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Abstract: Morphometric methods have been used in diatom research for decades. We present a review of 
the history of usage of morphometric methods of outline shape analysis, pattern recognition, and landmark-
based analysis. In addition, we present how morphometric methods are important in diatom taxonomy 
and classifi cation and what connections exist between morphometric methods and biologically meaningful 
results. Next, we present some details about calculating shape descriptors and using them in analysis of 
shape variation, the issues to be aware of, and what such results mean when defi ning shape groups as species 
groups. Finally, we provide a glimpse of the future in using morphometric methods in diatom research.
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Introduction
With a shift from purely descriptive works to measurement-based studies, morphometric methods 
have been used to help separate diatom taxonomic groups which are diffi cult to differentiate by 
visual means alone. Moreover, because of the laborious task of counting diatoms for aquatic and 
ecological studies as well as paleontological investigations, automation of diatom identifi cation 
has been a desirable extension of quantitative taxonomic methods. Development of such methods 
has progressed from simple measurements to more mathematically involved treatments, such as 
shape analysis and pattern recognition.

Variation in diatoms has been the focus of many studies over the long history in the study 
of these organisms. With the advent of the microscope, and subsequently, the acceptance of 
Darwinian ideas on evolution and change, diatom studies progressed as research encompassed 
an increasing interest in the details of morphological features. At a time when diatom research 
noticeably advanced, there were a large number of species descriptions and studies analyzing the 
range in a variety of metrics associated with diatom cell walls (e.g., length, breadth, striae density, 
and the absolute number and/or density of a wide array of valve features; see e.g., Reimer 1954).

Over 35 years ago, more of a biometric or traditional morphometric approach to diatom 
variation was carried out. Burke (1970) plotted the relationship between valve diameter and 
size in Aulacodiscus species, noting the variation associated with diameter, and the variation 
that tended to be independent of size. Other investigators, trying to understand the potential 
impact of environmental variables on valve size and structure pursued analyses with cultured 
cells, noting the relationship of valve size and ornamentation of diatom cell walls with a 
range of environmental variables (e.g., Geissler 1970a, b, 1982). A large number of studies 
then followed in this tradition, plotting a number of diatom metrics to establish variation and 
possible implications of the variation (e.g., Holmes & Reimann 1966, Steinman & Sheath 1984, 
Kociolek & Stoermer 1988, Rivera & Barrales 1994, Kobayashi et al. 1998, Wendker 1990). 
Others applied statistics to assess the probability of the sources of variation (Wood et al. 1987, 
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Mizuno 1987). Multivariate statistical analyses were applied to structural variation in, mainly, 
centric diatoms (Genkal & Kuzmin 1979, Theriot & Stoermer 1982, 1984, Theriot 1987, Theriot 
et al. 1988), to assess variation and document cladogenesis in diatom lineages (Theriot 1992). 
Tropper (1975) had applied statistical analysis to document differences in natural populations of 
Achnanthes hauckiana Grunow in Cleve & Grunow and to formulate shape differences based 
on size. Investigations also focused on the types of data that might be useful in these types of 
analyses (e.g., Johansen & Theriot 1987).

All of the methods used have been successful to varying degrees in quantifying differences 
among taxa. When speaking of morphometrics as a discipline, quantitative morphometrics is 
the focus of subject-matter that includes outline (Slice et al. 1996) and landmark-based (Slice 
et al. 1996) methods, although there is a trend currently toward combining the tools of outline 
and landmark-based (geometric) morphometrics into new methods. Degree of success in using 
all these methods depends, in part, on the actual applicability of the method chosen for analysis. 
Moreover, results from morphometric analysis are the most convincing when they encompass 
biological meaning rather than being an exercise in mathematical application only. Biological 
meaning is accomplished by results based on landmark-based methods that are choice of points 
on the interior of organisms and represent homologous points on homologous structures, or 
outline methods which depend on choice of points on the exterior of organisms and represent 
biological change in shape.

Purposes of this review
Traditional morphometrics (Slice et al. 1996) continue to be useful in diatom research (e.g., 
Stoermer & Andresen 2006), but we will not devote further attention to this topic at this time. We 
are interested in, and focus on, the more sophisticated mathematical methods in morphometrics 
as useful tools in diatom research with respect to the advanced mathematical treatments of 
morphometrics, and where relevant, pattern recognition studies that rely on the mathematics of 
morphometrics. A compilation of the advanced mathematical methods used, the validity of their 
use in research studies, and their impact on diatom taxonomy may be assessed.

To this end, our review will be composed of four parts. After the introductory remarks 
already made, the fi rst section is devoted to the history of the theoretical concepts and bases 
behind quantitative morphometrics that are relevant to the development of methods for use in 
diatom research. Without a theoretical basis to encompass the outcome of particular methods, 
the context of and potential for understanding such methods in diatom research is absent. This 
context involves the concept of shape space, two general bases of analyzing shape, namely, 
landmark-based and outline-based methods, and multivariate methods used to analyze the shape 
descriptors. The primary, relevant literature will be cited so that researchers may consult each 
topic in more depth.

In the second section, a history of using morphometric methods in diatom re search is 
presented in chronological order. Since this is a review about methods and how those methods 
are applied, an assessment is presented of using morphometrics in this subsection. We provide 
an assessment of landmark-based methods in this section, and treat an assessment of other 
morphometric methods, namely, shape analysis, in the next section. Because of the diatom life 
cycle, especially size reduction during vegetative reproduction, characters may be lost and the 
application of geometric morphometrics may present some challenges. In addition, we elucidate 
some basic concepts that are necessary to truly master and effectively apply landmark-based 
methods in diatom research.

In the third section, outline shape analysis methods are specifi cally cov ered since these 
methods have been used the most. In addition, we present an assessment of these methods in 
their capacity to recover biologically mean ingful features of diatoms. We cover seven subtopics: 
Diatom valve shape as a morphological character; Basic measurements; Outline shape, ortho-
gonal polynomials and their properties, and regression coeffi cients; Shape descriptors and data 
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transformation; Multivariate methods and the analysis of shape variation (including principal 
components and discriminant analysis); Choice of method and issues to consider; Shape 
descriptors, shape space and biologically meaningful interpretation.

In the fi nal section, potential application of combination and new geometric morphometric 
methods are considered. Much has been accomplished and advanced in quantitative morphometrics 
recently, and applicability in diatom research may very well profi t from these advances.

With these purposes in mind, we will detail the basis, chronology and usage of quantitative 
morphometric methods in diatom research. At this point, some generalities are in order. To better 
understand the terms of geometric morphometrics, see Slice et al. (1996) for a glossary. For 
a general primer on geometric morphometrics, see Zelditch et al. (2004). For background on 
shape analysis, see Stoermer & Ladewski (1982) and Pappas & Stoermer (2003) for information 
concerning Legendre polynomials, and see Mou & Stoermer (1992) and Pappas et al. (2001) for 
information concerning Fourier analysis in diatom research.

Theoretical context of quantitative morphometric methods in diatom 
research
During the late 1970s, development of morphometric methods as applied to biological problem-
solving gained interest and prominence (e.g., Bookstein 1978, Kendall 1977). In particular, 
shape analysis was seen to provide a quantitative way to characterize biological organisms that 
were empirically diffi cult to differentiate. This was seen as especially promising for taxonomic 
resolution at the species level.

Two different but complementary approaches were devised on how to represent shapes. 
One approach involved using points common to all specimens whereby those points formed 
a continuum (e.g., Bookstein 1991). These points could then be compared to a mean shape 
(e.g., Goodall 1991) for the group of specimens being considered. The points are used for all 
specimens insofar as the change in shape is measured by the deformation among all shapes. The 
other approach involved using points common to all specimens whereby the lowest dimensional 
space was achieved (Kendall 1977, 1984, Kendall et al. 1999). From this, only those specimens 
where all points do not align completely are considered. The points determine the object of study 
(Kendall et al. 1999). The choice of points as markers or codes of the shape of a specimen in 
relation to all other specimens being considered is not a trivial task (Kendall et al. 1999). Others 
involved with morphometrics, both early on (e.g., Ziezold 1977, 1994), and subsequently (e.g., 
Mardia & Dryden 1989a, 1989b, Dryden & Mardia 1991, 1998, Small 1988, 1996) used aspects 
of both approaches.

Inherent in Kendall et al. (1999) approach is the idea of a shape space (Slice et al. 1996), 
where points from all specimens may be rotated or translated and are dispersed with respect 
to their centroid being moved to the origin of the coordinates. Size is expanded or contracted 
to yield a standardized plot, and this plot is a result in a confi guration known as pre-space or 
preshape space. Kendall (1984) and Kendall et al. (1999) were concerned with shape manifolds 
and complex projective spaces (also see e.g., Mardia & Patrangenaru 2005). While this approach 
is theoretically useful as a basis for morphometrics, biological shapes are more suited to being 
studied using continuous deformation methods (Bookstein 1991).

The statistical variation of size and shape in organisms is front and center of Bookstein’s 
(1986, 1991) approach. To reiterate, distribution of shape variation around mean shapes is the 
basis of the approach. That is, the tangent space in the neighborhood of a particular point in 
shape space is the tangent projection that is a linearized version of the average shape. The choice 
of points, also known as landmarks (Slice et al. 1996), are important in allometric variation 
among shapes, both globally and locally (Dryden & Mardia 1998). Landmarks are categorized 
depending on how the points are chosen. Points chosen on an organism that correspond to those 
on another organism in a biologically important way are anatomical landmarks. Points chosen 
with reference to maximum curvature are mathematical landmarks. Points chosen as maximum 
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diameters, centroids, foci, or other extrema are pseudolandmarks (Slice et al. 1996). Points 
chosen on a curve with respect to change in angle along the curve in low dimensional space are 
semilandmarks (Dryden & Mardia 1998).  

Landmarks may be analyzed by statistically transforming them into shape coeffi cients. 
Translation, rotation and rescaling must be removed (Rohlf & Slice 1990) to achieve matching 
of shapes. This superimposition (Slice et al. 1996) is used in order to estimate an average shape.  
Once an average shape is determined, confi gurations of landmarks among shapes may be 
analyzed using Procrustean distances (Gower 1975). Matching of shapes is obtained by least-
squares regression. Whether using shape coeffi cients or Procrustean distances, the results may be 
analyzed by multivariate statistics (e.g., Mardia & Dryden 1989a, 1989b) and displayed in shape 
space (e.g., Goodall & Mardia 1993). In Kendall’s treatment (1984, Kendall et al. 1999), shape 
space is a quotient space whereby a geodesic distance is a Riemannian metric with a Fréchet 
mean space (Le & Kume 2000). Comparing two shapes in this way may be approximately a 
Procrustean mean from minimization of Euclidean distances (Kendall 1984, Kendall et al. 1999) 
when small variation among shapes is present (Slice 2001).

Expressing allometric variation with respect to the comparison of forms as a latent 
variable originates from the work of Thompson (1917, 1942), and this basis is used in modern 
morphometrics (e.g., Adams et al. 2004). The multivariate method most often chosen to depict 
shape variability is principal components analysis (PCA). Although size and shape are converted 
to orthogonal variables, size cannot be entirely extricated from the analysis (Mosimann 1970). 
An alternative use of PCA in the analysis of shape variation involves warping based on thin-plate 
splines (Bookstein 1989). Mapping one confi guration of points to another involves two parts to 
the decomposition of the deformation (= bending) of shapes. Tilting an infi nitely thin plate so 
that bending energy (Slice et al. 1996) equals zero produces an affi ne transformation on a global 
scale. The latent roots or eigenvalues of the bending energy matrix corresponding to the bending 
energy in the non-affi ne part of the transformation are on a local scale. The latent vectors or 
eigenvectors associated with the latent roots are the important part of the decomposition since 
they are biologically interpretable with respect to the organisms being studied. The eigenvalues 
are bending energies, and the eigenvectors are principal warps (Dryden & Mardia 1998).

History of morphometric methods in diatom research – a chronology
Geometric morphometrics, and outline shape analysis in particular, was viewed as a way to 
quantitatively differentiate morphologically similar specimens that form species complexes or 
other taxonomic units or as a means to pattern recognition for purposes of counting diatoms in 
limnological and ecological studies. In the area of pattern recognition, the desire for automated 
taxon identifi cation systems has been an impetus for the improvement of consistency and effi cacy 
in counting diatoms and is directly linked to and a result of using such morphometric methods 
(MacLeod et al. 2007). 

One of the earliest attempts at morphometric analysis in diatom research involved automated 
identifi cation of diatoms using holographic fi lters (Cairns, Jr. et al. 1974, 1977, 1982). The idea 
involved using a laser light source and superimposition of a diatom image and a plane wave 
that were focused on a photographic plate. The fi lter recorded the optical frequencies of the 
diatom being studied (Almeida & Eu 1976). In this pattern recognition system, when a diatom 
corresponded to the holographic fi lter made of that diatom, the intensity of the signal was as 
indication of degree of identifi cation. The more intense the signal, the higher the correlation 
was with the correct identifi cation. That is, autocorrelation signifi ed correct identifi cation, while 
cross-correlation signifi ed misidentifi cation. Composite holographic fi lters were used to identify 
multiple diatoms at the same time and diatoms of the same species that had different sizes. Partial 
diatom frustules could also be identifi ed using holographic fi lters. A micro-optical processor was 
used to automate this process for diatom counting. Error rate for identifi cations was 5–10 %
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when compared to counts made visually by a diatom taxonomist using a microscope (Cairns et 
al. 1982).

