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Abstract: In this note integrals over spherical volumes with rotationally invariant densities
are computed. Exploiting the rotational invariance, and using identities in the integration
over Gaussian functions, the general n-dimensional integral is solved up to a one-dimensional
integral over the radial coordinate. The volume of an n-sphere with unit radius is computed
analytically in terms of the Γ(z) special function, and its scaling properties that depend on
the number of dimensions are discussed. The geometric properties of n-cubes with volumes
equal to that of their corresponding n-spheres are also derived. In particular, one finds that
the length of the side of such an n-cube asymptotes to zero as n increases, whereas the longest
straight line that can fit within the cube asymptotes to the constant value

√
2eπ ' 4.13.

Finally, integrals over power-law form factors are computed for finite and infinite radial extent.

1 Preliminaries

Our interest is to consider integrals over a volume in n-dimensional space that is rotationally
invariant and has a density that is rotationally invariant. The first requirement implies that
we integrate over the volume of Sn. Sn is defined1 to be

Sn = {~r ∈ Rn | r ≤ 1}. (1)

where ~r = (x1, x2, . . . , xn) and r2 = x21 + x22 + . . . + x2n. For integrals over a finite radius one
rescales the coordinates such that radius of the sphere integrated over is r = 1. The second
requirement is that the mass density ρ(~r) that is assumed throughout the volume, i.e., the
integrand of the integral, must be rotationally invariant and therefore can only depend on the
distance from the origin: ρ(~r) → ρ(r). Therefore, the types of integrals under consideration
are

In[ρ(r)] =

∫
Sn

ρ(r)dx1dx2 · · · dxn. (2)

1We use the notation Sn rather than Sn to distinguish from the common definition by topologists that Sn

is unit sphere in Rn+1 such that x2
1 + x2

2 + · · · + x2
n+1 = 1. The definition Sn used here is equivalent to the

unit ball Bn definition by topologists (Munkres 2000).
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2 Volumes of S2 and S3

If one is not clever, solving integrals of the eq. (2) type is very hard as the number of dimensions
increases. Let’s illustrate this with the simple example of computing the volume of S2:

V2 = I2[1] =

∫
S2

dx1dx2 (3)

where Vn in general denotes the volume of Sn. S2 is just a filled in circle with r = 1 and π is
its volume2.

Solving for V2 using cartesian coordinate systems is painful, as the derivation below sug-
gests:

V2 =

∫ +1

−1

(∫ +
√

1−x21

−
√

1−x21
dx2

)
dx1 (4)

=

∫ +1

−1

(
2
√

1− x21
)
dx1

=

[
x1

√
1− x21 + sin−1 x1

]+1

−1

=
(

0 +
π

2

)
−
(

0− π

2

)
= π

This approach is unnecessarily difficult, and often prohibitively difficult, as the number of
dimensions increases or more complex functions ρ(r) are introduced.

An obviously easier approach is to take advantage of the symmetries involved and use
polar coordinates, where

x = r cos θ and y = r sin θ. (5)

where r is of course the radius and θ is the coordinate angle that sweeps over the entire surface.
Its range is 0 to 2π. The differential volume element in polar coordinates must be computed.
The answer is

dx1dx2 = rdrdθ (6)

Our integral then becomes

V2 =

∫
S2

dx1dx2 −→
∫
S2

rdrdθ (7)

This integral is now separable, meaning the radial part can be integrated separately and
independently from the angular sweep variable. The result is trivial to solve:

V2 =

(∫ 2π

0

dθ

)(∫ 1

0

rdr

)
= 2π · 1

2
= π. (8)

2Note I am using “volume” Vn technically here as the integral over Sn, whereas we would normally and more
colloquially say that the filled in circle of S2 is an “area”. The “volume” of S1 is 2, whereas nontechnically
we would say it is a “length.” . We shall define the technical term “area” An later.
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Let’s now compute the volume of S3. To make the computation simpler we again exploit
the symmetry and define a coordinate r which is fixed length radius from the origin, and
angular coordinates φ and θ that sweep over the entire surface of the sphere at fixed r. The
standard spherical coordinates used for this purpose are

x1 = r cosφ sin θ (9)

x2 = r sinφ sin θ

x3 = r cos θ

Angular coverage requires 0 ≤ φ < 2π and 0 ≤ θ < π.

