.

All plots are 900 m2, with a 10-m treated buffer on all

sides of the þNO3
� plots. The experimental NO3

�

deposition treatment was initiated in 1994 and is

composed of 3 g NO3
�-N�m�2�yr�1 applied as solid

NaNO3 pellets, which are broadcast over the forest floor

in six 0.5 g/m2 increments over the growing season. The
routine long-term measurement protocols are described
in detail elsewhere (Burton et al. 2004, Pregitzer et al.

2004, 2008, Zak et al. 2004). In 1998, plots receiving the
experimental NO3

� deposition were each labeled with 24

g of 15N (0.027 g 15N/m2). The isotope was applied by
mixing 99% atom excess Na15NO3 with the June, July,

and August application of the routine experimental
NO3

�-N treatment, introducing the label to the forest

floor. Previous observations show the label was quickly
assimilated into the N cycle at this site (Zak et al. 2004).

Sample collection and analysis

Litterfall was collected in four randomly located 0.5-
m2 litter traps per plot (see Plate 1). Collections occurred

monthly from April through September and biweekly
during periods of heavy leaf fall in October and
November. Foliage from a subset of traps was sorted

by species, dried in an oven at 658C, and weighed to
determine leaf litter biomass. In each plot, the sorted

foliar litter samples from the dominant tree species,

sugar maple, were composited for all dates within a year.
Additional details on litter flux have been reported
elsewhere (Pregitzer et al. 2008).

Root collections sampled the organic layer (;3 cm)
and mineral soil, but depth of sampling varied by year
(Table 1). The samples were originally collected for use

in determining either root biomass (2000) or root
respiration (all other years). Samples were not sorted

by species. All root samples were cleaned with deionized
water, sorted by diameter class, and oven-dried at 658C.
We analyzed roots ,1.0 mm in diameter in most years,

but in 1999 and 2000 only roots ,0.5 mm in diameter
size were available for analysis. From previous root
biomass measurements (Burton et al. 2004), we deter-

mined that 83% of the mass of roots ,1.0 mm in
diameter occurs in the ,0.5 mm diameter class.

All tissue samples were finely ground in a ball mill and

analyzed for 15N and N concentration with an elemental
analyzer (Costech 4010; Costech Analytical Technolo-
gies, Valencia, California, USA) coupled to a continu-

ous-flow isotope ratio mass spectrometer (Delta Plus;
Finnigan MAT, Bremen, Germany). For N concentra-
tion, atropine at varying masses was used to create the

calibration curve (0.015–0.06 mg N; leaf and fine-root
samples: 2 mg). For d15N, samples were measured
against a N2 reference gas calibrated with IAEA

reference materials (IAEA N1, 0.4%; IAEA N2,
20.3%; IAEA 310A, 47.2%; International Atomic
Energy Agency, Vienna, Austria). The standard devia-

tion of measurements of a laboratory standard was
0.5% for d15N. We calculated the percentage recovery of
15N based on the following equation:

Percentage recovery

¼ ð%15Nt 3 Nt 3 biomasstÞ�
�

ð%15Ninit 3 Ninit 3 biomassinitÞ�=15
Naddn 3 100

where %15Ninit and %15Nt are the proportions of N in
biomass that are 15N prior to the 15N addition (1997)
and at time t subsequent to the 15N addition; Ninit and

Nt are the N concentrations (mg/g) of the biomass pool

TABLE 1. Description of fine-root sampling methods in
northern hardwood forest, lower Michigan, USA.

Year
Collection
month

Size
class

Sampling
depth (cm)

1995 July ,1.0 10
1997 August ,1.0 10
1998 August ,1.0 5
1999 September ,0.5 10
2000 September ,0.5 25
2001 August ,1.0 5
2002 May ,1.0 5
2003 June ,1.0 5
2004 August ,0.5 10
2007 August ,1.0 5

Note: Sampling depth is for mineral soil plus organic layers
(average depth ;3 cm).
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in 1997 and at subsequent time t; biomassinit and

biomasst are the biomass pools (g/m2) in 1997 and at
subsequent time t; and 15Naddn is the amount of added
15N. The value for 15Naddn increased annually to take
into account the amount of 15N (9.9 g 15N per plot)

supplied through the annual additions of NaNO3 (d
15N

¼ 0.7%) to each plot. Each percentage recovery value
was based on an individual 15N value for that pool and

year. However, the procedure for determining the values
for biomass and tissue N concentration varied between

leaf litter and roots. For leaf litter, we used annual plot-
level sugar maple biomass and N concentration data.