At approximately the same time, a preliminary study was conducted on an automated method 
of identifying phytoplankton (Johnston & Stoermer 1976). Diatoms were used to illustrate the 
procedure that involved photographing and scanning specimens. Using absorbance values from 
the scanning process, a topological method was incorporated into computer programs to detect 
individual cell boundaries. The results were that diatom cells could be distinguished from their 
background, circular diatoms could be distinguished from oblong diatoms, the ratio of length to 
width for each cell could be estimated, an asymmetry factor could be calculated, and measurement 
of cell area could be accomplished. Fascicle frequency, based on Fourier analysis to calculate 
rotational symmetry, was determined as a way to institute pattern recognition of different centric 
diatoms. With the problems associated with cell overlap and boundary detection, Johnston & 
Stoermer (1976) recognized that automated diatom taxonomy is much more diffi cult to achieve 
than developing a computer-driven database as a taxonomic reference standard. 

In the winter of 1980, The University of Michigan Museum of Zoology hosted a morpho-
metrics workshop and produced two volumes of methods and applications (Bookstein et al. 
1985, Rohlf & Bookstein 1990). In general, a consensus was reached that espoused the view 
that wherever possible, landmarks, as biological homologies, should be used in morphometrics 
to confer biological meaning to the results of analysis. The group did not address problems 
where landmarks are not identifi able on organism form because of developmental or other 
morphological considerations. Outline recovery methods as decomposition into harmonics (e.g., 
Rohlf 1990) rather than superimposition were also explicated. Diatoms, per se, were one of many 
organisms not tested with morphometric methods developed at the workshop

Just prior to development of modern shape theory and usage of landmark-based methods, 
decomposition into harmonics, or Fourier analysis, was developed as a shape analysis method 
of object outlines (Zahn & Roskies 1972, Bennett & MacDonald 1975, Persoon & Fu 1977). 
Concomitantly and subsequently, Fourier analysis has become one of the most widely used 
techniques in calculating biological shape descriptors for use in multivariate ordination or 
other analyses (e.g., Gevirtz 1976, Younker & Ehrlich 1977, Kincaid & Schneider 1983, Rohlf 
& Archie 1984, Ferson et al. 1985, Lestrel 1997, and others), including eigenshape analysis 
(Lohmann 1983) and Fourier elliptical analysis (Kuhl & Giardina 1982). Applications in diatom 
research would take the form of not only using Fourier analysis, and in particular, the discrete 
Fourier transform, but also adaptation of orthogonal polynomials for use in shape analysis.

Such methods were being explored with respect to diatom valve shape outlines. One of the 
fi rst of these studies was that of Gomphoneis herculeana (Ehrenberg) P. T. Cleve (Stoermer & 
Ladewski 1982). Shape analysis of this taxon was accomplished using Legendre polynomials 
fi tted to the diatom outline in a least-squares sense. Legendre coeffi cients were extracted as 
shape descriptors and ordinated in PCA to depict shape variation. As a result, G. herculeana was 
determined to have different shapes between a modern and the type population, and this was 
corroborated using discriminant analysis (DA).

Soon thereafter, other studies using Legendre polynomials followed, including those of 
Gomphoneis P. T. Cleve (Stoermer et al. 1984), Didymosphenia M. Schmidt (Stoermer et al. 1986), 
Tabellaria fl occulosa (Roth) Kützing (Theriot & Ladewski 1986), Eunotia pectinalis (Kützing) 
Rabenhorst (Steinman & Ladewski 1987), Surirella fastuosa (Ehrenberg) Ehrenberg (Goldman et 
al. 1990), Meridion C. A. Agardh (Rhode et al. 2001), Cymbella cistula (Hemprich in Hemprich 
& Ehrenberg) Kirchner species complex (Pappas & Stoermer 2003), and Fragilariforma (Ralfs) 
Williams et Round (Kingston & Pappas 2009). In each of these studies, Legendre coeffi cients 
were used as shape coeffi cients, and these shape coeffi cients were ordinated in PCA. DA was 
also used, and with this, ordination revealed that eigenvectors could be interpreted in biological 
terms. Fourier analysis was also applied in two cases. One involved a study of Tabellaria 
Ehrenberg (Mou & Stoermer 1992), and the other study involved Asterionella Hassall (Pappas 
& Stoermer 2001, Pappas et al. 2001). Both Tabellaria and Asterionella are particularly devoid 
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of discrete morphological characters and are prime examples where landmark-based methods 
are not applicable.

For studies using Legendre polynomials, results indicated varying degrees of distinguishability 
of shape groups. A broader study of Gomphoneis revealed that fi ve of six modern populations 
were different in shape from the type population. The one population that was similarly shaped 
occurred in the same locality as the type population (Stoermer et al. 1984). For Didymosphenia, 
populations from Lake Baikal and China could be distinguished from Karluk Lake and Lake 
Superior when based on shape analysis alone, while populations from Karluk Lake and Lake 
Superior were not easily distinguishable from each other (Stoermer et al. 1986). Shape variation 
in neotype specimens of Tabellaria fl occulosa was found to be separable for long specimens, 
while size-reduced specimens exhibited greater shape variability, and therefore, shape was not 
recovered as well (Theriot & Ladewski 1986). In studying populations from a pool site and 
a riffl e site in Rhode Island over a four-season period, Eunotia pectinalis, was found to have 
continuous shape variation (Steinman & Ladewski 1987). Similarly, populations of Surirella 
fastuosa from Belize and the Philippines revealed only slight shape differences (Goldman et 
al. 1990). Separation of shapes in the Cymbella cistula species complex from specimens in 
northern Lake Michigan and Torch Lake was accomplished to show that six groups could be 
distinguished (Pappas & Stoermer 2003). In a study of Fragilariforma that included specimens 
from a variety of localities as well as digitized images of specimens published in the literature, 
it was demonstrated that nine different taxon groups were distinguished and that currently used 
taxonomic names could be assigned to each group (Kingston & Pappas 2009).

Again, in all of the aforementioned studies, with the exception of Kingston & Pappas (2009), 
shape group differentiation was not necessarily completely satisfi ed. As indicated previously, 
diatom shape is a continuous variable with respect to vegetative size reduction. If diatom shape 
variation is minimal, Legendre polynomial and multivariate analysis may not be sensitive enough 
to extract distinct shape groups. (See the sections “Outline shape, orthogonal polynomials and 
their properties, and regression coeffi cients,” and “Choice of method and issues to consider” for 
more details).

For studies using the discrete Fourier transform, results were produced to hypothesize distinct 
shape groups, while highlighting the necessity to apply novel methods to extract information on 
fi ne differences in variation (e.g., Pappas 2006). In a study of Tabellaria, Fourier descriptors 
were used to delineate eight shape groups (Mou & Stoermer 1992). For Asterionella, seven 
shape groups were found (Pappas & Stoermer 2001). However, in both of these cases, a high 
degree of shape variability indicated the continuous nature of valve shapes produced by each 
taxon via size reduction. With diatom variation as a continuous variable, both minimal shape 
variation (mentioned above) and high degree of shape variation may present diffi culties in 
extracting shape groups.

More recently, automated diatom identifi cation has reappeared in a more encompassing form 
with the advent of the Automatic Diatom Identifi cation and Classifi cation (ADIAC) project (du 
Buf & Bayer 2002). A group of researchers devised a number of unsupervised contour and feature 
extraction and identifi cation systems using the power of computers, mathematical modeling, 
microscopy, and information about morphology, taxonomy and ecology of diatoms. 

For contour extraction (Fischer et al. 2002), segmenting gray level images of diatoms is used 
(Loke & du Buf 2002). Edge detection (e.g., Canny 1986) or thresholding (e.g., Sahoo et al. 1988) 
is used to differentiate diatoms in a given fi eld by detecting the difference among diatom outlines 
(as closed contours) and other unstructured background gray level matter. Feature extraction 
(Fischer & Bunke 2002), as texture descriptors, is also used in making diatom identifi cations. 
The process is automated with respect to slide scanning autofocusing and microscopy, and 
decision trees or forests and other means of classifi cation are used to achieve identifi cations. 
Various methods are used in the segmenting, extraction and identifi cation processes, including 
Gabor functions (Santos & du Buf 2002), dynamic ellipse fi tting (Ciobanu & du Buf 2002), 
mathematical morphology (Wilkinson et al. 2002), and a combination of such methods. Results 

eschweizerbart_xxxeschweizerbart_xxx



Quantitative morphometric methods in diatom research 287

from the system were compared with those produced by experts in diatom taxonomy. In addition, 
comparisons of results were made to those using Fourier analysis (e.g., Fischer & Bunke 2002) or 
Legendre polynomials (e.g., Ciobanu & du Buf 2002, Mann et al. 2004), as these were methods 
previously used in diatom research. Subsequently, other diatom recognition studies involve, 
for example, extraction and grouping of contour segments of diatom shape (Loke et al. 2002), 
using segmentation and feature extraction to distinguish between diatoms and debris in water 
samples (Forero-Vargas et al. 2003), building curvature scale space and extracting features using 
cluster analysis (Jalba et al. 2005), and using Fourier shape descriptors, texture analysis using 
the fast Fourier transform and dimensionality-reduced probabilistic principle curves (Hicks et al. 
2006). Overall, a large contribution was made by the researchers involved with ADIAC to the 
compilation of mathematical methods previously applied in diatom identifi cations.

Recently, Beszteri et al. (2005) and Potapova & Hamilton (2007) used landmark-based 
morphometrics on Cyclotella meneghiniana Kützing and related species and the Achnanthidium 
minutissimum (Kützing) Czarnecki species complex, respectively. Subsequently, Falasco et al. 
(2009), Novais et al. (2009), and Vesela et al. (2009) used these initial studies to apply landmark-
based methods to diatoms. Until this time, landmark-based morphometrics were not used on 
diatoms since questions were raised about the applicability (Mou & Stoermer 1992). It should 
be noted that some practitioners of geometric morphometric methods have recognized that 
landmark-based methods and outline methods are not incompatible when used in combination 
for analysis. Combination landmark-based and outline methods include sliding semilandmarks 
(e.g., Bookstein 1996), edgels (rotation of direction through a landmark to acquire information 
about curvature) (Bookstein & Green 1993, Little & Mardia 1996), and creases (global extrema 
as landmarks and local outline points with respect to degree of smoothing to obtain a singularity) 
(Bookstein 2000). In spite of this, there are still a number of issues to be dealt with in deciding 
whether landmark-based methods can actually be used to analyze diatoms to achieve reliable 
results. This will be discussed below.

Using landmark-based methods in diatom research
Two recent papers using landmark-based methods in diatom research illustrate some of the 
challenges involved in using such methods. Number of specimens used, biological and geometric 
homology, sampling all members of a size reduction series, the number of landmarks used, the 
location of landmarks, measurement error, and choice of a reference are among the issues that 
require careful consideration. All of these matters will affect the validity of the outcome from 
landmark-based analysis. 

Beszteri et al. (2005) used both conventional and landmark-based mor phometric methods 
in their study. (By conventional morphometrics, Beszteri et al. (2005) mean traditional 
morphometrics or simple valve measurements). Using the methods of thin plate splines and 
partial warps in their application of landmark-based morphometrics, they sought to differentiate 
Cyclotella meneghiniana from C. scaldensis Muylaert & Sabbe and other presumably different 
morphological variants. The landmarks they identifi ed involved the rimoportulae on the valve 
margin and the centroid of the valve face. They did not include all specimens that were used in 
their traditional analysis since some of them did not qualify within their own specifi cations. 

If all specimens are not included in an analysis of shape the results may be biased (Adams et 
al. 2004). In a study of shape variation limits in orders of mammals, Marcus et al. (2000) found 
that such variation among skulls is low. However, they also acknowledged that their results were 
misleading since some landmarks could not be used because they did not exist on some of the 
taxa used in the study. The limitations of either not using all specimens or not using all landmarks 
distort the outcome of such studies (Adams et al. 2004).

Historically, homology has acquired many meanings. In biology, homology is a concept used 
to signify similarity between anatomical structures as a result of some original structure in a 
shared common ancestor (e.g., Wiley 1981), structures that arose from the same developmental 
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origin (e.g., Wagner 1989), structures defi ned by a specifi c function (e.g., Cracraft 1967), or 
structures that originated genetically with regard to DNA sequences, proteins or chromosomes 
(e.g., Ghiselin 1969). According to Rohlf (1998), homology with regard to morphometrics means 
“geometric” structures between two organisms that have a consistent biological or biomechanical 
meaning that are represented by points, curves, and subsequently, by multivariate descriptors 
(also see Slice et al. 1996). Again, landmarks as homologies are biologically meaningful only 
when they are based on phylogeny or development (Cartmill 1994) or genetics or functionality. 
Determining biological homology was traditionally based on whole structures, not individual 
geometric points (MacLeod 1999). However, unlike biological homologies, landmarks might 
also be identifi ed that are only meaningful in a geometric (= mathematical) sense (e.g., 
pseudolandmarks), or landmarks might represent more than one region of a form (Rohlf 1988). 
The qualifi cations to meet regarding the various defi nitions of landmarks determine in great 
measure how the results of landmark-based analyses are interpreted. Ideally, biological homology 
is the goal of landmark-based analyses.  

