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Abstract
Mitogen Activated Protein Kinase (MAP Kinase) pathway regulates many diverse 

cellular processes including cell division, growth and differentiation. Many proteins 

are involved in this complex mechanism of cell cycle regulation. Any mutation in one 

or more of these proteins may results in abnormal cell phenotypes including tumor 

formation. Phosphorylated MAPK (dpMAPK/dpERK) is a key protein activated 

downstream of Ras (proto-oncogene), and regulates cell division and differentiation 

depending on whether MAPK is localized in the nucleus or cytoplasm respectively. 

Earlier it was reported that nuclear localization of non-phosphorylated MAPK (ERK) 

is another novel mechanism which may initiate cell division in the developing eye of 

Drosophila. However, phosphorylation of MAPK is required for proper cell 

differentiation and growth. Here, we conducted a study on the expression pattern of 

p53 (tumor suppressor protein) in absence of phosphorylated MAPK. We also 

studied effect of hid (death activating protein) on MAPK activation and p53 gene 

expression. Our study shows that active MAPK is required for p53 gene expression. 

Moreover, we report here for the first time a new mode of negative regulation of 

p53 gene expression by the nuclear form of non-phosphorylated MAPK (MAPK-nls). 

Our studies also suggest that presence of hid may induce activation of MAPK via an 

unknown protein kinase. Mutations in MAPK and p53 have been reported in most 

human tumors. Inhibition of the Ras/MAPK is used as a mechanism for controlling 

tumor growth by many cancer drugs. Considering all these together our study 

might provide valuable contribution to design novel cancer drug.
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Introduction
Drosophila melanogaster as an Insect- animal Model

The fruit fly Drosophila melanogaster (D. melanogaster) first became prominent in 

genetic science in 1909, decades before bacteria and fungi. Drosophila melanogaster 

is a species of the order Diptera in the family Drosophilidae. The other names for D. 

melanogaster are "common fruit fly" and "vinegar fly". Starting from Charles W. 

Woodworth, this species is one of the most popularly used model organisms in 

biology, including studies in genetics, physiology, and life history evolution. The D. 

melanogaster genome has been sequenced and found to have 165 million nucleotide 

base pairs, encoding 13,767 genes (Manning, 2006). Moreover, D. melanogaster is 

one of the most studied organisms in biological research, particularly in genetics 

and developmental biology. There are several reasons as mentioned below;

• Minimal equipment and minimal space are required to take care and 

maintain culture even at the large scale, and therefore the overall cost is low.

• It is small and easy to grow in the laboratory, and their morphology is easy to 

identify once they are anesthetized (usually with ether, carbon dioxide gas, 

or by cooling them).

• It has a short generation time (about 10 days at room temperature) so 

several generations can be studied within a few weeks.

• It has a high fecundity (females lay up to 100 eggs per day and perhaps 2000 

in a lifetime) (Sang, 2001).
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• Males and females are readily distinguishable and virgin females are easy to 

isolate, facilitating genetic crossing.

• The mature larvae show giant chromosomes in the salivary glands called 

polytene chromosomes—"puffs" indicate regions of transcription and hence 

gene activity.

• It has only four pairs of chromosomes: three autosomes, and one sex 

chromosome.

• Recessive lethal "balancer chromosomes" carrying visible genetic markers 

can be used to keep stocks of lethal alleles in a heterozygous state without 

recombination due to multiple inversions in the balancer.

• Genetic transformation techniques have been available since 1987.

• Its complete genome was sequenced and first published in 2000 (Adams et 

al, 2000).

Its importance for human health was recognized by the award of the Nobel Prize in 

medicine/physiology to Edward B. Lewis, Christiane Nusslein-Volhard and Eric F. 

Wieschaus in 1995, for their discoveries concerning the genetic control of early 

embryonic development. Therefore, part of the reason people work with D. 

melanogaster is historical too.
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D. melanogaster: Life Cycle

The adult fly is about 2 mm long. Like other insects, adult D. melanogaster has three 

pairs of legs but, unlike other Dipterans, it only has one pair of wings. The second 

pair of wings has been modified to small appendages called “Halters”, which helps 

them to balance during flight. The surface of the adult body is covered with sensory 

hairs and bristles that are connected to the complex nervous system. Other 

prominent sensory organs, the eye and the antennae, are located in the head.

A female D. melanogaster can produce hundreds of eggs. When fertilized, each egg 

becomes an embryo that hatches out of the egg shell to become a worm-like larva. 

Larvae feed voraciously for about a week. At intervals during this period it sheds its 

skin to allow increasing body size. Each larval stage between these molts is called an 

instar. The third instar is the last stage before metamorphosis in to the imago (adult 

fly). The skin of the third instar larva hardens in to a case, and the animal becomes a 

pupa. Packets of cells called, imaginal discs, grow and differentiate into adult 

structures such as eyes, wings, and legs. In about four days, an adult fly emerges 

from the pupal case. Figure 1 on Page 4 summarizes the Life cycle of D. 

melanogaster.

3



fem ale male

pro pupa

embryo

0  
1st instar larva

2nd instar larva

3rd instar larva

Figurel: Life cycle of D. melanogaster. (w w w .flickr.com /pnotos/11304375@ N 07/2y93342324 /)

D. melanogaster: Genome

The genome of D. melanogaster (sequenced in 2000 and housed at the FlyBase 

database) contains four pairs of chromosomes: an X/Y pair and three autosomes 

labeled 2, 3, and 4 (Adams et al, 2000). The fourth chromosome is so tiny that it is 

often ignored. The D. melanogaster genome has 165 million base pairs (Gerard, 

2006) and contains 13,767 protein-coding genes that comprise ~20%  of the genome 

(Manning, 2006). More than 60% of the genome appears to be functional, non- 

protein-coding DNA sequence involved in gene expression control (Halligan et al, 

2006). Sex determination in I), melanogaster occurs by the ratio of X chromosomes 

to autosomes, not because of the presence of a Y chromosome as in human sex

4
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determination. Although the Y chromosome is entirely heterochromatic, it contains 

at least 16 genes, many of which are thought to have male-related functions 

(Carvalho, 2002). For normal female flies this ratio of X chromosomes to autosomes 

is one, whereas for normal male flies it is 0.5 or less.

D. melanogaster: Retina Development

The compound eye of D. melanogaster develops from the retina, which is derived 

from a monolayer of epithelium called the eye imaginal disc (shown in Figure 2, 

Panel 'a' as part of the eye-antennal imaginal disc complex). During the final larval 

instar (the third larval stage), a wave of differentiation, that can be visualized by an 

indentation in the epithelium called the morphogenetic furrow, sweeps across the 

disc, transforming an undifferentiated field of cells into a precise tiling o f —800 unit 

eyes called ommatidia (Kumar, 2001). The construction of an ommatidium involves 

a series of inductive events that result in the stereotyped recruitment of twenty 

cells. Among these twenty cells, eight are photoreceptors (Rl-8), and twelve are 

accessory cone and pigment cells (Figure 2 Panel b) (Kumar, 2001). In the adult 

retina, the photoreceptor neurons make up the core of the ommatidium and project 

the rhabdomere — a light-gathering organelle — into the central lumen. Above this 

lumen lie four cone cells that secrete the overlying pseudocone and lens material 

(Kumar, 2001). Surrounding the photoreceptors and cones are pigment cells that 

optically insulate each unit eye (Figure 2 Panel b; seen in longitudinal section on the 

left and in cross-section at different positions on the right) (Kumar, 2001).
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Figure 2: Development and structure of the D. melanogaster retinas [Kumar, 2001).

