Challenges of a Knowledge Society

- +Thanks
 - +Ah it feels great to be back in West Engineering again...
 - +...although I never remembered it looking this good!
 - +Thanks to Mrs. Erlicher.
 - +Very touched by loyalty and caring of our alumni.
 - +Virginia Erlicher and her late husband Arthur have +made a real different for Michigan.
 - +Their gift demonstrates the way private giving
 - +provides the "margin of excellence".
 - +It will be a focal point for students and faculty of this School
 - +that is clear a national/international pathfinder.
 - +leading us forward to a new age.
- +Introduction
 - +Lots of talk these days about a new age...
 - +...the information age
 - +...the computer age
 - +...the age of knowledge
 - +Your profession will play a key role
 - +...as gatherer
 - +...as keeper
 - +...as distributor

The Age of Knowledge

- +Looking back over history, one can identify certain
 - +abrupt changes, discontinuities, in the nature,
 - +the very fabric of our civilization...
- +The Renaissance, the Age
 - +of Discovery, the Industrial Revolution
- +There are many who contend that our society is
 - +once again undergoing such a dramatic shift in
 - +fundamental perspective and structure.
- +As Erich Bloch, Director of the National Science Foundation
 - +suggests, we are entering a new age, an "Age of
 - +Knowledge"
- +The signs are all about us.
- +Today we are evolving rapidly to a new post-industrial,
 - +knowledge-based society, just as a century ago our
 - +agrarian society evolved through the Industrial Revolution.
- +A transition in which...
 - +Intellectual capital--brainpower-- is replacing
 - +financial and physical capital as key to
 - +our strength, prosperity, and well-being
- +Key element in transformation, is the emergence of knowledge
 - +as the new critical commodity, as important as mineral ores,
 - +timber, and access to low skilled labor were at an earlier time.
- +This new critical commodity knows no boundaries.
 - +It is generated and shared wherever educated, dedicated,
 - +and creative people come together...and, as we have learned,
 - +it spreads very quickly.
- +Knowledge and the people who can create and use it are the +new strategic resource.
- +This is having a profound impact on our social
 - +structure, culture, and economy.
- +Some examples:
 - +1. Industrial production is steadily switching away from
 - +material and labor intensive products and processes
 - +to knowledge intensive processes:
 - +In a car, 40% materials, 25% labor...
 - +In a chip, 1% materials, 10% labor, 70% knowledge!!!

- +(In fact, the material for computer chips is the
- +world's most common substance...sand!!!)
- +High-tech industries based on knowledge--computers,
 - +semiconductors, biotechnology, synthetic materials,
 - +are replacing industries based on natural resoures as
 - +the source of economic growth and strategic strength.
- +2. Our nation's future has probably never been less constrained +by the cost of natural resources. Future areas of
 - +growth are likely to come from the application of technologies +that require few natural resources.
- +3. Increasing manufacturing production has come to mean +decreasing blue collar employment!
 - +In the 1920s, 1 of 3 was a blue-collar worker
 - +today 1 in 6 and dropping fast
 - +probably to about 1 in 20 within a couple of decades...
 - +Indeed, UM economic studies suggest that less than 5% +of General Motors' work force will be unskilled labor
 - +by the year 2000.
- +Noland-Norton
- +4. Recent Office of Technology Assessment report:
 - +40% of all new investment in plant and equipment goes +to purchase information technology
- +5. What's more, these new technologies magnify the effects +of change. "Today the velocity of change is so great...
 - +that the tectonic plates of national sovereignty and power

