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Abstract. Despite general agreement that river-valley hydrology shapes riparian
ecosystems, relevant processes are difficult to distinguish and often inadequately specified in
riparian studies. We hypothesize that physical constraints imposed by broad-scale watershed
characteristics and river valleys modify local site conditions in a predictable and probabilistic
fashion. To test this hypothesis, we employ a series of structural equations that decompose
occurrence of riparian ecotypes into regional temperature, catchment storm response, valley
hydraulics, and local site wetness via a priori specification of factor structure and ask (1) Is
there evidence for multiscale hydrologic control of riparian diversity across Lower Michigan?
(2) Do representations of key constraints on flood dynamics distinguish regional patterns of
riparian vegetation? (3) How important are these effects? Cross-correlation among geospatial
predictors initially obscured much of the variation revealed through analysis of semipartial
variance. Causal relationships implied by our model fit with observed variation in riparian
conditions (chi-square P ¼ 0.43) and accounted for between 84% and 99% of the occurrence
probability of five riparian ecotypes at 94 locations. Results suggest strong variation in the
effects of regional climate, and both the relative importance and spatial scale of hydrologic
factors influencing riparian vegetation through explicit quantification of relative flood
frequency, duration, intensity, and relative overall inundation. Although climate and
hydrology are not the only determinants of riparian conditions, interactions of hydrologic
sourcing and flood dynamics described by our spatial models drive a significant portion of the
variation in riparian ecosystem character throughout Lower Michigan, USA.

Key words: flooding; Lower Michigan, USA; multiscale controls; riparian forests; structural-equation
models.

INTRODUCTION

Ecological and geomorphic studies of riparian dy-

namics have been strongly influenced by the idea that

fluvial ecosystems are structurally multiscale, hierarchi-

cally nested systems characterized by high rates of

material and energy exchange (e.g., Frissell et al. 1986,

Poole 2002, Ward et al. 2002). Understanding how

effects are propagated across multiple spatial scales to

shape riparian vegetation patterns implicitly requires a

cross-scale evaluation of the relative strengths of

different processes that ultimately influence conditions

at specific riparian sites (Baker 1989, Bendix 1994a,

Hughes et al. 2001, Dixon et al. 2002, Sarr and Hibbs

2007b).

Both hydrology (water-budget dynamics) and hydrau-

lics (local distributions of fluid energy) affect riparian

ecosystem structure (Brinson 1990, Gregory et al. 1991,

Bayley 1995, Blom and Voesenek 1996, Hughes 1997,

Bendix and Hupp 2000, Nilsson and Svedmark 2002).

Combined, they produce steep physical gradients and

lead to the high levels of biological and ecological

diversity within riparian corridors (Naiman et al. 1993,

2000, Ward et al. 1999, Goebel et al. 2003, Poole et al.

2004). Soil water, light levels, nutrient status, and

mechanical disruption from flooding are thought to be

the primary proximal factors influencing riparian tree

establishment, growth, and survival (Brinson 1990,

Malanson 1993, Bendix and Hupp 2000). For example,

many riparian plants require a flood pulse for seed

dispersal, and flood-recession dynamics can be critical

for seed establishment (Scott et al. 1997, Levine and

Stromberg 2001, Karrenberg et al. 2002, Middleton

2002, Rood et al. 2003). Small differences in floodplain

topography can transform both surface and groundwa-

ter hydraulic energies in a way that greatly impacts seed

flux and survival (e.g., Jones et al. 1994, Gurnell 1997,

Collins and Battaglia 2002, Merritt and Wohl 2002), and

trade-offs between flooding and light availability play an

important role in controlling plant persistence (e.g.,

Streng et al. 1989, Hall and Harcombe 1998, Battaglia

and Sharitz 2006). Large flood events influence both the

generation and movement of woody debris and fine-

scale patterns of nutrient and sediment deposition (Palik

et al. 1998, Steiger and Gurnell 2003). Riparian

hydrology and hydraulics also play critical direct and
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indirect roles in biogeochemical processing (e.g., Spink

et al. 1998, Hefting et al. 2004) and therefore nutrient

availability in the root zone. More obviously, floodplain

hydraulics determine the expression of mechanical-

disturbance regimes (Bendix 1994b, 1997, Bendix and

Hupp 2000, Richards et al. 2002, Ward et al. 2002).

Despite widespread studies of proximal hydrologic

controls in riparian forests, attempts to characterize the

structural variation of riparian ecosystems across

regional landscapes have been quite limited. Linking

biological responses to the larger fluvial system remains

difficult because of the need to quantify spatially

complex local topography, local flow regimes, and

hydrologic routing across large upstream catchments.

Riparian vegetation usually reflects variation in regional

climate and physiography (Lindsey et al. 1961, Tabacchi

et al. 1996, Crow et al. 2000, Baker and Wiley 2004, Sarr

and Hibbs 2007b). However, present-day assemblage

structure is often confounded by local episodic events

(e.g., Baker 1990, Cordes et al. 1997, Stella et al. 2006),

invasions (Planty-Tabacchi et al. 1996, Hood and

Naiman 2000, Tickner et al. 2001), and a history of

human modification at multiple scales (e.g., Bren 1988,

Nilsson and Berggren 2000, Gergel et al. 2002).

Remote sensing has recently allowed more precise

evaluation of spatially explicit hydrologic patterns

(Benke et al. 2000, Townsend 2001, Townsend and

Foster 2002), yet geospatial data are typically more

effective at capturing either fairly coarse physical drivers

(e.g., regional climate and topography; Baker 1989,

Townsend and Walsh 1998) or generalized aspects of

local riparian response (i.e., with multi-spectral imagery;

Townsend 2001, Baker et al. 2006a). Despite the promise

of these and other geospatial tools, we still know very

little about how the heterogeneity observed within

riparian ecosystems is generated (Sarr and Hibbs

2007a), and are far from understanding the causes of

riparian-forest variation within and among watersheds.