MAP Kinase Pathway

Signal transduction pathways are mechanisms by which cells respond to 

extracellular stimuli. These stimuli may be chemical (e.g. growth factors, insuiin) or 

physical (e.g. stress, UV radiation). Signal transduction starts with a signal to a 

receptor, and ends with a change in cell function. Transmembrane receptors span 

the cell membrane, with part of the receptor outside (the extracellular domain) and 

part mside the cell (the intracellular domain). The chemical signal (ligand) binds to 

the extracellular domain of the receptor, changing shape and /o r  conformation of the 

intracellular domain to convey another signal inside the cell. Some chemical
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messengers, such as testosterone, can pass through the cell membrane, and bind 

directly to receptors in the cytoplasm or nucleus. These pathways may involve long 

and complex cascades of signaling that amplifies the initial signal at each step. Thus, 

a "small" signal can result in "large" response, such as changing the expression of 

genes or altering the activity of certain enzymes.

The Mitogen Activated Protein Kinase (MAP Kinase, or MAPK) pathway is one of the 

most important signal transduction pathways and is currently a popular topic in 

cancer research. The MAP Kinase pathway regulates many diverse cellular 

processes including cell division, growth and differentiation. In fact, misregulation 

of the MAPK pathway is associated with approximately 25% of human tumors 

(Hanahan et al., 2000). A number of peptide factors, including Insulin-like Growth 

Factor 1 (IGF-1), Fibroblast Growth Factor (FGF), and Epidermal Growth Factor 

(EGF), promote cell survival by suppressing the intrinsic cell death program (Botella 

et al., 2003; Yamada et al., 1997). The mechanisms by which survival factors 

inactivate the intrinsic cell death program are currently the subject of intensive 

investigation. The growth factors listed above bind to and activate receptor tyrosine 

kinases (RTKs) at the cell surface, which in turn stimulate the anti-apoptotic activity 

of the proto-oncogene Ras. The Ras protein controls the activity of a number of 

effector pathways, and the MAP Kinase pathway is one of them (Parrizas e t al., 

1997). Upon ligand binding, EGFR (Epidermal Growth Factor Receptors) dimerize 

and auto-phosphorylate. This results in the activation of the GTPase-Ras complex 

that further phosphorylates and activates Raf (MAPK kinase kinase). Raf 

phosphorylates and activates MEK (MAPK kinase), which leads to the dual
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phosphorylation and activation of MAPK. MAPK can then either remain in the 

cytoplasm or move into the nucleus where it phosphorylates transcription factors. 

This result in activation of multiple transcription factors required for cell growth 

and inactivation of death signaling proteins, such as hid in case of Drosophila. Figure 

3 below illustrates the KGFR/Ras/MAP Kinase signal transduction pathway in 

Drosophila.

Stimuli (e.g. EGF)

C O C U ^X X X O C O JC O Jr^^^  '^ • ^ 'v̂ vtxxxxocxxxdoooccooccooocxxxxoo3O T
 _____   LtPlasma Memhranen __

MEK

Nucleus

MAPK/ERK
Transcriptional

Factors
MAPK/ERK

Cell Growth Cell ProliferationCell Differentiation

DaxxxxmDooocxxxxxoococoocxxaxxxxxxxxDOocmxicaxcxxjccxxxxaxJCxxxxoocaxc 
xa^xxxo:xxmxa:atocrcxG33oax)CCcccocrxx^ c

Figure 3: Drawing of the EGFR/Ras/MAPK signaling pathway in D. melanogaster and its 
phosphorylation cascade. EGfR: Epidermal Growth Factor Receptors, RTK: Receptor Tyrosine 
Kinases, Ras: GTP binding protein, MAPK/ERK Mitogen-Activated Protein Kinase/Extracellular 
signal Regulated Kinase Raf: MAPK Kinase Kinase, MEK- MAPK Kinase, GDP/GTP Guanosine 
D iphosphate/ Guanosine Triphosphate, P: Phosphate (Phosphorylation).
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p53

The p53 protein is a sequence specific transcription factor that is among the most 

important tumor suppressors. In fact, most human tumors have been found to have 

mutations in the p53 gene or its functional pathway. It has also been found to have 

critical role in safe guarding the integrity of the genome. Hence, it is referred to as 

"Guardian of the Genome". Under normal circumstances, the level of p53 in the cell 

is being kept low with relatively short half life. Under cellular stress conditions, such 

as DNA damage, hypoxia, or abnormal oncogene activation, p53 protein level rapidly 

increases and it acts to control the cell cycle by inducing either cell cycle arrest or 

apoptosis. (Shengkan et al, 2003). Induction of apoptosis by p53 is critical for the 

tumor suppressor function of p53. There appears to be multiple mechanisms 

through which p53 promote apoptosis. For example, p53 can transcriptionally 

activate the pro-apoptotic gene Bax in humans.

Characterization of the single D. melanogaster p53 (Dmp53) homolog was reported 

in back-to-back publications from two laboratories (Ollmann et al, 2000; Brodsky et 

al, 2000). Both identified the gene by homology searches of the expressed sequence 

tag database of the Berkeley D. melanogaster Genome Project. The DNA binding 

regions of Dmp53 and human p53 (hp5 3) h ave 44% of sequence similarity that 

includes over 207 amino acids. Also, these regions share 24% of identical nucleotide 

sequence (Jin et al, 2000). Dmp53 is required for radiation-induced apoptosis in the 

wing, but not for the normal levels of cell death that occur in the absence of DNA- 

damaging agents (Brodsky et al, 2000).
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Dmp53 encodes a 385-amino acid protein with significant homology to hp53 in the 

region of the DNA-binding domain, and to a lesser extent the tetramerization domain. 

Purified Dmp53 DNA-binding domain protein was shown to bind to the consensus 

human p53-binding site by gel mobility analysis (Sutcliffe et al., 2004). Human p53 is 

a 393 amino acid protein composed of three main functional domains: (i) an amino- 

terminal acidic transactivation domain, (ii) a central DNA-binding domain, and (iii) a 

carboxy-terminal tetramerization domain. Significant similarity between Dmp53 and 

the vertebrate p53 family is limited to the DNA-binding domain and includes 

residues identified in human p53 as critical for DNA sequence recognition and 

coordination of a zinc ion. In human tumors, mutations that inactivate p53 function 

are clustered in the well-conserved DNA-binding domain. Among the six most 

frequent sites of mutation in tumors, four are identical in Dmp53 and the other two 

are similar (Thomas, 1996).

hid

Head Involution Defective is abbreviated as hid. In 1936 Jollos described hid 

originally as the Wrinkled (M/) gene in his paper entitled "Mutations observed in D. 

melanogaster stock s taken up into the stratosphere." It is one of the three Pre- 

apoptotic proteins called "Reaper, Hid and Grim" (also referred to as RHG) 

(Hainning e t al., 1999; Wing et a l, 1998). In other words they are all death activating 

proteins in D. melanogaster.
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There is a general decrease in apoptosis, or program m ed cell death (PCD) 

throughout the homozygous recessive hid m utant embryo. This phenotype is most 

noticeable in the head region prior to completion of head involution. Striking defects 

in head morphogenesis occur from a failure of the dorsal fold to m igrate to the 

anterior fold in hid m utants (Abbott, 1991). Flies carrying a single copy of hid 

expressed from a strong synthetic prom oter display a dramatic eye ablation 

phenotype. Normally, compound eyes consist of about 800 regular units, called 

ommatidia, each of which consists of several distinct cell types. Flies carrying hid 

construct only have u ndifferentiated cuticle and a dense band of bristles in the 

places normally occupied by the compound eyes, hid regulates the expression of 

caspases such as DREDD and DRONC (Hawkins et al., 2000). Cell death induced by 

expression of hid can be blocked by inhibitors of caspases such as various mem bers 

of the inhibitor of apoptosis proteins (IAP) (Wang et al, 1999; Vucic et a l, 1998; Yoo 

et al, 2002). Olson et a l (2003) have reported that hid is a substrate for 

ubiquitination mediated by IAP. The function of hid has been conserved in 

evolution. A mammalian homolog of hid has not been identified, but expression of 

hid in mammalian cells induces cell death by apoptosis and this can be blocked by 

functional interaction with BCLxL ("B-cell lymphoma-extra large") which is one of 

several anti-apoptotic proteins. Mammalian IAP also inhibits hid function (Haining, 

et al, 1999). Apoptosis induced by hid in mammalian cells requires caspase-8 and is 

regulated by the extracellular signal-related kinase (ERK/MAPK) in mammalian 

cells (Varghese et al, 2002). Varghese et a l (2002) have inferred the existence of a 

hid-like protein in mammalian cells from the observation that IL2 (Interleukin2)
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blocks caspase-8 processing and cell death by apoptosis in activated T-cells. The hid 

is post-translationally regulated by the RAS-MAP Kinase pathway in response to cell 

survival signals [Bergmann et al, 1998; Goyal et a l, 2000}. Activated MAP Kinase 

inhibits the pro-apoptotic function/ activity of hid by phosphorylation (Bergmann et 

al, 1998; Goyal e ta l ,  2000).

