
Technical Report UM'TRI-97-15 April, 1997

A Description of the UMTRl
Driving Simulator Architecture -

and Alternatives

Alan Olson and Paul Green

$11 Y OR
&+~vv*%

UMTRl
5 q,;

The University of Michigan a ,,,,
Transportation Research Institute

Technical Report Documer~tation Page

9 Perfomng Orgaruzauon Name and Address
The University of Michigan
Transportation Research Institute (UMTRI) I I . Contract or Grant NO.

2901 Baxter Rd, Ann Arbor,
12 Sponsonng Agency Name and Address

1 I Repon No

1 UMTRI-97- 15

7. Author(s)
Alan Olson and Paul Green

none

8. Perfomng Organizauon Rcpon No.

UMTRI-97-15 I

14. Sponsonng Agency Code

2 Government Accession ho

The development of the software described was funded by the Transportation Research Board's
Innovations Deserving Exploratory Analysis (IDEA) program.
The UMTRI driving simulator family consists of six simulators used for research on in-vehicle
devices (e.g., cellular phones, collision warnings displays), medical considerations (e.g.,
impairments due to alcohol and Alzheimer's disease, dong with individual differences due to age
and sex), steering system dynamics, and simulator design characteristics.

3 Reaplenr's Catalog No

1 4 Title and Subntle

I A Description of the UMTRI[Driving Simulator
Architecture and Alternatives

This report describes the Driver 1nl.erface Research Simulator, a network of Macintosh computers
that generate the road scene, instrument panel graphics, sound, and traffic. This report examines
the following basic questions:

5 Repon Date

April, 1997
6 Periomung ~rgmzatlon code

1 . LYhy should a networked simulator be used to present traffic?
2. How should tasks be allocated among computers?
3. Whlch network should be used?
4. How should simulators on different computers be coordinated?
5. How should simulators track the locations of vehicles simulated on other computers?

Decisions were made with an eye towards performance, flexibility, and ease of implementation.
The solutions chosen were:

1OBase-T Ethernet using AppleTalk prorocol

d~stributed coordination

dead reckoning

I Future directions of network development a n also described. I

I I I
Form DOT F 1700 7 (8-72) Reproduction of completed page authorized

I: he+ h o r d l

ITS, human factors, ergonomics,
drlvlng. drlving simulators,
computer networhng

I h L)~s~nbul~on Slatemen1
No restnct~ons. This document is available to
the publtc through the National Technical
lnformat~on Service, Springfield, Virginia
22 16 1

IY Lecurltr Llass~ty iof lhls r e p)

none
" I >e,uri lk C l u r ~ l) iof lhls page1

none 2 8

A Description of the UMTRI Driving Simulator
' Architecture and Alternatives

a 0 4 .

A3 surnmary UMTRI Technical Report 97-17
Alan Olson and Paul Green
University of Michigan, Ann Arbor, Michigan,, USA

Why Use a Networked Configuration?

goal: low cost but reasonable pe~formance

networking avoids overloading single processor with traffic and scene computations,
thus decreasing frame rate
networking allows for greater code reuse: most of new code is user interface
use of PCs for processing reduces capltal outlay
PCs are highly reliable, readily repared. and easy to replace
low cost, commodity software used
using the same type of computer for all aspects of the system reduces support cost

Which Setwork Should 13e Used?

Assumptions 1 . Token ring and ATM roo expensive or not available for Mac
2. otherwise hardware cost 1s unimportant (<$loo), so issue is software

IYhich Physical and Data Link Layers Should Be Used?

Which Protocol Should De Ijsed'?