We have previously classified major riparian ecotypes

occurring throughout the Lower Peninsula of Michigan

(USA) based on indicator-species analysis, tree-species

niche requirements, and field observations (Baker and

Wiley 2004). We found close correspondence between

hydrologic interpretations of riparian-forest composi-

tion derived from species-specific associations, and

geospatial characterizations of riparian conditions.

However, interpretation of correlations in the analysis

was confounded by collinearity among climatic and

hydrologic predictors. Ordination of plant assemblages

revealed distinct patterns of riparian composition, but

many environmental variables were strongly correlated

with several ordination axes as well as one another. As

in similar studies (e.g., Baker 1989, Smith 1996, Bendix

1997, van Coller et al. 2000, Decocq 2002, Sarr and

Hibbs 2007b), our initial characterizations did not lead

directly to a coherent theory of the controls on riparian

diversity.

River flood events are a product of the complex

interaction among catchment character, network rout-

ing dynamics, and both local channel and valley

hydraulics. In general, flood frequency (number of

events per unit time) increases with reduced upstream-

storage attenuation of high flows (corresponding to

increased catchment transport efficiency) and locally

inefficient transport, whereas flooding duration (length

of inundation per event) increases when both local and

catchment transport hydraulics are less efficient and

result in longer total periods of event-flow transport

(Brinson 1990, Bedient and Huber 2002). Flood

intensity (tractive force acting on floodplain surfaces

and vegetation during an event) or power dissipation is

expected to increase with greater down-valley gradient

and reduced upstream attenuation, as higher peak flows

generate greater depths (hydraulic radii) across flood-

plain surfaces (Magilligan 1992, Bendix 1997, Bedient

and Huber 2002).

The total inundation experienced by riparian areas is

also a function of other hydrologic loadings (Mertes

1997, Ward et al. 2002). Site-specific controls on riparian

wetness and plant response in Michigan include annual

patterns of regional climate, groundwater sourcing, and

floodplain morphology. Annual temperatures have a

direct physiological effect on tree species distributions

(Spurr and Barnes 1980, Denton and Barnes 1987a, b,

Sarr and Hibbs 2007b) and the ratio of precipitation to

evapotranspiration is an index of regional soil-water

status employed in many hydrologic studies (Denton

and Barnes 1987a, Ward and Trimble 2004). Riparian

areas may be consistently saturated even at low river

stages when substantial groundwater upwelling occurs

along the fluvial valley (Baker and Barnes 1998, Crow et

al. 2000). At a single valley cross-section, elevated

floodplain surfaces should result in drier average site

conditions and improved soil drainage because they are

necessarily further removed from the local phreatic

surface (Megonigal et al. 1997, Turner et al. 2004).

Reconciling hierarchical and multiscale perspectives

on how complex processes interact to produce observed

ecological structure remains a fundamental problem in

fluvial ecology (Poole 2002), and for riparian ecologists

in particular (Bendix and Hupp 2000, Dixon et al. 2002,

Sarr and Hibbs 2007a). Developing and testing theory in

this area requires facing the fact that most drivers of

riparian processes co-vary strongly in space and time,

confounding evaluation of whether local observations

are consistent with proposed predictive and/or heuristic

models (e.g., Hupp and Osterkamp 1985, Malanson and

Butler 1990, Bendix and Hupp 2000). For example, van

Coller et al. (2000) used a combination of constrained

and unconstrained ordinations to understand hierarchi-

cal effects on vegetation patterns along a semi-arid

South African river. Their analyses allowed comparison

of explained variance among ordination axes obtained

from different scales, yet hydrologic interpretations were

complicated by inability to distinguish among highly

MATTHEW E. BAKER AND MICHAEL J. WILEY146 Ecology, Vol. 90, No. 1



correlated environmental factors. Further, broad-scale

watershed analyses often rely on geospatial measures
obtained from digital data sets that are themselves auto-

correlated (e.g., King et al. 2005, Baker et al. 2006b).
Structural-equation modeling (SEM; Bollen 1989) can

be used to decompose and analyze direct and indirect
effects of controlling factors in complex, collinear,

multivariate systems (e.g., Grace and Keeley 2006,
Harrison et al. 2006, Laughlin and Grace 2006). SEM
can also explore the causal implications of direct and

indirect effects in causal chains where hierarchical
relationships are modeled explicitly (e.g., Riseng et al.

2004, Burcher et al. 2007). Because SEM accounts for
both unique and shared contributions to model vari-

ance, it has been used to incorporate measurement
uncertainty into multivariate models (e.g., Grace and

Pugesek 1997, Gough and Grace 1999) or as an
analytical approach for dealing with multicollinearity

(Mitchell 1992, Graham 2003).
Here we present a multiscale, structural-equation

analysis and interpretation of the influences of regional
climate, flood dynamics (frequency, duration, intensity),

and local hydrologic sourcing on the composition of
forested riparian ecosystems. We hypothesize that

physical constraints imposed by broad-scale watershed
characteristics and river valleys modify local site

conditions and therefore forest composition in a
predictable and probabilistic fashion. To test this

hypothesis, we employ SEM to decompose occurrence
of riparian ecotypes into climatic and multiscale
hydrologic components (latent variables) via a priori

specification of causal structure. By explicitly recogniz-
ing multiscale constraints on river-catchment hydrology

and valley hydraulics, we distinguish across scale (trans-
scale sensu Poole [2002]) processes from other factors

and ask (1) Is there evidence for multiscale hydrologic
control of riparian diversity across Lower Michigan? (2)

Do simple representations of key constraints on flood
dynamics distinguish regional patterns of riparian

vegetation? and (3) How important are these effects? If
flood frequency, duration, and intensity really do

control local patterns of riparian vegetation, then
regional patterns in forested-floodplain composition

should also reflect broad-scale gradients in flood
dynamics.

