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Special Relativity

We begin with a statement of our most cherished symmetries. Laws of physics
should be invariant under special relativity transformations: rotations (3 of
them) and velocity boosts (3 of them). This implies that the length ds2 should
be invariant under transformations

ds2 = c2dt2 − dxidxi = c2dt′2 − dx′idx′i (1)

where c is the same in all reference frames. Define it to be c = 1.

Construct Lorentz four-vector dxµ = (dt, dx1, dx2, dx3) where µ = 0, 1, 2, 3.
Define metric tensor

gµν =



1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


(2)

Then ds2 = gµνdx
µdxν.
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Any “position” 4-vector xµ contracted with itself is its length and should be
invariant.

xµxµ = xµgµνx
ν = x′µx′µ (3)

What are the transformations on xµ that leave its length invariant?

x′µ = Λµ
νx

ν, suppressing indices : x′ = Λx (4)

Substituting this into the invariance-requirement equation above gives

xTgx = x′Tgx′ = (Λx)Tg(Λx) = xT (ΛTgΛ)x (5)

Thus we have to find matrices Λ that satisfy

g = ΛTg Λ (6)

If g = E where E = diag(1, 1, 1, 1) is the identity matrix, it would be much
more familiar to you. In that case

E = ΛTΛ =⇒ ΛT = Λ−1 (7)

This last condition is the definition of special orthogonal matrices, which must
have det Λ = ±1. The set of matrices is then SO(4), 4×4 orthogonal matrices.
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Definition of a group

SO(4) is a “group”, which has a very precise mathematical meaning.

A group G is a collection of elements g ∈ G endowed with a multiplication
operator that satisfies four axioms:

1. Closure: For every g1, g2 ∈ G, g1g2 ∈ G
2. Associativity: For all g1, g2, g3 ∈ G, (g1g2)g3 = g1(g2g3)

3. Identity: There exists an e ∈ G such that for all g ∈ G, eg = ge = g

4. Inverse: For every g ∈ G there is a g−1 ∈ G such that gg−1 = g−1g = e

The mathematics of group theory plays a significant role in the description of
symmetries, which includes the symmetries of the Standard Model.

Note, there is no requirement that g1g2 = g2g1.

If this equality is satisfied it is an “Abelian group” (e.g., U(1), SO(2)); other-
wise, it is called a “Non-Abelian group” (e.g., SU(2), SO(3), etc.).
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Z2 discrete group

One of the simplest groups of all is the Z2 group. It has two elements {1,−1}
and group multiplication is normal multiplication.

Multiplication table:

1 -1
1 1 -1
-1 -1 1

This is sometimes called the even/odd group.

Forms a group because the four axioms are respected:
1. Closure: check
2. Associativity: check
3. Identity: check
4. Inverse: check

This is an example of a discrete abelian group.
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Example of a Group, SO(2)

These are simply two-dimensional rotations that you are used to. Every group
element is parameterized by a rotation angle θ:

g(θ) =

 cos θ sin θ
− sin θ cos θ

 (8)

Multiply two elements together and we get

g(θ1)g(θ2) =

 cos θ1 sin θ1

− sin θ1 cos θ1


 cos θ2 sin θ2

− sin θ2 cos θ2

 (9)

=

 cos θ1 cos θ2 − sin θ1 sin θ2 cos θ1 sin θ2 + cos θ1 sin θ2

− cos θ1 sin θ2 − cos θ1 sin θ2 cos θ1 cos θ2 − sin θ1 sin θ2



=

 cos θ3 sin θ3

− sin θ3 cos θ3

 = g(θ3) (10)

Thus, closure is satisfied by g(θ1)g(θ2) = g(θ3) where θ3 = θ1 + θ2.

Associativity obviously works; the identity element is when θ = 0; and, the
inverse of g(θ) is g(−θ), which is in SO(2). Thus, all the group axioms are
satisfied.
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Back to the Lorentz Group, SO(3, 1)

However, in our case our metric tensor g is not the identity matrix but rather
has a mixed metric of three −1 entries and one +1 entry. Nevertheless the
elements Λ that satisfy g = ΛTg Λ form a group, called SO(3, 1).

Here are a few examples of elements in SO(3, 1):

ΛR =

 1 0
0 R

 , where R are the 3× 3 rotation matrices SO(3). (11)

ΛBx =



cosh η − sinh η 0 0
− sinh η cosh η 0 0

0 0 1 0
0 0 0 1


velocity boost in the x direction (12)

where

cosh η = γ and sinh η = βγ, with γ =
1√

1− v2/c2
and β = v/c. (13)
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With a little algebra you can see that x′ = ΛBxx is equivalent to what you are
used to seeing

ct′ =
1√

1− v2/c2

ct− v

c
x
 (14)

x′ =
1√

1− v2/c2
(x− vt) (15)

y′ = y (16)

z′ = z (17)

Summary of this: SO(3, 1) is a group and the matrices Λ are its elements, and
their transformations on Lorentz vectors are rotations and boosts that we are
familiar with.

What does all of this have to do with particle physics?

The “Symmetry Invariance Principle”
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Symmetry Invariance Principle

When we say that nature is invariant under some symmetry, it means

• All objects in the theory have well defined transformation properties (i.e.,
well defined “representation” of the symmetry group) under the symmetry,
and

• Every interaction is invariant (i.e., a “singlet”) under the symmetry trans-
formations

The “objects” of particle physics are particle fields.

The interactions in particle physics are the operators in the lagrangian.
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Singlet and Triplet representations of SO(3)

Representations of groups can be intuitively understood from tensor analysis
from rotations, the group SO(3) with elements Rij satisfying the condition
RT = R−1 and detR = 1.

Let’s start with a vector. If we rotate the vector v we get

v → v′ = Rv, or equivalently v′i = Rijvj. (18)

The vector v is definite transformations properties under SO(3) and it has
three independent elements (vx, vy, vz) and so it defines a “three-dimensional
representation” or “triplet representation” of SO(3). Or, for short, 3.

There is always the trivial or “singlet” representation:

c→ c′ = c singlet representation. (19)

This is the 1 representation, or sometimes called the “scalar representation”.

