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Executive Summary 

 

Mr. Bernn Hitch, President of Island Ceramic Grinding, tasked team 16 to automate a 

manual Chevalier FSG-618M Surface Grinder so that it can run a simple, repetitive 

program for slicing ceramic pieces with minimal operator interaction besides the initial 

setup of the program. 

 

To accomplish this goal, we were given requirements by our sponsor that include 

automation of the three axes of the surface grinder through one cohesive interface that 

allows for editing of the program while it is in use and no measurable increase in 

tolerance of the parts being manufactured for under $5000.  Alumina is to be used for all 

testing, as it will ensure any product that Island Ceramic Grinding currently uses on their 

grinders will not present any problems for the automation. Engineering specifications 

were generated according to the requirements such as the tolerance of motion accuracy 

and precision. 

 

After performing a functional decomposition and brainstorming, several of concepts 

were generated to meet the requirement of our sponsor and the corresponding 

engineering specifications. Five Pugh Charts were created for different functionalities 

that need to be realized, with weighting between one and five for each criterion. The five 

Pugh Charts decided that the transmission would be timing belts, stepper motors would 

be used for in-out direction and up-down direction, a DC motor would be used for left-

right direction, a sealed keypad would be used for interface; the microcontroller would 

be a PLC, a Hall Effect sensor would be used to control the motion of the grinder. 

 

Engineering analysis was implemented to determine the required specifications for 

motors and transmissions. Theoretical modeling and empirical testing were 

implemented to find out the maximum torque when turning the hand wheels during 

normal operation. The component selection was narrowed down using the 

specifications from this analysis, and CAD models of mountings for each axis were 

generated. A detailed plan for the control system is also described. FMEA and risk 

analyses were done to discover, evaluate, and minimize potential problems. 

 

Design verification testing was then performed to verify that the individual components 

performed as expected and would allow the machine to function as intended. Precision 

of the Y and Z-axes were confirmed to outperform expectations, and the speed of the X-

axis was also deemed acceptable. Verification was unable to be performed on the 

system as a whole due to additional components that were needed and delays in 

assembling the electrical system. 
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Problem Description and Background 

 

For this ME 450 project, the sponsor, Island Ceramic Grinding (ICG) president Bernn 

Hitch, tasked the team with adding automation to a Chevalier FSG-618M surface 

grinder [1,2]. In their current manufacturing process, the sponsor uses a similar surface 

grinder except with limited automation added to perform the specific operation [1]. 

Manual surface grinders are relatively cheap at around $10,000 for a new machine, but 

manual input is outdated for this operation since it is not a complicated one. A new CNC 

machine that could perform it automatically would cost them $40,000 [1]. This gave the 

economic incentive of at least $30,000 to upgrade a cheaper machine instead of 

purchasing a CNC model. This economic incentive allowed for the opportunity to 

sponsor the automation of one of these machines, while still satisfying the previous 

standard of quality expected from ICG products.  

 

Alumina is the ceramic of primary concern in the design, other ceramics used by ICG 

will be covered in the design criteria of alumina. Analyzing industry data and writings on 

the topic, it was found that typical alumina fracture and defect to be most directly related 

to inadequate force, slow tool head, and depth of cut [3,4,5]. ICG does not have many 

issues with defects but we have to make sure to maintain their standard of quality. 

These factors will be explored more with live material testing. The same grinding head 

used by ICG will be used for testing to provide results as close as possible to the 

current processes used at ICG [1]. 

 

There are already products on the market that can fill the functional capacity that this 

design will aim to reach. However, most are very expensive and have many more 

features and functions than the proposed grinder requires. A machine with similar 

capabilities, but using CNC controls is the Chevalier FSG-H818CNC machine [6]. It can 

do far more than what is required by ICG, as the operation they perform is repetitive and 

simple. Our sponsor cites the CNC machine as highly undesirable because it has more 

set up and is assumed to have longer batch time and deeper operator requirements 

along with the significant price increase. Replacements of the current unit used by ICG 

cannot be obtained as they were made custom many years prior [1]. Chevalier also 

sells an FSG-3A818 automatic surface grinder, which performs all of the functions 

necessary, but is not distinguished as a CNC unit and is considered fully automated 

according to the user manual and vendor.  This model is a good benchmark to compare 

the function of this team’s prototype to as it is generally what is trying to be created in 

this project [22]. It should be noted this unit is also very expensive, though a quote was 

not obtained.   
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Figure 1. Chevalier FSG-618M surface grinder the team has been tasked with adding 

automation to. Axes are defined as in this figure, with X being the longitudinal axis of 

table travel. 

 

Through further research, a machine that had similar changes made to it was found and 

is able to be used as a better benchmark for the new prototype than machines 

previously researched.  All information presented in the webpage was taken with 

caution as it cannot be confirmed who the author is and if they were the one to actually 

perform the automation of the surface grinder.  The machine found had one axis 

automated, the x-axis, which is the longest axis in terms of travel length, using a 3-

phase inverter on an inductor motor.  A gearbox was connected to the motor and a 

timing belt was used to connect the motor shaft to the x-axis shaft.  A contact switch 

was used for sensing when to reverse with the manual stops on the machine contacting 

the switch to tell the motor when to reverse [21]. 

 

Checking patents around this area of automated milling and grinding revealed many 

functionally similar machines, all under expired patents. It is of important note that all 

these patents are automated grinders and they bear a large degree of similarity. Similar 

in function to the machine being designed, patent US 5173863 A still uses a standard 

grinding mill to be converted except with hydraulic actuation, one of the only features 

being avoided absolutely [7]. The machine will be designed using similar methods of 

interface and power sourcing. Patent US 4603392 was not as similar to the machine 

being prototyped, but it did imply much about the control system on a much higher level 

[8]. The prototype lacks the need for higher order differential controlling but the control 

method will be used as creative reference. The third patent researched was similar to 

the others, but required input from an external terminal to receive its controls [9]. This 

feature was interesting to the control scheme of the future prototype. The basic controls 
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for these patents and the machine being automated could be similar and these patents 

can serve as excellent creative substance for the grinder design.  

 

User Requirements and Engineering Specifications 

 

The project sponsor, Mr. Hitch, had a list of requirements regarding the automation of 

the machine. This first is that all tolerances within the machine stay at the current levels 

or improve when automation is added.  The current tolerances are ±0.001” in the y and 

z axes and ±1” in the x direction. These tolerances are absolutely necessary to 

maintaining the same level of quality at ICG. This was first addressed when selecting 

motors and transmissions for each axis, ensuring that each motor possesses the ability 

to move in small enough increments to allow these tolerances.  Then, during the 

programming phase, the tolerances were accounted for in the size (number of degrees 

turned by the motor shaft) of the step for each successive pass of the grinding head.   

 

A requirement for testing the machine and any implementation attempted is that 

alumina is to be used as the sample material. Although ICG uses various ceramics, Mr. 

Hitch stated that alumina reflects the standard material used and any other ceramic will 

be captured in its design requirements [1]. ICG grinders can currently run at around 1 

foot per second in the cutting direction (X-axis) using alumina. This same or higher feed 

rate is required to be maintained for an effective design that helps ICG move forward. 

The grinding head used in this prototype will be the 1A1R 6”x0.017”x1.25” grinding 

head, P/N: 69014192082, made by Norton Industrial ― the same grinding wheel used 

in current ICG operation, supplied courtesy of Mr. Hitch [1]. 

 

Another requirement stated by Mr. Hitch is that the operator be able to edit the program 

while it is in motion. Due to user or mechanical error, the parts produced can sometimes 

become out of spec. Currently the whole batch is scrapped and started again, this 

improvement would allow real time intervention to the program. This will be 

accomplished by allowing the operator to increment the depth of passes or number of 

passes on the interface while the program runs without affecting the precision or 

accuracy of the machine, and is considered a high level priority [1]. 

 

Although not explicitly stated by the sponsor, it was decided that motors and key 

components will need to be covered or protected in some way, possibly through the use 

of a guard, to prevent debris, coolant or other foreign objects from entering the motor, 

motor connections, or any electronics.  This will increase the life of the motors, as they 

will stay closer to their factory state for longer. Electronic function will be fully contained 

to prevent degradation due to the grimy work environment. This specification is of 

secondary concern, as the machines used by ICG are extremely dirty and open to 
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debris, and have been functioning for an extended period of time. Even the electronics 

boxes are open on top, while a constant stream of coolant is used. 

 

A requirement not explicitly stated, but that must be taken into consideration is that any 

motors or electronics that are placed on the machine must be useable with electrical 

access present in the facility.  The machine requires 240 VAC access and this type of 

plug is currently accessible within the current ICG facility [1]. 

 

Another requirement for the programming of the interface was that an interface not 

using a touch screen is preferred, but would be acceptable if it is the best option for the 

integration into the machines.  The reasoning for this is that the coolant used on the 

grinding machines is messy and could interfere with a touch screen by accidentally 

hitting a command or preventing a command from being hit [1]. 

 

The last requirement imposed on us by ICG is that the total of any modifications should 

cost less than $5000. If additional funds are required, approval must be obtained from 

ICG [1]. This economic concern is of high priority as it is the base incentive for the 

furthering of any ICG automations. 

 

Concept Generation  

 

Generating numerous design concepts up front allows a large number of possible 

prototypes to be considered before committing valuable resources. To help increase the 

choices going into the later designs several methods were used. First off the team 

performed a functional decomposition in the problem at hand (Appendix A). It defined all 

areas of operation the machine would have to perform, from designing a control system 

to modifying hardware, so that concepts proposed would be kept within scope. 

Brainstorming was used as a primary method of generating concepts; especially since 

many of the design challenges were well defined through research. The evaluation of 

knowledge and ideas in a group setting was invaluable. Lastly, design acronyms 

specified by the course instructor were used to create concept areas and provide 

creative substance.  

 

Concepts were generated for the areas of transmission, actuation, tray return damping, 

sensors, microcontrollers, and interface. In these major concept categories not many 

concepts were wildly different since the function of the prototype is already largely set. 

