
research papers

616 http://dx.doi.org/10.1107/S2059798316003016 Acta Cryst. (2016). D72, 616–628

Received 15 June 2015

Accepted 19 February 2016

Edited by R. J. Read, University of Cambridge,

England

Keywords: molecular replacement; protein

structure prediction; X-ray crystallography;

I-TASSER; threading.

Supporting information: this article has

supporting information at journals.iucr.org/d

Using iterative fragment assembly and progressive
sequence truncation to facilitate phasing and crystal
structure determination of distantly related proteins

Yan Wang,a Jouko Virtanen,b Zhidong Xue,b,c John J. G. Tesmerd and

Yang Zhangb,e*

aKey Laboratory of Molecular Biophysics of the Ministry of Education, School of Life Science and Technology, Huazhong

University of Science and Technology, Wuhan, Hubei 430074, People’s Republic of China, bDepartment of

Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA, cSchool of Software

Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People’s Republic of China,
dDepartments of Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, MI 41809, USA, and
eDepartment of Biological Chemistry, University of Michigan, Ann Arbor,

MI 48109, USA. *Correspondence e-mail: zhng@umich.edu

Molecular replacement (MR) often requires templates with high homology to

solve the phase problem in X-ray crystallography. I-TASSER-MR has been

developed to test whether the success rate for structure determination of

distant-homology proteins could be improved by a combination of iterative

fragmental structure-assembly simulations with progressive sequence truncation

designed to trim regions with high variation. The pipeline was tested on two

independent protein sets consisting of 61 proteins from CASP8 and 100 high-

resolution proteins from the PDB. After excluding homologous templates,

I-TASSER generated full-length models with an average TM-score of 0.773,

which is 12% higher than the best threading templates. Using these as search

models, I-TASSER-MR found correct MR solutions for 95 of 161 targets as

judged by having a TFZ of >8 or with the final structure closer to the native than

the initial search models. The success rate was 16% higher than when using the

best threading templates. I-TASSER-MR was also applied to 14 protein targets

from structure genomics centers. Seven of these were successfully solved by

I-TASSER-MR. These results confirm that advanced structure assembly and

progressive structural editing can significantly improve the success rate of MR

for targets with distant homology to proteins of known structure.

1. Introduction

The electron density of a macromolecular crystal structure

can be directly calculated by Fourier transformation of the

amplitudes of its diffracted X-rays, provided that the phase of

each diffraction maximum is known. However, such phases

cannot be directly measured, resulting in the so-called ‘phase

problem’. One solution to the phase problem is molecular

replacement (MR), which estimates the phase of each

diffraction amplitude by placing one or more homologous

search models in the unit cell of the crystal (Rossmann, 1990;

Navaza, 1994). As more structures for diverse protein folds

become known, MR has become increasingly useful for

providing an initial set of phases that can be used to bootstrap

towards a structural model consistent with the primary

diffraction data.

One key to successful MR is to identify a search model that

is close in structure to a substantial fraction of the scattering

mass in the unit cell of the crystal. Following the principle that

similar sequences adopt similar structures, traditional MR

approaches use the atomic structure of a protein with high

sequence identity to the crystallized target. However, the
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success rate of MR decreases rapidly as sequence identity falls

below 30% owing to structural divergence of proteins in this

so-called ‘twilight zone’ (Rost, 1999). Indeed, studies of the

relationship between protein homology and backbone

conformation have established a strong correlation between

percentage identity and root-mean-square deviation (r.m.s.d.)

of backbone atoms given by r.m.s.d. (Å) = 0.40exp(1.87H),

where H is the fraction of mutated residues of a homologous

domain (Chothia & Lesk, 1986). Thus, at 30% identity

homologous domains are expected to have an r.m.s.d. of 1.5 Å

in the position of their backbones in comparable regions.

Many attempts have been made to push the boundary of

homology-based MR. For example, Read and coworkers

incorporated the use of maximum-likelihood statistics to

enhance the sensitivity of MR searches (Read, 2001; Storoni et

al., 2004; McCoy et al., 2005). In addition, automated pipelines

such as CaspR (Claude et al., 2004), MrBUMP (Keegan &

Winn, 2008) and BALBES (Long et al., 2008) were created to

use multiple homologous template search models in order to

enhance the success rate of MR. Some methods, including

CHAINSAW (Stein, 2008) and Sculptor (Bunkóczi & Read,

2011), focused on editing template–target alignments to

improve the signal-to-noise ratio of MR. Others explored the

possibility of using template models detected by advanced

fold-recognition algorithms for MR and found that more

sophisticated profile–profile alignment methods can improve

distant-homology template detection and increase the success

rate in cases of low sequence identity (<35%; Jones, 2001;

Schwarzenbacher et al., 2004). Later, the relationship between

the accuracy of the initial protein model and its suitability as a

search model in MR was investigated and it was shown that

sequence identity alone is not the only strong determinant for

successful MR procedures (Giorgetti et al., 2005). Low-

resolution structural information can also be used to generate

higher quality search models, because coordinates based on

comparative modeling and nuclear magnetic resonance can be

structurally refined at the atomic level and used for successful

MR (Qian et al., 2007). Building on this idea, it has been shown

that structural fragments of low-resolution models can be

positioned by MR independently and then used to reassemble

a full-length model that can be used for successful MR

(Shrestha & Zhang, 2015). These methods open the door to

the exploitation of low-resolution structures derived from ab

initio modeling for high-resolution structure determination by

MR.

With the development of new threading and fold-

recognition methods, considerable progress has been made in

the detection of distantly homologous templates (Zhang,

2008b). In particular, template reassembly and refinement

techniques can generate templates that are considerably closer

in structure to that of the target protein, as demonstrated in

recent community-wide blind CASP experiments (Kinch et al.,

2011; Tai et al., 2014). One example, I-TASSER, was designed

to construct full-length atomic models by reassembling struc-

tural fragments excised from the template structures under an

optimized knowledge-based force field (Wu et al., 2007; Yang,
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Figure 1
Flow chart of I-TASSER-MR. The target sequence is first threaded through nonredundant structures from the PDB library to identify structure
templates (column 1), with three-dimensional full-length models constructed by iterative fragment-reassembly simulations (column 2). The structure
models are progressively edited based on AVS, which demarks poorly predicted regions (column 3), and the resulting models are used in a standard MR
search by Phaser followed by automated model building and refinement with phenix.autobuild (column 4).



