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Abstract 

Species’ functional traits are an important part of the ecological complexity that 

determines the provisioning of ecosystem services. In biological pest control, predator response 

to pest density variation is a dynamic trait that impacts the provision of this service in 

agroecosystems. When pest populations fluctuate, farmers relying on biocontrol services need to 

know how natural enemies respond to these changes. Here we test the effect of variation in 

coffee berry borer (CBB) density on the biocontrol efficiency of a keystone ant species (Azteca 

sericeasur) in a coffee agroecosystem. We performed exclosure experiments to measure the 

infestation rate of CBB released on coffee branches in the presence and absence of ants at four 

different CBB density levels. We measured infestation rate as the number of CBB bored into 

fruits after 24 hours, quantified biocontrol efficiency (BCE) as the proportion of infesting CBB 

removed by ants, and estimated functional response from ant attack rates, measured as the 

difference in CBB infestation between branches. 

Infestation rates of CBB on branches with ants were significantly lower (71%-82%) than 

on those without ants across all density levels. Additionally, biocontrol efficiency was generally 

high and did not significantly vary across pest density treatments. Furthermore, ant attack rates 

increased linearly with increasing CBB density, suggesting a Type I functional response. These 

results demonstrate that ants can provide robust biological control of CBB, despite variation in 

pest density, and that the response of predators to pest density variation is an important factor in 

the provision of biocontrol services. Considering how natural enemies respond to changes in pest 
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densities will allow for more accurate biocontrol predictions and better-informed management of 

this ecosystem service in agroecosystems.
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Introduction 

The functional traits of species play a major role in the provisioning of ecosystem 

services [1]. While much of the ecosystem service literature has focused on the influence of 

species richness on ecosystem service provision, it is ultimately species’ traits that drive 

ecological processes [2–4]. However, the way a species functions is often context dependent on 

environmental conditions, so the effectiveness of an ecosystem service provider may change if 

ecological conditions change. This complexity has been noted as a research priority for the 

ecological study of ecosystem services [5,6], yet not enough has been done to test this idea. 

Attention to species’ traits and the dynamics of ecosystem service provision is especially 

important in agricultural systems [7,8], where farmers relying on these services need to know 

how to manage for them over the course of growing seasons. 

Biological pest control is one of the most widely recognized ecosystem services provided 

by biodiversity in agriculture [7,9]. Where natural enemies can effectively limit crop pests, 

farmers can reduce or potentially eliminate their reliance on chemical pesticides while 

maintaining high levels of production [9–11]. Successful realization of this ideal in 

agroecosystems, however, depends on a complex array of ecological conditions [12,13]. The 

traits of natural enemies, ranging from hunting mode to prey selectivity [14,15], can play a large 

role in determining how biocontrol will function [16,17]. Of particular importance is how 

predators respond to changes in prey density [16], which occurs through two principle 

mechanisms. The first is predator functional response, which is a measure of how a predator’s 



2	

		

attack rate changes in response to increasing prey density. This has been an important component 

of classical predator-prey theory ever since Holling’s original work [18–20], where he describes 

three general functional response curves: Type I, a linear increase in attack rate; Type II, an 

increase in attack rate that gradually plateaus; Type III, an initial lag, followed by an 

acceleration, then leveling off of attack rate, resulting in a sigmoidal curve. Most commonly, 

predators exhibit either Type II or Type III functional response curves, where attack rates 

gradually level off with increasing prey density as they either satiate or are overwhelmed in their 

handling time of individual prey [20–22]. Where this leveling off occurs can determine the 

stability of predator-prey interactions, whether or not pests escape control, and ultimately how 

effective a biocontrol agent will be in suppressing crop damage [20,21]. The second mechanism 

through which predators respond to prey density is numerical response, or how predator density 

changes with changing prey density. This can occur over short time-scales where individual 

predators move to areas of increased prey (aggregation numerical response), but can also occur 

over longer time-scales, where predators reproduce more as they consume increasing prey 

densities and, in turn, increase their own densities (reproductive numerical response) [16,23]. 