Diatom size reduction involves changes in the characters (as homologous structures) on 
the valve face, and detecting these changes depends on whether all stages are present and are 
sampled. Unlike their traditional morphometric treatment, Beszteri et al. (2005) did not specify 
whether complete size reduction series were used in landmark-based analysis. Depending on 
what stage in a size reduction series is present, it is also important to specify which characters 
on the diatom valve face that are chosen as landmarks are invariant in order to yield biologically 
meaningful results. Ontogenetic correspondence is particularly important in diatoms. 

As stated earlier, function is important with regard to homology (e.g., Mou & Stoermer).  
If the function of the structure (= character) is in question, then assigning landmarks to the 
structure for partial and relative warp analysis is unwarranted. If the function of the rimoportula 
is known suffi ciently well, and landmark-based methods are used to its determine shape variation 
interspecifi cally, then the results from analysis will be biologically meaningful.

In general, choosing landmarks is not an easy task. The relative importance of the points 
chosen is ultimately a subjective matter in the purview of the researcher doing the analysis. 
However, choice of landmarks, including the centroid, is only valid if landmarks that are widely 
dispersed on the valve face are chosen (Bookstein 1991). The centroid on a diatom valve is 
meaningful only in regard to its shape perimeter, and shape perimeter was not the focus of 
Beszteri et al.’s (2005) study. Instead, Beszteri et al. (2005) chose the centroid, which is distant 
from the landmarks chosen that are clustered close together on or near a rimoportula. Deformation 
between two points chosen far away from each other will be highly distorted in contrast to two 
points close together, which move approximately in tandem (Bookstein 1986). That is, points 
chosen in close proximity that move in approximate tandem will not measure shape change 
(Bookstein 1986). 

Choice of landmarks also entails other caveats of which researchers must be cognizant. 
Landmarks can induce two forms of measurement error. One is with regard to digitizing 
coordinates; the other is with respect to intrapopulation variation in shape (Goodall 1991). That 
is, measurement errors may be found in geometric features or, alternatively, in the size-shape 
spaces generated (Bookstein 1986). In addition, choosing landmarks means that highly curved 
parts may be missed in the analysis (Bookstein 1991). As a result, curving of form in between 
landmarks is not recovered in landmark-based Procrustean analysis. In Beszteri et al.’s (2005) 
study, the curved part of the rimoportula is not sampled between landmarks, so the curvature of 
the rimoportula was not analyzed. 

Sampling relevant locations of an organism to recover morphological structures or shape is 
necessary. If measuring shape change among a group of organisms is the goal of the study, then 
inadequate choice of landmark locations will mean that shape changes will not be measured 
and the results will be misleading (Lestrel 2000). If landmarks chosen are not independent of 
one another, they are not legitimate points to be used in Procrustean analysis. Moreover, shape 
variation patterns need to be tested with respect to the population mean shape to be sure that such 
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patterns are not mathematical artifacts of superimposition, since it is possible for superimposition 
to induce a covariance structure on the landmarks (Adams et al. 2004). The number of landmarks 
chosen is also a matter of concern, since this will infl uence the outcome of the analysis (Adams et 
al. 2004). The limitations of landmark-based methods do not necessarily extract morphologically 
relevant information in the best or most optimal way (Lestrel 2000).

Once relevant landmark locations are determined, landmark-based methods involve 
multivariate analysis by extraction of principal and partial warps (Slice et al. 1996) and the 
calculation of relative warps (Bookstein 1991). Partial warps are nonaffi ne transformations 
of localized bending energy. Depending on the value of the eigenvalues, small or large scale 
(local or global) deformation is represented. That is, the fi rst principal and partial warps (= small 
eigenvalues) are associated with large scale deformation, while the last principal and partial 
warps (= large eigenvalues) are associated with small scale deformation and represent landmarks 
that are close together. With respect to principal and partial warps, relative warps are used when 
a random sample of shapes exists, and this alternative is similar to using PCA with a Euclidean 
metric (Dryden & Mardia 1998). 

Partial warp scores form a continuous variable (Bookstein 1991, Rohlf 1998), and these 
scores along with relative warp scores must be used cautiously. Beszteri et al. (2005) regressed 
relative warp scores on centroid size and valve diameter in order to account for allometric 
changes. Valve diameter relates to the overall size of a specimen and not necessarily to the 
size of the rimoportulae. If valve diameter is confounded by shape because of developmental 
considerations, then it is not necessarily independent of size, and this will infl uence regression of 
partial warp scores on valve diatmeter. Beszteri et al. (2005) did not report correlation coeffi cients 
from regressing partial warp scores on centroid size and valve diameter. 

There has been much debate on the use of partial and relative warp scores in other capa-
cities with regard to what exactly they measure (e.g., Rohlf 1998, Adams & Rosenberg 1998). 
Individual partial as well as relative warp scores are not biologically interpretable as single 
measures (Adams & Rosenberg 1998). They are the eigenvectors or axes and are only biologically 
meaningful when considered over the sum of all axes that is tangent to the total shape space 
(Bookstein 1991, Rohlf 1996). Eigenvalues for each relative warp and the trace indicate the 
degree of variation explained by the analysis. Beszteri et al. (2005) did not report eigenvalues 
from their relative warp analysis.

The principle warp axes are based on the reference form chosen. These axes are sensitive 
to the choice of a reference (Rohlf 1996). Beszteri et al. (2005) chose to use the mean shape-
determining landmarks as a reference, and this included the central part of the valve. Overall, in 
a diatom size reduction series, the mean shape may not be representative, and interspecifi cally, 
comparison of taxa may be diffi cult. If overall shape is to be analyzed, perhaps a median would 
be a better reference, but this would need to be tested.

Using traditional morphometrics, Beszteri et al. (2005) study produced separation of shape 
variants among taxa. Using landmark-based methods, Beszteri et al. (2005) found it diffi cult 
to interpret differences between Cyclotella scaldensis morphs. They also found that values 
from cultures had more shape variation using landmark-based methods than using traditional 
methods. As Beszteri et al. (2005) have indicated, landmark-based methods in diatom research 
are not applicable in cases where the “varying number of most structures found on diatom 
frustules is … a practical problem”. As a preliminary study, Beszteri et al. (2005) have shown 
that application of landmark-based methods in diatom research has many caveats to overcome in 
order to produce reliable results. Unlike shape outline analysis; there are particular problems that 
must be addressed when attempting to use landmark-based methods in diatom research. 

Potapova & Hamilton (2007) used sliding “landmarks” (Bookstein 1996, 1997) in their study 
of Achnanthidium minutissimum and related taxa in order to circumvent the problem of iden-
tifying biologically homologous points. This modifi cation of the original usage of landmarks was 
devised since using landmarks, as specifi ed previously, is not always applicable for a number 
of reasons. To reiterate, landmarks may not be identifi able for many scientifi cally important 
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organisms or parts thereof (Bookstein 1996, 1997), such as areas of high curvature (Perez et 
al. 2006). In addition, location of landmarks may be rendered uncertain because of insuffi cient 
confi dence that they are applicable on a one-to-one basis among a group of forms or across a 
given range of shape variation (e.g., Perez et al. 2006). That is, there is uncertainty in locating 
landmarks on curved areas when few to no landmarks are present elsewhere (Bookstein 1996, 
1997, Perez et al. 2006). Finally, landmarks form a discrete data set that does not extend to 
explanations about continuous data that are biologically important, such as surface areas and 
volumes (Bookstein 1996, 1997), if this is a goal of the research being conducted. 

Sliding “landmarks” are actually semilandmarks (e.g., Perez et al. 2006) or quasilandmarks 
(e.g., Bookstein 1997) whereby points on a curved outline are slid on one form in order to match 
them with points on a reference form (Green 1995, Bookstein 1996, 1997). To match forms means 
removing tangential variation by minimizing bending energy (Bookstein 1997) or Procrustes 
distance (Bookstein et al. 2002) via thin-plate splines (Bookstein 1996). Semilandmarks may be 
combined with actual landmarks using this technique of matching contours via sliding points. 
The rationale is that contours, not the points, should be homologous from shape to shape. In 
their study, Potapova & Hamilton (2007) identifi ed the points they chose for study as landmarks, 
however, this is an error since only semilandmarks (or quasilandmarks) can be used with the 
sliding technique. For the purposes of discussion, we will use the term ‘semilandmark’ in place 
of their designation. 

Initially, 16 semilandmarks were chosen around the periphery of the diatom valve (Potapova 
& Hamilton 2007). Asymmetry was corrected for by averaging x, y coordinates from mirror 
images of valve faces (= refl ection), resulting in an object symmetry (e.g., Mardia et al. 2000) for 
each valve face. From this, one-quarter of the valve face semilandmarks were used in Procrustean 
analysis, as was the centroid of the valve face (Potapova & Hamilton 2007). That is, Potapova & 
Hamilton (2007) used 5 semilandmarks and 1 landmark for a total of 6 points. 

Semilandmarks are sensitive to location (Adams et al. 2004). In addition, the number of 
semilandmarks used will affect the results. If more semilandmarks than landmarks are chosen, 
the semilandmarks with outweigh the landmarks and skew the results toward curvature (Perez 
et al. 2006). If fewer semilandmarks are used, then there will not be enough value about outline 
curvature extracted from the analysis so that shape information is recovered. There is also the 
possibility that too few semilandmarks may be chosen because of the nature of the outline 
shape, so that recovering the outline does not completely occur. By contrast, with shape outline 
methods, the only requirement is not to choose so many points as to cause overfi tting (e.g., 
Pappas et al. 2001).

Overall, use of semilandmarks and outline methods may not be very different from one 
another in the sense that they are used to interpret biological homology in the same way 
(MacLeod 1999, Sheets et al. 2004). The similarity between outline and semilandmark methods 
is evident when examining the way in which coordinates are selected on the diatom valve 
outline. In outline methods using Legendre polynomials, coordinates chosen must be equidistant 
from each other. When using the discrete Fourier transform and the method of arc lengths and 
tangent angles, coordinates are chosen by “sliding” them into position relative to other specimens 
regardless of size. It is not necessary to use equidistant coordinates, but sometimes this occurs 
by happenstance. Both outline and semilandmark methods rely on homologous outline segments 
for use in analysis.

For their reference shape, Potapova & Hamilton (2007) chose the average of the average 
coordinates of refl ections for each image and called this a ‘consensus confi guration’. That is, 
they used a “consensus” fi gure for each diatom valve face, and then took the average of all these 
“consensus” fi gures to use as a reference shape. The mean shape may not be representative with 
respect to size reduction series. Potapova & Hamilton (2007) did not use complete size reduction 
series, and they used unknown stages with respect to life cycle. They tried to eliminate allometric 
variation in their data by regressing partial warp scores versus valve length, and then use the 
residuals as shape variables. That is, they regressed a shape dependent variable uncorrected 
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for size (partial warp scores) on a size dependent variable (length), with the left over variation 
used as a size-independent shape variable (residuals). However, partial warp residuals are not 
independent variables, and they are used for investigating shape variability, not size-independent 
shape variability (Dryden & Mardia 1998).

Subsequently, Falasco et al. (2009), Novais et al. (2009), and Vesela et al. (2009) in their 
studies of the Sellaphora stroemii species complex, Gomphonema rosenstockianum – G. 
tergestinum species complex, and Navi cula cryptocephala – N. trivialis species complex, 
respectively, based their metho dologies on the previously discussed papers. In their studies 
there was a lack of understanding of the difference between landmarks and semilandmarks, with 
Falasco et al. (2009) and Novais et al. (2009) using them for morphometric analysis, but not 
mentioning this in the text. In Vesela et al. (2009), there was misidentifi cation of semilandmarks 
as landmarks. As with the previous papers, the aforementioned problems with using geometric 
morphometrics in diatom research were not addressed. Our attention will be focused next on 
shape outline methods since they have been tested over time. In addition, we are interested 
in examining dimensionality reduction methods that are used to analyze shape descriptors and 
how these methods are related. We are primarily interested in shape analysis where homologous 
curves and biologically meaningful interpretation of results is the desired outcome in shape 
space, rather than those methods that produce only geometrically meaningful results.

Using outline morphometric methods in diatom research
In general, as has been already stated, there are two areas of study with regard to outline methods 
used in diatom research, namely, shape analysis and pattern recognition. The differences between 
shape analysis and pattern recognition can be summarized as follows: pattern recognition is the 
detecting of differences in shape and pattern among specimens for taxonomic decision-making 
and binning of specimens, while shape analysis is used to fi nd such differences in shape and 
pattern that can be interpreted as biologically meaningful in a morphospace.

