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Abstract. A clarification of the meaning of the covariance of the community matrix is 
presented along with calculating equations for both the mean species covariance and the co­
variance of the row and column means. A brief discussion of a. selection and its determina­
tion of the covariance is given, followed by tables for determining the expected number of 
species in a community from a knowledge of mean a. and cov a.. 

Much interest in community ecology seems to 
have been generated by the theoretical constructs 
surrounding the community matrix (Levins 1968, 
Vandermeer 1970). Culver (1970), for example, 
uses the community matrix to investigate the nature 
of interference and exploitative competition in a 
community of cave isopods. Culver also points out 
the fact that the methods formerly used to estimate 
the covariance of the community matrix lead to the 
uneasy result that the covariance changes depending 
upon how the species are ordered. 

In the present communication I derive a form for 
the covariance that is in accord with the original ex­
pectation of the expansion of the determinant of the 
community matrix. The actual computation of this 
form does not result in a value that changes with a 
changing ordering of the species, and furthermore, 
the interpretation of this covariance is much more 
easily couched in biological language than the former 
concept was. 

The derivation presented by me (Vandermeer 
1970) and by Levins (1968) of the expected value 
of the determinant depended upon the following 
general relationship, 

E(a.ii a.ii) = Ci,2 + cov(a.H a.ji), 

which is correct given a proper interpretation of 
cov( a.ii a.;i). Throughout this paper a.i; refers to the 
effect of species j on i and m refers to the number of 
species in the community. To see this interpretation, 
take expectations with respect to one index variable 
at a time. That is, the expected value of ~i a.;i with 
respect to j is Ci.,. Ci..i + cov a.i. a..,. Taking the expec­
tation of that result with respect to i, we obtain 

E(a.·· a, .. ) = OC2 + [cov a.. a. . + cov ;. ~ ·] 'tj }'/, 'to o'lo '/,o •1 

where the term in the brackets corresponds to what 
Levins and I have referred to as the covariance of 
the community matrix [cov a. or cov( a.i; a.ii) ]. 

For purposes of computation the following formu­
lae are useful: 

cov a.. a. . = . .r: j,fi j,fi j,fi 
m lL a.ij a.ji- ( L. a.ji I:a.ij) I (m- 1) ~ 

•· ·• •=l m(m- 2) 

(1) 
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The above equations are written under the assump­
tions that the community matrix in question is actually 
a representation of a sample of m species from a 
larger community. Thus we obtain the usual degrees 
of freedom ( m - 2) in equation ( 1) and ( m - 1 ) 
in equation (2). If, however, the community matrix 
in question is a representation of an entire commu­
nity rather than a sample thereof, the point from 
which the deviations in the covariance are measured 
is no longer a sample statistic (mean a.) but rather a 
true parametric value. Thus, if we are concerned 
with a community matrix that includes all of the 
species in some community, the term (m- 2) in 
equation (1) should be changed to (m - 1) and the 
term (m- 1) in equation (2) should be changed 
tom. 

Considering each term separately we first consider 
cov Ci.i. Ci..i· Note that Ci,. refers to the mean value of 
the a.'s in the ith column, or the mean interactive 
effect perpetrated on the community as a whole by 
the ith species. Call this value the "species effect." 
A species that exhibits a large effect on most of the 
other species in the community is said to have a large 
species effect. On the other hand, ri.i is the mean 
value of the a.'s in the ith row, or the mean inter­
active effect perpetrated on the ith species by the 
community as a whole. Call this value the "commu­
nity effect." A species that manages more or less to 
avoid the interactive effects of most of the other 
species in the community has a low community effect. 
Thus we have the species effect, which is the mean 
value of a. in a particular column of the community 
matrix, and the community effect, which is the mean 
value of a. in a particular row of the community 
matrix. 

A great deal of information about the structure of 
the community is available from a direct examina­
tion of the row and column means, but for this paper 
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we are interested in the covariance between them. 
Intuitively, if one can easily predict the value of the 
community effect from a knowledge of the species 
effect, the absolute value of cov iii. a:.i will be high. 
Specifically, if a large species effect implies a large 
community effect and a small species effect implies 
a small community effect, cov iii. a:., will be large 
and positive. On the other hand, if a large species 
effect implies a small community effect, cov iii. a.., 
will be large and negative. If it is impossible to say 
anything about the species effect from a knowledge 
of the community effect, cov iii. ii.i is near zero. 