Overall functional and numerical response can work together or independently to determine 

whether predators will be successful in suppressing pest outbreaks and reducing crop damage, 

thus making the response of predators to prey density an important factor in the provisioning of 

biological control services [16,20,22,23]. 

Coffee agroecosystems are well-suited venues for exploring how components of 

ecological complexity, like context dependent predator traits, impact ecosystem service provision 

[13,24]. Coffee is one of the most important global commodities, and with nearly 20 million 

farming households around the world, its production provides widespread economic benefits to 
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society [25]. Throughout the tropics, coffee plantations threaten biodiversity with habitat loss, as 

they are often located in some of the world’s most important biodiversity hotspots [26], but they 

can also help to conserve it by providing high quality habitat patches within an intensive 

agricultural matrix [27]. The latter is especially true in traditional shade-grown coffee systems 

where shade trees offer nesting space and resources to native biodiversity [28]. Because of this, 

much attention has been given in the literature to the ecosystem service potential of biodiversity 

in these agroecosystems, with a particular focus on biological pest control [24,29]. 

 Much of the biocontrol work in coffee has focused on the coffee berry borer 

(Hypothenemus hampei, Ferrari, Coleoptera: Curculionidae) a notorious insect that is considered 

the most economically damaging pest of coffee throughout the world [30,31]. Adult females of 

this small beetle bore directly into the coffee fruit, where they carry out their reproductive cycle, 

laying eggs, which develop into larvae that eat the seed. Borer infestation reduces the quality of 

the coffee crop, often ruining the berries, which can result in yield losses of over 30% in some 

regions [32]. Furthermore, because of its cryptic life cycle inside the berries, it is difficult to 

control with pesticides, and when chemical control is practiced it is often done with toxic 

insecticides, such as endosulfan [30,33]. Fortunately, a number of natural enemies of the coffee 

berry borer (CBB) have been identified, many of which are native to their respective coffee 

growing regions [31,34–46]. These species offer the potential for conservation or autonomous 

biological control [12,47], where farmers can manage these services indirectly by bolstering 

natural enemy populations through the maintenance of complex habitat in and around coffee 

farms [12,29,37] – potentially resulting in win-win solutions for both farmers and biodiversity 

[10,17,48]. 
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Many of the CBB natural enemies that have been studied are ants [38–46], which have 

long been used as biological control in agriculture [49–51]. Ants can reduce CBB infestation and 

damage on coffee plants both directly through predation and indirectly through plant defense – 

where they engage in protective relationships with plants, removing herbivores in exchange for 

resources such as nesting space or honeydew from tending hemipteran insects [45,46]. Despite 

this knowledge across a diversity of ant species, we still know little about how well ants serve as 

pest control agents under changing pest density conditions. Few studies have explicitly tested 

this question with ants, perhaps because of their uniqueness as generalist eusocial predators. The 

colonial nature of ants may make it logistically difficult to directly measure their functional 

response. One study attempted this with individual Solenopsis invica workers (separated from 

their colony) exposed to cotton fleahopper pests in the laboratory [52]. However, as Schenk and 

Bacher (2002) suggest, field tests of functional response are preferred for generalist predators as 

they incorporate the impact of alternative prey items and the potential for prey-switching – where 

generalist predator attack rates accelerate as they switch to more abundant prey, resulting in a 

Type III curve [22,53]. Additionally, testing individual workers ignores the essential nature of 

ants – their colonial makeup – which may ultimately explain their efficiency as biocontrol agents 

[54]. If ants are to be relied on as effective alternatives to chemical pesticides, farmers need to 

know how they respond to expansions in CBB densities under field conditions. This knowledge 

will help inform the management of these biocontrol agents in complex coffee agroecosystems. 