METHODS

Study area

The extent of our analysis included the major river

basins of Michigan’s Lower Peninsula (Fig. 1). Despite
its relatively small area and mild topography, Lower

Michigan (USA) has a broad variety of local landscapes
due to an array of glacial drift, pro-glacial deposits, and

glacio-fluvial valleys (Farrand and Bell 1982). This
variable geology is complemented by climatic gradients

from north to south and east to west that result in
distinct ecoregions (Albert et al. 1986). River-catchment

hydrology, the routing of water inputs among evapo-

transpiration, groundwater, and overland-flow path-

ways, therefore varies tremendously among river

systems. Baseflow yields range from near zero to some

of the highest in North America, and the ratio of

discharge to precipitation varies from 0.20 to 1.00

(Hendrickson and Doonan 1972, Richards 1990, Berry

1992, Winter et al. 2002). In terms of valley geomor-

phology, a variety of local river-valley and riparian-

forest characteristics occur among rivers within specific

glacial terrains both in and out of old glacio-fluvial

channels (Baker and Barnes 1998, Crow et al. 2000).

Riparian samples

A detailed description of sampling methods and

analysis is given by Baker and Wiley (2004). Briefly,

we employed stratified, random, prism-point sampling

in each forest assemblage along 94 valley transects (Fig.

1). Tree stems in three 10 basal-area factor (BAF) prism

points located at least 30 m apart were identified to

species following the nomenclature of Voss (1972, 1985,

1996). Weighted averages of forest overstory samples

from each valley transect were classified by Ward’s

hierarchical clustering (McCune and Grace 2002). We

used indicator-species analysis (Dufrene and Legendre

1997) and the autecology of dominant tree species to

characterize five distinct riparian ecotypes.

FIG. 1. Sampling locations (circles) across major river
networks of Lower Michigan, USA.
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Riparian ecotypes were labeled ‘‘silver maple’’ (SIL-

VER), ‘‘black maple’’ (BLACK), ‘‘sugar maple’’ (SUG-

AR), ‘‘green ash’’ (GREEN), and ‘‘white-cedar’’

(CEDAR). Principal tree species of each riparian

ecotype were associated with distinct site conditions

and thus indicated clear differences in riparian environ-

ments throughout Lower Michigan. SILVER was

associated with prolonged inundation events, BLACK

with rich, mesic bottomlands, SUGAR with brief and

infrequent flooding, GREEN with moderate-power

floods, and CEDAR with cold, spring-fed or alkaline

soils (see detailed descriptions in Baker and Wiley

[2004]).

An approach to quantitative analyses

Causal relationships among variables in a data set can

be evaluated with a powerful family of techniques

generally known as covariance structure analysis, path

analysis, or structural equation modeling (SEM). The

structure of a causal model is an explicit hypothesis or

set of hypotheses about constraints on expected patterns

of covariance in the observed system (Bollen 1989,

Shipley 2002). As opposed to correlative analyses such

as regression or factor analysis, the explicit structural

hypotheses of SEMs distinguish between variance

explained uniquely by individual predictors (‘‘semi-

partial variance’’) and variance shared among predictors

due to spurious correlation (Grace and Bollen 2005).

Expressed as a system of simultaneous linear equations,

SEMs are fit by maximum likelihood with observed

covariance matrices to assess the causal inferences of the

researcher. Despite the causal implications of such

models, SEMs do not prove causality; instead they

provide inferential evidence by evaluating how a priori

hypotheses, assumptions, and constraints correspond to

the covariance structure of sample data (Petraitis et al.

1996, Shipley 2002). Nevertheless, SEMs represent a

major shift in the outcome of multivariate analyses from

hypothesis generation towards more explicit tests of

theory regarding causal relationships in multivariate

systems (Grace and Bollen 2005).

We evaluated hypothetical causal relationships among

regional climate, floodplain hydrology, and riparian-

forest composition in a formative empirical model,

taking potential interactions among geospatial predic-

tors into account (Fig. 2). During model fitting,

relationships among predictors and dependent variables

were determined after first accounting for correlations

among predictor variables, thus accounting explicitly for

multicollinearity in the model. Although we sought to

relate riparian characteristics to multiscale and trans-

scale processes, our model was not explicitly structured

as a hierarchical analysis of a causal chain or cascade

(e.g., Bendix 1994a, Burcher et al. 2007). Rather, our

goal was to detect relationship with patterns of riparian-

forest composition in order to understand spatial

variation in the relative importance of environmental

factors driving riparian heterogeneity.

Because plants respond directly to variation in

proximal physical conditions rather than any one of

many ultimate drivers or their geospatial surrogates, we

explicitly structured our model so that most geospatial

predictors were linked to riparian ecotypes through

unmeasured, or latent, environmental proxies (Fig. 2). It

is important to note that these latent proxies are

theoretical constructs, thus their names represent our

best interpretation of their meaning in this analysis. For

example, according to our structural hypothesis, ex-

treme values of precipitation relative to evapotranspira-

tion, groundwater seepage relative to advective

transport, or floodplain elevation could each result in

similar estimates of ‘‘site wetness’’ and a similar riparian

response.

Prior to SEM analysis, the five riparian ecotypes were

evaluated using nonmetric multidimensional scaling

(NMS) in ordinations based on tree-species relative

abundance. Scores from the first two NMS ordination

axes were employed in logistic regressions to predict

ecotype membership for each sampling location based

on its relative location in species space. Fitted logistic

regressions were used to generate a post hoc classifica-

tion probability surface for each riparian ecotype. Thus,

our SEM analysis provided a test of whether environ-

FIG. 2. Schematic representation of structural hypotheses
linking geographic predictors to riparian ecotypes. Upper boxes
represent measured geospatial variables (G). Though often
strongly correlated with each other (noncausal, curved arrows),
collecting such data is cost effective across broad spatial
extents. The oval represents latent factors predicted via direct
effects (single-headed arrows) from geospatial variables. Latent
variables represent proximal, but unmeasured, causes (e.g., site
wetness) hypothesized to have a direct effect on riparian-forest
composition. Lower boxes represent occurrence probabilities
for each riparian ecotype (R). According to the structural
hypothesis, covariation among riparian probabilities represents
response to environmental causes and is used to determine
latent-factor values.
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mental factors produced a riparian response (based on

overstory relative abundance) that increased or de-

creased the likelihood of sites being classified as a certain

ecotype. All probabilities were arcsine square-root

transformed to reduce departures from model assump-

tions. Nevertheless, BLACK probabilities showed sig-

nificant skewness (critical ratio ¼ 4.0) and CEDAR

showed significant kurtosis (critical ratio ¼ 2.7) due to

their extreme location in ordination space.