For fine roots, sampling of the roots analyzed for 15N
varied over the course of the study in depth, date, and

size class designations (Table 1). As a result of the
sampling differences, we used biomass and N concen-
tration data that were the average (at the plot-level) of

these data over the 1994–2007 period. Root biomass
measurements included all species and were made in

1994, 1996, 2000, and 2001 to 25 cm depth (Burton et al.
2004).

To determine the rate of N turnover in leaf litter and
fine roots, we fit an exponential decay function (Olson

1963) to the percentage recovery data from the leaf litter

and fine roots that included the peak in percentage

recovery and all subsequent data points. Nitrogen
turnover was then calculated as the inverse of the decay

rate constant (k�1).
Differences in fine-root and leaf litter mass, N

concentration, and N mass were analyzed using a
repeated-measures analysis of variance (PROCMIXED,

restricted maximum likelihood; SAS version 9.1.3, SAS
Institute, Cary, North Carolina, USA) and post hoc
LSMEANS (Tukey’s) adjusted for multiple compari-

sons. Fit of the exponential decay functions was assessed
using regression (PROC REG, SAS).

RESULTS

N additions began in 1994, but significant increases in
litter N concentrations did not occur until 2000 (Table

2). The increase in leaf litter N concentration (P ,

0.001) resulted in a greater leaf litter N flux (P , 0.001),
even though the NO3

� deposition treatment never

increased leaf litter mass (Table 2; Pregitzer et al.
2008). Both leaf litter mass and leaf litter N concentra-

tion varied from year to year (year: P , 0.001 for both
mass and N; Table 2). Across years, the leaf litter

biomass and N concentration was 374.8 6 7.6 g/m2 and

TABLE 2. Leaf litter and fine-root biomass, N concentration, N content, and 15N recovery in a northern hardwood forest receiving
NO3

� deposition treatments since 1994.

Year

Biomass (g/m2) N conc. (mg/g) N mass (g/m2) 15N mass (mg/m2)
15N recovery
in þNO3