Here we test how a keystone ant species, a known biocontrol agent of the coffee berry 

borer, responds to variation in CBB density on coffee plants. Because of the difficulties of 

teasing apart functional and numerical responses in ants we test this question in two ways. 

Through an ant exclosure experiment, we measure ant biocontrol efficiency (BCE) as the 
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proportion of infesting pests removed from plants by ants and use this to gage the ultimate effect 

of ants on reducing crop damage of CBB. We also estimate ant functional response, where we 

consider the short-term, collective response of groups of ants on coffee (representing the colony 

as an individual predator). We predict that ants, as generalist predators, are likely to exhibit prey-

switching but will eventually satiate, resulting in a Type III functional response curve [22,53]. 

Functional response and BCE are then intimately linked, where the type of functional response 

curve will influence how efficient ants are at different prey densities. Therefore, we predict that 

under changing pest densities BCE will be dynamic, where a Type III functional response would 

likely generate a bell-shaped BCE curve, and that this will have important implications for 

farmers managing for ant biocontrol services (Fig. 1). Finally, we use ant activity, measured 

during the experiment, as a proxy for ant abundance to conduct a post-hoc estimation of 

numerical response. We use these measures, together, to gain some clarity on the question of 

how ants respond to dynamic pest densities and to determine if ant biological control can be 

robust under pest density increases or if this service declines. To our knowledge, this is the first 

reported field study to test the effect of pest density variation on ant-mediated biological control. 
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Materials and Methods 

Study System & Site Selection 

This research was conducted from June 25 - August 14, 2014 at Finca Irlanda, a 280-

hectare coffee farm in the Soconusco region of Chiapas, Mexico with permission from the farm’s 

owner, Don Walter Peters. Finca Irlanda is an organic, shaded coffee farm situated at 15º11' N 

90º20' W, between 950 and 1150 meters, where a number of ant species occupy coffee plants and 

shade trees. Azteca sericeasur J. Longino is a dominant arboreal ant species in this system that 

nests on shade trees and tends scale insects on coffee bushes [40,55]. This relationship, between 

the coffee, scale, and ants, forms the basis of a complex web of ecological interactions, with 

cascading effects on a number of other coffee pests and their predators, making A. sericeasur a 

keystone ant species in this system [12,13]. The primary insect pest of coffee in the region is the 

coffee berry borer [56]. Throughout the farm, A. sericeasur is known to protect coffee from CBB 

both through plant defense and direct predation [45,46]. To select our sites, we surveyed the farm 

for 20 individual coffee bushes (Coffea arabica) with A. sericeasur under several conditions. 

First, we looked for a minimum level of ant activity on each bush to ensure ants were 

consistently active at the site and would likely remain over the course of the experiment. We 

measured bush ant activity as the number of individual ants passing a point on the central trunk 

per minute and set the minimum at 10 individuals/minute. We then counted the branches and 

berries and chose only bushes with a minimum of eight branches, each with at least 40 non-
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infested berries. Finally, bush replicates were chosen with at least 5m between them to increase 

the probability that ants on each bush represented different ant colonies. 

 

Branch Exclosure Experiment 

To test the effects of varying CBB density on ant biocontrol we conducted an ant 

exclosure experiment adapted from a similar design used by Gonthier et al. (2013) [46]. We used 

a paired-branch treatment design to estimate the effect of ants on CBB infestation while 

controlling for external variables (Fig. 2). Within each coffee bush replicate, we choose pairs of 

branches of roughly the same age (similar height on central trunk) to control for within plant 

differences. We measured branch ant activity as the number of individuals on or crossing onto a 

branch per minute, and chose branches with at least one ant/minute. Before running the 

experiment, we removed all berries infested with CBB and any decaying berries from the 

branches that were likely to fall off during manipulation. We then removed any bridging plant 

material on the branches to decrease the chance of an exclosure breach. To standardize the 

number of berries between branch pairs we removed excess berries on branches until the 