We have just defined rather precisely the 1 and 3 representations of SO(3)
from the scalar and vector. What about tensors? Does a tensor form a separate
representation of SO(3). Yes, but it’s slightly more complicated!
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Tensor representations of SO(3)

Let us look at the tensor formed from two vectors: Tij = aibj. This tensor has
9 elements. However, there are subspaces of these 9 elements that have definite
and closed transformation properties under SO(3).

The most obvious is the trace: τ = Tr(T ) = aibi. Under rotation it is preserved.

τ ′ −→ RilalRikbk = RT
kiRilalbk = δklalbk = albl = τ (20)

The trace of the tensor therefore is a singlet 1 representation of SO(3).

Now let us look at the anti-symmetric tensor AT = −A,

Aij = aibj − ajbi =


0 A12 A13

−A12 0 A23

−A13 −A23 0

 (3 independent elements) (21)

The anti-symmetric tensor does not change its character under transformations

A′ml = RmiRljAij = RmiRlj(−Aji) = −RljRmiAji = −RliRmjAij = −A′lm
Thus the anti-symmetric tensor forms a 3A representation of SO(3).
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Let’s now take the symmetric tensor S = ST ,

Sij = aibj + ajbi =


S11 S12 S13

S12 S22 S23

S13 S23 S33

 (6 distinct entries) (22)

However, we have already used the trace to form a representation, so we need to
“subtract out the trace”. What we really need is the traceless symmetric tensor
ŜT = Ŝ with Tr(Ŝ) = 0:

Ŝ =


S11 S12 S13

S12 S22 S23

S13 S23 −S11 − S22

 (5 independent elements) (23)

This traceless symmetric tensor preserves its character under transformations

Ŝml = RmiRljŜij = RmiRljŜji = RliRmjŜij = Ŝlm (24)

Thus, the traceless symmetric tensor forms a 5S representation of SO(3).

So, the 9 elements of the tensor form a reducible rep of SO(3), which can be
decomposed into three irreps of dimension 1, 3 and 5. In group theory language
we we did was show that

3⊗ 3 = 3A ⊕ (1⊕ 5)S (25)
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There are an infinite number of representations of SO(3)

All representations can found by taking tensor products of the vectors

Tij = aibj (26)

Tijk... = aibjck . . . (27)

There are techniques to do this, and tables exist that classify all representations.

Representation of dimension d: Group elements g ∈ G are mapped to
d×d matrices M(g) that preserve all the group multiplications. I.e., if g1g2 = g3

then M(g1)M(g2) = M(g3).

Warning: Often it is said that

“X is a representation r of the symmetry group G”,

whereas what is really meant is

“X is an object such that when a symmetry transformation of G is applied, it
transforms under the r representation”
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What does this have to do with the Lorentz group?

The relevance is because

1. SO(3) and SU(2) are closely related, and

2. The representations of SO(3, 1) can be classified in terms of representations
of SU(2)× SU(2)

Next, I will remind you why point 1 is correct.

In order to show you that point 2 is correct, I will need to tell you about
“generators” for group elements and the Lie algebras that they form.

14



The connection between SO(3) and SU(2)

SU(2) is the set of all 2×2 complex matrices of det = +1 that satisfiesA†A = I ,

A =

 α β
−β∗ α∗

 , where |α|2 + |β|2 = 1. (28)

There are three independent parameters required to specify an element here of
SU(2). Here is one

A =

 cos(θ/2) exp{ i2(ψ + φ)} sin(θ/2) exp{ i2(ψ − φ)}
− sin(θ/2) exp{− i

2(ψ − φ)} cos(θ/2) exp{− i
2(ψ + φ)}

 (29)

where 0 ≤ θ ≤ π, 0 ≤ ψ ≤ 4π, 0 ≤ φ ≤ 2π. (30)

The objects that transform under SU(2) elements like this are called “spinors”
χα, where α = 1, 2. They are the analogy of vectors in three dimensional
rotation group (SO(3)):

χ′α = Aαβ χβ, α, β = 1, 2. (31)
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2-to-1 homomorphic mapping of SU(2) onto SO(3)

Theorem (Cornwell 1984): “There exists a two-to-one homomorphic mapping
of the group SU(2) onto the group SO(3). If A ∈ SU(2) maps onto R(A) ∈
SO(3), then R(A) = R(−A) and the mapping may be chosen so that

R(A)jk =
1

2
Tr

(
σjAσkA

−1
)
, j, k = 1, 2, 3 (32)

where σ1 =

 0 1
1 0

 , σ2 =

 0 −i
i 0

 , σ3 =

 1 0
0 −1

 (33)

are the Pauli spin matrices.”

This implies that the representations of SO(3) are also representations of SU(2).
In addition there are “spinor” representations of SU(2) that have no analog in
SO(3).

The “defining representation” of SU(2) with 2 × 2 elements Aαβ is the lowest
dimension spinor representation.
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Representations of SU(2)

You already know the SU(2) representations well from quantum mechanics!

In QM you analyzed spin carefully and found basis functions of the form

|`m〉 where ` = 0, 1/2, 1, 3/2, 2, . . . , and m = −`,−` + 1, . . . , `− 1, `

Each ` labels a distinct irreducible representation of SU(2), and the number of
m’s (= 2` + 1) is the dimensionality of the representation.

The representations of integer ` are equivalent to SO(3) reps (bosonic reps),
and the half-integer representations are the spinor representations (fermionic
reps).
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Ok, now we understand that SU(2) and SO(3) have lots of different represen-
tations of different dimensions.

Before we show how this relates to the Lorentz group and the labels we give to
elementary particles, we must introduce two more concepts: generators and Lie
algebras. We will do this first through the more intuitive SO(3) and then show
them for SU(2) and then for the Lorentz group SO(3, 1).
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Generators of SO(3) group elements

Let’s consider the matrix

sx =


0 0 0
0 0 −i
0 i 0

 (34)

And now compute eiφsx:

eiφsx = 1 + iφsx +
1

2!
i2φ2s2

x + +
1

3!
i3φ3s3

x + · · · =


1 0 0
0 cosφ sinφ
0 − sinφ cosφ

 (35)

which is a rotation about the x axis. In this sense sx is a “generator” of the
rotations.

The word “generator” comes from the fact that an infinitesimal rotation about
the x-axis is ∝ φ, and so one can build up or “generate” the full rotation by
adding an infinite number of infinitesimal rotations:

Rx(φ) = lim
N→∞

1 + i
φ

N
sx


N

−→ eiφsx. (36)
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Similarly, rotations about the y and z axis are generated by

sy =


0 0 i
0 0 0
−i 0 0

 , and sz =


0 −i 0
i 0 0
0 0 0

 . (37)

The set of three generators sx, sy and sz of SO(3) forms a real Lie algebra.