Yan et al., 2015). The results from CASP10 showed that

I-TASSER generated models that were closer to the native

structure than the best threading templates for 81% of the

target proteins, resulting in an average r.m.s.d. improvement of

1.05 Å in the threaded regions (Zhang, 2014). Consequently,

we hypothesized that the I-TASSER structure-assembly

method, combined with state-of-the-art phasing tools, could

be used to improve automated MR phasing. To test this, we

focused on distantly related protein targets and tested various

model-editing procedures to examine the advantages and

limitations of the truncation and editing of search models.

We report here that we achieved a significant improvement in

the success of automated protein structure solution by MR,

starting only with the query sequence of the crystallized

protein and the experimentally determined X-ray diffraction

amplitudes. The resulting pipeline, called I-TASSER-MR, is

freely downloadable at http://zhanglab.ccmb.med.umich.edu/

I-TASSER-MR.

2. Methods

The I-TASSER-MR pipeline consists of three steps of

I-TASSER-based protein structure prediction followed by

progressive model editing and then by an MR search and

automated model refinement (Fig. 1).

2.1. I-TASSER

The query sequence is first threaded through a non-

redundant structure library derived from the Protein Data

Bank (PDB) to search for structural templates and super-

secondary-structure motifs using LOMETS (Wu & Zhang,

2007), a meta-threading algorithm consisting of eight distinct

programs: FFAS-3D (Xu et al., 2014), HHsearch (Söding,

2005), MUSTER (Wu & Zhang, 2008), pGenTHREADER

(Lobley et al., 2009), PPAS (Yan et al., 2013), PROSPECT2

(Xu & Xu, 2000), SP3 (Zhou & Zhou, 2005) and SPARKS-X

(Yang et al., 2011). Continuous fragments (i.e. structural motifs

without gaps in the query–template alignments) are then

excised from the top-ranked templates and used to reassemble

full-length models, whereby the structural regions whose

sequences were not aligned by LOMETS (mainly loops) are

built using a lattice-based ab initio folding procedure (Zhang

et al., 2003). The structural reassembly simulations are

performed by replica-exchange Monte Carlo (REMC) simu-

lations, which are guided by a composite knowledge-based

potential (Zhang et al., 2002). The structure conformations

generated from REMC are clustered by SPICKER (Zhang &

Skolnick, 2004a), with the lowest free-energy conformations

selected from the centroids of the largest clusters.

To further refine the SPICKER cluster models, a second

round of fragment-assembly simulation is implemented by

I-TASSER starting from the cluster-centroid model of the

REMC simulation. Spatial restraints derived from the

centroids and from PDB structures that have the highest

structural similarity to the centroids, as detected by the

structure-alignment program TM-align (Zhang & Skolnick,

2005), are used to guide the second round of simulation. The

models obtained in the second-round refinement simulations

are further refined using fragment-guided molecular-dynamics

all-atom simulations (Zhang et al., 2011).

2.2. Progressive editing of MR search models

Because I-TASSER models are expected to have local

errors that could prevent successful MR, a progressive editing

procedure was used to truncate regions that have the highest

probability of being incorrect, with the aim of generating

search models with minimum r.m.s.d. from the target protein

while maintaining high coverage of the target sequence. The

idea of trimming unreliably modeled regions is not new. For

example, Qian et al. (2007) used conformational variation

to identify low-accuracy regions and performed a structural

refinement and rebuilding process focused on the structurally

variable regions to improve global model quality. Bibby et al.

(2012) documented a correlation between conformational

variation and modeling error, and proposed trimming off

residues with large variation after structure clustering by

SPICKER (Zhang & Skolnick, 2004a). Sammito et al. (2014)

recently proposed systematically ‘shredding’ residues from a

search model and evaluating how they improve the score of a

molecular-replacement solution.

Following Bibby et al. (2012), as well as our observation of a

strong correlation between modeling accuracy and structural

diversity of I-TASSER simulations (Zhang, 2008a; Zhang et

al., 2003), we defined an average variation score (AVS) for the

ith residue as

AVSi ¼
1

M

PM
j¼1

½ðxj;i � xC;iÞ
2
þ ðyj;i � yC;iÞ

2
þ ðzj;i � zC;iÞ

2
�
1=2;

ð1Þ

where M is the number of structure conformations (known as

decoys) in a SPICKER cluster generated by the I-TASSER

simulation. (xj,i, yj,i, zj,i) and (xC,i, yC,i, zC,i) are the coordinates

of the ith residue of the jth decoy and the cluster-centroid

model, respectively, after superposition by the TM-score

program (Zhang & Skolnick, 2004b). TM-score determines the

coordinate transformation between residue pairs, with shorter

distances having a stronger weight; the superposition is

therefore less sensitive to outliers than superpositions based

on r.m.s.d.

Residues are first sorted by their respective AVS scores, and

those with the highest AVS scores are progressively truncated

to generate a series of search models with progressively more

truncations. For each model k, the number of truncated resi-

dues is given by

Nk ¼ ðk� 1Þ
L

100
; k ¼ 1; 2; . . . ; 96; ð2Þ

where L is the length of the target sequence. Thus, 96 edited

copies are attempted for each I-TASSER model, with the last

copy having only 5% of the residues remaining.
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2.3. B-factor assignment strategies

Because diffraction amplitudes are sensitive to atomic

motion, particularly at high resolution, setting reasonable B

factors for different regions of a search model can be impor-

tant for MR (Bunkóczi & Read, 2011). B factors, by their

nature, also represent uncertainty in the position of individual

atoms. It has been suggested that local error prediction be

used to estimate and adjust the atomic B factors of search

models (Read & Chavali, 2007). Indeed, successful solutions

are increased by 45% (or 101%) by introducing the predicted

(or true) local error into the B-factor term (Pawlowski &

Bujnicki, 2012). Most recently, it was shown that B factors

based on coordinate-error estimation can improve signal to

noise such that weighted search models of low quality give a

better signal than analogous unweighted high-quality models

(Bunkóczi et al., 2015). In addition, there are likely to be

regions with low B factors in the native structure that are

poorly predicted. Assigning high B factors to such poorly

modeled regions is also advantageous to MR because it

reduces their influence on high-resolution amplitude terms,

while preserving their influence on low-resolution terms. In

other words, B factors can be used to selectively down-weight

inaccurate portions of the protein.

Three different methods were tested for estimating the B

factors for the I-TASSER models. The first was setting the B

factor of every atom to a constant value of 20 Å2 (this value is

actually arbitrary because Phaser normalizes the scattering

such that the average scattering intensity in each resolution

range is a constant). The second was setting the atomic B

factors equal to their accessible surface area (BASA), as

computed by DSSP (Kabsch & Sander, 1983), with a minimum

B factor of 10 Å2. The third was setting the B factor of each

residue to the AVS (Read & Chavali, 2007; Bunkóczi et al.,

2015),

Bi
AVS ¼

8�2AVS2
i

3
; ð3Þ

where AVSi is the average variability score of the ith residue

in (1).

