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In this paper, we study a conditional upgrade strategy that has recently become very common in the travel

industry. After a consumer makes a reservation for a product (e.g., a hotel room), she is asked whether

she would like to upgrade her product to a higher-quality (more expensive) one at a discounted price.

The upgrade, however, is not fulfilled immediately. The firm fulfills upgrades at check-in if higher-quality

products are still available, and the upgrade fee is only charged to the consumer if she gets upgraded.

Consumers decide which product type to book and whether to accept an upgrade offer or not based on the

anticipated upgrade probability. We model the consumers’ decisions using a Poisson-arrival game framework

with incomplete information and prove the existence of Bayesian Nash equilibrium. To further study the

firm’s optimal upgrade pricing strategy and develop managerial insights, we also analyze a fluid model which

is the asymptotic version of the stochastic model. Our numerical studies validate that our theoretical results

derived from the fluid model carry through to the stochastic model.

Our analysis identifies multiple benefits of conditional upgrades. First, the firm is able to capture more

demand by offering conditional upgrades, i.e., the consumers who value original product types lower than

the original prices but value higher-quality products higher than the discounted price with upgrades. Second,

conditional upgrades enable the firm to improve its market segmentation by inducing more consumers to

purchase higher-quality products. Third, conditional upgrades give the firm more flexibility in better match-

ing fixed capacities to stochastic demands. For a firm that is a price taker, offering conditional upgrades

is effective in compensating for the firm’s lack of ability in setting its prices optimally, and can sometimes

generate even higher revenues than being able to optimize product prices. For a firm that has the ability to

optimize product prices, conditional upgrades can generate higher revenues than dynamic pricing.

Key words : conditional upgrades; strategic consumers; travel industry; revenue management; Bayesian

Nash equilibrium; asymptotic analysis

1. Introduction
Like many other industries, a big challenge faced by the travel industry is the mismatch between

demand and supply across different types of products. In the travel industry (e.g., hotels, air-

lines, car rental companies, cruise lines), consumers usually make reservations in advance and the

products are perishable in the sense that they do not generate value for the firm after the end

1



 Electronic copy available at: http://ssrn.com/abstract=2724135 

2 Cui, Duenyas, and Sahin: Pricing of Conditional Upgrades in the Presence of Strategic Consumers

of the booking period. The capacity for each type of product is fixed, but due to the stochastic

demand across different product types over time, firms frequently find capacity of some product

types under-utilized while capacity of other product types in shortage at the end of the booking

period. Ideally, firms should be able to eliminate the demand-supply mismatch by having enough

flexibility in pricing their products. However, in reality, different industries face different constraints

in achieving flexibility to set prices.

In the hotel industry, a lot of firms lack the ability to adjust prices dynamically. Due to consumer

resistance, dynamic pricing (i.e., adjusting prices for the same product over time during the booking

period) is not as common as in the airline industry. Some hotels do not use dynamic pricing

at all but only use variable pricing (i.e., setting different nightly rates for the same room based

on expected demand but keeping the rate for a room offered on a particular night fixed during

the booking period) as their primary pricing strategy. Others use dynamic pricing for their “best

available rates” but have had a hard time convincing their consumers, especially corporate travel

buyers. For example, hotel chains would like to change prices dynamically and give large travel

accounts a negotiated discount off the dynamic best available price. However, according to the

survey by Business Travel News conducted on 221 travel buyers, more than two-thirds said that

they did not use dynamic pricing in their hotel program (Baker 2010). Instead, most travel buyers

negotiate a fixed corporate rate which does not change dynamically. 16% of travel buyers used

dynamic pricing only with select hotel chains, 9% used dynamic pricing only in low-volume markets,

and only 6% reported that their use of dynamic pricing is standard.

Even with variable pricing, hotels still face constraints on setting room rates optimally. In com-

petitive industries such as travel, firms usually have several direct competitors, hence have less

flexibility to adjust product prices as they like. Since consumers can compare prices for similar

products very easily on the Internet where online travel agencies such as Orbitz and Expedia have

provided such services, most firms providing similar products set similar prices for at least some of

their products. For example, the following three hotels all reside in Ann Arbor, Michigan: Hilton

Garden Inn, Residence Inn by Marriott, Sheraton. These are all upscale mid-priced hotels, and are

located within 1 mile from each other. Thus, they are direct competitors in the local market. As

a result, all three hotels use exactly the same (variable rather than dynamic) pricing strategy for

standard rooms (with either one king-size bed or two queen-size beds). For example, the price in

September and October 2013 was $169 for weekdays and $139 for Friday/Saturday nights.

While hotels have struggled with widespread acceptance of dynamic pricing and some are price

takers in the market, many hotels have recently adopted a new type of conditional upgrade policy.

This new strategy works in the following way. After a consumer makes a reservation, she is offered

an upgrade option which she decides whether to accept or not. If she accepts the upgrade offer,
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then she will be notified whether she gets upgraded or not during check-in. By accepting the

upgrade offer, the consumer agrees that she will pay the associated upgrade fee if her upgrade

is fulfilled by the hotel later. The hotel fulfills upgrades if there are higher-quality products still

available by the check-in date. Many of the hotels use Nor1, a leading technological company, to

offer the upgrades and decide the price of the upgrades.1 These new upgrades are different from the

upgrades historically offered by hotels where elite travelers may be upgraded for free at check-in

as part of their consumer loyalty program benefits. First, these are paid upgrades instead of free

upgrades. Second, they are conditional upgrades because a consumer does not know whether she

will be upgraded and pay the upgrade fee when she accepts an upgrade offer; the upgrades are

fulfilled conditional on the availability of higher-quality products by the check-in date. Third, they

are offered to not only elite members but also regular consumers. Fourth, instead of being offered at

check-in, the upgrades we consider are offered in advance, usually right after the original booking.

However, offering conditional upgrades may result in some consumers, who would purchase

higher-quality products when the firm does not offer conditional upgrades, deliberately booking

less expensive products as they hope to get upgraded and pay less than the original price of higher-

quality products they actually prefer. Thus, conditional upgrades have the potential to cannibalize

the higher-quality product sales. When using the conditional upgrade strategy, it is important for

the firm to carefully account for such consumer behaviors in setting upgrade prices optimally. In

this paper, we study how firms can properly manage the trade-off between the conditional upgrade

strategy’s potential benefits and potential threats such as cannibalization. More specifically, the

research questions we investigate are: 1) what is the optimal conditional upgrade pricing strategy

for the firm when consumers may deliberately choose lower-quality products with upgrades? 2)

When and why are conditional upgrades profitable/non-profitable for the firm? 3) How profitable

is the conditional upgrade strategy compared to other types of upgrade strategy as well as being

able to set product prices optimally, in particular, can it replace product price optimization and

dynamic pricing?

To answer these questions, we study a model where consumers select which product type to book

and whether or not to accept an upgrade offer based on the anticipation of future upgrade proba-

bility. Our model analyzes the upgrade policy as currently implemented by hotels and Nor1, where

upgrade prices are static over time. Our analysis indicates that conditional upgrades significantly

improve revenues of the firm by “demand expansion”, “price correction”, and “risk management”.

The conditional upgrades are “real options” that consumers purchase from the firm to be exercised

with an upgrade fee if the higher-quality products are still available by the end of the booking

1 Besides hotels, Nor1 is also expanding its business to airlines, cruise lines, car rentals.
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period. We find that this type of options expands the firm’s demand by capturing the consumers

who are not willing to pay the full price of higher-quality products but still value higher-quality

products significantly more than regular products. If the firm does not have pricing flexibility due

to competition or other industry constraints, conditional upgrades can be an instrument to correct

the firm’s original price for higher-quality products and reoptimize the firm’s demand segmen-

tation to improve demand-supply matching. Our numerical studies show that by properly using

conditional upgrades, the firm can capture at least the revenue potential from being able to opti-

mize the higher-quality product price. Interestingly, we also identify situations where conditional

upgrades can generate even higher revenues than the case where the firm can set both product

prices optimally but do not offer upgrades. This implies that conditional upgrades can compensate

for the firm’s lack of ability to set the optimal product prices by managing prices and capacities in

a more flexible way. Moreover, offering conditional upgrades generate higher revenues than offer-

ing last-minute upgrades in most cases. Thus, our paper provides an analytical justification for

“conditional” upgrades becoming more popular in travel industries. Finally, if the firm does have

the ability to set product prices optimally, then our numerical results indicate that the revenue

improvements with conditional upgrades are generally larger than the revenue improvements with

dynamic pricing. By offering conditional upgrades, the firm allocates the consumers who accept the

upgrade offers to different types of products at the end of the booking period. One of our interesting

findings is that this ex-post allocation flexibility that the firm gains with conditional upgrades is

generally more valuable than the pricing flexibility one has in dynamic pricing. Interestingly, these

observations hold true even for the case where the firm sets only a static upgrade price, indicating

that the potential of conditional upgrades to “correct” for mispricing of product prices may be

even higher when dynamic upgrade prices can be used.

2. Literature Review
Although upgrades are widely used in service industries such as travel, there is limited academic

literature that focuses on upgrades in service industries. Most of the literature studies upgrades

in the context of airlines where upgrades are offered to preferred travelers as a perk or if the

flight’s economy cabin is overbooked (see for example Karaesmen and Van Ryzin 2004). Gallego

and Stefanescu (2009) is one of a handful of papers that study upgrades in detail. They first study

free upgrades by generalizing the traditional network revenue management model (where product

prices are fixed and demands for different product types are independent) to explicitly account

for upgrades. They also study paid upgrades and find that if a primary capacity provider has

complete freedom to select prices, upgrades cannot improve profits. The result found by Gallego

and Stefanescu (2009) is based on a fluid model. By considering demand randomness, we find that
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the firm can strictly improve revenues with conditional upgrades compared to having complete

freedom to select product prices. Biyalogorsky et al. (2005) study conditional upgrades where the

upgrade fee is charged at the time of upgrade request (i.e., a consumer pays the upgrade fee even if

she does not get upgraded at the end) and find that upgrades increase the provider’s profits when

the probability of selling higher-quality units at full price is sufficiently high. The upgrade strategy

studied in Biyalogorsky et al. (2005) is similar to an industry practice where only passengers who

hold more expensive “upgradable class” tickets can be upgraded if there is available capacity at

the fulfillment time. In our paper, we analyze a more recent upgrade strategy pioneered by Nor1

for the travel industry (i.e., selling conditional upgrades where the fee is paid only if the upgrade

is fulfilled). Furthermore, unlike Gallego and Stefanescu (2009) and Biyalogorsky et al. (2005), we

model the strategic consumer behavior and analyze conditional upgrades with a Bayesian game.

The strategic consumer behavior significantly changes the insights.

There is also a stream of literature studying multi-product inventory management with provider-

driven demand substitution. Hsu and Bassok (1999), Bassok et al. (1999) study full downward

substitution where a consumer can be served by another product with superior quality. Netessine

et al. (2002), Shumsky and Zhang (2009) study single-level upgrades where consumers may be

upgraded by at most one product level. Although primarily focusing on inventory management or

capacity management, these papers also consider upgrades. The main difference from our paper is

that in these papers, the upgrade decision is entirely made by the provider and no additional fee

is charged to the consumer, while in our paper, consumers get to decide whether they would like

to be upgraded to a higher-quality product if it is still available by the end of the booking period.

Moreover, in the above papers, consumers are not strategic when making their product purchasing

decisions and do not take the future upgrade possibility into consideration, while we model this

strategic behavior of consumers.

A growing literature in operations management studies the interaction between consumers’

strategic behavior and firm’s decisions (see Netessine and Tang 2009 for a detailed review). For

example, a problem that has been extensively studied is the consumers’ deliberate waiting to pur-

chase later in anticipation of a price decrease when the firm can change prices over time (Su 2007,

Elmaghraby et al. 2008, Gallego et al. 2008, Yin et al. 2009, Levin et al. 2010, Mersereau and

Zhang 2012). Aviv and Pazgal (2008), Osadchiy and Vulcano (2010), Correa et al. (2013) model

the strategic consumers’ purchasing decisions as a game with incomplete information and assume

Poisson arrival of consumers to capture the randomness in the number of players in the game. We

adopt the same assumption to model the random arrival of consumers over time to book different

types of products. While the papers mentioned above consider a single product type and focus

on the consumers’ decision of “buy-now-or-wait”, we model a firm selling multiple substitutable
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product types and study the consumers’ decisions on which type of product to book and whether

to accept an upgrade offer or not.

Jerath et al. (2010) study the effect of strategic consumer behavior if competing firms offer last-

minute sales through opaque channels versus through direct channels. Fay and Xie (2008) study

probabilistic selling where the firm creates a probabilistic product by creating uncertainty about

the type of product that a consumer will eventually receive. In opaque and probabilistic selling,

the different product types are horizontally differentiated (i.e., differentiated based on a single

characteristic other than quality), while with conditional upgrades, the different product types

are vertically differentiated (i.e., they can be ordered according to quality). With the conditional

upgrade strategy, the provider sells an option to the consumer so that the consumer can obtain

a higher-quality product if the capacity is available at the fulfillment time. Due to the quality

difference between the product types, consumers pay an exercise fee when the upgrade option is

fulfilled, which is different from opaque and probabilistic selling. Our paper is also methodologically

different than the above papers in that we model the consumers’ booking decisions as a Bayesian

game with Poisson arrivals. In our paper, a consumer forms an expectation about the upgrade

probability based on her arrival time and the product availability information, and decides which

product type to book and whether or not to accept an upgrade offer.

3. Model

We consider a firm that sells two types of perishable products, regular and high-quality (e.g.,

standard rooms and suites in a hotel). The firm has KH high-quality products and KR regular

products. The products are consumed at time T and consumers arrive to book the products during

the booking period [0, T ]. The products are perishable in the sense that they have no value to

the firm after time T . The high-quality products are sold at price pH and the regular products

are sold at price pR (pH > pR). After a consumer books a regular product, the firm may offer an

upgrade opportunity so that the consumer can pay an additional fee p to upgrade the product

to a high-quality one if high-quality products are still available by the end of the booking period.

Although the firm does not guarantee the fulfillment of an upgrade, a consumer only needs to

pay the upgrade fee if she actually obtains an upgrade, and she is obliged to pay in this case.

The firm offers upgrades to γ proportion of consumers.2 Another interpretation is that (1− γ)

proportion of consumers are inattentive (i.e., do not consider the upgrade offer) when making their

2 In reality, travel firms sell through multiple channels and may offer conditional upgrades in selected channels only.
For example, Hilton offers conditional upgrades to consumers who book their rooms in hilton.com while it does not
offer conditional upgrades if consumers book through online travel agencies.
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purchasing decisions even if the firm offers them conditional upgrades.3 We assume, consistent with

industry practice, that if the firm does not have enough remaining high-quality products to satisfy

all consumers that have accepted the upgrade offers, these consumers are rationed randomly, that

is, the probability that a consumer gets upgraded does not depend on her booking time. The firm’s

goal is to optimally choose the upgrade price given product prices so that its revenue from selling

two types of products as well as collecting upgrade fees is maximized. As stated before, settings

where firms are price takers on product prices but can set upgrade price are common in practice. In

Section 7 where we evaluate the revenue performance of conditional upgrades, we will also consider

a firm that is not a price taker at all and demonstrate that conditional upgrades also have great

value for such a firm.

Consumers arrive to the market following a Poisson process with rate λ. Each consumer is char-

acterized by a pair of valuations (vR, vH), where vR denotes her valuation for regular products

and vH denotes her valuation for high-quality products. A consumer observes her private valu-

ations when arriving to the market. The valuations of consumers are jointly distributed in the

two-dimensional support Ω which is a finite subset of R2
+. The joint probability density function

is denoted by f(vR, vH).4 By allowing a joint distribution of consumers’ valuations for different

product types, we are able to capture not only the consumers’ heterogeneity in the willingness to

pay but also their heterogeneity in the valuation differential between different product types, which

is important in making decisions regarding upgrades. Thus, the way we model consumer valuations

is more general than the traditional approach used by the market segmentation literature (e.g.,

Mussa and Rosen 1978, Moorthy and Png 1992) where consumers’ valuations for different product

types are proportional. The Poisson arrival rate, consumer valuation distribution, percentage of

consumers that are offered upgrades, and product prices and capacities are common information

for the firm and the consumers.

Consumers are strategic in the sense that a consumer booking at time t and seeing products

are still available anticipate the probability q(t) of actually obtaining an upgrade if she accepts

the upgrade offer. Consumers’ rational expectations on the upgrade probability q(t) depend on

the arrival time because we allow consumers to infer the upgrade probability from the fact that

3 As studied in the recent economics literature, consumers may pay attention to part of the price, menu of products
or offerings. When a firm offers a multi-dimensional product, consumers may take only a subset of these dimensions
into consideration. This is exemplified by Spiegler (2006), where a consumer samples one price dimension from each
firm selling a product with a complicated pricing scheme (e.g., health insurance plans); Gabaix and Laibson (2006),
where some consumers do not observe the price of an add-on before choosing a firm; Armstrong and Chen (2009),
who extend the notion of “captive” consumers to those who always consider one dimension of a product but not
another (e.g., price but not quality).

4 Our equilibrium analysis for the stochastic model can be generalized to time-dependent arrival rates and time-
dependent consumer valuation distributions.
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Figure 1 Consumer decision process

products have not been fully booked by time t. Figure 1 depicts the consumer decision process

and the payoffs from each possible decision. We use “H” to denote booking a high-quality product,

use “U” to denote booking a regular product and accepting an upgrade offer, use “R” to denote

booking a regular product without upgrade, and use “N” to denote not booking any product. The

consumers that are not offered upgrades choose from “H”, “R”, and “N”. Note that if p≥ pH −pR,

nobody accepts the upgrade offer because the total price to pay in order to get a high-quality

product through upgrade is at least as large as the original price for high-quality products. This is

equivalent to the case where upgrades are not offered.

The firm needs to decide when to stop selling each product type, taking into account the instant

booking levels for each product type where upgrades is considered as a unique type. Define NH(t),

NU(t), NR(t) as the demand stream booking each product type, respectively. Note that NU(t)

is the arrival process of consumers booking a regular product and accepting the upgrade offer,

and NR(t) is the arrival process of consumers booking a regular product and not accepting the

upgrade offer, hence NU(t) and NR(t) are mutually exclusive. Due to the decomposition property

of Poisson processes, NH(t), NU(t), and NR(t) are independent Poisson processes. We assume the

firm cannot “bump” consumers upon check-in (i.e., the firm has to accommodate check-in requests

of all reservation holders). The firm stops selling high-quality products when NH(t) ≥ KH and

stops selling regular products when NR(t)≥KR, that is, the firm tries to sell as many products

as possible. Moreover, the firm stops selling both product types at the same time when NH(t) +

NU(t) + NR(t)≥KH + KR. Note that this stopping rule allows the firm to accept more bookings

for regular products during the booking period than the capacity (because some of the consumers

booking regular products with upgrades may later get upgraded and free up some capacity for

regular products) while ensuring no bumping of consumers.

A consumer does not observe the firm’s instant capacities (also, how many consumers have

arrived and the booking decisions they have made) when she makes her booking decision. However,

consumers can observe whether a product type is fully booked or still available when making book-

ing decisions. As the firm stops selling some product type, consumers are restricted to fewer choices.
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When the high-quality products are unavailable, consumers can only book regular products with-

out upgrades. When the regular products are unavailable, consumers can only book high-quality

products. When both types of products are unavailable, consumers cannot book any product. We

can see that when at least one product type is unavailable, the consumer decision becomes a sim-

ple take-it-or-leave-it decision, so consumers do not anticipate the upgrade probability anymore.

Let τ denote the first time when some product type is unavailable (τ = T if the firm never stops

selling any type of product during the booking period), then τ is the (random) stopping time of

the consumer booking game that strategic consumers play regarding upgrades.

4. Consumer Booking Equilibrium
Before deriving the firm’s optimal conditional upgrade policy, we first need to analyze how strategic

consumers make their booking decisions. In this section, we derive and characterize the symmetric

pure-strategy equilibrium of the consumer booking game for a given upgrade price p. Upon arrival,

a consumer observes her valuations for two product types (vR, vH) and arrival time t as well

as the availability of product types, and books the product type that maximizes her expected

utility. For a consumer that is offered an upgrade, the key to her booking decision is the expected

upgrade probability q(·) she anticipates which is a function of her booking time t. Let at(vR, vH |q(t))
denote the consumer’s utility-maximizing decision if she arrives at time t, has valuations (vR, vH),

and anticipates the upgrade probability to be q(t).5 Similarly, let a′t(vR, vH) denote the utility-

maximizing decision of a consumer that is not offered an upgrade.