Both shape analysis and pattern recognition have been shown to be useful in research 
involving diatom taxonomy and classifi cation (e.g., Stoermer & Ladewski 1982, du Buf & Bayer 
2002) schemes, where such schemes have been used in evolutionary, ecological, or other studies. 
With many questions remaining in diatom taxonomy, development, ecology, among other related 
fi elds, caution should be exercised in deciding which morphometric methods are appropriate 
for use. Choice is dependent upon individual research questions, and the researcher’s purposes 
and level of understanding dictate which methods should be used. Regardless, a thorough 
understanding of the methods chosen for use will promote success in the results obtained and 
confi dence by the readership in the legitimacy of those results.

With this in mind concerning geometric morphometrics, biologically meaningful results 
from shape analysis are the most desirable goal in using such methods. Applying mathematical 
analysis to further understanding of the biology of diatoms and also as an aid in decision-making 
in diatom taxonomic and related problems should be the rationale for using morphometrics. 
However, there will be times when biological evidence is scant or inaccurate so that recourse 
to mathematical constructs might be the only way to hypothesize, for example, about potential 
connections among specimens in diatom taxonomic studies. At the very least, applying 
mathematical methods, such as shape analysis should be used with great care and understanding. 

In the following subsections, we will focus on the use of shape analysis and resultant shape 
morphospaces to aid in understanding the methods employed. Some details are provided about 
diatom shape descriptions, basic measurements, orthogonal polynomials and their properties 
and usage in regression, issues to consider, how to treat shape descriptor data, and multivariate 
methods used to depict shape space.
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Diatom valve shape as a morphological character
Categorizing diatoms geometrically is a starting point to determine which methods are 
appropriate for shape analysis. Many centric diatoms are circular, while others are not. According 
to Barber & Haworth (1981), shape descriptions may be ascribed to diatom valves, and for 
shape analysis these descriptions may be useful in matching shape description as a category with 
shape analytical method as well as interpreting such descriptions with respect to method used to 
calculate n-dimensional shape space. 

As an overview, some diatom valve shapes, generally pennate diatoms, may be categorized 
as mostly oblong, which include oval and rectangular shapes. Those that are mostly oval go 
by the shape descriptions of “elliptic”, “narrow elliptic”, or “ovate”, while rectangular shapes 
may include “acicular”, “lanceolate”, or “linear” as descriptive attributions. Also included in the 
rectan gular-like subgroup are triangular, rhomboidal and trapezoidal shaped valves with straight 
sides (Barber & Haworth 1981). All of these shapes include sections of the valve that are straight 
for most of the outline where the change in shape is zero.

All other diatom valve shapes may be described as asymmetrically or highly curved. 
Subgroups of shapes that are asymmetrical with respect to the apical or transapical axis include 
those that are “clavate”, “panduriform”, “reniform”, “crescentic”, or “arcuate”. Highly curved 
shapes include “biundulate”, “triundulate”, or “n-undulate” as well as “cruciform”, “sigmoid” 
and “polygonal” shapes without straight sides (Barber and Haworth 1981).

Further subdivisions of categories can be made with regard to shape of the ends of 
pennate diatom valves. Descriptive terms such as “acute”, “apiculate”, “rostrate”, “capitate”, 
“subcapitate”, “rounded”, “cuneate”, or “spatulate” can be attributed to diatom valve ends 
(Barber & Haworth 1981) where the main part of the valve shape is either oblong/rectangular 
(straight sides) or highly curved/asymmetrical.

All of these categories may be modeled mathematically. In the following, we only look 
at methods of shape analysis rather than pattern recognition. We want to explore why shape 
analysis methods are useful in extracting biologically relevant information in diatom studies, 
why these methods work in the context of a morphospace, and why these methods may not work 
in all cases. In addition, we explore the possibilities for new morphometric methods that should 
be used chiefl y to extract biologically meaningful information for use in diatom studies.

Basic measurements
When using any method of outline shape analysis, it must be remembered that diatom valves 
are three-dimensional objects, hence any representation of valve shape is dependent upon the 
choice of measurement plane. For species with complex forms this may not be a simple choice, 
particularly if the light microscope is used for measurement. For most species, the easiest and 
probably most reliable solution is to use the lower edge of the valve mantle as the plane of 
measurement. This provides a shape plane of focus and is more easily defi ned than other potential 
reference points of the valve. For specimens such as Achnanthidium that are highly curved in 
the valvar plane, this method is not satisfactory for recovery of whole valve outlines, but may 
be used for recovery of partial outlines in some specimens. Needless to say, a great deal of care 
is needed to provide accurate measurements. Very slight errors in measurement may accumulate 
and provide confusing results. 

Outline shape, orthogonal polynomials and their properties, and regression 
coeffi cients
For shape analysis of diatom valve outline, orthogonal polynomials such as Legendre 
polynomials (e.g., Stoermer & Ladewski 1982) and the discrete Fourier transform have been 
used (e.g., Mou & Stoermer 1992). Starting with a fi nite number and position of coordinates on 
the diatom valve outline, orthogonal polynomial regression is used by determining the curved 
segments of the outline, for example, as change in width function (Legendre polynomials) or 
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change in arc lengths and tangent angles (discrete Fourier transform). Orthogonal polynomial 
regression is a method of fi tting a least-squares curve around an outline. Orthogonal polynomials 
have properties that defi ne their suitability in analyzing valve shape with respect to the shape 
categories specifi ed. From x, y coordinates of a diatom valve outline, coeffi cients from orthogonal 
polynomial regression are used as numerical shape descriptors.

Of all the orthogonal polynomials, Legendre, Chebeshev (of the fi rst and second kind), 
Gegenbauer, and Zernike polynomials are special cases of the Jacobi polynomials (Abramowitz 
& Stegun 1972). Other orthogonal polynomials commonly known are Hermite and Laguerre 
polynomials (Abramowitz & Stegun 1972). Legendre polynomials are the simplest of 
the orthogonal polynomials because their weight function is equal to 1, unlike all the other 
orthogonal polynomials (Abramowitz & Stegun 1972). For n-Legendre polynomials, P(x), that 
are recursive (Szokefalvi-Nagy 1965), and n-Legendre coeffi cients, c, that are used as shape 
descriptors, expansion of the width function, W(x), is

  W x  cn
1

N

 Pn x      (1)

(Stoermer & Ladewski 1982, Pappas & Stoermer 2003). The width function is a linear 
combination of Legendre polynomials of degree n in x, and each Legendre coeffi cient, cn, is an 
independent shape descriptor because of orthogonality. Legendre polynomials form a complete 
orthogonal system based on the interval [-1, 1] and a weight function (ρ) of 1. Expansion of the 
width function represents the expression of Legendre polynomials as a series. 

The generalized orthogonality relation may be stated as

  fn x  fm x n x dx  cnmnj

k   (2)

where, in the case of Legendre polynomials, j = -1 and k = 1 are boundaries of the interval 
for the width function, f x W x , with weight function ρ = 1, and δ is Kronecker delta. 
Because of orthogonality and expansion of the width function, Legendre polynomials as a 
series are mathematically related to Fourier series. That is, Legendre and Fourier expansions 
are orthogonal expansions. Expansion of the Fourier series may result in the Fourier transform 
(Edwards 1967), and it is coeffi cients from this that are used as shape descriptors. So, expansion 
of the Fourier series takes the form of

   x  cnn x 
1

N

     (3)

where n x  are the Fourier functions of cos (nx) and sin (nx), and in the generalized 
orthogonality relation (Eq. (1)), f x   x , c is the nth coeffi cient, [j, k] is the interval [-π, 
π], and the weight function, ρ, is equal to 1 (Weinberger 1995).

For orthogonal polynomial regression using Fourier functions, we see that

  f x  cnn x 
n

N










j

k
2

 x dx   (4)
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becomes

  f x 2

j

k  x dx  cn
2

n

N

 n x 2

j

k   (5)

and

  cn
2

n

N

 n x  x dx  f x 2 x dx
j

kj

k  (6)

or for Legendre polynomials,

  cn
2

n

N

 Pn x  x dx  f x 2 x dx
j

kj

k  (7)

We want to minimize the difference between f(x) and Legendre polynomial or Fourier function 
by the choice of coeffi cients, c. That is,

 f x n x  2
 f x  cnn x 

n

N
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





1
2

 (8)

where the norm is a measure of the deviation of n x  from f x  (Brown & Churchill 2001). 
From this, it should be evident that Legendre polynomials and Fourier functions as orthogonal 
functions using least-squares regression, can produce orthogonal coeffi cients in a similar fashion 
that are the basis of shape descriptors in shape analysis.

Coeffi cients from a linear combination of orthogonal polynomials are used as shape 
descriptors. In some cases, these coeffi cients may be directly interpretable as numerical 
representations of morphological features of diatom valve shapes. That is, numerical shape 
descriptors may correspond directly to morphological features of a diatom valve outline. This is 
a desirable property in that some biologically meaningful information should be extractable from 
a numerical process of analyzing diatom shape.

Such a desirable property has been demonstrated by using Legendre polynomials (Stoermer 
& Ladewski 1982) but is not readily possible with respect to Fourier functions (e.g., Mou & 
Stoermer 1992, however, see Ehrlich et al 1983). Matching geometric constructs to shape 
morphology and descriptions may be done with each successive Legendre polynomial. Using 
this, a model is built up from one Legendre polynomial to the next whereby there is an associated 
physical description of morphology of the valve sides, middle and ends at each step in the process.

Overall, the discrete Fourier transform is useful in modeling shape for any diatom outline 
despite lack of matching Fourier coeffi cients to morphological features. Legendre polynomials 
may be used when diatom valve outline is highly or continuously curved, or at least, contains 
closely spaced curved portions. If diatom valve outline is less curved and more elliptical or 
rectangular or has long spans that are linear, the Fourier transform would be more suitable. 
For example, Tabellaria has relatively long, straight segments interrupted by areas of extreme 
curvature in the middle and at the ends of the valve. In the case of T. fl occulosa (Theriot & 
Ladewski 1987), valve outline was not recovered as well using Legendre polynomials. By 

eschweizerbart_xxxeschweizerbart_xxx



Quantitative morphometric methods in diatom research 295

constrast, a subsequent study of Tabellaria shape was modeled using the discrete Fourier 
transform and outline shape was more successfully recovered (Mou & Stoermer 1992). Choice 
of a particular function depends not only on the curvature of the valve outline, but also the 
particular mathematical properties of the function selected for use. Although using the discrete 
Fourier transform is not necessarily a method to directly match shape coeffi cients to physical 
morphological descriptions of the diatom valve, it is suitable in calculating shape descriptors that 
may be used in subsequent analysis to determine shape groups. Whether these shape groups are 
species groups is another matter. This method may be one of the only ways to represent diatom 
valve outline numerically, especially for character-poor taxa having shapes similar in curvature 
to Tabellaria and Asterionella. 

In a recent study of the Sellaphora pupula (Kützing) Mereschovsky species complex, Mann 
et al. (2004) compared using Legendre polynomials to morpho metric constructs using contour 
segment analysis based on the Fourier transform. From their results, Legendre coeffi cients 
ordinated in shape space using PCA were dispersed as three groups, while results from individual 
plots of maxima or minima contour points or curvatures were depicted as six groups. Mann et al. 
(2004) did not use multivariate analysis or cross-validate shape groups from results of contour 
segment analysis. Their interpretation of results is a comparison of apples to oranges since a 
multivariate method of shape variation (PCA with Legendre coeffi cients) was compared to their 
univariate one. Moreover, as stated previously, Legendre polynomials and coeffi cients, when 
ordinated in shape space, are directly interpretable and matchable to physical morphological 
features of valve shape, while diatom shape analysis based on the Fourier transform has not been 
shown to be interpretable as such (e.g., Mou & Stoermer 1992, Pappas & Stoermer 2001). It may 
be that Legendre polynomials are not appropriate for use since the outlines of some specimens 
in the S. pupula species complex have curved sections interrupted by more linear segments, 
and this was not tested. Most importantly with regard to multivariate methods, the method of 
dimensionality reduction has more to do with differentiating shape groups than the method 
used to obtain shape descriptors. The specifi cations of the methods to extract shape descriptors, 
namely Legendre polynomials, are not the means to classify shapes. That is, the resultant shape 
coeffi cients from Legendre polynomials are the data, while multivariate methods are used for 
classifi cation and shape group separation, and therefore it is these methods that have the most 
infl uence in what kind of shape group separation occurs and how well separation of shape groups 
is defi ned. Choice of the multivariate method used to analyze shape data is primarily responsible 
for depiction of shape group separation, and others have corroborated this fi nding (e.g., Sheets 
et al. 2006).

Shape descriptors and data transformation
Perhaps the issue is the actual degree of difference among the shapes being considered for 
shape group determination. If the difference in shape is small, then it may be that whatever the 
multivariate method used will not be sensitive enough to reveal separate shape groups readily, 
even in the case where the number of species groups is known a priori. That is, the distribution 
of the data used as shape descriptors may be narrowly defi ned. This situation may require data 
transformation in order to disperse the scores in an ordination. 