Advantages/Disadvantages
least bandwidth; custom protocols; difficult to
implement: now used for 1-way connection to IP;
needs software to forward messages between
port$
bro~ldi';lst network, message forwarding not
necilcd
mo51 bandwidth, broadcast network, message
foru.ardine not needed

Option
send

LocalTalk

Ethernet
t' (chosen)

Availabil~ty on Mac
2 IEEE-422 pons;
can form daisy-cha~incd
network (no limit)

standard

standard; IOBase-T aliou5 up
to 8 Macs w/o huh

Opt~on
TCPIIP

EtherTalk tl
(AppleTalk on an
Ethernet network)

Advantacges
widely used (protocol uscd hj, the Internet);
well documenrcd

prev~ously uhed l o r found computer; Name
Binding Protocol c not In TCPAP) allows
simulators to locate each other

Disadvantages
no way for simulators to
locate one another; drivers
regarded as unreliable
small message size (586
bytes)

How Should Simulators Be Coordinated?

How Should the Position of Vehicles Be Tracked?

Disadvantages
difficult to implement;
sends more messages

more variance in time between state
transitions;
more broadcasted messages

Coordination
Centraked

Distributed
4

* uncertain which approach generates least processor load

Advantages
conceptually simple;
less variance in time between state
transitions
easy to implement;
sends fewer messages

Future Developments

Advantages

each message is
shorter

generates much
lower network load
(fewer messages)

smoother motion
of traffic

Trachng
Mechanism*
Continuous
updates
Dead
reckoning

4

Multiple vehicles on a single traffic simulator
Open Transport
Apple's new operating system

Summary

each simulator broadcasts an update each frame (30
timeisecond)
each simulator broadcasts an update when the actual
position begins to differ from that estimated by dead
reckoning. In between broadcasts, each simulator uses
dead reckoning (using last position and velocity) to estimate
the current location of each vehicle.

References

Green and Olson, (1997). A Technical Dcscrintion of the UMTFU Driving Simulator Familv-1996
Im~lementation. Ann Arbor, MI: Un~vers~ty of Michigan Transportation Research Institute.

Yoo, H.. Hunter, D., and Green, P. (1996). Automotive Collision Warning Effectiveness: A
Simulator Comnarison of Text vs. Icons (Technical Report UMTRI-96-29), Ann Arbor, MI: The
Univers~ty of Michigan Transportation Research Institute.

PREFACE

This report describes the design rationale for the UMTRI driving simulator. Those inte:rested in the
experimental work conducted as a result of the simulator enhancements should see Yoo, Hunter,
and Green (1996).

This report is written for developers of other simulators who are considering adding a network
capability to their simulators, potential sponsors who need information on UMTRI's capabilities,
computer scientists interested in distributed networks, and interested parties at the National
Academy of Sciences, Transportation Research Board (project sponsor). This report may also be
used by new UMTRI personnel to provide them an inttoduction to the simulator and by
programmers interested in enhancing the current network.

Key contributors to the development of the simulator have been the following:

Paul Green served as the project leader
(UMTRI-Human Factors)

Alan Olson implemented the network
(UMTRI-Human Factors)

Matt Reed
(UMTRI-BioSciences)

developed the original graphics

Amitaabh Malhotra implemented the torque motor control algorithm
(now with Lucent Technologies)

Brian Davis developed sound module
(U of Michigan,
Electrical Engineering &r Computcr Sclence)

Patrick b;ei stmed development of the torque motor
(nous w ~ t h Heujlett Packard) conuoller

Charles illacAdam developed initial vehicle dynamics model
(UMTRI-Eng~neering Research D~ir~s~on)

Pat Waller
(UMTRI Director)

scned a$ the project advocate

Greg Goetchius prov~dcd sound recordings of a Chrysler LH
(Chrysler, h 'VH Group)

Erik Anhur provided ideas concerning vibration
(Universirq' of Minnesota
now with M~crosoft)

TABLE OF CONTENTS

INTRODUCTION

WHY USE A NETWORKEDI SIMULATOR?

HOW SHOULD TASKS BE ALLOCATED?

WHICH NETWORK SHOULD BE USED?

What Should Be Considered in Selecting a Network?

Which physical and data link layers should be used?
Serial versus LocalTalk versus Ethernet
Bandwidth Comparison
Protocol Support
Why Ethernet Was Selected

Which Protocol Should Be Used?
TCP/LP versus EtherTalk
Protocol Services
Protocol Stability and Reliability
M'hy EtherTalk Was Selected

HOW SHOULD SIMULATORS BE COORDINATED?