Genetic tools to study D. melanogaster

1) Balancers

The idea of using a “Balancer chromosome” was developed by H. J. Muller in 1938. 

He identified the chromosome C1B as a suppressor of exchange on the X 

chromosome during meiosis. Since then, the idea of using such a chromosome, 

especially to study m arker m utations linked to it, became a popular tool in genetics. 

A balancer chromosome is a genetic tool used to prevent crossing over (genetic 

recom bination) betw een homologous chromosomes during meiosis. Balancer 

chromosomes are the products of multiple, nested chromosomal inversions. Hence, 

they disrupt the synapses between two homologous chromosomes which ultimately 

suppresses crossing over during meiosis. Recombination in inverted regions leads 

to dicentric (two centrom eres) or acentric (no centromere) chromosomes. Progeny 

carrying chromosomes that are the products of recombination between balancer 

and normal chromosomes results in a homozygous lethal situation (as balancer 

carries recessive lethal gene) and hence are not viable. Balancers are most often 

used in D. melanogaster genetics to allow populations of flies, carrying heterozygous
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mutations, to be maintained w ithout constantly screening for the mutations. 

Balancer chromosomes have three im portant properties:

a) They suppress recom bination with their homolog during meiosis,

b) Carry dom inant m arkers, and

c) Negatively affect reproductive fitness when carried homozygously.

Balancers are named according to the chromosome they stabilize and also the 

genetic m arkers they carry. Their name starts with a letter for their chromosome, 

i.e. F = First (X-chromosome), S = Second, and T = Third. Along with this an M for 

Multiply inverted, a num ber and sometimes a lowercase letter to identify its place in 

a series. Following are the examples of different Balancers;

FM7c: F = First (X) chromosome, so it is an X-linked balancer which carries the 

dom inant m arker Bar (B) and some recessive alleles.

SM6: S = Second chromosome, so it is a second chromosome linked balancer which 

carries the dom inant m arker Curly (Cy) as well as various recessive alleles.

2 ) GAL4/UAS sy s te m

The GAL4-UAS system is considered a powerful technique for studying the 

expression of genes. The system consists of two parts;

I. The GAL4 gene that encodes the yeast transcription activator protein Gal4, 

II. The UAS (Upstream Activation Sequence), which is a short sequence of the 

prom oter region, to which the Gal4 protein specifically binds to activate 

gene transcription.
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This combined system of GAL4 and UAS provides an aid to study the inducible gene 

expression. GAL4 is a gene encoding regulatory protein in the yeast Saccharomyces 

cerevisicte, which by binding to the UAS regulates the transcription of GAL10 

andGALl genes. In 1988 Fischer et a l dem onstrated that GAL4 was capable of 

inducing /  stimulating transcription of a reporter gene under UAS control in D. 

melanogaster. Further studies reveal that this activity is not limited to just D. 

melanogaster, but also can function in a wide variety of systems to activate 

transcription from UAS element.

The GAL4 and UAS-Target gene are the two components of a bipartite system for 

inducing gene expression. GAL4 is referred to as the driver whereas the target gene 

is referred to as the responder, which is under UAS control. Both the driver and the 

responder are maintained as separate parental lines. As the transcription of 

responder requires presence of driver the responder lines are m ated / crossed 

to /w ith  flies expressing driver. Hence, in the absence of driver responder lines 

m aintains the target in a transcriptionally inactive/ silent state. For example, by 

fusing a gene encoding a visible m arker such as GFP (Green Fluorescent Protein) to 

UAS, the expression pattern of the driver genes can be determined (Duffy, 2002). 

GAL4 and the UAS are very useful for studying gene expression in D. melanogaster 

as they are not normally present and their expression does not interfere with other 

processes in the cell.
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Figure 4 : GAL4-UAS System in D. melanogaster: Top left is female fly carrying Gal4 driver 
and lower left is male fly carrying target/responder gene under HAS prom oter control, 
f Lanata, clas.ufl.edu)

3 ) Fly s to c k s

a. dSorl : FRT 19A 
FM7c

The gene Downstream  of ra f l  is referred to in FlyBase by the symbol 

D m el\D sorl\dS orl (CGI 5793, FBgnOO 10269). It is a protein coding gene from D. 

melanogaster. Its sequence location is X:914 182B-9144070 (Figure 5). Based on 

sequence similarity, it is predicted to have molecular function of MAP Kinase 

Kinase (MFK) activity. No phosphorylation of MAPK can take place in cells that 

get two copies of dSorl. It is under balancer, FM7c, control that carries dom inant 

Bar-Eye phenotypic m arker which helps to identify flics carrying dSorl construct 

(genotype). There is experimental evidence that dSorl is involved in the 

following biological processes: border follicle cell migration, hemocytc 

differentiation and signal transduction. The phenotypes of this allele are
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associated with: external compound sense organ; peripheral nervous system; 

nervous system; organ system; egg; adult segment; pigment cell; adult 

m esothoracic segment. It has one annotated transcript and one annotated 

polypeptide. A homozygous condition for this allele can be achieved by an 

enzymatically forced genetic recom bination event in somatic tissues. Thus, the 

enzyme Flippase (FLP) forces recombination between the specific target sites 

(FRT) on specific chromosomes. This is called P vector mediated site-specific 

recombination, which works as described below.

In 1989, Golic and Lindquist first mentioned this system. This system is 

particularly useful for generating mosaics. One P element (transposable element) 

carries the FLP recombinase gene driven by a heat shock promoter, and a second 

elem ent has a gene with two FRT sites embedded. When heat shock is applied to 

such flies, FLP-mediated recombination causes somatic loss of the gene carrying 

FRT sites. More recently, FLP has been used to generate somatic mosaics with 

regions homozygous for an entire chromosome arm (Xu and Rubin, 1993). A 

homozygous P element near the base of a chromosome arm and bearing an FRT 

site undergoes mitotic recombination when FLP is expressed. The result is a 

somatic region that is homozygous for all genes distal to the FRT-bearing P 

element. Such regions can be identified by the absence of a cell-autonomous 

m arker present on one of the homologs. This method allows identification and 

analysis of genes that are lethal when homozygous in the whole organism 

(http://engels.genetics.w isc.edu/Pelem ents/Pt.htm l).
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Figure 5 : Genomic location of the gene Downstream of ra f l  (dSorl) in D. melanogaster.

(http ://flybase.org)

b. dSorl : FRT 19A : hs:rl
FM7c cyo

These flies also have the MAP Kinase gene ("ri"= "rolled", Drosophila homolog of 

human MAPK) construct on chromosome 2 and it is under heat shock prom oter 

control. Therefore, upon heat shock at 37 °C for one hour, MAP Kinase is 

overexpressed. However, MAP Kinase remains non-phosphorylated and stays in the 

cytoplasm. In addition to dom inant bar-eye m arker it also carries recessive curly- 

wings (cyo) m arker which together helps to identify flies carrying this construct.