Now we derive at(vR, vH |q(t)) and a′t(vR, vH). Figure 1 shows the consumers’ utilities from book-

ing different product types. The consumer’s utility from booking a high-quality product is vH−pH ,

the utility from booking a regular product without upgrade is vR − pR, the expected utility from

booking a regular product with upgrade is q(t)(vH − pR− p) + [1− q(t)](vR− pR), the utility from

not booking any product is zero. Thus, the consumer chooses to book a high-quality product if

vH − pH ≥max{q(t)(vH − pR − p) + [1− q(t)](vR − pR), vR − pR,0}; she chooses to book a regular

product with upgrade if q(t)(vH − pR − p) + [1− q(t)](vR − pR) ≥ max{vH − pH , vR − pR,0}; she

chooses to book a regular product without upgrade if vR− pR ≥max{vH − pH , q(t)(vH − pR− p)+

[1−q(t)](vR−pR),0}; otherwise, she does not book any product. We can simplify the above decision

rule to the following:

• If p≥ pH − pR,

at(vR, vH |q(t)) =





H if vH − vR ≥ pH − pR and vH ≥ pH ,
R if vH − vR < pH − pR and vR ≥ pR,
N otherwise.

5 We use q(·) to denote the whole function, and q(t) to denote its value at t.
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• If 0≤ p < pH − pR,

at(vR, vH |q(t)) =





H if vH − vR ≥ pH−pR−q(t)p

1−q(t)
and vH ≥ pH ,

U if p≤ vH − vR < pH−pR−q(t)p

1−q(t)
and q(t)vH + [1− q(t)]vR ≥ pR + q(t)p,

R if vH − vR < p and vR ≥ pR,
N otherwise.

The utility-maximizing decision of consumers that are not offered upgrades, a′t(vR, vH), is same as

at(vR, vH |q(t)) with p≥ pH − pR. We next focus on consumers that are offered upgrades and find

their equilibrium strategy.

If 0 ≤ p < pH − pR, at(vR, vH |q(t)) divides Ω into four subsets. Given q(·), at(vR, vH |q(t)) is

uniquely determined for each (vR, vH) and each t, and at(vR, vH |q(t)) can be easily computed

by plugging q(t) into the equation of at(vR, vH |q(t)). Thus, we use q(·) to define the consumer’s

strategy in the booking game. The reason for using q(·) as the strategy instead of at(vR, vH |q(·))
is that the corresponding strategy space has fewer dimensions and the computational burden of

equilibrium is smaller. The strategy space is then defined as Q= {q(·) : [0, T ]→ [0,1], such that q(·)
is differentiable}. Q contains all differentiable functions of t∈ [0, T ] taking values between 0 and 1.

To find the symmetric equilibrium q∗(·), we first fix one consumer (we call this consumer the

acting consumer) and calculate the expected upgrade probability for the acting consumer if she

books a regular product and accepts an upgrade offer when all other consumers are making their

decisions based on q(·). Denote this resulting upgrade probability for the acting consumer as b(q(·)),
b(q(·)) is also a function of t. Then, q∗(·) is the solution to b(q∗(·)) = q∗(·). We can write b(q(·)) as

b(q(·)) = g(q(·))/h(q(·)), where g(q(·)) is the unconditional expected probability that a consumer

arriving at time t accepts an upgrade offer and gets upgraded at the end of the booking period,

and h(q(·)) is the probability that both product types are still available by time t. So, b(q(·)) is the

expected upgrade probability conditioning on the fact that products are still available at time t.

Now we derive g(q(·)) and h(q(·)). With a slight abuse of notation, we use NH(t|q(·)), NU(t|q(·)),
NR(t|q(·)) to denote the arrival processes of other consumers (as seen by the acting consumer)

booking each product type given that the strategy they are using is q(·). Let τ(q(·)) denote the

stopping time of the consumer booking game (i.e., the time when the firm stops selling at least one

product type) if the acting consumer chooses to book a regular product and accept an upgrade

offer and all other consumers make their booking decisions based on q(·). Then, we have

g(q(·)) = E
NH (t|q(·)),NU (t|q(·)),NR(t|q(·))

{
min

{
[KH −NH(τ(q(·))|q(·))]+

NU(τ(q(·))|q(·))+ 1
,1

}
·1{t≤ τ(q(·))}

}

where the “+1” term represents the acting consumer, and

h(q(·)) = P(NH(t|q(·)) < KH ,NR(t|q(·)) < KR,NH(t|q(·))+NU(t|q(·))+NR(t|q(·)) < KH +KR).
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Note that g(q(·)) and h(q(·)) are both functions of t. To completely characterize g(q(·)) and h(q(·)),
it remains to characterize NH(t|q(·)), NU(t|q(·)), NR(t|q(·)) as well as τ(q(·)).

Lemma 1. (Myerson 1998: Environmental equivalence property of games with Poisson arrivals6)

From the perspective of any one player, the arrival process of other players is also a Poisson process

with the same rate as the total arrival rate.

Lemma 1 implies that NH(t|q(·)), NU(t|q(·)), NR(t|q(·)) are indeed Poisson processes. Moreover,

they have the same distributions as the overall arrival processes. Given q(·), the probabilities of

any other consumer that is offered an upgrade booking each type of product are as follows:

ξγ
H(t|q(·)) =

∫∫

Ω

1{at(vR, vH |q(·)) = H}f(vR, vH)dvR dvH ,

ξγ
U(t|q(·)) =

∫∫

Ω

1{at(vR, vH |q(·)) = U}f(vR, vH)dvR dvH ,

ξγ
R(t|q(·)) =

∫∫

Ω

1{at(vR, vH |q(·)) = R}f(vR, vH)dvR dvH .

The probabilities of any other consumer that is not offered an upgrade booking each type of product

are as follows:

ξ′H(t) =
∫∫

Ω

1{a′t(vR, vH) = H}f(vR, vH)dvR dvH ,

ξ′R(t) =
∫∫

Ω

1{a′t(vR, vH) = R}f(vR, vH)dvR dvH .

Thus, the arrival rates of NH(t|q(·)), NU(t|q(·)), NR(t|q(·)) are λH(t|q(·)) = λγξγ
H(t|q(·)) + λ(1−

γ)ξ′H(t), λU(t|q(·)) = λγξγ
U(t|q(·)), λR(t|q(·)) = λγξγ

R(t|q(·))+λ(1− γ)ξ′R(t), respectively.

Next, we derive the stopping time τ(q(·)). Define the following auxiliary stopping times:

• τH(q(·)) = inf{t≥ 0 : NH(t|q(·))≥KH}.
• τR(q(·)) = inf{t≥ 0 : NR(t|q(·))≥KR}.
• τT (q(·)) = inf{t≥ 0 : NH(t|q(·))+NU(t|q(·))+ 1+NR(t|q(·))≥KH +KR}.

τH(q(·)) is the time when high-quality products are fully booked, τR(q(·)) is the time when regular

products are fully booked, τT (q(·)) is the time when the total demand reaches the firm’s total

6 Myerson (1998) first proved the environmental equivalence property of games with Poisson arrivals. Myerson (1998)
provides a proof for the case of discrete player type set, but it is easily generalized to the case of continuous player
type set (in our problem, the player type set is continuous because we assume a continuous valuation support). We
refer the readers that are interested in theories of Poisson games to Myerson (1998), Myerson (2000) and Milchtaich
(2004).
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capacity so both product types are fully booked simultaneously. Then, the stopping time of the

consumer booking game is τ(q(·)) = min{τ̂(q(·)), T}, where

τ̂(q(·)) = min{τH(q(·)), τR(q(·)), τT (q(·))}=





τH(q(·)) if τH(q(·))≤ τT (q(·)),
τR(q(·)) if τR(q(·))≤ τT (q(·)),
τT (q(·)) if τH(q(·)) > τT (q(·)) and τR(q(·)) > τT (q(·)).

τ̂(·) can be interpreted as the stopping time when T →∞. Note that the second equality in the

above equation follows from the fact that τH(q(·))≤ τT (q(·)) implies τH(q(·)) < τR(q(·)) and that

τR(q(·))≤ τT (q(·)) implies τR(q(·)) < τH(q(·)).
Theorem 1. There exists a symmetric pure-strategy equilibrium q∗(·) of the consumer booking

game. q∗(·) is increasing in the arrival time of the consumer. Moreover, by equipping Q with the

uniform norm ‖q(·)‖∞ = sup0≤t≤T |q(t)|, there exists a constant ᾱ such that for any q1(·), q2(·)∈Q,

we have ‖b(q1(·))− b(q2(·))‖∞ ≤ ᾱ‖q1(·)− q2(·)‖∞. Thus, if ᾱ < 1, b(q(·)) is a contraction mapping

and the equilibrium is unique.

Theorem 1 states that the consumer booking game indeed has a symmetric pure-strategy equilib-

rium q∗(·) which is the solution to b(q∗(·)) = q∗(·). q∗(·) is an increasing function because a consumer

that arrives later and still finds both product types are available will have better knowledge that

demand has realized to be weak, and hence form a higher probability of getting upgraded. Theorem

1 also gives a sufficient condition for q∗(·) to be unique.7 However, due to the complicated structure

of our consumer booking game with Poisson arrivals, it is not possible to derive the closed-form

equilibrium or further analyze the firm’s optimal upgrade pricing policy analytically (the firm’s

revenue function is given in Appendix B). We are able to derive some interesting results about

the value of conditional upgrades in the stochastic model by focusing on special case valuation

functions for consumers (which we do in Section 7.1). However, to study conditional upgrades in

greater depth and develop more managerial and policy insights, we are going to first analyze a

fluid model which is the asymptotic version of our stochastic model (i.e., scale up the capacities

and demand rates by n and let n →∞). One may consider our fluid model as a deterministic

approximation of the stochastic model where the consumer booking game is essentially with per-

fect information. However, as verified by our numerical examples in Sections 5.3 and 6, our fluid

model is very accurate in approximating the stochastic model and the results and insights derived

from the fluid model also hold in the stochastic model. In Section 7, we study a special case of

the stochastic model analytically as well as the general stochastic model numerically, and derive

additional insights.

7 The formula of ᾱ is complicated and is given in the proof of Theorem 1 in Appendix A. Our numerical studies
indicate that ᾱ < 1 is satisfied when the product prices are far apart enough from each other and the capacity-demand
ratio is moderately large. Note that ᾱ < 1 is a sufficient but not necessary condition for the equilibrium to be unique.
In our extensive numerical studies with bivariate uniform and bivariate normal valuation distributions, we do not
observe multiple equilibria to arise. In fact, as the capacities and demand rates increase proportionally to infinity,
the equilibrium is provably unique (Theorem 3).
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5. Fluid Model
In this section, we derive and analyze the fluid model. In Section 5.1, we derive the asymptotic

consumer booking equilibrium by scaling up the problem size by n and letting n →∞. In the

problem instance scaled by n, the consumer arrival rate is nλ(t) and the firm’s capacities are nKH

and nKR. For other variables, we add a subscript of n to specify the problem size. Based on Section

5.1, in Section 5.2, we study the firm’s optimal upgrade pricing strategy. In Section 5.3, we evaluate

the performance of the fluid model.

5.1. Consumer Booking Equilibrium

The following theorem characterizes the equilibrium upgrade probability in the asymptotic scenario

of the consumer booking game. As n→∞, q∗(·) converges to a constant qf , where the subscript

of f denotes the fluid model (we also use s to denote the stochastic model).

Theorem 2. (i) As n→∞, for any q(·)∈Q, the auxiliary stopping times converge to

τ∞H (q(·)) = inf
{

t≥ 0 :
∫ t

0

λH(s|q(·))ds≥KH

}
,

τ∞R (q(·)) = inf
{

t≥ 0 :
∫ t

0

λR(s|q(·))ds≥KR

}
,

τ∞T (q(·)) = inf
{

t≥ 0 :
∫ t

0

[λH(s|q(·))+λU(s|q(·))+λR(s|q(·))] ds≥KR +KH

}
,

a.s., respectively. The stopping time of the consumer booking game converges to τ∞(q(·)) =

min{τ̂∞(q(·)), T} a.s., where

τ̂∞(q(·)) =





τ∞H (q(·)) if τ∞H (q(·))≤ τ∞T (q(·)),
τ∞R (q(·)) if τ∞R (q(·))≤ τ∞T (q(·)),
τ∞T (q(·)) if τ∞H (q(·)) > τ∞T (q(·)) and τ∞R (q(·)) > τ∞T (q(·)).

(ii) As n→∞, the equilibrium upgrade probability qn∗(·) converges pointwise to qf which is the

(time-independent) solution of the following equation:

qf = min





[
KH −

∫ τ∞(qf )

0
λH(t|qf )dt

]+

∫ τ∞(qf )

0
λU(t|qf )dt

,1





. (1)

Our primary goal of studying the fluid model is to derive closed-form solutions which will provide

us sharp insights about how consumers make upgrading decisions and how the firm’s optimal

upgrade price depends on problem parameters. To be able to obtain closed-form solutions, we will

assume that the consumers’ valuations for two types of products are jointly uniformly distributed

in the two-dimensional support Ω = {(vR, vH) : 0≤ vR ≤ vH ≤ u}, that is, for consumers that value

high-quality products at vH , their valuations for regular products are uniformly distributed over

[0, vH ]. u is the upper bound of consumer valuations (u > pH). Thus, the valuation support Ω is



14 Cui, Duenyas, and Sahin: Pricing of Conditional Upgrades in the Presence of Strategic Consumers

now an upper triangular subset of R2
+, and the joint probability density is f(vR, vH) = 2/u2. Our

analysis can be easily generalized if we move Ω within R2
+ to allow for different upper and lower

bounds of consumer valuations. Moreover, we have numerically tested our results when consumers’

valuations follow a bivariate normal distribution, and we find that all results in the paper (for

both the fluid model and the stochastic model) carry through to the case with bivariate normal

distribution.

Now we calculate qf by solving (1). We first need to derive the demand segmentation in the fluid

model for a given q (i.e., λH(q), λU(q), λR(q)). Figure 2 plots all five possible demand segmentations

of consumers that are offered upgrades. Throughout the paper, we use the superscript “a” through

“e” consistent with Figure 2 to specify which case we are referring to. Case a also gives the demand

segmentation of consumers that are not offered upgrades. In each ease, the proportions of consumers

booking each product type, ξH(q), ξU(q), ξR(q), can be calculated as the ratio between the area

of each region where the consumer decision is to book the corresponding product type and the

area of the entire valuation support Ω. The results are shown below. The overall demand rates are

λH(q) = λγξi
H(q)+λ(1− γ)ξa

H , λU(q) = λγξi
U(q), λR(q) = λγξi

R(q)+λ(1− γ)ξa
R in Case i.

Case a If p≥ pH − pR (i.e., the firm does not offer upgrades), the consumer segmentation is

ξa
H =

1
u2

(u− pH +2pR)(u− pH), ξa
U = 0, ξa

R =
1
u2

(pH − pR)(2u− pH − pR).

Case b If p < pH − pR (i.e., the firm offers upgrades) and q = 1, because upgrades are guaranteed

to be fulfilled, nobody books a high-quality product directly. The consumer segmentation in this

case is

ξb
H = 0, ξb

U =
1
u2

(pR +u− p)(u− pR− p), ξb
R =

1
u2

[−p2 +2(u− pR)p
]
.

Case c If p < pH − pR and q < 1 and (pH − pR − qp)/(1− q) ≥ u, since q < 1, by booking a reg-

ular product and accepting an upgrade offer instead of booking a high-quality product directly,

a consumer risks not being upgraded and ending up consuming a regular product. Recall that a

consumer books a high-quality product directly if vH − vR ≥ (pH − pR − qp)/(1− q) and vH ≥ pH ,

where (pH − pR− qp)/(1− q) is the minimum valuation differential required to induce one to book

a high-quality product directly. If (pH − pR− qp)/(1− q)≥ u, all consumers that are interested in

high-quality products will choose to get them through upgrades. The consumer segmentation in

this case is

ξc
H = 0, ξc

U(q) =
1
u2

[
−p2

R

q
+(u− p)2

]
, ξc

R =
1
u2

[−p2 +2(u− pR)p
]
.
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Figure 2 Demand segmentation given the upgrade price p and the upgrade probability q: (a) no upgrades

offered, or p≥ pH − pR; (b) p < pH − pR and q = 1; (c) p < pH − pR and q < 1 and (pH − pR− qp)/(1− q)≥ u; (d)

p < pH − pR and q < 1 and pH ≤ (pH − pR− qp)/(1− q) < u; (e) p < pH − pR and q < 1 and

(pH − pR− qp)/(1− q) < pH .
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Case d If p < pH−pR and q < 1 and pH ≤ (pH−pR−qp)/(1−q) < u, since (pH−pR−qp)/(1−q) <

u, the consumers with high enough valuations for high-quality products combined with low enough

valuations for regular products will book high-quality products directly. Thus, in this case, high-

quality products are sold in both channels (i.e., directly and through upgrades). Further, depending

on whether (pH − pR− qp)/(1− q)≥ pH or not, ξH(q) and ξU(q) take different functional forms. If

(pH − pR− qp)/(1− q)≥ pH , the consumer segmentation is

ξd
H(q) =

1
u2

(
u− pH − pR− qp

1− q

)2

,

ξd
U(q) =

1
u2

[
−

(
pH − pR− qp

1− q

)2

+2u

(
pH − pR− qp

1− q

)
− p2

R

q
+ p2− 2up

]
,

ξd
R =

1
u2

[−p2 +2(u− pR)p
]
.

Otherwise we are in Case e.

Case e If p < pH − pR and q < 1 and (pH − pR− qp)/(1− q) < pH , the consumer segmentation is

ξe
H(q) =

1
u2

[
u+ pH − 2(pH − pR− qp)

1− q

]
(u− pH),

ξe
U(q) =

1
u2
· pH − pR− p

1− q
· (2u− pH − pR− p),

ξe
R =

1
u2

[−p2 +2(u− pR)p
]
.

We assume KH ≥ λa
HT and KR ≥ λa

RT , that is, the firm’s expected demand when upgrades are

not offered does not exceed its capacity for either product type at the prices pH and pR. This

assumption is reasonable since the utilization rates in travel industries are generally not high

(according to Statista8, the average occupancy rate of the U.S. hotel lodging industry from 2000 to

2013 is only 60%). We would like to note that when the firm offers upgrades, it is still possible under

this assumption that the firm’s total capacity is fully booked before the end of the booking period,

because offering upgrades can generate more demand than the case without upgrades. Thus, our

analysis allows for any utilization level with upgrades. Moreover, our numerical analysis indicates

that all findings in this paper continue to hold even if the above assumption is not satisfied.

Theorem 3. Define

p̄ = u−
√

1
γ

[
KH

λT
u2− (u− pH +2pR)(u− pH)

]
+(u− pH + pR)2,

p = pH − pR−
KH
λT

u2− (u− pH +2pR)(u− pH)
γ(u− pH + pR)

,

8 http://www.statista.com/statistics/200161/us-annual-accomodation-and-lodging-occupancy-rate.
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p′ = − 1
pR

[
KH

λT
u2−u2 +2(pH − pR)u− p2

H + pHpR + p2
R

]
+

1
γpR

√
γ

[
KH

λT
u2− (u− pH +2pR)(u− pH)

]

·
√[

1− γ− (1− γ)KH +KR

λT

]
u2 +2γ(pH − pR)u− γp2

H − 2(1− γ)pHpR + γp2
R.

(i) If KH ≥ (λT/u2)[(u− pH + 2pR)(u− pH) + γ(pH − pR)(2u− pH + pR)], qf = 1 for all 0≤ p <

pH − pR.

(ii) If KH < (λT/u2)[(u−pH +2pR)(u−pH)+γ(pH−pR)(2u−pH +pR)], the equilibrium upgrade

probability is uniquely given by the following:

• If p+ ≥ p′+ (where x+ = max{x,0}),

qf =





1 for p̄≤ p < pH − pR,
KH
λT u2−(u−pH+2pR)(u−pH )+γ(u−pH+pR)2

γ(u−p)2
for p+ ≤ p < p̄,

KH
λT u2−(u−pH+2pR)(u−pH )

γ(pH−pR−p)2+
KH
λT u2−(u−pH+2pR)(u−pH )

for 0≤ p < p+;

• If p+ < p′+,

qf =





1 for p̄≤ p < pH − pR,
KH
λT u2−(u−pH+2pR)(u−pH )+γ(u−pH+pR)2

γ(u−p)2
for p′+ ≤ p < p̄,

2γ
KH

KH+KR
p2

R

−β−
√

β2−4γ2 KH
KH+KR

p2
R

(u−p)2
for 0≤ p < p′+,

where β = (u−pH +2pR)(u−pH)−γ(u−pH +pR)2 + KH
KH+KR

[2γpRp−u2 +(1−γ)(2pHpR−p2
R)].

(iii) qf is increasing in p.

