FRACTALS TAKE A CENTRAL PLACE

BY
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ABSTRACT. The geometry of central place theory is shown to
small) proper subset of the seometry of fractal curves: cur.
ves of fractional dimension which have only recently been dis-
played in a graphically provocative manner as computer-gene-
rated images (Mandelbrot 1977: e exact procedure for
making this correspondence between a theory from cconomics
and geography with one from pure mathematies is displayed in
the text. Tt lends itself to replication by hand or by machine. As
is usual with alignments of this sort, a wide variety of related
projects follows naturally: some of these are indicated at ap-
propriate points in the text.

Introduction

“Fractal” curves are curves that “fill” a fractional
part of a space; such curves have long been a sour-
ce of ple in math

tics, and more recently, have been applied to fun-
damental problems in a variety of disciplines. Ele-
mentary calculus exploits the use of the absolute
value function, y = | x |, to disprove that continuity
implies differentiability: this V-shaped. conti-
nuous, absolute value function has only one point,
at the “corner,” at which the function is non-diffe-
rentiable. Karl Weicrstrass, a nineteenth century
mathematician, sought a continuous curve that
was nowhere differentiable and found one using a
sequence of alternations of the absolute value
function of the following sort: transform the letter
“V." replacing each segment by two suitably
placed copies of the letter “N.” and repeat this
procedure through n steps (Hahn 1956, pp. 1962—
63). The limit as n approaches infinity yields a
curve that is continuous but is composed only of
corner points and so is nowhere differentiable.
Koch superimposed the endpoints of Weier-
strass's curve, producing a continuous curve that
is nowhere differentiable surrounding a bounded
zone of the plane (Mandelbrot 1983, p. 41). Filling
a bounded zone, using Weierstrass’s procedure
with lines, led to the notion of “space-filling”
curves. Peano created curves formed from one-
dimensional line segments, which, when twisted
and transformed infinitely, filled a two-dimensio-
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nal space (Hahn 1956, pp. 1965-66), suggesting in-
tegration, the analytic companion of differen-
tiation.

The use of space-filling curves to disprove topo-
logical conjectures continues to the present (Steen
and Seebach 1970, pp. 137-38), and by the early
twentieth century, mathematicians Fatou and Ju-
lia focused on a systematic theoretical organiza-
tion of these sets extending beyond the calculus
(Sullivan, 1982). Today. mathematicians speci
zing in topological dynamics create theorems
about these sets and about sets that fill only part
of aspace; that the broader mathematical commu-
nity sees the constructive potential for this activity
is suggested by the series of four invited addresses
on dynamical systems given in the “Colloquim™
Lectures to the American Mathematical Society
(Sullivan, 1982).

Moreover, prior to the presence of high-speed
computing machinery, we could visualize these
complicated curves only in the mathematical
twilight of our minds, Thus the emergence of
Benoit Mandelbrot’s works (Mandelbrot 1977;
1983), displaying an elegant array of computer-
generated “fractal” curves, suggests various appli-
cations for these curves in situations where shift
in scale is fundamental. Mandelbrot's computer-
generated three-dimensional landscapes are remi-
niscent of Erwin Raisz’s block diagrams (Raisz
1948, pp. 120-121); his description of Minko
ki's “sausage” for smoothing curves is similar to
John Nystuen’s use of epsilon discs to identify the
domain of the boundary dweller (Nystuen 1967);
and his concern for “How long is the coast of
Britain?” echoes the persistence of the geographic
scale problem (Mandelbrot 1983, pp. 264-65, 32,
25). Cartographers Waldo Tobler and Harold
Moellering observed the potential for fractals to
contribute to their research in shape theory and
the transformation of shape; Michael Goodchild
noted Mandelbrot's “model for the Pareto distri-
butions observed for certain geographic areas” in
an article dealing with various aspects of the lo-
cation-allocation problem; and John Nystuen saw
the significance of applying Mandelbrot’s notion
of “self-similarity” to the design of urban facilities
dependent on dendritic networks for entry and
exit (cf. Mandelbrot, 1977; Tobler, 1984; Moelle-
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ring, 1978; Goodchild 1979, p. 247; Nystuen,
1978; 1984).