Here, a nuclear localization signal (nls) has been engineered on to "rl" (under 

control of a heat shock prom oter). This forces MAP Kinase to migrate to nucleus 

even though it is not phosphorylated/activated. This helps to determ ine 

importance of the sub-cellular localization In addition to dom inant bar-eye 

m arker it also carries recessive curly-wings (cyo) m arker which together helps to 

identify flies carrying this construct.

C. dSorl : FRT 19A : hs:rl[nls]
FM7c cyo

17

http://flybase.org


d. w i1118J; P {w[+mc]=GUS p53}2.1

This is a construct having a P element with p53 gene on chromosome 2 and it is 

under Glass Multimer Reporter (GMR) prom oter control. This construct also has a 

balancer SM6 with curly-wings (cyo). Thus the construct expresses p53 in the eye 

from the GMR prom oter and allows expression of p53 in the presence of a GAL4 

driver.

e. P (w[+mc]=GMR h id}G l/cyo

This is a construct having P element with hid gene on chromosome 2 and it is under 

GMR prom oter control. This construct also has a balancer SM6 with curly-wings 

(cyo). Thus it expresses hid in the eye from the GMR prom oter and allows 

expression of hid in the presence of a GAL4 driver.

4 )  Im m u n o h is to c h e m istr y

Immunohistochem istry (IHC) refers to the process of identifying antigens (e.g. 

proteins) in cells of a tissue section (Ramos-Vara, 2005). In basic research, IHC is 

widely used to identify the distribution and localization of biomarkers and 

differentially expressed proteins in different parts of a biological tissue. This 

tchnique takes its name from the roots "immuno", in reference to antibodies used 

in the procedure, and "histo", meaning tissue. In the most common instance, an 

antibody is conjugated to an enzyme, such as peroxidase, that can catalyse a color- 

producing reaction {e.g. ELISA -  Enzyme Linked Im m unosorbant Assay).
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Alternatively, the antibody can also be tagged to a fluorophore, such as fluorescein, 

rhodamine, DyLight Fluor or Alexa Fluor.

There are two strategies used for the immunohistochemical detection of antigens 

in tissue, the direct method and the indirect method. The direct m ethod is a one- 

step staining method, and involves a labeled antibody (e.g. FITC conjugated 

antiserum ) reacting directly with the antigen in tissue sections. The indirect 

method involves an unlabeled prim ary antibody (first layer) which reacts with 

tissue antigen, and a labeled secondary antibody (second layer) which reacts with 

the prim ary antibody (Figure 6). This method is more sensitive due to signal 

amplification through several secondary antibody reactions with different 

antigenic sites on the prim ary antibody.

FI ii o i e s c e  nt $ta i n i 11 cj

Goat anti-rabbit

Rabbit anti-A

Cell

Figure 6 : The indirect method of immunohistochemical staining uses one antibody (Primary 
antibodcey) against the antigen being probed for, and a second (Secondary antibody), labeled, 
antibody against the first, (http://en.w ikipedia.org).
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O b j e c t i v e

Our studies focus on the critical role of p53 and hid in cell division, cell growth and 

differentiation, specifically when MAPK is forced to move into the nucleus w ithout 

phosphorylation. In hum ans and other primates, phosphorylation mediated 

activation of p53 by MAPK (ERK} has been reported (Wu, 2004; Lin et a l 1998; 

Serrano et a l, 1997}. Also, the p53 homologue in D. melanogaster has been 

identified based on the biochemical properties, sequence homology and conserved 

cellular functions, suggesting similar activation may occur.

Is there any connection betw een Dmp53, hid and MAP Kinase? What happens to the 

expression of p53 when MAP Kinase is non-phosphorylated (inactive}? Does heat 

shock mediated overexpression of non-phosphorylated MAP kinase alter the 

expression of p53? If yes, how does it affect the expression? Recently, it has been 

reported that non-phosphorylated MAPK is sufficient to induce cell division, but not 

cell growth, once inside the nucleus of the cell (Marenda et al, 2006; Paez et al, 

2010}. Therefore, it would be interesting to study the expression pattern of p53 

(tum or suppressor} when non-phosphorylated MAP Kinase is forced to enter the 

nucleus. We hypothesize that, as in human and other primates, activated MAPK is 

required for p53 gene expression.

Earlier research has shown that activated MAPK directly targets hid and inhibits its 

activity (Haining, 1999; Bergmann et al., 1998}. Therefore, it also would be 

interesting to study how hid, under P elem ent control, affects p53 expression when 

MAPK is inactive.
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M a t e r i a l s  a n d  M e t h o d s

D. melanogaster stocks

The D. melanogaster stock dSorl:FRT19A/FM7c was used as a standard control. 

Other genotypes that were used are described as follows : dSorl:FRT19A/FM7c ; 

hs;RL/cyo , dSorl;FRT19A/FM7c ; hs;[nls]/cyo, w[1118]; P{w[+mC]=GUS-p53}2.1 

(stock # 6584; Bloomington D, melanogaster Stock Center; Bloomington, IN) and 

P{w[+mC]=GMR-hid}Gl/CyO (stock # 5771; Bloomington D. melanogaster Stock 

Center). All dSorl flies were received, as a gift, from Dr. Paez and Dr. Marenda. Flies 

in all stocks and genetic crosses were maintained at 25° C. The adult flies and larvae 

w ere fed on standard cornmeal-molasses-agar medium with yeast. Proprionic acid 

was used as a food preservative and all cooked food in vials was stored in a 

refrigerator. Ingredients of fly food are summarized in Table 1 below. Also, the food 

vials w ere allowed to reach room tem perature (25° C) prior to use for flies.

Corn meal, m olasses and dry Yeast Source of Carbohydrates, proteins and

| pow der Energy

i T egosept (ethyl 4-hydroxybenzoate), Fly food preservatives

Proprionic acid 

! Agar pow der Solidifying agent

! W ater Solvent

Tablet: Fly food ingredients and their uses.
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Genetic crosses

To test our hypothesis we perform ed genetic crosses between flies deficient for 

MEK/MAPK kinase (d S o r l ; FRT 19A /FM 7c ), (d S o r l; FRT 19A /FM7c; hsiR L/cyol 

(dSorl ; FRT 19A /FM7c; hs:[nls]/cyoJ and flies carrying wild type ORF of p53 

under the control of "GUS" balancer [W[1118] ; P {w[+mc]=GUS p53}2.1) and flies 

carrying m utation in hid gene (P {w[+mc]=GMR hid}Gl/cyo). As MEK m utation is X 

linked, in all above genetic crosses, virgin females were selected from dSorl lines to 

m ate with males from W[1118] ; P {w[+mc]=GUS p53}2.1 and P {w[+mc]=GMR 

hid}Gl/cyo. Figure 7 on page 26 represents scheme of all genetic crosses we did.

Dissection

Third instar larvae were dissected to obtain retinal discs. In order to overexpress 

both MAPK and MAPK-nls within dSorl clones, late third instar larvae w ere heat 

shocked at 37°C for 1 hour and then allowed to recover at room tem perature for at 

least 1 hour, before dissecting them. Dissected retinal discs were immediately fixed 

in PLP-fix solution (Paraformaldehyde-Lysine-Periodate) for 20 minutes and then 

proceed to immunostaining.

Eye Analysis and Clones

For each genetic cross third instar larvae were selected and kept in a phosphate 

solution for 10-15 m inutes before beginning actual dissection. Then male larvae 

w ere isolated based on the gonad size. The gonad is located in near 5th abdominal 

segm ent and it is a transparen t ball like organ embedded within the fat body. The 

male gonad is much larger than female's and leaves a clear spherical hole (appears
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like transparen t light-bulb) in the opaque fat body. In female larvae it is not 

apparent as in males.

The larvae were d ecapitated and eye discs w ere separated. Separated eye discs 

w ere incubated for 20 m inutes in PLP-fix solution in order to harden (fix) the tissue. 