 - +have begun to shirt" (Walter Wriston)
 - +We are in the midst of an information revoution that is +changing the basis of economic competitiveness +and world power.
 - +Indeed, if you want to know the real reason why the
 - +we are now seeing the extraordinary transformations
 - +in the Soviet Union and Eastern Europe, it is not due
 - +to diplomacy or economics but rather the silicon chip...
 - +that is, to modern communication and information
 - +technology which make it impossible for totalitarian
 - +governments to isolate their societies from the rest +of the world.
 - +Today information and data flow quickly around the world.
 - +We learn about events almost as they occur. The
 - +world is linked electronically. And, as a result, the
 - +relationships between nations and the pace of change +are increasing rapidly.
 - +For example, pictures taken by the french commercial satellite +and quickly published world-wide forced Soviet officials
 - +to disclose the full seriousness of the Chernobyl disaster.
 - +A global economy is not only possible; it exists. Markets are +changing and realigning. We have seen it in the far east +and now we are seeing it in Europe.
- +6. Today a microprocess can caluclate the orbit of Mars in about
 - +4 seconds, a taks that took Johannes Kepler 4 years.
 - +A researcher can have on a desktop more computing power
 - +than existed in a standard mainframe only 10 years ago.
 - +Modern electronic technologies have increased vastly out
 - +capacity to know and do things. Moverover, they allow\
 - +us to transmit information quickly and widely, linking distant
 - +places and diverse areas of endeavor in productive new ways.
- +These technologies make many things possible.
 - +But they don't make things happen.
 - +Only people make things happen.

- +US and Japan already have become postindustrial societies;
 - +with predominate sectors in service and high tech. By
 - +1990, 75% of US labor force in services---not burger flipping,
 - +but financial services, professional and design services,
 - +and human services. Core of postindustrial society is
 - +professional and technical services.
- +A fundamental transformation is underway in our economy that +is reshaping virtually every product, every service, and every +job in the United States.
- +In our country, as in all developed nations, "knowledge workers" +have already become the center of gravity of the labor force.
- +The Role of Information Technology
 - +Because it is also clear that the knowledge
 - +infrastructure of our world provided by
 - +information technology will be of increasing importance
 - +in the years ahead...
 - +...a technology that not only provides a lever for the mind...
 - +...multiplying our talents and extending our
 - +intellectual span...
 - +...but provides the tools of interaction that
 - +allow us to overcome the barriers of space and time
 - +and unite as students, teachers, and scholars...
 - +...indeed, as a people...in ways we never
 - +dreamed possible...
 - +I personally believe that information technology
 - +will provide both the infrastructure and the
 - +linkages among these themes of change...
 - +...our growing pluralism
 - +...our growing interdependence with the global community
 - +...and our growing dependence on knowledge as key +to our futures.
 - +At Michigan we have been convinced
 - +for some time that the computer has evolved
 - +far beyond simply a tool for scientific computation
 - +or information processing.
 - +It is now a robust technology absolutely
 - +essential for the support of all knowledge-based
 - +activities...and knowledge-based organizations
 - +such as universities, corporations, government.
 - +Hence it was natural that several years ago,
 - +we would accept the challenge of embarking on a
 - +great adventure, to turn this University into a
 - +gigantic laboratory--an experiment in the development
 - +and application of this technology--in our efforts to
 - +build a University for the 21st Century.
 - +Indeed, we sought to make this University a gigantic
 - +experiment--a laboratory if you will--for the
 - +development of the technology necessary to
 - +support and sustain knowledge-based organizations
 - +such as universities.
- +Some parameters of the University
 - +Of many ways, Michigan represented the
 - +ultimate challenge, since it is long been viewed
 - +as both the prototype--and indeed the flagship--
 - +of the comprehensive, public research
 - +universities which have served America so well
 - +over the last century.
 - +This is a very large, a very complex,
 - +and a very decentralized place...