2.4. MR and automatic model building

Phaser (McCoy et al., 2007) is used for MR in the

MR_AUTO mode, in which the percentage sequence identity

of the best template is input to Phaser for the purpose of

estimating the r.m.s. error of the search model. Log-likelihood

gain (LLG) and translation-function Z-score (TFZ) values are

used to evaluate the MR solutions, where LLG indicates how

much better the solution is compared with a random solution

and TFZ indicates how many standard deviations the LLG

value of the solution is above the mean LLG. A recent

quantitative study showed that a TFZ of �8 indicates success

for a nonpolar space group, while a TFZ of�6 is sufficient in a

polar space group (Oeffner et al., 2013). The best solution

from Phaser is then input to phenix.refine (Afonine et al., 2012)

to perform 20 cycles of refinement. Finally, phenix.autobuild

(Terwilliger et al., 2008) is used for automatic model

construction. The procedure of phasing and model construc-

tion is fully automated, and the entire process of I-TASSER-

MR, including I-TASSER modeling and the automated

phasing and model completion, takes 15–20 h for a protein of

200 residues on a 2.8 GHz IBM NeXtScale machine. In this

study, MR was only attempted for the first I-TASSER model

derived from the largest cluster obtained by SPICKER,

although I-TASSER-MR allows users to explore up to the top

five models from I-TASSER.

2.5. Assessment of structural models

Structural similarity between the final I-TASSER-MR

models and the deposited crystal structures was assessed by

r.m.s.d., TM-score, GDT-TS score and the percentile-based

spread (PBS). The r.m.s.d. and PBS were calculated by

ShakErr (Pozharski, 2010), whereas the TM-score and GDT-

TS score were calculated by the TM-score program (Zhang &

Skolnick, 2004b). Calculation of the r.m.s.d. and PBS are

based on all atoms, whereas the TM-score and GDT-TS

calculations are based on C� atoms.

The TM-score is defined as

TM-score ¼
1

L

PLbuilt

i¼1

1

1þ ðd2
i =d2

0Þ
; ð4Þ

where L is the target sequence length, Lbuilt is the number of

residues built (or the length aligned for threading templates),

di is the distance between the C� atoms of the ith residue in the

model and the experimentally determined structure, and d0 =

1.24(L � 15)1/3
� 1.8 is a distance scale that ensures that the

TM-score is independent of protein length (Zhang & Skol-

nick, 2004b). The TM-score is a more reliable indicator of the

quality of a solution than the r.m.s.d. because the r.m.s.d. only

accounts for the error of the structure regions that are

compared, whereas the TM-score accounts for both error and

coverage. The r.m.s.d. also weights each distance pair equally,

and therefore a local variation can generate a large r.m.s.d.

even when the global topology is correct. In contrast, the TM-

score weights smaller differences more than larger distances,

and the value is thus more sensitive to correct global topology.

TM-scores range from 0 to 1. A TM-score of <0.17 corre-

sponds to a random structure pair, whereas a TM-score of >0.5

indicates a similar fold (Xu & Zhang, 2010).

GDT-TS is a metric used in CASP experiments to evaluate

the quality of structure predictions (Zemla et al., 1999), and

is defined as the average fraction of residues that have a

difference in their superimposed positions within 1, 2, 4 and

8 Å cutoffs after optimal superposition, i.e. GDT-TS =

(1/4L)(nd<1 + nd<2 + nd<4 + nd<8), where L is the length of the

target sequence and nd<x is the number of residues in the

model with a distance of <x Å from the deposited structure.

Similar to TM-score, GDT-TS ranges from 0 to 1 and is

insensitive to local structural errors, but differs in that it has

a power-law dependence on the protein length (Zhang &

Skolnick, 2004b). The PBS represents the average variation in

atomic positions, which is also insensitive to the presence of

outliers (Pozharski, 2010).
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A solution with a TFZ of above 8 has been proposed to be

a reliable indicator of successful MR (Oeffner et al., 2013).

Although statistics from Phaser indicate whether a model

gives a significant hit, successful structure solutions are also

dependent on the automated building and refinement steps of

the pipeline. It has been proposed that success is indicated by

a substantial fraction of the final structure being closer to the

experimentally determined structure than the search model

(Giorgetti et al., 2005). More stringent criteria have been

proposed to be that the automated solution should have both

a reasonable chemical structure and significant differences

from the search model (Terwilliger et al., 2008). Combining

these proposals, we defined success in our automated pipeline

as an automatically built final model with a higher TM-score

or GDT-score or a lower r.m.s.d. than the search model and/or

with a TFZ of >8. Despite its flaw of being sensitive to local

errors, r.m.s.d. has been included as part of the assessment

here because it is widely used in structural biology and is

intuitively easy to understand.

3. Results

3.1. Benchmark data sets

Two sets of proteins were assembled to benchmark the

I-TASSER-MR approach. The first (the CASP8 set) consists

of 61 proteins from the CASP8 experiment with structures

determined by X-ray crystallography and fewer than 300

residues and �4 copies in the asymmetric unit. According to

assignment by the CASP8 assessors (Tress et al., 2009), 22

belong to the TBM-HA category (template-based modeling –

high accuracy; the targets usually have easily detectable

homology templates), 37 targets belong to the TBM category

(template-based modeling targets that have templates existing

in the PDB but the detection of which is usually more difficult

and often with substantial alignment errors) and two belong

to the FM category (no similar structures in the PDB). The

second set (the High-Res set) consists of 100 nonredundant

proteins selected from the PDB by PISCES (Wang &

Dunbrack, 2003) using a pairwise sequence-identity cutoff of

25%, a sequence length of <300 residues and a resolution of

�1.5 Å to explore the effect of high resolution on the

performance of I-TASSER-MR. In contrast, the CASP8 set

has no resolution cutoff. No proteins in the High-Res set are

homologous to any in the CASP8 set.

To ensure distant-homology modeling, any I-TASSER

templates that had a sequence identity of >30% to a target

protein or one detectable by PSI-BLAST with an E-value

of <0.5 (referred to in the following as ‘closely related

templates’) were excluded from the I-TASSER template

library. To apply the latter filter, we used PSI-BLAST to build

a sequence profile by searching the NCBI NR database (ftp://

ftp.ncbi.nih.gov/blast/db) in three iterations with an E-value

cutoff of 0.001. The resulting profile was then used to match all

structures in the PDB to identify closely related templates,

which were excluded if they had an E-value of <0.5. A similar

template cutoff was applied to the second step of I-TASSER

iteration when TM-align was used to search for fragments

within the PDB library. For the CASP8 set, an additional filter

was imposed to exclude all templates solved after CASP8.