Finally eye discs were cleaned of other tissues and incubated for 10-15 m inutes in 

wash solution (Triton X-100). Isolated eye discs w ere then subjected to Immuno 

staining. The retina discs were mounted in Vectashield (Vector Labs, H-1000, 

Burlingame, CA).

With the aid of immunohistochemistry, eye discs were analyzed for cell division and 

cell growth. Primary antibody (rat anti-ELAV) was used to observe cell 

differentiation. The num bers of clones per retina were counted for an average of 8 

retinas or more for each three genetic crosses. The signals for 

phosphorylated/activated MAPK (dpERK), PH3 (cell divisions) and p53 w ere also 

examined through immunohistochemistry. Every time retinas w ere imm unostained 

with two prim ary antibodies and two corresponding secondary antibodies. This 

technique is called double-immunostaining. Every time one of the two prim ary 

antibodies was rat anti-ELAV which helps to visualize dSorl clones (area of our 

in terest that indicates MAPK Kinase mutation). The second prim ary antibody, used 

along with ELAV, was either rabbit anti-p53, rabbit anti-PH3 (cell division) or 

mouse anti-dpERK (activated MAPK). Each experiment was done in triplicate or 

more. A clone is a group of identical cells that share a common ancestry, meaning are 

derived from the same m other cell. Here, the term  clone is referred to those groups
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of cells which are genetically identical in term s of carrying m utant dSorl gene 

construct.

Immuno stained eye discs w ere observed under phase contrast microscope (Nikon 

Eclipse TE2000-S). The magnifications used were 20X and 40X. Images were 

captured with the help of camera attached to microscope and Image-Pro Express 

software (Media Cybernetics, Inc., Bethesda, MD]. As mentioned above, each retina 

was stained with two prim ary antibodies and hence had two images for signal of 

each antibody used. One of the two images was of cell differentiation (ELAV signals] 

and other was of either p53, PH3 (cell division] or dpERK (activated MAPK]. Finally 

to locate p53 and dpERK signals inside the dSorl clones we superim posed two 

images with the help of photo editing software. The photo editing software we used 

is FotoFlexer (Arbor Labs, Inc., Berkeley, CA], a free online photo editing software 

available at http://fotofIexer.com /app/index.php?option=18. Figures 8, 9 and 14 - 

18 on pages 27, 28 and 39-43 represent some of the images taken and edited as 

m entioned above.

Immunohistochemistry and Antibodies

Details of prim ary and secondary antibodies used are described in Table 2 on page 
30.
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Antibody 

Primary Antibodie!

Source

s

~  .... . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  T "  .....  ............. . ■ .......
Stock ID 1 Company Dilution Used for

anti-ELAV Rat 7E8A10

Developmental
Studies
Hybridoma Bank, 
Iowa City, Iowa.

1:1000

To detect
photorece
ptor
differentia
tion

anti-pMAPK 
(anti-dpERK ) Mouse M8159 Sigma-Aldrich, St. 

Louis, MO.
1:50

To identify 
phosphory 
lation of 
MAPK

anti-pH3 Rabbit 9701
Cell Signaling 
Technologies, 
Danvers, MA.

1:1000
To identify
mitotic
events

anti-p53 Rabbit SC-25767
Santa Cruz 
Biotechnology, 
Santa Cruz, CA.

1:50

...

To detect 
presence 
of Dmp53

Secondary Antibodies

anti-rat TRIT C Goat 111-116-144

Jackson lmmuno- 
Research
Laboratories, West 
Grove, PA.

1:1000

To identify
anti-rat
primary
antibody
signals

anti-mouse FITC Goat 115-095-003 1:50

To identify 
anti
mouse 
primary 
antibody j 
signals j

anti-rabbit FITC Goat 111-095-003 1:50

To identify j 
anti-rabbit 
primary i 
antibody j 
signals j

Table 2: Summary of all prim ary and secondary antibodies used.

25



Results
Experiment strategy

To check the expression patterns of p53 and regulatory interactions betw een MAPK, 

p53 and hid, we crossed female flies of dSorl m utants (dSorl alone, dSorl with 

MAPK under heat shock prom oter control and dSorl with MAPK-nls under heat 

shock prom oter control) with two different male flies: one containing p53 gene 

under P elem ent control, and the other containing hid gene under P elem ent control. 

Then, from FI progeny third instar larval retina were dissected and subjected to 

study for cell division (num ber of mitotic events/ PH3 signals), cell differentiation 

(ELAV signals) and p53 expression (P53 signals). Figure 7 below illustrates the 

scheme of our experim ent setup.

V' ) ?
M ales ( )  F em ales  ^

+\ d S o r l ; FRT 19A /FM7c; hs:r!/cyo

d S o r l ; FRT 19A /FM 7c

d S o r l ; FRT 19A

P (vv[+mc]=GMR hid}G l/cyo

d S o r l ; FRT 19A /FM 7c; h s :d /cy oW [1118] : P (w[+mc]=GUS p53}2.1

d S o r l : FRT 19A /FM7c; hs:rl[n ls]/cyo

d S o r l ; FRT 19A /FM7c: hs:rl[n!s]/cyo

Figure 7: Schematic representation of experiment setup.
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Expression of mutant MAPK Kinase (MEK) /dSorl resulted in clones in 

developing eye (retina) of D. melanogaster.

The dSorl is referred to as Downstream  of ra f l  which is MAPK Kinase (MEK). 

Following Raf m ediated activation, MAPK Kinase (MEK) phospnorylates and 

activates its dow nstream  target MAP Kinase (ERK). As m entioned earlier in the 

introduction, phosphorylation is crucial for cell cycle progression. In dSorl 

transgenic fries, when expressed in homozygous condition, MAPK Kinase (MEK) is 

m utated such tha t it cannot phosphorylate its downstream  target, MAP Kinase. 

Therefore, this m utation stops cell cycle progression that results in cluster(s) of 

non-dividing cells, which here we referred to as clone(s). We im m unostained retinas 

with anti-ELAV antibody, which allowed us to visualize cel! differentiation upon 

application of fluorescence secondary antibody (TRITC) specific to anti-ELAV; this 

helped in locating clones. We found large areas of clones in developing eye/retina  

which confirmed expression of m utant MAPK Kinase (MEK) in those regions (Figure 

8a). As shown in Figure 9 no clones were observed in wild type normal retinas.

a. ELAV b. PH3 c. EL A V+PH 3

Figure 8: dSorl X p53 larval retina with somatic mosaic clones of the Drosophila gene uSorl, m arked 
with arrows; (b-c) shows in terrupted PH3 signals in furrow’, m arked with dashes [compared to 
Figure 9b].
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Wild type /  Normal retina

ELAV ELAV+ PH3

dpERK/dpMAPK f. ELAV+ dpERKELAV

ELAV+ P53ELAV

Figure 9: Normal retina developm ent in Drosophila: [a, d and g) cell differentiation [ELAV), (b-c) cell 
division [PH3 signals), [e-f) pMAPK signals and [h-i) p53 signals. Furrow is m arked with dashes in 
each case. In [9b) continuous PH3 signals indicates no interruptions in mitosis [cell division) in 
furrow.
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Nuclear form of non-phosphorylated MAP Kinase is able to initiate cell 

division but not cell differentiation.

To estim ate cell division we counted the num ber of mitotic events in dSorl clones 

via num ber of pH3 signals inside the clones in developing retina of third instar male 

larvae of D. melanogaster. Phosphorylated Histone-3 is abbreviated as pH3. 

Histone-3 phosphorylation is an im portant post-transcriptional modification in 

nucleosome structure during mitosis. Moreover, phosphorylation of Thr3 

(Threonine3) of histone H3 is highly conserved among many mammalian species. 