In a study of Asterionella using Fourier coeffi cients (Pappas 2000, Pappas & Stoermer 2001), 
22 mean-corrected amplitudes, A, were arranged in an m x n matrix of m rows (specimens) by 
n columns. To improve symmetry about the grand mean, data transformation was used (Noy-
Meir 1973, Noy-Meir et al. 1975). That is, centering on rows (specimens) and standardizing on 
the row (specimen) norm was used to move the centroid to the origin and rescale the variance 
around the origin (Noy-Meir et al. 1975, Jongman et al. 1995). Centering on rows (specimens) 
ensured that the contribution of each specimen was proportional to its variance (Noy-Meir et al. 
1975). Standardization by row (specimen) norm, where the mean equals zero and variance equals 
one, produced equal contribution of all specimens. In this way, no one specimen would unduly 
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infl uence the ordination. In addition, square root transformation was used to further disperse 
the data around the grand mean since between-shape variance for all Asterionella was within a 
narrow range (Pappas 2000, Pappas & Stoermer 2001).

Multivariate methods and the analysis of shape variation
Variation in shape coeffi cients is depicted in an ordination as a result of multivariate statistical 
analysis. This is typically the way in which to analyze all valve shapes with respect to each other. 
Multivariate shape space has properties that make it useful in shape analysis and discerning 
differences in shape variation on an n-dimensional basis.

Multivariate shape space may be characterized as the result of the singular value decomposition 
(e.g., Green & Carroll 1978). Using the aforementioned example of the matrix of mean-corrected 
amplitudes as Asterionella shape descriptors, A, the singular value decomposition of A may be 
stated as A = PDQ’ where P is the m × r matrix of eigenvectors of the major product moment 
AA’. The n × r rotation matrix, Q, is the matrix of eigenvectors of the minor product moment 
A’A. The diagonal matrix, D, has positive rank-ordered eigenvalues with off-diagonal elements 
equal to zero. 

Although shape space is calculated to be multidimensional, the idea in using multivariate 
methods is to fi nd the fewest number of independent eigenvectors that represent the greatest 
amount of shape variation. Underlying eigenvectors extracted are orthogonal and, if normalized 
to unit vectors as stated above, orthonormal. The result is that shape space represents a new 
coordinate system of shape descriptors where an ordination is a picture of the variance-covariance 
matrix of all shape values in the lowest dimensional space possible to explain the maximal 
amount of shape variation. Chiefl y, PCA and discriminant analysis (DA) (including canonical 
variates analysis (e.g., Goldman et al. 1990) and multivariate analysis of variance (MANOVA) 
(e.g., Steinman & Ladewski 1987) have been used to calculate shape variation, and we focus on 
these methods for use in calculating n-dimensional shape space.

Principal components and discriminant analysis
Initially, PCA is used as the dimensionality reducing method for shape descriptors. For the most 
part, PCA is used initially to depict total shape variation. In general, most of the shape variation 
in diatoms is related to size, and this allometric feature is revealed in PCA where ordination 
depicts subsequent parts of total shape variation on a dimension-by-dimension basis. In this way, 
PCA can account for shape variation numerically and concisely. For PCA, to obtain Z principal 
component axes, A = PDQ’ is postmultiplied by Q so that AQ = PD = Z. In addition, the 
principal components are rescaled so that their variances are equal to one so that standardized unit 
variance component scores are calculated as Z s  m 1 1AQ1 (Green & Carroll 1978). 
From this result, component scores are dispersed in shape space so that additional analysis could 
be performed on the total shape variation gradient (Pappas 2000, Pappas & Stoermer 2001).

In addition, it is possible, though not necessarily the case, that while total shape variation may 
be depicted in a PCA ordination, shape groups may be evident when separation between clusters 
of PCA scores occurs. Separation of shape groups in PCA is infl uenced by other factors such as 
sample size and the extent to which the entire spectrum of shape variation was sampled. Moreover, 
it is not necessarily the case that differences in shape groups should be evident concomitant with 
the eigenvectors representing most of the variation or with sequential eigenvectors plotted as 
two-dimensional ordinations. Small eigenvalues or non-sequential eigenvectors may be sources 
of explanation of differences among shape groups (e.g., Stoermer & Ladewski 1982).

While PCA is useful for total shape variation, DA (e.g., Cooley & Lohnes 1971, Green & 
Carroll 1978) is the way in which to identify actual shape groups, and perhaps, even corroborate 
such shape groups as distinct species. Moreover, DA may be viewed as a way to cross-
validate shape groups that have been initially characterized by PCA. This point is critical in 
understanding why choice of multivariate method is essential in providing valid, credible results. 
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If the number of potential species groups is known prior to analysis, DA is the gold standard for 
use. When the number of groups is not known, other methods may be used to approximate a way 
to cross-validate what is hypothetically thought to be, species groups. However, a great deal of 
understanding and effort is necessary to show that other methods may produce results that have a 
similar prospect of cross-validation that DA has when it comes to validating group designations.

DA is based on the generalized or Mahalanobis distance (Mahalanobis 1948). This distance 
takes into account the correlation among variables and is used to measure the distance between 
the center of the distribution of all shape descriptors and each individual shape descriptor 
(Manly 2005). Then, each shape descriptor is a member of the group to which it is closest. The 
signifi cance of the difference among group centroids is tested by Wilks’ lambda, Λ, as

   
W
 T 

     (9)

where T is total shape variance, W is within-group variance, and T W  B  (Manly 2005), 
where B is between-group variance. The smaller Wilks’ lambda is, the more signifi cant is the 
difference among group centroids. The idea with DA is to minimize the variance among a group’s 
members, while maximizing the variance among all groups.

As in PCA, DA is based on the singular value decomposition. Briefl y, a matrix of canonical 
eigenvectors, Z, is calculated as

  Z s  AK      (10)

where A is the m × n matrix of shape coeffi cients and K is the matrix of discriminant weights 
(Green & Carroll 1978). Z are the canonical eigenvectors to be ordinated in shape space.

Like PCA, DA is dependent on sample size and whether a suffi cient repre sen tation of shape 
variation is sampled infl uences the outcome of analysis. In turn, the decision about number 
of specimens to use is dependent on what is available, what the quality of the specimens are, 
what research question is to be answered or what the hypothesis is to be tested, what kind of 
instrumentation, equipment and computer power is available for analysis, and what knowledge-
base is available in terms of understanding and implementing the methods of data analysis and 
interpretation of results. All these factors need to be considered to develop a shape analysis study 
utilizing PCA and DA to get meaningful results.

Choice of method and issues to consider
Even with data transformation, and choice of the appropriate multivariate method, results may 
not be as clear as one would hope. In particular, it may be that Legendre polynomials or the 
discrete Fourier transform may not adequately model shape coeffi cients that are ordinated in 
clearly distinct groups. Other factors are involved and other techniques may be used to further 
treat the data. In an ordination, if the density of shape scores is such that overlap of potential 
shape groups occurs, a number of methods may be used to divide the shape gradient into potential 
groups. Sectioning by ellipses representing approximate normal distributions may be used (e.g., 
Mou & Stoermer 1992). However, there is no way to test the assumption of normality since the 
sectioning is somewhat arbitrary. Partial classifi cation based on other morphological, ecological, 
geographical, or other data may be used (e.g., Pappas & Stoermer 2001, Pappas 2006). Using 
additional empirical evidence is helpful in lending credence to using partial classifi cation 
methods. However, in no way does this guarantee clearly defi ned groups that may be identifi ed 
as “species.”

How much evidence is suffi cient for a shape group to be named a species group? Ideally, 
a multitude of biological evidence should already exist to prompt the creation of a hypothesis 
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about a group of taxa. A generally accepted defi nition of “species” is necessary in order to make 
judgements on the effi cacy of the application of shape analysis. Within that defi nition, it is 
necessary to determine how much morphological change is equal to species differences, given 
that diatom taxonomy is still largely based on morphology and information based on cytology, 
ecology, physiology, among other things, is unavailable for many taxa. 

Shape analysis may become important in a number of situations. One such situation is when 
some biological information is missing, unreliable, or historically incorrect, but many specimens 
are available for study. Shape analysis may be used to develop hypotheses that could be tested 
empirically when evidence becomes available. Another situation involves diffi culties in visually 
identifying taxa. This is a well-known problem in diatom studies, especially with small taxa or 
specimens that are size reduced as a result of the vegetative life cycle. Shape analysis may be 
used to numerically differentiate specimens that are visually similar. Finally, as mentioned above 
in the context of discriminant analysis, shape analysis may be used to cross-validate species 
groups that have been determined by biological evidence alone.

Shape descriptors, shape space and biologically meaningful interpretation
Past shape analysis studies have used both PCA and DA to depict results of shape group 
designations, whether it is to compare a population to type or neoty pe specimens (e.g., Stoermer 
& Ladewski 1982, Stoermer et al. 1984, Theriot & La dewski 1986) or fi nd the degree of shape 
similarity in specimens from geo graphically separate places (e.g., Stoermer et al. 1986) or fi nd 
the shape differ ences of specimens within a species complex (e.g., Pappas & Stoermer 2003).

Legendre polynomials, Pn, have been shown to be valuable in interpretation and matching 
numerical outcome to physical shape descriptions. Legendre polynomials and their coeffi cients 
represent sequential addition of valve shape features and that this representation could be 
interpreted within the context of principal components or canonical eigenvectors. Because of 
allometric considerations, and that all size infl uence cannot be removed (e.g., Mosimann 1970), 
size classes may implicitly exist within the total shape variation gradient, and this is expressed as 
size reduction series indicated on the fi rst principal component (PC1) in ordinated shape space 
(e.g., Stoermer & Ladewski 1982, Stoermer et al. 1986, Theriot & Ladewski 1986). 

From past studies, assignment of shape and symmetry descriptions to Pn with regard to PCA 
or DA may be compiled into a general scheme. While PC1 is associated with size reduction, 
the second principal component (PC2) has been found to defi ne transapical asymmetry in 
Gomphoneis (Stoermer & Ladewski 1982, Stoermer et al. 1984), Didymosphenia (Stoermer et 
al. 1986), and Meridion (Rhode et al. 2001). For Eunotia (Steinman & Ladewski 1987), PC2 
defi nes apical asymmetry. Mathematically, this is the same property if an apically symmetric 
form is rotated 90°. Both heteropolar and dorsiventral isopolar valve shapes exhibit asymmetry 
(Barber & Haworth 1981). For Tabellaria, PC2 signifi es the change in degree of constriction 
between the mid-valve area and the ends (Theriot & Ladewski 1986). This form is apically and 
transapically symmetric, so that PC2 also defi nes bilateral isopolar shapes (Barber & Haworth 
1981). Overall, PC2 may be interpreted to be an initial gradient of shape symmetry.  

For the third principal component (PC3), clavateness is more evident in Gomphoneis 
(Stoermer & Ladewski 1982, Stoermer et al. 1984), Didymosphenia (Stoermer et al. 1986), and 
Meridion (Rhode et al. 2001), just as crescenticness is more pronounced for Eunotia (Steinman 
& Ladewski 1987). Increase in mid-valve area dorsally is associated with PC3, while change in 
shape of the ventral margin is associated with the fourth principal component (PC4) for Eunotia 
(Steinman & Ladewski 1987). Elongation of the valve dorsally and an increase in apex size and 
ventral infl ation for Eunotia is characterized by the fi fth, sixth and seventh principal components 
(PC5, PC6 and PC7, respectively) (Steinman & Ladewski 1987). In Gomphoneis (Stoermer & 
Ladewski 1982, Stoermer et al. 1984), PC4-PC7 are associated with changes in headpole and 
undulations of the valve margin. As more and more PCs are considered, more and more aspects 
of valve shape and symmetry are accounted for.
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The Cymbella cistula species complex also showed how physical morph ological description 
could be matched to Legendre polynomials and inter preted as such in canonical shape space 
(Pappas & Stoermer 2003). As each subsequent Pn is considered, stepwise shape changes may be 
documented. For the P0 and P1, semicircularity is fi rst evident. This coincides with asymmetry 
associated with PC2. P2 through P4 provide further shape development dorsally as crescentic, 
arcuate and semilanceolate forms become more apparent, and this coincides with dorsal 
crescenticness associated with PC3. Expansion of the mid-valve area ventrally as an increase 
in gibbousness is produced in association with P6 through P8. This coincides with ventral shape 
changes associated with PC4-PC7. Cymbella shape changes are correlated with the fi rst two 
DA eigenvectors, with most of the correlation being attributable to the fi rst canonical axis. 
The second canonical axis is correlated with P8, indicating that as one of the last polynomials 
used for curve-fi tting, defi nition of the mid-valve area ventrally was produced to be used as a 
differentiating factor among specimens.

For Fragilariforma (Kingston & Pappas 2009), Legendre polynomial P6 was used to begin 
to distinguish valve margins. With the addition of P8 and P9, biundulate and triundulate margins 
were evident, and each infl ation of biundulate form exhibited biundulation, or tetraundulation 
was present. The differences in valve margin and number of infl ations were correlated to the fi rst 
canonical eigenvector in DA. The second canonical eigenvector in DA was correlated with P3 
through P5 and defi ned rostrateness of valve ends. 