�

plots (%)Control þNO3
� Control þNO3

� Control þNO3
� Control þNO3

�

Leaf litter

1994 365.7 (20.6) 328.6 (27.1) 6.3 (0.4) 6.7 (0.5) 2.3 (0.2) 2.2 (0.1) 8.3 (0.7) 7.9 (0.5)
1995 314.2 (10.2) 276.0 (28.8) 6.9 (0.4) 8.0 (0.1) 2.2 (0.1) 2.2 (0.2) 7.9 (0.2) 8.0 (0.9)
1996 423.2 (15.1) 367.6 (24.5) 7.6 (0.2) 8.9 (0.1) 3.2 (0.2) 3.3 (0.2) 11.8 (0.8) 12.0 (0.8)
1997 275.8 (8.4) 252.2 (12.9) 6.4 (0.2) 8.7 (0.4) 1.8 (0.1) 2.2 (0.2) 6.5 (0.3) 8.0 (0.8)
1998 355.3 (9.2) 310.1 (27.4) 6.4 (0.3) 8.3 (0.5) 2.3 (0.2) 2.6 (0.3) 8.3 (0.6) 9.6 (1.2) 4.3 (1.1)
1999 334.0 (7.8) 363.7 (31.9) 6.6 (0.4) 8.2 (0.1) 2.2 (0.2) 3.0 (0.3)* 8.1 (0.6) 11.8 (1.1) 7.7 (2.4)
2000 353.8 (7.0) 356.3 (49.8) 6.9 (0.4) 9.5 (0.3)* 2.4 (0.2) 3.4 (0.5)* 8.9 (0.6) 13.0 (2.0) 8.4 (3.1)
2001 283.7 (8.7) 287.3 (4.4) 7.9 (0.2) 11.1 (0.2)* 2.3 (0.0) 3.2 (0.0)* 8.2 (0.1) 12.1 (0.1) 5.8 (1.2)
2002 226.5 (11.8) 212.2 (21.1) 10.5 (0.3) 14.3 (0.8)* 2.4 (0.1) 3.0 (0.1)* 8.7 (0.3) 11.4 (0.6) 4.1 (0.4)
2003 331.8 (8.7) 329.5 (25.7) 6.6 (0.3) 9.7 (0.2)* 2.2 (0.1) 3.2 (0.2)* 7.9 (0.4) 12.0 (0.9) 4.2 (0.2)
2004 288.6 (10.6) 322.7 (2.1) 8.3 (0.4) 10.4 (0.5) 2.4 (0.2) 3.3 (0.2)* 8.8 (0.8) 12.5 (0.6) 4.4 (1.0)
2005 310.0 (8.2) 327.6 (22.6) 7.9 (0.1) 9.4 (0.3) 2.5 (0.1) 3.1 (0.1) 9.0 (0.4) 11.5 (0.5) 3.0 (0.5)
2006 289.8 (7.5) 275.6 (44.5) 9.3 (0.4) 11.5 (0.9) 2.7 (0.0) 3.1 (0.3) 9.8 (0.2) 11.5 (1.2) 2.8 (0.4)
2007 311.7 (6.5) 297.9 (24.7) 10.8 (0.7) 10.6 (0.6) 3.4 (0.3) 3.2 (0.4) 12.3 (1.1) 11.8 (1.4) 2.8 (0.5)
2008 317.5 (5.5) 302.5 (18.7) 8.3 (0.4) 9.5 (0.3) 2.6 (0.1) 2.9 (0.3) 9.6 (0.3) 10.7 (1.0) 1.8 (0.2)

Fine roots

1994 436.8 (7.4) 485.5 (22.9)
1995 18.8 (2.4) 15.5 (0.8) 8.2 (0.7) 6.8 (0.3) 27.2 (0.0) 23.6 (0.0)
1996 400.3 (57.8) 450.8 (40.0)
1997 15.4 (1.3) 15.1 (0.2) 6.7 (0.3) 6.6 (0.1) 25.3 (1.5) 24.0 (0.2)
1998 16.2 (0.6) 15.1 (1.1) 7.1 (0.4) 6.6 (0.3) 26.0 (1.0) 25.4 (0.3) 3.7 (1.4)
1999 11.3 (0.7) 11.7 (1.1) 5.0 (0.6) 5.0 (0.3) 18.5 (2.6) 24.7 (0.3) 1.4 (0.2)
2000 436.1 (60.6) 459.4 (69.0) 15.1 (0.2) 15.2 (0.7) 6.7 (0.6) 6.5 (0.2) 24.4 (2.1) 24.9 (0.2) 1.5 (0.3)
2001 490.2 (40.6) 354.7 (27.5) 15.7 (0.8) 16.3 (0.9) 6.9 (0.2) 7.0 (0.6) 25.2 (0.8) 24.6 (0.2) 0.8 (0.1)
2002 16.9 (2.2) 16.0 (0.9) 7.6 (0.2) 7.0 (0.2) 27.8 (0.8) 24.4 (0.3) 0.5 (0.1)
2003 17.4 (0.0) 14.6 (1.9) 7.7 (0.7) 6.3 (0.6) 28.1 (2.5) 24.5 (0.0) 0.3 (0.2)
2004 18.7 (0.6) 17.5 (0.8) 8.2 (0.5) 7.6 (0.2) 30.0 (1.1) 24.7 (0.4) 0.3 (0.1)
2007 15.6 (0.6) 16.0 (0.1) 6.8 (0.4) 7.0 (0.3) 25.0 (0.9) 24.7 (0.4) 0.2 (0.1)

Notes: In 1998, N additions were applied as 15NO3
�. Treatment means (n¼ 3) are displayed with standard errors in parentheses.