difference in berries between the two branches was no greater than five (making sure to maintain 

the 40 berry count minimum). Next, we marked two leaves on each branch to serve as platforms 

for the placement of CBB individuals. We used two leaf platforms per branch to spread out the 

beetles to reduce any potential density effects they might have on each other. We then counted 

the number of berries in berry clusters nearest to the leaf platforms and removed berries, if 

necessary, until the difference in the sum of berries nearest to the two platforms was no greater 

than two between the two branches. After initial branch preparation, we randomly assigned one 

of the two branches as the exclosure treatment and applied tanglefoot (The Tanglefoot Co., 
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Grand Rapids, MI, USA) around the base of the branch to prevent ants from passing onto it. We 

then removed all ants beyond the tanglefoot to ensure that this branch served as a non-ant 

treatment. 

CBB were collected from infested fruits found on coffee plants in the farm. On the 

morning of placement, we separated CBB from fruits in the laboratory and placed them in glass 

vials. We were careful to only use mature females (the individuals likely to bore) based on their 

size and color [32]. After completing the site setup we waited a minimum of 20 hours before 

returning to place the CBB. We did this to allow the system to relax to the baseline level of ant 

activity (not artificially disturbed) and to allow any plant volatiles released during setup to 

dissipate. Additionally, we continued to monitor branch ant activity (number of ants on or 

crossing onto branch/minute) throughout the experiment to ensure that activity did not change as 

a result of the experimental manipulation. Upon returning to the site, we roughly split the CBB 

individuals between the two leaf platforms on each branch. After placing CBB on the branches, 

we waited 24 hours to count the level of infestation on the branches. Infestation was measured as 

the number of berries on each branch with CBB bored into the fruit (Fig. 2). We included berries 

with beetles bored halfway or more into entrance holes, but not berries with empty entrance 

holes, as this could indicate that ant attack may have occurred during boring. While typically 

only one beetle enters a berry [31], in cases where berries had multiple bored holes they were 

only counted as one. 

This process was repeated within each bush replicate on four different branch pairs using 

CBB densities of 10, 20, 40, and 80 individuals per branch. We chose these levels to ensure that 

ants were exposed to a broad range of agriculturally relevant densities, where 80 individuals per 

branch is meant to simulate outbreak levels based on what has been documented in Latin 
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American coffee production [33,56]. To separate the effects of different CBB densities on ants, 

each density treatment was conducted at separate times within the same coffee bush replicate and 

the order of the treatments was chosen randomly to minimize the potential for habituating the 

ants to a particular pattern of pest density variation. Between conducting each density treatment 

within a bush we waited at least 20 hours and removed tanglefoot as often as possible from 

branches already used to avoid disturbing the foraging space of the ants too drastically over the 

course of the experiment. All treatments were initiated between 9:00 and 14:00 (before the 

afternoon rainy period) and ran for 24 hours. 

 

Biocontrol Efficiency and Functional Response 

We calculated biocontrol efficiency (BCE) as the proportion of infesting CBB removed 

by the ants (Fig. 2). This was measured as the ratio of the difference in infestation between 

paired branches, with and without ants, and the infestation on the branch without ants alone 

(where Ina is infestation without ants and Ia is infestation with ants): 

!
BCE =

Ina − Ia
Ina

 

This yields a ratio that typically falls between 0 and 1, with 1 meaning ants are 100% efficient 

(i.e. they remove all of the infesting CBB present). To estimate functional response we measured 

the attack rate (AR) of the ants as the difference between infesting CBB individuals between 

paired branches, with and without ants, or simply the numerator of the BCE equation: 

!AR = Ina − Ia  

This yields the collective attack rate of the group of ants on a branch (representing the colony as 

an individual predator), and allows for an indirect estimation of functional response. Here BCE 
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serves as a useful metric alongside functional response for assessing the relative efficacy of 

biological control. While functional response demonstrates the dynamics of predator attack rate 

under prey density variation, it does not convey the proportional amount of infesting or 

damaging prey that are removed by a predator. Calculating biocontrol efficiency in this way 

allows us to evaluate the efficiency of biocontrol agents in terms of their ultimate contribution to 

the suppression of crop damage. 