To summarize in the most general way, PC1 is associated with size reduction, PC2 is 
associated with valve asymmetry, PC3 is associated with clavateness or dorsally crescenticness, 
PC4 is associated with changes in valve shape ventrally, and along with PC5-PC7, changes in 
shape of valve ends and additional undulations on the valve margin. For Legendre polynomials, 
P1 is associated with PC2, P2 through P5 are associated with PC3, and P6 through P8 are associated 
with PC4-PC7. Additional polynomials and PCs will provide more incremental changes in valve 
shape. 

Potentially applicable combination and new morphometric methods
From all that has been described, it should be evident that all morphometric methods are 
concerned with using coordinates on the surface or outline of a diatom valve. It is not necessarily 
the case that a large difference exists between landmark-based and outline methods as it is in 
the diffi culty in choosing points on a diatom valve surface (=”landmarks”) in order to represent 
that diatom valve in a morphologically (biologically) meaningful way with respect to additional 
analysis. Legendre shape analysis has been shown repeatedly to be a valuable morphometric 
tool. It would be desirable to expand its use in conjunction with other methods.

Recognition by Bookstein (1997) and others (e.g., MacLeod 1999, Sheets et al. 2004) that 
landmark-based and outline methods have more in common than they are different in morphometric 
analysis is a testament to the necessity of developing applications of combination methods 
to cover a broad spectrum of cases. Adaptations of landmark-based and outline combination 
methods include edgels (Bookstein & Green 1993, Little & Mardia 1996) and creases (Bookstein 
2000), as well as extended eigenshape analysis (MacLeod 1999), fi nite element analysis (e.g., 
Singh et al. 1997, Lestrel 2000) and wavelet analysis (e.g., Takemura et al. 2004, Lestrel 2000). 
These are a few of the approaches that have been used recently in morphometrics. Although 
many of these methods have been applied in the study of human craniofacial structures, perhaps 
such methods could be altered or adapted to studies of organisms such as diatoms.

Orthogonal polynomials other than Legendre polynomials may be used in shape analysis. 
More care must be taken since weight functions are not equal to 1 when using Chebyshev, 
Zernike and other orthogonal polynomials. This methodology has yet to be worked out. It remains 
to be seen if other orthogonal polynomials can be matched to physical descriptions in a stepwise 
fashion or interpretable with respect to eigenvectors defi ning n-dimensional shape space.
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Orthogonal moments functions, which involve the discrete form of Legendre, Chebyshev, 
or Zernike polynomials (e.g., Novotni & Klein 2003) as a basis, may provide a way to take 
advantage of concepts from both object recognition studies and shape analysis in devising a 
possible new method of morphometric analysis of diatoms. Using orthogonal moments has been 
found to provide a method with minimal noise in image reconstruction (e.g., Mukundan et al. 
2001) and may be modifi ed as orthonormal moments for use as shape features (Mukundan 2004). 
A speculative method such as this would need much work from the ground up and rigorous 
testing to apply to studies of diatoms.

Another method worth mentioning involves shape modeling (e.g., Hart 1998, Biasotti et 
al. 2003) based on concepts from algebraic topology, including Morse theory (e.g., Milnor 
1963), homotopy (= deformability) (e.g., Kahn 1995) and homology (= equivalence relation, 
in a topological sense) (e.g., Kahn 1995). This kind of modeling is graph-based rather than 
being based on geometric concepts. One example of a recent graph-based modeling study entails 
skeleton-based shape matching (e.g., Sundar et al. 2003, Zhu 2007) using Reeb graphs (Reeb 
1946). In fact, graph-matching has been used in diatom research (Pappas 2011). Much of the 
object recognition literature, including shape and pattern recognition, as evidenced by ADIAC, 
may prove to contain many useful concepts in developing new morphometric methods, provided 
that biologically meaningful information is obtained from such methods rather than merely 
topologically or other kinds of mathematically interesting results.

When talking about shape analysis using outline methods, it is implied that the entire outline 
of diatom valves are modeled. In relatively few studies, partial diatom outlines have been used 
to differentiate shapes and assign species group designations (e.g., Pappas & Stoermer 2003, 
Potapova & Hamilton 2007). Partial shape extraction using contour segments based on the 
Fourier transform has been used as a shape matching technique for some time (e.g., Gorman 
et al. 1988). It may be a fruitful avenue of discovery if more studies using partial diatom valve 
outlines were undertaken, since an implication of such analysis would be to fi nd the critical, and 
perhaps minimal, part of diatom valve shape that defi nes a species.

Other multivariate methods may be useful in ordinating shape coeffi cients. Non-linear 
PCA (such as correspondence analysis (e.g., Hill 1974) and non-linear DA (e.g., Gifi  1990) 
may provide a way to analyze data when the whole continuum of size classes is not present, as 
was the case for the Legendre shape analysis of Tabellaria (e.g., Theriot & Ladewski 1986). In 
addition, more use could be made of canonical variates analysis and MANOVA, and perhaps, 
other multivariate methods could be adapted for use in analyzing shape coeffi cients. In time, 
testing of adapted methods may fulfi ll the possibilities of devising new multivariate analytical 
techniques for use in shape analysis.

Actual application of new or additional modifi ed morphometric methods is even more likely 
when more is known about the development, life cycle, or ontogeny of diatoms. It is diffi cult to 
generalize a method to a group of organisms, such as diatoms, when very little is known about 
something so fundamentally important, e.g., as reproduction, is not considered as a means to 
judge the effectiveness of a morphometric method. Moreover, for a more useful application 
of morphometric methods, a more clear understanding is required of changes in shape and 
morphological features of diatom valves from auxospore to initial cell to vegetative cell, exactly 
how much stepwise shape change occurs in each vegetative cell division, and how this is related 
to and identifi able at the generic, and preferably, the species level.

No one method will work for all times and all places, and no one method is superior to 
another. Although there are problems with using landmark-based methods and outline shape 
analysis, it is possible that these problems may be overcome when more is known about the 
development, functionality, and phylogeny of diatom groups. Alternatively, as older methods are 
modifi ed or current methods are combined or brand-new methods are created, new ways of using 
quantitative morphometrics will surely become available to diatom researchers for use in their 
studies. Moreover, we have only reviewed 2D methods here. With advances in technology and 
computing power, 3D applications are in the offi ng, which is an entirely separate topic in its own 
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right. Morphometric methods have been a valuable tool in diatom taxonomic and classifi cation 
studies and will continue to be increasingly important as ways to extend our understanding of 
these important microorganisms. 

Acknowledgements
We dedicate this paper to Nina Strelnikova for her life-long contributions to diatom research. We also thank 
Ed Theriot for reading and commenting on a previous version of this manuscript.

References
Abramowitz, M. & Stegun, I.A. (eds) (1972): Handbook of Mathematical Functions with Formulas, 

Graphs, and Mathematical Tables, U.S. Department of Commerce, National Bureau of Standards, 
Applied Mathematics Series 55 – Washington, D.C. 1060 pp. 

Adams, D C. & Rosenberg, M.S. (1998): Partial warps, phylogeny, and ontogeny: a comment on Fink and 
Zelditch (1995). – Syst. Biol. 47: 168–173. 

Adams, D.C., Rohlf, F.J. & Slice, D.E. (2004): Geometric morphometrics: ten years of progress following 
the ‘revolution’. – Italian J. Zool. 71: 5–16.

Almeida, S.P. & Eu, J.K.T. (1976): Water pollution monitoring using matched spatial fi lters. – Applied 
Optics 15: 510–515.

Barber, H.G. & Haworth, E.Y. (1981): A Guide to the Morphology of the Diatom Frustule. – Freshwat. Biol. 
Assoc. Sci. Publ. 44: 112 pp. The Ferry House, Ambleside, Cumbria, UK. 

Bennett, J.R. & MacDonald, J.S. (1975): On the measurement of curvature in a quantized environment. – 
IEEE Transactions on Computers 24: 803–820.

Beszteri, B., Ács, É. & Medlin, L. (2005): Conventional and geometric morphometric studies of valve 
ultrastructural variation in two closely related Cyclotella species (Bacillariophyta). – Eur. J. Phyc. 40: 
89–103.

Biasotti, S., Marini, S., Mortara, M., Patanè, G., Spagnuolo, M. & Falcidieno, B. (2003): 3D shape matching 
through topological structures. – In: Nyström et al. (eds): Lecture Notes in Computer Science, Vol. 
2886: 194–203. Springer Verlag, Berlin.

Bookstein, F.L. (1978): The Measurement of Biological Shape and Shape Change. – Lecture Notes in 
Biomathematics 24: 191 pp. Springer Verlag, New York. 

Bookstein, F.L. (1986): Size and shape spaces for landmark data in two dimensions (with discussion). – 
Statistical Sci. 1: 181–242.

Bookstein, F.L. (1989): Principal warps: thin plate splines and the decomposition of deformations. – IEEE 
Transactions on Pattern Analysis and Machine Intelligence 11: 567–585.

Bookstein, F.L. (1991): Morphometric Tools for Landmark Data. – Cambridge Univ. Press. 435 pp. 
Bookstein, F.L. (1996): Landmark methods for forms without landmarks: localizing group differences in 

outline shape. – In: Amini, A., Bookstein, F.L. & Wilson, D. (eds): Proceedings of the workshop on 
mathematical methods in biomedical image analysis, San Francisco, pp. 279–289. IEEE Computer 
Society. 

Bookstein, F.L. (1997): Landmark methods for forms without landmarks: morphometrics of group 
differences in outline shape. – Medical Image Analysis 1: 225–243.

Bookstein, F.L. (2000): Creases as local features of deformation grids. – Medical Image Analysis 4: 93–110.
Bookstein, F.L., Chernoff, B., Elder, R., Humphries, J., Smith, G. & Strauss, R. (1985): Morphometrics in 

Evolutionary Biology. –Acad. Nat. Sci. Philadelphia, Spec. Publ. 15: 277 pp. 
Bookstein, F.L. & Green, W.D.K. (1993): A feature space for edgels in images with landmarks. – J. Math. 

Imaging and Vision 3: 231–261.
Bookstein, F.L., Streissguth, A.P., Sampson, P.D., Connor, P.D. & Barr, H.M. (2002): Corpus callosum 

shape and neuropsychological defi cits in adult males with heavy fetal alcohol exposure. – Neuroimage 
15: 233–251.

Brown, J.W. & Churchill, R.V. (2001): Fourier Series and Boundary Value Problems. 6th ed. – McGraw-
Hill, New York. 344 pp. 

Burke, J.F. (1970): A review of the genus Aulacodiscus. – Staten Island Institute of Arts and Sciences, 306, 
314. New York.

Cairns, Jr., J., Dickson, K.L., Slocomb, J.P., Almeida, S.P., Eu, J.K.T., Liu, C.Y.C. & Smith, H.F. (1974): 
Microcosm pollution monitoring. – In: Hemphill, D.D. (ed.): Trace Substances in Environmental Healt 
–VIII: 223–228. University of Missouri, Columbia.

eschweizerbart_xxxeschweizerbart_xxx



302 J.L. Pappas, J.P. Kociolek & E.F. Stoermer

Cairns, Jr., J., Dickson, K.L., Slocomb, J.P., Almeida, S.P. & Eu, J.K.T. (1977): Biological monitoring 
of aquatic community structure using a computer interfaced laser system. – In: Alabaster, J.S. (ed.): 
Biological Monitoring of Inland Fisheries: 143–150. Appl. Sci. Publ., Ltd., Essex, England. 

Cairns, JR. J., Almeida, S.P. & Fujii, H. (1982): Automated identifi cation of diatoms. – Bioscience 32: 
98–102.

Canny, J. (1986): A computational approach to edge detection. – IEEE Transactions on Pattern Analysis and 
Machine Intelligence 8: 679–698.

Cartmill, M. (1994): A critique of homology as a morphological concept. – Am. J. Phys. Anthrop. 94: 
115–124. 

Ciobanu, A. & du Buf, H. (2002): Identifi cation by contour profi ling and Legendre polynomials. – In: du 
Buf, H. & Bayer, M.M. (eds): Automatic Diatom Identifi cation and Classifi cation: 167–185. World Sci., 
New Jersey. 

Cooley, W.W. & Lohnes, P.R. (1971): Multivariate Data Analysis. – John Wiley & Sons, New York. 364 pp. 
Cracraft, J. (1967): Comments on homology and analogy. – Syst. Zool. 16: 355–359.
Dryden, I.L. & Mardia, K.V. (1991): General shape distributions in a plane. – Adv. Appl. Probab. 23: 

259–276.
Dryden, I.L. & Mardia, K.V. (1998): Statistical Shape Analysis. – J. Wiley & Sons, Chichester, UK. 347 pp. 
Edwards, R.E. (1967): Fourier Series: A Modern Introduction, Vol. 1. – Holt, Rinehart and Winston, Inc., 

New York. 211 pp. 
Ehrlich, R., Pharr, R.B., JR. & Healy-Williams, N. (1983): Comments on the validity of Fourier descriptors 

in systematics: a reply to Bookstein et al. – Syst. Zool. 32: 202–206.
Falasco, E., Blanco, S., Bona, F., Gomá, J., Hlúbiková, D., Novais, M.H., Hoffmann, L. & Ector, L. (2009): 

Taxonomy, morphology and distribution of the Sellaphora stroemii complex (Bacillariophyceae). – 
Fottea 9: 243–256.