Theorem 3 gives the equilibrium upgrade probability qf for any upgrade price p set by the

firm. If the firm’s capacity for high-quality products is very large (i.e., KH ≥ (λT/u2)[(u− pH +

2pR)(u− pH) + γ(pH − pR)(2u− pH + pR)]), consumers accepting upgrade offers are guaranteed to

get upgraded. In equilibrium, being aware of the very high chance to get upgraded, all consumers

who are interested in high-quality products and offered upgrades choose to book regular products

and accept upgrade offers. If the firm’s capacity for high-quality products is not very large (i.e.,

KH < (λT/u2)[(u − pH + 2pR)(u − pH) + γ(pH − pR)(2u − pH + pR)]), the equilibrium upgrade

probability qf increases with the upgrade price p. This is because fewer consumers accept upgrade

offers when the upgrade price is higher. As the upgrade price p decreases from pH−pR to 0, as shown

by the proof of Theorem 3 (in Appendix A), the market segmentation takes the form in Cases b, c,

d, e in sequence.9 Case d or e occurs only if the upgrade price is low (i.e., 0≤ p < p+), meaning the

9 p̄ is the threshold between Case b and Case c, p is the threshold between Case c and Case d when τ∞(qf )≥ T , p′

is the threshold between Case c and Case d when τ∞(qf ) < T . If p+ ≥ p′+, when Case c switches to Case d, we have
τ∞(qf )≥ T ; and vice versa. qf takes the same form in Cases d and e.
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equilibrium upgrade probability is small enough. Thus, the consumers with high enough valuations

for high-quality products and low enough valuations for low-quality products will book high-quality

products directly even if they are offered upgrades. In Case b or c, the upgrade probability is large

enough so that consumers would like to obtain high-quality products through upgrades if they are

given the offers.

5.2. Optimal Upgrade Pricing

In this section, based on the equilibrium consumer booking decision characterized in Section 5.1,

we study the firm’s optimal conditional upgrade pricing strategy. The firm’s goal is to maxi-

mize its revenue from selling both types of products and charging upgrade fees. Recall that p ≥
pH − pR corresponds to the case without upgrades. In this case, the firm’s revenue is ΠN,f =

pRλa
R min{KR/λa

R, T}+ pHλa
H min{KH/λa

H , T}, where the subscript of N denotes no upgrades. If

the firm offers upgrades with p < pH − pR, its revenue is

Πf (p) = pR[λU(qf )+λR]τ∞(qf )+ pλU(qf )τ∞(qf )qf + pHλH(qf )τ∞(qf )

+1{τ∞(qf ) = τ∞R (qf )}pH min{λa
H [T − τ∞(qf )],KH − [λH(qf )+λU(qf )]τ∞(qf )}

+1{τ∞(qf ) = τ∞H (qf )}pR min{λa
R[T − τ∞(qf )],KR− [λU(qf )+λR]τ∞(qf )} .

The first line of Πf (p) is the revenue collected before the consumer booking game stops. The first

term is the revenue from selling regular products (including the revenue from consumers accepting

upgrade offers), the second term is the revenue from collecting upgrade fees, the third term is the

revenue from selling high-quality products. The second line of Πf (p) is the revenue from selling

high-quality products after regular products are fully booked, where λa
H [T −τ∞(qf )] is the demand

and KH − [λH(qf ) + λU(qf )]τ∞(qf ) is the remaining capacity for high-quality products. The third

line of Πf (p) is the revenue from selling regular products after high-quality products are fully

booked. Since Πf (p) = ΠN,f at p = pH−pR, we limit ourselves to 0≤ p≤ pH−pR in studying Πf (p)

in the remainder of the paper. When the optimal upgrade price is achieved at p∗f = pH − pR, we

know that it is optimal for the firm not to offer upgrades.

Theorem 4. The optimal upgrade price is p∗f = min
{
max

{
(pb

foc)+, p̄
}

, pH − pR

}
, where

pb
foc =

2u−
√

u2 +9p2
R

3
.

Moreover, the optimal pricing induces qf = 1.

Theorem 4 characterizes the optimal upgrade price. The optimal upgrade price results in an

equilibrium consumer segmentation in Case b (pb
foc is the optimal price in Case b, Case b occurs

for p̄≤ p≤ pH−pR) where the upgrade probability is equal to one. Recall that Theorem 3 states qf
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is increasing in p (or always equal to one if the high-quality product capacity is very large). Thus,

Theorem 4 states that the firm should choose an upgrade price that is high enough. If an upgrade

price results in some consumers being rationed for upgrades, that means too many consumers are

willing to pay for the upgrades and the current upgrade price is too low. The firm should increase

the upgrade price to extract more surplus from consumers while still being able to sell out high-

quality products after fulfilling upgrades. Thus, under the optimal upgrade pricing policy, strategic

consumers who are offered upgrades purchase high-quality products through upgrades instead of

booking directly. Note that because of the deterministic feature, our fluid model captures an ideal

situation where the firm and consumers have perfect knowledge about the demand stream for each

product type. In the stochastic model, because of the demand randomness, the equilibrium upgrade

probability may not be exactly equal to one under the optimal upgrade price, so consumers with

very high valuations for high-quality products and very low valuations for regular products may

choose to book high-quality products directly even if upgrades are offered at the optimal price.

However, consistent with the insight we developed from the fluid model, in the stochastic model, the

firm should generally charge a high enough upgrade price that results in a high upgrade probability

for consumers (Tables 1 and 2 in the next subsection provide a set of examples).

5.3. Performance Evaluation of Fluid Model

We now evaluate how well the fluid model approximates the stochastic model for relatively small

values of n (we know that as n →∞, the fluid model converges to the stochastic model). In

Figure 3, we provide an illustrative example for the comparison between the consumer purchasing

equilibria in the stochastic model for different values of n and the consumer booking equilibrium

in the fluid model. For example, in Figure 3, we see that the upgrade probability in the fluid

model is 1. We also see that when n = 5, in the stochastic model, the average upgrade probability

is 0.9927. We note that in this example, n = 5 corresponds to a relatively small hotel with 60

rooms (n(KH + KR) = 60). Furthermore, in the example in Figure 3, we see that when n = 5,

the percentage of consumers that would make a different decision in the stochastic model (with

respect to which type of product to book) than in the fluid model is only 0.73%. In Tables 1 and

2, we examine the gap between the consumer booking equilibria in the stochastic model and in the

fluid model with more examples. Table 1 provides examples with different product prices, Table

2 provides examples with different product capacities. We can see that the equilibrium upgrade

probability in the stochastic model is closer to one when the product price differential is larger, or

when the high-quality product capacity is large, both indicating a smaller probability that the firm

runs out of high-quality products. Overall, we observe that the equilibrium upgrade probability is

increasing in the product price differential, and increasing in the high-quality product capacity.
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Figure 3 A numerical example on the asymptotic convergence of consumer booking equilibrium under the

optimal upgrade price. (λ = 1, T = 10, KH = 5, KR = 7, pH = 160, pR = 70, γ = 0.5, vR and vH are jointly

uniformly distributed over Ω = {(vR, vH) : 0≤ vR ≤ vH ≤ 200}; “∆Demand” is defined as the expected percentage

of consumers that would make a different booking decision in the stochastic model than predicted by the fluid

model)
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[q∗(t)] ∆Demand E

t
[q∗(t)] ∆Demand E

t
[q∗(t)] ∆Demand

pR = 60 0.9879 1.34% 0.9953 0.63% 0.9985 0.24% 0.9996 0.08%
pR = 70 0.9770 2.25% 0.9898 1.21% 0.9962 0.55% 0.9989 0.20%
pR = 80 0.9615 3.42% 0.9809 2.05% 0.9919 1.06% 0.9972 0.45%
pR = 90 0.8680 23.35% 0.9685 3.11% 0.9849 1.79% 0.9939 0.88%

Table 1 Numerical examples on the gap between the consumer booking equilibria (under the optimal upgrade

price) in the stochastic model and in the fluid model with different product prices: the time-average equilibrium

upgrade probability (E
t
[q∗(t)]) and the expected percentage of consumers that would make a different booking

decision in the stochastic model than predicted by the fluid model (∆Demand). (λ = 1, T = 100, KH = 50,

KR = 70, γ = 0.5, vR and vH are jointly uniformly distributed over Ω = {(vR, vH) : 0≤ vR ≤ vH ≤ 200})

KH = 40 KH = 50 KH = 60 KH = 70
E
t
[q∗(t)] ∆Demand E

t
[q∗(t)] ∆Demand E

t
[q∗(t)] ∆Demand E

t
[q∗(t)] ∆Demand

KR = 60 0.9487 3.05% 0.9919 1.06% 0.9997 0.05% 1.0000 0.00%
KR = 70 0.9487 3.06% 0.9919 1.06% 0.9997 0.05% 1.0000 0.00%
KR = 80 0.9487 3.06% 0.9919 1.06% 0.9997 0.05% 1.0000 0.00%
KR = 90 0.9487 3.06% 0.9919 1.06% 0.9997 0.05% 1.0000 0.00%

Table 2 Numerical examples on the gap between the consumer booking equilibria (under the optimal upgrade

price) in the stochastic model and in the fluid model with different product capacities: the time-average

equilibrium upgrade probability (E
t
[q∗(t)]) and the expected percentage of consumers that would make a different

booking decision in the stochastic model than predicted by the fluid model (∆Demand). (λ = 1, T = 100,

pH = 150, pR = 80, γ = 0.5, vR and vH are jointly uniformly distributed over Ω = {(vR, vH) : 0≤ vR ≤ vH ≤ 200})

Table 3 provides an illustrative example for the asymptotic convergence of the firm’s optimal

upgrade price and revenue. The derivation of the stochastic revenue function, Πs(p), is given in

Appendix B. By comparing the stochastic revenues using the optimal upgrade price derived from
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the fluid model and using the optimal upgrade price for the stochastic model, we can evaluate the

performance of the fluid model. From Table 3, we clearly see that by using the optimal upgrade

price derived from the fluid model, the firm’s revenue deviates by an almost negligible amount from

the optimal revenue in the stochastic model even for very small problem sizes (less than or equal

to 0.1% even for n = 1). The optimal upgrade price itself may have some error especially when the

problem size is small, but our numerical studies indicate that the revenue function in the stochastic

model is quite flat in the region around the optimal upgrade price, hence the deviation of the

optimal revenue is significantly smaller than the deviation of the optimal upgrade price. In Tables

4 and 5, we examine the deviation of optimal upgrade price and optimal revenue in the stochastic

model caused by the fluid solution with more examples. Table 4 provides examples with different

product prices, Table 5 provides examples with different product capacities. We can see that similar

to the observation from analyzing the consumer booking equilibrium, the optimal upgrade price

and revenue deviations caused by the fluid solution are smaller when the product price differential

is larger, or when the high-quality product capacity is larger, both indicating a smaller probability

that the firm runs out of high-quality products. Overall we observe that the pricing heuristic derived

from the fluid model performs very well in terms of giving the firm close-to-optimal revenues in

the stochastic model. Thus, by studying the fluid model, we can develop managerial insights that

will carry through to the stochastic model and provide an excellent heuristic for the stochastic

problem.

n
Fluid solution Stochastic solution ∆p∗ = |p∗f − p∗s| ∆Π∗ =

Πs(p∗s)−Πs(p∗f )

Πs(p∗s)p∗f Πs(p∗f ) p∗s Πs(p∗s)
1 36.7 620.7 40.3 621.1 3.6 0.07%
2 36.7 1265.4 40.4 1266.4 3.7 0.08%
5 36.7 3192.2 38.4 3192.8 1.7 0.02%
10 36.7 6396.9 37.1 6397.0 0.5 0.00%
20 36.7 12798.0 36.7 12798.0 0.0 0.00%

Table 3 A numerical examples on the asymptotic convergence of optimal upgrade price and revenue. (λ = 1,

T = 10, KH = 5, KR = 7, pH = 160, pR = 70, γ = 0.5, vR and vH are jointly uniformly distributed over

Ω = {(vR, vH) : 0≤ vR ≤ vH ≤ 200})

6. Analysis of Optimal Upgrade Pricing
Now that we have obtained the optimal upgrade pricing strategy, we explore it further and develop

managerial and policy insights for firms. We are first interested in when the conditional upgrade

policy increases firms’ revenues and when it can actually decrease revenues. We identify some

benefits of conditional upgrades and show that by optimally deciding when to offer upgrades and at

which price to offer upgrades, the firm benefits from offering conditional upgrades to more strategic
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pH = 130 pH = 140 pH = 150 pH = 160
∆p∗ ∆Π∗ ∆p∗ ∆Π∗ ∆p∗ ∆Π∗ ∆p∗ ∆Π∗

pR = 60 3.3 0.07% 1.6 0.01% 0.6 0.00% 0.2 0.00%
pR = 70 5.3 0.18% 2.8 0.05% 1.3 0.01% 0.5 0.00%
pR = 80 7.4 0.35% 4.5 0.14% 2.3 0.04% 1.0 0.01%
pR = 90 11.5 0.62% 6.3 0.28% 3.7 0.10% 1.8 0.02%

Table 4 Numerical examples on the gap between the firm’s optimal upgrade prices as well as revenues in the

stochastic model and in the fluid model with different product prices: the price error (∆p∗ = |p∗f − p∗s |) and the

revenue error (∆Π∗ =
Πs(p∗s)−Πs(p∗f )

Πs(p∗s)
). (λ = 1, T = 100, KH = 50, KR = 70, γ = 0.5, vR and vH are jointly uniformly

distributed over Ω = {(vR, vH) : 0≤ vR ≤ vH ≤ 200})

KH = 40 KH = 50 KH = 60 KH = 70
∆p∗ ∆Π∗ ∆p∗ ∆Π∗ ∆p∗ ∆Π∗ ∆p∗ ∆Π∗

KR = 60 6.4 0.28% 2.3 0.04% 0.1 0.00% 0.0 0.00%
KR = 70 6.4 0.28% 2.3 0.04% 0.1 0.00% 0.0 0.00%
KR = 80 6.4 0.28% 2.3 0.04% 0.1 0.00% 0.0 0.00%
KR = 90 6.4 0.28% 2.3 0.04% 0.1 0.00% 0.0 0.00%

Table 5 Numerical examples on the gap between the firm’s optimal upgrade prices as well as revenues in the

stochastic model and in the fluid model with different product capacities: the price error (∆p∗ = |p∗f − p∗s |) and the

revenue error (∆Π∗ =
Πs(p∗s)−Πs(p∗f )

Πs(p∗s)
). (λ = 1, T = 100, pH = 150, pR = 80, γ = 0.5, vR and vH are jointly uniformly

distributed over Ω = {(vR, vH) : 0≤ vR ≤ vH ≤ 200})

consumers. Then, we characterize when it is optimal to offer conditional upgrades for free. Finally,

we demonstrate the importance of accounting for strategic consumer behavior with conditional

upgrades by evaluating the cost of ignoring strategic consumer behavior.

6.1. When to Offer Upgrades?

The following result states when offering conditional upgrades at the optimal price increases or

decreases the firm’s revenue. For the conditional upgrade policy to be beneficial (i.e., p∗f < pH−pR),

the product price differential should be large enough. When the product price differential is small,

it is optimal not to offer upgrades (or alternatively set the upgrade price at p∗f = pH − pR).

Theorem 5. Offering conditional upgrades increases the revenue if

pH >
2u+3pR−

√
u2 +9p2

R

3

and decreases the revenue otherwise.

The fundamental trade-off regarding whether the firm should offer upgrades is as follows. If the

firm offers upgrades, some consumers, who book high-quality products when the firm does not offer

upgrades, will now book regular products and accept upgrade offers instead, and hence the firm’s

revenue from direct sales of high-quality products decreases. This is the cannibalization effect of

conditional upgrades. On the other hand, some consumers who book regular products when the
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firm does not offer upgrades will now accept upgrade offers; also, some consumers who do not book

any product when the firm does not offer upgrades will now purchase regular products and accept

upgrade offers (these consumers’ valuations for regular (high-quality) products are lower than pR

(pH), but their valuations for high-quality products are higher than or equal to pR +p). These two

types of consumers bring additional revenues to the firm. This is the demand improvement effect of

conditional upgrades. One important factor that determines which of these two effects is stronger

is the product price differential. If the price differential is small and the firm offers upgrades,

the cannibalization effect is significant, as a lot of consumers will book high-quality products if

the firm does not offer upgrades, and these consumers will switch to upgrades under the optimal

upgrade price (Theorem 4). Moreover, since the high-quality product price is already close to the

regular product price, there will not be many consumers who originally book regular products or

don’t book any products and now switch to upgrades, hence the demand improvement effect is not

significant. Therefore, the firm’s revenue is hurt if upgrades are offered in this case.

Thus, the firm benefits from offering conditional upgrades if the product price differential is large

enough. This finding has important implications for the companies in travel industries regarding

whether and when they should use the conditional upgrade strategy. Travel managers tend to

believe that upgrades should only be offered between similar product types, as they feel that they

may be giving consumers too much benefit by offering them the opportunity to get a product that

is much better than the originally booked type. However, this common wisdom does not take into

account the consumers’ strategic behavior that they may deliberately book a lower-quality product

than desired in anticipation of getting upgraded later. Our analysis suggests that as a response

to such strategic consumer behavior, the firm should be able to extract more revenues by offering

upgrades between product types that are priced not so closely, but also charging sufficiently large

amounts for the upgrades.

We provide the following example for the stochastic model where as the product price differential

becomes smaller, offering upgrades switches from increasing the firm’s revenue to decreasing the

firm’s revenue: λ = 1, T = 100, KH = 70, KR = 50, pR = 80, γ = 0.5, vR and vH are jointly uniformly

distributed over Ω = {(vR, vH) : 0 ≤ vR ≤ vH ≤ 200}. For this example, Theorem 5 would predict

that offering upgrades benefits the firm when pH ≥ 110 and hurts the firm when pH ≤ 109. From

the numerical analysis for the stochastic model, we find that offering upgrades benefits the firm

when pH ≥ 111 and hurts the firm when pH ≤ 110, which is very close to the result indicated by

the fluid heuristic.

From our analysis above, we have seen two benefits of conditional upgrades. First, the optimal

conditional upgrade strategy can lead to demand expansion. Second, offering upgrades can shift

some consumers from regular products to high-quality products. We use the following example (in
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the stochastic model) to illustrate these two benefits of conditional upgrades: λ = 1, T = 100, KH =

70, KR = 50, pH = 150, pR = 80, vR and vH are jointly uniformly distributed over Ω = {(vR, vH) :

0 ≤ vR ≤ vH ≤ 200}. For this example, if the firm does not offer upgrades, 26.25% of consumers

book high-quality products and 29.75% of consumers book regular products. If the firm offers

upgrades to half of the consumers (i.e., γ = 0.5), 13.13% of consumers book high-quality products

directly, 27.41% of consumers book regular products and accept the upgrade offers, and 23.09% of

consumers book regular products without upgrades. Compared to the case without upgrades where

the total demand is 56%, the firm increases the total demand to 63.63% by offering upgrades to

half of the consumers (i.e., demand expansion effect). Moreover, offering upgrades decreases the

demand for regular products from 29.75% to 23.09% and increases the demand for high-quality

products from 26.25% to 40.54% including the consumers who accept the upgrade offers (i.e.,

demand segmentation reoptimization effect). We will identify more benefits of conditional upgrades

in later sections.

Theorem 6. The optimal upgrade price and the optimal revenue are increasing in γ.

How does the firm’s revenue change with the proportion of strategic consumers it offers con-

ditional upgrades to? Theorem 6 states that the firm’s revenue becomes higher when it offers

conditional upgrades to more strategic consumers. Note that Theorem 6 incorporates the possibil-

ity that it is optimal not to offer conditional upgrades, as the optimal upgrade price and revenue

would be constant in γ in this case. For a firm that sells conditional upgrades at the optimal

upgrade price, the presence of strategic consumers is actually not a bad thing. Although strategic

consumers create the cannibalization effect of conditional upgrades, they also allow the firm to ben-

efit from demand expansion and demand segmentation reoptimization. By appropriately choosing

the upgrade price, the firm can compensate the revenue loss due to cannibalization by the revenue

gains due to the benefits of conditional upgrades and earn a higher revenue overall. Figure 4 plots

the firm’s optimal revenue in the stochastic model as a function of the proportion of strategic

consumers it offers conditional upgrades to, which is an increasing function. Therefore, given that

the upgrade price is properly chosen, the firm benefits from offering conditional upgrades to as

many consumers as possible even if consumers are strategic.

6.2. Free Upgrades

Next, we consider the extreme case where it is optimal for the firm to offer conditional upgrades

for free. As we mentioned in the beginning, the recent trend is that firms in the travel industry

are offering fewer free upgrades and introducing paid upgrades. The following theorem states that

the optimal upgrade price is zero when the regular products are very expensive (i.e., pR ≥ u/
√

3)

and the firm has such an overabundant high-quality product capacity (i.e., KH ≥ (λT/u2)[(u−
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Figure 4 Firm’s optimal revenue in the stochastic model as a function of the percentage of consumers offered

upgrades. (λ = 1, T = 100, KH = 50, KR = 70, pH = 150, pR = 80, vR and vH are jointly uniformly distributed over

Ω = {(vR, vH) : 0≤ vR ≤ vH ≤ 200})

pH + 2pR)(u− pH) + γ(pH − pR)(2u− pH + pR)]) that it could satisfy all demand for both product

types in expectation using only the high-quality product capacity when the upgrade price is zero.