Model fit was evaluated in three ways. First, the

direction and magnitude of significant pathways had to

match our general understanding of the interrelation-

ships among predictors, latent variables, and riparian

ecotypes. Second, the model had to explain a reasonable

proportion (i.e., .40%) of the observed variance in all

dependent variables. Third, the model was required to

correspond with covariance structure of the data as

measured by several statistical-fit parameters including

the chi-square discrepancy test, the root-mean-square-

error of approximation (RMSEA), as well as the

goodness-of-fit index (GFI), the normalized-fit index

(NFI), and the Tucker-Lewis index (TLI) (Bentler and

Bonnet 1980, Bollen 1989). In this case, the chi-square

was used to test for significant differences between the

implied and observed covariance matrices. The RMSEA

is a measure of the average of the fitted residuals, which

is interpreted in relation to observed variance and

covariance matrices (Joreskog and Sorbom 1984).

Geographic analyses

Sampling sites were located within a geographic

information system (GIS) and characterized by eight

map-derived variables (Table 1). These variables were

acquired or derived from a collection of readily available

digital data sets. In addition to both regional annual

temperature (AVTMP) and precipitation relative to

potential evapotranspiration (P/PET), we developed a

series of predictors using 30-m digital elevation models

(DEM) and 1:24 000 hydrography (NHD) from the U.S.

Geological Survey, a 1:250 000 surficial geology map

(Farrand and Bell 1982), land-cover and some land-use

data from the Michigan Resource Information System

(MIRIS; Michigan Department of Land and Mineral

Services, Lansing, Michigan, USA), NRCS soil maps

(STATSGO) and the MRI-DARCY groundwater po-

tential index (Baker et al. 2003). Watershed boundaries

were manually delineated and drainage area computed

from DEM and digital sub-basin maps. Drainage-area

length was estimated by following the steepest descent to

each catchment outlet (O’Callaghan and Mark 1984).

We also used the DEM and stream maps to identify,

delineate, and characterize relatively uniform segments

of valley morphology (i.e., width, down-valley gradient,

and sidewall slope).

Local site wetness resulting from subsurface discharge

was estimated by dividing log-transformed values of the

MRI-DARCY index averaged across each riparian

segment by channel discharge estimated from log-

transformed contributing area (PECLET). The Peclet

number is the dimensionless ratio of advective and

diffusive flow (Chapra and Reckhow 1983). Mean

floodplain elevation (FLDELV) was defined by the

average elevation above cross-sectional minima within

the mapped valley bottom of each riparian segment.

Low relative elevations are a common surrogate for site

wetness in many wetland studies (Mitsch et al. 1979,

Megonigal et al. 1997).

Valley transport capacity was estimated with an index

of floodplain unit power (UPOWER) for each segment

by multiplying down-valley gradient by log-transformed

contributing area and dividing by valley-bottom width.

Contributing area was used as a surrogate for discharge

based on hydraulic-geometry relations (Leopold and

Maddock 1953). Floodplain unit power describes

hydraulic energy constraints imposed on transport of

floodwaters leading to a greater hydraulic radius (due to

water depth) and greater shear forces across floodplain

surfaces (Magilligan 1992, Leece 1997, Bendix 1999).

Mean valley width within each segment (MNWDTH),

was also employed to characterize longitudinal changes

in the transport capacity of river valleys.

We used Soil Conservation Service (SCS) runoff-curve

numbers estimated from soil and land-cover/land-use

maps to develop synthetic unit hydrograph parameters

for the contributing area of each riparian segment

(Bedient and Huber 2002). The SCS method (TE-55) is

TABLE 1. Environmental variables measured or estimated for each sampling location and each riparian segment.

Variable Description Indication

AVTMP ecoregional mean annual temperature (8C) (Albert et al. 1986) climatic effect on trees
P/PET mean annual precipitation relative to potential evapotranspiration (Albert

et al. 1986)
regional wetness

PECLET log subsurface flux (Baker et al. 2003) across valley width per unit
catchment area

diffusive/advective flux

FLDELV mean floodplain elevation relative to stream channel (m) (Baker et al. 2001) water-table proximity
UPOWER channel gradient 3 log(drainage area)/mean valley-bottom width transport efficiency
MNWDTH mean valley-bottom width (m) areal-flood dispersion
LAGTIME SCS lag time (h) (Bedient and Huber 2002) event attenuation
GWYLD groundwater yield; log subsurface recharge per unit drainage area

(Baker et al. 2003)
runoff abstraction
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based on developing a dimensionless storm-response

hydrograph from the size, slope, shape, and storage

characteristics of a watershed (SCS 1957). Curve

numbers were used to estimate runoff potential and

combined with drainage-area length and average water-

shed slope to estimate lag time (LAGTIME), the time

from the centroid of a unit rain event to peak flow. In

the SCS method, lag time is directly related to the base

time of storm hydrographs (Bedient and Huber 2002,

Sorrell 2003). As an additional, independent and indirect

index of runoff generation we used catchment summa-

ries of the MRI-DARCY groundwater index to estimate

catchment groundwater yields (GWYLD; Baker et al.

2003).