This paper exhibits procedure to generate fré
tal sets and then uses it to show that the entire geo-
metry of central place theory is but a small subset
of the theory of fractal geometry; for, one style of
fractal iteration sequence alone, using various
(but related) “generators,” will produce all possi-
ble central place nets. Consequently, the align-
ment of central place theory with fractal geometry
does not merely produce one, two, or three (i.e..
K = 3.4.7) cases of central place nets; rather, be-
cause fractal iteration sequences deal with infinite
processes, they yield all cases. Nor does this align-
ment present mere technique for verification of a
geometry of central places: the geometry of the
central place model is well-known and has been
clearly, and comprehensively, discussed in Mi-
chael Dacey’s masterful 1965 article (Dacey
1965). The material presented below daes show
exact procedure for the merging of two separate
theories — one from pure mathematics and one
from economics and geography. In doing so, it
suggests, in general, the power of one to enrich
the other through the lodging of on discipline in
the house of the other, and in particular, a theory
in its own right derived from associating mathema
tically-specialized central place concepts with
mathematically-broader fractal concepts. Recent-
ly, R. H. Atkin has demonstrated the richness of
this sort of approach in (among other things) his
analysis of the internal dynamics of urban structu-
re using material from combinatorial and alge-
braic topology (Atkin, 1974; 1981). In a parallel
vein, the broader conceptual base offered here
could present means for assessing the dynamic
structure of shared space between cities by eva-
Juating the changing dimensions of an entirc urban
Jandscape across the continuum of fractional va-
lues that reflects the infinity of variation in real-
world constraints.

Procedure for generating simple fractal sets

As with Weierstrass's creation of a nowhere diffe-
rentiable curve, the strategy that underlies the
physical development of fractal curves involves re-
placing, successively. the edges of a given regular
polygon with a pre-determined pattern. To repre-
sent this replacement, the notation of Figure 1 will
prove convenient; in that Figure, the shape above
each arrow indicates that each edge of the closed
curve on the left is to be replaced by the pattern
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above the arrow, generating the closed curve on
the right. Thus in Figure La, side UV of the
hexagon in Figure 1.a.i is replaced (outside the
hexagonal boundary) by a “bent” or ‘broken’ shape
with the included angle equal to 120°. This same
shape replaces the side adjacent to UV at V (with-
in the hexagonal boundary), and so forth around
the hexagon, until U is reached from the left-hand
side. Since the application of this shape alternated
back and forth between ‘inside” and ‘outside’ the
hexagon, the area in Figure 1.a.ii is the same as
that in Figure 1.a.i. Similarily, this pattern could
be applied, at a scale made to match the length of
a side. to Figure l.a.ii creating Figure 1a.iii; in
this case the broken shape UV’ is used to replace
cach side of Figure 1.a.ii. Iteration of this proce-
dure produces increasingly complicated curves;
the shape at the left end of this sequence is the
“initiator,’ the pattern that is applied to the initia-
tor is the ‘generator,’ and the shapes that appear
at various stages in the iteration sequence are ‘te-
ragons’ (Mandelbrot 1983, pp. 50, 48).

The ‘broken’ character of the teragons derives
from the application of a ‘broken’ generator; in-
deed, Mandelbrot comments that “1 coined [ractal
from the Latin adjective fractus. The correspond-
ing Latin verb frangere means ‘to break’ to create
irregular fragments” (Mandelbrot 1983, p. 4). The
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curye formed as the limit of an infinite iteration
sequence is a “fractal” curve if and only if its di-
mension, D, does not coincide with one of the
standard Euclidean dimensions 0, 1.2, or 3. Man-
delbrot’s formula for determining the dimension
DisD = (log N) / (log k) where N represents the
number of segments of equal length into which the
generator is broken (e.g.. in Figure 1.a, N = 2),
and k is derived from the concept of “self-similari-
y,” discussed below ( delbrot 1983, p. 44)

had remained mutually unrelated [and] . . . few
definitions of dimension were used more than
once” (Mandelbrot 1983, p. 16). Indeed, a tradi-
tional difficulty in identifying a basic set of spatial
assumptions from which to classify spatial pheno-
mena (as noted for example by Nystuen (Nystuen
1968)). involves problems associated with the
placement of objects into more than one class as
a result of Lh‘mgu in the scale of observation
s i of fractional