Next consider the term cov a.,. a..i· Each species has 
a particular value of cov a.i. a..,, i.e., the "species co­
variance" for the ith species. If a large a.i; implies a 
large a.;i for all values of j, the species covariance 
for the ith species is large and positive. If a large 
a.i; implies a small a.;i for all values of j, the species 
covariance is large and negative. If it is not possible 
to predict the value of a.1i from a knowledge of a.iJ• 
the species covariance is near zero. The quantity 
cov a.i. a. . .: is obviously the mean value of all the spe­
cies covariances. 

The computation of cov ii:i. ii.i and cov a.i. a..i is 
illustrated in the following example. Consider the 
community matrix presented by Culver (1970), 
where his negative values have been replaced by 
zeros and all a.'s have been rounded to one decimal 
place. Thus we have the following community ma­
trix: 

1 
0 

.1 

.1 

0 
1 
.8 
.8 

.1 
1.1 
1 
.8 

0 
.6 
.4 

1 

The species effects (row means, deleting principal 
diagonal) are .03, .57, .43, .57, and the community 
effects (column means, deleting principal diagonal) 
are .07, .53, .67, .33. The sum of the species effects 
is 1.60, the sum of the community effects is 1.60, 
and the sum of the cross products is .78. Thus the 
final marginal covariance ( cov a •. a: .• ) is 

[.78- (1.60)(1.60)/4]/3 = .047. 

It is next necessary to compute a species covari­
ance for each species and take the average of the 
species covariances. Consider, for example, species 
number 2 in the above community matrix. We are 
concerned with the second row and second column 
of the matrix, namely 0, 1, 1.1, .6, and 0, 1, .8, .8. 
Because of the original derivation of the expected 
value of the determinant we must ignore the 1 's in 
the principle diagonal, making the row and column 
of concern 0, 1.1, .6 and 0, .8, .8. The row sum is 
1.7, the column sum is 1.6, and the sum of products 
is 1.36. Thus the species covariance for the second 

species is [1.36- (1.7)(1.6)/3]/2 = .225. Perform­
ing this operation for all four species in the commu­
nity, we obtain cov a.1 • a.. 1 = .047, cov a.2 . a.. 2 = .225, 
cov a.3• a.. 3 = .170, and cov a.4• a.. 4 = .116, which 
gives a mean species covariance of .149. 

The creation of methods to measure the actual 
interaction coefficients in any natural situation is 
the most difficult problem facing community matrix 
theory. I will not discuss that problem in this paper, 
but it is important to emphasize that the estimation 
of a.'s is distinct from the various other features of 
the theory. In this paper we assume that a.'s have 
been estimated and that they are correct. Given that 

assumption we can compute cov a.i. a..i• cov a.i. a..i• 
and ii and determine from tabulated values what the 
number of species in a saturated community is ex­
pected to be. For details of how such tables are de­
rived see Levins (1968) or Vandermeer (1970). 

The table presented in Levins (1968) shows ex­
pected values for only positive covariances. It is not 
difficult to imagine communities with negative co­
variances, e.g., a large species effect implies a small 
community effect. To see how such a relationship 
could come about, consider briefly the evolution of 
interspecific competitive ability. Analogous to r and 
K selection (MacArthur and Wilson 1967) we now 
consider the processes of a. selection. Creating an 
artificial dichotomy, and supposing interference com­
petition to be negligible, a species might evolve a 
high competitive ability either by becoming good at 
escaping the effects of potential competitiors, or by 
becoming more efficient at utilizing a limiting re­
source. That is, a species could become a good com­
petitor either by decreasing its community effect or 
increasing its species effect. Evolution might proceed 
in such a way that competition is either maximized 
or ignored, meaning that a large species effect im­
plies a small community effect and cov iii. ii.i is large 
and negative. On the other hand it might he argued 
that in maximizing competitive ability a species must 
concentrate on either the species effect or the com­
munity effect. Naturally this set of circumstances 
results in cov a: •. a., being large and positive. 

The above is not meant to be an exhaustive treat­
ment of a. selection but merely to show that the co­
variance is expected to be either positive or negative. 
In fact, examples computed from nature include both 
positive and negative covariances. 