Therefore, imm unostaining with phospho-specific antibodies reveals mitotic 

phosphorylation of H3 Thr3 in prophase of mitosis and hence num ber of mitotic 

events. We observed and compared pH3 signals inside the dSorl clones under 

following three different conditions; i) dSorl m utant alone, ii) dSorl m utation with 

overexpressed MAP Kinase under heat shock prom oter control (cytoplasmic form of 

MAPK) and, iii) dS orl m utation and overexpressed MAPK-nls (Nuclear form of 

MAPK) under heat shock prom oter control. MAPK overexpression was induced by 

heat shock treatm ent at 37°C for one hour followed by one hour recovery at room 

tem perature (as described earlier by Marenda et al., 2006; Paez et al., 2010). As 

shown in Tables 3 and 4, our data suggest that the num ber of mitotic events in 

dSorl clones increases 5 to 20 fold (Figures 10 and 11) when MAP Kinase was 

overexpressed and forced to move into the nucleus without phosphorylation, i.e. 

w hen MAPK-nls was over expressed. Actual pictures for PH3 immunostaining are 

shown in Figures 14-18, Panels a, b and c (Pages 39-43). These results support 

previously reported findings that MAP Kinase phosphorylation is not essential for
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cell division, but is for cell growth in D. melanogaster (Paez et al, 2010). Although 

dSorl clones are results of inactive MAPK due to m utant MEK, we checked the level 

of active MAPK (dpMAPK/ dpERK) in all cases which were found to be negligible or 

reduced. This was done by counting the dpERK signals in dSorl clones. However, 

the presence of active/phosphorylated MAPK (dpERK) was observed when flies 

carried hid gene under P elem ent control with dSorl m utation (Figures 16-18, 

Panels d, e and f on Pages 41-43).

Cross dSorl X p53 hs:rl[nls] X p53

Primary Antibodies used ELAV + pH3

# o f signals observed inside the clones 7 53

# o f Clones observed 16 23

# o f pH3 signals per Clone 0 .4 4 2 .3 0

Table 3: Represents Comparison of mitotic events in dSorl clones alone and MAPK-nls 
overexpression when both in addition carry p53 gene under P elem ent control.
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dSorl clones

2.30

0.44

dSorl X p53 hs:rl[nls] X p53
Genetic Crosses

Figure 10: Column graph representing comparison of average num ber of mitotic events (PH3 
signals] in dSorl clones alone and MAPK-nls when both in addition carry p53 gene under P elem ent 
control.

Cross dSorlX hid hs:rl[nls] X hid

Primary Antibodies used ELAV + pH3
. :' ir». . . * .... . jr-- •. ’ •; ‘ ■ • * '

# of signals observed inside the clones 5 90

; :< • ■ f . - - . • -

# of Clones observed 19 16

# of pH3 signals per Clone 0 .2 6 5 .63

Table 4: Comparison of mitotic events in dSurl clones alone and with MAPK-nls overexpression 
w hen combined with hid gene under P elem ent control.

31



Average Number of Mitotic events In
dSorl clones

a> 6.00 -I 5 .6 2
z-

3 5.00
imc
a 4.00
Vi
re
S 3 .00  -
.SP35 2.00  -CO
X
a 1.00 -
o 0 .2 6

0.00 I

dSorl X hid hs:rl[nlsj X hid

Genetic Crosses

Figure 11: Comparison of average num ber of mitotic events (PH3 signals) in dSorlclones alone and 
w ith MAPK-nls w hen combined w ith hid gene under P elem ent control.

Active MAPK is necessary to activate p53 gene expression in developing eye of

D. m elanogaster.

In 2001, Agarwala e t al., reported 5 to 8 fold increase in p53 mRNA levels upon 

introduction of activated Ras into wild type human cells. They also reported a 

decrease in protein levels of p53 and p21 in wild type hum an cells (H10) treated 

with MEK inhibitor. In our study MEK is genet'cally inactive. We asked w hat would 

happen to p53 expression if MAPK is inactive and also when tha t inactive MAPK is 

forced to move into the nucleus. To test this we crossed the male flies having p53 

gene (under P elem ent control) with female flies carrying MEK m utation (dSorl). 

We dissected retinal discs from third instar male larvae of F I generation and 

Im muno-stained with p53 antibody. We counted the num ber of signals for p53
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inside the dSorl clones. We observed and compared the num ber of p53 signals with 

overexpressed MAPK and MAPK-nls. We found no or negligible counts of p53 signals 

inside dSorl clones, even when MAPK was overexpressed in cytoplasmic as well as 

nuclear form. However, p53 signals w ere observed in dSorl m utants containing hid 

gene under P elem ent control (Table 7, Figure 13). As mentioned earlier, and shown 

in Table 8, active MAPK signals (dpERK) w ere also observed in dSorl m utants 

containing hid gene under P element control. These results, together, explain the 

presence of positive p53 signals inside dSorl clones. No p53 signals w ere observed 

w ithout corresponding active/phosphorylated MAPK (dpERK) signals. Our data 

show that p53 expression is not active unless phosphorylated/active MAPK is 

p resen t (Table 5, Figure 12). Thus, w e here for the first time report that 

phosphorylated/active MAPK is required to activate p53 gene expression in 

developing eye of D. melanogaster.

hs:rl[nls] X p53Cross

Primary Antibodies used ELAV+P53

# o f signals observed inside the clones

# o f Clones observed

0.2# o f P53 signals per Clone

Table 5: Comparison of p53 expression events in dSorl clones alone and with MAPK-nls 
overexpression when combined with p53 gene under P element control.
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Average number of events of p53 expression and 
Phosphorylation (Activation) of MAPK in dSorl clones

dSorlXp53 hs:rl[nlsj Xp53

Genetic Crosses
■ # of P53 signals per Clone 3 # of dpERK signals per Clone

Figure 12: Column grapn representing comparison of average num ber of p53 expression events 
[Green columns') and phosphorylation (activation) of MAPK events (Red columns] in dSorlclones 
alone and w ith MAPK-nls w hen combined with p53 gene under P elem ent control.

Cross dSorl X p53 hs:rl[nls] X p53

Primary Antibodies used ELAV + dpERK

# of signals observed inside the clones 6 3

# of Clones observed 35 11

# of dpERK signals per Clone 0 .1 7 0 .2 7

Table 6: Comparison of phosphorylation (activationj of MAPK events in dSorl clones alone and with 
MAPK-nls overexpression w hen combined with p53 gene under P elem ent control.

34



Nuclear form of non-phosphorylated MAPK inhibits the expression o f p53.

We compared the p53 signals in clones of dSorl m utants containing hid gene under 

P elem ent control and inactive MAPK. Our data show no p53 signals inside dSorl 

clones when non-phosphorylated MAPK-nls is overexpressed in flies carrying hid 

gene under P elem ent control, even though some level of active MAPK is present 

inside the dSorl clones (Table 7, Figure 13). However, when the cytoplasmic form of 

non-phosphorylated MAPK was overexpressed in flies carrying hid gene under P 

elem ent control, p53 signals were recorded inside the dSorl clones (Table 7, Figure 

13). Also, as we m entioned above, active MAPK can activate p53 gene expression. 

Here, when we forced inactive MAPK into the nucleus, no p53 signal was observed. 