How is Coordination Defined?

Centralized versus Distributed Coord~nation

Performance and Implementation

Why Distributed Coordination Was Selected

HOM' SHOULD THE POSITXOS OF \.'EHICI,ES BE TRACKED?

Cont~nuous Updates versus Dead Reckon~ng

Performance and Implementat~on

Why Dead Reckoning Was Selected

FUTURE DEVELOPMENTS

REFERENCES

Introduction

For several years, the Human Factors Division at the University of Michigan Transporta.tion
Research Institute (UMTRI) has used a driving simulator to assist in conducting studies of driver
behavior. The simulator is capable of showing winding two-lane roads with a dashed centerline,
signs, and other objects (as shown in Figure l) , and collecting a variety of driver performance
measures (steering wheel angle, throttle position, speed, lane position). Figure 1 shows a typical
road scene. Readers interested in a more detailed description of the simulator hardware imd
software (other than items specific to networking) should see Green and Olson (1997) or
MacAdanl, Green, and Reed (1993). The Green and Olson (1997) report also lists some of the
studies that have been conducted using the simulator.

Figure 1 . Example road scene with the Head-up display shown.

The simulator was originally developed as a task loader, providing a workload and task s'tructure
similar to that of driving. As such, 11 was uwd for stud~es of in-vehicle devices (Reed and Green,
1995). driving workload (Green, Lln. and Bagirln. 1993). and simulator design (Davis and Green,
1995). However, both for those stild~c\ and for srud~cs of collision avoidance (Yoo, Hunter, and
Green. 1996). i t was readily apparenl the s ~ m u l ~ t o r upould be improved considerably by t.he
addlt~on of traffic. While prewous vcrslon\ of thc simulator did support other vehicles in the
scene. thc vehicles were static. (For a b r ~ c i per~od of tlme, there was a non-networked version of
the simula~or with a single lead vehlclc u~th rn~n~mul functionality.) Since most crashes involve
collisions with other vehicles that arc movlnz. adding traffic to the simulator was a high-priority
enhancement. This upgrade greatl!, expanded tile range of useful studies that could be conducted.

Specifically. consideration of the type{ of stud~ch ro be conducted led to the following
requirements:

1. The simultaneous simulation of multiple vehicles.

Traffic often consists of more than just one lead vehicle. Further, vehicles may be oncoming
or following. However, simulating more than four or five vehicles is of secondary
importance, because interactions with large numbers only occur on expressways with a very
large number of lanes under highly congested conditions, situations only experienced by
commuters in big cities.

2. The other vehicles are visible in each vehicle's view.

The subject in an experiment cannot interact with other vehicles unless these vehicles are visible
to him or her. Also, in cases where an experimenter is driving one of the other vehicles, the
experimenter must be able to see the subject's vehcle to interact with it properly.

3. The view from any vehicle may be displayed.

It is very difficult to control a vehicle accurately without seeing the view from the vehicle.
Thus, the subject must be able to see the view from his or her vehicle, and the experimenters
must be able to see the view from any vehicle which he or she might wish to control. It is also
possible that some experiments might require that the experimenter monitor the view from a
particular vehicle.

4. The views from multiple vehicles may be displayed simultaneously.

The subject must be able to see the view from his or her vehicle. At the same time the
experimenters must be able to see the views from the subject vehicle and the vehicles he or she
is controlling.

5 . Each vehicle may be controlled either manually or by automatic pilot.

While most experiments would involve test subjects responding to traffic following a
preprogramrned script, there may be expenments in which the interactions of drivers in
connec~ed simulators might bc of interest.

The remainder of this report answers five questions that influenced the design of the simulator.

1 . Why should a networked simulator be used to present traffic?
2. How should tasks be allocated among computers?
3. M'hich network should be used?
4. Hou' should simulators on differenr computers bc coordinated?
5. How should s~mulators uack the locar~ons of veh~cles simulated on other computers?