After application of all of the filters, the average sequence

identity between the I-TASSER templates and the target

proteins was 15%.

Multiple B-factor assignment schemes were tested for each

set, and individual targets were deemed to be successfully

determined by I-TASSER-MR if at least one of these schemes

generated a correct solution.

3.2. MR solutions for the CASP8 set

3.2.1. Overall results. The I-TASSER-MR pipeline (Fig. 1)

was first tested on the CASP8 set. Using the criterion specified

above, 33 out of the 61 targets were successfully solved.

A summary of the MR results for each of the 61 targets,
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Table 1
Summary of the results of I-TASSER-MR on the two protein sets.

PDB structure I-TASSER Phaser I-TASSER-MR structure

Dmin† (Å) L‡ PBS§ (Å) TM} GT†† LLG‡‡ TFZ§§ Rfree}} TM††† PBS‡‡‡ (Å)

Benchmark I: 61 CASP8 targets
Success

Range 0.98–2.90 95–286 1.15–2.73 0.70–0.94 0.65–0.90 27–366 4.5–40.8 0.25–0.41 0.50–0.97 0.09–0.75
Mean 2.03 � 0.39 179 � 58 1.74 � 0.32 0.84 � 0.05 0.77 � 0.07 103 � 95 9.5 � 6.9 0.31 � 0.05 0.82 � 0.14 0.26 � 0.14

Failure
Range 1.15–2.81 103–292 1.31–5.32 0.19–0.84 0.10–0.79 3–124 3.5–7.0 0.48–0.58 0.04–0.61 1.93–14.96
Mean 1.92 � 0.39 203 � 59 2.65 � 0.95 0.62 � 0.19 0.52 � 0.19 35 � 27 5.4 � 0.8 0.54 � 0.02 0.25 � 0.16 2.88 � 0.87

Benchmark II: 100 High-Res targets
Success

Range 0.98–1.50 104–296 1.03–2.85 0.68–0.95 0.59–0.94 12–352 0–17.3 0.21–0.44 0.31–0.99 0.05–0.67
Mean 1.29 � 0.15 183 � 53 1.70 � 0.34 0.85 � 0.07 0.78 � 0.08 69 � 62 7.3 � 2.8 0.28 � 0.04 0.84 � 0.17 0.17 � 0.12

Failure
Range 0.83–1.50 101–295 1.18–3.10 0.46–0.83 0.36–0.83 9–52 0–6.9 0.45–0.58 0.11–0.61 1.35–5.01
Mean 1.27 � 0.20 171 � 57 2.27 � 0.42 0.71 � 0.10 0.63 � 0.10 23 � 11 5.1 � 1.1 0.54 � 0.03 0.37 � 0.15 2.75 � 0.89

† Resolution of the deposited X-ray structure. ‡ Length of the target sequence. § Percentile-based spread of the first I-TASSER search model relative to the experimental
model. } TM-score of the first I-TASSER model. †† GDT-TS score of the first I-TASSER model. ‡‡ LLG of the Phaser solution relative to random. §§ TFZ of the Phaser
solution. }} Rfree of the final I-TASSER-MR model. ††† TM-score of the final I-TASSER-MR model versus the experimental model. ‡‡‡ PBS of the final I-TASSER-MR model
versus the experimental model.



including the range and mean values for both successful and

failed cases, is presented in the upper part of Table 1. Details

of these 33 successful targets and the search models are listed

in Supplementary Tables S1 and S2, respectively, and those

for the unsuccessful targets in Supplementary Table S3. The

average coverage of the final refined structures is 81 � 16%,

with an average PBS of 0.26 � 0.14 Å. The average TM-score

and PBS of the initial I-TASSER models for all 61 test targets

were 0.73 � 0.17 and 2.16 � 0.82 Å, respectively. The average

TM-score and PBS were 0.84 � 0.05 and 1.74 � 0.32 Å,

respectively, for the 33 successful targets, as opposed to 0.62�

0.19 and 2.65 � 0.95 Å for the 28 unsuccessful targets. This

indicates that the quality of the initial I-TASSER model is a

major contributor to success or failure.

3.2.2. Impact of truncation editing. The residues in the

I-TASSER models with the highest uncertainty in the struc-

tural assembly simulation were progressively truncated based

on their AVS score (1) to create 96 variants of each search

model (see x2). For simplicity of analysis, if more than one

search model succeeded in MR, we only report the results for

that with the least truncation. In the CASP8 set of targets, a

successful MR solution was achieved without any truncation

editing for ten of the structures. The average TM-score and

PBS score of the initial I-TASSER models before truncation

for these proteins were 0.88 � 0.04 and 1.51 � 0.21 Å,

respectively. For the remaining 23 cases in which some trun-

cation editing had to be conducted, the average TM-scores

and PBS scores were 0.81 � 0.04 and 1.84 � 0.31 Å, respec-

tively. Thus, the initial models that needed to be truncated

were, as hypothesized, of lower quality, and truncation of the

unreliably modeled regions led to a significant increase in the

number of correct solutions.
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Figure 2
Illustration of progressive truncation in I-TASSER-MR. (a) Superposition of the initial I-TASSER model (blue) and the experimental structure (cyan;
PDB entry 3d89). The structure regions with a high AVS score selected for truncation by I-TASSER-MR are marked in red. The r.m.s.d., PBS and GDT-
TS score of the two structures were 2.76 Å (821 atoms), 1.78 Å (821 atoms) and 0.66, respectively. (b) Overlay of the I-TASSER-MR solution (blue)
generated without model truncation on the experimental 2m|Fo| � D|Fc| �A-weighted map calculated by the EDS contoured at 2�. (c) Superposition of
the final I-TASSER-MR structure solved using model truncation (blue) and the experimental structure. The r.m.s.d., PBS and GDT-TS scores of the
structure were 0.95 Å (809 atoms), 0.24 Å (809 atoms) and 0.74, respectively. (d) Overlay of the successful truncated I-TASSER-MR structure (blue) and
the experimental electron density.



Fig. 2 presents an example of how progressive truncation

impacted success for a Rieske-type ferredoxin protein (PDB

entry 3d89; Levin et al., 2008), which has a three-layer

�-sandwich fold (157 residues, resolution 2.07 Å). The TM-

score of the initial I-TASSER model was 0.7. Although the

overall topology of the I-TASSER model is similar to the

deposited structure, there are several regions in the termini

and loops that exhibit very high variability in the I-TASSER

simulations, resulting in a relatively high PBS of 1.78 Å

(Fig. 2a). When the full-length I-TASSER model was used as

the search model, the LLG and TFZ from Phaser were 20 and

4.1, respectively. The final structure generated from this MR

solution had an Rfree from phenix.autobuild (Adams et al.,

2010) of 0.6, which is close to random (Kleywegt & Jones,

1997), and a PBS of 2.56 Å, which is even higher than that of

the starting model. As shown in Fig. 2(b), there are a number

of regions that do not correlate well with the experimental

2m|Fo| � D|Fc| �A-weighted map calculated by the Electron

Density Server (EDS; Kleywegt et al., 2004).