In Figure 1.a, application of the generator to the
initiator produces the first teragon which contains
three copics of the initiator at a reduced scale (sug-
gested by the dashed lines inside the first teragon).
Application of the generator to the first teragon
transforms it into the second teragon which con-
tains three images of the first teragon (again sug-
gested by dashed lines within the second teragon).
Repeated application of the generator produces
teragons with increasingly lacy edges. but in all
cases the (n+1)st-teragon contains three copies.
at a reduced scale, of the nth-teragon. This nume-
rical invariant that measures shape but permits
scale to shift, will be called the invariant of self-
similarity. In the case of Figure 1, the smallest
Euclidean dimension in which all teragons can be
embedded is 2; thus. the invariant three, of this
example, will be represented as k*, where the ex-
ponent corresponds to this minimum embedding
criterion, (Had three appeared as an invariant of
self-similarity in a sequence of three-dimensional
(one-dimensional) teragons, we should write k*

3 (k = 3)). Thus K2 Wm Figure 1a, so that k =
V3, and since N = (log 2)/(log V'3)

1.2618595. Thus the curve !hul results from the in-
finite sequence associated with Figure 1.a is a
“fractal” curve of fractional dimension 1.2618595

The plausibility of assigning a “fractional” di-
mension to a curve comes from viewing it as a
highly contorted one-dimensional Euclidean line
that appears to “fill” more Euclidean space than
does a single straight linc, but less than does a
Euclidean plane region. Mandelbrot’s formula for
D produces larger values for D as larger amounts
of space are “filled.” reflecting this plausibility
from a notational standpoint (Polya. 1954). The
notion of fractional dimension goes beyond stan-
dard Euclidean dimension since it includes it as
proper subset: Mandelbrot observes that “In fact,
having recognized the inadequacies of standard
dimension, numerous scholars . . . had already
been groping towards broken, anomalous, conti-
nuous dimensions of all kind. These approaches
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offers the potential to resolve this dichotomy in
spatial classification.

Fractal generation of central place nets

The invariant of self-similarity, k%, produced in
the iteration sequence of Figure 1.a appears to
serve the same function as the K-value of central
place theory. (Dacey noted a relationship of this
sort between central place theory, repetition
theory, and iterative processes of various kinds:
regrettably, Mandelbrot’s work was not available
to him in 1965 (Dacey 1965. p. 115)). The remain-
der of this section determines the relation of the
fractal k-value to the central place K-value and
exhibits fractal iteration sequences that generate
the standard central place nets associated with K
3,K =4, and K = 7, as well as those derived
from other points of a triangular lattice, sclected
to expose the reader to generator selection techni-
que appropriate to obtaining nets for higher K-
values associated with an arbitrary lattice point.

Standard central place hierarchies
The generator in the iteration sequence in Figure
1.a transforms a hexagonal initiator (Figure 1.a.i)
into a first teragon composed of three hexagons
(Figure 1.a.ii) which is again transformed (by the
same generator) into the shape in Figure ©a.iii
which contains three copies of the first teragon.
The following stacking procedure of the initiator
and teragons yields the K = 3 central place hier-
archy (Figure 1.a):
a) stack the initiator on the first teragon so
that O is superimposed on O, as a geo-
metric translation in the direction of the

arrow:

b) stack the first teragon on the second
teragon so that O, is superimposed on
0, as a geometric translation in the di-
rection of the arrow;
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¢) continue this sequence indefinitely,
considerations of scale demant