The fitted SEM was used to characterize flood and

wetness dynamics at each sample location. Relative

flood frequency was calculated for each riparian ecotype

as

FFreq ¼ �aðCatchment AttenuationÞ � bðValley ExportÞ
ð1Þ

where Catchment Attenuation and Valley Export are

standardized values of latent variables and both a and b

represent the absolute value of fitted direct effects for

each riparian ecotype. Similarly, relative flood duration

was estimated as

FDur ¼ aðCatchment AttenuationÞ � bðValley ExportÞ
ð2Þ

whereas relative flood intensity was

FInt ¼ bðValley ExportÞ � aðCatchment AttenuationÞ ð3Þ

and relative overall inundation (or soil water-logging)

was indexed by

Inundation ¼ ðFFreq 3 FDurÞ þ cðSite WetnessÞ ð4Þ

where c is the absolute value of the fitted path coefficient

for each riparian ecotype.

RESULTS

NMS (nonmetric multidimensional scaling) ordina-

tion (final stress¼ 12.8; Fig. 3) of species data from the

sample transects showed a clear separation of five

ecotypes across two dimensions, accounting for 69% of

the variation in riparian communities. NMS Axis 1

clearly distinguished the SILVER and BLACK riparian

ecotypes from the SUGAR, GREEN, and CEDAR

types. In contrast, NMS Axis 2 distinguished the

BLACK and SUGAR riparian ecotypes from the

SILVER, GREEN, and CEDAR types. In general,

samples showed good discrimination according to

ecotype and represented a broad range of climatic and

hydrologic conditions with which to test hypotheses

about controls of riparian heterogeneity. NMS ordina-

tion axes were used to predict cluster membership for

each site by logistic regression (Table 2). Predicted

membership of sites observed in each cluster was

extremely high (92–98%), and the few misclassifications

occurred when significant overlap of species existed

among riparian ecotypes.

The causal hypothesis implied by the SEM (structur-

al-equation modeling) fit very well with observed data

(chi-square discrepancy 23.0, df¼ 23, P¼ 0.43; RMSEA

[root-mean-square error of approximation] , 0.01). All

fit measures indicated very good agreement between the

predicted and observed covariance matrices (GFI

[goodness-of-fit index]¼0.96, NFI [normalized-fit index]

¼ 0.98, TLI [Tucker-Lewis index] ¼ 0.99; Bollen 1989).

Furthermore, all path loadings matched our expecta-

tions with respect to magnitude and direction (Fig. 4)

while the model explained reasonable amounts of the

variation among latent (42–45%) and observed (84–99%)

response variables. Neither multivariate kurtosis (3.37,

critical ratio ¼ 0.829) nor any outliers were highly

FIG. 3. Scatterplot of nonmetric multidimensional scaling
(NMS) ordination of transect samples in five riparian ecotypes.

TABLE 2. Logistic regressions used to predict binomial class
membership and to calculate posterior occurrence probabil-
ities from ordination axes scores for riparian sample sites
across Lower Michigan, USA.

Classification
accuracy (%) Formula

98 SILVER ¼ �4.06 � 12.85(Axis 1)
� 19.05(Axis 2)

95 BLACK ¼ �8.22 � 10.37(Axis 1)
þ 7.07(Axis 2)

92 SUGAR ¼ �3.21 þ 2.56(Axis 1) þ 6.78(Axis 2)
95 GREEN ¼ �3.24 þ 1.36(Axis 1) þ 0.13(Axis 2)
96 CEDAR ¼ �5.51 þ 6.01(Axis 1) � 4.39(Axis 2)

Notes: Riparian ecotypes are SILVER (silver maple),
associated with prolonged inundation events; BLACK (black
maple), associated with rich, mesic bottomlands; SUGAR
(sugar maple), brief infrequent flooding; GREEN (green
maple), moderate-power floods; and CEDAR (white-cedar),
cold, spring-fed or alkaline soils.
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significant. Specific estimates of residual error in model

fit are revealed in differences between sample and

modeled correlations (Table 3). Total causal effects of

independent predictors or latent environmental vari-

ables on a riparian response are defined as the sum of all

direct and indirect pathways (single-headed arrows only)

between predictor and dependent variables, where

indirect effects are determined by the product of a series

of direct effects along a causal pathway (Bollen 1989,

Grace and Bollen 2005). Because no predictor exhibited

observed correlations that differed substantially from

those implied by the SEM, differences between total

causal effects and sample correlations were attributed to

noncausal or spurious correlations such as those

commonly observed due to autocorrelation among

geospatial predictors. Several predictors, including

GWYLD (groundwater yield; log subsurface recharge

per unit drainage area), FLDELV (mean floodplain

elevation), and P/PET (precipitation relative to evapo-

transpiration), exhibited large differences (or sign

changes) between total causal effects and implied or

observed correlations (Table 3).

Fitted path coefficients for climatic and latent

variables show distinct patterns of relationship between

environmental factors and riparian response (Fig. 4,

Table 3). Regional temperature had a significant direct

effect on four of the five riparian ecotypes. SILVER and

BLACK ecotypes were associated with warmer or lake-

moderated regional temperatures in southern and

coastal Lower Michigan (USA), whereas GREEN and

CEDAR ecotypes were strongly associated with cooler

regional temperatures of northern Lower Michigan,

FIG. 4. Fitted covariance structure model showing correlations among geospatial predictors, standardized path coefficients,
and coefficients of determination (underlined) for each dependent variable. Thick lines indicate significant effects (P , 0.05) based
on a parametric bootstrap; thin lines indicate nonsignificant paths. See Table 1 for explanation of variables.
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USA (Fig. 5). Regional climate also played an indirect

role in influencing riparian ecotypes through the latent

values of Site Wetness (Fig. 4). P/PET and PECLET

(ratio of diffusive subsurface flux to advective channel

transport capacity) were significantly and positively

related to the portion of model covariance expressed

as Site Wetness, whereas increasing FLDELV led to

drier site conditions. Thus, sites were wetter when there

was more precipitation relative to evapotranspiration,

more diffusive groundwater flow relative to advective

transport capacity of the stream channel, or when

floodplain surfaces were close to the elevation of the

channel. Overall, these geospatial variables accounted

for .45% of the covariance captured by the unmeasured

latent variable. Increasing Site Wetness was associated

with increasing classification probabilities for the wetter

GREEN and CEDAR ecotypes. In contrast, BLACK

and SUGAR types were associated with drier site

conditions (Fig. 5).