- +University of Michigan = "multi-versity"
 - +i) Spans all intellectual disciplines and +professional areas
 - +ii) Provides instruction, research, service
 - +iii) Attempts to conduct programs that rank
 - +among the nation's best in all areas
 - +(and succeeds...)
- +Parameters:
 - +Enrollment: 36,000 (Ann Arbor) (48,000 total)
 - +Faculty: 2,600 (16,000 employees)
 - +Budget: \$1.6 billion
 - +Academic Units
 - +17 Schools and Colleges
 - +Hundreds of research centers, institutes,
 - +and other types of interdisciplinary
 - +programs
 - +We also run the largest health care system in
 - +the Midwest, treating over 750,000 patients each year...
 - +We conduct events in the performing arts which rival
 - +New York and London...
 - +whether it be Leonard Bernstein performing his 70th
 - +birthday concern with the Vienna Philaharmonic
 - +or, God-forbid, the Grateful Dead....
 - +And, speaking of entertainment, we also have the
 - +Bo and Steve show...the Michigan Wolverines...
 - +playing in the fall to 105,000 every Saturday afternoon
- +Hence, we viewed the University of Michigan
 - +as a great challenge for information technology.
 - +If we could undergird this complex, knowledge-intensive
 - +institution on the infrastructure of information
 - +technology, then surely we would be well on
 - +our way toward re-inventing the University for
 - +the 21st Century.
- +But of course, we also had one very important
 - +advantage...the "fault-tolerant" nature
 - +of the University community...since students,
 - +faculty, and staff are far more willing to
 - +put up with occasionally glinches and outright bomb-outs
 - +than most elements of our society.
- +A Case Study: The "Electronic" University
 - +Personal Background
 - +Always a hacker...
 - +Insatiable appetite for computational cycles...
 - +a "number cruncher"...
 - +Nuclear systems simulation...
 - +Very large systems...
 - +Nuclear reactors...
 - +Nuclear rockets...
 - +Nuclear explosions...
 - +Very complex...
 - +Some of our codes ran 24 hours
 - +a day on the fastest machines
 - +available....
 - +Using "supercomputers" even before
 - +the word was coined...
 - +IBM Stretch
 - +CDC Star
 - +When Apple-II first appeared in 1979,
 - +was lured by a colleague, Dick Phillips,

- +into developing a introductory course
- +on computer for freshmen...
- +Hence, this perspective had a major impact
 - +on the strategic directions I have taken
 - +since...
- +UM experience...
 - +In 1960s UM was clearly a leader in time-sharing...
 - +MTS was then...and continues today...to be
 - +one of the most poweful operating systems
 - +UM involvement with IBM, then Amdahl, kept us
 - +at the lead in the use of large, time-shared
 - +mainframes...
 - +But...UM fell rapidly behind in the quality of
 - +computing environment it could provide
 - +as the new generation of minicomputers
 - +(VAX, Primes, ...) took root.
- +Our goal was rather simple:
 - +To build the most sophisticated
 - +information technology environment of any
 - +university in the nation...an environment
 - +that would continually push the limits of what could
 - +be delivered in terms of power, ease of use, and
 - +reliability to our students, faculty, and staff.
- +We sought a distributed intelligence, hierarchical
 - +computing system linking personal computer workstations,
 - +superminicomputers (and, more recently, minisupercomputers)
 - +mainframe computers, function specific machines,
 - +library access, a host of various servers, and
 - +gateways to international networks and facilities such
 - +as the NSF SCC, national data centers, etc.
- +Managed to recruit people with the vision
 - +and energy to make this a reality...
 - +Doug Van Houweling
 - +Lynn Conway
 - +Carolyn Autry-Hunley
 - +Doug Hofstadter
 - +Randy Frank
 - +Burt Herzog
- +To create the organizational structures...
 - +ITD
 - +Information Technology Division
 - +CITI
 - +Center for Information Technology Integration
 - +CMI
 - +Center for Machine Intelligence
 - +Cognitive Science and Machine Intelligence Lab
 - +NSFnet (IBM, MCI)
 - +NSF Supercomputer centers
 - +NASA, Internet, National Research and Education Network
 - +ANS
 - +MRLYN
 - +Library system
 - +MITN
- +And to build the partnerships with
 - +the leading information technology companies throughout
 - +the nation and the world.
- +Underlying Philosophy
 - +i) Determined to stay always at the cutting edge...
 - +...but with a very strong service focus