Clearly, this is a very restrictive condition and is not very likely to be satisfied in reality. Thus,

our analysis indicates that the conditional upgrades should generally be fulfilled with fees, which

is consistent with the industry trend.

Theorem 7. p∗f = 0 if and only if pR ≥ u/
√

3 and KH ≥ (λT/u2)[(u − pH + 2pR)(u − pH) +

γ(pH − pR)(2u− pH + pR)].

The trade-off that the firm is managing when giving free upgrades is as follows. When upgrades

are free, the firm will get a number of consumers, who would not have booked any product at

a higher upgrade price, to book regular products and accept upgrade offers. In the mean time,

the firm will earn less revenue from consumers that would have accepted upgrade offers anyway

at a higher upgrade price. As the regular product price pR becomes higher, we can clearly see

from Figure 2b that the number of the first type of consumers discussed above becomes larger,

and the firm also earns more additional revenue from each of these consumers (at p = 0, the firm

earns pR from each consumer). However, the number of the second type of consumers discussed

above becomes smaller. Therefore, if the regular product price is high enough (i.e., pR ≥ u/
√

3),

the revenue improvement due to the first type of consumers will dominate the revenue loss due to

the second type of consumers. Moreover, as Theorem 4 states, the optimal upgrade price results

in the upgrade probability equal to one. Thus, for p = 0 to be optimal, we need the high-quality

product capacity to be larger than or equal to the expected demand for high-quality products and

upgrades, which results in KH ≥ (λT/u2)[(u− pH +2pR)(u− pH)+ γ(pH − pR)(2u− pH + pR)].
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We provide the following example for the stochastic model where the optimal policy is to offer

free upgrades when the regular product price pR is high enough: λ = 1, T = 100, KH = 70, KR = 50,

pH = 150, γ = 0.5, vR and vH are jointly uniformly distributed over Ω = {(vR, vH) : 0≤ vR ≤ vH ≤
200}. For this example, Theorem 7 would predict that p∗f = 0 when pR ≥ 116. We find the exact

same result for the stochastic model (p∗s = 0 if and only if pR ≥ 116).

6.3. Cost of Ignoring Strategic Consumer Behavior

Finally, we investigate how important it is for the firm to take strategic consumer behavior into

consideration when offering conditional upgrades. We measure the importance of accounting for

strategic consumer behavior by the revenue loss (in the stochastic model) if the firm mistakenly

assumes consumers are myopic while they are in fact strategic. Myopic consumers do not consider

future utilities from possibly getting upgrades and make their booking decisions in a two stages. A

myopic consumer first chooses among booking a high-quality product or booking a regular product

(ignoring the upgrade opportunity) or booking no product. In the first stage, she books a high-

quality product if vH−pH ≥max{vR−pR,0}, books a regular product if vR−pR ≥max{vH−pH ,0},
and does not book any product otherwise. If a myopic consumer books a regular product, then upon

receiving an upgrade offer, she accepts the offer if her utility from getting upgraded dominates her

utility from consuming the regular product. In the second stage, she accepts the upgrade offer if

vH−pR−p≥ vR−pR, or equivalently, vH−vR ≥ p. Table 6 gives the revenue loss results if the firm

mistakenly assumes strategic consumers are myopic. As the results indicate, the cost of ignoring

strategic consumer behavior is non-negligible and can be very significant in some cases (exceeding

10%). Across all 16 examples given in Table 6, the average revenue loss is 6.79%. According to

recent data from Sageworks which is a financial information company, the net profit margin of

U.S. hotel industry is 5% in 2013 and the five-year average margin is −1% (Biery 2014). Given

the low net profit margin in the hotel industry, the cost of ignoring strategic consumer behavior is

significant.

pH = 90 pH = 100 pH = 110 pH = 120
pR = 30 10.80% 8.45% 6.39% 4.52%
pR = 40 10.27% 8.16% 6.17% 4.40%
pR = 50 9.44% 7.57% 5.55% 3.83%
pR = 60 8.09% 6.96% 4.85% 3.19%

Table 6 Percentage revenue loss in the stochastic model if the firm prices conditional upgrades assuming

consumers are myopic while consumers are strategic. (λ = 1, T = 100, KH = 70, KR = 50, γ = 1, vR and vH are

jointly uniformly distributed over Ω = {(vR, vH) : 0≤ vR ≤ vH ≤ 200})
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7. Revenue Performance of Conditional Upgrades

In this section, we evaluate the conditional upgrade strategy’s revenue performance. We will first

consider a firm that is a price taker on product prices but can set upgrade price, as we have

assumed so far. An interesting question is how much of the revenue potential does the conditional

upgrade strategy capture compared to setting product prices optimally? In Section 7.1, we compare

the conditional upgrade strategy to product price optimization. Our interesting finding is that

conditional upgrades as a lever can compensate for the firm’s lack of ability to optimize product

prices and even generate higher revenues than product price optimization. In Section 7.2, we

compare conditional upgrades to an alternative way of offering upgrades, in which case the firm

offers upgrades at the end of the booking period and can decide the upgrade price based on

demand realizations during the booking period. We find that the value of offering conditional

upgrades in advance and collecting consumers’ upgrading decisions in advance is in general greater

than the value of pricing flexibility for upgrades. Moreover, we will also consider a firm that is

not a price taker. As dynamic pricing would be another strategy that is naturally considered by

such a firm, in Section 7.3, we compare the revenue performance of conditional upgrades to the

revenue performance of dynamic pricing. Surprisingly, offering conditional upgrades outperforms

using dynamic pricing.

7.1. Conditional Upgrades vs Product Price Optimization

Following from our previous analysis for the fluid model, Corollary 1 states that when offering

conditional upgrades is profitable, offering conditional upgrades to all consumers (which is the

optimal strategy to offer upgrades, as shown in Theorem 6) enables the firm to capture all of the

revenue potential from optimally setting the price for high-quality products. Recall that as Theorem

4 indicates, when it is optimal to offer upgrades (i.e., when p∗f < pH − pR), consumers choose to

obtain high-quality products through upgrades, and the equilibrium outcome is equivalent to the

firm selling regular products at price pR and high-quality products at price pR + p∗f . Thus, the

high-quality product price is replaced by pR + p∗f which results in a higher revenue (note that p∗f

does not depend on pH). In this case, pR + p∗f is also the optimal high-quality product price for

a firm that is a price taker on only regular products. When it is optimal not to offer upgrades

(i.e., when p∗f = pH − pR), however, the firm may increase revenue by increasing pH . Thus, the

upgrade price can “correct” the price for high-quality products when it is sub-optimally high. This

is consistent with our finding in Section 6.1 that offering conditional upgrades can alter consumer

segmentation and shift more consumers to high-quality products. By offering upgrades, the firm

can offer a lower price for the high-quality products that is somewhat disguised.
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Corollary 1. Consider two scenarios: 1) the firm is a price taker on both product prices but

offers conditional upgrades, 2) the firm is a price taker on the regular product price but the firm

can optimize the high-quality product price, and no conditional upgrades are offered. With γ = 1,

when it is optimal to offer upgrades in the first scenario, these two scenarios result in the same

revenue.

Next, we explore what happens with stochastic demand. We first establish an analytical result

for a special case of the stochastic model. Assume consumers have homogeneous valuations, vH for

high-quality products and vR for regular products (vH ≥ pH , and vR ≥ pR). Theorem 8(i) states

that with stochastic demand, optimal upgrade pricing results in higher revenues than optimal high-

quality product pricing (ΠN,s(p∗H,s) is the revenue when the firm is a price taker on only regular

products and can set the high-quality product price optimally). When demand is stochastic and

no upgrades are allowed, if the realized demand exceeds product capacity for either type, the firm

cannot capture this excess demand. However, with upgrades, during the booking period, the firm

does not allocate the consumers who accept upgrade offers to specific product types; after demand

is fully realized, the firm then gets to allocate more of these consumers to the product type that

has weaker demand. Thus, the firm is able to better match its capacity to demand and improve

capacity utilization. Moreover, Theorem 8(ii) states that optimal upgrade pricing even results in

higher revenues than optimal pricing for both product types if the original regular product price

is not too far away from optimal (Π∗
N,s is the revenue when the firm is not a price taker and can

set both product prices optimally).

Theorem 8. Consider the stochastic model with homogeneous consumer valuations.

(i) When pH > p∗H,s, we have Π∗
s ≥ΠN,s(p∗H,s); moreover, Π∗

s > ΠN,s(p∗H,s) if vH − p∗H,s ≥ vR− pR.

(ii) When pH > p∗H,s and pR is close enough to p∗R,s, we have Π∗
s > Π∗

N,s if vH − p∗H,s ≥ vR− p∗R,s.

Next, we examine our original stochastic model (with heterogeneous consumer valuations) numer-

ically. In Table 7, we compare the firm’s revenue when it is a price taker, ΠN,s, to 1) the revenue

when the firm offers upgrades at the optimal price (taking the product prices as given), Π∗
s, and 2)

the revenue when the firm is a price taker on only regular products and can set the high-quality

product price optimally, ΠN,s(p∗H,s). We see that optimal upgrade pricing results in strictly higher

revenues than optimal high-quality product pricing. For example, suppose the firm is a price taker

selling regular products at price 90 and high-quality product at price 130. Suppose now that the

firm achieves flexibility to set price optimally for high-quality products. Optimizing pH results in

only a 0.13% improvement in revenue. However, if the firm keeps pH at 130, pR at 90, and offers

conditional upgrades, it increases revenue by 1.30%. In all of the examples in Table 7, the firm

is able to obtain higher revenues by offering conditional upgrades than by being able to optimize
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the high-quality product price. Thus, Table 7 clearly shows that the conditional upgrade strategy

is a very valuable form of flexibility for the firm, and in fact may be at least as valuable as the

flexibility to set price for one product type optimally.

pH = 130 pH = 140 pH = 150 pH = 160
∆Π∗

s ∆ΠN,s(p∗H,s) ∆Π∗
s ∆ΠN,s(p∗H,s) ∆Π∗

s ∆ΠN,s(p∗H,s) ∆Π∗
s ∆ΠN,s(p∗H,s)

pR = 60 4.57% 4.12% 10.44% 9.96% 18.65% 18.13% 29.75% 29.19%
pR = 70 2.93% 2.36% 8.36% 7.76% 16.28% 15.64% 27.27% 26.57%
pR = 80 1.67% 0.98% 6.58% 5.85% 14.36% 13.59% 25.43% 24.58%
pR = 90 1.30% 0.13% 4.96% 4.09% 12.67% 11.75% 23.97% 22.95%

Table 7 Percentage revenue improvements in the stochastic model from ΠN,s (i.e., the revenue from not

offering upgrades and using the given product prices) by 1) optimal upgrade pricing (∆Π∗s =
Π∗s−ΠN,s

ΠN,s
), and 2)

optimal pricing of high-quality products (∆ΠN,s(p
∗
H,s) =

ΠN,s(p∗H,s)−ΠN,s

ΠN,s
). (λ = 1, T = 100, KH = 50, KR = 70,

γ = 1, vR and vH are jointly uniformly distributed over Ω = {(vR, vH) : 0≤ vR ≤ vH ≤ 200})

In Table 8, we go one step further and compare the firm’s revenue when it is a price taker, ΠN,s,

to 1) the revenue when the firm offers upgrades at the optimal price (taking the product prices as

given), Π∗
s, and 2) the revenue when the firm is not a price taker and can set both product prices

optimally, Π∗
N,s. We observe that the flexibility of conditional upgrades in better allocating capacity

to stochastic demand allows the firm to earn higher revenues than optimizing both product prices

when the regular product price that the firm is forced to offer is not too far away from optimal.

For example, if the firm is forced to offer high-quality products at price 130 and regular products

at price 100, optimizing pH and pR (the optimal product prices are p∗H,s = 129.1 and p∗R,s = 92.7)

results in only a 0.36% improvement in revenue. However, if the firm keeps pH at 130, pR at 100,

and offers conditional upgrades, it increases revenue by 2.92%. In Table 8, Π∗
s > Π∗

N,s for at least

90≤ pR ≤ 100. Thus, the conditional upgrade strategy is effective in capturing the revenue potential

from being able to optimize product prices. Additionally, the benefit of conditional upgrades in

matching fixed capacities to stochastic demands is more significant when the capacity-demand

mismatch without upgrades is more severe. We can see this from the examples given in Table

8. The optimal product prices in this case are p∗H,s = 129.1 and p∗R,s = 92.7. As we move pH and

pR away from optimal so that the capacity-demand mismatch becomes more severe, the revenue

improvement of conditional upgrades increases.

7.2. Conditional Upgrades vs Last-Minute Upgrades

Now we consider another type of upgrades that the firm offers to consumers at the last minute

and compare it to conditional upgrades that are offered in advance. In this case, the firm offers

upgrades at the end of the booking period (e.g., at check-in), and chooses the upgrade price after

demand realizations during the booking period. During the booking period, strategic consumers
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pH = 130 pH = 140 pH = 150 pH = 160
∆Π∗

s ∆Π∗
N,s ∆Π∗

s ∆Π∗
N,s ∆Π∗

s ∆Π∗
N,s ∆Π∗

s ∆Π∗
N,s

pR = 70 2.93% 5.29% 8.36% 10.84% 16.28% 18.95% 27.27% 30.19%
pR = 80 1.67% 1.81% 6.58% 6.72% 14.36% 14.52% 25.43% 25.61%
pR = 90 1.30% 0.16% 4.96% 4.13% 12.67% 11.78% 23.97% 22.99%
pR = 100 2.92% 0.36% 3.49% 2.73% 11.07% 10.25% 22.71% 21.80%

Table 8 Percentage revenue improvements in the stochastic model from ΠN,s (i.e., the revenue from not

offering upgrades and using the given product prices) by 1) optimal upgrade pricing (∆Π∗s =
Π∗s−ΠN,s

ΠN,s
), and 2)

optimal pricing of both product types (∆Π∗N,s =
Π∗N,s−ΠN,s

ΠN,s
). (λ = 1, T = 100, KH = 50, KR = 70, γ = 1, vR and vH

are jointly uniformly distributed over Ω = {(vR, vH) : 0≤ vR ≤ vH ≤ 200})

choose among booking a high-quality product or booking a regular product or booking no product

based on the anticipated upgrade probabilities and prices. We use a similar (stochastic) model to

analyze last-minute upgrades; the model and analysis are described in Appendix C.

In Table 9, we compare the firm’s revenue when it is a price taker, ΠN,s, to 1) the optimal revenue

when the firm offers conditional upgrades, Π∗
s, and 2) the optimal revenue when the firm offers

last-minute upgrades, Π∗
LM,s. As Table 9 shows, conditional upgrades result in higher revenues than

last-minute upgrades in all cases. Across all examples given in Table 9, on average, conditional

upgrades improve the revenue by 13.08%, whereas last-minute upgrades improve the revenue by

only 2.36% (offering last-minute upgrades may even decrease the firm’s revenue in some cases).

Although last-minute upgrades give the firm more pricing flexibility (i.e., the firm can dynamically

determine the upgrade price based on demand realizations during the booking period), conditional

upgrades give the firm other advantages that appear to be more valuable. First, the firm has better

flexibility in managing capacities with conditional upgrades. By offering upgrades in advance and

letting consumers reveal their upgrading decisions in advance, the firm is able to better control

the time to stop selling each product type and improve its capacity utilizations. With last-minute

upgrades, the firm loses the ability to observe consumers’ upgrading decisions in advance, and

hence cannot improve capacity utilizations as effectively. Second, with conditional upgrades, by

committing to the upgrade price up front, the firm can induce more consumers, who would not

purchase any product without upgrades being offered, to purchase from the firm. With last-minute

upgrades, however, the demand expansion effect is weakened. Across all examples given in Table

9, on average, conditional upgrades generate 13.61% more demand than last-minute upgrades.

Additionally, with conditional upgrades, the firm can overbook regular products without having

to “bump” consumers during check-in, because by observing consumers’ upgrading decisions in

advance, the firm can overbook regular products as long as it knows that enough consumers (who

have accepted upgrade offers) can be switched to high-quality products. However, if upgrades are

offered at check-in and the firm overbooks regular products, it has the risk of having to bump some
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consumers. In this case, the firm chooses the upgrade price at the end of the booking period based

on its belief about the probability of consumers (who have booked regular products) accepting the

upgrade offer. It may occur that not enough consumers are actually willing to pay for the upgrades

at the price chosen by the firm, so the firm will incur penalty costs from bumping consumers. Note

that in the examples given in Table 9, the penalty cost per consumer, c, is equal to zero. So, we are

comparing the conditional upgrade revenue to an upper bound of the last-minute upgrade revenue.

pH = 130 pH = 140 pH = 150 pH = 160
∆Π∗

s ∆Π∗
LM,s ∆Π∗

s ∆Π∗
LM,s ∆Π∗

s ∆Π∗
LM,s ∆Π∗

s ∆Π∗
LM,s

pR = 60 4.57% 0.05% 10.44% 4.03% 18.65% 5.03% 29.75% 14.86%
pR = 70 2.93% −0.03% 8.36% 0.05% 16.28% 0.68% 27.27% 5.98%
pR = 80 1.67% 0.23% 6.58% −0.06% 14.36% 0.09% 25.43% 5.69%
pR = 90 1.30% 0.83% 4.96% 0.21% 12.67% −0.01% 23.97% 0.19%

Table 9 Percentage revenue improvements in the stochastic model from ΠN,s (i.e., the revenue from not

offering upgrades and using the given product prices) by 1) offering conditional upgrades (∆Π∗s =
Π∗s−ΠN,s

ΠN,s
), and

2) offering last-minute upgrades (∆Π∗LM,s =
Π∗LM,s−ΠN,s

ΠN,s
). (λ = 1, T = 100, KH = 50, KR = 70, γ = 1, c = 0, vR and

vH are jointly uniformly distributed over Ω = {(vR, vH) : 0≤ vR ≤ vH ≤ 200})

7.3. Conditional Upgrades vs Dynamic Pricing

As we have seen, the flexibility of conditional upgrades in better allocating capacity to demand

allows a product-price-taking firm to achieve higher revenues than being able to optimize product

prices and offering last-minute upgrades in many cases. Now, suppose the firm is not a price taker

at all and can set both product prices optimally. In Table 10, we compare the firm’s revenue from

optimal product pricing, Π∗
N,s, to 1) the optimal revenue from the conditional upgrade strategy

(using the optimal static product prices), Π∗
s, and 2) the optimal revenue from dynamic pricing,

Π∗
D,s. We use the classic multiproduct dynamic pricing model in Gallego and van Ryzin (1997) to

compute the expected revenue from optimal dynamic pricing.10 Interestingly, we find that condi-

tional upgrades generate more revenues than dynamic pricing in all examples in Table 10. The firm

gains different types of flexibility from conditional upgrades and dynamic pricing. By using dynamic

pricing, the firm can adjust the allocation of consumers to different product types by changing

product prices during the booking period. However, the firm does not have the flexibility to change

product assignments after purchase. With conditional upgrades, the firm’s product assignments of

consumers who have accepted upgrade offers are made after demand is fully realized. As Table 10

shows, the ex-post allocation flexibility created by conditional upgrades has more revenue potential

10 Note that in Gallego and van Ryzin (1997), consumers do not postpone their purchases due to the anticipated
future price drops. Thus, the dynamic pricing revenue we are comparing the upgrade revenue to is an upper bound
on dynamic pricing revenues (Levin et al. 2010).
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than the pricing flexibility created by dynamic pricing. Therefore, for a firm that is not a price

taker and has the ability to set optimal static product prices, the conditional upgrade strategy can

serve as a substitute to dynamic pricing and in fact generate higher revenues.