Valley morphology and catchment character were also

significantly related to riparian conditions (Fig. 4, Table

3). Over 42% of the covariance among riparian ecotypes

expressed by the unmeasured variable Valley Export was

explained by a strong positive relationship with UPOW-

ER (floodplain unit power) and a significant negative

relationship with MNWDTH (mean valley-bottom

width). As valley-bottom width decreased and valley

slopes or river discharge increased, we observed a

concomitant increase in the ability of the valley to

effectively export water. BLACK, SUGAR, GREEN,

and CEDAR were positively related to Valley Export,

despite the fact that BLACK ecotypes did not exhibit

particularly high export values (Fig. 5). In contrast,

SILVER loaded strongly and negatively on effective

transport and its valleys clearly exhibited the lowest

export values. Both LAGTIME (time from centroid of

unit rain event to peak flow) and GWYLD loaded

strongly on the latent variable and explained more than

TABLE 3. Total effects, implied correlations, and sample correlations from covariance structure
analysis of environmental predictors and riparian occurrence probability.

Environmental variable
and analysis

Probability of riparian ecotype occurrence

SILVER BLACK SUGAR GREEN CEDAR

AVTMP

Total effects 0.270 0.288 �0.010 �0.503 �0.630
Model r 0.508 0.485 �0.290 �0.800 �0.756
Sample r 0.507 0.488 �0.289 �0.796 �0.757

P/PET

Total effects 0.052 �0.139 �0.220 0.133 0.223
Model r �0.109 �0.409 �0.063 0.428 0.448
Sample r �0.074 �0.389 �0.099 0.390 0.465

PECLET

Total effects 0.062 �0.167 �0.264 0.160 0.267
Model r 0.034 �0.378 �0.234 0.307 0.397
Sample r 0.021 �0.419 �0.160 0.357 0.389

FLDELV

Total effects �0.042 0.112 0.176 �0.107 �0.178
Model r �0.441 0.193 0.485 0.212 0.062
Sample r �0.430 0.182 0.513 0.224 0.068

UPOWER

Total effects �0.398 0.220 0.292 0.247 0.170
Model r �0.633 0.069 0.550 0.506 0.350
Sample r �0.655 0.010 0.582 0.518 0.350

MNWDTH

Total effects 0.161 �0.089 �0.118 �0.100 �0.069
Model r 0.417 �0.166 �0.407 �0.238 �0.118
Sample r 0.408 �0.170 �0.396 �0.226 �0.137

LAGTIME

Total effects �0.062 �0.277 0.262 0.129 �0.054
Model r �0.280 �0.055 0.351 0.218 0.092
Sample r �0.246 �0.068 0.334 0.180 0.047

GWYLD

Total effects �0.079 �0.350 0.331 0.163 �0.069
Model r �0.171 �0.511 �0.017 0.545 0.552
Sample r �0.228 �0.496 0.011 0.595 0.623

Muliple r2 for prediction 0.843 0.844 0.972 0.985 0.974

Notes: Bold effects are significant (P , 0.05) according to parametric bootstrap. Coefficients of
determination for predicted riparian ecotypes are given. See Table 1 for description of variables.
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42% of the model covariance expressed by Catchment

Attenuation (Fig. 4). Shorter lag times and smaller base

flows per unit watershed area both led to greater

catchment water delivery in response to storms. Both

SUGAR and GREEN ecotypes were positively related

to Catchment Attenuation, whereas the BLACK eco-

type was strongly associated with less attenuation and

greater storm response. GREEN and CEDAR ecotypes

exhibited the most stable hydrology (Fig. 5), but this was

not a significant factor in determining CEDAR occur-

rence probability.

Although perfect discrimination among ecotypes was

not necessarily achieved by latent SEM variables, spatial

variation in riparian conditions was effectively repre-

sented by a combination of surrogates capturing

variation in flood dynamics (Fig. 6). Flood events

occurred most frequently in the SILVER and BLACK

ecotypes, yet relative flood duration appears substan-

tially greater in the SILVER ecotype and moderate in

both the GREEN and CEDAR ecotypes. Conversely,

flood intensity was predicted to be greatest in BLACK

and SUGAR ecotypes when floods did occur, but these

events should also be relatively brief in the case of

BLACK riparian areas, and rare in the case of SUGAR

riparian areas. When combined with Site Wetness, a

clear gradient of relative inundation experienced by

riparian forests is evident across ecotypes. GREEN and

CEDAR ectypes were distinguished by overall inunda-

tion, as were BLACK and SUGAR ecotypes.

DISCUSSION

Structural implications

Cross- or autocorrelation among so-called ‘‘indepen-

dent’’ predictors is a common problem in ecological

analyses (Graham 2003, King et al. 2005). Tested

independently, any environmental predictor may ac-

FIG. 5. Box-and-whisker plots of average annual temperature, relative Site Wetness, relative Valley Export capacity, and
relative Catchment Attenuation by five riparian ecotypes. Values for latent environmental variables are normalized. Thick
horizontal lines indicate the median values, and open squares indicate mean values. Boxes delimit the interquartile range (IQR);
whiskers extend to data extremes. Notches correspond to 6(1.58 3 IQR)/(n0.5) and approximate a 95% confidence interval as to
whether two medians differ.