One choice that did have a wide range of solutions was the choice of sensor or timing 

used to switch the table motion from forward to backward or vice versa. The concepts 

generated range from mechanical switches, to magnetic field sensors, to electrical or 

mechanical timing only. More than just this category had to be considered as the table 

will be constantly grinding or decrementing along one or more axis. Not only the switch 
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of direction but also the timing with regard to the other axis movements and the 

associated damping (or lack thereof) needed to be considered. Encoders were some of 

the proposed concepts, registering how far the table had traveled over time and using 

this data to electronically signal when to reverse. Motion sensors were proposed to be 

placed along the tray in specific, adjustable spots, triggering the direction change when 

the tray moved far enough. Finally, magnetic field disruption measured by a Hall effect 

sensor was also proposed. Magnets attracted to the surface of the grinding table could 

be easily adjusted to disturb a Hall effect trigger at set location on the grinding machine. 

Electrical, mechanical, both ‒ all options are feasible. Having these choices allows for a 

more robust choice to be made with regard to the final prototype. Sketches of some of 

these concepts (including the Hall Effect sensor) can be found below Appendix B (which 

contains all concepts generated). 

 

Concept Selection 

 

After generating all these concepts, the team then needed an objective way to compare 

the different ideas. To do this, the criteria that were important for each functional area 

were determined. These included cost, usability, ease of installation, along with other 

factors specific to the function, such as service life. 

 

Then, each criterion was assigned a weight 1-5, with 5 being the most desirable 

properties. Each of the concepts was then ranked in each criterion from -2 to 2, with 

negative values meaning the concept perform poorly in respect to that criteria and 

positive values meaning the concept performs well. A sample of the charts used is 

below in Table 1, and detailed charts can be found in Appendix C. This rank was then 

multiplied by the weight of the criteria, and the sum for each concept was its total score. 

The concept with the highest score was the selected concept. 

 

Table 1. The concept selection process used to determine that timing belts would be used as 

the method of transmission. 

Concept  Belts Gears Chains 

  

   

Criteria Weight    

Cost 3 0 1 0 

Adjustability 4 1 -1 0 

Ease of 4 1 -1 0 
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assemble 

Ease of 
maintenance 

2 1 0 -1 

Noise 1 0 0 -1 

Service life 4 -1 1 0 

Ability to transfer 
large torque 

3 -1 0 1 

Sum 3 (Selected) -1 0 

 

Using this method, the best concepts were found to be stepper motors for the y and z-

axes, and a DC motor for the x-axis. Stepper motors can meet the requirement of 

accurate position control in y and z direction by their intrinsic function of stepwise 

rotation. It requires less effort to develop the control algorithm and parameter tuning 

when the prototype is developed. It can also produce low speed torque, which is 

essential for the small movements along y and z-axes. The disadvantages of stepper 

motors are that they are more expensive than other motors with similar mechanical 

specifications, and move more slowly. For the x-axis, where constant speed is the most 

important engineering specification, a normal DC motor was chosen because of its 

reasonable price, larger speed range and stronger high-speed torque. On the other 

hand, DC motors require more consideration about control than a stepper motor, and 

requires AC to DC power conversion to meet power input provided. 

 

Timing belts were chosen as the method of transmission. The most significant 

advantage of timing belts is the adjustability of the center distance between the original 

shaft being automated on the machine and the shaft of the motor. This allows more 

design freedom for the position of the motor. Also, timing belts would not require as 

much maintenance as chains. Although they are not good at transferring large torque 

and have a relatively short service life, these two criteria are not as important as the 

other ones in this situation. 

 

A PLC control system with a sealed keypad input and simple LCD display was found to 

be the preferred concept. PLC is an industry standard controller that is well suited to 

working for extended periods of time in industrial environments. Although it is not as 

cheap as an Arduino controller, it is preferred for this project due to the machine shop 

environment and other built in features that make PLC more robust. A sealed keypad 

input with a simple LCD display is preferred mainly due to its durability and user 

preference. 
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The preferred design found for changing the x-axis limits was a Hall effect sensor and 

magnets because of its competitive price and adjustability. It is not as simple as spring, 

but has more overall benefits for the proposed feedback system, such as velocity 

interpretation. 

 

In conclusion, the design will include the replacement all three hand wheels. A DC 

motor will be used for X direction and two stepper motors for the Y and Z direction. 

Timing belts will be used as transmission. PLC will be used as the controller, with a 

sealed keypad, LCD display screen and a Hall effect sensor for the x-axis boundaries. 

 

Key Design Drivers and Challenges 

 

The precision output of the motors over time is the end goal for this design, and is one 

of the largest drivers behind the project. The foremost challenge included within this 

regime is the mounting of the motors to the machine in a specific location.  With the 

machine being as large as it is, hand tools are the most viable option to make changes 

to the machine for mounting.  This makes precision with the tools more difficult and 

therefore will require the precision to be focused around the parts manufactured. 

Further, with factors like belt wear and tolerances, adjustability of motors and mountings 

is paramount for long-term operation.  

 

Another challenge is determining how to run wires from the X and Y-axis motors to the 

electronics system because they are mounted on the moving table.  The wires must be 

run with enough slack to not be ripped out of any electronics, while being taut enough to 

not interfere with the lead screws and the movement of the table. Wire tracks are being 

investigated and will be implemented once wiring paths have been finalized on the 

machine. 

 

Difficulty learning a new control system and method of programming is also another 

challenge. Work has begun to integrate basic parameters and headway is being made 

toward integrating the various system components. Bringing all these elements into a 

single control scheme and having the PLC, as the “brain” is the next step. 

 

Fatigue analysis of the selected timing belts presents an additional challenge, as fatigue 

on the belt must be factored in with fatigue of motors over time.  The belt fatigue must 

be calculated to determine how often the belt needs to be changed to prevent slippage 

or skipping of the belts, especially with the stepper motors as missed decrements could 

affect production. More on this information will be included in any assembly manual 

provided with the prototype. 
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Concept Description 

 

After concept selection using a Pugh chart and the engineering analysis, a more 

detailed design plan was generated, shown in Figure 2 below. It can be divided into four 

subsystems: different drive system designs for three directions (x, y, and z) of table 

movement and the control system with user interface. Every subsystem will be 

discussed below in detail. Manufacturing drawings can be found in Appendix F. 

Manufacturing plans can be found in Appendix H. 

 

 

Figure 2. The concept can be divided into four subsystems. X-direction drive, Y-

direction drive, Z-direction drive and control system 

 

X Axis DC Motor & Transmission 

The following pictures show the design of how to automate the machine in the 

transverse direction (x-axis). The basic idea is to use a DC motor and transmission type 

that have the best cumulative result in the Pugh charts. The motor will be mounted to 

the front half of the table (the magnetic chuck that holds the work piece is at the rear 

half of the table). One pulley is connected to the original shaft of the machine that 

controls the movement in this direction, originally controlled by a manual hand wheel. 

Other pulley is connected to the motor.  
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The figures below show the major components of the design. After taking the hand 

wheel of the machine, the machine shaft is measured to be 15 mm. A pulley with a ½ 

inch diameter hole is bored to match the friction fit of the shaft. For the motor side, the 

motor will directly connected into the gearbox since consideration has been put to the 

shaft radius when choosing this combination. A mounting plate and a mounting angle 

will be used to fasten the motor on the table. The diameter of the output shaft from the 

gearbox is 6 mm, while the diameter of the pulley hold is ½ inch. A coupler is designed 

to make the connection.  

 

 

Figure 3.  Mounting of X-Axis Motor (without timing belt) 
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Figure 4. Exploded labeled picture of X-Axis Mounting (without belt) 

 

Y Axis Stepper Motor & Transmission 

 

The overall design of the Y-Axis automation was based around the idea that the 

purpose of this axis is to decrement to move to the next wafer to be cut.  The most 

effective motor, based upon the concept selection for this axis, is a stepper motor.  A 

stepper motor with 200 steps per revolution was selected. A timing belt and meshing 

pulleys will be used to connect the stepper motor to the lead screw axis. Timing belts 

are inexpensive, quiet and reliable for the small movements that will be performed by 

this motor.  A transmission ratio that geared up was required in this case to increase 

both the torque output and number of steps per revolution transferred to the lead screw.  

A collar will be manufactured and placed in between the y-axis and the pulley, as the 

axis is smaller than the inner bore of the pulley. This pulley that is placed on the axis of 

the machine will be bored to size so the collar can be press fit into it.  A mounting plate 

will be used to extend the axis of the motor farther from the edge of the machine to line 

up the pulley on the motor with the one on the axis.  This design can be seen in Figure 

5 and Figure 6. 
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Figure 5. Mounting of Y-Axis Motor (without timing belt) 

 

 

Figure 6. Exploded labeled picture of Y-Axis Mounting (without belt) 

 

Z Axis Stepper Motor & Transmission 

 

The Z-axis is the axis responsible for decrementing the depth of cut used on every 

pass. ICG usually decrements its depth by .003 inches. With this figure in mind it was 

decided that the same stepper motor used to satisfy the Y-axis requirement would be 

suitable for the Z-axis. Again, with 200 steps per revolution and the correct gear ratio 

very small increments can be made. To keep these movements precise and 

measureable timing belt was picked as the transmission method. The Z-axis hand 

wheel can be easily removed. The shaft it was fixed to was slightly too small for the 

proposed timing cog so a collar will be manufactured and press fit into the desired cog. 

The motor must be parallel to the input shaft for correct power transmission. Since the 

Z-axis juts out at 30 degrees to the front face, finding this perfect parallel point is difficult 



14 

on this machine. The design chosen reflects the analysis put towards having perfectly 

parallel shafts. An angled plate will be attached to the face of shaft encircling the z-axis 

and connected with threads already present for securing an axis cover. This design is 

shown in Figure 7 below. The motor will then be mounted to the top of this plate at a 

distance suitable for the transmission system. The axis cover was removed to facilitate 

this process. A support will be mounted between the angle mounting bracket and the 

machine to reduce any moment felt at the axis face connection. The frictional 

consideration of this shaft is smaller but it could easily be accounted for with bearings 

and spacers, though none are planned at this time. The full proposed mounting is 

shown in Figure 9 below, exploded and with labels. This concept should be entirely 

feasible for the monetary and time restraints for this project. 