 

Statistical Analysis 

To account for random effects, covariates, and non-normal data, we used a generalized 

linear mixed model (GLMM) [57] to test for differences in CBB infestation rates between 

treatments. We ran the GLMM with a log link function and a Poisson distribution, and included 

ant presence/absence, density treatment (four levels as a categorical variable), and their 

interaction as fixed effects. To control for environmental variation, ant colony differences, and 

non-independence between branches, we included coffee bush in the model as a random effect. 

We also included branch ant activity (measured before experimental set up), the number of 

berries per branch, and the sum of nearest berry clusters per branch as fixed effect covariates in 

the model. To account for the potential by-products of experimentally manipulating plants, such 

as the release of volatile chemicals that may have influenced CBB infestation or ant behavior, we 

included the total number of berries removed per branch during set up as an additional covariate 

in the model. To test for significant differences in BCE between the density treatments, we 

calculated estimated BCE means from the infestation coefficients generated by the GLMM. We 

then made pair-wise comparisons of these estimated BCE means based on the GLMM output. 
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To estimate the type of functional response from mean ant attack rates across density 

treatments, we fit the data to a simple linear regression model with the origin as the intercept. In 

order to differentiate any effects of numerical responses in the ants, we performed a post-hoc 

analysis of ant density (using ant activity as a proxy for density) in relation to CBB density. For 

this we ran a simple linear regression model of branch ant activity (on non-exclosure branches) 

measured at the end of the experiment (24 hours after CBB placement) to CBB density treatment 

level [53]. Additionally, we conducted a GLMM on mean branch ant activity (non-exclosure 

branches) measured over the course of the experiment. We did this to determine if ant activity 

varied by through time as a result of the experimental manipulation. We included activity sample 

time (at set up, at CBB placement, and 24 hours later at check) and CBB density treatment as 

categorical fixed effects, and coffee bush as a random effect. 

To ensure that our density treatments were reliable tests of the effect of density variation 

on ants, we removed all paired-branch replicates from the analysis where infestation on non-ant 

branches was less than 10% of the experimental treatment density. This occurred with greater 

frequency toward the end of the experimental time frame, as we were unable to continue to find 

sufficient healthy CBB individuals in the field. Additionally, any replicates where ant activity 

was greater than 1 individual/minute on non-ant branches after the experiment was run were also 

eliminated from the analysis. This only occurred in three replicates where ants had breached 

exclosures, or falling plant debris had caused exclosures to fail. Together, this resulted in paired-

branch sample sizes for each density treatment of: n = 20 for 10 CBB, n = 18 for 20 CBB, n = 15 

for 40 CBB, and n = 14 for 80 CBB. Removing these data from the analysis did not change the 

overall statistical conclusions of the experiment. GLMMs were implemented using the lme4 
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package, tested for overall significance using Wald Type II chi-square tests, and performed – 

along with all other statistical tests – in R (R Development Core Team 2014) [58].
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Results 

Overall, the GLMM showed that both ant presence/absence (χ2 = 230.31, p < 0.001) and 

CBB density (χ2 = 178.34, p < 0.001) were significant predictors of CBB infestation, but their 

interaction was not significant (χ2 = 3.15, p = 0.370). Pair-wise comparison of branches with and 

without ants in the GLMM showed that there was a significant difference in the mean number of 

bored fruits after 24 hours for every CBB density treatment (10 CBB: z = -4.90, p < 0.001; 20 

CBB: z = -5.74, p < 0.001; 40 CBB: z = -8.10, p < 0.001; 80 CBB: z = -10.54, p < 0.001; Fig. 3). 