Years with significant pairwise differences (P , 0.05) between control and NO3
� plots in leaf litter N concentration and leaf litter N

mass are denoted with an asterisk next to these data for the NO3
� amended plots. 15N mass in fine roots was calculated using

constant values through time for biomass (438.5 6 17.6 and 431.3 6 19.7 for control andþNO3
�, respectively) and N concentration

(15.8 6 0.6 and 15.2 6 0.6 for control and þNO3
�, respectively). See Methods for details.
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7.8 6 0.2 mg/g (mean 6 SE) for the control and 380.5 6

8.2 g/m2 and 9.6 6 0.3 mg/g for þNO3
�.

In contrast with leaf litter mass, fine-root mass was

relatively consistent during the four years it was sampled

(year: P ¼ 0.795). The experimental NO3
� deposition

treatment did not influence the concentration of N in

fine roots (P ¼ 0.260) or fine-root biomass (P ¼ 0.946;

Table 2). Across years, the mean fine-root biomass and

N concentration was 438.5 6 17.6 g/m2 and 16.1 6 0.5

mg/g for the control and 431.3 6 19.7 g/m2 and 15.3 6

0.4 mg/g for þNO3
�.

The d15N of leaf litter peaked in 1999, the year

following the application of the tracer and gradually

declined thereafter (Fig. 1). Peak recovery of 15N was

greater in leaf litter (8.4% 6 3.1%) than in fine roots

(3.7% 6 1.4%; Table 2). For fine roots, recovery peaked

in 1998. For leaf litter, recovery peaked in 2000 for leaf

litter, but was only slightly greater than in 1999. The

d15N of fine roots peaked the year the label was applied

(1998) and also declined thereafter (Fig. 1). The

exponential decay functions (both P , 0.001) predicted
15N turnover rates of 3.1 years for fine roots and 6.5

years for leaf litter (Fig. 2).

DISCUSSION

Trees acquire N primarily from the soil through root/

mycorrhizal uptake or directly through their foliage.

Once acquired, the pool of N within the tree is used

primarily to construct and maintain N-rich proteins and

enzymes. Indeed, the respiratory activity of all land

plants is highly correlated to tissue N concentration

(Reich et al. 2008). Proteins and enzymes can turn over

quickly and N often cycles within the plant on time steps

that match the construction and senescence of N-

demanding structures (Reich et al. 2008). In general,

the internal pool of N in plant leaves and root tips,

which contain the majority of plant total N, appears to

cycle relatively rapidly within the whole tree. For

example, once 15N was introduced to the stem transpi-

ration stream as an artificial sap solution, leaves and fine

roots were uniformly labeled within just a few days

(Horwath et al. 1992).

Trees can also produce and subsequently remobilize

storage proteins (Millard 1996). In autumn, deciduous

temperate and boreal trees retranslocate N from

metabolically active leaves and synthesize storage

proteins, which enable the efficient storage of N within

the tree over the dormant season (Wetzel et al. 1989,

Stepien et al. 1994). In spring, these storage proteins are

remobilized and some of this N is preferentially used to

construct new shoots. New shoot growth in highly

determinate species like sugar maple begins in early

spring when the soil is cold and active transpiration is

very low. Internal N reserves are critical for new shoot

growth in spring, because conditions for root N uptake

are not optimal when buds break (Menino et al. 2007).

Several studies utilizing 15N have demonstrated that new

shoot growth in spring preferentially utilizes stored N

(Proe et al. 2000, Menino et al. 2007) and our results

confirm these observations. At our site, the 15N tracer

peaked in leaf litter one year after application. The peak

one year after the tracer addition is because the majority

of N used in construction of shoots in 1998 was stored N

(rather than tracer N). As the growing season progress-

es, shoots of deciduous trees typically rely more upon

soil N than N in storage proteins (Proe et al. 2000,

Menino et al. 2007). The fact that the 15N recovery in

fine roots peaked in the year the 15N was applied

suggests that the new roots of sugar maple are not built

from stored N, but instead are built from mineral N.

However, there are few studies quantifying the season-

ality of 15N in fine roots, and reliable information about

the remobilization of N from fine roots still eludes the

scientific community.