  

Figure 7. Sole attachment of angled plate to z-axis face.  



15 

 

Figure 8. The full motor mounting with cogs included for the eventual timing belt. 

 

 

Figure 9. A labeled exploded diagram of all components of the z-axis design. 

 

Control System 
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The control system is responsible for reading any inputs from the system and outputting 

signals according to a program, such as reading the user-set parameters and sending 

power to the motors. 

 

Figure 10. Block diagram of control system using the current design. 

 

As seen in Figure 10 above, closed-loop control will be used for each axis to ensure 

proper performance.  The DC motor is attached with a Hall effect sensor. The maxon 

motor driver has an integrated PI controller and can be tuned with its software. Taking 

the desired speed from PLC as an input, the motor driver (“H-Bridge”) will implement the 

feedback control for the DC motor. For the y and z-axes, rotary encoders are included 

on the stepper motors. The signals from the encoders will be read directly by the PLC, 

which can then determine whether any steps were missed and can compensate for any 

such event. Lastly, a hall sensor and user adjustable magnets will be used to set the 

table travel interval. 

 

The Hall effect sensor is used to indicate the position limit of the X-axis. It is an NPN 

transistor. When two magnets attached to the moving table reaches the sensor, they will 

trigger the transistor and send a high voltage signal to the PLC input port.  

 

In addition to the control system, it is also required that there be a way for the operator 

to input certain program parameters, such as number of slices, before the machine is 

run. The operator interface integrated with the PLC will allow the operator to perform 

this task. Using the parameters input to the operator interface, the PLC will then 

complete the process while the operator interface displays progress and other pertinent 

information to the user. 
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Lastly, the connections between the motors, controller, and sensors must be able to be 

protected over time. Two of the motors and a sensor are mounted on the table and will 

inevitably have moving wires that must stay connected. The Hall effect sensor planned 

will also need to be accounted for in a similar way. Wire carriers capable of restraining 

the motion of the wires will be used to protect the electrical integrity of the prototype in 

the long term. 

 

Engineering Analysis 

 

General mode of analysis 

 

To narrow down the selection, both empirical testing and theoretical modeling were 

used to find out the desired specifications for the motor and the transmission. 

 

The requirement for speed and position is already known. The next step would be to 

find out the maximum torque for each axis that is able to move the machine at any 

position. The equation for calculating the torque is: 

𝜏 = 𝐹 × (𝑟𝑠𝑖𝑛(𝜃))     (Eq. 1) 

Where 𝜏 is the torque of the axis, 𝐹is the applied force on the rigid body, 𝑟𝑠𝑖𝑛(𝜃) is the 

lever arm, perpendicular distance from the center of the axis to the line of action of the 

force. Figure 11 below shows the relationship among these physical elements. 

 

 

Figure 11. Theoretical Modeling for torque measurement [23] 

 

According to the Eq.1 , in order to get the torque 𝜏, the measure of the actual force and 

lever arm will be taken for each axis. The experimental setup is shown in Figure 12. The 

left picture shows that a caliper can be used to accurately estimate the lever arm length, 
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which is the distance between the centers of the hand wheel to the center of the hand 

wheel handle. The right picture shows the force gauge being connected to the center of 

the hand wheel handle and pulled orthogonally. During rotation, the force gauge is 

always tangential to the circle of hand wheel, to make sure the force exerted is always 

orthogonal to the lever arm.  

 

Only the maximum value of the tangential force was taken during testing. This is 

because the testing result is for motor selection, and the motor should be able to rotate 

the shaft under the maximum operating condition. Force for acceleration and 

deceleration were also taken into account on the x-axis because it is at these times 

when the motor will output the largest torque. Many data points were taken about the 

force required to reverse table direction while it was in motion. The average value is 

used here for the x-axis and will be compensated with a high safety factor. Sponsor 

data shows that the inertia of the material will be negligible compared to the whole table. 

The extra force required to overcome the friction of the alumina during actual grinding 

are considered to be quite low as the cut geometry is miniscule. This friction will be 

captured in the large safety factor on the motors. 

 

Figure 12. Experimental Setup for Torque Measurement of Z-Axis(Left for lever arm 

measurement, Right for force measurement) 

 

To find a suitable motor without choosing a transmission, the power was also 

calculated: 

𝑃 = 𝜏 × 𝜔   (Eq. 2) 

where P is the power, 𝜏 is the torque, and 𝜔 is the rotational speed. 

 

All the motors under consideration have information about the maximum torques they 

produce, axial force, and moments they can withstand. This information will be used 

when determining possible bending or yield of any axis shafts. The moment rating 
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comes in the form of a load per length away from the motor face. Note the motor face 

exists where the shaft exits the motor enclosure. This rating must be taken into 

consideration when determining where along a shaft a timing cog can be placed, and is 

how this choice will be validated. 

 

The length of timing belt (neglecting environment & material of choice) depends on the 

geometry of the axes one is trying to connect. This comes from many factors, chief of 

which is transmission ratio for this project. Depending on what cogs are used in the 

transmission the timing belt required would vary in length. The general formula for 

computing a timing belt length is shown below for two different timing cogs designated 

as cog 1 and  cog 2: 

𝐿𝑒𝑛𝑔𝑡ℎ 𝑡𝑖𝑚𝑖𝑛𝑔 = 2 ∗ (𝑥) + (1/2) ∗ (𝐶 𝑐𝑜𝑔 1 + 𝐶 𝑐𝑜𝑔 2)   (Eq. 3) 

Where Length is the length of the timing belt, x is the distance from like points on the 

two pulleys, and C is the circumference of the selected cog. Using this equation, the 

length of belt required for each transmission was determined. It should be noted that the 

belt does not always sit perfectly at the outside diameter of the cog but the true number 

used is the specification from the supplier, which accounts for this. This diameter of belt 

and cog was verified upon receiving the cogs physically.  

 

X Axis DC Motor & Transmission 

 

The requirement for the x-axis is 1 foot per second, which is 2 rotations per second 

according to the measurement of the travel distance when turning the hand wheel for 

one rotation. This means 120 rpm is needed for this axis. After testing, it was found that 

the maximum force during travel is 13.3 N, which occurs at deceleration. The lever arm 

is 3.125 inch. Using Eq.1, one calculates 1.06 N*m. According to Eq.2, there are around 

13.2 watts. Applying a safety factor of 3, a motor of at least 40 watts should be chosen. 

 

According to the stock availability and the specification requirements, the motor chosen 

is a Maxon EC-max motor with specification of 60 watts maximum continuous power, 

12V nominal voltage, nominal speed of 8130 rpm, nominal torque of 64.1 mNm, 197 

rpm/V. With a 35V power supply, it achieves a nominal speed of 6895 rpm. A Maxon 

Planetary Gearhead with 66:1 ratio was chosen to reduce the speed to 104 rpm, while 

increasing the torque. After the gearbox, it results in a 4.23Nm torque output. 

 

For the transmission, an 18 tooth pulley and a 22 tooth pulley were chosen to result in a 

127 rpm output speed at motor’s nominal speed, resulting in 3.46Nm maximum 

continuous torque output.  

 

Y Axis Stepper Motor & Transmission 
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To analyze the y-axis and find the appropriate stepper motor, theoretical modeling was 

used with force and torque analysis of the axis.  Using a force gauge,  the force to turn 

the handle attached to the y-axis hand wheel was measured, which was round up to 96 

ounces (F).  Then the distance between the center of the lead screw and the handle of 

the hand wheel was measured to be 3.9 inches (d).  Multiplying these two values 

together (Eq. 1), the torque to move the hand wheel from a stationary position was 

found to be 374.4 oz-in (𝜏).  

 

A resolution of at least ±0.001” is required based upon the engineering specifications, 

which translates to a rotation of 3.6° of the hand wheel.  This means that if a 

transmission ratio of 1:1 is used, the stepper motor would need at least 100 steps per 

revolution to obtain the needed resolution. 

 

Next, a safety factor of three was chosen to ensure that the torque transferred from the 

motor to the lead screw would sustain itself as the motor and transmission fatigues 

inevitably over time.  Using this safety factor, a torque output from the motor of at least 

1123.2 oz-in was required.  A stepper motor with 200 steps per revolution and a holding 

torque of 880 oz-in was selected.  With the holding torque and the required torque 

including the safety factor, a transmission ratio of at least 1.3 is required.  Although only 

a transmission ratio of 1.3 is required based upon the selections, a pulley with 18 teeth 

was selected for the motor and a pulley with 36 teeth was selected for the motor, 

resulting in a transmission ratio of 2.  Using the transmission ratio, a safety factor of 

approximately 4.7 is calculated, higher than the required 3. 

 

To calculate the resolution, the length of travel for one rotation of the hand wheel is 

divided by the value of the number of steps in the stepper motor multiplied by the 

transmission ratio.  This results in a resolution of ±0.00025”, which is below the required 

0.001”. 

 

The current location of the motor mount is variable based upon the timing belt length 

chosen.  There do not appear to be any present problems with the motor mount as the 

location of the screws that secure the mount will not be within the half inch walls present 

on the sides of the table.  This allows for the use of a locknut and a bolt to be used to 

secure the mount.  

 

The pulley for this axis is set to be mounted to the end of the shafts of both the machine 

axis and the motor. The motor is rated for a load of 58 pounds at this distance from the 

shaft end. The max force needed to turn the wheel is 6lbs. The force of the machine 

actually performing its grinding motion is relatively low due to the cut dimension being 

very small. The mass of the pulley is around 0.25 pounds. It is clear to see the shaft is 

rated for much more radial load than the operation will ever require. The same force that 
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is contained there must be able to be transferred from the purchased motor mount and 

through our materials. The yield strength of aluminum is high enough to be disregarded 

in this analysis. The purchased motor mount is metal and has their guarantee that it can 

withstand the same load the motor does without deformation.  The plate stock used for 

the motor mounting plate was also selected to be thick enough that deformation is not a 

concern. 