KH = 20 KH = 30 KH = 40 KH = 50
∆Π∗

s ∆Π∗
D,s ∆Π∗

s ∆Π∗
D,s ∆Π∗

s ∆Π∗
D,s ∆Π∗

s ∆Π∗
D,s

KR = 50 6.42% 5.19% 4.02% 2.43% 3.07% 2.21% 1.95% 1.75%
KR = 60 6.42% 5.20% 4.02% 2.43% 3.07% 2.21% 1.95% 1.75%
KR = 70 6.42% 5.20% 4.02% 2.43% 3.07% 2.21% 1.95% 1.75%
KR = 80 6.42% 5.20% 4.02% 2.43% 3.07% 2.21% 1.95% 1.75%

Table 10 Percentage revenue improvements in the stochastic model from Π∗N,s (i.e., the revenue from optimal

product pricing without upgrades) by 1) optimal upgrade pricing given the optimal product prices

(∆Π∗s =
Π∗s−Π∗N,s

Π∗
N,s

), and 2) optimal dynamic pricing (∆Π∗D,s =
Π∗D,s−Π∗N,s

Π∗
N,s

). (λ = 1, T = 100, γ = 1, vR and vH are

jointly uniformly distributed over Ω = {(vR, vH) : 0≤ vR ≤ vH ≤ 200})

Even if the firm is a monopoly in the local market and can freely determine its product prices,

implementing variable pricing (i.e., charging different prices for the same product consumed at dif-

ferent times) or dynamic pricing (i.e., changing the price over time for the same product consumed

at the same time) may still create consumer dissatisfaction. Recall that many hotels are having a

hard time to convince business consumers to accept dynamic pricing. While variable pricing has

become more acceptable over time in travel-related industries, most firms still have constraints

on how much they can freely adjust prices based on demand. For example, if demand is very low

on a given day, optimal pricing for that particular day may result in the hotel setting severely

discounted prices for its rooms. But many hotels are reluctant to do that as they believe offering

rooms below certain price levels may undercut their image and damage their brand. Compared

to changing the product prices, changing the upgrade price may be a more benign strategy. The

hotel would not suffer from reputational effects as consumers would usually consider upgrades as a

benefit offered to them. Thus, overall we conclude that the conditional upgrade strategy is a very

good alternative to unconstrained variable/dynamic pricing.

8. Conclusion
In this paper, we study the conditional upgrade policy that has become popular especially in the

travel industry. We model the consumers’ strategic behavior of anticipating the upgrade probability

when making booking decisions and derive the firm’s optimal upgrade price incorporating the

strategic consumer behavior. We find that offering conditional upgrades improves the firm’s revenue

so long as the product price differential is not too small. Thus, our paper provides conditions

on when firms will benefit from conditional upgrades. We also find that unlike the “markdown
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pricing” settings, the existence of more strategic consumers benefits the firm when the firm offers

conditional upgrades.

Moreover, we derive managerial insights about why the conditional upgrade strategy is effec-

tive in generating more revenues. First, conditional upgrades expand the firm’s demand as some

consumers, who wouldn’t buy any of the products without the upgrade option, start purchasing

when conditional upgrades are introduced. Second, the optimal upgrade pricing strategy can work

as a product price correction mechanism and reoptimize the firm’s demand segmentation. With

conditional upgrades, more consumers become willing to purchase high-quality products (includ-

ing purchasing through upgrades). This is especially helpful when the firm’s high-quality product

demand is weak. By properly offering conditional upgrades at the optimal upgrade price, the firm

can capture at least the revenue potential from optimizing the high-quality product price. Third,

the conditional upgrade strategy is one novel way of risk management. The extra flexibility created

by the upgrade channel allows the firm to better allocate its capacities across product types to

stochastic demands and improve utilization. We have seen that the conditional upgrade strategy

not only can compensate for the firm’s lack of ability in setting its product prices optimally, but

it can also result in even higher revenues than optimized product prices. If the firm already has

the ability of setting static product prices optimally, we have observed that offering conditional

upgrades can generate higher revenues than using dynamic pricing. We have also seen that con-

ditional upgrades generally outperform last-minute upgrades. Finally, we have derived a simple

fluid model which can be very effective in estimating optimal upgrade prices for the underlying

stochastic model even when overall capacity is very low.

References
Armstrong, M., Y. Chen. 2009. Inattentive consumers and product quality. J. European Economic Associ-

ation 7(2-3) 411–422.

Aviv, Y., A. Pazgal. 2008. Optimal pricing of seasonal products in the presence of forward-looking consumers.

Manufacturing Service Oper. Management 10(3) 339–359.

Baker, M. 2010. Dynamic hotel pricing making limited inroads among buyers. Business

Travel News (September 23) URL: http://www.businesstravelnews.com/Hotel-News/BTN-Research–

Dynamic-Hotel-Pricing-Making-Limited-Inroads-Among-Buyers/?a=btn.

Bassok, Y., R. Anupindi, R. Akella. 1999. Single-period multiproduct inventory models with substitution.

Oper. Res. 47(4) 632–642.

Biery, M.E. 2014. How U.S. hotels are faring. Forbes (January 5) URL:

http://www.forbes.com/sites/sageworks/2014/01/05/how-u-s-hotels-are-faring/.



34 Cui, Duenyas, and Sahin: Pricing of Conditional Upgrades in the Presence of Strategic Consumers

Biyalogorsky, E., E. Gerstner, D. Weiss, J. Xie. 2005. The economics of service upgrades. J. Service Res.

7(3) 234–244.

Caldentey, R., G. Vulcano. 2007. Online auction and list price revenue management. Management Sci. 53(5)

795–813.

Correa, J.R., R. Montoya, C. Thraves. 2013. Contingent preannounced pricing policies with strategic con-

sumers. Working paper, University of Chile, Chile.
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Appendix A: Proofs of Theorems and Lemmas

Lemma A1. For any a1, a2, a3, b1, b2, b3 ∈ [−1,1], we have

(i) |a1a2− b1b2| ≤ |a1− b1|+ |a2− b2|.
(ii) |a1a2a3− b1b2b3| ≤ |a1− b1|+ |a2− b2|+ |a3− b3|.

Proof of Lemma A1 (i) |a1a2− b1b2|= |a2(a1− b1)+ b1(a2− b2)| ≤ |a1− b1|+ |a2− b2|.
(ii) |a1a2a3− b1b2b3|= |a2a3(a1− b1)+ a3b1(a2− b2)+ b1b2(a3− b3)| ≤ |a1− b1|+ |a2− b2|+ |a3− b3|. ¤

Lemma A2. Let Nλ1 and Nλ2 be two Poisson variables with means λ1 and λ2, respectively. n≥ 0 is an

integer. Then, for every n, there exist αc(n), αp(n)∈ (0,1] such that

(i)
∣∣P(Nλ1 ≤ n)−P(Nλ2 ≤ n)

∣∣≤ αc(n) |λ1−λ2|.
(ii)

∣∣P(Nλ1 = n)−P(Nλ2 = n)
∣∣≤ αp(n) |λ1−λ2|.

Moreover, αc(n) is decreasing in n.

Proof of Lemma A2 (i) The case of n ≥ 1 is proved by Caldentey and Vulcano (2007) (Lemma A3 in

online appendix). In particular, αc(n) = P(Nn = n). When n = 0,
∣∣P(Nλ1 ≤ 0)−P(Nλ2 ≤ 0)

∣∣ =
∣∣e−λ1 − e−λ2

∣∣≤
sup
λ>0

{e−λ} |λ1−λ2|= |λ1−λ2|, hence αc(0) = 1. It is easy to see that αc(n) ∈ (0,1]. αc(n) is decreasing in n

because αc(n +1)/αc(n) = (1 + 1/n)ne−1 < 1.

(ii) When n = 0, αp(n) = αc(n) = 1. When n≥ 1,

∣∣P(Nλ1 = n)−P(Nλ2 = n)
∣∣ =

∣∣∣∣
e−λ1λn

1

n!
− e−λ2λn

2

n!

∣∣∣∣≤
|λ1−λ2|

n!
sup
λ>0

{∣∣∣∣
d(e−λλn)

dλ

∣∣∣∣
}

.

We have d(e−λλn)

dλ
= e−λλn−1(n− λ). Thus, d(e−λλn)

dλ
> 0 for 0 < λ < n and d(e−λλn)

dλ
< 0 for λ > n. More-

over, d2(e−λλn)

dλ2 = e−λλn−2[λ2 − 2nλ + n(n− 1)]. Solving d2(e−λλn)

dλ2 = 0 yields λ = n−√n and λ = n +
√

n.
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Since d(e−λλn)

dλ

∣∣∣
λ=0

= 0 and it follows from L’Hospital’s Rule that limλ→∞
d(e−λλn)

dλ
= 0, we know that

supλ>0

{∣∣∣ d(e−λλn)

dλ

∣∣∣
}

is attained at either λ = n−√n or λ = n +
√

n. Thus,

sup
λ>0

{∣∣∣∣
d(e−λλn)

dλ

∣∣∣∣
}

= max
{
e−(n−√n)(n−√n)n−1

√
n, e−(n+

√
n)(n +

√
n)n−1

√
n
}

,

and hence

αp(n) = max
{

e−(n−√n)(n−√n)n−1
√

n

n!
,
e−(n+

√
n)(n +

√
n)n−1

√
n

n!

}
=

max{P(Nn−√n = n),P(Nn+
√

n = n)}√
n

.

It is easy to see that αp(n)∈ (0,1]. ¤

Lemma A3. For any a, b∈ [−1,1] and integer n≥ 0, we have |an− bn| ≤ n|a− b|.

Proof of Lemma A3 |an− bn|= |a− b| ·
∣∣∣∑n−1

i=0 aibn−1−i

∣∣∣≤ |a− b| ·∑n−1
i=0 |aibn−1−i| ≤ n|a− b|. ¤

Proof of Theorem 1 In order to show the existence of q∗(·), we need to prove that the mapping b(q(·))
from Q to Q has the fixed-point property. By the Schauder-Tychonoff Fixed-Point Theorem, we need to

prove: 1) Q is convex and compact, 2) b(q(·)) is continuous. Convexity of Q is easy to verify. To prove

compactness, by the Arzela-Ascoli Theorem, we need to prove that Q is closed, bounded, and equicontinuous.

Closedness and boundedness of Q are easy to verify. To prove equicontinuity, first pick a q(·) from Q. For any

t1, t2 ∈ [0, T ], we have |q(t1)− q(t2)| ≤ sup0≤t≤T{|q′(t)|} |t1− t2|. Next, let q̄′ = supq(·)∈Q sup0≤t≤T{|q′(t)|}.
Note that q̄′ is finite because each q(·) is bounded. Then, for any ε > 0, there exists δ = ε/q̄′ such that if

|t1− t2|< δ, then for all q(·)∈Q, |q(t1)− q(t2)| ≤ q̄′|t1− t2|< ε. Thus, we have proved equicontinuity of Q.

Next, we prove that b(q(·)) is a continuous mapping. In order to obtain a sufficient condition for the

uniqueness of q∗(·), we will prove a stronger result that b(q(·)) is Lipschitz continuous, that is, there exists

a constant ᾱ ≥ 0 such that for any q1(·), q2(·) ∈ Q,
∥∥b(q1(·))− b(q2(·))

∥∥
∞ ≤ ᾱ

∥∥q1(·)− q2(·)
∥∥
∞. For a given

arrival time t, we start by bounding
∣∣b(q1(·))− b(q2(·))

∣∣ from above as follows:

∣∣b(q1(·))− b(q2(·))
∣∣ =

∣∣g(q1(·))h(q2(·))− g(q2(·))h(q1(·))
∣∣

h(q1(·))h(q2(·)) ≤
∣∣g(q1(·))− g(q2(·))

∣∣ +
∣∣h(q1(·))−h(q2(·))

∣∣
h(q1(·))h(q2(·)) , (A1)

where the inequality follows from Lemma A1(i).

We analyze (A1) part by part. We first bound the denominator of (A1) from below as follows:

h(q1(·)) ≥ P(NH(T |q1(·)) < KH ,NR(T |q1(·)) < KR,NH(T |q1(·))+ NU(T |q1(·))+ NR(T |q1(·)) < KH +KR)

≥ P(Nλ(T ) < KH ,Nλ(T ) < KR,Nλ(T ) < KH +KR)

= P (Nλ(T ) < min{KH ,KR}) def== αh,

where Nλ(t) denotes the Poisson process with rate λ. The above bound is also valid for h(q2(·)), hence

h(q1(·))h(q2(·))≥ α2
h. (A2)

Now, consider the numerator of (A1). To bound |h(q1(·))−h(q2(·))| from above, we can write h(q(·)) as

h(q(·)) =
KH−1∑
iH=0

KR−1∑
iR=0

P(NH(t|q(·)) = iH)P(NR(t|q(·)) = iR)P(NU(t|q(·)) < KH +KR− iH − iR).
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Then, we have

∣∣h(q1(·))−h(q2(·))
∣∣

≤
KH−1∑
iH=0

KR−1∑
iR=0

P(NR(t|q1(·)) = iR)
∣∣P(NH(t|q1(·)) = iH)P(NU(t|q1(·)) < KH +KR− iH − iR)

−P(NH(t|q2(·)) = iH)P(NU(t|q2(·)) < KH +KR− iH − iR)
∣∣

≤
KH−1∑
iH=0

KR−1∑
iR=0

P(NR(t|q1(·)) = iR)
∣∣P(NH(t|q1(·)) = iH)−P(NH(t|q2(·)) = iH)

∣∣

+
KH−1∑
iH=0

KR−1∑
iR=0

P(NR(t|q1(·)) = iR)
∣∣P(NU(t|q1(·)) < KH +KR− iH − iR)−P(NU(t|q2(·)) < KH +KR− iH − iR)

∣∣,

where the first step follows from the fact that NR(t|q(·)) does not depend on q(·), and the second step follows

from Lemma A1(i). Define ξH(t|q(·)) = γξγ
H(t|q(·)) + (1− γ)ξ′H(t|q(·)), ξU(t|q(·)) = γξγ

U(t|q(·)), ξR(t|q(·)) =

γξγ
R(t|q(·))+(1−γ)ξ′R(t|q(·)) as the proportions of total demand rate λ for NH(t|q(·)), NU(t|q(·)), NR(t|q(·)),

respectively. We can bound
∣∣P(NH(t|q1(·)) = iH)−P(NH(t|q2(·)) = iH)

∣∣ as follows. Using Lemma A2(ii) yields

∣∣P(NH(t|q1(·)) = iH)−P(NH(t|q2(·)) = iH)
∣∣ ≤ αp(iH)

∣∣∣∣
∫ t

0

λ[ξH(s|q1(·))− ξH(s|q2(·))] ds

∣∣∣∣

≤ αp(iH)λ
∫ t

0

∣∣ξH(s|q1(·))− ξH(s|q2(·))
∣∣ds

≤ αp(iH)λT
∥∥ξH(t|q1(·))− ξH(t|q2(·))

∥∥
∞.

Similarly, We can use Lemma A2(i) to obtain
∣∣P(NU(t|q1(·)) < KH + KR− iH − iR)−P(NU(t|q2(·)) < KH +

KR− iH − iR)
∣∣≤ αc(KH +KR−1− iH − iR)λT

∥∥ξU(t|q1(·))− ξU(t|q2(·))
∥∥
∞. Combining these two inequalities

leads to
∣∣h(q1(·))−h(q2(·))

∣∣≤ αH1(t)
∥∥ξH(t|q1(·))− ξH(t|q2(·))

∥∥
∞+αU1(t)

∥∥ξU(t|q1(·))− ξU(t|q2(·))
∥∥
∞, where

αH1(t) = λT

KH−1∑
iH=0

KR−1∑
iR=0

P(NR(t|q1(·)) = iR)αp(iH),

αU1(t) = λT

KH−1∑
iH=0

KR−1∑
iR=0

P(NR(t|q1(·)) = iR)αc(KH +KR− 1− iH − iR).

We further bound αH1(t) and αU1(t) as follows:

αH1(t) = λT P(NR(t|q1(t)) < KR)
KH−1∑
iH=0

αp(iH)≤ λT

KH−1∑
iH=0

αp(iH) def== αH1.

Similarly,

αU1(t) ≤ λT

KH−1∑
iH=0

KR−1∑
iR=0

P(NR(t|q1(·)) = iR)αc(KH − iH)

= λT P(NR(t|q1(·)) < KR)
KH−1∑
iH=0

αc(KH − iH)

≤ λT

KH∑
iH=1

αc(iH) def== αU1,
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where the first inequality follows from Lemma A2(i) that αc(n) is decreasing in n. Thus, we have obtained

that
∣∣h(q1(·))−h(q2(·))

∣∣≤ αH1

∥∥ξH(t|q1(·))− ξH(t|q2(·))
∥∥
∞ +αU1

∥∥ξU(t|q1(·))− ξU(t|q2(·))
∥∥
∞. (A3)

Next, we bound |g(q1(·))− g(q2(·))| from above. If τH(q(·))≤ τT (q(·)) and τH(q(·))≤ T , then g(q(·)) = 0.

Thus, we can write g(q(·)) as g(q(·)) = g1(q(·))+ g2(q(·))+ g3(q(·)), where

g1(q(·)) = P(τR(q(·))≤ τT (q(·)), τR(q(·))≤ T )g(q(·)|τR(q(·))≤ τT (q(·)), τR(q(·))≤ T ),

g2(q(·)) = P(τH(q(·)) > τT (q(·)), τR(q(·)) > τT (q(·)), τT (q(·))≤ T )

·g(q(·)|τH(q(·)) > τT (q(·)), τR(q(·)) > τT (q(·)), τT (q(·))≤ T ),

g3(q(·)) = P(τH(q(·)) > T, τR(q(·)) > T, τT (q(·)) > T )g(q(·)|τH(q(·)) > T, τR(q(·)) > T, τT (q(·)) > T ).

Now we consider each term of g(q(·)). Define mR(t|q(·)) =
∫ T

0
λξR(t|q(·))dt as the mean value function of

NR(t|q(·)). Define fτR(q(·))(t) as the probability density function of τR(q(·)), and fτT (q(·))(t) as the probability

density function of τT (q(·)). We have

fτR(q(·))(t) =
e−mR(t|q(·))[mR(t|q(·))]KR−1λξR(t|q(·))

(KR− 1)!
= P(NR(t|q(·)) = KR− 1)λξR(t|q(·)),

and similarly,

fτT (q(·))(t) = P(NH(t|q(·))+ NU(t|q(·))+ NR(t|q(·)) = KH +KR− 2)λ [ξH(t|q(·))+ ξU(t|q(·))+ ξR(t|q(·))] .

g1(q(·)) can be written as

g1(q(·)) =
∫ T

t

fτR(q(·))(s)P(NH(s|q(·))+ NU(s|q(·))≤KH − 1)ds

=
∫ T

t

P(NR(s|q(·)) = KR− 1)λξR(s|q(·))P(NH(s|q(·))+ NU(s|q(·))≤KH − 1)ds.

g2(q(·)) can be written as

g2(q(·)) =
∫ T

t

fτT (q(·))(s) ·
[

KH−1∑
iH=0

KR−1∑
iR=0

KH − iH

KH +KR− iH − iR

·P(NH(s|q(·)) = iH ,NR(s|q(·)) = iR,NU(s|q(·)) = KH +KR− 1− iH − iR|τT (q(·)) = s)

]
ds

=
∫ T

t

P(NH(s|q(·))+ NU(s|q(·))+ NR(s|q(·)) = KH +KR− 2)λ [ξH(s|q(·))+ ξU(s|q(·))+ ξR(s|q(·))]

·
{

KH−1∑
iH=0

KR−1∑
iR=0

KH − iH

KH +KR− iH − iR

(
KH +KR− 1

iH

)(
KH +KR− 1− iH

iR

)

·
{
E

0≤r≤s
[ξH(r|q(·))]

}iH
{
E

0≤r≤s
[ξR(r|q(·))]

}iR
{
E

0≤r≤s
[ξU(r|q(·))]

}KH+KR−1−iH−iR

}
ds.

g3(q(·)) can be written as

g3(q(·)) =
KH−1∑
iH=0

KR−1∑
iR=0

KH+KR−2−iH−iR∑
iU=0

P(NH(T |q(·)) = iH)P(NR(T |q(·)) = iR)

·P(NU(T |q(·)) = iU)min
{

KH − iH

iU +1
,1

}
.
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Next, notice that

∣∣g(q1(·))− g(q2(·))
∣∣≤ ∣∣g1(q1(·))− g1(q2(·))

∣∣ +
∣∣g2(q1(·))− g2(q2(·))

∣∣ +
∣∣g3(q1(·))− g3(q2(·))

∣∣. (A4)

By using the same approach that is used to bound
∣∣h(q1(·)) − h(q2(·))

∣∣, we can bound each term in the

right-hand side (RHS) of (A4) from above. Bounding the first term in the RHS of (A4) results in

∣∣g1(q1(·))− g1(q2(·))
∣∣≤ αH2

∥∥ξH(t|q1(·))− ξH(t|q2(·))
∥∥
∞ +αU2

∥∥ξU(t|q1(·))− ξU(t|q2(·))
∥∥
∞, (A5)

where αH2 = αU2 = (λT )2αc(KH − 1). Bounding the second term in the RHS of (A4) results in

∣∣g2(q1(·))− g2(q2(·))
∣∣≤ αH3

∥∥ξH(t|q1(·))− ξH(t|q2(·))
∥∥
∞ +αU3

∥∥ξU(t|q1(·))− ξU(t|q2(·))
∥∥
∞, (A6)

where

αH3 = λT

{
λTαp(KH +KR− 2)+ 1 +

KH−1∑
iH=0

KR−1∑
iR=0

(
KH +KR− 1

iH

)(
KH +KR− 1− iH

iR

)
iH(KH − iH)

KH +KR− iH − iR

}
,

αU3 = λT

{
λTαp(KH +KR− 2)+ 1

+
KH−1∑
iH=0

KR−1∑
iR=0

(
KH +KR− 1

iH

)(
KH +KR− 1− iH

iR

)
(KH +KR− 1− iH − iR)(KH − iH)

KH +KR− iH − iR

}
.