In light of the above, Tables 1 and 2 are presented 
as potentially useful extensions of the original table 
presented by Levins. The row headings of Tables 1 
and 2 are the. various values of cov a. where cov a. = 
cov a: •. a .• + cov a. •. a.., and the column headings are 
the values of a. In computing Tables 1 and 2, a great 
deal of round-off error frequently led to expected 
numbers of species clearly too large or too small to 
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TABLE 1. The expected number of species in a community as a function of a: (columns) and COY OC (rows), for 
positive covariances 

a .0125 .025 .0375 .0625 .0875 .0925 .0975 .105 .120 .140 .160 .20 .40 .60 .80 
COY cz 

.003 67 65 58 44 35 34 32 30 28 27 24 22 15 11 6 

.006 44 43 42 40 34 32 32 28 27 24 22 20 15 11 5 

.009 33 32 32 30 30 28 27 28 26 24 22 21 13 8 4 

.012 26 26 25 24 23 23 23 23 22 21 20 19 13 7 4 

.015 22 21 21 20 19 19 19 19 18 18 17 16 10 6 3 

.018 19 18 18 18 17 17 17 16 16 15 15 14 9 6 3 

.021 16 16 16 16 15 15 15 15 14 14 13 12 8 5 3 

.024 15 15 14 14 13 13 13 13 13 12 12 11 8 5 3 

.030 12 12 12 12 11 11 11 11 11 11 10 10 7 4 3 

.036 11 11 11 10 10 10 10 10 10 9 9 8 6 4 2 

.048 9 9 9 8 8 8 8 8 8 8 7 7 5 4 2 

.084 6 6 6 6 6 6 5 5 5 5 5 5 4 3 2 

.120 5 5 5 4 4 4 4 4 4 4 4 4 3 2 2 

TABLE 2. The expected number of species in a community as a function of oc (columns) and cov oc (rows) , for 
negative covariances 

a .15 .20 .25 .30 .35 .40 .45 .50 .55 .60 .65 .70 .75 .80 .90 1.0 1.025 1.05 1.075 1.10 
COY cz 

-.475 79 60 48 40 35 30 29 26 24 23 22 21 19 19 18 17 16 9 7 5 
-.450 76 58 47 39 35 30 28 26 24 22 21 20 18 19 17 16 15 9 6 5 
-.425 76 57 46 38 34 30 28 26 23 20 20 20 18 18 16 16 15 9 5 5 
-.400 73 57 45 38 32 30 28 25 22 20 20 20 18 18 16 16 14 8 5 4 
-.375 72 51 44 37 32 29 27 25 22 20 19 19 17 17 15 15 14 7 5 3 
-.350 68 50 42 35 31 28 25 24 21 20 19 18 17 17 15 15 14 7 5 3 
-.325 68 49 41 35 31 28 24 23 20 20 19 18 17 16 15 14 14 7 5 3 
-.300 63 48 38 34 31 27 24 23 20 20 18 18 16 16 15 14 14 6 3 3 
-.275 61 47 38 33 28 26 24 23 20 20 17 17 16 16 14 14 14 5 3 3 
-.250 61 44 36 31 28 26 23 22 20 19 17 17 16 15 14 14 14 5 3 3 
-.225 56 44 34 30 27 25 23 21 20 19 17 16 16 15 14 13 9 5 3 2 
-.200 56 43 34 30 26 24 23 20 19 18 16 16 15 14 14 12 7 4 3 2 
-.175 52 42 33 29 24 22 22 20 18 18 16 15 14 14 13 12 7 3 2 1 
-.150 48 39 32 27 24 22 21 19 18 17 16 14 14 14 12 12 5 3 1 1 
-.125 47 38 31 26 23 21 20 19 17 16 15 14 13 13 12 12 5 3 1 1 
-.100 43 35 29 25 22 20 18 18 16 16 14 14 12 12 12 11 5 3 1 1 
-.050 36 30 24 22 20 18 16 16 14 14 12 12 12 10 10 10 4 2 1 1 

fit into the mode of the table. In such cases, Ci and lem with the degrees of freedom in the calculating equa-
cov oc were changed very slightly and a new expected tions for the covariances. 
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