 

A belt with a 24” outer diameter was selected for use on the y-axis using equation 3 and 

the size of the respective timing cogs, while also factoring in the geometry of the table 

and the location of supports and parts on the underside of the table.  A fatigue analysis 

will have to be performed to determine the acceptable life of the belt.  If the belt is seen 

to be too long in analysis and is causing backlash, a shorter belt can be purchased as 

variability in the mounting location in the motor is available with the current design.  The 

table has a large amount of available space on the underside of the table and the 

location of the supports underneath do not restrict the belt length or mounting location 

within reasonable values of belt length.  The offset location of the motor mount was 

selected to ensure a taut belt when the motor is in motion, without creating unnecessary 

forces on the motor and y-axis shafts with over tightening of the belt.  The mount has 

short slots on the base, which allows the motor to be slid a small amount on the table to 

ensure a taut belt when in use and to allow for easy removal and replacement when 

necessary.  Any changes to the design since DR4 can be seen in Appendix F. 

 

Z Axis Stepper Motor & Transmission 

 

To analyze the z-axis and find the appropriate stepper motor, theoretical modeling was 

used with force and torque analysis of the axis, as mentioned above.  Using a force 

gauge, the force needed to turn the handle attached to the z-axis hand wheel was 

measured, which was rounded up to 48 ounces (F).  The distance between the center of 

the lead screw and the handle of the hand wheel was measured to be about 3.16 inches 

(d).  Multiplying these two values together by Eq. 1, the torque to move the hand wheel 

from a stationary position was found to be 151.68 oz-in (𝜏).  

 

A resolution of at least ±0.001” is required based upon ICG’s process specifications, 

which translates to a rotation of 7.2° of the hand wheel, which moves the table 0.05” in 

one revolution.  This means that if a transmission ratio of 1:1 is used, the stepper motor 

would need at least 50 steps per revolution to obtain the needed resolution.  

 

Next, a safety factor of three was chosen to ensure that the torque transferred from the 

motor to the lead screw would sustain itself as the motor and transmission fatigues 

inevitably over time.  Using this safety factor, a torque output from the motor of at least 

455.04 oz-in was required. Noting that motors are most effective near the middle of their 
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torque-speed curve a stepper motor with a holding torque of 620 oz-in was chosen; the 

middle of its torque-speed curve fell to around 450 oz-in, indicating a good efficiency at 

this value.  A stepper motor with 200 steps and an included encoder was chosen to 

guarantee accuracy on the z-axis.   

 

Transmission can be used to alter the rotational speeds and torque from inputs to 

outputs. It can be defined many different ways, here it will be defined as the ratio of the 

output pulley teeth to the input pulley teeth.  The specifications for the z-axis can be fully 

defined from the motor side alone so a transmission ratio of 1 was chosen. This is to 

say the input and output timing cogs are the same diameter and have the same number 

of teeth (18 teeth). 

 

To calculate the resolution, the length of travel for one rotation of the hand wheel is 

divided by the value of the number of steps in the stepper motor multiplied by the 

transmission ratio. This results in a resolution of ±0.00025”, which is below the required 

0.001”. 

 

The pulley for this axis is set to be mounted to the end of the shafts of both the machine 

axis and the motor. The motor is rated for a load of 58 pounds at this distance from the 

shaft end. The max force needed to turn the wheel is 3lb. The force of the machine 

actually performing its grinding motion is relatively low due to the cut dimension being 

very small. The mass of the pulley is around 0.25 pounds. It is clear to see the shaft is 

rated for much more radial load than the operation will ever require. The same force that 

is contained there must be able to be transferred from the purchased motor mount and 

through the other materials. The yield strength of aluminum and steel are both high 

enough to be disregarded in this analysis. The purchased motor mount is plastic but 

supplied by the same company that makes the motor and has their guarantee it can 

take the same load the motor does without deformation. This same force would be 

transferred through the three screws mounting the angle mounting plate to the axis 

face, as well as a moment for being a distance away from the belt. A special design 

implement was introduced to catch any moment introduced to this plane. This piece will 

be bolted precisely under the back end of the angle mounting bracket and to the top of 

the machine to provide a rigid support and the angle mount’s back end. It can be seen 

below in Figure 9, the full exploded diagram. 

 

Many factors had to be accounted for when placing the motor mount on top of the angle 

mounting bracket. Foremost was ensuring a tight fit in whatever belt selection was 

made. Using Equation 3 and geometric certainties about the motor axis height as well 

as clearances for mounting screws, a belt of 15 inches was chosen that could ensure 

adjustability of the motor mount while not interfering with the function of the actual 

machine. The motor was placed at a slight offset from directly over the axis shaft to 
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ensure the belt could be tightened or loosened accordingly. The adjustable positions of 

the motor (via slots in the motor mount) are also such that the elements used to mount 

the motor will not interfere with any part of the design or machine. All pulleys used with 

this belt will be attached with a set screws to ensure good connection. 

 

The last consideration on this axis was that the machine axis was not perfectly set at 

0.5 inches in diameter and had to have a separate collar manufactured to ensure a 

good fit. It is 0.48” on its inside diameter and spans around half of the pulley. The collar 

is set to be press fit into the pulley, which was adapted to take a larger inside width of 

0.75”. This collar will have one set screw thread continued inside of it from the pulley, 

allowing it to be attached to the axis shaft. This collar is set to be made of aluminum and 

made in the machine shop. 

 

Ultimately, there are only a few parts that will need to be manufactured. They are the 

angle mounting bracket, the angle mount support, and the collar for the axis shaft. 

Engineering drawings that will be used to produce these parts are shown in Appendix E. 

Changes to these designs after the fourth Design Review will be present in Appendix F, 

if applicable.  

 

FMEA and Risk Analysis 

 

After generating concepts and evaluating them, a failure modes and effects analysis 

(FMEA) and a risk analysis were performed on the system. The full FMEA, its scoring 

system, and the risk analysis can be found in Appendix D. 

 

The most pressing results of the FMEA were in failure modes that would inevitably have 

to occur with frequent use or with operator errors. Due to the automatic nature of the 

machine most of the defects expected are from loss of precision with time, so failures 

involving harm or loss of human life naturally have a high risk priority number (RPN) 

even if they are very unlikely to occur. Although the chances seem low, the ranking 

system used for the FMEA (shown in appendix D) had the mounting of the grinding 

head placed highest. If the geometry or alignment is altered during the process parts 

would be consistently out of spec with low noticeability. Loss of precision in general 

(motor, transmission, grinding head, etc.) has noticeable RPN in the FMEA as this will 

usually produce out of spec parts quickly with low detection. To against this standard 

change times will be suggested in handing off the prototype. Covers to the active parts 

of the operation are a large consideration suggested by this FMEA as they would 

protect against most foreign material, slowing machine degradation and precision loss. 

Another large implication is that the introduction of a closed feedback control loop would 

greatly reduce the RPN for most categories as well as make many proposed solutions 
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obsolete. The complexity of the feedback loop is severely hindered by the length and 

budget provided to this project, and will be added as the time limit deems appropriate. 

 

Using the risk analysis, the most common and severe types of failure were found to be 

due to foreign materials getting caught in the transmission, grinding wheel, or other 

moving parts. The risk for this is high without proper guarding, since there are multiple 

rotating parts with large amounts of energy. The consequences are also severe, 

damaging the machine or creating safety hazards for the user. This could also lead to 

severe injury if part of the operator is caught in a moving part. The most effective way to 

combat this risk is to design guards around the moving parts to protect users and 

prevent foreign materials from coming in contact with the moving parts. Using properly 

installed guards, this risk is greatly reduced, and therefore guards around all actuators 

and transmissions should be present before using the machine. 

 

Design Verification 

 

Due to the fact that there are relatively few engineering specifications for the project, 

there are four verification tests required to determine if the machine fully meets the user 

and engineering requirements. 

 

First, the precision control of the y and z axes was tested. For the z-axis, a height gauge 

was set on the machine table and made rigid contact with a point on the machine that 

moves with the z-axis. Then, a signal was sent to the motor to move the machine a 

distance of 0.001 in. along the z-axis and the measured change in height of the height 

gauge was recorded. This process was repeated 20 times and the difference between 

the commanded and actual movement distance was be calculated for each data point. 

The direction of travel was then reversed and 20 additional data points were taken. The 

difference between commanded and actual distance must be less than 0.0005 in. at 

each data point for validation to be acceptable. The machine met this requirement, 

validating the z-axis. The test setup used in precision verification can be seen below in 

Figure 13. 
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Figure 13. The height gauge test setup used to verify the y and z axes. 

 

Similarly, in the y-axis, a dial indicator was mounted on a stationary part of the machine, 

and its measurement point on a part that moves with the y-axis. The same process as 

above was used to test the y-axis: command the machine to move the y-axis 0.001 in. 

and record the measured change in the reading of the indicator. This process was then 

repeated 20 times. The direction of travel was then reversed and 20 additional data 

points were taken. The benchmark was set to be the difference between commanded 

and actual distance, which must be less than 0.0005 in. at each data point for validation 

to be acceptable. The machine met this requirement, validating the y-axis. 

 

 

Figure 14. Machine movement was exactly what the commanded movement expected 

it to be. Hysteresis was not an issue; data was taken 0 to 0.020” to 0. 
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Measuring cycle time validated speed performance of the x-axis. The motor was set to 

its highest speed and the machine was then commanded to move between two points 

12 inches apart. Video was recorded of this motion 3 times, and using the video, the 

average time was determined to be 1.2 seconds, for a speed of 0.83 ft/s. While this did 

not meet the speed engineering requirement, it will be up to the sponsor to determine if 

it is acceptable. 

 

For future additional verification, the machine will be commanded to undergo 100 cycles 

of oscillating the table a distance of 12 inches. If the average cycle time is less than 2 

seconds (back and forth), we will consider x-axis speed to be validated. This test will 

also serve to determine the acceleration and thermal performance characteristics of the 

system. 