What is a Lie algebra?
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Reminder: Algebra

(Szekeres 2004) “An algebra consists of a vector space A over a field K together
with a law of composition or product of vectors, A×A → A denoted

(A,B)→ AB ∈ A (A,B ∈ A), (38)

which satisfies a pair of distributive laws:

A(aB + bC) = aAB + bAC, (aA + bB)C = aAC + bBC (39)

for all scalars a, b ∈ K and vectors A, B and C.”
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Definition of a Lie algebra

Real Lie algebra: Real lie algebra L of dimension n (≥ 1) is a real vector
space of dimension n equipped with a “Lie product” or “commutator” [a, b]
defined for every a and b of L such that (Cornwell 1984)

1. [a, b] ∈ L for all a, b ∈ L
2. [αa+ βb, c] = α[a, c] + β[b, c] for all a, b, c ∈ L and all real numbers α and
β

3. [a, b] = −[b, a] for all a, b ∈ L
4. for all a, b, c ∈ L the Jacobi identity holds

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0
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The commutator algebra of the SO(3) generators is

[sx, sy] = isz et cyclic (40)

and sx, sy and sz are the “basis vectors” of the vector space.

These commutator relationships are very familiar! They are exactly the same
as SU(2), whose generators are σi/2:σx

2
,
σy
2

 = i
σz
2

et cyclic (41)

Thus, we see that although the SU(2) group is different than the SO(3) group,
the Lie algebras are isomorphic. This is another way in which SO(3) and SU(2)
are very similar.

Now, all this will help in understanding why SO(3, 1) ' SU(2)× SU(2).
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Generator algebra of SO(3, 1)

The Lorentz group has three rotations and three boosts, and thus there are six
total generators acting on the four-vectors.

The three generators of rotation are

Jx =



0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0


, Jy =



0 0 0 0
0 0 0 i
0 0 0 0
0 −i 0 0


, Jz =



0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0


. (42)

The three generators of boosts are

Kx =



0 −i 0 0
−i 0 0 0
0 0 0 0
0 0 0 0


, Ky =



0 0 −i 0
0 0 0 0
−i 0 0 0
0 0 0 0


, Kz =



0 0 0 −i
0 0 0 0
0 0 0 0
−i 0 0 0


. (43)
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The algebra of Lorentz group generators

The generators form an algebra with commutation relations

[Jx, Jy] = iJz et cyclic; [Kx, Ky] = −iJz et cyclic; (44)

[Jx, Ky] = iKz et cyclic; [Jx, Kx] = 0 et cetera. (45)

The algebra can be recast more simply be redefining

A =
1

2
(J + iK) and B =

1

2
(J − iK) (46)

which leads to

[Ax, Ay] = iAz et cyclic; [Bx, By] = iBz et cyclic; (47)

and [Ai, Bj] = 0, for all i, j = x, y, z. (48)

This appears to be the same algebra as that of two independent SU(2) algebras.

This is why SO(3, 1) representations can be classified as SU(2) × SU(2) rep-
resentations.

This is also why SU(2) spin shows up everywhere in quantum mechanics. It’s
because of Lorentz symmetry!
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SU(2)× SU(2) Representations of the Lorentz Group

Lorentz Rep Total Spin Elementary Particle Quantum Field

(0, 0) 0 “scalars” (Higgs boson)

(
1
2 , 0

)] 1
2 “left spinor” (leptons, quarks, neutrinos)∗

(
0, 12

)] 1
2 “right spinor” (leptons, quarks, neutrinos)∗

(
1
2 ,

1
2

)
1 “vector gauge field” (γ, Z, W±, gluons)†

(
1, 12

)
3
2 “Rarita-Schwinger field” (no SM particle)

(1, 1) 2 “spin-2 field” (graviton)

] The Lorentz group has an operation that allows a spinor ξ that transforms under SU(2)L to transform as
a spinor under SU(2)R: χ = iσ2ξ

∗. Related by parity transformation K → −K (i.e., A→ B generators.)

* The fermions (leptons, quarks, and neutrinos) are often treated as a four-dimensional representation(
1
2 , 0

)
⊕
(
0, 12

)
.

† The gauge fields Aµ take (1/2, 1/2) representation form by σαα̇µ Aµ, where α = 1, 2 is spinor index for
SU(2)L and α̇ = 1, 2 is spinor index for SU(2)R. We’ll call this σA for short.
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Interactions preserving Lorentz invariance

From mathematical point of view

particle: an object that has a well-defined transformation property under Lorentz
symmetry.

If nature is to be invariant under the Lorentz symmetry then the only inter-
actions allowed among particles are those that are singlets under both left and
right spin groups.

You know how to do this!

There are two facts you learned from early days that help:

1. Tensor product of spin s1 and s2 give spin |s1 − s2| and s1 + s2 results, and

2. If all tensor indices are contracted, the result is a scalar – invariant!

We can manipulate and understand invariants using these facts, and build up
all Lorentz invariants of the theory.
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Products of spin – Majorana fermion mass

Just as in QM we realized that

|1/2〉 ⊗ |1/2〉 = |0〉 ⊕ |1〉 (49)

we can do the same thing with particles, with the slight complication that we
need to keep track of the left and right SU(2)’s separately.

Consider the spinor fR = (0, 1/2), and let’s ask if fR · fR interaction is ok:

left : 0⊗ 0 = 0 contains singlet (50)

right : 1/2⊗ 1/2 = 0⊕ 1 contains singlet (51)

so this is an invariant. It is the mass operator: mfR · fR.

To be more precise, there is a spinor-metric on the contraction which is iσ2 = ε.
The mass operator is

mfTR iσ
2fR (Majorana mass) (52)

If fR has charge (e.g., electric charge) this term is not invariant, and not allowed.
In the Standard Model only right-handed neutrinos qualify for this type of mass:

MR ν
T
Riσ

2νR. (53)
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Dirac fermion mass

What if we have fL = (1/2, 0) and fR = (0, 1/2).