Lemma A3 is used in deriving αH3 and αU3. Bounding the third term in the RHS of (A4) results in
∣∣g3(q1(·))−

g3(q2(·))
∣∣≤ αH4(t)

∥∥ξH(t|q1(·))− ξH(t|q2(·))
∥∥
∞ +αU4(t)

∥∥ξU(t|q1(·))− ξU(t|q2(·))
∥∥
∞, where

αH4(t) = λT

KH−1∑
iH=0

KR−1∑
iR=0

KH+KR−2−iH−iR∑
iU=0

P(NR(T |q1(·)) = iR)αp(iH)min
{

KH − iH

iU +1
,1

}
,

αU4(t) = λT

KH−1∑
iH=0

KR−1∑
iR=0

KH+KR−2−iH−iR∑
iU=0

P(NR(T |q1(·)) = iR)αp(iU)min
{

KH − iH

iU +1
,1

}
.

We then have

αH4(t) ≤ λT

KH−1∑
iH=0

KH+KR−2−iH∑
iU=0

αp(iH)min
{

KH − iH

iU +1
,1

}
def== αH4,

αU4(t) ≤ λT

KH−1∑
iH=0

KH+KR−2−iH∑
iU=0

αp(iU)min
{

KH − iH

iU +1
,1

}
def== αU4.

Thus, we have obtained that

∣∣g3(q1(·))− g3(q2(·))
∣∣≤ αH4

∥∥ξH(t|q1(·))− ξH(t|q2(·))
∥∥
∞ +αU4

∥∥ξU(t|q1(·))− ξU(t|q2(·))
∥∥
∞, (A7)

Thus, by plugging (A5), (A6), (A7) into (A4) and then plugging (A2), (A3), (A4) into (A1), we obtain

∣∣b(q1(·))− b(q2(·))
∣∣≤ αH

∥∥ξH(t|q1(·))− ξH(t|q2(·))
∥∥
∞ +αU

∥∥ξU(t|q1(·))− ξU(t|q2(·))
∥∥
∞, (A8)

where

αH =
αH1 +αH2 +αH3 +αH4

α2
h

, αU =
αU1 +αU2 +αU3 +αU4

α2
h

.

Note that αH and αU do not depend on t.
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It remains to bound
∥∥ξH(t|q1(·))− ξH(t|q2(·))

∥∥
∞ and

∥∥ξU(t|q1(·))− ξU(t|q2(·))
∥∥
∞ from above. Define v̄H =

sup{vH : (vR, vH)∈Ω}, vH = inf {vH : (vR, vH)∈Ω}, v̄R = sup{vR : (vR, vH)∈Ω}, vR = inf {vR : (vR, vH)∈Ω}.
Fix t, and without loss of generality, assume q1(t) < q2(t). First, consider

∥∥ξH(t|q1(·))− ξH(t|q2(·))
∥∥
∞. We

have

ξH(t|q(t)) = γ

∫ v̄H

pH

[∫ max
{

vH− pH−pR−q(t)p

1−q(t) ,vR

}

vR

f(vR, vH)dvR

]
dvH +(1− γ)ξ′H(t|q(t)).

Since max
{

vH − pH−pR−q(t)p

1−q(t)
, vR

}
is decreasing in q(t), we have

∣∣ξH(t|q1(t))− ξH(t|q2(t))
∣∣

= γ

∫ v̄H

pH

[∫ max
{

vH− pH−pR−q1(t)p

1−q1(t) ,vR

}

max
{

vH− pH−pR−q2(t)p

1−q2(t) ,vR

} f(vR, vH)dvR

]
dvH

≤ γ sup
(vR,vH)∈Ω

{f(vR, vH)}
∫ v̄H

pH

[
max

{
vH − pH − pR− q1(t)p

1− q1(t)
, vR

}
−max

{
vH − pH − pR− q2(t)p

1− q2(t)
, vR

}]
dvH .

Define

q̄H = sup
{

0 < q < 1 : vH − pH − pR− qp

1− q
≥ vR

}
=

{ vH−pH+pR−vR

vH−vR−p
if vH > pH − pR + vR,

0 otherwise.

It is easy to see that q̄H < 1, and vH − pH−pR−q(t)p

1−q(t)
≥ vR if and only if q(t)≤ q̄H . Then,

max
{

vH − pH − pR− q1(t)p
1− q1(t)

, vR

}
−max

{
vH − pH − pR− q2(t)p

1− q2(t)
, vR

}

=
[
vH − pH − pR−min{q1(t), q̄H}p

1−min{q1(t), q̄H}
]
−

[
vH − pH − pR−min{q2(t), q̄H}p

1−min{q2(t), q̄H(t)}
]

=
(pH − pR− p) [min{q2(t), q̄H}−min{q1(t), q̄H}]

(1−min{q1(t), q̄H}) (1−min{q2(t), q̄H})
≤ pH − pR− p

(1− q̄H)2
[q2(t)− q1(t)] .

Thus,

∣∣ξH(t|q1(t))− ξH(t|q2(t))
∣∣ ≤ γ sup

(vR,vH)∈Ω

{f(vR, vH)} (pH − pR− p) [q2(t)− q1(t)]
∫ v̄H

pH

1
(1− q̄H)2

dvH

= α′H [q2(t)− q1(t)] ,

where

α′H = γ sup
(vR,vH)∈Ω

{f(vR, vH)} (pH − pR− p)

[
(vR− pR)+ +

(v̄H − vR− p)3− (pH −min{vR, pR}− p)3

3(pH − pR− p)2

]
.

Note that α′H is finite because Ω is finite. Then, we have

∣∣ξH(t|q1(t))− ξH(t|q2(t))
∣∣≤ α′H

∥∥q1(·)− q2(·)
∥∥
∞. (A9)

Second, consider
∥∥ξU(t|q1(·))− ξU(t|q2(·))

∥∥
∞. We have

ξU(t|q(t)) = γ

∫ v̄H

pH

[∫ vH−p

max
{

vH− pH−pR−q(t)p

1−q(t) ,vR

} f(vR, vH)dvR

]
dvH +γ

∫ pH

pR+p

[∫ vH−p

pR+q(t)p−q(t)vH
1−q(t)

f(vR, vH)dvR

]
dvH .
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Note that we write the lower bound of the second integration as pR +p instead of vH because for vH < pR +p,

we have vH − p < pR+q(t)p−q(t)vH

1−q(t)
for all q(t). Since max

{
vH − pH−pR−q(t)p

1−q(t)
, vR

}
is decreasing in q(t) and

pR+q(t)p−q(t)vH

1−q(t)
is decreasing in q(t) for vH ≥ pR + p, we have

∣∣ξU(t|q1(t))− ξU(t|q2(t))
∣∣ = γ

∫ v̄H

pH

[∫ max
{

vH− pH−pR−q1(t)p

1−q1(t) ,vR

}

max
{

vH− pH−pR−q2(t)p

1−q2(t) ,vR

} f(vR, vH)dvR

]
dvH

+γ

∫ pH

pR+p

[∫ pR+q1(t)p−q1(t)vH
1−q1(t)

pR+q2(t)p−q2(t)vH
1−q2(t)

f(vR, vH)dvR

]
dvH

≤ α′H [q2(t)− q1(t)]+ γ

∫ pH

pR+p

[∫ pR+q1(t)p−q1(t)vH
1−q1(t)

pR+q2(t)p−q2(t)vH
1−q2(t)

f(vR, vH)dvR

]
dvH .

We can write the last integration equivalently as

γ

∫ pH

pR+p

[∫ pR+q1(t)p−q1(t)vH
1−q1(t)

pR+q2(t)p−q2(t)vH
1−q2(t)

f(vR, vH)dvR

]
dvH = γ

∫ pR

vR

[∫ vR+p+
pR−vR

q1(t)

vR+p+
pR−vR

q2(t)

f(vR, vH)dvH

]
dvR.

Now we bound this integration from above case by case. Define q̄U as the solution to pR+q̄U p−q̄U vH

1−q̄U
= vR,

so q̄U = pR−vR

pH−vR−p
. At q(t) = q̄U , pR+q(t)p−q(t)vH

1−q(t)
= vR becomes the negatively-sloped diagonal of the rectangle

{(vR, vH) : vR ≤ vR ≤ pR, pR + p≤ vH ≤ pH}.
• If q1(t) < q2(t)≤ q̄U ,

γ

∫ pH

pR+p

[∫ pR+q1(t)p−q1(t)vH
1−q1(t)

pR+q2(t)p−q2(t)vH
1−q2(t)

ft(vR, vH)dvR

]
dvH ≤ γ sup

(vR,vH)∈Ω

{f(vR, vH)}
∫ pH

pR+p

(vH − pR− p) [q2(t)− q1(t)]
[1− q1(t)] [1− q2(t)]

dvH

≤ γ sup
(vR,vH)∈Ω

{f(vR, vH)} q2(t)− q1(t)
(1− q̄U)2

∫ pH

pR+p

(vH − pR− p)dvH

= α′U [q2(t)− q1(t)] ,

where

α′U = γ sup
(vR,vH)∈Ω

{f(vR, vH)} (pH − vR− p)2

2
.

• If q̄U ≤ q1(t) < q2(t),

γ

∫ pR

vR

[∫ vR+p+
pR−vR

q1(t)

vR+p+
pR−vR

q2(t)

f(vR, vH)dvH

]
dvR ≤ γ sup

(vR,vH)∈Ω

{f(vR, vH)}
∫ pR

vR

(pR− vR) [q2(t)− q1(t)]
q1(t)q2(t)

dvR

≤ γ sup
(vR,vH)∈Ω

{f(vR, vH)} q2(t)− q1(t)
q̄2

U

∫ pR

vR

(pR− vR)dvR

= α′U [q2(t)− q1(t)] .

• If q1(t) < q̄U < q2(t),

γ

∫ pH

pR+p

[∫ pR+q1(t)p−q1(t)vH
1−q1(t)

pR+q2(t)p−q2(t)vH
1−q2(t)

f(vR, vH)dvR

]
dvH

= γ

∫ pH

pR+p

[∫ pR+q1(t)p−q1(t)vH
1−q1(t)

pR+q̄U p−q̄U vH
1−q̄U

f(vR, vH)dvR

]
dvH + γ

∫ pR

vR

[∫ vR+p+
pR−vR

q̄U

vR+p+
pR−vR

q2(t)

f(vR, vH)dvH

]
dvR

≤ α′U [q̄U − q1(t)]+ α′U [q2(t)− q̄U ]

= α′U [q2(t)− q1(t)] .
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Thus, we obtain that
∣∣ξU(t|q1(t))− ξU(t|q2(t))

∣∣≤ α′U [q2(t)− q1(t)], where α′U is finite. Then, we have
∣∣ξU(t|q1(t))− ξU(t|q2(t))

∣∣≤ α′U
∥∥q1(·)− q2(·)

∥∥
∞, (A10)

Finally, by plugging (A9) and (A10) into (A8), we obtain that
∣∣b(q1(·))−b(q2(·))

∣∣≤ ᾱ
∥∥q1(·)−q2(·)

∥∥
∞ where

ᾱ = αHα′H + αUα′U and ᾱ does not depend on t. Then, we have
∥∥b(q1(·))− b(q2(·))

∥∥
∞ ≤ ᾱ

∥∥q1(·)− q2(·)
∥∥
∞.

Therefore, we have proved the Lipschitz continuity of b(q(·)), and hence the existence of q∗(·). If ᾱ < 1, b(q(·))
is a contraction mapping from Q to Q, hence q∗(·) is unique. q∗(·) is increasing in t because of the following.

For every sample path, g(q(·)) is constant in t for t≤ τ(q(·)) and is equal to zero for t > τ(q(·)). It is easy to

see that h(q(·)) is decreasing in t, hence after taking the average of g(q(·)) for each sample path, we know

that b(q(·)) is increasing in t. Therefore, the solution to b(q(·)) = q(·) must be increasing in t. The whole

proof is complete. ¤
Proof of Theorem 2 (i) For any q(·) and any t, as n→∞, by the Strong Law of Large Numbers, we have

Nn
H(t|q(·))

n
→

∫ t

0

λH(s|q(·))ds a.s.,

Nn
U (t|q(·))

n
→

∫ t

0

λU(s|q(·))ds a.s.,

Nn
R(t|q(·))

n
→

∫ t

0

λR(s|q(·))ds a.s..

Moreover, as n→∞, we have

τn
T (q(·)) = inf {t≥ 0 : Nn

H(t|q(·))+ Nn
U (t|q(·))+ 1 +Nn

R(t|q(·))≥ nKH +nKR}
= inf

{
t≥ 0 :

Nn
H(t|q(·))

n
+

Nn
U (t|q(·))

n
+

1
n

+
Nn

R(t|q(·))
n

≥KH +KR

}

→ inf
{

t≥ 0 :
∫ t

0

[λH(s|q(·))+ λU(s|q(·))+ λR(s|q(·))] ds≥KH +KR

}
a.s..

The convergence of τn
H(q(·)) and τn

R(q(·)) follows from the same approach, then the convergence of τn(q(·))
is obtained.

(ii) To derive q∞∗(·), we need to first derive g∞(q(·)) and h∞(q(·)) and then derive b∞(q(·)). First,

g∞(q(·)) = lim
n→∞ E

Nn
H

(t|q(·)),Nn
U

(t|q(·)),Nn
R

(t|q(·))

{
min

{
[nKH −Nn

H(τn(q(·))|q(·))]+
Nn

U (τn(q(·))|q(·))+ 1
,1

}
·1{t≤ τn(q(·))}

}

= lim
n→∞ E

Nn
H

(t|q(·)),Nn
U

(t|q(·)),Nn
R

(t|q(·))

{
min

{
[nKH −Nn

H(τ∞(q(·))|q(·))]+
Nn

U (τ∞(q(·))|q(·))+ 1
,1

}}
·1{t≤ τ∞(q(·))}

= lim
n→∞ E

Nn
H

(t|q(·)),Nn
U

(t|q(·)),Nn
R

(t|q(·))





min





[
KH − Nn

H(τ∞(q(·))|q(·))
n

]+

Nn
U

(τ∞(q(·))|q(·))
n

+ 1
n

,1








·1{t≤ τ∞(q(·))}

= min





[
KH −

∫ τ∞(q(·))
0

λH(t|q(·))dt
]+

∫ τ∞(q(·))
0

λU(t|q(·))dt
,1




·1{t≤ τ∞(q(·))} .

Second,

h∞(q(·)) = lim
n→∞P

(
Nn

H(t|q(·))
n

< KH ,
Nn

R(t|q(·))
n

< KR,
Nn

H(t|q(·))
n

+
Nn

U (t|q(·))
n

+
Nn

R(t|q(·))
n

< KH +KR

)

= P
(∫ t

0

λH(s|q(·))ds < KH ,

∫ t

0

λR(s|q(·))ds < KR,

∫ t

0

[λH(s|q(·))+ λU(s|q(·))+ λR(s|q(·))] ds < KH +KR

)

= 1{t≤ τ∞(q(·))} .



Cui, Duenyas, and Sahin: Pricing of Conditional Upgrades in the Presence of Strategic Consumers 43

For t ≤ τ∞(q(·)), b∞(q(·)) is constant in t, hence so is q∞∗(·). Note that for t > τ∞(q(·)), b∞(q(·)) is not

defined. Since the upgrade probability is irrelevant in this case, without loss of generality, we let b∞(q(·))
take the same value as t≤ τ∞(q(·)) to preserve the differentiability of b∞(q(·)). It then follows that q∞∗(·) is

given by Part (ii) of the theorem. ¤
Proof of Theorem 3 With uniform valuation distribution, the formula of τ̂∞(q) in Theorem 2 reduces to

τ̂∞(q) =





KH

λH(q)
if KH

λH(q)
≤ KH+KR

λH(q)+λU (q)+λR
,

KR

λR
if KR

λR
≤ KH+KR

λH(q)+λU (q)+λR
,

KH+KR

λH(q)+λU (q)+λR
if KH

λH(q)
> KH+KR

λH(q)+λU (q)+λR
and KR

λR
> KH+KR

λH(q)+λU (q)+λR
.

(A11)

(i) qf = 1 corresponds to Case b, where qf = 1 requires KH ≥ (λb
H + λb

U)τ∞(1). We will show that KH ≥
(λb

H + λb
U)τ∞(1) is equivalent to KH ≥ (λb

H + λb
U)T . First, if τ̂∞(1) = KH/λb

H , since KH/λb
H ≥KH/λa

H ≥ T ,

we have τ∞(1) = min{KH/λb
H , T} = T . Second, if τ̂∞(1) = KR/λb

R, since KR/λb
R ≥ KR/λa

R ≥ T , we have

τ∞(1) = min{KR/λb
R, T}= T . Third, if τ̂∞(1) = (KH + KR)/(λb

H + λb
U + λb

R), suppose τ̂∞(1) < T , then it is

easy to see that KH ≥ (λb
H +λb

U)τ∞(1) is equivalent to KR/λb
R ≤ (KH +KR)/(λb

H +λb
U +λb

R) which contradicts

the second condition in (A11) for τ̂∞(1) = (KH +KR)/(λb
H +λb

U +λb
R) to occur. Thus, we also have τ∞(1) = T

in this case. Overall, KH ≥ (λb
H +λb

U)τ∞(1) is equivalent to KH ≥ (λb
H +λb

U)T . Since λb
H +λb

U is decreasing in

p, if KH ≥ (λb
H +λb

U)T at p = 0, that is, if KH ≥ (λT/u2)[(u−pH +2pR)(u−pH)+γ(pH−pR)(2u−pH +pR)],

then qf = 1 for all 0≤ p < pH − pR.

(ii) Next, consider the case of KH < (λT/u2)[(1− γ)(u− pH + 2pR)(u− pH) + γ(u2 − p2
R)]. We first char-

acterize when qf = 1. In Case b, solving KH = (λb
H +λb

U)T yields p = p̄. Since (λb
H +λb

U)T is decreasing in p,

qf = 1 for p≥ p̄.

Now we derive qf for 0 ≤ p < p̄. We first derive qf for the case of τ̂∞(qf ) ≥ T and then incorporate

the case of τ̂∞(qf ) < T . When τ̂∞(qf ) ≥ T , Cases c, d, e may occur in sequence as p decreases. Since

(pH − pR − qfp)/(1− qf ) =∞> u at p = p̄, we are in Case c where (1) becomes q = [KH − λc
HT ]/[λc

U(q)T ].

Solving (1) yields

qf =
KH

λT
u2− (u− pH +2pR)(u− pH)+ γ(u− pH + pR)2

γ(u− p)2
(A12)

which is increasing in p. Then, solving the condition for Case c (pH − pR − qfp)/(1− qf )≥ u yields p≥ p,

hence Case c occurs where qf is given by (A12) for p+ ≤ p < p̄ (note that p can be negative). For 0≤ p < p+,

Cases d and e may occur. In Case d, (1) becomes q = [KH −λd
H(q)T ]/[λd

U(q)T ]. Solving (1) yields

qf =
KH

λT
u2− (u− pH +2pR)(u− pH)

γ(pH − pR− p)2 + KH

λT
u2− (u− pH +2pR)(u− pH)

(A13)

which is increasing in p. Then, solving the condition for Case d (pH − pR− qfp)/(1− qf )≥ pH yields

p≥ pH − pR− 1
γpR

[
KH

λT
u2− (u− pH +2pR)(u− pH)

]
def== p̃.

So Case d occurs for p̃+ ≤ p < p+ and Case e occurs for 0 ≤ p < p̃+. In Case e, (1) becomes q = [KH −
λe

H(q)T ]/[λe
U(q)T ]. Solving (1) also yields (A13). Thus, qf is given by (A13) for 0≤ p < p+.