 

Once guards have been designed and are in place, the machine will finally be subjected 

to an ingress protection test. To ensure the motors and transmissions are properly 

guarded to prevent ingress of foreign materials, the machine will be tested up to IP20 

standards. To do so, a finger test will be conducted with the machine unplugged, to see 

if any areas of potential danger can be accessed. All positions of the table, grinder 

head, and work piece will be tested to ensure the machine is properly guarded during 

any operating conditions. 

 

Discussion 

 

Having completed implementation of our design, the efficacy of the chosen design can now be 

analyzed. One of the strengths of the final design is the precision control of the Y and Z axes. 

Given a theoretical resolution of 0.00025 inches per step (or 4x the required precision), this 

allowed for the desired precision and will account a large amount backlash or looseness in the 

transmission for the future. The torque from the stepper motors also is very strong, ensuring a 

very low chance of being backdriven or not being able to drive the axis as the machine wears. 

 

The PLC and operator interface is also another strength of the design. Using a PLC makes the 

system much less likely to encounter problems due to electrical noise and interference, and is 

also much more durable and suited to an industrial environment. The interface, which is the part 

of the system that typically fails most often on the current machines ICG has, is also sealed, 

which should make it last much longer and be more reliable. 

 

There are also many improvements that can be made to our prototype. The X axis was slightly 

slower than expected, reaching 0.83 ft/s instead of the goal of 1 ft/s. This may be remedied by a 

larger motor, or perhaps gearing the axis down to increase speed. Torque requirements must 

still be met if implementing the latter. 
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There are also some design changes or additions that are required before the machine is ready 

for full-time operation. First, the wires connecting from the PLC to the X and Y axes motors 

should be enclosed in a cable carrier to ensure they don’t wear over time. The material has 

already been obtained for implementing such a change, but modifications to the machine and 

design must be made. Second, the electronics must be mounted and sealed in an enclosure. 

This was discussed in the design, but has not been implemented. Additionally, guards were also 

discussed in the design but need to be designed and implemented. 
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Appendix A: Functional decomposition 

 

From the functional decomposition above, we divide our tasks into two main categories: 

designing control system and modifying hardware setup. Hardware modification is the 

basis of this project. Actuators and sensors will be mounted considering the space and 

shape of the given manual slicing machine. This process contains design and 

manufacturing work. Under control system, what we need to do is to automate the 

machine using microcontroller and user interfaces. Connecting circuits and 

programming will be the focus under this category. 

Figure A.1 Functional decomposition of meeting the goal of automate the machine 
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Appendix B: Concepts Generated and Sketches 

 

Table B.1 Concept generation brainstorming result 

 

# Functional 
Group 

Concept Description Design Tools 
Used 

Drawin
g 

1 Transmission Belts Belts can transfer power from the motors 
to turn the main cranks. This option is wear 
intensive but easy to design. 

Brainstorming,  
Functional 
Decomposition, 
SCAMPER 

No 

2 Transmission Gears Gears can precisely transfer power from 
the motors to the main cranks. They will 
require additional design work for gear 
mountings. 

Brainstorming,  
Functional 
Decomposition 

Yes 

3 Transmission Chains Chains will allow for power transfer from 
the motors to the main cranks. This option 
has low wear and will require a gear 
mounting. 

Brainstorming,  
Functional 
Decomposition, 
SCAMPER 

Yes 

4 Transmission None The motor shaft would be inside a hole 
bored into the axis shaft and would use a 
set screw or pin through the set of shafts. 

Brainstorming,  
Functional 
Decomposition 

No 

5 Motor Stepper 
Motor 

This motor will be able to deliver the 
necessary power to move our machine. 
This motor is integrated with technology so 
it works at repeatable intervals, which will 
allow us to keep precision high in our 
manufacturing scheme.  

Brainstorming,  
Functional 
Decomposition, 
SCAMPER 

No 

6 Motor DC Motor This motor will be able to deliver the 
necessary power to move our machine. It 
will require a convertor to our power 
scheme but will be powerful. 

Brainstorming,  
Functional 
Decomposition 

No 

7 Motor AC Motor This motor will be able to deliver the 
necessary power to move our machine. 
AC motors often require a gearbox to help 
tailor them to an application. 

Brainstorming,  
Functional 
Decomposition 
 

No 

8 Return Action Motor 
Timing 

Programming the motors to return after a 
certain cut distance will help preserve the 
machine and increase operational 
efficiency. This method of return could be 
easily switched and would not change 
within a single program run. 

Brainstorming,  
Functional 
Decomposition 

Yes 

9 Return Action New 
Springs 

Having mechanical springs attached to the 
end beds of the grinding chuck would help 
preserve the machine action. Further, the 
cutting motor could be used more liberally. 
No programming changes required per 
operation. 

Brainstorming,  
Functional 
Decomposition, 
SCAMPER 

No 

10 Return Action Included 
Stoppers 

The machine we are working with has 
adjustable mechanical stoppers along the 

Brainstorming,  
Functional 

No 
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track that already can constrain the bed. 
They are flimsy and would need to be 
adjusted for different sized pieces. 
Possible retrofitting to the forces required 
during manufacturing are possible with this 
option. 

Decomposition 

11 Sensor Sensor 
Trigger 

A motion sensor could be placed at the 
proposed end of the cutting bed. Crossing 
it would trigger the motor to reverse 
directions. It would have to be reconfigured 
for different sized pieces. 

Brainstorming,  
Functional 
Decomposition, 
SCAMPER 

No 

12 Sensor Hall Effect 
Sensor 

Magnetic sensor that can switch when 
introduced to a magnetic field. Adjustable 
magnets could set this sensor off to 
change table direction mid use. 

Brainstorming,  
Functional 
Decomposition, 
SCAMPER 

No 

13 Sensor Encoder An standard encoder. Will detect how far 
the motor has gone and be programmed to 
switch after a set distance. Prone to error 
in constant use. 

Brainstorming,  
Functional 
Decomposition 

No 

14 Sensor Linear 
Encoder 

An encoder in linear style, Will detect how 
far the motor has gone and be 
programmed to switch after a set distance. 
Prone to error in constant use. 

Brainstorming,  
Functional 
Decomposition 

No 

15 Sensor Toggle 
Switch 

A physical switch that would be triggered 
by the hard stops, currently in place on the 
chuck, and would reverse the motor 
direction.  The stops would need to be 
moved based upon the size of the piece of 
material. 

Brainstorming,  
Functional 
Decomposition 

No 

16 Microcontroller Arduino Arduino is a common microcontroller for 
small scale mechatronic systems. It is 
cheap, easy to learn and has many 
extensive modules available. 

Brainstorming,  
Functional 
Decomposition 

No 

17 Microcontroller PLC An industry standard microcontroller. 
Compatible with CNC machines, medium 
user skill. 

Brainstorming,  
Functional 
Decomposition 

No 

18 Microcontroller FPGA Another industry microcontroller Brainstorming,  
Functional 
Decomposition 

No 

19 Interface Toggle 
Buttons 

Toggle buttons have the most common 
settings for the machines decrements. 
Choices would be discreet so the machine 
would be less adaptable but have less 
chance of operator error. 

Brainstorming,  
Functional 
Decomposition 

No 

20 Interface Touch- 
screen 

Any logical display could be easily 
configured on a corresponding touch pad 
for an operator. It could also be 
customized further in the future if ever 
need be. Easy to make mistakes though 
and environment is a concern. 

Brainstorming,  
Functional 
Decomposition 

No 

21 Interface Button 
Display 

An LCD display with manual button 
controls. High degree of variability in 

Brainstorming,  
Functional 

No 
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entering choices and programming 
variability with use.   

Decomposition 

22 Interface Operator’s 
Terminal 

A remote station capable of controlling the 
work cycle of any machine. A single skilled 
technician could remotely program any of 
the networked grinders.  

Brainstorming,  
Functional 
Decomposition, 
SCAMPER 

No 

 

Sketch 1. In this design the direction of the motor moving the grinding table back and 
forth will be controlled by a Hall Effect sensor. Magnets attached to the grinding table 
will trigger this sensor and switch the action of the motor. The location of the magnets 
can help to reduce cycle time. 
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Sketch 2. This is a basic design for the chain transmission of power from the motor to 

the table crank. The motor will be mounted on the table for easy operation. 
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Appendix C: Concept Selection Charts 

Weighting and scoring of different parts of the design are given below. Discussion about 

the criteria and the chosen design can be found under “Concept Selection” section. 

Table C.1 Pugh chart of rates the best transmission to be timing belts  

 

Concept  Belts Gears Chains 

  

  

 

Criteria Weight    

Cost 3 0 1 0 

Adjustability 4 1 -1 0 

Ease of assemble 4 1 -1 0 

Ease of maintenance 2 1 0 -1 

Noise 1 0 0 -1 

Service life 4 -1 1 0 

Ability to transfer large 
torque 

3 -1 0 1 

Sum 3 (Selected) -1 0 

Reference: ME350 lecture notes 

 

Table C.2 Pugh chart rates the best design to be DC motor for X direction and stepper motor for 

Y and Z direction 

 

Concept   Stepper Normal DC AC Motor 
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Motor Motor 

 For X 
direction 

For Y and 
Z direction 

   

Criteria Weight Weight    

Cost 4 4 -1 1 0 

Position control 1 5 2 0 0 

Speed control 5 1 1 0 0 

Ease of drive 
design 

3 3 1 1 -1 

Ease of 
Maintenance 

2 2 -1 0 1 

Max operation 
speed 

5 0 -1 1 1 

Low speed torque 1 3 1 0 0 

High speed 
torque 

5 0 0 1 -1 

Power Efficiency 1 1 -1 0 1 

Sum for X direction -4 18 (Selected) -1 

Sum for Y and Z direction 10 (Selected) 7 0 

Reference: 

http://www.slideshare.net/fikakhamis/advantages-and-disadvatages-of-acdc-motor 

https://learn.adafruit.com/all-about-stepper-motors/what-is-a-stepper-motor 

 

Table C.3 Pugh chart rates the most suitable microprocessor to be Arduino/PLC 

 

Concept  Arduino PLC FPGA 

Criteria Weight    

Cost 1 2 0 0 

Size 2 1 0 0 

Ability of processing 1 0 2 2 

Industrial applicability 1 0 2 1 
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Ease of 
programming 

2 1 1 0 

Sum 6 (Selected) 6 (Selected) 3 

 

Table C.4 Pugh chart rates the most suitable interface to be a sealed keypad with a LCD 

screen. 