FIG. 1. Values of d15N for leaf litter and live fine roots from
1994 through 2008 in a northern hardwood forest, lower
Michigan, USA. Pulse additions of 15N-NO3

� as a tracer were
added to the NO3

� deposition treatment in 1998.

FIG. 2. Percentage recovery of 15N from leaf litter and live
fine roots in the years following the pulse addition of tracer
15N-NO3

� to the NO3
� deposition treatment plots (n ¼ 3

replicates). Dashed lines represent the fit (both P , 0.001) of an
exponential decay function to the percentage recovery data
through time.
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Tracers recovered at any time after labeling are the net

result of initial uptake, residence time (average pool

turnover time), and subsequent inputs and losses to

other ecosystem pools (Nadelhoffer et al. 2004). The

d15N of leaf litter peaked in 1999, the year after labeling,

and the pool of 15N had an average turnover of 6.5 years

(Fig. 2). 15N could be lost in leaf litter and root mortality

and subsequently taken back up from the soil, inflating

our estimates of turnover. However, this influence

should be small because these pools contained at most

only a small fraction of the total label applied. Although

reuptake prevents a completely accurate estimate of

turnover, it is clear that continued uptake of non-labeled

N from the soil dominated the N found in leaf litter as

time progressed from the pulse of 15N in 1998 (Fig. 2).

It has historically been assumed that because N is

tightly retained within the intra-ecosystem cycle under

N-limiting conditions, the large majority (80%) of the N

required for growth over the life of a stand comes from

internal remobilization and plant–soil–plant cycling

rather than uptake from the soil (Miller 1986). The

forests we studied are mature, have high biomass and

high leaf area, and there is virtually no free growing

space in the canopy (Pregitzer et al. 2008). The plots we

labeled with 15N also exhibit distinctive signs of N

saturation (large soil leaching losses of N), in which N

PLATE 1. (Top) Northern hardwood forest canopy as seen from a tower allowing canopy access near Pellston, Michigan, USA.
(Bottom) Leaf litter in early October in the Upper Peninsula of Michigan. Long-term litter collections (almost 25 years) have
enabled greater insight into the mechanisms controlling nitrogen cycling in northern hardwood forests. Photo credits: top, Brian
Parmenter; bottom, A. J. Burton.
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availability exceeds biological demand (Pregitzer et al.

2004). In our case, the conventional wisdom suggesting

that N cycles tightly within the tree and from tree-to-

soil-to-tree is not the case. The pool of N in leaf litter

turns over approximately every 6.5 years, which means

the pool of N within the canopy was continually being

replaced by non-labeled N. The rapid dilution of tracer

N within leaves and the flux of N from the soil are

evidence that both within the tree–soil–tree and ecosys-

tem context, the N cycle is open. Other N fertilization

studies have not sampled frequently enough to calculate

turnover but have shown long-term 15N recovery in the

foliage that is similar to our recovery in leaf litter: 2.5–

7.4% in Pinus resinosa Ait. and mixed Quercus forests

after seven years (Nadelhoffer et al. 2004) and 1.6–4.5%
in Pinus contorta Dougl. after eight years (Preston and

Mead 1994).

An interesting question is whether or not our leaf

litter results are the general case, or a consequence of

our chronic N deposition treatment. Nadelhoffer et al.

(2004) found that foliar 15N recovery was greater at

seven years than in the initial sampling in unfertilized

forests. This appears contrary to declining 15N recovery,

but the initial sampling by Nadelhoffer et al. (2004)