Across the density treatments, A. sericeasur reduced CBB infestation by 71%-82%. Pair-wise 

comparisons of estimated BCE means in the GLMM revealed that BCE did not significantly vary 

between the density treatments (BCE10:20, z = -1.18, p = 0.238; BCE10:40, z = -1.42, p = 0.157; 

BCE10:80, z = -1.71, p = 0.087; BCE20:40, z = -0.011, p = 0.991; BCE20:80, z = -0.168, p = 0.867; 

BCE40:80, z = -0.199, p = 0.842; Fig. 4). Overall, BCE was consistently high, ranging from .685 

to .834 across the treatments. Additionally, the non-significant interaction term between ant 

presence/absence and density treatment further supports the idea that the effect of ants was 

consistent at different densities. Ant activity on the branches (measured before experimental set 

up), the number of berries per branch, the number of nearest cluster berries per branch, and total 

berries removed per branch were not significant factors in the GLMM. 

The functional response analysis showed the data were well fit to a simple linear 

regression model fit through the origin (R2 = .9948, F = 761.4, p < .001, Fig. 5).  The results 
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indicate that the mean number of CBB individuals attacked or removed by ants increased linearly 

with respect to increasing CBB density, which suggests a Type I functional response in A. 

sericeasur. Furthermore, our post-hoc analysis of ant activity after the 24-hour experimental 

period showed that there was no relationship between the number of ants per branch/minute (on 

non-exclosure branches) and the CBB density treatment level (R2 = 0.003, F = 0.005, p = 0.950, 

Appendix 1).  This suggests there was no lasting numerical response of the ants to CBB density. 

Finally, our GLMM on branch ant activity (on non-exclosure branches) showed that the mean 

number of ants on or crossing onto treatment branches did not significantly vary during the 

experiment (Appendix 2). This was true in regards to sample time (χ2 = 3.290, p = 0.193), CBB 

density treatment (χ2 = 1.648, p = 0.649), and their interaction (χ2 = 8.353, p = 0.213). This 

indicates that experimental manipulation did not have lasting effects on the activity level of the 

ants. 
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Discussion 

These results demonstrate that ants can be highly effective biological control agents of 

the coffee berry borer. Overall, the presence of A. sericeasur on coffee branches significantly 

reduced coffee berry borer infestation rates. This was consistent even at high levels of CBB 

densities and suggests that A. sericeasur could provide robust biological control in the face of 

future CBB outbreaks. This is supported by the consistently high level of BCE, the non-

significant interaction between ant presence/absence and CBB density (suggesting consistent 

effect of ants), and the Type I functional response we estimated from collective ant attack rates 

on coffee branches. Interestingly, our failure to detect a numerical response in the ants 24 hours 

after CBB exposure suggests that there was no lasting effect of ants aggregating in areas of high 

pest density. Overall, these results conflicted with our predictions and indicate that ants, as 

generalist eusocial predators, may be unique in their ability to respond rapidly and robustly to 

increases in prey density [54]. Type I functional responses are not commonly observed in nature 

[16,20,22], especially within insects [21]. Typically, predator attack rates eventually level off 

with increasing prey density as they become overwhelmed and satiate, resulting in Type II or 

Type III curves [20–23]. While individual predators will eventually satiate, it does not appear 

that colonies of hundreds of ant workers, as A. sericeasur usually maintains, will satiate at the 

densities of CBB that are meaningful to farmers. 

One possible explanation for this result is that A. sericeasur is not always a strict 

predator. Because these ants are usually protecting their scale mutualist partners on the coffee 
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plants, they are often engaging in plant defense, where ants remove pest individuals from host 

plants rather than predate them [45]. While ant-plant defensive relationships most commonly 

benefit plants, in some cases ants can increase the density of hemipterans to pest levels [59,60]. 