 

Concept  Keypad w/ 
Screen 

Membrane 
Keypad w/ 
Screen  

Touchscreen 

Criteria Weight    

Cost 4 0 0 -1 

Size 3 0 0 0 

Ease of integration to 
control system 

2 0 0 -1 

Durability 5 0 1 -1 

Ease of installation 2 0 0 0 

     

Sum 0 5 (Selected) -11 

 

Table C.5 Pugh chart rates the most suitable sensor for X-Axis to be hall effect sensor 

 

Concept  Hall Effect 
Sensor 

Limit Switches Springs 

Criteria Weight    

Cost 4 1 1 1 

Size 1 1 1 0 

Ease of 
integration to 
control system 

3 1 1 2 

Durability 5 1 1 1 

Ease of 2 1 1 0 
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installation 

Limits can be 
easily adjusted 

4 2 1 0 

Sum 23 (Selected) 19 15 

 

Appendix D. FMEA and Risk Analysis 

 

FMEA Scoring 

 

Score Severity Occurrence Detection 

10 

User is injured or killed. 

Plant is damaged or put in 

danger Failure all but guaranteed 

Absolutely no way to detect failure 

before release to customer 

7 

Device breaks or must be 

stopped for maintenance. 

This includes producing 

many out of specification 

wafers 

repeated but 

unpredictable failure 

Highly likely customer will find this 

issue (~70%) 

5 

Operator intervention 

required, but operation 

can continue. This 

includes producing up to a 

whole batch of ruined 

alumina wafers 

Occasional failure 

(quarterly) 

Moderate chance of customer 

finding this defect (~50%) 

3 

Machine remains 

operable, run time 

intervention required, up 

to 5 rows (row =8-10 

alumina rods) of wafers 

defective yearly failure 

Low chance of customer finding 

this issue (~30%) 

1 

Minor difficulty with no 

intervention required. This 

includes producing one 

out of spec part 

Very low probability of 

occurrence 

Almost certain chance of finding 

this issue before project close 

 

FMEA 

 

Component/ 
Function 

Potential 

Failure Mode Failure Effects 

S 
E 
V 

Potential Causes 

or Mechanisms 

O 
C 
U 
R 

Current 

Controls 
DET- 
ECT 

R 
P 
N 

Actions 

Taken 

Machine Inertia 
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The machine must 

be able to stay stable 

and upright during 

automatic operation. 

Its inertia during use 

is what would cause 

any failure to the 

machines static 

base. 

Strong table 

movement 

along x axis 

Machine tips slightly 

and falls back into 

place, damaging 

components. 

Repeatable. 7 Machine physics 1 
Included 

floor bolts 1 7 None 

  
Machine falls over 

along x axis 10 Machine physics 1 
Included 

floor bolts 1 10 None 

 

Earthquake 

(California 

based 

company) 

Machine tips slightly 

and falls back into 

place, damaging 

components. 

Repeatable. 7 
Machine physics, 

the earth 1 
Included 

floor bolts 1 7 None 

  
Machine falls over in 

some direction 10 
Machine physics, 

the earth 1 
Included 

floor bolts 1 10 None 

Hall Effect Sensor 

A magnetic toggle 

switch used to tell 

the machine when to 

reverse its x axis 

cutting motion 

Sensor looses 

power or 

contact 

X axis switching is 

no longer automatic 

in one direction 7 

Sensor fatigue, 

sensor mounting 

fatigue, table 

magnet 

dislodged/out of 

place 1 

Sensors 

required for 

table 

movement 5 35 

Closed 

loop 

feedback 

 false positive 
X axis switches 

before full cut 7 

Sensor fatigue, 

sensor mounting 

fatigue, table 

magnet 

dislodged/out of 

place 1 

Sensors 

required for 

table 

movement 5 35 

Closed 

loop 

feedback 

 

unregistered 

table 

movement 

X axis skips one 

cycle of depth 

cutting, requiring a 

cut of double depth 

on the next pulse 1 

Sensor fatigue, 

sensor mounting 

fatigue, table 

magnet 

dislodged/out of 

place 1 

Sensors 

required for 

table 

movement 5 5 

Closed 

loop 

feedback 

  

X axis does not 

return, machine 

stalls 7 

Sensor fatigue, 

sensor mounting 

fatigue, table 

magnet 

dislodged/out of 

place 1 

Sensors 

required for 

table 

movement 5 35 

Closed 

loop 

feedback 

Grinding Head 

The grinding wheel 

used to slice through 

the sections of 

alumina. Stationary, 

while the table 

moves under it 
Mounting 

loosens 

Grinding wheel 

jiggles, losing 

precision 7 Fatigue, vibrations 1 

Machine 

grinder 

mounting 

already 

evaluated 

at industry 

standards 3 21 None 

  
grinding wheel 

dismounts 10 
Fatigue, vibrations, 

screw failure 1 

Machine 

grinder 

mounting 1 10 None 
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already 

evaluated 

at industry 

standards 

 
Foreign matter 

is introduced 
Grinding wheel 

geometry damaged 5 

Operator, alumina 

defect, plant 

conditions 5 None 10 250 
Grinder 

guard 

  
Grinding action 

broken 7 

Operator, alumina 

defect, plant 

conditions 1 None 10 70 
Grinder 

guard 

 

Wear 

decreases the 

size of wheel 
Less precise z axis 

depth cuts are made 5 
Wheel properties, 

fatigue 10 

Grinding 

heads 

scheduled 

for regular 

replaceme

nt based 

on ICG 

standards 3 150 

Statistical 

analysis of 

grinding 

head wear 

for proper 

replaceme

nt times 

Interface 

The panel by which 

operators will input 

the machine 

program. Able to be 

used while the 

machine runs 

Operator leans 

over active 

machine to use 

panel 
Operator killed or 

mutilated 10 

Panel 

inconveniently 

located, operator 

error 1 

panel 

easily 

reached 

from side, 

away from 

grinding 

wheel 10 100 

Extra 

warning 

signs and 

memo to 

ICG 

 

Button input is 

poorly 

connected 
key doesn't work 

and operator notices 7 

wiring fatigue, 

machine vibration, 

keypad fatigue 1 

Extensive 

testing, 

high 

durability 

keyboard 3 21 
extensive 

testing 

  

key doesn't work 

and operator still 

runs program 7 

wiring fatigue, 

machine vibration, 

keypad fatigue 1 

Extensive 

testing, 

high 

durability 

keyboard 1 7 
extensive 

testing 

  
Manual stop 

defective 10 

wiring fatigue, 

machine vibration, 

keypad fatigue 1 

Extensive 

testing, 

high 

durability 

keyboard 1 10 
extensive 

testing 

Wiring 

Method by which 

electrical signals are 

sent to motor 

controllers and 

ultimately how the 

machine will send all 

input and output. Short circuit 

One or more 

operations is denied 

signal 10 

Wires not properly 

protected, foreign 

materials 

introduced, fatigue 3 

Wiring 

procedure, 

protected 

wires, hard 

soldering 

connection

s 1 30 

Extra 

insulated 

wire 

  
Machine stops 

functioning 10 

Wires not properly 

protected, foreign 

materials 

introduced, fatigue 3 

Wiring 

procedure, 

protected 

wires, hard 

soldering 

connection 1 30 

Extra 

insulated 

wire 
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s 

 overheating Fire 10 

Wires not properly 

protected, foreign 

materials 

introduced, fatigue, 

too much power or 

demand 1 

Wiring 

procedure, 

protected 

wires 3 30 

Extra 

insulated 

wire 

Stepper Motor 

Provides precise, 

small increments to 

the y and z axes of 

the machine 

according to the 

controller 

Incrementer 

breaks and 

performs out of 

spec 
Machine produces 

out of spec parts 7 
motor fatigue, dust 

build up 1 Dust shield 10 70 

Extra 

considerati

on in motor 

life, 

precision, 

and wear. 

Closed 

loop 

feedback 

control 

 
Motor actuation 

fails 

Machine no longer 

works along the y or 

z axes 7 
Motor fatigue, dust 

build up 1 Dust shield 10 70 

Extra 

considerati

on in motor 

life, 

precision, 

and wear. 

Closed 

loop 

feedback 

control 

 
Motor mount 

fails partially 

Slack in 

transmission allows 

for 

slippage/movement. 

machine still 

functions 5 

Screw wear, 

Vibrations work 

mount loose 3 

Precision 

of design 

and 

manufactur

ing. 7 105 

Extra 

considerati

on in motor 

life, 

precision, 

and wear. 

Closed 

loop 

feedback 

control. 

Precision 

mounting 

and bolts 

  

Slack in 

transmission allows 

for transmission to 

disengage, machine 

still functions 7 

Screw wear, 

Vibrations work 

mount loose 1 

Precision 

of design 

and 

manufactur

ing. 5 35 

Extra 

considerati

on in motor 

life, 

precision, 

and wear. 

Closed 

loop 

feedback 

control. 

Precision 

mounting 

and bolts 

 
Does not 

receive pulse 

Y axis does not step 

when it should, the 

same wafer section 1 Motor fatigue 1 None 10 10 

Closed 

loop 

feedback 
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is redone (not a 

defect) 
control 

  

Z axis does not step 

when it should, the 

full depth of cut is 

not achieved 3 Motor fatigue 1 None 10 30 

Closed 

loop 

feedback 

control 

DC Motor 

Provides simple, 

reciprocating motion 

in the x axis 

according to the 

controller 
Motor actuation 

fails 

Machine no longer 

works along the x 

axis 7 
Motor fatigue, dust 

build up 1 

Precision 

of design 

and 

manufactur

ing. Dust 

shield 7 49 

Closed 

loop 

feedback. 