Why Use a Networked Simulator?

A critical difference between simple and complex simulators used for driving is whethe:r traffic is
simulated. In many simulators that provide traffic, traffic is generated on a statistical basis, rather
than providing specific directions to a specific vehicle. Further, the computer to control traffic is
generally different from other computers (such as those used for experiment control and graphics
generation), and the system and software are specialized for modeling trafTic. There is little, if
any, reuse of the code from the main simulation. Whlle this highly specialized approaclh provides a
high performance simulator, each computer and each software module is unique, complicating
maintenance, update, and system reliability. The number of support personnel can be considerable
and the applications used for software development are generally not sold in volume. AJl of these
characteristics make such simulators expensive and of diminished reliability.

An alternative approach is a multiple-vehicle simulator - a single simulator, running on a single
high-performance computer, which simulates the actions of all vehicles. There were three areas of
concern. Perhaps the greatest concern at the start of the project was that having a single simulator
simulate more than one vehicle would generate too great of a load. The dynamics model for a
vehicle is a fairly complex set of e:quations involving floating-point computations, and dLoubling
(tripling, quadrupling, etc.). This load might cause a noticeable drop in frame rate. As it turned
out, floating-point computations on PowerMacs are so fast, and network overhead so great, this
concern was misplaced.

A secondary concern was the ability to see the views of and control these additional vehicles. A
simulator cannot display more than one road scene without suffering an unacceptable reduction in
frame rate, as updating the road scene is the most computationally intensive task in the simulation.
Thus, the user can see only the view from one vehicle at a time. Manually controlling a vehicle
without seeing its view is very difficult. Using a networked simulator allows the user to see the
views from multiple vehicles simultaneously, without reducing frame rate. Networking also
make\ ~t possible to manually conl:rol each of them.

A tenian concern was the programming effort required to implement a multiple-vehicle simulator
a5 opposed to a networked simulator. Adding the ability to simulate multiple vehicles (networked
or otherwise) would be relatively simple. Further, modifying the graphics routines to di.splay these
other vehicles properly in the road scene(s) would not be too difficult. But, a multiple-vehicle
simulator would require a far more extensive overhaul of the simulator's user interface than would
the networked simulator. Since the user interface accounts for a large part of the simula~tor source
code. the authors concluded that modifying the user interface to make a multiple-vehicle simulator
would take more time and effort than wrltlng the network code for the networked simulator.

To pro~vide the desired functional~t),, the approach selected was to modify the existing simulator to
m&e i t a networked simulator. Tills approxh requires multiple computers connected by a suitable
network. Each computer runs a s1:mulator. and each simulator simulates one vehicle and displays
the vlew from its vehicle. The s~rnulators use the network to inform one another of the position of
their vehicles, and to coordinate actlons such as stmlng and stopping simulation.

To keep costs low, the plan was to use off-the-shelf personal computers with no special,-purpose
hardware. This meant that capital costs would be low and the components would be highly
reliable. Since suitable computers were In w~de use in the Division, if a computer ever failed, a
replacement could be borrowed from someone's office at a moments notice. In fact, while there
were some start-up problems with the s~mulator during earlier stages of software develojpment,
there has never been a simulator computer hardware failure over the last four years. Thus is not
the case where special-purpose or h~gh-performance computers are used.

To a large degree, UMTRI's consideration of a networked simulator was due to the distributed
interactive simulation program within the U.S. Department of Defense (Simulation Interoperability
Standards Organization, 1996). To date, distributed interactive simulation has been of minor
interest to the automotive community. The Department of Defense work has led to a standard
protocol for exchange of data (Institute of Electrical and Electronics Engineers, 1995) and the
widespread use of distributed simulation for training, the evaluation of new weapon systems, battle
planning, and other purposes. This program has been successful because it is much less costly to
operate simulated systems than real ones, and there are no real casualties.