On coffee, however, CBB directly attack the harvested crop making them a more severe coffee 

pest than scale insects [33]. Thus, despite the potential trade-off, ant-hemipteran mutualisms on 

coffee plants likely have a net positive effect [46]. This behavior may help, in part, to explain the 

Type I functional response we observed, as ants will not satiate unless they are consuming prey. 

While non-consumptive plant defense works to suppress the infestation of CBB on coffee, it may 

allow beetles to escape mortality. It is still likely, however, that removal of the beetle from the 

plant would result in the death of CBB individuals, as the insects are not very hardy outside of 

coffee fruits and often fall to the ground after disruption by the ants [45]. It is also possible that 

other species of ground foraging ants would predate beetles that are knocked off plants by A. 

sericeasur, as it is known that several species of ground nesting ants are predators of CBB in 

coffee agroecosystems [41,61]. Another possible explanation for these results is that ants may 

actually be storing prey individuals in their nests, which some species of ants have been known 

to do [62,63]. This behavior could delay the effect of satiation and would allow ants to maintain 

high attack rates even at very high pest densities. Whether our results were being mediated 

through ant-plant defense, prey storage, or are simply a consequence of ant coloniality, there is 

no doubt that the presence of A. sericeasur on coffee plants helps to reduce CBB infestation rates 

[40,45,46]. Further work on the exact mechanism of A. sericeasur’s consistently high BCE will 

help to better inform management of ant-mediated CBB biocontrol and will also allow for 

inference about the biocontrol potential of other species of ants. 
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More broadly, these results demonstrate the importance of considering the functional 

traits of ecosystem service providers and the dynamics of ecosystem service provision in 

agriculture [7,8]. In the case of the coffee berry borer, much uncertainty remains regarding the 

severity of this pest in the future. While its infestation levels are currently low in southern 

Mexico where this experiment was conducted, in other locations it has recently reached outbreak 

levels, causing serious crop losses in island producing regions such as Hawaii and Jamaica [64–

66]. If CBB outbreaks occur in other locations, farmers will need to know if biocontrol services 

will still be effective. Indeed, recent literature suggests outbreaks may become more probable as 

climate change advances around the planet. Jaramillo et al. (2011) predict that increasing average 

temperatures in coffee growing regions will not only expand the altitudinal range of CBB, 

allowing it to reach higher grown coffee, but will also expand the temporal window for CBB 

reproductive cycles on farms, ultimately leading to increases in pest densities [67]. Furthermore, 

additional unexpected changes may come with CBB expansion in the form of increased fungal 

infestation rates associated with CBB crop damage, such as molds that produce toxic 

compounds, like ochratoxin A, which can contaminate coffee harvests [68]. We believe this 

presents an example of the importance of the insurance hypothesis of biodiversity [69]: while 

ants may go unnoticed at low densities of CBB, they could become very important ecosystem 

service providers in the face of future outbreaks. In this case, maintaining ants that are robust to 

pest density increases on farms would be crucial for coffee farmers relying on biological control. 

 As far as we know, this is the first reported field experiment to test the effect of 

increasing pest density on an ant species in the context of biological control. This is surprising 

considering the history of their use in agriculture and their widespread potential as biocontrol 

agents [49–51,70]. While their colonial nature may make them atypical organisms to consider in 
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terms of functional response, they are important predators nonetheless. Indeed, the functional 

response that ants exhibit as a colony may help to explain their efficacy as biocontrol agents 

[54]. Alternatively, the use of biocontrol efficiency (BCE) as an additional measure to functional 

and numerical response may allow for more direct inference about the ultimate impact of 

predators such as ants on reducing crop damage. Further work will need to be done to know if 

the trends we found generalize to other ant species or are a unique result of a keystone species 

engaging in aggressive plant defense. More broadly, the effect of prey density variation on 

natural enemies is an important part of the ecological complexity that governs the provision of 

biological control services, and should continue to be researched. Through experimentally 

studying this dynamic attribute of biocontrol ecologists will be able to better support 

management-relevant predictions in agriculture with empirical knowledge. This is precisely the 

kind of information farmers need if they are to embrace the conservation of biodiversity and 

ecosystem services in order to sustainably manage the world’s food supply. 
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Tables and Figures 
 