This generator produces teragons with cells of
exactly the right size to use to form a central place
net K = 3; the stacking procedure used to align
the teragons to form the entire central place net is
not as straightforward as it is in the cases that fol-
low. Figure 1.b shows a fractal iteration sequence
whose invariant of self-similarity is k* = 4. When
initiator and teragons are stacked, with centers
0. 0,. 0y, . . . superimposed in the obyious way
(as a geometric translation in the direction of the
arrow), a K = 4 central place net emerges. App-
lication of the generator shown in Figure 1.c, to
the hexagonal initiator, produces a fractal itera-
tion sequence with an invariant of self-similarity
K2 = 7; the teragons provide hexagonal cells of dia-
meter suited to forming a K = 7 central place hier-
archy. Again, the entire central place net appears
casily when the teragons are stacked in such a way
lha( centers Oy, Oy, Oy, . . ., and vertices U. V.,
. line up in the natural way. (Figure 1.c.ii
is ul(cd to fit the teragons together neatly; other-
wise, stacking follows the arrows, as above). Inall
cases of Figure 1, unit hexagons form the basis of
the second teragons in order to ease visual compa-
risons of the most complicated forms in that
Figure.

The key to using fractal geometry to obtain cen-
tral place nets rests in choosing the correct genera-
tor to apply to the hexagonal initiator. Once the
shape of such a generator has been determined
(not always an casy task), it remains to construct
the generator. Variations in detail of the procedu-
re used to construct the generator for K = 7 (Figu-
re 1.c) will yield positions for precise generator
placement for any K-value, To produce the K =
7 central place net, it is required that <UAB =
<ABV = 120°. that AU = AB = BV, and that M
is the midpoint of both UV and AB. Use of the
Law of Cosines in AAUM gives (UM)’ = (AU)*

AU os 120°, or, when UM
mple)and AM LJJ]/Z it follows
lhal (2.3 = (7 AU)/4. Thus, AU = 1.7386366
cm. Because the value of 2.3 used for UM would
vary with enlargement or reduction of Figure 1,
calculate the size of <AUM, an angular measure
which remains fixed under such geometric trans-
formation. To do so, use the Law of Sines in

AUM: (sin 1209/(2.3) = (sin(SAUM))Y
(1.7386366), so that <AUM = 19.106605°. With
agood estimate of <AUM, we have enough infor-
mation to characterize the generator for Figure 1.¢

s
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and to construet the corresponding central place
hierarchy, from a fractal iteration sequence. to
any level of detail.

The teragons of Figure | show only the first two
stages in fractal iteration sequences; passing ab-
stractly to the limit as the number of stages appro-
aches infinity yields the dimension of each central

place landscape and consequently, a measure of
hnw completely that net “fills” the space that con-
tains it. For K = 3, D = 1.2618595 as shown
above. When K = 4, the generator is broken into
three pieces, so that N = 3 and the invariant of
self-similarity is four so that k* = 4. Consequently,
D = (log N)/(log k) = (log 3)/(log 2) = 1.5849625,
where the exponent of k reflects the minimum
Euclidean dimension in which all teragons may be
embedded. Similarly, when K = 7, D = (log 3)/
(log V'7) = 1.1291501. This suggests that inde-
pendent of the number of hexagonal boundary li-
nes introduced into the central place landscape,
there is always “unfilled” space to use as trade
arcas, and that values of D closer to 2 represent
greater penetration of the net into the space it par-
titions. The constructions in Figure | suggest,
from mathematically inductive evidence, that pla-
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Cenrral ploce lartice

K-velue generating function
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Figure 3.

ne central place K-values are identical to the frac-
tal invariant of self-similarity. k%, in which the ex-
ponent represents an upper bound for the dimen-
sion of any fractal curve in the plane. Thus K
K is the relation that serves to formulate central
place nets from fractal iteration sequences in the
plane (this paper deals with existence criteria,
uniqueness is not addressed although it appears
that such investigation might prove fruitful)