- +ii) Determined to remove all constraints...
 - +...no limits whatsoever on student and
 - +faculty use
- +iii) Multivendor environment
 - +...chosing whatever technology was the most +powerful
- +iv) Relied heavily on "fault-tolerant" nature
 - +of University community to develop an
 - +entreprenurial culture...a "go-for-it"
 - +philosophy!
- +Today...
 - +i) roughly 3,000 public student workstations
 - +(funded through \$220-\$400/y fee...
 - +gives us \$10 M/year of venture capital to
 - +play with)
 - +ii) roughly 30,000 workstations
 - +iii) student purchase plan...
 - +MacTruck -- truckload sales...
 - +iv) robust networking...
 - +digital wire plant...
 - +LANs...
 - +iv) one of the largest installations of mainframes in the world...
 - +all networked together into an institution-wide
 - +file system
 - +v) 80,000 users on system
 - +vi) UM has become the focal point in efforts to build
 - +the "interstate highway system" of information
 - +exchange...with EXPRES, NSFnet, internet,
 - +MITN,...coordinate access to NSF SCCs...
 - +National Research and Education Network

+Library

- +UM Library and SILS under Bob Warner have become
 - +leaders in conceptualizing acquisition, storage,
 - +retrieval, and sharing of information both on campus
 - +and throughout networks liking research libraries i8n
 - +this country and abroad.
- +We are on the threshold of an age of knowledge that is +making the world's accumulated information and
 - +knowledge accessible to individuals anywhere.
- +This has breathtaking implications for education,
 - +research and learning.
- +It is a profoundly democratic revolution.
- +Status
 - +1. Engineering and Bus Admin are clear national +leaders in this technology
 - +2. UM has not only the most ambitious, but also the
 - +most effective program of any large university
 - +in nation
 - +3. UM has become the focal point in efforts to build
 - +the "interstate highway system" of information
 - +exchange...with EXPRES, NSFnet, internet,
 - +MITN,...
 - +4. SILS Leadership
 - +Our school of Library and Information Science is +in the forefront of this effort.
 - +The new courses headed by Maurita Holland that will prepare +undergraduates to function in the information society is +one example.
 - +The proposed groundbreaking course for upper level students

- +on social and cultural factgors influence access to
- +information is another important new educational contribution.
- +I am also enthused about the prospect of collaborative research
 - +on our evolving information infrastructure.
- +Tomorrow...
 - +Now riding the "fourth wave" of the use of
 - +information technology...where the computer
 - +becomes not simply just an information processing
 - +tool, but rather a medium of communication,
 - +cooperation, and collaboration...an entirely new
 - +intellectual endeavor
 - +Personal computing to "interpersonal computing"
 - +As the result of the rapid spread of personal
 - +computers and computer networks, and the
 - +development of new insights into human
 - +cognition and group behavior, we are at the
 - +threshold of a major shift in the underlying
 - +paradigms and uses of information technology.
 - +The shift will be from solo use of personal computers
 - +to group use of collaboration technology.
 - +Group process underpin all human activity and work.
 - +Past research in computing technology has focused +on the solo user.
 - +But groups activities such as brainstorming,
 - +planning, and making decisions in group
 - +settings will require new technology.
 - +Center for Collaborative Science and Technology
 - +UM, MIT, PARC
 - +Organization theory, cognitive psychology,
 - +anthropology, human-computer interaction,
 - +artificial intelligence, and multi-media
 - +information technology