Motor dust 

shields 

 

Motor travels 

shorter than its 

setting 
Incomplete cuts are 

performed 7 

Motor fatigue, 

transmission 

fatigue, dust build 

up 1 

Programmi

ng and 

testing 3 21 

Motor dust 

shields. 

Closed 

loop 

feedback 

 

Motor travels 

farther than its 

setting 

Grinding head 

travels farther than 

expected 1 

Motor fatigue, 

transmission 

fatigue, dust build 

up, electrical error 1 

Programmi

ng and 

testing 3 3 

Motor dust 

shields. 

Closed 

loop 

feedback 

 
Motor mount 

fails partially 

Slack in 

transmission allows 

for 

slippage/movement. 

machine still 

functions 5 

Screw wear, 

Vibrations work 

mount loose, 

tolerance of fit 3 

Precision 

of design 

and 

manufactur

ing 7 105 

Extra 

considerati

on in motor 

life, 

precision, 

and wear. 

Closed 

loop 

feedback 

control. 

Precision 

mounting 

and bolts 

  

Slack in 

transmission allows 

for transmission to 

disengage, machine 

still functions 7 

Screw wear, 

Vibrations work 

mount loose, 

tolerance of fit 1 

Precision 

of design 

and 

manufactur

ing 5 35 

Extra 

considerati

on in motor 

life, 

precision, 

and wear. 

Closed 

loop 

feedback 

control. 

Precision 

mounting 

and bolts 

Timing Belt and Cog 

The selected 

transmission and 

control gauge for the 

stepper motors. The 

belt has teeth that 

mesh consistently 

Belt loosens 

with time 

Belt dislodges from 

cog teeth, doesn't 

work along this axis 7 

Belt fatigue, dust 

build up, speed of 

operation, 

tolerance of fit 1 

Precision 

of design 

and 

manufactur

ing, dust 

shield 10 70 

Closed 

loop 

feedback 

control. 

Extra 

considerati
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with the cog teeth in 

order to maintain 

precision. 

on to 

precision, 

mounting, 

and 

tolerances. 

Locked 

cover to 

block all 

but 

applicable 

personnel 

  

Belt slips on cog 

teeth, staying 

mounted, losing 

precision 5 

Belt fatigue, dust 

build up, speed of 

operation, 

tolerance of fit 3 

Precision 

of design 

and 

manufactur

ing, dust 

shield 7 105 

Extra 

considerati

on to 

precision, 

mounting, 

and 

tolerances. 

Locked 

cover to 

block all 

but 

applicable 

personnel 

Pulley 

The selected 

transmission method 

for the x axis dc 

motor. No timing is 

required. 
Pulley loosens 

with time 

Pulley dislodges, no 

longer transmits 

power 7 

Fatigue, dust build 

up, speed used, 

tolerance 1 

Precision 

of design 

and 

manufactur

ing, dust 

shield 10 70 

Closed 

loop 

feedback 

control. 

Extra 

considerati

on to 

precision, 

mounting, 

and 

tolerances. 

Locked 

cover to 

block all 

but 

applicable 

personnel 

  
Pulley loosens 

allowing for slippage 3 

Fatigue, dust build 

up, speed used, 

tolerance 3 

Precision 

of design 

and 

manufactur

ing, dust 

shield 7 63 

Extra 

considerati

on to 

precision, 

mounting, 

and 

tolerances. 

Locked 

cover to 

block all 

but 

applicable 

personnel 

 

Risk Analysis 
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Hazard Hazardous 
Situation 

Likeli
hood 

Impa
ct 

Technical 
Performance 

Schedule Cost Action to 
minimize hazard 

Cut User could be cut 
by sharp edges. 

Low Mediu
m 

None Sets back the 
production 
schedule due to 
treatment of the 
cut. 

Operator 
injury, 
possible 
workman's 
comp. 

Ensure there are 
no sharp edges or 
exposed 
components. 

Object 
caught 
in 
transmi
ssion 

The transmission 
and shafts can 
catch cloth or skin 
within their timing 
belts or around 
the axis. 

Medi
um 

High Machine must be 
stopped to have 
material 
removed from 
transmission. 

Sets back the 
production of the 
ceramics as 
machine may need 
to be restarted or 
repaired. 

New 
transmission 
may need to 
be ordered as 
belt could 
have 
stretched with 
object present 
or with injury. 

Protect motors and 
transmissions with 
guards to avoid 
debris being able to 
enter the path of 
the transmission. 

Transm
ission 
Failure 

Transmission 
could break, 
causing damage 
to the machine or 
injury 

Low High Transmission 
must be 
replaced 

  New 
transmission 

Calculations for 
transmission 
lifetime and regular 
maintenance 
minimize danger 

Electric
al 
Shock 

When repairing or 
using the device, 
the customer 
could be shocked 
by exposed 
connections or at 
the power 
sources. 

Low High The machine will 
malfunction if 
electrical shock 
occurs within the 
machine and 
may cause 
machine to shut 
off of act 
erratically. 

Machine will need 
to be restarted. 
Motor and plug 
may need to be 
replaced 
depending upon 
the damage. 

Cost of lost 
product during 
that time and 
can increase 
to cost of new 
electrical 
components 
of the 
machine. 

Insulate all 
connections, use 
fuses, and keep 
liquids out of 
operating area. 

Overhe
at 

The motor on the 
back of the 
machine can 
overheat if too 
much stress is 
applied to it. 

Medi
um 

Mediu
m 

The machine will 
need to cool 
down, but if it is 
bad enough, it 
could cause 
failure and the 
motor could 
need replaced. 

Ranges from the 
time it takes the 
motor to cool down 
to the amount of 
time to order and 
replace the motor 
present. 

Could be the 
cost of lost 
product as 
time is waiting 
for cooldown 
or additionally 
the cost of a 
new motor. 

  

Object 
caught 
in 
wheel 

The grinding 
wheel spins at 
approximately 
3450 RPM and 
can grab material 
and spin it around 
its spindle in a 
very small period 
of time. 

Low High The machine 
may continue, 
can cause 
severe problems 
to the functioning 
if it burns out the 
motor or 
dislocates the 
grinding wheel in 
any way 

May cause large 
delay if the spindle 
is affected. 
Machine may need 
to be repaired or 
replaced. 

Cost could be 
minimal to an 
entirely new 
machine. 

Guard is already in 
place on the 
machine, but it 
cannot be 
completely sealed 
as the wheel must 
be exposed to slice 
the material. 

Missing 
safety 
screw 
leaves 
wheel 
expose
d 

Machine cannot 
be run until a new 
safety screw is 
acquired as there 
is unnecessary 
risk in doing this. 

High High Machine cannot 
be run safely 
without the 
machine 

All grinding must 
be stopped until 
new screw arrives. 

Slip til the 
new screw 
arrives, < 1 
month 

Order a new safety 
screw. 

Tipping If the machine is 
not set flat on the 
ground and 
secured using the 
supplied bolts, it 
may be unsafe for 
use with in any 

Low High Machine cannot 
perform any 
functions until it 
is brought 
upright, leveled 
and the grinding 
wheel and table 

Time spent 
releveling or 
replacing machine 
loses time spent in 
production. 

Can be the 
price of a new 
machine if the 
damage from 
the tipping is 
severe 
enough. 

Ensure machine is 
on a stable base 
and there is no 
contact between 
the machine and 
other objects as 
well as being 
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situation. are balanced 
and leveled 
respectively. 

secured. 

Table 
contact 
/ sliding 

The table can 
contact surround 
objects as it has a 
large range of 
travel when in 
use in the 
longitudinal 
direction. 

Medi
um 

Low       Ensure the 
machine is sitting 
on a flat base or is 
leveled safely and 
ensure that no 
objects are within 
the tables range of 
motion. 

Airborn
e 
materia
l 

The material is 
mounted onto a 
magnetic chuck, 
which is engaged 
using a lever and 
can be removed if 
the grinding 
forces are too 
strong or if not 
correctly 
engaged. 

Low High Machine can 
restart once new 
material is 
secured to the 
magnetic chuck, 
unless magnetic 
chuck needs 
replaced if 
magnets are 
weak. 

Loss of product 
that is being cut 
plus more delays if 
a new magnetic 
chuck must be 
ordered and 
installed. 

Cost of 
replacement 
of magnetic 
chuck, if that 
is issue or 
cost of 
damage to 
employees or 
machinery hit 
by object 

Operator training to 
ensure material is 
properly mounted. 

Electric
al 
Noise 

Electrical noise or 
interference could 
cause undesired 
operation. 

Low Mediu
m 

Diagnose and 
add additional 
shielding to 
electrical 
system. 

Sets back 
production 
schedule as 
machine is down 
for repair. 

Operator 
injury and/or 
machine 
damage. 

Shielded cables, 
etc. 
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Appendix E. Bill of Materials 

 

Category Description Price 

(USD) 

Quant

ity 

Part Number Supplier 

Motor EC-max 30 Ø30 mm, brushless, 

60 Watt, with Hall sensors 405.90 1 272765 

Maxon Motor 

Gearbox Planetary Gearhead GP 32 C 

Ø32 mm, 1.0 - 6.0 Nm, 

integrated in motor / 1 414533 

Maxon Motor 

Driver ESCON 36/3 EC, 4-Q Servo 

controller for EC motors, 2.7/9 A, 

10 - 36 VDC 199.5 1 414533 

Maxon Motor 

Motor PK Series Stepper Motor 205 2 PK299-01AA Oriental Motor 

Motor Mounting Bracket 19 2 PAL4P-2 Oriental Motor 

Driver Microstep Driver 184 2 CMD2120P Oriental Motor 

Encoder 

Cable 2ft. Encoder Cable 5 2 LCR04060A Oriental 

Controller SCX11 Universal Stepper 

Motor Controller 

296.65 2 SCX11 Oriental Motor 

Pulley Corrosion Resistant L Timing 

Belt Pulley, Fits 1/2" Belt 

Width, 4.52" OD, 36 Teeth 

71.38 1 1304N19 McMaster-Carr 

Pulley Corrosion Resistant L Timing 

Belt Pulley, Fits 1/2" Belt 

Width, 2.375" OD, 18 Teeth 

21.07 4 1304N11 McMaster-Carr 

Pulley Corrosion Resistant L Timing 

Belt Pulley, Fits 1/2" Belt 

Width, 2.875" OD, 22 Teeth 

21.07 1 1304N11 McMaster-Carr 

Mount Plate Z-axis mounting plate from 1/2” 

aluminum stock with four 

mounting holes (more holes to 

come with motor mounting). 