January 2009 153FLOODING AND RIPARIAN-FOREST COMPOSITION



count for a significant portion of variation in riparian

types. However, autocorrelation among geospatial

predictors can confound interpretation of effects be-

cause their magnitude can be either exaggerated or

obscured by noncausal (spurious) covariance with other

measured or unmeasured factors. By removing such

effects during multivariate model fitting, the structural-

equation model (SEM) provides a more conservative

estimate of explained variance in dependent variables.

Intermediary latent variables (unmeasured factors)

helped integrate distinct geospatial measures of envi-

ronmental character that nevertheless resulted in similar

proximal environmental conditions affecting tree estab-

lishment, growth, and persistence. In our model

structure, only the latent variables and regional temper-

ature had direct effects on riparian response. The

advantage of this structure is that high values of a

latent variable can result from many distinct combina-

tions of predictor measurements; a disadvantage is that

unique variation associated with any single geospatial

predictor was muted. This reflected our expectation that

plants respond to proximal cues of flooding duration,

frequency, and intensity and not necessarily their

ultimate causes. For example, soil moisture is known

to influence riparian vegetation through several distinct

mechanisms and is difficult to measure or predict across

broad landscapes during all parts of the year (Malanson

1993, Townsend 2001). Rather than developing an

explicit water balance for each sampling location,

independent latent factors partitioned variation in plant

responses according to catchment, valley, and local

spatial extents.

The latent factor Site Wetness was not the only factor

that might create relatively wet soils for plant roots, but

it was the only factor explicitly associated with low-

frequency (slowly changing or nearly constant) predic-

tors at a particular site. Wet soils could also occur as a

result of poor water transport after flood events (Valley

FIG. 6. Box-and-whisker plots of relative flood frequency (no. events/time), flood duration (time/event), flood intensity
(power/event), and relative overall inundation experienced by riparian ecotypes. Values are combinations of weighted, normalized,
latent environmental proxies. Thick horizontal lines indicate the median values, and open squares indicate mean values. Boxes,
whiskers, and notches are as in Fig. 5.
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Export) as well as very long flood events (Catchment

Attenuation). According to explicit model structure,

predictors at catchment, valley, and local spatial extents

exerted a distinct and independent influence that

moderated or enhanced the signals of other factors on

the expected wetness experienced by riparian vegetation

in each ecotype. Therefore, the strength in our approach

lay in the ability to specify a priori environmental

factors and evaluate how well our representations

distinguished riparian ecotypes.

As a whole, our SEM structure is analogous to a

constrained ordination (e.g., ter Braak 1986, van Coller

et al. 2000) in the sense that each latent factor is a linear

combination of environmental variables. The loading of

latent dimensions on different riparian ecotypes is thus

analogous to the correlations between individual ripar-

ian-assemblage data and ordination axes commonly

used to understand species–environment relations (e.g.,

Smith 1996, Townsend 2001) with several important

exceptions. In the SEM, latent dimensions were not only

constrained to be combinations of environmental

variables, the combinations also reflected our a priori

conceptualization (i.e., local factors, valley factors,

catchment factors) of the system. Constrained ordina-

tion does not prescribe the direction and magnitude of

effects, nor does it require correspondence with expected

system behavior. Finally, parameterization of any latent

construct in a SEM is subject to the additional hurdle of

matching the overall observed and implied covariance

structure. Although most multivariate analyses generate

hypotheses, SEM requires an explicit specification of

causal linkages that often demands a deeper under-

standing of system function. While good fits between

causal hypotheses and observed correlation structure

does not establish causality, the use of an explicit causal

theory to guide analysis within an SEM framework is a

powerful analytical technique for research applications.

Riparian hydrology

A number of authors have emphasized the importance

of hydroperiod—expressed as the frequency, timing,

and/or duration of flooding—on wetland vegetation

(e.g., Mitsch et al. 1991, Brinson 1993, Scott et al. 1997,

Toner and Keddy 1997, Cole and Brooks 2000, Town-

send 2001). Many authors have specified cross-sectional

flood (inundation) frequency, duration, or hydraulic-

power dissipation to explain complex environmental

gradients of moisture, nutrients, and disturbance in

riparian zones (Hupp and Osterkamp 1985, Bren 1988,

Bendix 1997, Battaglia et al. 2004). This makes sense at

locations where distribution of fluvial landforms leads to

strong edaphic gradients (Hupp and Osterkamp 1985,

Harris 1987, Brinson 1990, Bledsoe and Shear 2000,

Turner et al. 2004). Across broad spatial extents such

characterizations can be ambiguous with respect to

specific riparian areas.

Discussions of riparian hydrology often lack explicit

distinction between flood frequency and flood duration

or between the physiological effects of root inundation

and the mechanical consequences of water movement

across floodplain surfaces. Floods are typically defined

with respect to bank-full discharge and not necessarily

individual floodplain surfaces (Dunne and Leopold

1978). Frequency estimates rarely distinguish between

floods resulting from seasonal patterns in river discharge

or storm response (Bedient and Huber 2002). Similarly,

duration estimates can represent many sequential events

or a single, prolonged pulse (Benke et al. 2000, Bedient

and Huber 2002). Other investigations have ignored

such measures, focusing instead on relative water-table

proximity as an index of site wetness (e.g., Mitsch et al.

1979, Girault 1990, Megonigal et al. 1997). Unfortu-

nately, interpretation across sites is hampered by

interaction between local topographic complexity and

the stability of water levels. While elevation above and

distance from a river channel may result in flood

gradients at specific cross sections, a particular dis-

charge, elevation or distance does not necessarily result

in similar down-valley patterns of flood frequency or

power (Magilligan 1992, Woltemade and Potter 1994,

Leece 1997, Bendix 1999). Thus, in many studies

relevant hydrologic mechanisms are frequently interre-

lated, often not addressed, or inadequately specified

(Malanson 1993).