We learned early that a Lorentz invariant is χTRiσ
2fR, and we also learned that

iσ2f ∗L transforms like a RH-fermion. Thus, identifying χR = iσ2f ∗L, we have

χTR iσ
2fR = (iσ2f ∗L)T iσ2fR = f †Li(σ

2)T iσ2fR = f †LfR (54)

which used the facts that (σ2)T = −σ2 and σ2σ2 = 1.

Likewise f †RfL is an invariant, which is just the conjugate of f †LfR.

Therefore, we have identified a new fermion bilinear invariant (i.e., mass term):

mf (f †LfR + f †RfL). (55)

This is often called Dirac mass.
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Four component spinor representation

We have been talking about fL and fR, and making mass terms that connect the
two. But you have more commonly heard only labels like “electron”, “muon”,
“quarks.” We can put the two-component fL and fR spinors, Weyl spinors, into
a four-component spinor, the Dirac spinor as this:

Ψ =

 ψL
ψR

 (56)

We can construct the projection operators PLΨ = (ψL 0) and PRΨ = (0 ψR)
from

PL,R =
1

2
(1∓ γ5) where γ5 =

 −1 0
0 1

 . (57)

The four dimensional analogy to the σµ matrices are the γµ matrices, where in
the Weyl representation they are

γ0 =

 0 1
1 0

 , γi =

 0 σi

−σi 0

 . (58)

The γ0 acting on Ψ interchanges ψL ↔ ψR (parity operation).
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Four-component spinor invariants

In this four component notation, we can write the Majorana and Dirac mass
terms.

For the Majorana mass, let us define the built-up four-component spinor of χL
(which transforms under (1/2, 0) representation) to be

ΨM =

 χL
iσ2χ∗L

 and ΨD =

 ψL
ψR

 (59)

The Majorana and Dirac mass terms are then

mΨT
M(−iγ0γ2)ΨM (Majorana mass) (60)

mD Ψ̄DΨD where Ψ̄D = Ψ†Dγ
0 (Dirac mass) (61)
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Vector particle invariants

A vector particle Aµ (e.g., photon) has many invariants. Easy: just contract all
the Lorentz indices.

The invariants up to dimension four are

AµA
µ, ∂µA

µ, ∂µA
µ∂νAν, ∂µA

ν∂µAν, AµAνAµAν. (62)

If Aµ is the gauge field of a U(1) invariant theory, such as QED, interactions
must be invariant also under gauge transformations

Aµ → Aµ +
1

e
∂µΛ (63)

The only interaction that is invariant under both Lorentz symmetry and gauge
symmetry is

FµνF
µν, where Fµν ≡ ∂µAν − ∂νAµ. (64)

This is the well-known kinetic energy term in the QED lagrangian

LKEQED = −1

4
FµνF

µν. (65)
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Vector particles interacting with fermions

The vector Aµ interaction with fermions requires us to consider its (1/2, 1/2)
representation: σµA

µ. A general interaction

(1/2, 0)⊗ (1/2, 1/2)⊗ (0, 1/2) = contains (0, 0) contains singlet (66)

If χR = (0, 1/2) and fL = (1/2, 0) then we can have interaction

χTR · σµAµ · fL (67)

where the first (second) · refers to SU(2)R (SU(2)L) contraction.

Consider χR = iσ2f ∗L. Interaction becomes

(iσ2f ∗L)T · σµAµ · fL = −if †L(σ2)Tσ2σµA
µ · fL = if †LσµA

µ · fL (68)

In four component language we see this interaction as

iΨ̄γµAµΨ. (69)
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Scalar interactions with itself, fermions and vector bosons

The invariant interactions of vector bosons with scalars is also easy. If we assume
real scalar φ, we have

∂µφ∂
µφ, φ, φ2, ∂µ∂µφ, φ3, φ4, etc. (70)

For charged complex scalar Φ (like the Higgs boson doublet) invariance under
Lorentz and charge symmetry allow

(∂µΦ∗)(∂µΦ), Φ∗Φ, (Φ∗Φ)2, etc. (71)

Interactions with the vector bosons are

AµAνΦ
∗Φ, AµΦ∗ ∂µΦ, etc. (72)

Interactions with fermions include

φνTRiσ
2νR, ΦνTRiσ

2νR, φf †RfL, Φf †RfL, etc. (73)

34



Lorentz invariance is too general for what is witnessed in nature

Lorentz invariance alone allows us to classify particles and gives strong con-
straints on what particles are allowed to interact. For example, one cannot have
the interactions

AµfR, f †LfLfR, ΦfLAµ, etc. (Lorentz forbidden) (74)

But there are many other interactions forbidden that Lorentz invariance alone
does not preclude. These include

AµA
µ, e†Lσ

µAµ · uL, τTRσ
2τR, µ†LΦ tR, etc. (75)

These are forbidden by “internal” gauge symmetries. The Standard Model
particles are charged not only under SU(2)L× SU(2)R Lorentz symmetry, but
also under SU(3)c × SU(2)W × U(1)Y gauge symmetries.

Interactions must be invariant under the transformations of every symme-
try.

We discuss next the gauge symmetries of the Standard Model.
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Strong, weak and hypercharge forces

The Standard Model particles also transform as representations of the strong,
weak and hypercharge forces, which in group theory language is

SU(3)c × SU(2)W × U(1)Y (Standard Model gauge groups). (76)

If a particle ϕ transforms as d dimensional representation R of group G, then

ϕ→ ϕ′ = eiθkT
R
k ϕ (77)

where TR are d× d dimensional generator matrices associated with the repre-
sentation R, and θk are the parameters of the group, analogous to the angle of
rotation in SO(2).

Global symmetries mean θk do not depend on spacetime, whereas with local
symmetries they do, θk(x).

Gauge symmetries are local internal symmetries.
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Hypercharge gauge symmetry

Hypercharge is a U(1) gauge symmetry, and its generator is the hypercharge
operator Y , and the parameter we can define as α.

Under gauge transformation

ψ → ψ′ = eiα(x)Yψ (78)

Let’s look at the transformation of the kinetic operator

ψ†Lσµ∂
µ · ψL → (eiαYψL)†σµ∂

µ · eiαYψL (79)

= ψ†Le
−iαY σµe

iαY · (iY ∂µαψL + ∂µψL) (80)

= ψ†Lσµ · ∂µψL + ψ†Lσµ · (iY ∂µα)ψL (81)

The kinetic term would be invariant if it weren’t for ∂µα 6= 0 contribution.