Now, we incorporate the case of τ̂∞(qf ) < T . Note that when τ̂∞(qf ) < T , we must have τ̂∞(qf ) = (KH +

KR)/[λH(qf )+λU(qf )+λR] which is the last case in (A11), because τ̂∞(qf ) = KH/λH(qf ) implies qf = 0 and

τ̂∞(qf ) = KR/λR implies qf = 1. To analyze the case of τ̂∞(qf ) < T , we first show that it may only occur
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for small enough p. In Cases c, d, e, τ̂∞(qf ) < T if and only if KH +KR < [λH(qf )+λU(qf )+λR]T . We will

show that when τ̂∞(qf )≥ T , KH +KR ≥ [λH(qf )+λU(qf )+λR]T for large p. Using the above derived qf , in

Case c when τ̂∞(qf )≥ T , we have

d[λc
H +λc

U(qf )+ λc
R]

dp
=

2γλpR

u2

[
γpR(u− p)

KH

λT
u2− (u− pH +2pR)(u− pH)+ γ(u− pH + pR)2

− 1

]

≤ 2γλpR

u2

[
γpR(u− p)

KH

λT
u2− (u− pH +2pR)(u− pH)+ γ(u− pH + pR)2

− 1

]

<
2γλpR

u2

[
γ(u− pH + pR)(u− p)

KH

λT
u2− (u− pH +2pR)(u− pH)+ γ(u− pH + pR)2

− 1

]

= 0,

hence λc
H + λc

U(qf ) + λc
R is decreasing in p. Denote λN(q) = λ− λH(q)− λU(q)− λR as the arrival rate of

consumers who do not book any product. In Case d, we have

λd
N(qf ) =

γλp2
R

u2





p2− 2
{

pH − pR− 1
γpR

[
KH

λT
u2− (u− pH +2pR)(u− pH)

]}
p

KH

λT
u2− (u− pH +2pR)(u− pH)

+
1
γ

[
KH

λT
u2− (u− pH +2pR)(u− pH)

]
+(pH − pR)2

KH

λT
u2− (u− pH +2pR)(u− pH)

}
,

which is a parabola whose axis of symmetry is p̃. Thus, λd
N(qf ) is increasing in p, hence λd

H(qf )+λd
U(qf )+λd

R

is decreasing in p. In Case e, we have

λe
N(qf ) =

λ

γu2

[
−KH

λT
u2 +(u− pH +2pR)(u− pH)+ 2γpHpR− γp2

R

]

which is a constant, hence so is λe
H(qf )+λe

U(qf )+λe
R. Thus, combining the above analysis for Cases c, d, e,

we know that λH(qf ) + λU(qf ) + λR is decreasing in p for 0≤ p < p̄. This means that τ̂∞(qf ) < T may only

occur for small enough p.

Next, we show that τ̂∞(qf ) < T never occurs in Case d or e and may only occur in Case c. We will prove

that KH +KR ≥ [λ−λN(qf )]T at p = 0 in Cases d and e. In Case d at p = 0, we have

KH +KR− [λ−λN(qf )]T = KH +KR−λT +λT (
pR

u
)2

[
1+

(pH − pR)2
KH

λT
u2− (u− pH +2pR)(u− pH)

]
. (A14)

The derivative of (A14) with respect to KH is

1− p2
R(pH − pR)2[

KH

λT
u2− (u− pH +2pR)(u− pH)

]2

which is negative for λa
HT ≤ KH < (λT/u2)[u2 − 2(pH − pR)u + p2

H − pHpR − p2
R] and positive for KH >

(λT/u2)[u2−2(pH−pR)u+p2
H−pHpR−p2

R]. Thus, by taking KH = (λT/u2)[u2−2(pH−pR)u+p2
H−pHpR−

p2
R], we obtain

(A14)≥KR− λT

u2
(pH − pR)(2u− pH − pR) = KR−λa

RT ≥ 0,

hence KH + KR ≥ [λ− λd
N(qf )]T at p = 0 in Case d. In Case e, note that λd

N(qf ) = λe
N(qf ) at p = p̃. Since

λe
N(qf ) stays constant in p and λd

N(qf ) is increasing in p, λe
N(qf ) at p = 0 is larger than λd

N(qf ) at p = 0.

Thus, our analysis for Case d implies that KH +KR > [λ−λe
N(qf )]T at p = 0 in Case e as well.
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So far, we have known that τ̂∞(qf ) < T may only occur in Case c for small enough p. Now we derive qf in

this case. (1) becomes

q =
KH −λc

H
KH+KR

λc
H

+λc
U

(q)+λc
R

λc
U(q) KH+KR

λc
H

+λc
U

(q)+λc
R

,

and can be simplified to

γ(u− p)2q2 +βq + γkp2
R = 0, (A15)

where k = KH/(KH + KR). (A15) is a quadratic equation. Now we show that the smaller root q = [−β +
√

β2− 4γ2kp2
R(u− p)2]/[2γ(u−p)2] is infeasible because it yields (pH−pR−qp)/(1−q) < u which contradicts

the condition for Case c to occur. With q = [−β +
√

β2− 4γ2kp2
R(u− p)2]/[2γ(u−p)2], we can simplify (pH−

pR−qp)/(1−q) < u to
√

β2− 4γ2kp2
R(u− p)2 >−β−2γ(u−p)(u−pH +pR). If −β−2γ(u−p)(u−pH +pR) <

0,
√

β2− 4γ2kp2
R(u− p)2 >−β−2γ(u−p)(u−pH +pR) is trivially satisfied. If −β−2γ(u−p)(u−pH +pR)≥

0, by taking square on both sides of
√

β2− 4γ2kp2
R(u− p)2 >−β− 2γ(u− p)(u− pH + pR) and rearranging

terms, we obtain −β(u−pH +pR)−γ(u−pH +pR)2(u−p)−γkp2
R(u−p)≥ 0. Since −β ≥ 2γ(u−p)(u−pH +

pR), we have −β(u− pH + pR)− γ(u− pH + pR)2(u− p)− γkp2
R(u− p)≥ γ(u− p)[(u− pH + pR)2− kp2

R] > 0.

So, q = [−β +
√

β2− 4γ2kp2
R(u− p)2]/[2γ(u− p)2] always leads to (pH − pR− qp)/(1− q) < u. Thus, in Case

c when τ̂∞(qf ) < T , the equilibrium qf is given by the larger root of (A15):

qf =
−β +

√
β2− 4γ2kp2

R(u− p)2

2γ(u− p)2
=

2γkp2
R

−β−
√

β2− 4γ2kp2
R(u− p)2

. (A16)

To show that qf is increasing in p, we need to show that −β−
√

β2− 4γ2kp2
R(u− p)2 is decreasing in p. The

derivative of −β−
√

β2− 4γ2kp2
R(u− p)2 with respect to p is

−2γkpR√
β2− 4γ2kp2

R(u− p)2

[√
β2− 4γ2kp2

R(u− p)2 +β +2γpR(u− p)
]

. (A17)

If β +2γpR(u− p)≥ 0, (A17)≤ 0 trivially. If β +2γpR(u− p) < 0, we have

(A17) ≤ −2γkpR√
β2− 4γ2kp2

R(u− p)2

[√
β2− 4γ2p2

R(u− p)2 +β +2γpR(u− p)
]

=
−2γkpR√

β2− 4γ2kp2
R(u− p)2

√
−β− 2γpR(u− p)

[√
−β +2γpR(u− p)−

√
−β− 2γpR(u− p)

]

≤ 0.

Thus, qf is increasing in p in Case c when τ̂∞(qf ) < T .

Finally, we characterize the threshold p in Case c where τ̂∞(qf ) ≥ T switches to τ̂∞(qf ) < T . When

τ̂∞(qf )≥ T , KH +KR = [λc
H +λc

U(qf )+ λc
R]T can be simplified to

γp2
Rp2 +2γpR

[
KH

λT
u2−u2 +2(pH − pR)u− p2

H + pHpR + p2
R

]
p

+
[
KH +KR

λT
u2−u2 +2(1− γ)pHpR + γp2

R

][
KH

λT
u2− (u− pH +2pR)(u− pH)

]
+ γp2

R(pH − pR)2 = 0. (A18)

(A18) is a quadratic equation whose smaller root is always negative and larger root (which may also be

negative) is p′. Therefore, by combining all our analysis above, we conclude the following. If p+ ≥ p′+, we

always have τ̂∞(qf )≥ T for 0≤ p < p̄; Case c occurs for p+ ≤ p < p̄ where qf is given by (A12), and Case d
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or e occurs for 0≤ p < p+ where qf is given by (A13). If p+ < p′+, Case c always occurs for 0≤ p < p̄ and qf

is given by (A12) for p′+ ≤ p < p̄ and (A16) for 0≤ p < p′+. Finally, all previous analysis indicates that qf is

the unique solution to (1).

(iii) In the proof of Part (ii), we have shown that qf is increasing in p in all cases. ¤
Proof of Theorem 4 If KH ≥ (λT/u2)[(u−pH +2pR)(u−pH)+γ(pH−pR)(2u−pH +pR)], we have qf = 1

for all 0≤ p≤ pH − pR, and as found in the proof of Theorem 3(i), τ∞(1) = T . Thus, the revenue function

is Πf (p) = pRγλ(ξb
R + ξb

U)T + pγλξb
UT +(1− γ)ΠN,f = (γλT/u2) [p3− 2up2 +(u2− 3p2

R)p +u2pR− p3
R] + (1−

γ)ΠN,f . The first-order condition is 3p2 − 4up + u2 − 3p2
R = 0. The larger root of this quadratic equation is

(2u+
√

u2 +9p2
R)/3 which is larger than u; the smaller root is pb

foc. Thus, Πf (p) is increasing in p for p < pb
foc

and decreasing in p for p > pb
foc; the optimal upgrade price is min

{
(pb

foc)
+, pH − pR

}
.

Next, consider the case of KH < (λT/u2)[(u − pH + 2pR)(u − pH) + γ(pH − pR)(2u − pH + pR)].

For p̄ ≤ p ≤ pH − pR, we have qf = 1, hence our proof above indicates that the local optimum is

min
{
max

{
(pb

foc)
+, p̄

}
, pH − pR

}
. For 0≤ p < p̄, we have 0 < qf < 1 and

Πf (p) =
{
pR[λi

U(qf )+ λi
R] + pλi

U(qf )qf + pHλi
H(qf )

}
min

{
KH +KR

λi
H(qf )+ λi

U(qf )+ λi
R

, T

}
,

where i = c, d, e as we may be in Case c, d, or e. We will show that Πf (p) is increasing in p for 0≤ p < p̄,

thus the global optimal upgrade price is also p∗ = min
{
max

{
(pb

foc)
+, p̄

}
, pH − pR

}
.

First, consider Case c. If (KH +KR)/[λc
H +λc

U(qf )+ λc
R]≥ T , the revenue function becomes

Πf (p) = pRγλ[ξc
U(qf )+ ξc

R]T + p[KH − (1− γ)λξa
HT ] + (1− γ)ΠN,f

=
γλT

u2

K̃H

γλT
u2 + p2

R

{
−p3

Rp2 +

[
(

K̃H

γλT
)2u4− K̃H

γλT
p2

Ru2 +2p3
Ru− 2p4

R

]
p +

K̃H

γλT
pRu4

}
+(1− γ)ΠN,f ,

where K̃H = KH − (1− γ)λξa
HT . So, Πf (p) is concave in p. Solving the first-order condition

dΠf

dp
=

γλT

u2

K̃H

γλT
u2 + p2

R

[
−2p3

Rp +(
K̃H

γλT
)2u4− K̃H

γλT
p2

Ru2 +2p3
Ru− 2p4

R

]
= 0

yields

p =
1
2
(

K̃H

γλT
)2

u4

p3
R

− 1
2

K̃H

γλT

u2

pR

+u− pR
def== pc

foc.

Πf (p) is increasing in p for p < pc
foc and decreasing in p for p > pc

foc. Next, we show pc
foc > p̄ so that Πf (p) is

always increasing in p in Case c. pc
foc > p̄ is equivalent to

√
K̃H

γλT
u2 + p2

R >−1
2
(

K̃H

γλT
)2

u4

p3
R

+
1
2

K̃H

γλT

u2

pR

+ pR. (A19)

If K̃H/(γλT ) > 2(pR/u)2, the RHS of (A19) is negative so (A19) holds. If K̃H/(γλT )≤ 2(pR/u)2, after taking

square on both sides, (A19) can be simplified to K̃H/(γλT ) < 3(pR/u)2. Thus, (A19) always holds.

If (KH +KR)/[λc
H +λc

U(qf )+ λc
R] < T in Case c, the revenue function becomes

Πf (p) = pRγλ[ξc
U(qf )+ ξc

R]τ∞(qf )+ pγλc
U(qf )τ∞(qf )qf + pH(1− γ)λξa

Hτ∞(qf )+ pR(1− γ)λξa
Rτ∞(qf )

= pR(KH +KR)+ pKH +(1− γ)(pH − pR− p)λξa
Hτ∞(qf ),
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where the last equality follows from using τ∞(qf ) = (KH + KR)/{γλ[ξc
U(qf ) + ξc

R] + (1− γ)λ(ξa
H + ξa

R)} and

qf = [KH − (1− γ)λξa
Hτ∞(qf )]/[γλξc

U(qf )τ∞(qf )]. The derivative of Πf (p) is

dΠf

dp
= KH − (1− γ)λξa

Hτ∞(qf )−
(1− γ)γ(pH − pR− p)λξa

Hτ∞(qf ) d[ξc
U (qf )+ξc

R]

dp

γ[ξc
U(qf )+ ξc

R] + (1− γ)(ξa
H + ξa

R)
.

Now we show that ξc
U(qf )+ ξc

R is decreasing in p and hence

dΠf

dp
≥KH − (1− γ)λξa

Hτ∞(qf )≥KH −λξa
HT ≥ 0.

Using the qf in (A16), we obtain

ξc
U(qf )+ ξc

R =
1
u2

[
u2− 2pRp +

β +
√

β2− 4γ2kp2
R(u− p)2

2γk

]
,

where k = KH/(KH +KR). Then,

d[ξc
U(qf )+ ξc

R]
dp

=
pR

u2

[
β +2γpR(u− p)√

β2− 4γ2kp2
R(u− p)2

− 1

]
,

and d[ξc
U(qf )+ξc

R]/dp≤ 0 can be simplified to −β +
√

β2− 4γ2kp2
R(u− p)2 ≥ 2γpR(u−p). Note that the fea-

sibility condition for Case c, (pH −pR−qfp)/(1−qf )≥ u, can be simplified to −β +
√

β2− 4γ2kp2
R(u− p)2 ≥

2γ(u−p)(u−pH +pR). Since 2γ(u−p)(u−pH +pR) > 2γpR(u−p), −β+
√

β2− 4γ2kp2
R(u− p)2 ≥ 2γpR(u−p)

is true in Case c. Thus, Πf (p) is increasing in p.

We have shown that Πf (p) is increasing in Case c. Second, consider Case d. As proved in Theorem 3(ii),

we must have (KH +KR)/[λi
H(qf )+ λi

U(qf )+ λi
R]≥ T for i = d, e. The revenue function in Case d is

Πf (p) = pRγλ[ξd
U(qf )+ ξd

R]T + p[KH − γλξd
H(qf )T − (1− γ)λξa

HT ] + pHγλξd
H(qf )T +(1− γ)ΠN,f

= γλTpR +(K̃H − 2γλTp2
R

u2
)p +

γλT

u2





[
−(u− pH + pR)p +(1− K̃H

γλT
)u2− (pH − pR)u− p2

R

]2

pH − pR− p

−
p3

R

[
p2− 2(pH − pR)p− (1− K̃H

γλT
)u2 +2(pH − pR)u + p2

R

]

−(1− K̃H

γλT
)u2 +2(pH − pR)u− p2

H +2pHpR



 +(1− γ)ΠN,f .

Taking derivatives yields

dΠf

dp
= K̃H − 2γλTp2

R

u2
+

γλT

u2




−(u− pH + pR)2 +

[
(1− K̃H

γλT
)u2− 2(pH − pR)u + p2

H − 2pHpR

]2

(pH − pR− p)2

+
2p3

R(pH − pR− p)

−(1− K̃H

γλT
)u2 +2(pH − pR)u− p2

H +2pHpR

}
,

d2Πf

dp2
=

2γλT

u2





[
(1− K̃H

γλT
)u2− 2(pH − pR)u + p2

H − 2pHpR

]2

(pH − pR− p)3
− p3

R

−(1− K̃H

γλT
)u2 +2(pH − pR)u− p2

H +2pHpR





.

Since the second-order derivative is increasing in p and is equal to zero at p = p̃, d2Πf/dp2 ≥ 0 and Πf (p) is

convex in p in Case d. Moreover, we have

dΠf

dp

∣∣∣∣
p=p̃

=
γλT

u2

[
−(1− K̃H

γλT
)u2 +2(pH − pR)u− p2

H +2pHpR

]
= KH −λa

HT ≥ 0.
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Thus, Πf (p) is increasing in p in Case d.

Third, consider Case e. The revenue function in Case e is

Πf (p) = pRγλ[ξe
U(qf )+ ξe

R]T + p[KH − γλξe
H(qf )T − (1− γ)λξa

HT ] + pHγλξe
H(qf )T +(1− γ)ΠN,f

=
γλT

u2

{[
−(1− K̃H

γλT
)u2 +2(pH − pR)u− p2

H +2pHpR

]
p

+pH(u2− p2
H)− (2u− 2pH − pR)

[
−(1− K̃H

γλT
)u2 +2(pH − pR)u + p2

R

]}
+(1− γ)ΠN,f .

Since
dΠf

dp
=

γλT

u2

[
−(1− K̃H

γλT
)u2 +2(pH − pR)u− p2

H +2pHpR

]
≥ 0,

Πf (p) is increasing in p in Case e.

Therefore, we conclude that if KH < (λT/u2)[(1− γ)(u− pH + 2pR)(u− pH) + γ(u2 − p2
R)], the optimal

upgrade price is p∗f = min
{
max

{
(pb

foc)
+, p̄

}
, pH − pR

}
which induces qf = 1. Finally, note that p̄ ≤ 0 if

KH ≥ (λT/u2)[(1−γ)(u−pH +2pR)(u−pH)+γ(u2−p2
R)], so we can always write the optimal upgrade price

as p∗f = min
{
max

{
(pb

foc)
+, p̄

}
, pH − pR

}
. ¤

Proof of Theorem 5 Offering upgrades increases the revenue if p∗f < pH −pR and decreases the revenue if

p∗f = pH − pR. p∗f = pH − pR if and only if max
{
pb

foc, p̄
}≥ pH − pR. Since KH ≥ λa

HT , we have p̄≤ pH − pR.

Thus, p∗f = pH − pR if and only if pb
foc ≥ pH − pR or equivalently, pH ≤

(
2u +3pR−

√
u2 +9p2

R

)
/3. ¤

Proof of Theorem 6 First, consider the monotonicity of p∗f in γ. Since pb
foc and pH−pR are independent of

γ, we only need to show that p̄ is increasing in γ. This is true because KH/(λT ) ·u2−(u−pH +2pR)(u−pH) =

u2/(λT ) · (KH −λa
HT )≥ 0.

Second, consider the monotonicity of Πf (p∗f ) in γ. When p∗f = pb
foc, using the revenue function in Case b,

the Envelope Theorem yields

dΠf (p∗f )
dγ

=
λT

u2

[
3(pb

foc)
2− 4upb

foc +u2− 3p2
R

]−ΠN,f > 0,

because p∗f = pb
foc (so p∗f 6= pH−pR) implies Πf (pb

foc) > ΠN,f which is equivalent to (λT/u2)[3(pb
foc)

2−4upb
foc +

u2− 3p2
R] > ΠN,f . Next, when p∗f = p̄, dΠf (p∗f )/dγ ≥ 0 can be simplified to

2γ2

√
1
γ

[
KH

λT
u2− (u− pH +2pR)(u− pH)

]
+(u− pH + pR)2

·(u− pH + pR)(u2− 2pHu +2pRu + p2
H − 2pHpR− 2p2

R) ≥ a1γ
2 + b1γ + c1, (A20)

where

a1 = 2(u− pH + pR)2(u2− 2pHu +2pRu + p2
H − 2pHpR− 2p2

R),

b1 =
[
KH

λT
u2− (u− pH +2pR)(u− pH)

]
(u2− 2pHu +2pRu + p2

H − 2pHpR− 2p2
R),

c1 = −
[
KH

λT
u2− (u− pH +2pR)(u− pH)

]2

.

We show (A20) indeed holds as follows. If u2 − 2pHu + 2pRu + p2
H − 2pHpR − 2p2

R ≤ 0, we have a1 ≤ 0,

b1 ≤ 0, c1 ≤ 0, and hence the RHS of (A20) ≤ 0. Since the left-hand side (LHS) of (A20) ≥ 0, (A20) holds. If
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u2− 2pHu+2pRu+ p2
H − 2pHpR− 2p2

R > 0, RHS can be both positive and negative. If RHS≤ 0, again (A20)

holds. If RHS> 0, by taking square on both sides and rearranging terms, (A20) is equivalent to
[
KH

λT
u2− (u− pH +2pR)(u− pH)

]2

(a2γ
2 + b2γ + c2)≥ 0, (A21)

where

a2 = 3(u2− 2pHu +2pRu + p2
H − 2pHpR +2p2

R)(u2− 2pHu +2pRu + p2
H − 2pHpR− 2p2

R),

b2 = 2
[
KH

λT
u2− (u− pH +2pR)(u− pH)

]
(u2− 2pHu +2pRu + p2

H − 2pHpR− 2p2
R),

c2 = −
[
KH

λT
u2− (u− pH +2pR)(u− pH)

]2

.

It is easy to see that a2 > a1, b2 ≥ b1, c2 = c1. Thus, RHS> 0 implies that (A21) is satisfied. We have proved

that Πf (p∗f ) is increasing in γ when p∗f = p̄. Finally, when p∗f = pH − pR or p∗f = 0, Πf (p∗f ) is constant in γ.