Ferson, S., Rohlf, F.J. & Koehn, R.K. (1985): Measuring shape variation of two-dimensional outlines. – 
Syst. Zool. 34: 59–68.

Fischer, S. & Bunke, H. (2002): Identifi cation using classical and new features in combination with 
decision tree ensembles. – In: du Buf, H. & Bayer, M.M. (eds): Automatic Diatom Identifi cation and 
Classifi cation: 109–140. World Sci., New Jersey.

Fischer, S., Shahbazkia, J.R. & Bunke, H. (2002): Contour extraction. – In: du Buf, H. & Bayer, M.M. 
(eds): Automatic Diatom Identifi cation and Classifi cation: 93–107. World Sci., New Jersey. 

Forero-Vargas, M., Redondo, R. & Cristobal, G. (2003): Diatom screening and classifi cation by shape 
analysis. – In: García, N., Martínez, J.M. & Salgado, L. (eds): Lecture Notes in Computer Science. Vol. 
2849: 58–65. Springer Verlag, Berlin. 

Geissler, U. (1970a): Die Variabilität der Schalenmerkmale bei der Diatomeen. – Nova Hedwigia 19: 623–
773.

Geissler, U. (1970b): Die Schalenmerkmale der Diatomeen. Ursachen ihrer Variabilität und Bedeutung für 
die Taxonomie. – Nova Hedwigia, Beih. 31: 511–535.

Geissler, U. (1982): Experimentelle Untersuchungen zur Variabilität der Schalenmerkmale bei einigen 
zentrischen Süsswasser-Diatomeen. I. Der Einfl uss unterschiedlicher Salzkonzentrationen auf den 
Valva-Durchmesser von Stephanodiscus hantzschii Grunow. – Nova Hedwigia, Beih. 73: 211–247.

Genkal, S.I. & Kuzmin, G.V. (1979): Biometric analysis of main structural elements of valves in the species 
of the genus Stephanodiscus Ehr. (Bacillariophyta). – Bot. Zhurnal 64: 1237–1244.

Gevirtz, J.L. (1976): Fourier analysis of bivalve outlines: implications on evolution and autecology. – Math. 
Geol. 8: 151–163.

Ghiselin, M.T. (1969): The distinction between similarity and homology. – Syst. Zool. 18: 148–149.
Gifi , A. (1990): Nonlinear Multivariate Analysis. – Chichester, New York. 579 pp. 
Goldman, N., Paddock, T.B.B. & Shaw, K.M. (1990): Quantitative analysis of shape variation in populations 

of Surirella fastuosa. – Diatom Res. 5: 25–42.
Goodall, C.R. (1991). Procrustes methods in the statistical analysis of shape. – J. Roy. Stat. Soc. Ser. B 53: 

285–339.
Goodall, C.R. & Mardia, K.V. (1993): Multivariate aspects of shape theory. – Ann. Statistics 21: 848–866.
Gorman, J.W., Mitchell, O.R. & Kuhl, F.P. (1988): Partial shape recognition using dynamic programming. 

– IEEE Transactions on Pattern Analysis and Machine Intelligence 10: 257–266.
Gower, J.C. (1975). Generalized procrustes analysis. – Psychometrika 40: 33-51.
Green, P.E. & Carroll, J.D. (1978): Analyzing Multivariate Data. – The Dryden Press, Hinsdale, Illinois. 

519 pp.

eschweizerbart_xxxeschweizerbart_xxx



Quantitative morphometric methods in diatom research 303

Green, W.D.K. (1995): Spline-based deformable models. – In: Melter, R.A., Wu, A.Y., Bookstein, F.L. & 
Green, W.D.K. (eds): Vision Geometry IV, SPIE Proceedings, Vol. 2573: 290–301. The Internat. Society 
for Optical Engineering (Society of Photo-Optical Instrumentation Engineers), San Diego, California. 

Hart, J.C. (1998): Morse theory for implicit surface modeling. – In: Hege, H.-C. & Polthier, K. (eds): 
Mathematical Visualization: 257–268. Springer Verlag, Berlin. 

Hicks, Y.A., Marshall, D., Rosin, P.L., Martin, R.R., Mann, D.G. & Droop, S.J.M. (2006): A model of 
diatom shape and texture for analysis, synthesis and identifi cation. – Machine Vision Appl. 17: 297–
307.

Hill, M.O. (1974): Correspondence analysis: a neglected multivariate method. – Appl. Stat. 23: 340–354.
Holmes, R.W. & Reimann, B.E.F. (1966): Variation in valve morphology during the life cycle of the marine 

diatom Coscinodiscus concinnus. – Phycologia 5: 233–244.
Jalba, A.C., Wilkinson, M.H.F., Roerdink, J.B.T.M., Bayer, M.M. & Juggins, S. (2005): Automatic diatom 

identifi cation using contour analysis by morphological curvature scale spaces. – Machine Vision Appl. 
16: 217–228.

Johansen, J.R. & Theriot, E.C. (1987): The relationship between valve diameter and number of central 
fultoportulae in Thalassiosira weissfl ogii (Bacillariophyceae). – J. Phyc. 23: 663–665.

Johnston, E.M. & Stoermer, E.F. (1976): Computer analysis of phytoplankton cell images. – The Microscope 
24: 181–187.

Jongman, R.H., Ter Braak, C.J.F. & van Tongeren, O.F.R. (1995): Data Analysis in Community and 
Landscape Ecology. – Cambridge Univ. Press, New York. 299 pp. 

Kahn, D.W. (1995): Topology: An Introduction to the Point-Set and Algebraic Areas. – Dover Publ., Inc., 
New York. 217 pp. 

Kendall, D.G. (1977): The diffusion of shape. – Adv. Appl. Prob. 9: 428–430.
Kendall, D.G. (1984): Shape manifolds, procrustean metrics, and complex projective spaces. – Bull. 

London Math. Soc. 16: 81–121.
Kendall, D.G., Barden, D., Carne, T.K. & Le, H. (1999): Shape and Shape Theory. – John Wiley & Sons, 

Ltd., Chichester, UK. 306 pp. 
Kincaid, D.T. & Schneider, R.B. (1983): Quantifi cation of leaf shape with a microcomputer and Fourier 

transform. –Can. J. Bot. 61: 2333–2342.
Kingston, J.C. & Pappas, J.L. (2009): Quantitative shape analysis as a diagnostic and prescriptive tool in 

determining Fragilariforma (Bacillariophyta) taxon status. – Nova Hedwigia, Beih. 135: 103–119.
Kobayashi, A., Tanaka, J. & Nagumo, T. (1998): Morphological and taxonomical study of Arachnoidiscus 

ornatus Ehreb. (Bacillariophyceae) in Japan. – Diatom 14: 25–34.
Kociolek, J.P. & Stoermer, E.F. (1988): Taxonomy, ultrastructure, and distribution of Gomphoneis 

herculeana, G. eriense and closely related species. – Proc. Acad. Nat. Sci. Philadelphia 140: 24–97.
Kuhl, F.P. & Giardina, C.R. (1982): Elliptic Fourier features of a closed contour. – Computer Graphics 

Image Processing 9: 3236–3258. 
Le, H. & Kume, A. (2000): The Fréchet mean shape and shape of means. – Adv. Appl. Prob. 32: 101–113.
Lestrel, P.E. (ed.) (1997): Fourier Descriptors and their Applications in Biology. – Cambridge Univ. Press, 

Cambridge, UK. 466 pp. 
Lestrel, P.E. (2000): Morphometrics for the Life Sciences. – In: Oxnard, C.E. (ed.): Recent Advances in 

Human Biology, Vol. 7: 1–261. World Sci., Singapore.
Little, J. & Mardia, K. (1996): Edgels and tangent planes in image warping. – In: Marcus, L.F., Corti, M., 

Loy, A., Naylor, G.J.P. & Slice, D.E. (eds): Advances in Morphometrics: 263–270. Plenum Press, New 
York. 

Lohmann, G.P. (1983): Eigenshape analysis of microfossils: a general morphometric procedure for 
describing changes in shape.  – Math. Geol. 15: 659–672.

Loke, R.E., Bayer, M.M., Mann, D.G. & du Buf, J.M.H. (2002): Diatom recognition by convex and concave 
contour curvature. – Oceans ‘02/IEEE 4: 2457–2465.

Loke, R.E. & du Buf, H. (2002): Identifi cation by curvature of convex and concave segments. – In: du Buf, 
H. & Bayer, M.M. (eds.): Automatic Diatom Identifi cation and Classifi cation: 141–165. World Sci., 
New Jersey. 

MacLeod, N. (1999): Generalizing and extending the eigenshape method of shape space visualization and 
analysis. – Paleobiology 25: 107–138.

MacLeod, N., O’Neill, M. & Walsh, S.A. (2007): A comparison between morphometric and artifi cial neural 
network approaches to the automated species recognition problem in systematics. – In: Curry, G.B. & 

eschweizerbart_xxxeschweizerbart_xxx



304 J.L. Pappas, J.P. Kociolek & E.F. Stoermer

Humphries, C.J. (eds): Biodiversity Databases: Techniques, Politics, and Applications: 37–62. CRC 
Press, Boca Raton, Florida.

Mahalanobis, P.C. (1948): Historical note on the D3-statistic. – Sankhya, 9: 237.
Manly, B.F.J. (2005): Multivariate Statistical Methods: A Primer, 3nd edition. – Chapman and Hall, London. 

214 pp.
Mann, D.G., McDonald, S.M., Bayer, M.M., Droop, S.J.M., Chepurnov, V.A., Loke, R.E., Ciobanu, R.E. 

& du Buf, J.M.H. (2004): The Sellaphora pupula species complex (Bacillariophyceae): morphometric 
analysis, ultrastructure and mating data provide evidence for fi ve new species. – Phycologia 43: 459–
482.

Marcus, L.F., Hingst-Zaher, E. & Zaher, H. (2000): Application of landmark morphometrics to skulls 
representing the orders of living mammals. – Hystrix 11: 27–47.

Mardia, K.V. & Dryden, I.L. (1989a): Shape distributions for landmark data. – Adv. Appl. Prob. 21: 742–
755.

Mardia, K.V. & Dryden, I.L. (1989b): The statistical analysis of shape data. – Biometrika 76: 271–281.
Mardia, K.V. & Dryden, I.L. (1994): Shape averages and their bias. – Adv. Appl. Prob. 26: 334–340.
Mardia, K.V. & Patrangenaru, V. (2005): Directions and projective spaces. – Ann. Statistics 33: 1666–1669.
Mardia, K.V., Bookstein, F.L. & Moreton, I.J. (2000): Statistical assessment of bilateral symmetry of 

shapes. – Biometrika 87: 285–300.
Milnor, J. (1963): Morse Theory. – Annals of Mathematical Studies, Princeton Univ. Press, Princeton, New 

Jersey. 153 pp.
Mizuno, M. (1987): Morphological variation of the attached diatom Cocconeis scutellum var. scutellum 

(Bacillariophyceae). – J. Phyc. 23: 591–597.
Mosimann, J.E. (1970): Size allometry: size and shape variables with characterization of the lognormal and 

generalized gamma distributions. – J. Am. Statistical Assoc. 65: 930–948.
Mou, D. & Stoermer, E.F. (1992): Separating Tabellaria (Bacillariophyceae) shape groups based on Fourier 

descriptors. – J. Phyc. 28: 386–395.
Mukundan, R. (2004): Some computational aspects of discrete orthonormal moments. – IEEE Transactions 

on Image Processing 13: 1055–1059.
Mukundan, R., Ong, S.H. & Lee, P.A. (2001): Discrete vs. continuous orthogonal moments for image 

analysis. – In: Arabnia, H.R. & Mun, Y. (eds): Proceedings of the International Conference on Imaging 
Science, System and Technology, Vol. 1: 23–29. CSREA Press, Las Vegas, Nevada. 

Novais, M.H., Blanco, S., Hlúbiková, D., Falasco, E., Gomá, J., Delgado, C., Ivanov, P., Ács, É., Morais, M., 
Hoffmann, L. & Ector, L. (2009): Morphological examination and biogeography of the Gomphonema 
resenstockianum and G. teregestinum species complex (Bacillariophyceae). – Fottea 9: 257–274.

Novotni, M. & Klein, R. (2003): 3D Zernike descriptors for content based shape retrieval. – In: Elber, G. 
& Shapir, V. (eds): Proceedings of the Eighth ACM Symposium on Solid Modeling and Applications: 
216–225. ACM Press, New York. 

Noy-Meir, I. (1973): Data transformations in ecological ordination: I. Some advantages of non-centering. 
– J. Ecol. 61: 329–341.