Introduce covariant derivative Dµ = ∂µ − iY Aµ (introducing gauge field Aµ),
and one finds

ψ†LσµD
µ · ψL, is invariant when (82)

Aµ → A′µ = Aµ + i∂µα. (83)
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Field SU(3) SU(2)L T 3 Y
2

Q = T 3 + Y
2

gaµ (gluons) 8 1 0 0 0
(W±

µ ,W
0
µ) 1 3 (±1, 0) 0 (±1, 0)

B0
µ 1 1 0 0 0

QL =

(
uL
dL

)
3 2

(
1
2

−1
2

)
1
6

(
2
3

−1
3

)
uR 3 1 0 2

3
2
3

dR 3 1 0 −1
3

−1
3

EL =

(
νL
eL

)
1 2

(
1
2

−1
2

)
−1

2

(
0
−1

)
eR 1 1 0 −1 −1

Φ =

(
φ+

φ0

)
1 2

(
1
2

−1
2

)
1
2

(
1
0

)

Φc =

(
φ0

φ−

)
1 2

(
1
2

−1
2

)
−1

2

(
0
−1

)

Invariants under SU(3)c and SU(2) are found when tensor products yield a
singlet 1. Under SU(3) conjugate representations are distinct (i.e., Q̄L is 3̄).
Conjugate reps for SU(2) are not distinct.

SU(3)c : 3̄⊗ 3 = 1 + 8 (84)

3⊗ 3 = 3̄ + 6 (85)

8⊗ 8 = 1 + · · · (86)

SU(2)W : 2⊗ 2 = 1 + 3 (87)

3⊗ 3 = 1 + · · · (88)
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The problem with elementary particle masses

The fermions of the Standard Model and some of the gauge bosons have mass.

This is a troublesome statement since gauge invariance appears to allow neither.

First, we illustrate the concepts with a massive U(1) theory – spontaneously
broken QED.

The lagrangian of QED is

LQED = −1

4
FµνF

µν + ψ̄(iγµDµ −m)ψ (89)

where

Dµ = ∂µ + ieAµ (90)

and Q = −1 is the charge of the electron. This lagrangian respects the U(1)
gauge symmetry

ψ → e−iα(x)ψ (91)

Aµ → Aµ +
1

e
∂µα(x). (92)
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Vector gauge boson mass

If we wish to give the photon a mass we may add to the lagrangian the mass
term

Lmass =
m2
A

2
AµA

µ. (93)

However, this term is not gauge invariant since under a transformation AµA
µ

becomes

AµA
µ → AµA

µ +
2

e
Aµ∂µα +

1

e2
∂µα∂

µα (94)

Simply adding a mass term does not respect the gauge symmetry.

Way to give photon mass while retaining the gauge symmetry: Higgs boson.

Higgs boson is a condensing complex scalar field 〈Φ〉 6= 0, charged under the
symmetry in question.
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The Higgs mechanism

Let us suppose that the photon in QED has a mass. Invoke the Higgs mechanism
in a gauge invariant manner by introducing the field Φ with charge q to the
lagrangian:

L = LQED + (DµΦ)∗(DµΦ)− V (Φ) (95)

where

V (Φ) = µ2|Φ|2 + λ|Φ|4 (96)

and it is assumed that λ > 0 and µ2 < 0.

With µ2 < 0 the minimum of this potential is not at Φ = 0 (algebra on next
slide).

The field Φ is then said to “get a vacuum expectation value” or a “vev”, which
freezes some charge (i.e., the charge of Φ) into the vacuum.
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Since Φ is a complex field we have the freedom to parametrize it as

Φ =
1√
2
φ(x)eiξ(x), (97)

where φ(x) and ξ(x) are real scalar fields. The scalar potential with this choice
simplifies to

V (Φ)→ V (φ) =
µ2

2
φ2 +

λ

4
φ4. (98)

Minimizing the scalar potential one finds

dV

dφ

∣∣∣∣∣∣∣∣φ=φ0

= µ2φ0 + λφ3
0 = 0 =⇒ φ0 =

√√√√√√−µ2

λ
. (99)
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In the unitary gauge, where α(x) = ξ(x)/φ0, one finds

(DµΦ)∗(DµΦ)→ 1

2
(∂µφ)2 +

1

2
e2q2φ2AµA

µ (100)

At the minimum of the potential 〈φ〉 = φ0, so one can expand the field φ about
its vev, φ = φ0 + h, and identify the fluctuating degree of freedom h with a
propagating real scalar boson.

The Higgs boson mass and self-interactions are obtained by expanding the la-
grangian about φ0. The result is

−LHiggs =
m2
h

2
h2 +

µ′

3!
h3 +

η

4!
h4 (101)

where

m2
h = 2λφ2

0, µ′ =
3m2

h

φ0
, η = 6λ = 3

m2
h

φ2
0

. (102)

The mass of the Higgs boson is not dictated by gauge couplings here, but rather
by its self-interaction coupling λ and the vev.
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The complex Higgs boson kinetic terms can be expanded to yield

∆L =
1

2
e2q2φ2

0AµA
µ + e2q2hAµA

µ +
1

2
e2q2h2AµA

µ. (103)

The first term is the mass of the photon, m2
A = e2q2φ2

0. A massive vector boson
has a longitudinal degree of freedom, in addition to its two transverse degrees
of freedom, which accounts for the degree of freedom lost by virtue of “gauging
away” ξ(x).

The second and third terms of eq. 103 set the strength of interaction of a single
Higgs boson and two Higgs bosons to a pair of photons:

hAµAν Feynman rule : i2e2q2φ0gµν = i2
m2
A

φ0
(104)

hhAµAν Feynman rule : i2e2q2gµν = i2
m2
A

φ2
0

(105)

after appropriate symmetry factors are included.