The first successful I-TASSER-MR solution in the

progressive truncation scheme had 46 high-AVS residues

trimmed at positions 1–7, 71–75, 101–114 and 138–157. These

amino acids are located at the N- or C-termini or in loops

and have a high deviation from the experimental structure

(Fig. 2a), demonstrating a close correlation between the AVS

and errors in local structure. After trimming, the PBS of the
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Figure 3
Impact of B-factor assignment on MR solutions. (a) Superposition of PDB entry 2tnf (yellow) with I-TASSER-MR-generated solutions with constant
(green, left panel) or AVS-based (red, right panel) B-factor schemes, which are overlaid on a 2m|Fo| � D|Fc| �A-weighted map calculated by the EDS
contoured at 2�. (b) Superposition of the native structure of PDB entry 3dcp (yellow) with I-TASSER-MR-generated solutions with a constant (green,
left panel) or ASA-based (red, right panel) B-factor setting, which are overlaid on the corresponding electron-density map.
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I-TASSER search model was essentially the same (1.68 Å),

but the LLG and TFZ of the Phaser solution increased to 41

and 5.3, respectively. This improved solution led to a final

structure with an Rfree of 0.36 and a PBS of 0.24 Å (Fig. 2c).

Accordingly, much better correlation between the I-TASSER-

MR solution and the electron-density map is observed

(Fig. 2d). In this example, the global structure of the initial

I-TASSER model was close to the target (TM-score = 0.7).

Therefore, although the truncation of a few high-AVS residues

did not dramatically change the PBS value of the search

models, it did significantly improve the MR statistics and the

final structure that could be built.

3.3. MR solutions for the High-Res set

To explore the effect of high resolution on the performance

of I-TASSER-MR, we tested the pipeline on a second set of

100 nonredundant proteins determined at a higher resolution

on average (1.28 Å) than the CASP8 set (1.98 Å). A summary

of the MR results for the 100 PDB targets is given at the

bottom of Table 1. Details of the successful runs are listed in

Supplementary Tables S4 and S5 and those of unsuccessful

runs in Supplementary Table S6. Overall, the success rate of

I-TASSER-MR on the High-Res set was 62%. Of these, 38

required AVS-based truncation to achieve a successful solu-

tion. The average number of truncated residues was 20.5� 19,

which reduced the PBS of the initial I-TASSER search models

from 1.77 � 0.36 to 1.68 � 0.33 Å on average. The average

PBS for the final 62 successfully rebuilt solutions was 0.17 �

0.12 Å, compared with 1.68 � 0.30 Å achieved by super-

imposing I-TASSER models based on prediction (Table 1).

On average, 83% of the residues in these solutions were

successfully constructed by I-TASSER-MR. Thus, the results

once again demonstrate the usefulness of progressive model

editing and the automated I-TASSER-MR pipeline in general.

The overall success rate of I-TASSER-MR in the High-Res

set (62%) is slightly higher than that for the CASP8 targets

(54%). One reason may be that the I-TASSER search models

are of higher quality in the High-Res set (TM-score = 0.80)

than in the CASP8 set (TM-score = 0.73). Secondly, the higher

resolution diffraction data of the High-Res targets, with a

resolution that is on average 0.7 Å better than the CASP8 set,

may also positively impact the success rate of the High-Res set

by providing higher quality data for Phaser and autobuilding.

Combining the two sets together, there are 69 cases in which

I-TASSER-MR failed to generate a correct atomic structure.

In 66 of these cases the I-TASSER models were incorrectly

placed by MR (i.e. failed at the Phaser step). In the three

remaining cases the models were correctly placed by Phaser

(TFZ > 8) but phenix.autobuild did not create a model closer

to the initial model. Thus, there is room for improvement in

both the search and model-building stages of the pipeline.

3.4. Impact of B factor on MR

To test the effect of temperature factors on the success of

MR by I-TASSER-MR, we tried three different B-factor

Figure 4
Typical distribution of residue truncations. (a) Superposition of the initial I-TASSER model (blue) and the native structure (cyan) of PDB entry 3dfa.
Truncated residues are highlighted in red for the initial I-TASSER model; the analogous residues in the deposited structure are in green. The r.m.s.d.,
PBS and GDT-TS scores of the two structures are 2.98 Å (1761 atoms), 2.36 Å (1761 atoms) and 0.68, respectively. (b) Superposition of the I-TASSER-
MR model and the experimental structure. The r.m.s.d., PBS and GDT-TS score of the two structures are 0.74 Å (1430 atoms), 0.24 Å (1430 atoms) and
0.63, respectively. (c) Overlay of the I-TASSER-MR structure (blue) on the 2m|Fo| � D|Fc| �A-weighted map contoured at 2�.



schemes for the CASP8 and High-Res sets: setting the B

factors to a constant value, setting the B factors according to

the accessible surface area (ASA) or setting the B factors

according to AVS (see x2). If the normalized accessible surface

area is used as a B factor, four additional targets (PDB entries

1tu9, 2bbr, 2hc1 and 3dcp) could be solved relative to constant

B factors. Two more targets (PDB entries 1i12 and 2tnf) could

be solved using AVS-based B factors relative to the other two

schemes. Fig. 3 compares the final MR models overlaid on the

electron-density maps when using different B factors for PDB

entries 2tnf and 3dcp, where a much closer match to the

electron density using the AVS-based or ASA-based B factors

was observed. In a recent study, we proposed a machine-

learning method, ResQ (Yang, Wang et al., 2015), to estimate B

factors based on the threading templates and sequence

profiles. The results showed that additional targets could be

solved using the new B-factor predictor. Thus, different B-

factor assignment schemes can be complementary, and success

rates can be improved if one uses multiple B-factor predictors.

3.5. Location of pruned residues

To explore what kinds of residues needed to be deleted in

order to succeed in MR, we analyzed 60 of the 161 successful

targets for which some residue truncation was needed to find a

solution. Three secondary-structure types (helix, strand and

coil) were specified by DSSP from the PDB structure. The

residues missing from the original PDB entries are considered

to be unstructured residues, which are often intrinsically

disordered in folded proteins (Dunker et al., 2000). The most

frequently truncated residues were located in coil regions

(45%), followed by unstructured (27%), helical (20%) and

strand (7.3%) regions, where the percentage values are

normalized by the length of the targets. We further computed

the percentage of truncated residues, which is normalized by

the number of residues in each secondary-structure type. The

highest ratio was found in unstructured regions (78%),

followed by coil (14%), helical (6%) and strand (3%) regions.