Similar results were obtained even when non-phosphorylated MAPK-nls was 

overexpressed in flies carrying the p53 gene under P elem ent control (Table 5, 

Figure 12). Overall, these results may indicate negative regulation of p53 gene 

expression by a nuclear form of non-phosphorylated MAPK. Thus, for the first time, 

we report here that a nuclear form of non-phosphorylated MAPK inhibits the 

expression of p53. Figures 14-18, on pages 39-43, show actual pictures for PH3 

(Panels a-c) and p53 (Panels g-i) immunostaining.
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hs:rl[nls] X hidd S orlX  hid hs:rl X hidCross

Primary Antibodies used ELAV + P53

# of signals observed  
inside the clones 31 36

# of Clones observed 17

# of P53 signals per Clone 0.97 3.27

Table 7: Comparison of p53 expression events in dSorl clones subjected to MAPK alone and with 
MAPK-nls overexpression when combined with hid gene under P element control.

hs:rl[nls] X hidd S orlX  hid hs.RL X hidCross

ELAV + dpERKPrimary Antibodies used

# o f signals observed  
inside the clones

19 38

32# of Clones observed

# of dpERK signals per 
Clone

3.82.03 3.17

Table 8: Comparison of phosphorylation (activation) of MAPK events in dSorl clones subjected to 
MAPK alone and with MAPK-nls overexpression when combined with hid gene under P element 
control.
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Figure 13: Comparison of average num ber of p53 expression events (Blue columns) and 
phosphorylation (activation) of MAPK events (Yellow columns) in dSorl clones subjected to MAPK 
alone and w ith MAPK-nls ovcrexpressior. w hen combined with hid gene under P elem ent control.

P resence of hid gene under P-eiem ent control may lead to  

activation/phosphorylation  of MAPK via an unknown protein kinase.

In 1998, Bergmann e t al. reported that an activated MAPK directly phosphorylated 

Drosophila hid which resulted in inhibition of hid-mediated apoptosis. Drosophila 

hid is a pro-apoptotic target of p53 (Steller, 2000; Brodsky et a l, 2004; Bilak, 2009). 

The hid is one of the RIPD (Radiation Induced p53 D ependen t) genes (Akdemir et 

al, 2007). The hid is also a major effector of Dmp53-i:iduced apoptosis in the 

Drosophila eye and t is transcriptionally induced when Dmp53 is active (Fan et al.,
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2009). We counted the num ber of activated/phosphorylated MAPK (dpERK) signals 

and found the presence of active MAPK inside the dSorl clone, at different levels, 

when the hid gene under P elem ent control was carried in dSorl m utant flies with i) 

only dSorl mutation, ii) dSorl m utation along with overexpressed cytoplasmic form 

of inactive MAPK, and iii) dSorl m utation along with overexpressed nuclear form of 

inactive MAPK (MAPK-nls). Noticeable increases in signals for active MAPK were 

recorded when either forms of MAPK were overexpressed (Table 8, Figure 13). 

However, an average num ber of phosphorylation (activation) of MAPK events in 

dS orl clones was higher in the case of cytoplasmic overexpression of MAPK when 

com pared to MAPK-nls (Figure 13). This indicates that not all MAP Kinase gets 

phosphorylated because of its forced entry into the nucleus via nuclear localization 

signal (nls). Also, no p53 expression was observed when MAPK-nls was 

overexpressed. This supports our earlier observation of negative regulation of p53 

gene expression when non-phosphorylated MAPK is forced to move in to the 

nucleus.
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dSorlX  p53

ELAV ELAV+ PH3

ELAV e. dpE R K /dpM A PK  f. ELAV+ dpERK

ELAV ELAV+ P 53

Figure 14: dSorl X p53 larval retina with somatic mosaic clones of the Drosophila gene dSorl, 
m arked with arrows. dSorl encodes the m utant MAPK kinase (MEK) protein, leading to inactive 
MAPK. (a, d, g) ELAV m easures the differentiation of photoreceptor neurons and indicates a loss of 
differentiation in these clones, (b-c) shows loss of mitotic events inside the dSorl clones (PH3 
signals) indicating a defect in MAPK phosphorylation and cellular division within these clones, (e-f) 
shows loss of pMAPK inside the dSorl clones, (h-i) shows loss of p53 expression inside the dSorl 
clones, c, f and i are superim posed images of their corresponding images presented on their left side. 
Superim posing was done using free online photo editing software called "FotoFlexer”.
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hs:rl[nlsj X p53

\
\

ELAV ELAV+ PH 3

e. dpER K /dpM A PK f. ELAV+ dpERKELAV

ELAV+ P 53ELAV

Figure 15: hs:rl[nls] X p53 larval retina with somatic mosaic clones of the Drosophila gene dSorl, 
m arked with arrows. hs:rl[nls] encodes MAPK protein that is overexpressed under heat shock 
prom oter control and [nls] (nuclear localization signal) forced nuclear translocation of MAPK (a, d. 
g) ELAV m easures the differentiation of photoreceptor neurons and indicates a loss of differentiation 
in these clones, (b-c) shows m itotic events inside the dSorl clones (PH3 staining], (e-f) shows loss of 
pMAPK inside the dSorl clones, (h i) shows loss of p53 expression inside the dSorl clones, c, f and i 
are superim posed images of their corresponding images presented on their left side. Superimposing 
was done using free online photo editing software called "FotoFlexer"
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dSorl X hid

ELAV ELAV+ PH 3

e. dpERK /dpM A PK f. ELAV+ dpERKELAV

ELAV+ P 53ELAV

Figure 16: dSorl X hid larval retina with somatic mosaic clones of the Drosophila gene dSorl, 
marked with arrows. dSorl encodes the m utant MAPK kinase (MEK] protein, leading to inactive 
MAPK. [a, d, g] ELAV m easures the differentiation of photoreceptor neurons and indicates a loss of 
differentiation in these clones, [b-c] shows loss of mitotic events inside the dSorl clones (PH3 
staining] indicating a defect in MAPK phosphorylation and cellular division within these clones, [e-f] 
shows pMAPK signals inside the dSorl clones, (h-i) shows p53 expression inside the dSorl clones, c, f 
and i are superim posed images of their corresponding images presented on their left side. 
Superimposing was done using free online photo editing software called “FotoFlexer".
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hs:rl X hid

ELAV ELAV+ PH 3

ELAV e. dpE R K /dpM A PK f. ELAV+ dpERK

ELAV+ P 53ELAV

Figurel7: hs:rl X hid larval retina with somatic mosaic clones of the Drosophila gene dSorl, m arked 
with arrows. hs:rl encodes MAPK protein that is overexpressed under heat shock prom oter control, 
(a, d, g) ELAV m easures the differentiation of photoreceptor neurons and indicates a loss of 
differentiation in these clones, (b-c) shows loss of mitotic events inside the dSorl clones (PH3 
signals) indicating a defect in cellular division within these clones, (e-f) shows pMAPK inside the 
dSorl clones, (h-i) shows some p53 signals inside the dSorl clones, c, f and i are superim posed 
images of their corresponding images presented on their left side. Superimposing was done using 
free online photo editing software called "FotoFlexer".
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hs:rl[nls] X hid

ELAV ELAV+ PH3

e. dpERK /dpM APK f. ELAV+ dpERKELAV

ELAV+ P 53ELAV

Figure 18: hs:rl[nls] X hid larval retina with somatic mosaic clones of the Drosophila gene dSorl, 
m arked with arrow's. hs:rl[nls] encodes MAPK protein that is overexpressed under heat shock 
prom oter control and [nls] (nuclear localization signal) forced nuclear translocation of MAPK. (a, d, 
g) ELAV m easures the differentiation of photoreceptor neurons and indicates a loss of differentiation 
in these clones, (b-c) shows m itotic events inside the dSorl clones (PH3 staining), (e-f) shows 
pMAPK inside the dSorl clones, (h-i) shows loss of p33 expression inside the dSorl clones, c, f and i 
are superim posed images of their corresponding images presented on their left side. Superimposing 
was done using free online photo editing software called "FotoFlexer".