The general principles that we have learned here
1/ Higgs mechanism gives gauge bosons mass in gauge-invariant way
2/ Higgs boson couples with strength of particle’s mass
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Chiral fermion masses

In quantum field theory a four-component fermion can be written in its chiral
basis as

ψ =

 ψL
ψR

 (106)

where ψL,R are two-component chiral projection fermions. A mass term in
quantum field theory is equivalent to an interaction between the ψL and ψR
components

mψ̄ψ = mψ†LψR + mψ†RψL. (107)

In vectorlike QED, the ψL and ψR components have the same charge and a
mass term can simply be written down. However, let us now suppose that in
our toy U(1) model, there exists a set of chiral fermions where the PLψ = ψL
chiral projection carries a different gauge charge than the PRψ = ψR chiral
projection. In that case, we cannot write down a simple mass term without
explicitly breaking the gauge symmetry.
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The resolution to this conundrum of masses for chiral fermions resides in the
Higgs sector. If the Higgs boson has just the right charge, it can be utilized to
give mass to the chiral fermions. For example, if the charges are Q[ψL] = 1,
Q[ψR] = 1− q and Q[Φ] = q we can form the gauge invariant combination

Lf = yψ ψ
†
LΦψR + c.c. (108)

where yf is a dimensionless Yukawa coupling. Now expand the Higgs boson
about its vev, φ = (φ0 + h)/

√
2, and we find

Lf = mψ ψ
†
LψR +

mψ

φ0

hψ†LψR + c.c. (109)

where mψ = yψφ0/
√

2 is mass of fermion!

This same Yukawa interaction gives rise to an Higgs-fermion interaction:

hψ̄ψ (Feynman rule) : i
mψ

φ0
. (110)

Just as was the case with the gauge bosons, the generation of fermion masses
by the Higgs boson leads to an interaction of the physical Higgs bosons with
the fermion proportional to the fermion mass.
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Standard Model Electroweak Theory

The bosonic electroweak lagrangian is an SU(2)L×U(1)Y gauge invariant theory

Lbos = |DµΦ|2 − µ2|Φ|2 − λ|Φ|4 − 1

4
BµνB

µν − 1

4
W a

µνW
a,µν (111)

where Φ is an electroweak doublet with Standard Model charges of (2, 1/2)
under SU(2)L × U(1)Y (Y = +1/2). In our normalization electric charge is
Q = T 3 + Y

2 , and the doublet field Φ can be written as two complex scalar
component fields φ+ and φ0:

Φ =

 φ
+

φ0

 . (112)

The covariant derivative and field strength tensors are

DµΦ =
∂µ + ig

τ a

2
W a

µ + ig′
Y

2
Bµ

 Φ (113)

Bµν = ∂µBν − ∂νBµ (114)

W a
µν = ∂µW

a
ν − ∂νW a

µ − gfabcW b
µW

c
ν (115)

The minimum of the potential does not occur at Φ = 0 if µ2 < 0. Instead, one
finds that the minimum occurs at a non-zero value of Φ – its vacuum expectation
value (vev).
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With gauge transformation the vev of Φ is

〈Φ〉 =
1√
2

 0
v

 where v ≡
√√√√√√−µ2

λ
. (116)

This vev carries hypercharge and weak charge into the vacuum, and what is left
unbroken is electric charge.

Our symmetry breaking pattern is then simply SU(2)L × U(1)Y → U(1)EM .
The original group, SU(2)L×U(1)Y , has a total of four generators and U(1)EM
has one generator. Thus, three generators are ‘broken’.

Goldstone’s theorem tells us that for every broken generator of a symmetry
there must correspond a massless field. These three massless Goldstone bosons
we can call φ1,2,3. We now can rewrite the full Higgs field Φ as

〈Φ〉 =
1√
2

 0
v

 +
1√
2

 φ1 + iφ2

h + iφ3

 (117)

The fourth degree of freedom of Φ is the Standard Model Higgs boson h. It is a
propagating degree of freedom. The other three states φ1,2,3 can all be absorbed
as longitudinal components of three massive vector gauge bosons Z,W±.
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The four electroweak gauge boson mass eigenstates are

W±
µ =

1√
2

(
W (1)

µ ∓ iW (2)
µ

)
, M 2

W =
1

4
g2v2 (118)

Zµ =
gW (3)

µ − g′Aµ√
g2 + g′2

, M 2
Z =

1

4
(g′2 + g2)v2 (119)

Aµ =
gBµ + g′W (3)

√
g2 + g′2

, M 2
A = 0 (120)

It is convenient to define tan θW = g′/g. By measuring interactions of the gauge
bosons with fermions it has been determined experimentally that g = 0.65 and
g′ = 0.35, and therefore sin2 θW = 0.23.

Important Exercise: From eqs. 111, 113 and 117 derive the mass eigenvector
and eigenvalue equations for Aµ, Zµ and W±

µ given above.
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Higgs boson interactions to bosons

After performing the redefinitions of the fields above, the kinetic terms for the
W±

µ , Zµ, Aµ will all be canonical. Expanding the Higgs field about the vacuum,
the contributions to the lagrangian involving Higgs boson interaction terms are

Lh int =

m2
WW

+
µ W

−,µ +
m2
Z

2
ZµZ

µ


1 +

h

v


2

(121)

−m
2
h

2
h2 − ξ

3!
h3 − η

4!
h4 (122)

where

m2
W =

1

4
g2v2, m2

Z =
1

4
(g2 + g′2)v2 =⇒ m2

W

m2
Z

= 1− sin2 θW (123)

m2
h = 2λv2, ξ =

3m2
h

v
, η = 6λ =

3m2
h

v2
. (124)

From our knowledge of the gauge couplings, the value of the vev v can be
determined from the masses of the gauge bosons: v ' 246 GeV.
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The Feynman rules for Higgs boson interactions among the bosons are

hhh : −i3m
2
h

v
(125)

hhhh : −i3m
2
h

v2
(126)

hW+
µ W

−
ν : i2

m2
W

v
gµν (127)

hZµZν : i2
m2
Z

v
gµν (128)

hhW+
µ W

−
ν : i2

m2
W

v2
gµν (129)

hhZµZν : i2
m2
Z

v2
gµν (130)
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Fermion masses and their couplings to the Higgs boson

Fermion masses are also generated in the Standard Model through the Higgs
boson vev, which in turn induces an interaction between the physical Higgs
boson and the fermions. Let us start by looking at b quark interactions. The
relevant lagrangian for couplings with the Higgs boson is

∆L = ybQ
†
LΦbR + c.c. where Q†L = (t†L b

†
L) (131)

where yb is the Yukawa coupling. The Higgs boson, after a suitable gauge
transformation, can be written simply as

Φ =
1√
2

 0
v + h

 (132)

and the interaction lagrangian can be expanded to

∆L = ybQ
†
LΦbR + c.c. =

yb√
2

(t†L b
†
L)

 0
v + h

 bR + h.c. (133)

= mb(b
†
RbL + b†LbR)

1 +
h

v

 = mb b̄b
1 +

h

v

 (134)

where mb = ybv/
√

2 is the mass of the b quark.
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The quantum numbers are good for b†LbR mass term.