A detailed understanding of riparian hydrology

commonly requires both discharge–stage relationships

as well as some understanding of local groundwater and

bank storage characteristics (Gordon et al. 1992,

Bedient and Huber 2002). We found that regional

patterns of riparian-forest composition in Lower Mich-

igan (USA) can be described effectively using charac-

terizations of spatial variability resolved at catchment,

valley segment, and local spatial extents. As suggested

by the latent coefficients of determination, geospatial

surrogates were relatively poor predictors of specific

hydrologic conditions, yet together they captured

enough cross-scale variation to distinguish among

ecotypes and confirm expected hydrologic dynamics

based on interpretation of tree-species autecology

(Baker and Wiley 2004). From our analyses, it is clear

that different combinations of flood frequency, dura-

tion, intensity, and perirheic (sensu Mertes 1997)

wetness can result in highly distinct riparian site

conditions and forest assemblages. Distinguishing

among these factors and their interactions is critical

for understanding species-specific responses to hydro-

logic regimes (Vreugdenhil et al. 2006).

Despite the utility of our discriminations, there

remain several limitations in our riparian characteriza-

tions. First, the predictions were specifically designed to

capture long-term among-site variation rather than

inter- or intra-annual variability at one location (sensu

Baker 1989, Bendix 1994b). For this reason we focused

our analysis on a weighted average of riparian overstory

composition rather than a more detailed and compre-

hensive vegetation sample, which might show variation
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in response to annual climate or edaphic gradients along

valley transects. Across sites, flood intensity may be

inversely related to flood duration, but directly related

to flood frequency at a single cross section (Brinson

1990). Second, two of the independent predictors

(LAGTIME, UPOWER) depend on highly generalized

empirical relationships. The SCS predictions in partic-

ular incorporate fairly imprecise land-use data and no

information about subsurface storage or antecedent

moisture conditions, and thus may not accurately reflect

watershed-specific storm responses. Third, several pre-

dictors rely on GIS models and spatial measurements

with their own inherent sources of error. For example,

previous analyses of the MRI-DARCY groundwater

index (Baker et al. 2003) not only reveal occasional

incorrect predictions, they suggest that similar mapped

values may well have different realizations in the

northern vs. the southern half of Lower Michigan.

Improvements on these predictions or extrapolation of

our approach in other regions with a different suite of

conditions (e.g., large rivers, mountain streams) will

require a reanalysis of the covariance structure to ensure

appropriate parameterization and evaluation of model

fit.

Our analytical approach produces explicit linkages

among watershed attributes, local valley physiography,

the dynamics of flood events, and resulting composition

of riparian forests. While this exploration provides more

information for riparian studies, it represents a first step

in understanding riparian dynamics. In addition to flood

frequency, duration, and intensity, characterizations of

riparian hydrology should describe something about the

nature and timing of flood events (e.g., Poff et al. 1997,

Toner and Keddy 1997, Townsend and Foster 2002,

Stella et al. 2006). Certainly there has been inadequate

specification and distinction made among these process-

es in past investigations of riparian diversity (Sarr and

Hibbs 2007a).

Multiscale vs. hierarchical controls

Regional annual mean temperature, Catchment At-

tenuation, Valley Export, and Site Wetness were all

significant controls on riparian-forest composition.

Analyses conducted across broad landscapes should

consider potential variation from similar sources of

variation in order to ensure effective characterization of

riparian diversity. For example, if climate or catchment

hydrology does not vary significantly among sites, then

valley hydraulics and local geomorphology may be

adequate for understanding riparian variation (e.g.,

Bendix 1994b, van Coller et al. 2000). However, if

climate or catchment hydrology does vary significantly,

then riparian heterogeneity may exist in response to each

unique combination of factors within the analysis

domain. Studies that rely on geospatial surrogates at

just one or two of these levels (e.g., Bendix 1997,

Townsend and Walsh 1998, Sarr and Hibbs 2007a, b)

may miss among-site variation caused by factors

operating at different frequencies and reflected at

broader or finer scales.

We found that some riparian ecotypes exhibited

particular association with factors resolved at a single

spatial extent, whereas other ecotypes appeared to

depend on a combination of variation across scales.

This phenomenon can occur for two rather different

reasons. In the case of the SILVER ecotype, strong

valley controls were distinguished because both small

watersheds with relatively brief lag times and high water

tables as well as larger watersheds with attenuated lag

times and low groundwater yields could produce the

prolonged seasonal inundation necessary for predomi-

nance of Acer saccharinum (Baker and Wiley 2004). In

the case of the GREEN and CEDAR ecotypes, low

variation in the distribution of catchment conditions

under which these ecotypes occurred was offset by a

greater relative emphasis on Valley Export or Site

Wetness, respectively. Thus, distinct catchment condi-

tions can produce a similar hydrologic signal for river

valleys and local hydrologic conditions. On the other

hand, similar catchment conditions can be modified by

different combinations of valley or local factors to

produce distinct site conditions for riparian trees.

The pattern of relationship among climatic or

hydrologic factors and riparian responses provides

critical insight into the relative importance of multiscale

hydrologic processes. Because rivers and riparian areas

lend themselves readily to hierarchical conceptualiza-

tions (Frissell et al. 1986, Poole 2002), it may be

tempting to think of the multiscale latent factors as

holons in a hierarchical system (Allen and Starr 1982,

O’Neill et al. 1986). In a hierarchically organized causal

system, broad-scale effects are transmitted through local

hierarchical levels and are therefore necessarily indirect.

However, our empirical results do not match this strict

hierarchical construct where broad-scale elements oper-

ate solely through a chain of causally related factors

(e.g., Bendix 1994a, Burcher et al. 2007). Instead, our

model fit only when the latent variables were allowed to

have independent and direct effects on riparian-forest

structure. Past empirical efforts also have reported a mix

of hierarchical and multiscale controls (Baker 1989,

Bendix 1994a, van Coller et al. 2000, Dixon et al. 2002,

Sarr and Hibbs 2007a), and together with our findings

support the interpretation that riparian variation may be

better described as resulting from trans-scale, rather

than hierarchical, hydrologic processes (Poole 2002).
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