occurred in the same year 15N additions concluded and

our results indicate this early sampling may have missed

peak uptake. In fact, several other pieces of evidence

suggest the patterns we observed may widely reflect N

use and internal cycling in trees. For example, young

nonbearing orange trees are highly dependent on new

inputs of N from the soil (Menino et al. 2007). Proe et

al. (2000) report that current N supply has no significant

impact on the amount of N remobilized to support new

shoot growth, and as the growing season progresses,

uptake of N from the soil becomes increasingly

important for the formation of N reserves deployed

the following spring. In mature almond trees, new N

taken up from the soil represents ;50% of total canopy

N (Weinbaum et al. 1987). Taken together, our results

and those from other 15N studies suggest that the pool of

N within the tree is diluted relatively quickly by new N

taken up from the soil. Given these observations, the

closed view of the intra-ecosystem N cycle in mature

forests requires revision. However, generalizations

about tree N use should not be taken seriously until

further 15N turnover studies are conducted in mature

natural forests, including those not exposed to chronic

atmospheric N deposition. With a pool turnover of only

6.5 years, it is safe to conclude that the leaf litter N cycle

in our study is relatively open. Because the canopy

contains most of the N in these trees (Zak et al. 2004),

trees in the NO3
� deposition treatment have little

capacity to retain N and appear to simply cycle it faster

when exposed to N additions (Pregitzer et al. 2008).

The average residence time for 15N in the pool of live

fine-root tissue N was 3.1 years (Fig. 2). The difference

in percentage recovery (Fig. 2) between leaf litter and

fine roots demonstrates that leaves are a much stronger

sink for N than fine roots in our forest. Other studies of
15N have found similar long-term 15N recovery rates in

fine roots (1.6–5.6%) and have found that roots are

often (but not always) smaller sinks for 15N than foliage

(Preston and Mead 1994, Nadelhoffer et al. 2004). In

general, leaves are the strongest plant sink for N,

representing 40–60% of the total amount of N acquired

from the soil (Menino et al. 2007). In our study, direct

comparisons of 15N turnover between leaf litter and fine

roots should be interpreted with caution. Our fine-root

data come from live fine roots and the data do not

represent senescent fine-root tissue. We still do not

understand if N is retranslocated from fine roots before

they die and the existing evidence is equivocal. Millard

(1996), Proe et al. (2000), and Luyssaert et al. (2005) all

discuss problems with estimates of nutrient resorption

from foliage during senescence if the estimates are not

derived from the use of tracer techniques. Equivalent

data for fine roots that would enable such a discussion

are not available, and our continuous time course for the

pool dilution of 15N in fine roots is problematic

compared to that for leaf litter. Fine roots in our

experiment were sampled in different ways through time

(Table 1), and we now know there is significant variation

in the concentration of fine-root tissue N and corre-

sponding rates of fine-root respiration, depending on the

position of an individual root on the branching root

system (Pregitzer et al. 1998, 2002). Thus, a direct

comparison of pool turnover between the leaf litter and

fine-root pools cannot be done with certainty. However,

6.5 years and 3.1 years for leaf litter and live roots

represent relatively short N pool residence times.

Compared to leaves, construction of new fine roots

appears to be less dependent on N transferred from

internal storage pools and fine roots may cycle N faster

than leaves, which are the dominant N sink.

The idea that trees conserve N by withdrawing amino

acids and proteins from leaves in autumn, synthesizing

specific proteins for storage over winter, and then

remobilizing stored N in the spring to conserve N

should be reconsidered. Our results and those from

other 15N studies (Proe et al. 2000, Menino et al. 2007)

suggest the use of stored N to construct new shoots in

the spring may be a physiological mechanism that has

evolved in response to cold soils and a poorly developed

vascular system in the early spring. Early in the spring

when cold soils limit diffusion in the soil and the

metabolic processes required to actively transport N into

the root system, the determinate shoots partially

differentiated in the buds the prior year expand rapidly

in the absence of a fully functional transpiration system.

At our study site in May, it is probably impossible for

trees to transport enough N from soil to support rapidly

expanding shoots, and therefore, over time trees may

have evolved mechanisms to utilize internally stored N

to fuel the expansion of a new cohort of N-rich leaves.

As the tree’s vascular system becomes fully functional,

soil warms, and the growing season progresses, trees rely
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mostly on N taken up from the soil, and so the pool of

internally stored tree 15N in our study declined

exponentially. We must now understand if all temperate

and boreal trees, regardless of soil N availability, follow

a similar seasonal and interannual pattern of N cycling.

Fine roots appear to cycle N faster than leaves and

apparently rely less on internally stored N for their

construction.
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