Under SU(2) the interaction Q†LΦbR is invariant because 2×2×1 ∈ 1 contains
a singlet.

And under U(1)Y hypercharge the interaction is invariant because Y
Q
†
L

+ YΦ +

YbR = −1
6 + 1

2 −
1
3 sums to zero.

Thus, the interaction is invariant under all gauge groups, and we have found a
suitable way to give mass to the bottom quark.

Field SU(3) SU(2)L T 3 Y
2

Q = T 3 + Y
2

gaµ (gluons) 8 1 0 0 0
(W±

µ ,W
0
µ) 1 3 (±1, 0) 0 (±1, 0)

B0
µ 1 1 0 0 0

QL =

(
uL
dL

)
3 2

(
1
2

−1
2

)
1
6

(
2
3

−1
3

)
uR 3 1 0 2

3
2
3

dR 3 1 0 −1
3

−1
3

EL =

(
νL
eL

)
1 2

(
1
2

−1
2

)
−1

2

(
0
−1

)
eR 1 1 0 −1 −1

Φ =

(
φ+

φ0

)
1 2

(
1
2

−1
2

)
1
2

(
1
0

)

Φc =

(
φ0

φ−

)
1 2

(
1
2

−1
2

)
−1

2

(
0
−1

)
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How does this work for giving mass to the top quark? Obviously, Q†LΦtR is
not invariant. However, we have the freedom to create the conjugate represen-
tation of Φ which still transforms as a 2 under SU(2) but switches sign under
hypercharge: Φc = iσ2Φ∗. This implies that YΦc = −1

2 and

Φc =
1√
2

 v + h
0

 (135)

when restricted to just the real physical Higgs field expansion about the vev.
Therefore, it becomes clear that ytQ

†
LΦctR + c.c. is now invariant since the

SU(2) invariance remains 2 × 2 × 1 ∈ 1 and U(1)Y invariance follows from
Y
Q
†
L

+ YΦc + YtR = −1
6 −

1
2 + 2

3 = 0. Similar to the b quark one obtains an

expression for the mass and Higgs boson interaction:

∆L = ytQ
†
LΦctR + c.c. =

yt√
2

(t†L b
†
L)

 v + h
0

 tR + c.c. (136)

= mt(t
†
RtL + t†LtR)

1 +
h

v

 = mt t̄t
1 +

h

v

 (137)

where mt = ytv/
√

2 is the mass of the t quark.

The mass of the charged leptons follows in the same manner, yeE
†
LΦeR + c.c.,

and interactions with the Higgs boson result.
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In all cased the Feynman diagram for Higgs boson interactions with the fermions
at leading order is

hf̄f : i
mf

v
. (138)

We see from this discussion several important points.

• Higgs boson can give mass to all massive vector bosons (W±, Z)

• Higgs boson can give mass to all fermions

• Higgs boson phenomenology (production, decays) entirely determined once
its mass is known
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Standard Model Lagrangian

We now put the elements together to write the SM lagrangian:

LSM = |DµΦ|2 − µ2|Φ|2 − λ|Φ|4 (139)

−1

4
BµνB

µν − 1

4
W a

µνW
a,µν − 1

4
Gk,µνGk

µν

−if †LiγµDµfLi − if †RγµDµfRi

−ydijQ
†
LiΦdRj − yuijQ

†
LiΦ

cuRj − yeijE
†
LiΦeRj + h.c.

where

Dµ = ∂µ + ig
τ a

2
W a

µ + ig′
Y

2
Bµ + igsλ

kGk
µ (140)

Bµν = ∂µBν − ∂νBµ (141)

W a
µν = ∂µW

a
ν − ∂νW a

µ − gfabcW b
µW

c
ν (142)

Gk
µν = ∂µG

k
ν − ∂νGk

µ − gsf ′klmGl
µG

m
ν (143)

Lagrangian is Lorentz invariant and gauge invariant and allows mass for all
particles.
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Observables in the Standard Model

The input parameters of the Standard Model are

g, g′, gs, yt, yb, ye, . . . (144)

From these input parameters, and knowledge of the elementary particle identi-
ties, we can calculate all the observables, which include

σ(e+e− → µ+µ−), σ(pp̄→ W+Z), · · · (145)

MZ, MW , mt, me, · · · (146)

Γ(µ→ eν̄eνµ), Γ(Z → τ τ̄ ), Γ(h→ γγ), · · · (147)

AFB(Z → bb̄), ALR(Z → e+e−) (148)

There are an infinite number of observables that can be defined.
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Calculating Observables

To learn how to compute observables is the subject of other lectures.

We shall just give the answers to the calculation of the observables in terms of
the lagrangian parameters.

To do that, it is convenient to define three derived parameters, e, sW and cW ,
where

e =
gg′√
g2 + g′2

, sW =
g′√

g2 + g′2
, cW =

g√
g2 + g′2

(149)

These are defined merely for convenience, and not strictly necessary. Note also
that

g =
e

sW
, g′ =

e

cW
, and c2

W = 1− s2
W (150)

58



Leading-order results for some key observables

M̂ 2
Z =

1

4
(g2 + g′2)v2, M̂ 2

W =
1

4
g2v2, mf = yfv (151)

i4πα̂

q2

∣∣∣∣∣∣∣∣q2→0

=
e2

q2

∣∣∣∣∣∣∣∣q2→0

(γ∗ → e+e− Compton scattering) (152)

ĜF√
2

=
g2

8M̂ 2
W

=
1

2v2

 (µ decay) (153)

Γ̂(Z → ff̄ ) =
Nc

48π

g2

c2
W

MZ(g2
V + g2

A), where gV = T
(3)
f − 2Qfs

2
W , gA = T

(3)
f ,

and T
(3)
f = ±1

2
for up/down fermions (154)

Âe
LR =

Γ(Z → e+
Le
−
L)− Γ(Z → e+

Re
−
R)