+Specific Comments

- +Technology Advances...
 - +i) Every 18 months, the back for the buck doubles...
 - +ii) From mainframes to minicomputers to personal computers
 - +to workstations to laptops and notebooks to
 - +..."Dynabook"...
 - +iii) National networks...Gigabit/second transmission rates
 - +iv) Unlimited storage...optical disks, cheap memory
 - +(16 MB memory chips...)
 - +v) Cellular communications technology
 - +Motorola's global cellular network...
 - +Startrek type phones...
 - +..."beam me up Scotty"...
 - +vi) Two years ago I saw a laptop equipped with a 2400
 - +cellular modem...
 - +vii) In the 1990s we will probably have laptops with
 - +the processing power of 1980s mainframes
 - +equipped with sophisticated cellular networking
 - +capacity to access robust networks linking together
 - +the knowledge of the world...
 - +...the "Dynabook" or "Knowledge Navigator" will be here soon!
- +Implications for Learning
 - +For education...
 - +In the past we have taught...
 - +...facts...
 - +...methods of analysis...
 - +But these are just what computers are good at...

+Analysis:

- +Much of the time spent by professionals (engineers, lawyers,
 - +doctors,...) used to be spent in laborious diagnosis
 - +or analysis.
- +Today computers can be used to analyze...indeed, to
 - +simulate situations
- +Further, artificial intelligence is rapidly proving far
 - +more effective at accurate diagnosis that
 - +human intelligence

+Facts:

- +No longer any real need to remember more than the +most basic information.
- +Can literally pluck information out of the air...
- +Can already see a shift in the activities of professionals...
 - +...from analysis and fact-gathering to creativity...
 - +...from the right to the left-hand side of the brain...
 - +(since creativity seems to be one area that computers +aren't very effective)
- +Implications for Librarians
 - +i) Clearly, the function of a library as an archive for physical +objects will become less and less important...
 - +...indeed, will probably assume the same role as a museum
 - +...electronic representations are rapidly replacing +physical representations
 - +ii) Clearly, too, libraries as repositories for information will +increasingly become just another "database node" on
 - +massive, world-wide networks that can rapidly share
 - +and deliver information from any of its resources
 - +...The user really could care less where the actual
 - +knowledge resides on the network...whether at
 - +Michigan...or the Widener Library...or the Library of
 - +Congress...or some obscure database in central
 - +Transylvannia...
 - +...as long as the network has the capacity to find +what he is looking for and download it
 - +rapidly into his workstation
 - Combatia the rale of the library
 - +iii) So what is the role of the librarian in this rapidly changing +technology driven age of knowledge?
 - +...as a "knowledge worker"
 - +iv) Despite the rapidly advancing nature of information
 - +technology, we still have far to go in our ability
 - +to gather, organize, search, present, and use information.
 - +And, here, the experience of library science will
 - +continue to prove invaluable since you folks have ways
 - +of doing things that go far beyond those of the
 - +computer science community.
 - +v) Further, it will be critical for you to help us in managing +the "cultural change" necessary to get folks comfortable +with these marvelous tooks.
- +One final comment and observation...
 - +Many view the computer as a symbol of
 - +the de-personalizing nature of modern science and technology.
 - +Yet, if ever there was a tool for empowering
 - +the individual, it is information technology.
 - +This is truly a liberating force in our society,
 - +not only freeing us from the mental drudgery of routine tasks
 - +but linking us together in ways we never dreamed possible
 - +...overcoming the constraints of space and time.
 - +In part, it is our challenge, collectively, as

#Slide#

Page 9

- +journalists, scientists, educators, leaders of business
- +...to build greater public understanding and support
- +for this extraordinary tool...
- +...so key to our nation and the world as we
- +prepare to enter the "Age of Knowledge"
- +that is our future.
- +T. S. Eliot, the Rock (1934)
 - +All our knowlege brings us near to our ignorance,
 - +All our ignorance brings us nearer to death,
 - +But nearness to death, no nearer to God.
 - +Where the the Life we have lost in living?
 - +Where is the wisdom we have lost in knowledge?
 - +Where is the knowledge we have lost in information?
 - +The cycles of Heaven in twenty centuries
 - +Bring us farther from God and nearer to the Dust.