While simulator developers at UMTRI have adopted many of the conceptual ideas from the
government Distributed Interactive Simulation program, program details have not been
implemented because the scale of military simulations is much larger (hundreds of players
distributed over great distances, support for weapons features (and explosions), multispectral
target signatures (IR, radar, acoustic, etc.), and radio and data traffic. Furthermore, because the
literature is extensive, the entry cost is high. Nonetheless, just the success of the approach proved
to be an important motivator for the effort described in this report.

How Should Tasks Be Allocated?

The primary simulator tasks were:

handling experimenter interface input and output
sensing the steering wheel angle and sending commands to the torque motor
sensing the accelerator and brake pedal positions
computing the subject's position and orientation based on the steering wheel, accelerator, and
brake inputs, road slope, current velocity, and vehicle dynamics
computing the position and 0rie:ntation of traffic (other vehicles) on the network
updating the road scene to reflect the current position of the subject's vehicle, traffic, and
changing terrain
generating the appropriate sour~ds for the subject's environment (both from their vehicle and
other vehicles)
updating the instrument cluster display
saving the driving performance data

At the time the simulator was being developed, precise figures on the time required to handle
various tasks were not available, so decisions concerning task allocation were based on general
impressions and likely future enhancements. Tasks that needed to be tightly time synchronized
were put on the same computer. Tasks were distributed if, in combination, they would overload a
single computer. Tasks were also grouped if their combination simplified programming.

The most computationally intensive task is updating the road scene, a task whose update: rate is
very sensitive to the amount of derail in the scene. In fact, at high levels of detail, updatle rates
were unsatisfactory. Hence, to the extent possible, this task was allocated to a dedicated computer.
The scene display must be tightly time synchronized with the torque motor controls, which in turn
needed to be synchronized with sensing input from the subject. It was logical, therefore:, that both
should bc handled by the same computer. The computational load for the latter tasks was expected
to be low.

Processing experimenter input and output and saving the driving performance data were also
allocated to the main computer to slmplify programming. Since these tasks did not occur while the
subject was drli'ing, processor overload (i n conjunction with the scene display software) was not a
concern.

In many simulators, sound is also handled by the main computer, as this is a task of moderate
processln; load. However, the UMTRI driving simulator uses multiple channels of sampled
stereo sounds. and varies playback rate and volume according to current conditions. The
processor load Imposed by sound generation I S significant enough to warrant allocating a computer
speciflcallj, for this task.

As a consequence of these decisions. tasks were allocated as shown in Table 1.

Table 1. Task allocation

Figure 1 shows the simulator logical network that resulted. Additional details concerning the
network design appear in the remainder of this report.

Computer
main

traffic (may be more
than one computer)
sound
~nstrument cluster

- - - - - - _ - - - - - - - -
_ c - I _ - - - _ - - - - - -

L -
.. ir

q@;G:y~
.~GS*~;*,&:* 'i.saa 5, p . \$A. ,>

Overhead
Projector
& LCD Panel

1 for Road
Scene

Subwoofer

Supervisor
Shakers Display

- - I Traff IC

- - -
EtherTalk

Task
handle expenmenter interface input and output
sense the steering wheel angle
control the torque motor
sense the accelerator and brake pedal positions
compute the subject's position and orientation
update the subject's road scene
save the dnving performance data
compute the position and orientation of other vehicles

generate sounds tromsTbject's vehicle
update the instrument cluster

-
F~gurc I S~mulator block diagram

Which Network Should Be Used?

What Should Be Considered in Selecting a Network?

While a network may seem like a single entity to its users, in reality it is a complex collection of
interrelated parts. The traditional view is of networks as a series of layers, with each layer adding
new functions and capabilities to those of the layers below it. For the purpose of explarlation, the
network is considered to have three layers.