Noy-Meir, I., Walker, D. & Williams, W.T. (1975): Data transformations in ecological ordination. II. On the 
meaning of data standardization. – J. Ecol. 63: 779–800.

Pappas, J.L. (2000): Fourier shape analysis and shape group determination by principal component analysis 
and fuzzy measure theory of Asterionella Hassall (Heterokontophyta, Bacillariophyceae) from the 
Great Lakes. – Doctoral Diss., Univ. Michigan, Ann Arbor, Michigan. 170 pp. 

Pappas, J.L. (2006): Biological taxonomic problem solving using fuzzy decision-making analytical tools. – 
Fuzzy Sets and Systems 157: 1687–1703. 

Pappas, J.L. (2011): Graph matching a skeletonized theoretical morphospace with a cladogram for 
gomphonemoid-cymbelloid diatoms (Bacillariophyta). – J. Biol. Syst. 19: 47–70.

Pappas, J. L. & Stoermer, E.F. (2001): Fourier shape analysis and fuzzy measure shape group differentiation 
of Great Lakes Asterionella Hassall (Heterokontophyta, Bacillariophyceae). – In: Economou-Amilli, 
A. (ed.): Proceedings of the Sixteenth International Diatom Symposium: 485–501. Amvrosiou Press, 
Univ. Athens, Greece. 

Pappas, J. L. & Stoermer, E.F. (2003): Legendre shape descriptors and shape group determination of 
specimens in the Cymbella cistula species complex. – Phycologia 42: 90–97.

Pappas, J.L., Fowler, G.W. & Stoermer, E.F. (2001): Calculating shape descriptors from Fourier analysis: 
shape analysis of Asterionella (Heterokontophyta, Bacillariophyceae). – Phycologia 40: 440–456.

Perez, S.I., Bernal, V. & Gonzalez, P.N. (2006): Differences between sliding semi-landmark methods in 

eschweizerbart_xxxeschweizerbart_xxx



Quantitative morphometric methods in diatom research 305

geometric morphometrics, with an application to craniofacial and dental variation. – J. Anatomy 208: 
769–784.

Persoon, E. & Fu, K.S. (1977): Shape discrimination using Fourier descriptors. – IEEE Transactions on 
Systems, Man, and Cybernetics 7: 170–179.

Potapova, M. & Hamilton, P.B. (2007): Morphological and ecological variation within the Achnanthidium 
minutissimum (Bacillariophyceae) species complex. – J. Phycol. 43: 561–575.

Reeb, G. (1946): Sur les points singuliers d’une forme de Pfaff complètement intégrable ou d’une fonction 
numérique. – C. R. Acad. Sci. Paris 222: 847–849.

Reimer, C.W. (1954): Re-evaluation of the diatom species Nitzschia frustulum (Kütz.) Grun. –- Butler Univ. 
Bot. Stud. 11: 178–191.

Rhode, K.M., Pappas, J.L. & Stoermer, E.F. (2001): Quantitative analysis of shape variation in type and 
modern populations of Meridion (Bacillariophyceae). – J. Phycol. 37: 176–183.

Rivera, P.S & Barrales, H.L. (1994): Asteromphalus sarcophagus Wallich and other species of the genus off 
the coast of Chile. – Mem. Calif. Acad. Sci. 17: 37–54.

Rohlf, F.J. (1990): Fitting curves to outlines. – In: Rohlf, F.J. & Bookstein, F.L. (eds): Proceedings of the 
Michigan Morphometrics Workshop, Spec. Publ. 2: 167–177. Univ. Michigan Mus. Zool., Ann Arbor, 
Michigan. 

Rohlf, F.J. (1996): Morphometric spaces, shape components and the effects of linear transformations. – 
In: Marcus, L.F., Corti, M., Loy, A., Naylor, G.J.P. & Slice, D.E. (eds): Advances in Morphometrics: 
117–129. Plenum Press, New York.

Rohlf, F.J. (1998): On applications of geometric morphometrics to studies of ontogeny and phylogeny. – 
Syst. Biol. 47: 147–158.

Rohlf, F.J. & Archie, J.W. (1984): A comparison of Fourier methods for the description of wing shape in 
mosquitoes (Diptera: Culicidae). – Syst. Zool. 33: 302–317.

Rohlf, F.J. & Bookstein, F.L. (eds.) (1990): Proceedings of the Michigan Morpho me trics Workshop, Spec. 
Publ. 2. – Univ. Michigan Mus. Zool., Ann Arbor, Michigan. 380 pp.

Rohlf, F.J. & Slice, D. (1990): Extensions of the Procrustes method for the optimal superimposition of 
landmarks. – Syst. Zool. 39: 40–59.

Sahoo, P.K., Soltani, S. & Wong, K.C. (1988): A survey of thresholding techniques. – Computer Vision and 
Graphics Image Processing 41: 279–295.

Santos, L.M. & du Buf, H. (2002): Identifi cation by Gabor features. – In: du Buf, H. & Bayer, M.M. (eds): 
Automatic Diatom Identifi cation and Classifi cation: 187–220. World Sci., New Jersey. 

Sheets, H.D., Keonho, K. & Mitchell, C.E. (2004): A combined landmark and outline-based approach to 
ontogenetic shape change in the Ordovician trilobite Triarthrus becki. – In: Elewa, A. (ed.): Applications 
of Morphometrics in Paleontology and Biology: 67–81. Springer Verlag, New York. 

Sheets, H.D, Covino, K.M., Panasiewicz, J.M. & Morris, S.R. (2006): Comparison of geometric 
morphometric outline methods in the discrimination of age-related differences in feather shape. – 
Frontiers in Zoology 3: 15–26.

Singh, G.D., McNamara, J.A., JR. & Lozanoff, S. (1997): Finite element analysis of the cranial base in 
subjects with class III malocclusion. – British J. Orthodontics 24: 103–112.

Slice, D.E. (2001): Landmark coordinates aligned by Procrustes analysis do not lie in Kendall’s shape 
space. – Syst. Biol. 50: 141–149.

Slice, D.E., Bookstein, F.L. Marcus, L.F. & Rohlf, F.J. 1996. A Glossary for Geometric Morphometrics. – 
In: Marcus, L.F., Corti, M., Loy, A., Naylor, G.J.P. & Slice, D.E. (eds): Advances in Morphometrics: 
531–551. Plenum Press, New York. (Online at: http://dipbau.bio.uniroma1.it/web/Docenti/Docente373/
Morfometria-geometrica/glossary-of-geometric-morphometrics.pdf for a download, or type in 
“morpho metrics glossary” in a search engine box to get a webpage version of the glossary).

Small, C.G. (1988): Techniques of shape analysis on sets of points. – Int. Statistical Rev. 56: 243–257.
Small, C.G. (1996): The Statistical Theory of Shape. – Springer Verlag, New York. 227 pp.
Steinman, A.D. & Ladewski, T.B. (1987): Quantitative shape analysis of Eunotia pectinalis 

(Bacillariophyceae) and its application to seasonal distribution patterns. – Phycologia 26: 467–477.
Steinman, A.D. & Sheath, R.G. (1984): Morphological variability of Eunotia pectinalis (Bacillariophyceae) 

in a softwater Rhode Island stream and in culture. – J. Phycol. 20: 266–276.
Stoermer, E.F. & N.A. ANDRESEN (2006): Atypical Tabularia in coastal Lake Erie, USA. In: N. 

Ognjanova-Rumernova & K. Manoylov (eds.): Advances in Phycological Studies, Festschrift in honour 
of Prof. Dobrina Temniskova-Topalova: 353-363. Pensoft Publishers & University Publishing House, 
Sofi a-Moscow. 

eschweizerbart_xxxeschweizerbart_xxx



306 J.L. Pappas, J.P. Kociolek & E.F. Stoermer

Stoermer, E.F. & Ladewski, T.B. (1982): Quantitative analysis of shape variation in type and modern 
populations of Gomphoneis herculeana. – Nova Hedwigia, Beih. 73: 347–386.

Stoermer, E.F., Ladewski, T.B. & Kociolek, J.P. (1984): Further observations on Gomphoneis. – In: Richard, 
M. (ed.): Proceedings of the Eighth International Diatom Symposium: 205–213. Koeltz Scientifi c, 
Koenigstein. 

Stoermer, E.F., Qi, Y.-Z. & Ladewski, T.B. (1986): A quantitative investigation of shape variation in 
Didymosphenia (Lyngbye) M. Schmidt (Bacillariophyta). – Phycologia 25: 494–502.

Szökefalvi-Nagy, B. (1965): Introduction to Real Functions and Orthogonal Expansions. – Oxford Univ. 
Press, New York. 447 pp.

Takemura, C.M., Cesar, R.M., Jr., Arantes, R.A.T., Da, L., Costa, F., Hingst-Zaher, E., Bonato, V. & dos 
Reis, S.F. (2004): Morphometrical data analysis using wavelets. – Real-Time Imaging 10: 239–250.

Theriot, E. (1987): Principal component analysis and taxonomic interpretation of environmentally related 
variation in silicifi cation in Stephanodiscus (Bacillario phyceae). – British Phycol. J. 22: 359–373.

Theriot, E. (1992): Clusters, species concepts, and morphological evolution of diatoms. – Syst. Biol. 41: 
141–157.

Theriot, E. & Ladewski, T.B. (1986): Morphometric analysis of shape of specimens from the neotype of 
Tabellaria fl occulosa (Bacillariophyceae). – Am. J. Bot. 73: 224–229.

Theriot, E.C. & Stoermer, E.F. (1982): Principal component analysis and character variation in Stephano-
discus niagarae Ehrenb.: morphological variation relative to lake trophic status. – In: Mann, D.G. (ed.): 
Proceedings of the 6th International Diatom Symposium: 97–111. O. Koeltz, Koenigstein.

Theriot, E. & Stoermer, E.F. (1984): Principal component analysis of Stephanodiscus: observations on two 
new species from the Stephanodiscus niagarae complex. – Bacillaria 7: 37–58.

Theriot, E.C., Håkansson, H. & Stoermer, E.F. (1988): Morphometric analysis of Stephanodiscus alpinus 
(Bacillariophyceae) and its morphology as an indicator of lake trophic status. – Phycologia 27: 485–
493.

Thompson, D’A.W. (1917): On Growth and Form. – Cambridge Univ. Press, Cambridge, UK. 793 pp. 
Thompson, D’A.W. (1942): On Growth and Form, 2nd edition. – Cambridge Univ. Press, Cambridge, UK. 

1116 pp. 
Tropper, C.B. (1975): Morphological variation of Achnanthes hauckiana (Bacillario phyceae) in the fi eld. 

– J. Phycol. 11: 297–302.
Veselá, J., Neustupa, J., Pichrtová, M. & Poulíčková, A. (2009): Morphometric study of Navicula morph-

ospecies (Bacillariophyta) with respect to diatom life cycle. – Fottea 9: 307–316.
Weinberger, H.F. (1995): A First Course in Partial Differential Equations with Complex Variables and 

Transform Methods. – Dover Publications, Inc., New York. 446 pp. 
Wendker, S. (1990): Morphologische Untersuchungen an Populationen aus dem Formenkreis um Nitzschia 

frustulum (Kützing) Grunow. – Diatom Res. 5: 179–187.
Wilkinson, M.H.F., Jalba, A.C., Urbach, E.R. & Roerdink, J.B.T.M. (2002): Identifi cation by mathematical 

morphology. – In: du Buf, H. & Bayer, M.M. (eds): Automatic Diatom Identifi cation and Classifi cation: 
221-244. World Sci., Singapore. 

Wood, A.M., Lande, R. & Fryxell, G.A. (1987): Quantitative genetic analysis of morphological variation in 
an Antarctic diatom grown at two light intensities. – J. Phycol. 23: 42–54.

Younker, J.L. & Ehrlich, R. (1977): Fourier biometrics: harmonic amplitudes as multivariate shape 
descriptors. – Syst. Zool. 26: 336–342.

Zahn, C.T. & Roskies, R.Z. (1972): Fourier descriptors for plane closed curves. – IEEE Transactions on 
Computers 21: 269–281.

Zelditch, M.L., Swiderski, D.L., Sheets, D.H. & Fink, W.L. (2004): Geometric Morphometrics for Bio-
logists: A Primer. – Elsevier Academic Press, London. 452 pp.

Zhu, X. (2007): Shape recognition based on skeleton and support vector machines. – In: Huang, D.-
S., Heutte; L. & Loog, M. (eds.): Proceedings of the Third International Conference on Intelligent 
Computing, Communications in Computer and Information Science 2: 1035–1043. Springer Verlag, 
Berlin. 

Ziezold, H. (1977): On expected fi gures and a strong law of large numbers for random elements in quasi-
metric spaces. – In: Czechoslovak Academy of Sciences, Prague (ed.): Transaction of the Seventh 
Prague Conference on Information Theory, Statistical Decision Functions, Random Processes, Vol. A: 
591–602. Reidel, Dordrecht. 

Ziezold, H. (1994): Mean fi gures and mean shapes applied to biological fi gure and shape distributions in 
the plane. – Biometrical J. 36: 491–510.

eschweizerbart_xxx

All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately.

eschweizerbart_xxx