Therefore, we conclude that Πf (p∗f ) is increasing in γ overall. ¤
Proof of Theorem 7 If KH < (λT/u2)[(u−pH +2pR)(u−pH)+γ(pH −pR)(2u−pH +pR)], we have p̄ > 0,

hence p∗f > 0. If KH ≥ (λT/u2)[(u− pH + 2pR)(u− pH) + γ(pH − pR)(2u− pH + pR)], we have p̄≤ 0, hence

p∗f = 0 if and only if pb
foc ≤ 0 which is simplified to u≤√3pR. ¤

Proof of Theorem 8 We only prove Part (i) of the theorem; Part (ii) follows from Part (i). First, consider

the case of vH − p∗H,s ≥ vR − pR, so that when the firm does not offer upgrades but can optimize the high-

quality product price, consumers book high-quality products. Suppose the firm offers upgrades at price

p = p∗H,s − pR. Since vH − p∗H,s ≥ vR − pR, consumers’ utility from booking regular products and accepting

upgrade offers, q∗(t)[vH−pR− (p∗H,s−pR)]+[1−q∗(t)](vR−pR), dominates their utility from booking regular

products without upgrades, vR − pR. If vH − pH < vR − pR, consumers book regular products and accept

upgrade offers. In this case, we have

Π∗
s ≥ Πs(p∗H,s− pR)

=
∞∑

i=0

P(N(T ) = i)
{
[pR +(p∗H,s− pR)]min{i,KH}+ pR min{(i−KH)+,KR}

}

>
∞∑

i=0

P(N(T ) = i)p∗H,s min{i,KH}

= ΠN,s(p∗H,s).

If vH − pH ≥ vR − pR, consumers may book high-quality products, or book regular products and accept

upgrade offers. Since q∗(t) is increasing in t (Theorem 1), there exists a threshold arrival time t̄ such that

consumers arriving before time t̄ book high-quality products, and consumers arriving after time t̄ book

regular products and accept upgrade offers. In this case, we have

Π∗
s ≥ Πs(p∗H,s− pR)

=
KH−1∑
iH=0

P(N(t̄) = iH)

{
pHiH +

∞∑
iU=0

P(N(T − t̄) = iU)
[
p∗H,s min{iU ,KH − iH}+ pR min{iU − (KH − iH),KR}

]
}

+
∞∑

iH=KH

P(N(t̄) = iH)pHKH
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>

KH−1∑
iH=0

P(N(t̄) = iH)

{
p∗H,siH +

∞∑
iU=0

P(N(T − t̄) = iU)
[
p∗H,s min{iU ,KH − iH}+ pR min{iU − (KH − iH),KR}

]
}

+
∞∑

iH=KH

P(N(t̄) = iH)p∗H,sKH

>

KH−1∑
iH=0

[
P(N(t̄) = iH)p∗H,siH +

∞∑
iU=0

P(N(T − t̄) = iU)p∗H,s min{iU ,KH − iH}
]

+
∞∑

iH=KH

P(N(t̄) = iH)p∗H,sKH

=
KH−1∑
iH=0

∞∑
iU=0

P(N(t̄) = iH)P(N(T − t̄) = iU)p∗H,s min{iH + iU ,KH}+
∞∑

iH=KH

P(N(t̄) = iH)p∗H,sKH

=
∞∑

iH=0

∞∑
iU=0

P(N(t̄) = iH)P(N(T − t̄) = iU)p∗H,s min{iH + iU ,KH}

=
∞∑

i=0

P(N(T ) = i)p∗H,s min{i,KH}

= ΠN,s(p∗H,s).

Thus, if vH − p∗H,s ≥ vR− pR, we have Π∗
s > ΠN,s(p∗H,s).

Second, consider the case of vH − p∗H,s < vR − pR, so that when the firm does not offer upgrades but can

optimize the high-quality product price, consumers book regular products. Suppose the firm offers upgrades

at price p = p∗H,s− pR. Since vR− pR > vH − p∗H,s, consumers’ utility from booking regular products without

upgrades, vR−pR, dominates their utility from booking high-quality products, vH−pH , as well as their utility

from booking regular products and accepting upgrade offers, q∗(t)[vH−pR−(p∗H,s−pR)]+[1−q∗(t)](vR−pR).

Then, we have Π∗
s ≥Πs(p∗H,s− pR) = ΠN,s(p∗H,s). ¤

Appendix B: Revenue Function in the Stochastic Model

In this section, we derive the stochastic revenue function. To differentiate the demand processes from the

ones used in Section 4 where we derive the consumer booking equilibrium (which are the number of other

consumers as seen by the acting consumer), we use N∗
i (t), i = H,U,R, instead of the previous Ni(t|q∗(·))

to denote the demand processes for the firm when the consumer booking equilibrium is q∗(·). Since now we

are analyzing from the firm’s perspective, the environmental equivalence property does not apply, hence the

“+1” term in the stopping times does not exist. Again, to represent this difference, we use τ∗H , τ∗R, τ∗T , τ̂∗, and

τ∗ to denote the stopping times. Moreover, denote N ′
H(t) as the demand process for high-quality products

after regular products are fully booked (N ′
H(t) is a Poisson process with rate λa

H). Similarly, denote N ′
R(t)

as the demand process for regular products after high-quality products are fully booked (N ′
R(t) is a Poisson

process with rate λa
R). The expected revenue in the stochastic model, Πs(p), is as follows:

Πs(p) = E
N∗

H
(t),N∗

U
(t),N∗

R
(t)

{
pR [N∗

R(τ∗)+ N∗
U(τ∗)]+ pmin{N∗

U(τ∗),KH −N∗
H(τ∗)}+ pHN∗

H(τ∗)

+1{τ∗ = τ∗R}pH E
N′

H
(T−τ∗)

[
min{N ′

H(T − τ∗),KH −N∗
H(τ∗)−N∗

U(τ∗)}
]

+1{τ∗ = τ∗H}pR E
N′

R
(T−τ∗)

[
min{N ′

R(T − τ∗),KR−N∗
U(τ∗)−N∗

R(τ∗)}
]}

.
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Now we further expand the above revenue function. Πs(p) can be written as Πs(p) = Πs1(p) + Πs2(p) +

Πs3(p)+ Πs4(p), where

Πs1(p) = P(τ∗H ≤ τ∗T , τ∗H ≤ T )Πs(p|τ∗H ≤ τ∗T , τ∗H ≤ T ),

Πs2(p) = P(τ∗R ≤ τ∗T , τ∗R ≤ T )Πs(p|τ∗R ≤ τ∗T , τ∗R ≤ T ),

Πs3(p) = P(τ∗H > τ∗T , τ∗R > τ∗T , τ∗T ≤ T )Πs(p|τ∗H > τ∗T , τ∗R > τ∗T , τ∗T ≤ T ),

Πs4(p) = P(τ∗H > T, τ∗R > T, τ∗T > T )Πs(p|τ∗H > T, τ∗R > T, τ∗T > T ).

Each part of Πs(p) is derived as follows:

Πs1(p) =
∫ T

0

fτ∗
H

(t)
KR−1∑
iR=0

KR−iR∑
iU=0

P(N∗
R(t) = iR)P(N∗

U(t) = iU)

·
{

pR(iR + iU)+ pHKH + pR E
N′

R
(T−t)

[
min{N ′

R(T − t),KR− iR− iU}
]}

dt,

where fτ∗
H

(t) = P(N∗
H(t) = KH − 1)λξ∗H(t).

Πs2(p) =
∫ T

0

fτ∗
R
(t)

KH−1∑
iH=0

KH−iH∑
iU=0

P(N∗
H(t) = iH)P(N∗

U(t) = iU)

·
{

pR(KR + iU)+ piU + pHiH + pH E
N′

H
(T−t)

[
min{N ′

H(T − t),KH − iH − iU}
]}

dt,

where fτ∗
R
(t) = P(N∗

R(t) = KR− 1)λξ∗R(t).

Πs3(p) =
∫ T

0

fτ∗
T
(t)

KH−1∑
iH=0

KR−1∑
iR=0

(
KH +KR

iH

)(
KH +KR− iH

iR

){
E

0≤s≤t
[ξ∗H(s)]

}iH
{
E

0≤s≤t
[ξ∗R(s)]

}iR

·
{
E

0≤s≤t
[ξ∗U(s)]

}KH+KR−iH−iR [
pR(KH +KR− iH)+ p(KH − iH)+ pHiH

]
dt,

where fτ∗
T
(t) = P(N∗

H(t)+ N∗
U(t)+ N∗

R(t) = KR +KH − 1)λ [ξ∗H(t)+ ξ∗U(t)+ ξ∗R(t)].

Πs4(p) =
KH−1∑
iH=0

KR−1∑
iR=0

KH+KR−iH−iR−1∑
iU=0

P(N∗
H(T ) = iH)P(N∗

R(T ) = iR)P(N∗
U(T ) = iU)

·
[
pR(iR + iU)+ pmin{iU ,KH − iH}+ pHiH

]
.

Appendix C: Last-Minute Upgrades

In this section, we introduce the (stochastic) model when the firm offers last-minute upgrades, and derive

the consumer booking equilibrium and the firm’s optimal revenue. To avoid too much repetition, we keep

the description of the model elements that are same as the conditional upgrade model to a minimum, and

we focus on explaining notations that are new to or different from the conditional upgrade model.

The firm offers upgrades and announces the upgrade price at the end of the booking period (e.g., during

check-in) instead of in advance. Consistent with the conditional upgrade model, the firm offers upgrades to γ

proportion of consumers (and consumers know whether they will be offered upgrades or not). Also consistent

with the conditional upgrade model, the firm can overbook regular products during the booking period.

However, if there are more consumers who do not accept the upgrade offers (i.e., they choose to consume
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the regular products) than the remaining capacity of regular products by the end of the booking period,

the firm incurs a penalty cost c per consumer from “bumping” these consumers. At the end of the booking

period, the firm chooses the upgrade price p≤ pH − pR based on its belief about the probabilities that the

consumers who have booked regular products will accept upgrade offers.

During the booking period, consumers choose which product type to book (high-quality or regular) or not

to book any product. When making booking decisions, consumers anticipate the optimal upgrade price that

is going to be chosen by the firm at the end of the booking period as well as the corresponding upgrade

probability on every sample path of consumers’ arrival and booking processes. More specifically, consumers’

rational expectations take into account the following: 1) the probability that upgrades will be offered at the

end of the booking period (because the firm has unsold high-quality products by then), 2) the probability

that the consumer will be willing to accept the upgrade offer (because the upgrade price that the firm

charges is low enough), 3) the probability that the consumer will get upgraded if more consumers are willing

to accept upgrade offers than the remaining capacity of high-quality products (same as in our conditional

upgrade model, we assume random rationing in this case).

Let at(vR, vH) denote the consumer’s utility-maximizing decision if she arrives at time t, has valua-

tions (vR, vH) and will be offered an upgrade. at(vR, vH) = H represents booking a high-quality product,

at(vR, vH) = R represents booking a regular product (the consumer later may or may not accept the upgrade

offer), at(vR, vH) = N represents not booking any product. We now use the fixed-point approach to derive the

consumer booking equilibrium. Suppose all other consumers except the acting consumer are using strategy

at(vR, vH). For the acting consumer, given that both product types are still available by her arrival time t, her

utility from booking a high-quality product is vH−pH which does not depend on other consumers’ strategies

used in the consumer booking game. Let uR(at(vR, vH)) denote the acting consumer’s expected utility from

booking a regular product upon arrival. uR(at(vR, vH)) incorporates the potential utility gained from being

upgraded at the end of the booking period. Let b(at(vR, vH)) denote the resulting optimal strategy for the

acting consumer. Then,

b(at(vR, vH)) =





H if vH − pH ≥ uR(at(vR, vH)) and vH ≥ pH ;
R if vH − pH < uR(at(vR, vH)) and uR(at(vR, vH))≥ 0;
N otherwise.

The equilibrium condition is that for every t and every (vR, vH), we must have b(at(vR, vH)) = at(vR, vH). The

strategy space has three dimensions, namely, the arrival time dimension, and the two valuation dimensions.

Note that different from the conditional upgrade model, we cannot reduce the strategy space to only the

arrival time dimension by equivalently defining the anticipated upgrade probability as the strategy used by

consumers in the booking game, because with last-minute upgrades, consumers’ probabilities to actually get

upgraded also depend on their valuations. If vH − vR is lower than the upgrade price announced at the end

of the booking period, the consumer will not accept the upgrade offer, and hence the upgrade probability is

zero; another consumer with vH − vR higher than the upgrade price will have a higher upgrade probability

in expectation.
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Given at(vR, vH), the probabilities of any other consumer that will be offered an upgrade booking each

type of product are as follows:

ξγ
H(t|at(vR, vH)) =

∫∫

Ω

1{at(vR, vH) = H}f(vR, vH)dvR dvH ,

ξγ
R(t|at(vR, vH)) =

∫∫

Ω

1{at(vR, vH) = R}f(vR, vH)dvR dvH .

The probabilities of any other consumer that will not be offered an upgrade booking each type of product

are as follows:

ξ′H(t) =
∫∫

Ω

1{a′t(vR, vH) = H}f(vR, vH)dvR dvH ,

ξ′R(t) =
∫∫

Ω

1{a′t(vR, vH) = R}f(vR, vH)dvR dvH ,

where a′t(vR, vH) denotes the utility-maximizing decision of a consumer that will not be offered an upgrade:

a′t(vR, vH) =





H if vH − vR ≥ pH − pR and vH ≥ pH ,
R if vH − vR < pH − pR and vR ≥ pR,
N otherwise.

The arrival processes of other consumers, NH(t|at(vR, vH)) and NR(t|at(vR, vH)), are Poisson processes with

rates λH(t|at(vR, vH)) = λγξγ
H(t|at(vR, vH))+λ(1−γ)ξ′H(t) and λR(t|at(vR, vH)) = λγξγ

R(t|at(vR, vH))+λ(1−
γ)ξ′R(t), respectively. The stopping time of the booking game is τ(at(vR, vH)) = min{τ̂(at(vR, vH)), T}, where

τ̂(at(vR, vH)) = min{τH(at(vR, vH)), τT (at(vR, vH))}, and τH(at(vR, vH)) = inf{t ≥ 0 : NH(t|at(vR, vH)) ≥
KH}, τT (at(vR, vH)) = inf{t≥ 0 : NH(t|at(vR, vH))+ NR(t|at(vR, vH))+ 1≥KH +KR}.

uR(at(vR, vH)) is derived as follows:

uR(at(vR, vH)) = E
NH(t|at(vR,vH)),NR(t|at(vR,vH))|NH(t|at(vR,vH))<KH ,NH(t|at(vR,vH))+NR(t|at(vR,vH))<KH+KR{

1{t≤ τ(at(vR, vH))} ·
{
1{τ(at(vR, vH)) = τH(at(vR, vH))} · (vR− pR)+

1{τ(at(vR, vH)) 6= τH(at(vR, vH))} ·
[
(1− q(NH(t|at(vR, vH)),NR(t|at(vR, vH))+ 1)) · (vR− pR)+

q(NH(t|at(vR, vH)),NR(t|at(vR, vH))+ 1) · (vH − vR− p∗(NH(t|at(vR, vH)),NR(t|at(vR, vH))+ 1))
]}}

.

q(NH(t|at(vR, vH)),NR(t|at(vR, vH)) + 1) is the probability that the acting consumer accepts the upgrade

offer and gets upgraded on any sample path, p∗(NH(t|at(vR, vH)),NR(t|at(vR, vH))+1) is the optimal upgrade

price chosen by the firm at the end of the booking period based on demand realizations on any sample

path. The “+1” term represents the acting consumer. Note that consistent with the conditional upgrade

model, in the above derivation, the expectation taken over each sample path is conditional expectation (i.e.,

conditional on that up to the acting consumer’s arrival time, both product types are still available).

Next, we derive q(NH(t|at(vR, vH)),NR(t|at(vR, vH)) + 1) and p∗(NH(t|at(vR, vH)),NR(t|at(vR, vH)) + 1).

We have

q(NH(t|at(vR, vH)),NR(t|at(vR, vH))+ 1) = 1{vH − vR ≥ p∗(NH(t|at(vR, vH)),NR(t|at(vR, vH))+ 1)} ·
NR(τ(at(vR,vH))|at(vR,vH))∑

i=0

P(i other consumers accept upgrades) ·min

{
[KH −NH(τ(at(vR, vH))|at(vR, vH))]+

i+1
,1

}
.
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We still need to derive P(i other consumers accept upgrades). Let ηt(p|at(vR, vH)) denote the probability that

a consumer who arrives at time t and books a regular product will accept the upgrade offer with upgrade

price p. We have

ηt(p|at(vR, vH)) =

∫∫
Ω

1{at(vR, vH) = R}1{vH − vR ≥ p}f(vR, vH)dvR dvH

ξγ
R(t|at(vR, vH))

.

Further, define η(p|at(vR, vH)) =E
t
ηt(p|at(vR, vH)). We assume that the acting consumer anticipates the other

consumers’ acceptance of the upgrade offers as a binomial distribution with probability η(p|at(vR, vH)).11

Thus, P(i other consumers accept upgrades) =
∑NR(τ(at(vR,vH))|at(vR,vH))

j=i

(
NR(τ(at(vR,vH))|at(vR,vH))

j

)
γj(1 −

γ)NR(τ(at(vR,vH))|at(vR,vH))−j
(

j

i

)
[η(p|at(vR, vH))]i[1− η(p|at(vR, vH))]j−i.

p∗(NH(t|at(vR, vH)),NR(t|at(vR, vH)) + 1) is the maximizer of the net revenue earned at check-in,

which is the difference between the revenue from collecting upgrade fees and the cost from bump-

ing consumers due to insufficient regular product capacity. When τ(at(vR, vH)) 6= τH(at(vR, vH)), let

ΠT (p|NH(t|at(vR, vH)),NR(t|at(vR, vH))+1) denote the firm’s expected net revenue from selling upgrades at

check-in on any sample path. We have

ΠT (p|NH(t|at(vR, vH)),NR(t|at(vR, vH))+ 1) =
NR(t|at(vR,vH))+1∑

i=0

P(i other consumers accept upgrades)·
{

p ·min
{
i, [KH −NH(τ(at(vR, vH))|at(vR, vH))]+

}

− c ·{NR(τ(at(vR, vH))|at(vR, vH))+ 1−min
{
i, [KH −NH(τ(at(vR, vH))|at(vR, vH))]+

}−KR

}+
}

.

P(i other consumers accept upgrades) is calculated using the same approach when we

derive q(NH(t|at(vR, vH)),NR(t|at(vR, vH)) + 1). Note that when τ(at(vR, vH)) = τH(at(vR, vH))

(so NH(τ(at(vR, vH))|at(vR, vH)) = KH), p∗(NH(t|at(vR, vH)),NR(t|at(vR, vH)) + 1) and

ΠT (p|NH(t|at(vR, vH)),NR(t|at(vR, vH)) + 1) are irrelevant, because the firm does not earn any rev-

enue from upgrades (also, the firm does not incur penalty cost, because τ(at(vR, vH)) = τH(at(vR, vH))

implies that the firm does not overbook regular products). Moreover, in this case, we naturally have

q(NH(t|at(vR, vH)),NR(t|at(vR, vH))+ 1) = 0.

We have characterized the consumer book equilibrium. Then, we can calculate the firm’s optimal expected

revenue, Π∗
LM,s, as follows:

Π∗
LM,s = E

N∗
H

(t),N∗
R

(t)

{
pRN∗

R(τ∗)+ pHN∗
H(τ∗)+1{τ∗ 6= τ∗H} ·ΠT (p∗(N∗

H(t),N∗
R(t))|N∗

H(t),N∗
R(t))

+1{τ∗ = τ∗H}·R E
N′

R
(T−τ∗)

[
min{N ′

R(T − τ∗),KR−N∗
R(τ∗)}

]}
.

11 An alternative way is to allow the acting consumer to form a heterogeneous binomial belief about
the acceptance of the upgrade offer from each of the other consumers. For any other consumer with
arrival time tj(j = 1,2, ...,NR(τ(at(vR, vH))|at(vR, vH))), the probability of accepting the upgrade offer is
ηtj (p

∗(NH(t|at(vR, vH)),NR(t|at(vR, vH)) + 1)|at(vR, vH)), where t1, t2, ..., tNR(τ(at(vR,vH ))|at(vR,vH )) denote the
arrival times of other consumers who have booked regular products on any sample path. By using this approach, the
computational burden of P(i other consumers accept upgrades) is significantly larger. The approach we take can be
considered as an approximation by assuming that consumers have limited computational capability in the booking
game. If the problem size is large enough, the equilibrium booking strategy of consumers becomes time-independent,
in which case our approach produces the same result as this alternative approach (the examples we give in the paper
have large enough problem sizes so that this occurs).
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The revenue function can be expanded conditional on τ∗ in the same way as the revenue function from

conditional upgrades in Appendix B.