The physical layer, the lowest layer, consists of cables, connectors, cards, etc. This layer
specifies the physical representation of data as i t is transmitted (e.g., voltage levels, light
pulses).
The data link layer expands the physical layer's ability to transmit data into the abil.ity to
communicate between two or more computers. To do this, the data link layer must perform
two functions. The first is to control who can transmit and when. For example, in Ethernet
networks, a computer with data to transmit will attempt to do so as soon as it sees no other
computers are transmitting. If two computers happen to transmit at the same time each will
detect a collision, and will wait a random period of time before attempting to retransmit their
data. The second function is to specify the format of data transmitted. For example, in
LocalTalk networks data is transmitted in packets. The packet starts with a three-byte header
identifying which computer sent the data. which computer is to receive the data, and the type of
data. The rest of the packet is the data itself, which may be up to 600 bytes long.
The protocol layer expands the data link layer's communication abilities by allowing the
linking together of multiple networks, even those of different types. For example, TCPIIP
links together a variety of ne~u,orks all over the world to form the Internet. Protocols also
commonly provide a number of high-level communication facilities, which go beyond the
simple sending of messages. For example. AppleTalk provides AppleTalk Data Stre:am
Protocol. a facility that allou,s a stream of byes to be sent from one computer to another, and
guarantees the bytes in the stream u.111 m ~ v e in the order in which they were sent.

These layers are not independent. :I$ the cholce for one layer will limit the available choices for the
other layers. In particular, there I + a v c n cloce association between the physical and data link
layers. Therefore, the physical and data I ~ n k layers are chosen as a unit, and the protocol layer is
choscn separately.

In making choices, performance was given primary consideration. However, also considered
ulere the availability and reliabili[y of thc ncccssary drlvers, as well as any effects on software
development. Cost of hardware ~ ' 2 s no1 a slgn~f~c~lnr factor in the choice. All the alternatives
considered cost less than S 100 per computer, and glvcn that software development time was
expected to take several weeks at least. hardu.urc coct+ were expected to be small in comparison to
software costs.

Which physical and data link l a c r s should be used?

Although multiple protocols commonl!. work irh a p~lrtlcular data link, multiple data links rarely
work with a panicular phys~cal I;l,cr Thcrcforc, thc choice of physical layer usually det.ermines
the choice of data link layer.

The process began with the selection of thrcc physicalldata link combinations that were available
for Macintosh computers, and which wcrc thought to meet the simulator's needs. These
alternatives were then compared 011 the bas~s of bandwidth and whether they supported the
protocols of interest. One was then xlcctcd on the basis of this comparison.

Serial versus LocalTalk versus Ethernet

Three possibilities for the physical and data link layers were considered: serial lines, a LocalTalk
network, and an Ethernet network. Other options, such as Token Ring and ATM, were either too
expensive or unavailable for the Macintosh.

Using serial lines involves connecting Macintosh computers via their IEEE422 serial ports. Each
Macintosh has two such ports, and a network of any number of computers may be daisy-chained
together. The physical layer is the serial lines themselves, and the data link layer is either custom
built or a standard such as SLIP or PPP. The protocol layer must handle the task of forwarding
messages between serial lines when necessary. A serial line was already used for communication
between the main simulator computer and the instrument panel computer. Using serial lines for
communication between simulators would require this existing implementation be modified and
expanded.

LocalTalk is a simple network standard established by Apple Computer and used primarily on
Macintosh computers. Any Macintosh may be connected to a LocalTa1.k network via a LocalTalk
transceiver connected to one of its serial pons. The physical layer is either LocalTalk cables and
transceivers developed by Apple (which use a custom three-wire cable), or PhoneNet cables and
transceivers (which use standard phone cord). There is no difference in performance between
them. The data link layer is the LocalTalk Link Access Protocol (LLAP), which is a part of
MacOS.

Ethernet is a network standard used with a wide variety of computers. All high-end Macintosh
computers, and all those depicted in Figure 1, come with Ethernet on their motherboards. The
physical layer may be any of a number of standards, with a variety of performance characteristics.
I OBase-T was selected for consideration for three reasons: 10Base-T was already used for
communication between the man and sound computers, a daisy-chainable 10Base-T transceiver
was a~failable which allowed up to eight computers to be networked without the need for a hub,
and the UMTRI building network uses IOBase-T. The data link layer is the EtherTalk Link Access
Protocol (ELAP), which is a part of MacOS.