Higher order central place nets

To gain added insight into methods for generator
selection, Figure 2 displays the beginnings of frac-
tal iteration sequences required to produce central
place hierarchies associated with lattice points
(2.2), (3.2). and (3.1); here again. the most comp-
licated teragon boundaries contain the unit hex-
agons. All exhibit only the first step in the fractal
iteration sequence: the hard part in creating these
is to find the generator. In Figure 2.a, a generator
of four sides, applied alternately within and out-
side the initiator, yields a first teragon containing
twelve copics of the initiator. Thus k
if this sequence were carried out indefinitely.
dimension of the limiting position would be D =
(log 4)/(log V12) = 1.1157718. In Figure 2.b a
five-sided generator, which crosses the path of UV
when applied to the initiator produces a first tera-
gon with mineteen images of the initiator. The
limiting position for this sequence would have di-
mension D =(log 5)/(log V19) 1.0932051.
Finally, Figure 2.c shows a five-sided generator,
applicd outside UV and then rotated about V. to
lie within the initiator, that leads to an ultimate
partition of the plane with dimension D = (log5) /
(log V/13) = 1.2549471. In these three cases, the
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associated central place hierarchies (K = 12, K =
19.and K = 13, 0r f(2.,2), f(3,2), and f(
from the generating function f(x,y)
v for lattice points (x.y) (Dacey 1965, p. 113)),
emerge by superimposing initiator and teragon
centers in the natural way.

Classification of generators
The generator in Figure 2.a is composed of two
copies of the generator in Figure 1.a; it may be
shown using algebraic technique that fractal gene-
rators for central place nets associated with the Iz
tice point (n,n) (n an integer) are composed of

n | copies of the generator in Figure 1.a. This
observation suggests grouping all such lattice
points into one s. called T, from the use of the
K = 3 generator. These points all fall on one hori-
zontal line in Figure 3, and this collinearity condi-
tion suggests looking at the other horizontal lines
to see if they determine sets of lattice points asso-
ciated with other generator types. Indeed, it ap-
pears that higher central place K-value fractal se-
quences sort naturally into one of three mutually
exclusive generator types grouped by lattice
points on these horizontal lines:

a) Type Ty the images of the initiator in-
side the first (and subsequent) teragon.
Figueres 1.a and 2.a exhibit this sort of
configuration.

b) Type T,: the characteristic of Ty does
not hold, and in addition, the generator
does not cross UV or any other initiator
or teragon side. Figures 1.b and 2.b
show this style of net.

¢) Type Ty: the characteristic of Ty does
not hold, and in addition. the generator
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daes cross and all other initiator and
teragon sides. Figures 1.c and 2.c de-
monstrate this quality.

Evidence from additional fractal constructions,
with results coded along the horizontal lines in Fi-
gure 3 that show the relationships among these ty-
pes in a triangular lattice, suggests that

a) along any single horizontal line exactly
one of Ty, T,, or T, holds;

b) as one moves from left to right along a
horizontal line, the dimension of the
central place fractal decreases;

c) there is a eyclic pattern in the order of

5, s s

d) values of N. the number of sides in the
S by an increment of

one moves from left to right along

a single horizontal line.

Conclusions
‘This paper presents explicit technique for generat-
ing central place nets from fractal iteration se-
quences. It begins with the lowest level central
place nets (Figure 1) and then moves to more
complicated nets associated with higher K-values
(Figure 2). The general strategy of Figure 2
extends to any point of a triangular lattice wuh
integer i the for
higher K-value central place nets from fractal ite-
ration sequences rests in choosing a fractal genera-
tor that forces K to emerge from k?. The separa-
tion of such generators into three mutually exclu-
sive, but exhaustive. ses shows that the set of
central place nets is a subset of the set of fractal
iteration sequences. It is a proper subset asit relies
only on one basic initiator (the hexagon) and on
three basic generator types (Ts, Ty, and Ty). (The
geographic and cconomic implications of nets
formed from other initiators and/or generators is
an open issue).

Moreover, as the calculations and figures aboye
exhibit, the precise alignment of central place nets
with overlays of fractal teragons along the seam K
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K2, also issues a challenge. That challenge, re-
sulting from the merging of two disparate bodies
of literature, is to explore the power of this geo-
metric alignment in uncovering distortions to cen-
tral place nets caused by barriers, to understand
the implications of this merger for partitioning the
landscape according to underlying networks, and
to demonstrate how related concepts, such as the
fractional dimension D, might explain the poten-
tial of an areally spread market to communicate,
along teragon links, with point sources of central
goods and services.
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