Γ(Z → e+
Le
−
L) + Γ(Z → e+

Re
−
R)
≡ (1/2− ŝ2

eff)2 − (ŝ2
eff)2

(1/2− ŝ2
eff)2 − (ŝ2

eff)2
(155)

ŝ2
eff is often called sin2 θeff

` , and at leading order it is ŝ2 = s2
W !
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Six key observables and their measured values

Let’s simplify and exchange {g, g′, v} for {e, s, v} and calculate

α̂ =
e2

4π
= 1/137.03599911(46) (156)

ĜF =
1√
2v2

= 1.16637(1)× 10−5 GeV−2 (157)

M̂Z =
ev

2sc
= 91.1875± 0.0021 GeV (158)

M̂W =
ev

2s
= 80.385± 0.015 GeV (159)

ŝ2
eff = s2

W = 0.23098± 0.00027 (SLAC ALR only) (160)

Γ̂l+l− =
v

96π

e3

s3c3


−1

2
+ 2s2

W


2

+
1

4

 = 83.989± 0.100 MeV (161)

Left column is name of observable, center column is calculation in terms of
lagrangian parameters, and right column is the experimental measurement.
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Over-constrained system = ability to test the theory

In our analysis we have six observables

{α̂, ĜF , M̂Z, M̂W , ŝ2
eff, Γ̂l+l−} (162)

that are written in terms of just three parameters {e, s, v}.

Test by solving for {e, s, v} using the first three very well measured observables:

e =
√

4πα̂ = 0.30282 (163)

v =

 1√
2ĜF


1/2

= 246.22 GeV (164)

s =

1

2
− 1

2

√√√√√√√1− 4πα̂√
2ĜFM̂ 2

Z


1/2

= 0.46062 (165)
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Calculation of MW prediction in terms of α̂, ĜF and M̂Z

Having expressed e, v and s in terms of observables α̂, ĜF and M̂Z, we can
now compute the remaining observables MW , ŝ2

eff and Γ̂`` in terms of α̂, ĜF

and M̂Z.

Examples:

M̂W (prediction) =
ev

2s
=


4πα̂/

√
2ĜF

1−
√√√√1− 4πα̂√

2ĜF M̂
2
Z



1/2

= 80.939 GeV (166)

ŝ2
eff(prediction) = s2 =

1

2
− 1

2

√√√√√√√1− 4πα̂√
2ĜFM̂ 2

Z

= 0.21215 (167)
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Tree-level predictions for M̂W , ŝ2
eff and Γ`

Using the calculations of {e, s, v} we find the following predictions for M̂W , ŝ2
eff

and Γ̂`, their corresponding experimental measurement, and the number of σ
the prediction is off from the measurement

Observable Prediction Measurement Error

M̂W 80.939 GeV 80.385± 0.015 GeV 37σ
ŝ2

eff 0.21215 0.23098± 0.00027 70σ

Γ̂` 84.841 MeV 83.989± 0.100 MeV 8.5σ

Even if we put α̂→ α(MZ) = 1/129.0, we still find problems

Observable Prediction Measurement Error

M̂W 79.972 GeV 80.385± 0.015 GeV 27σ
ŝ2

eff 0.23085 0.23098± 0.00027 0.5σ

Γ̂` 83.427 MeV 83.989± 0.100 MeV 5.6σ
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Does this mean the Standard Model is a very bad theory?

No, the problem is that we have pretended that the theory computation was
perfect, whereas they were only tree-level results.

There are “radiative corrections” to all the observables: quantum loops that are
higher-order in the couplings.

The measurements are so good that we need these higher-order calculations to
test the theories compatibility.

The next slide shows a set of observables and their compatibilities with the Stan-
dard Model after doing state-of-the-art calculations. From LEP Electroweak
Working Group.
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Measurement Fit |Omeas−Ofit|/σmeas

0 1 2 3

0 1 2 3

∆αhad(mZ)∆α(5) 0.02750 ± 0.00033 0.02759

mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1874

ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4959

σhad [nb]σ0 41.540 ± 0.037 41.478

RlRl 20.767 ± 0.025 20.742

AfbA0,l 0.01714 ± 0.00095 0.01645

Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1481

RbRb 0.21629 ± 0.00066 0.21579

RcRc 0.1721 ± 0.0030 0.1723

AfbA0,b 0.0992 ± 0.0016 0.1038

AfbA0,c 0.0707 ± 0.0035 0.0742

AbAb 0.923 ± 0.020 0.935

AcAc 0.670 ± 0.027 0.668

Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1481

sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314

mW [GeV]mW [GeV] 80.385 ± 0.015 80.377

ΓW [GeV]ΓW [GeV] 2.085 ± 0.042 2.092

mt [GeV]mt [GeV] 173.20 ± 0.90 173.26

March 2012

This figure is from the LEP Electroweak Working Group.
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Discovery of the Higgs Boson

It was on announced on July 4, 2012 that a boson of mass 126 GeV was dis-
covered. Overtime it is looking more and more like the Standard Model Higgs
boson.

Discovery takes place mainly from two channels:

σ(gg → H)×Br(H → γγ) and, (168)

σ(gg → H)×Br(H → ZZ∗ → `+`−`′+`′−) (169)

The gg → H cross-section comes about from a loop of top quarks

gg → (tt̄)loop → H. (170)

The H → γγ decay comes about from loop of W bosons and top quarks:

H → (W+W−)loop + (tt̄)loop → γγ. (171)
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ATLAS (Peters 2013)
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ATLAS (Peters 2013)
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ATLAS (Peters 2013)
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ATLAS (Peters 2013)
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The discovered scalar is acting like a Higgs boson to within about 30% or so.

Many new physics ideas suggest that corrections on the order of 10% or less are
to be expected. This could take LHC many years to get to that level, and may
require a future e+e− linear collider.
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Conclusion

Our discussion of the Standard Model has been focused on understanding

- Particle identities with respect to spacetime symmetries (Lorentz Group)

- Particle identities with respect to internal symmetries (gauge symmetries)

- Particle interactions

- Observables in which particles manifest their behavior and properties

- Higgs boson solution to the elementary particle mass problem

In other lectures you will learn more about how particles interact among the
generations (flavor physics) and how they violate CP symmetry, and other spe-
cial features derivable from the Standard Model lagrangian you have learned
here.

And finally, you will learn that the Standard Model is incomplete!
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