43



Discussion
MAP Kinase pathw ay regulates many diverse cellular processes including cell 

division, growth and differentiation. In fact, misregulation of MAPK pathway is 

associated w ith approxim ately 25% of human tum ors (Hanahan e t al, 2000). A 

deeper understanding of cell cycle regulations is required to design more effective 

trea tm ent for hum an tumors. Although much is known about MAP Kinase pathway, 

it is not fully understood yet. Scientists are discovering novel regulatory 

m echanisms involved in MAPK regulation every year. Our data suggest that nuclear 

localization of non-phosphorylated MAPK (ERK) is another novel mechanism that 

may initiate cell division in the developing eyes of Drosophila as reported earlier by 

M arenda et al, (2006) and Paez et al, (2010). However, this non-phosphorylated 

MAPK is not able to initiate expression of all the genes required for cell growth and 

differentiation. Therefore, phosphorylation of MAPK is still required for complete 

cell growth and differentiation (Marenda e t  a l , 2006; Paez et al, 2010). Earlier 

research in flies and mammals suggests that both cell division and cell growth are 

regulated by MAPK activation and its nuclear localization (Brunet et al, 1999; 

Prober et al, 2000). We found that nuclear localization of MAPK is sufficient to 

initiate cell division. However, this non-phosphorylated MAPK is unable to initiate 

cell differentiation and cell growth. Overall, this indicates limited regulatory power 

of non-phosphorylated MAPK. In other words, non-phosphorylated MAPK cannot 

activate expression of all genes required for complete cell growth.
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Earlier research also revealed tha t phosphorylation-mediated activation leads 

MAPK to dimerize and this dimerized, active MAPK enters the nucleus by active 

transport which is energy dependant (Cobb et al., 2000; Brunet et al, 1999). How 

does the non-phosphorylated MAPK localize in to nucleus? Nuclear localization 

signal (NLS/nls) sequence facilitates MAP Kinase nuclear translocation. NLS 

facilitates this transport by Ran (Ras-related Nuclear protein) dependent active 

transport mechanism (Matsubayashi et al, 2001). This supports nuclear transport 

of non-phosphorylated MAP Kinase, when carrying the NLS sequence, in our model.

How does non-phosphorylated MAPK cause activation of transcription factors 

required for cell division? Recent studies have shown that ERK2 (MAPK) can 

directly bind to DNA and function as a transcriptional repressor for a y-interferon 

induced gene (Hu, S., e ta l ,  2009). This suggests that MAPK, once in the nucleus, can 

directly in teract with DNA. However, direct interactions with DNA do not always 

result in negative regulation. Therefore, we suggest that a similar mechanism may 

be followed to activate transcription factors required for cell division.

Another interesting result of our study is that MAPK gets phosphorylated in dSorl 

clones w hen hid P element is p resen t Also, this phosphorylation level was higher in 

case of cytoplasmic overexpression of MAPK compare to MAPK-nls (nuclear form of 

MAPK). This indicates that phosphorylation of MAPK occurs in cytoplasm. In the 

case of MAPK-nls, MAPK moves into the nucleus before getting phosphorylated as it 

carries nuclear localization signal. How can MAPK get phosphorylated when its 

upstream  activator MEK is inactive? Does hid activate MAPK or some other protein
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kinase which further activates MAPK? Earlier research has shown that activated 

MAPK directly targets hid and inhibits its activity (Haining, 1999; Bergmann et al., 

1998]. Therefore, direct activation of MAPK by hid is least likely. Here, we suggest 

that hid activates another protein kinase [other than MEK) that activates MAPK. 

However, further studies are necessary to reveal this novel mechanism.

Perhaps the m ost im portant result of our research is that the active MAPK is 

required for p53 (tum or suppressor protein). Moreover, non-phosphorylated MAPK, 

w hen localized into the nucleus, showed negative regulation of p53 gene expression. 

How does non-phosphorylated MAPK negatively regulate p53 gene expression? 

Recent studies have shown that ERK2 (MAPK) can directly bind to DNA and function 

as a transcriptional repressor for y-interferon induced gene (Hu e ta l ,  2009). Hence, 

we suggest tha t a similar mechanism could play a role in p53 gene expression 

regulation by non-phosphorylated MAPK-nls (ERK-nls). In other words, we suggest 

that non-phosphorylated MAPK, once in the nucleus, may bind directly to p53 

regulatory gene sequence on DNA and function as a transcriptional repressor. 

Agrawal et al, (2001), reported decreases in protein levels of p53 and p21 in wild 

type hum an cells (H10) treated with MEK inhibitor. In our case MEK is genetically 

inactivated. Therefore, having the similar condition we would also expect decrease 

in p53 protein level. This also suggests the possibility that active MAPK provides 

p53 protein stability. However, further studies are needed to examine these 

possibilities.
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In conclusion, based on an earlier model proposed by Paez et al., [2010, Figure 19.aJ, 

we proposed th a t expression of p.S3 gene is an im portant step next to the nuclear 

localization of active/phospnorylated MAPK for cell growth [Figure 19.b].

!^^SuD-cellularx \ ^ ,<?/'
localization

Phospnorylatlon

MAPK

GrowthDivision

Differentiation Growth/Division

Diff/Growth/D;vision

Figure 19.a: Previous MAPK signaling model suggested that MAP Kinase phosphorylation is 
dispensable for cell division, but not for cell growth in D. melanogaster (G.L.Paez ,e t u!./2010).

Cytoplasmic / Sub-cellular n . Nuclear

Localization

Non

Phosphorylation

MAPK

GrowthDivision

Differentiation

p!>3 expression

Growth/Division

No p53 expression

Diff/Growth/Dlvision

Figure 19.b: The final model for the regulation of MAPK as proposed by our study suggesting p53 
gene expression is required for cell growth.
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Conclusion

• Drosophila melanogaster is a very useful animal model to study signal 

transduction pathways and wide variety of biological mechanisms including 

genetic diseases in humans.

• Immunohistochem istry (IHC] is very convenient and effective technique to 

identify the distribution and localization of biomarkers, and differentially 

expressed proteins in different parts of a biological tissue.

• Nuclear localization of non-phosphorylated MAPK (ERK] is another novel 

mechanism that may initiate cell division in developing eye of Drosophila.

• Active/phosphorylated MAPK is required to activate p53 gene expression in 

developing eye of Drosophila.

• Nuclear form of non-phosphorylated MAPK inhibits the expression of p53 in 

developing eye of Drosophila.

• Presence of hid gene under P-element control may leads to activation 

(phosphorylation] of MAPK via unknown protein kinase other than MEK in 

developing eye of Drosophila.

• As m utation in MAP Kinase and p53 (tumor suppressor] are found to be 

associated with human cancer, deeper studies on their regulatory 

interactions will provide valuable contribution to design novel cancer 

therapy.
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Future studies

• Nuclear localization of non-phosphorylated MAPK (ERK) may initiate cell 

division in developing eye of Drosophila. However, completion of cell division 

is still questionable. Does nuclear localized non-phosphorylated MAPK (ERK) 

activate transcription of all genes required for complete cell division? 

Chromatin Im munoprecipitation (ChIP) and RNA imm unoprecipitation (RIP) 

can be used to determ ine this, both in flies and mammalian systems. DNA 

footprinting is another good option to determ ine DNA protein interactions.

• Nuclear form of non-phosphorylated MAPK inhibits the expression of p53 in 

developing eye of Drosophila. However, the exact mechanism of this negative 

regulation is not clear from our study. Recent studies have shown that ERK2 

(MAPK) can directly bind to DNA and function as a transcriptional repressor 

for a y-interferon induced gene (Hu et al, 2009). Hence, we suggest that 

similar mechanism would play role in p53 gene expression regulation by 

non-phosphorylated MAPK-nls (ERK-nls). DNA footprinting and m icroarray 

techniques can be used to determine this mechanism.

• Our data also suggest that presence of hid gene under P-element control may 

leads to activation/phosphorylation of MAPK. However, the level of hid 

expression needs to be examined in all crosses we studied. Immunostaining 

with hid specific antibody can help to find out hid expression.
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• Finally, all protein levels should be subjected to total protein assay and

w estern blot analysis in order to match protein levels with the expression

pattern  we observed with Immunohistochemistry.

• After confirming protein levels with expression patterns, if they match, the

same studies can be done in phylogenetically diverse species such as mice.
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