These results reflect the fact that coil and unstructured regions

tend to be more difficult to predict and thus have a higher AVS

fluctuation in the I-TASSER simulations.

We also divided each protein sequence into ten equal parts

to examine the frequency of truncation as a function of

position (Supplementary Fig. S1). The largest fractions of

truncated residues are N-terminal (28%) and C-terminal

(19%). The average number of truncated residues in the

middle parts is far below the terminal regions (�7 � 1%),

which is not surprising given that core residues are in general

more tightly packed and therefore have a lower AVS in

I-TASSER simulations. The modeling accuracy is also often

higher in the core part, which is essential to MR.

Fig. 4 shows the distribution of truncated residues in a

typical example: the kinase domain of the calcium-dependent

protein kinase cgd3_920 (PDB entry 3dfa, resolution 2.45 Å;

Structural Genomics Consortium, unpublished work). The

first truncated model that led to a successful solution had 60

residues truncated (Fig. 4a). Of the high-AVS residues, six

are in helical regions, two in strands, 34 in coils and 18 in

unstructured regions. Despite the relatively high fraction of

residue truncation (23% of the total residues were trimmed

off), 97.5% of the structure was successfully built with a final

PBS of 0.24 Å (Fig. 4b). The final I-TASSER-MR model has

an Rfree of 0.36 and thus high correlation with the corre-

sponding electron-density map (Fig. 4c).

3.6. Analysis of how many residues need to be truncated

The I-TASSER models were progressively edited, with the

number of remaining residues in the search models ranging

from 100 to 5% of the full length of the target protein. The

highest success rate was achieved for search models that

retained 60–90% of their target sequence (Fig. 5). Previous

studies suggested that the highest success rate is achieved

when 21–40% of the sequence is used for MR (Bibby et al.,

2012). Although the progressive editing procedure used by

I-TASSER-MR is similar to the cluster-and-truncate approach

used in this previous work, the test sets and the preparation of

the models are very different. The proteins used by Bibby and

coworkers contained 40–120 residues, whereas the proteins

used here ranged from 95 to 298 residues. In addition, Bibby

and coworkers used ab initio models, whereas I-TASSER-MR

is based on I-TASSER, which is a template-based modeling

method. Current ab initio structure predictions can most

reliably fold proteins with a short length (Zhang, 2008b).

Therefore, the average PBS and r.m.s.d. values of the ab initio

models will become greatly reduced as more residues are

truncated, which will improve the MR results. I-TASSER

models are more sensitive to the availability and quality of the

templates than to the length of the target sequence. In fact, the

average PBS and r.m.s.d. of the I-TASSER models are almost

unchanged after the initial truncation of�10% of the residues.

Thus, retaining more residues will lead to the retention of

more and higher quality structural information, which explains

the shift of the success-rate peak towards larger coverage

of the search model compared with the observations of

Bibby and coworkers. Nevertheless, exploring a wide range of
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Figure 5
Success rate of I-TASSER-MR at different levels of truncation. The x axis
indicates the percentage of residues in the search model after model
truncation, normalized by the target length.



truncations helped to increase the overall yield of the

I-TASSER-MR pipeline. When the truncation threshold was

extended to higher than 40%, two more targets were solved:

PDB entries 2vsw (at 43% truncation) and 3e03 (at 58%

truncation).

Plotting the resolution of the target PDB entry against

the truncation fraction in successful I-TASSER-MR solutions

indicates that high-resolution targets can tolerate deeper

truncation (Fig. 6). There are eight targets that can tolerate up

to 80% truncation. Of these, six have a resolution of less than

1.5 Å. The two remaining targets (PDB entries 3czx and 3db5)

have resolutions of 1.6 and 2.15 Å, respectively. For the ten

targets that have a diffraction resolution of >2.15 Å, only one

target (PDB entry 3d8p, 2.2 Å resolution) can achieve a

successful MR solution with a deepest tolerated truncation of

71.6%.

3.7. Improvement of MR using I-TASSER models compared
with LOMETS templates

Many MR search models are built from homologous

templates that are identified from the PDB library based on

sequence comparison or fold recognition (Schwarzenbacher et

al., 2004; Stein, 2008; Bunkóczi & Read, 2011). However, it has

been demonstrated in various benchmarking and blind protein

structure-prediction experiments that structure-reassembly

methods such as I-TASSER have the ability to create

templates closer to the native structure (Wu et al., 2007;

Zhang, 2014). To test whether the structure-assembly simu-

lation followed by AVS truncation performs better than more

traditional MR approaches, LOMETS was used in conjunc-

tion with CHAINSAW (Stein, 2008) and Sculptor (Bunkóczi &

Read, 2011), two widely used programs for preparing homo-

logous models for MR that prune nonconserved residues from

the target–template alignments, to generate search models

for the CASP8 and High-Res data sets. We used the default

settings of CHAINSAW and 12 different predefined protocols

of Sculptor (consisting of different combinations of main-

chain deletion, side-chain pruning and B-factor modification)

to edit the same set of LOMETS templates that were used by

I-TASSER for structure assembly. Supplementary Tables S7

and S8 list the MR results using LOMETS templates for the

CASP8 and High-Res data sets, respectively, where the best

from the top 20 templates with the highest TM-score was

adopted; these 20 templates were also used as input templates

for the I-TASSER simulations.

Results show that 70 (21 of 61 CASP8 and 49 of 100 High-

Res data-set) targets had a successful MR solution when using

LOMETS templates. There were therefore 29 targets that

were solved by I-TASSER-MR but not by LOMETS models.

The average TM-score and PBS of the I-TASSER models for

these 29 targets, before truncation editing, were 0.81 � 0.05

and 1.79 � 0.31 Å, respectively, in comparison to 0.70 � 0.08

and 1.84 � 0.31 Å for the corresponding LOMETS models.

Here, the difference in TM-score (0.81 versus 0.70) is more

significant than that in PBS (1.79 versus 1.84 Å), mainly

because TM-score accounts for both accuracy and coverage of

the models, whereas PBS only accounts for modeling accuracy.