The volume element is
dx1dx2dx3 = r2dr sin θdθdφ (10)

and the volume integral over S3 becomes

V3 =

∫
S3

dx1dx2dx3 =

(∫ π

0

sin θdθ

∫ 2π

0

dφ

)(∫ 1

0

r2dr

)
(11)

= (2 · 2π) · 1

3
=

4

3
π, (12)

which is the well-known result of the volume of a sphere of unit radius in three dimensions.

3 Isolating Radial Integral

The key to the integrals over S2 and over S3, and indeed over Sn in general, is to utilize a
coordinate system that has the radial distance from the origin as one coordinate, which we
call r. The function ρ(r) depends only on that coordinate. The remaining coordinates and
how they are defined is not so important. The only requirement is that they angularly sweep
over the entire surface at fixed radius r. We found θ variable in the S2 case and φ and θ in the
S3 case, but we could have chosen different variables and it would not have materially affected
the difficulty of the problem, or changed the symmetry compatibility of the coordinates to the
problem.

For this reason it is helpful to define an generalized differential solid angle dΩn−1, which is
defined to be a differential area on the surface of Sn. When integrated it gives the total area
of surface of Sn:

An =

∫
∂Sn

dΩn−1 (13)

where ∂Sn denotes the full area of the surface of Sn. In the case of S2 and S3 we found

S2 : dΩ1 = dθ A1 = 2π (14)

S3 : dΩ2 = sin θdθdφ A2 = 4π (15)
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In general, any integral of the kind given in eq. 2 can be rewritten as the area of Sn
multiplied by radial integral:

In[ρ(r)] =

∫
Sn

ρ(r)dx1dx2 · · · dxn (16)

=

(∫
∂Sn

dΩn−1

)∫ 1

0

ρ(r)rn−1dr

= AnRn[ρ(r)]

where,

Rn[ρ(r)] =

∫ 1

0

ρ(r)rn−1dr (17)

If we find a way to tabulate An values, then the difficult n-dimensional integrals In[ρ(r)]
become the much easier to solve one-dimensional integrals Rn[ρ(r)]. However, determining An
can be difficult for high dimensional spaces or fractional n, as is sometimes needed in quantum
field theory, for example.

4 Solid Angle Integrals over Sn

One path to determine An for arbitrary real value of n is through manipulations of a multi-
dimensional gaussian integral. Let us define

Gn =

∫ +∞

−∞

∫ +∞

−∞
· · ·
∫ +∞

−∞
e−(x

2
1+x

2
2+...+x

2
n)dx1dx2 · · · dxn

=

∫ +∞

−∞
e−x

2
1dx1

∫ +∞

−∞
e−x

2
2dx2 · · ·

∫ +∞

−∞
e−x

2
ndxn = (G1)

n. (18)

where

G1 =

∫ +∞

−∞
e−x

2

dx =
√
π, therefore Gn = π

n
2 . (19)

However, Gn can be written also in generalize spherical coordinates since the integrand is
spherically symmetric and the integral is over a sphere with radius at infinity.

Gn =

(∫
∂Sn

dΩn−1

)∫ ∞
0

e−r
2

rn−1dr = An

∫ ∞
0

e−r
2

rn−1dr. (20)

The radial integral has a form similar to the Gamma function, defined as (Arfken 2001)

Γ(z) =

∫ ∞
0

e−ttz−1, Re(z) > 0. (21)

The two most important properties of the Γ function that we will have occasion to use later
are

zΓ(z) = Γ(z + 1) and Γ(z + 1) = z!, (22)
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where z! is the normal factorial function z! = 1 · 2 · 3 · · · z when z is an integer, yet it is still
defined when z is non-integer by the Γ(z + 1) function.

Defining t = r2 enables us to recast the radial integral result of eq. (20) in terms of the
Gamma function ∫ ∞

0

e−r
2

rn−1dr =
1

2

∫ ∞
0

e−tt
n
2
−1dt

=
1

2
Γ
(n

2

)
(23)

Combining eqs. (19), (20) and (23) one can solve for An:

An =
2π

n
2

Γ
(
n
2

) . (24)

This is the area of the surface of Sn, which is equivalent to the integral over the solid angle
factor dΩn−1. We are now in position to use this result to turn In[ρ(r)] from an n-dimensional
integral to a much easier one dimensional integral over r.