28.80 1 6061-T6 

Aluminum 

Machine Shop 

Axle Customs axle extensions for 

motors 

0.00 2 Aluminum 

5/8" Diameter 

Round Stock 

Machine Shop 
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Aluminum rod 

Corrosion-Resistant Easy-to-

Machine 6020 Aluminum, 1", 1ft 24.28 1 9038K34 McMaster-Carr 

Power Supply 

TDK LAMBDA power supply 

201W 36V 5.6A 86.41  

967-LS200-

36/L 

 Mouser 

Timing Belt 

Trapezoidal Tooth Urethane 

Timing Belt, 3/8" Pitch, 173L 

Trade Size, 17.3" Long, 1/2" 

Wide 9.72 1 1679K237 

McMaster-Carr 

Timing Belt 

Trapezoidal Tooth Urethane 

Timing Belt, 3/8" Pitch, Trade 

Size 150L, 15" Outer Circle, 1/2" 

Wide 11.9 1 1679K261 

McMaster-Carr 

Belt 

Trapezoidal Tooth Urethane 

Timing Belt, 3/8" Pitch, 240L 

Trade Size, 24" Long, 1/2" Wide 11.62 1 1679K244 McMaster-Carr 

PLC 

Vision 130™ is a palm-sized PLC 

with a built-in Operator Panel 399 1 V130-33-TR34 Behco 
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Appendix F. Initial Manufacturing Drawings 

Changes are in Appendix G. 
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Appendix G. Engineering Change Notices 

 

G.1. Collar and Axis Pulley (Y and Z Axes) 
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The collar shown above is meant to bridge the gap between the pulley and the axis shaft for the 

Y and Z axes. Its outer dimension was 0.5” (the inner dimension of the pulley hole) and its inner 

dimension was 0.48” (the outer dimension of the axis shaft). The proposed collar would have 

been very difficult to manufacture and was advised against by machine shop employees so a 

design change was made. The team agreed unanimously to alter the geometry of not only the 

collar but also the pulley it would sit in. The pulley hole and outer dimension of the collar were 

widened to 0.75” while the inner dimension remained the same. The collar was then press fit 

into the pulley permanently before further manufacturing. Further, the set screw hole which 

merely had to be included before was widened to flush with the pulley hole ( a 0.2” diameter 

hole) and threaded due to its increased length. Only one set screw was planned to be used due 

to the press fit. The collar did not need to be the full length and was advised against by machine 

shop employees. Mr. Hitch had already allowed for rolling design changes in the efforts of 

completing this project.  

 

G.2. Angle Mount Support 

 

This component can be seen in the manufacturing drawings appendix. It was already planned 

on the manufacturing plan to check this part’s geometry during manufacturing with the actual 

space it was meant to support. This plan can be found in the “Updated Manufacturing Plans” 

section. During this process it was found the piece fit the gap before the full width had been 

shaved off. This was expected, and planned for, but it should still be noted the part has a width 

of 0.18” instead of 0.08”. Nothing else from the drawing was different. 

 

G.3. X-Axis Pulley-to-Machine Coupler 
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This part is removed because the pulley is bored and directly connected to the machine. This 

simplifies our design and makes the center of gravity of the gearbox and the motor farther from 

the edge of the table. 

 

G.4. X-Axis Pulley-to-Motor Coupler 

 
Due to the change described in F.3., both pulleys are closer to the machine. So the edge of the 

original design is eliminated to make the pulley fit closer to the motor. 
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G.5. X-Axis Motor Mounting Angle 

 
The mounting angle is changed because of the availability of the aluminum angle stock in the 

machine shop. It performs the same purpose and mates in the same ways. 
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G.6. Y-axis Motor Mounting Plate 

 
The design for mounting the motor mount of the Y-axis stepper motor to the table was to not 

use any type of extension and place the mount purchased from Oriental Motors directly to the 

table.  The orientation of the pulley being switched to have the set screws on the inside versus 

the outside of the table created a need for a mounting plate to extend the axis of the motor to a 

distance where the pulleys on the motor and Y-axis were aligned.  The plate shown above is 

attached to the table at 4 points and is also attached to the motor mount from Oriental Motors at 

4 points, 2 of these points contacting both the table and the motor mount simultaneously.   

 

G.7. Hall Sensor Mount 
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The Hall Effect Mount was not implemented prior to DR4 due to not having the part yet.  

Once it was received a mount was designed to hold the sensor next to the table. 
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Appendix H. Manufacturing Plans 

The most efficient way to produce the custom parts needed for this project is through 

the provided mechanical engineering machine shop. Contracting and ordering pail in 

comparison to the price incentive and speed of making the parts in person. Aluminum is 

usually provided by the machine shop and is assumed to be free of charge, a major 

incentive. Further, design errors can be seen whilst machining and tolerances become a 

matter of personal pride. This team will machine as many of its parts as possible, going 

to precision vendors only when needed.  

 

Corresponding drawings are in Appendix F and Appendix G. 

 

Part Number: 450F16-1 

Part Name: X-axis Pulley 

Raw Material Stock: 22 teeth aluminum pulley 

 

Revision Date: 

11/20/2015  

   

   

Step # Process Description Machine Fixtures Tool(s) 

Spe

ed 

(RP

M) 

1 Hold the pulley on the lathe Lathe Tool Post  800 

2 Bore the hole to 0.59 inch diameter Lathe Tool Post Boring tool 800 

3 De-burr part   Deburring tool  

 

 

Part Number: 450F16-2 

Part Name: Shaft (pulley to gearbox) 

Raw Material Stock: Aluminum 1" Diameter Round Stock 

 

Revision Date: 

11/20/2015  

   

   

Step # Process Description Machine Fixtures Tool(s) 

Speed 

(RPM) 

1 Measure and cut round stock to around 

2.5" 

Band Saw Vise 

  

2 Break edges with file   File  

3 Machine part to length Lathe Tool Post turning/facing 

tool; 6" scale 

1000 

4 Lathe the surface to .5" diameter Lathe Tool Post turning/facing 

tool; 6" scale 

1000 
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5 Drill a .236" hole for .4" Lathe Tool Post Drill chunk Size B 

drill bit 

1000 

6 De-burr part Lathe Tool Post File 150 

7 Take piece to mill Mill Vise; 

Parallels   

8 Drill the side hole shown in drawing Mill Vise; 

Parallels 

Drill chuck #39 

drill bit 

1000 

9 Tap the hole with M3 tap  Vise M3 Tapping tool  

 

 

Part Number: 450F16-3 

Part Name: Motor mounting plate for X axis 

Raw Material Stock: 6061 Aluminum Angle, 1 1/4" x 1 1/4" x 1/8" 

 

Revision Date: 

11/20/2015  

   

   

Step # Process Description Machine Fixtures Tool(s) 

Speed 

(RPM) 

1 Measure and cut the length to 1.25" Band Saw Vise   

2 Break edges with file   File  

3 Place part in vise and find the datums Mill Vise 

Parallels 

Edge finder Drill 

chuck 

500 

4 Center-drill 5 holes in one side Mill Vise 

Parallels 

Drill chuck 

Center drill 

800 

5 Drill 4 small holes through as the drawing 

shows 

Mill Vise 

Parallels 

Drill chuck #31 

drill bit 

1200 

6 Flip the part, center-drill other holes Mill Vise 

Parallels 

Drill chuck 

Center drill 

800 

7 Drill 3 small holes through as the drawing 

shows 

Mill Vise 

Parallels 

Drill chuck #31 

drill bit 

1200 

8 Mill the largest hole to size Mill Vise 

Parallels 

1/2" End mill 800 

9 Break edges with file   File  

 

 

Part Number: 450F16-z-2  

Revision Date: 

11/18/2015  

Part Name: Support for Angle Mounting Bracket    

Raw Material Stock: 6061 Aluminum, .25" Stock    

Step # Process Description Machine Fixtures Tool(s) 

Speed 

(RPM) 
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1 Cut off a piece of around 3 by 2 

inches 

Band 

Saw 

Vise 
  

2 Break edges with file   File  

3 Place part in vise and square 

edges. 

Mill Vise, 

Parallels, 

Bracing 

plate for 

Damping 

3/4" Collet, 3/4" 2 Fluted 

end mill 

840 

4 Mill 0.02" passes until correct width 

and length dimensions are 

achieved 

Mill Vise, 

Parallels, 

Bracing 

plate for 

Damping 

3/4" Collet, 3/4" 2 Fluted 

end mill 

840 

5 Find datum lines. Mill Vise, 

Parallels, 

Bracing 

plate for 

Damping 

Edge finder Drill chuck 1000 

6 Center drill the .25" hole Mill Vise, 

Parallels, 

Bracing 

plate for 

Damping 

Drill chuck Center drill 800 

7 Drill the hole Mill Vise, 

Parallels, 

Bracing 

plate for 

Damping 

Drill chuck, 1/4" drill bit 1200 

8 Readjust the part in the vise to 

perform a facing cut along the 

longest side of the piece. 

Mill Vise, 

Parallels, 

Bracing 

plate for 

Damping   

9 Find the datums on this edge Mill Vise, 

Parallels, 

Bracing 

plate for 

Damping 

Edge finder Drill chuck 1000 

10 

Face this edge in 3 passes of .05" 

and a final pass of .02" depth 

Mill Vise, 

Parallels, 

Bracing 

plate for 

Damping 

3/4" Collet, 3/4" 2 Fluted 

end mill 

840 

11 Remove part and check fit on     
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machine. Continue manufacturing 

as needed by above process. 

12 Break edges with a file   File  

13 

Measure dimensions with calipers 

and remachine if it does not meet 

desired width.   

Calipers 

 

 

 