Because the I-TASSER model is full-length and LOMETS

models only contain part of the conserved residues, one could

argue that the high TM-score of the I-TASSER model was

owing to the addition of unaligned structures. Even when

considering the same threading aligned regions (i.e. ignoring

the contribution from the I-TASSER ab initio folding for the

unaligned regions), the average TM-score and PBS of the

I-TASSER models are 0.76 � 0.13 and 1.49 � 0.53 Å,

respectively, which are still better than the LOMETs models.

Among these 29 targets, there were 15 targets for which the

first successful truncated I-TASSER model had less coverage

than the corresponding LOMETS search models. Except for

PDB entry 1tu9, all of the targets have a higher TM-score than

the best LOMETS template when considering the same

threading aligned regions. These data suggest that structure

refinement by the I-TASSER fragment-assembly simulations

represents a major improvement for generating search models.

Supplementary Fig. S2 shows a comparison of the MR

results based on LOMETS and I-TASSER models from the

target with PDB code 1tu9, where the I-TASSER model has a

lower TM-score than the LOMETS template but I-TASSER-

MR generated a solution with a much lower Rfree. The first

successful I-TASSER search model has an r.m.s.d. of 1.76 Å

and a TM-score of 0.69, while the r.m.s.d. and TM-score of the

best of 13 LOMETS search models produced by CHAINSAW

and Sculptor are 2.0 Å and 0.62, respectively. Although 24%

of the residues were deleted in I-TASSER-MR, 96% of the

residues were finally built with an r.m.s.d. of 0.07 Å (and a PBS

of 0.08 Å). In this example, the success of I-TASSER-MR over

LOMETS is mainly owing to the AVS-based progressive

editing procedure, which correctly identified the structural

regions with a higher modeling accuracy in the search model.

Among the 161 test targets, there were four (PDB entries

1nnx, 2o1q, 3b79 and 3d0j) for which LOMETS-based MR

succeeded but I-TASSER-MR failed. In these cases, the TM-

score or PBS of the I-TASSER search models was worse than

that of the LOMETS templates. The first I-TASSER model is

often the closest to the correct structure, but sometimes the
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Figure 6
Scatter plots of the resolution of the diffraction data for the 95 successful
protein targets. The x axis shows the percentage of the sequence
remaining in the search models for the successful MR solution. Each
point represents one successful solution from a target protein at a specific
truncation, whereby one protein can have multiple successful MR
solutions at different truncations.



lower ranked models from different SPICKER clusters

represent better search models. The fifth I-TASSER model for

PDB entry 1nnx and the second I-TASSER model for PDB

entry 2olq have higher TM-scores and were able to find

correct MR solutions. However, no better models were found

for PDB entries 3b79 and 3d0j even when we used the top five

I-TASSER models because I-TASSER deteriorated the

LOMETS templates in these two cases.

3.8. Application to PSI targets

Structural genomics (SG) is a community-wide effort initi-

ated at the end of the last century with the goal of solving as

many nonhomologous protein structures as possible in order

to increase diversity in the PDB and to facilitate genome-wide

comparative structure predictions (Burley et al., 1999). Owing

to a lack of homologous protein templates, molecular repla-

cement is often not applicable to SG targets. Experimental

phasing methods, such as isomorphous replacement and

anomalous diffraction, must often be employed.

In Supplementary Table S9, we collect the statistics for

I-TASSER-MR runs for a set of 14 SG targets that were solved

by Protein Structure Initiative (PSI) centers and deposited in

the PDB in March 2014. In columns 7 and 8, we list the PBS

and TM-score of the full-length models created by I-TASSER,

where all templates solved after the deposition date of each

target were excluded from the LOMETS template library

used by I-TASSER. To confirm that closely related homo-

logous proteins were not used, a routine filter (i.e. a sequence

identity of <30% and a PSI-BLAST E-value of >0.5) was also

used to eliminate additional homologous templates. We list the

experimental methods that the original authors used to phase

the structures in column 6 of Supplementary Table S9. It is

unknown whether MR was attempted for most of these

entries.

I-TASSER generated full-length models of reasonably good

quality with an average TM-score of 0.74 � 0.21 and PBS of

2.24 � 0.75 Å for the 14 PSI targets. There were eight targets

with a TM-score above 0.8. Among these, six (PDB entries

4p47, 4ps6, 4pux, 4pw0, 4pxy and 4pz0 at the top of Supple-

mentary Table S9) were solved by I-TASSER-MR. PDB entry

4pqx had what seemed to be a good MR solution (LLG = 109,

TFZ = 9.2) but failed to be rebuilt. Overall, the average PBS

and TM-scores of the I-TASSER-MR structures were 0.09 �

0.04 Å and 0.89 � 0.09, respectively, for the six successfully

built cases.

3.9. When will I-TASSER-MR work?

The quality of the initial model is the most important factor

in determining whether MR will be successful. Interestingly,

among the 95 successful MR solutions, more than half (58)

have initial I-TASSER models, before truncation, with a GDT-

TS score of below 0.8. The lowest GDT-TS score (for PDB

entry 3frh) was 0.59. Previously, a GDT-TS score of >0.8 was

thought to be required for successful MR (Giorgetti et al.,

2005). The major reason for this difference is probably owing

to differences in implementation, as Giorgetti and coworkers

performed searches only on full-chain models, whereas a

progressive phasing search using various optimal edits of the

probe models was conducted in I-TASSER-MR. Considering

the data from Supplementary Tables S1–S6, we can conclude

that a GDT-TS of above 0.83 should guarantee success,

whereas models with a GDT-TS of <0.59 never succeed in

I-TASSER-MR. If judging the initial models by TM-score, a

TM-score of above 0.84 should guarantee success, whereas

models with a TM-score of <0.68 never succeed. If judging the

models by PBS, we found that a PBS of below 1.18 Å is

sufficient for success, whereas models with a PBS of >2.85

never succeed. These cutoffs exhibit no clear dependency on

the resolution of the diffraction data.

The GDT-TS-based and TM-score-based criteria require

knowledge of the experimental structure, and thus cannot be

used when the target structure is unknown. In I-TASSER, the

quality of the structure models can however be estimated

by the confidence score (C-score), which is calculated by a

combination of the significance of threading alignments and

the convergence of the structural assembly simulations

(Zhang, 2008a),

C-score ¼ ln
M

Mtothr:m:s:d:i
	

1

N

PN
i¼1

ZðiÞ

Z0ðiÞ

� �
; ð5Þ

where M is the multiplicity of the decoy structures in the

SPICKER cluster, Mtot is the total number of decoys gener-

ated by I-TASSER, hr.m.s.d.i is the average r.m.s.d. of the

decoy structures to the centroid of the cluster, N is the number

of threading programs used in LOMETS and Z(i)/Z0(i) is the

normalized Z-score of the first templates by the ith threading

program. The C-score generally ranges from �5 to 2, with a

higher value indicating better quality. Large-scale bench-

marking data built on 500 nonredundant proteins (Zhang,

2008a) have shown a strong correlation between the C-score

and TM-score values of I-TASSER models (Pearson correla-

tion coefficient = 0.91). In Fig. 7, we show the success rate of

MR versus the C-score of the I-TASSER predictions, which

shows an almost linear correlation in the region with C-score >

�1.5. The success rate reaches 91% in the region with C-score

> 1. However, when the C-score is below �1.5, which roughly
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Figure 7
Correlation of MR with the C-score of the I-TASSER models. Histogram
of the C-score of the I-TASSER models (light bars) and the average
success rate of I-TASSER-MR in each C-score range (dark bars).



corresponds to the minimum C-score required for a model

prediction of correct fold (TM-score > 0.5; Zhang, 2008a), MR

has not been observed to succeed.