5 Summary of Result

Let us now go back to the original integral of eq. (2). In summary, we have learned we can
now rewrite this integral as

In[ρ(r)] =

∫
Sn

ρ(r)dx1dx2 · · · dxn = AnRn[ρ(r)]

=
2π

n
2

Γ
(
n
2

) ∫ 1

0

ρ(r)rn−1dr (25)

which is now relatively easy to compute, since it only involves a one-dimensional integral over
the radius.

6 Example: Areas and Volumes of Sn

Recall that to compute the volume of an Sn sphere, we must compute In[1]:

Vn = In[1] =

∫
Sn

ρ(r)dx1dx2 · · · dxn (26)

=

(∫
∂Sn

dΩn−1

)∫ 1

0

rn−1dr

= AnRn[1] =
2π

n
2

Γ
(
n
2

) · 1

n

=
π

n
2

Γ
(
n
2

+ 1
)
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where the Gamma function identity zΓ(z) = Γ(z+1) has been used. The volume Vn is defined
on Sn, which has radius of unity. The relation between Vn and An is simply Vn = 1

n
An. If we

assume the radius is a the volume becomes Vn(a) = anVn.

Let us compute the area and volume of the Sn for the first 10 integers. We also compute
`n, which is the length of a side of an n-cube that has the same volume as the Sn, and is
defined to be `n ≡ (Vn)1/n. The values ±`n/2 are the places where the cube intersects each xi
axis, and it is these values we put in the table.

Using Stirling’s series expansion (Bartle 1964)

lnn! = n lnn− n+ ln
√

2πn+O(n−1) (27)

we can compute `n analytically at large n,

`n
2

=

√
eπ

2n
=

2.06637√
n

(large n) (28)

where e = 2.71828 · · · is the normal e1 exponential constant. The value of `n/2 tends to 0 as
n→∞, which suggests that the faces of the cubes pass infinitesimally closely to the origin as
n→∞, which is somewhat anti-intuitive of a cube with a unit volume.

Note, for n > 1 the cube intersects the xi axis at a position inside the radius of the sphere.
This is expected since these are the closest points of the cube’s surface to the origin, and the
cube has yet further points away, such as at 2n vertices of the cube, which are always at a
distance further than 1 to compensate and render the overall volume equal that of Sn. The
distance from the origin to the cube’s vertices is the “n-cube hypotenuse” hn. This value is

h2n =

(
`n
2

)2

+

(
`n
2

)2

+ · · ·+
(
`n
2

)2

= n

(
`n
2

)2

−→ hn =
√
n
`n
2

(29)

At large n the value of hn asymptotes to

h∞ =

√
eπ

2
= 2.06637 · · · (n→∞ limit). (30)

In other words, the unit volume n-cube does extend past the Sn’s unit radius in places, but
it never extends beyond a distance of ∼ 2.07, where the vertices reside. In Fig. 1 the values
of `n/2 and hn are plotted as a function of n.

Another interpretation of hn is that 2hn is the length of the longest straight line that
can be fully contained within an n-cube of the same volume as Sn. This line extends from
a vertex of the cube at position ~x passing through the origin to the corresponding vertex on
the opposite side of the cube at position −~x. When n = 1, 2, 3 and ∞ these longest possible
straight-line distances are 2,

√
2π = 2.51, (48π2)1/6 = 2.79, and

√
2eπ = 4.13, respectively.

These are always longer lengths than the longest length of a straight line that can fit into the
Sn sphere, which is of course 2 for the sphere of unit radius, corresponding to any straight
line that passes through the origin.
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Figure 1: The lower blue curve is a plot vs. number of dimensions n of half the length of an
n-cube, `n/2, that has the same volume as a unit radius Sn sphere. This length asymptotes
to `∞ → 0 as n → ∞, which is indicative of the well-known property of Sn that its volume
asymptotes to zero for large dimensions. The upper green curve is a plot of the distance to
the furthest point of the surface of the same n-cube to the origin. This furthest point is any
one of the 2n vertices of the cube. Its value asymptotes to h∞ =

√
eπ/2 ' 2.066 as n →∞.

Equivalently, the longest straight line that can fit wholly inside the n-cube has length 2hn and
extends from one vertex at position ~x to the opposite vertex at point −~x.