 
 
Figure 1. Hypothesized biological control efficiency (BCE) dynamics. As pest density 
increases, the overall efficiency of natural enemies to control pest infestation will likely vary, 
resulting in zones with different management implications. Here we define biocontrol efficiency 
(BCE) as the proportion of pests that are prevented from infesting or damaging crops by a 
predator. In our study we expect BCE to initially increase with increasing pest density, perhaps 
as ants switch to the more abundant prey. This could result in a potential buffer zone where ants 
help to buffer the pest outbreak. Eventually, however, BCE may drop off, as ants satiate or 
become overwhelmed at higher pest densities. This could create a potential pest outbreak 
threshold, which would result in an insurance zone where farmers would need to rely on the 
insurance of other natural enemy species to compensate for the decreased biocontrol efficiency. 
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Figure 2. Exclosure experimental design. Shows paired-branch treatment design and 
calculation of biocontrol efficiency (BCE). Infestation was measured as the number of bored 
coffee fruits on branches 24 hours after coffee berry borer placement. Total coffee berries per 
branch, leaf platforms, and berry clusters near leaf platforms are illustrated. This design was 
repeated on four different branch pairs within each coffee bush replicate, at different times, using 
four levels of CBB density. Asterisks indicate data is hypothetical and is only intended for the 
purpose of demonstrating the BCE calculation. 
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Figure 3. Coffee berry borer (CBB) infestation. Bars show the mean number of bored berries 
per branch (± SE) in the presence and absence of Azteca sericeasur at each CBB density 
treatment after 24 hours. Statistically significant differences in infestation between branches with 
and without ants are marked, where * = p < 0.001 
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Figure 4. Biocontrol efficiency (BCE) curve. Shows mean BCE (± SE) of Azteca sericeasur at 
each coffee berry borer (CBB) density treatment (10, 20, 40, and 80 individuals). There was no 
statistical difference in mean BCE across the treatments. The curve illustrates that BCE is 
maintained at a high level; however, trends between 0 and 10 CBB were not tested. The curve 
was produced using the “loess” smoothing function in the ggplot2 package in R. 
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Figure 5. Functional response curve. Shows the mean number of coffee berry borer (CBB) 
individuals attacked by Azteca sericeasur (± SE) across CBB density treatments (10, 20, 40, and 
80 individuals). A simple linear regression model, shown by the line, suggests a Type I 
functional response (R2 = .9948, F = 761.4, p < .001). 
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Appendices 
 

 
 
Appendix 1. Numerical Response. Shows mean branch ant activity (number of ants on or 
crossing onto branch/minute) (± SE) of Azteca sericeasur (on branches with ants only) 24 hours 
after CBB placement across the experimental CBB density treatments. The line shows a linear 
regression model of the data (R2 = 0.003, F = 0.005, p = 0.950), which suggests there was no 
lasting numerical response of the ants to increased CBB density. 
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Appendix 2. Branch Ant Activity. Shows mean branch ant activity (number of ants on or 
crossing onto branch/minute) (± SE) of Azteca sericeasur over the course of the experiment on 
branches with ants only. Data are separated by CBB density treatment (10, 20, 40, and 80 
individuals), which is indicated above each bar plot. “Set up” is ant activity measured at the 
beginning of the experiment, before manipulating the plant. “CBB placement” is ant activity 
measured immediately before placing CBB on branches. “After 24 hrs” is ant activity measured 
24 hours after CBB placement, at the end of the experiment. There was no statistical difference 
in mean branch ant activity by time (χ2 = 3.290, p = 0.193), density treatment (χ2 = 1.648, p = 
0.649), or their interaction (χ2 = 8.353, p = 0.213). 
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