Evaluation of the success of I-TASSER-MR versus protein

size (Supplementary Fig. S3) reveals no clear relationship

between these parameters (at least for proteins of up to 300

residues), a different result from the experiments of Bibby et

al. (2012), who observed that smaller proteins with a length of

<100 residues are more likely to succeed in MR than longer

proteins. Again, this difference is probably owing to the fact

that Bibby and coworkers used models from ab initio

modeling, which has the greatest success for small proteins

(Zhang, 2008b). Because I-TASSER is based on the re-

assembly of template structures, the quality of the search

models depend far more on the availability of templates than

on protein size. Finally, we investigated the relationship of the

number of molecules in the asymmetric unit to the success

rate. The success rates of targets with one subunit in the

asymmetric unit and of targets with more than one subunit

were 59 and 60%, respectively. Therefore, the number of

chains does not seem to affect the success rate of I-TASSER-

MR.

4. Conclusion

We have developed an integrated pipeline for automated

molecular-replacement structure determination starting from

the amino-acid sequence of the target protein, which is built

on I-TASSER protein-structure predictions. A progressive

model-editing procedure was introduced to truncate unreli-

ably modeled residues based on an intermediate structural

variation score of the I-TASSER assembly simulations. These

optimized structure models were transferred to widely used

tools (Phaser and phenix.autobuild) for the MR search,

automated model binding and refinement. Whereas many of

the strategies used in this study, including truncation-based

model editing and modeling-error-based B-factor estimation,

have been explored by previous investigators, I-TASSER-MR

here provides a single efficient interface that connects cutting-

edge structure assembly, MR phasing and autobuilding tools

for protein structure determination.

The I-TASSER-MR pipeline was tested on two independent

protein sets that consisted of 61 targets from CASP8 and of

100 nonredundant high-resolution proteins from the PDB.

Considering the two data sets together, a success rate of 59%

was achieved based on the first I-TASSER model, which is

derived from the largest SPICKER cluster after closely related

templates are excluded from the structure-assembly process.

In 60 of the 95 successful runs, some level of model-truncation

editing was required. The model editing reduced the sequence

length by 12% (or 22 amino acids) on average, which

improved the average r.m.s.d. of the search models by 1.29 Å.

The majority of the truncated residues are located in the loop/

termini (45%) and unstructured regions (27%) of the PDB

entries, where I-TASSER models are known to have lower

accuracy. The overall PBS and r.m.s.d. of the 92 final

I-TASSER-MR models built after MR were 0.2 and 0.94 Å,

respectively, which are 1.5 and 1.47 Å lower, respectively, than

those for the initial I-TASSER search model. I-TASSER

generates the structure prediction by a combination of

multiple threading alignments, in which the first models (from

the largest SPICKER cluster) are often closest to the native

structure. Nevertheless, if all top five models from I-TASSER

were used instead of just the first, six additional solutions for

the 161 targets could be achieved. Furthermore, we could

explore the effect of target diffraction resolution on MR

success because the two test sets have different average

resolutions. The data suggest a potentially positive impact of

target resolution on the results, as demonstrated by the slightly

higher success rate for the High-Res set over the CASP8 set. It

was also observed that models for high-resolution targets tend

to tolerate deeper structural truncations (Fig. 6).

To show its practical utility towards solving proteins with

distant homology or potentially unknown fold, the I-TASSER-

MR pipeline was also applied to 14 SG targets solved by the

PSI centers in March 2014 based on other experimental

methods. Using I-TASSER-MR six of these PSI targets were

solved, with the final models having an average PBS of 0.09 Å

and TM-score of 0.89. Although correct template identifica-

tion is essential to most MR experiments, the follow-up

structure-reassembly and refinement simulations had a strong

impact on improving the success rate. In our tests, 70 of the 161

targets could be solved using the best threading templates with

traditional pruning approaches, but an additional 29 targets

could successfully be solved by the combination of I-TASSER

fragment-structure assembly and progressive model-editing

procedures. There are only four cases in which threading-

based MR procedures in LOMETS succeeded but I-TASSER-

MR failed based on the first I-TASSER model; two of them

could be remedied by considering lower-rank I-TASSER

models.

Finally, we propose exploiting the C-score of the I-TASSER

simulations, which is strongly correlated with the accuracy of

the I-TASSER models, to estimate the likelihood of success of

the I-TASSER-MR pipeline for a given target. It was shown

that the success rate of MR increases almost linearly with the

C-score, with nearly 91% of targets being solvable if the

C-score is above 1.0. However, when the C-score drops below

�1.5 there is little hope of achieving a successful solution.

Despite this success, we note that for 40% of the proteins in

our test sets (or 57% of the PSI targets) the pipeline failed to

achieve a successful MR solution. The major reason for failure

is owing to the relative low similarity of the search model to

the targets. Given that the fold of the I-TASSER models is

approximately correct for almost all of the proteins tested (i.e.

a TM-score of >0.4), including the unsuccessful MR proteins,

it may be possible to use the diffraction data to improve the

accuracy of the I-TASSER structure predictions. Here, struc-

ture decoys generated by the folding simulations are used as a

target model for MR. Because good models have a better

chance of generating a better match with the diffraction data

(for example, as assessed by Rfree, LLG or TFZ), correlation

with the diffraction data can be used as an energy term

combined with the I-TASSER force field to guide the
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structural assembly simulations, provided that the higher

quality models can be successfully placed in the unit cell. A

similar idea has already been implemented by other labora-

tories via the integration of electron-density information with

Rosetta modeling (DiMaio et al., 2011; Terwilliger et al., 2012).

A hybrid approach combining diffraction data with cutting-

edge structure-modeling techniques should therefore extend

the scope of MR even further in solving nonhomologous or

distant-homology targets that are traditionally considered to

be unsolvable using traditional MR strategies.
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