7 Example: Form Factor Integrals

Let us end this discussion by considering another example beyond volume computations:

ρk(r) = ρ0
a2k

(r2 + a2)k
(31)

where a is a smoothing radius parameter and ρ0 is a constant with units of n-volume density.
I will call integrals over eq. (31) “form factor integrals” since ρk(r) is reminiscent of form
factors in physics, where ρ ∼ ρ0 is nearly constant near the center when r � a but then falls
off rapidly by the power law ρ ∼ 1/r2k when r � a. Let us assume that in this case the radius
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n An Vn `n/2 hn
1 2 2 1 1

2 2π π 0.886 1.25

3 4π 4
3
π 0.806 1.40

4 2π2 1
2
π2 0.745 1.49

5 8
3
π2 8

15
π2 0.697 1.56

6 π3 1
6
π3 0.657 1.61

7 16
15
π3 16

105
π3 0.624 1.65

8 1
3
π4 1

24
π4 0.596 1.68

9 32
105
π4 32

945
π4 0.571 1.71

10 1
12
π5 1

120
π5 0.549 1.74

∞ → 0 → 0 → 0 2.07

Table 1: Computations of An, Vn and `n for integer dimensionality n from 1 through 10. Vn
is the volume of unit radius Sn, and An is the area of the surface of Sn. For spheres of radius
a, these are rescaled to An(a) = an−1An and Vn(a) = anVn. The quantity `n is the length
of a side of an n-dimensional cube that has the same volume as the Sn sphere. It is defined
to be `n ≡ (Vn)1/n. The cube’s intersection points on each xi axis are ±`n/2, and it is this
value that we put in the table. hn is the furthest point that the cube reaches from the origin,
and is the n-dimensional hypotenuse. For large n the values of An, Vn and `n asymptote to 0,
whereas hn asymptotes to h∞ =

√
eπ/2 ' 2.066.

integral is from 0 to r0. In other words, we wish to compute

In[ρk; r0] =

∫
Sn(r0)

ρ0
a2k

(r2 + a2)k
dx1dx2 · · · dxn (32)

= AnRn[ρk; r0]

where the notation Sn(r0) means an n-sphere of radius r0, and In[ρ; r0] and Rn[ρ; r0] indicate
integrate of r from 0 to r0. In this notation if r0 is left unstated, as was the case for the
volume integrals over unit radius Sn, its value is assumed to be r0 = 1.

We can rewrite Rn[ρk; r0] as an integral over ξ from the standard range of 0 to 1 by simple
transformation of variables ξ = r/r0, leading to

In[ρk; r0] = ρ0r
n
0

(
a2

r20

)k
AnRn[ρ̃k] (33)

where

Rn[ρ̃k] = F (n, k, ξ0) =

∫ 1

0

ξn−1 dξ

(ξ2 + ξ20)k
where ξ20 = a2/r20. (34)
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The general solution to F (n, k, ξ0) with arbitrary arguments involves the evaluation of hyper-
geometric functions. However, for any particular values of the arguments the integration is
often possible to carry out analytically for small integer values of n and k, and usually easy to
do numerically for any values of n and k. In the case that a = 0 the integral diverges unless
n > 2k.

It is frequently the case that one wishes to integrate r from 0 to ∞, and in that case and
with a 6= 0 the integration can be simplified by the substitution β = r/a, yielding∫ ∞

0

ρ0
a2k

(r2 + a2)k
rn−1dr = ρ0a

nG(n, k), where (35)

G(n, k) =

∫ ∞
0

βn−1 dβ

(β2 + 1)k
. (36)

Again, it is usually easy to solve this integral numerically for arbitrary values of n and k, and
it is often easy to compute analytically for low values of n and k, such as G(3, 2) = π

4
. The

integral diverges unless n < 2k.

In summary, for integrations of ρk(r) of eq. (31) from 0 to finite r0 in n dimensions one
finds

In[ρk; r0] = ρ0r
n
0

(
a2

r20

)k
An F

(
n, k,

a2

r20

)
(37)

where the function F is defined in eq. (34) and An is defined in eq. (24). For integrations of
ρk(r) from 0 to ∞ one finds

In[ρk;∞] = ρ0a
nAnG(n, k) (38)

where G(n, k) is defined in eq. (36).
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