Bandwidth Comparison

Bandwidth (how quickly data may be transmitted) is a primary consideration when selecting the
physicalldata l ink layers. They must be able to handle the expected message load, and should have
some extra capacity for the inevitable upgrades and new features. Of the three options, serial lines
had the least bandwidth and Ethernet the mos!.

Macintosh serial ports are normally only capable of speeds up to 57,600 bits per second (bps), but
newer models with serial DMA (D~rect Memory Access) can achieve serial speeds of 115,200 bps
or even 230,400 bps. However. thcsc h l p h speeds place a considerable demand on the software,
and great care must be taken to produce an cffic~ent ~mplementation. The effective bandwidth is
also somewhat less than these theore~~cal maxlma due to delays encountered when a message must
be fomarded between serial ports.

LocalT~llk transmits at a rate of 330.400 bps. However, carrier sense, collisions, and protocol
overhead reduce the effective bandwidth from this maximum. LocalTalk is a broadcast network,
so any transmission is seen simultaneousl~~ by all computers on the network. Therefore, there is
no need for any computer to fornard rncshagcs, as with serial connections.

Ethernet on 10Base-T transmits at a ratc of 10,000,000 bps. However, carrier sense, collisions,
and protocol overhead reduce the effective bandwidth, just as with LocalTalk. A general rule of

thumb with Ethernet is that effective maximum bandwidth is one-third theoretical maxirnum
bandwidth. Ethernet is also a broadcast network, so there is no need for forwarding of messages.

Protocol Support

Different types of networks support different protocols. Of specific interest were App1e:Talk (a
protocol suite developed by Apple Computer), and TCPIIP (the protocol suite used on the
Internet), since MacOS offers support for both of these protocols.

Serial communications generally use custom protocols. All parties agree on how data is formatted,
and the format is specific to the task at hand. It is possible to use T C P m with serial lin~es with the
assistance of either SLIP or PPP. IP routing could then be used to solve the problem of
forwarding messages between se~ial lines. However, at the time this approach was first
considered there were few reliable Macintosh implementations of SLIP or PPP, and Macintosh
implementations of T C P m did not allow the computer to serve as a router.

LocalTalk was originally designed to support AppleTalk, but can also support TCPfIP. There was
some concern over LocalTalk's relatively small, 600-byte packet size. The protocol must break up
long messages into smaller pieces which can f i t into a LocaITalk packet. The process of breaking
up long messages (called packetizat~on) and reassembling them at the receiving end (called de-
packetlzation) adds considerable overhead. However, AppleTalk always breaks up messages into
pieces no larger than 586 bytes, arid TCPAP implementations are not required to accept messages
longer than 576 bytes. So any message longer than a LocalTalk packet would likely be packetized
by both AppleTalk and TCPAP, no matter what physical and data link layers were being used.

Ethernet is often used with TCPAP. but i t can be used with many different protocols, including
AppleTalk. AppleTalk running on Ethernet is usually called EtherTalk in order to distinguish it
from AppleTalk running on LocalTalk.

\Vhy Ethernet \\'as Selected

The most important points in fa~.or of Ethernet were high bandwidth and support for the: protocols
of interest. Also, a 10Base-T Ethcrnct could be plugged into the UMTRI network to allow access
to the outside world. This would mahe file transfers between office and simulator computers
possible, and would allow for backups of simulator computers.

LocalTalk w a thought to be mar~!nal. at best. in terms of bandwidth, and it offered nothing that
was not available wlth Ethernet. I-~nall>, whilc both Ethernet and serial lines were alrea.dy in use,
there was no existing LocalTalk network. Add~n; a LocalTalk network would introduct: yet
another type of hardwarelcable. compllcat~n; suppon

Serial l~nes had too little bandw~dth. and also were difficult to implement. Using serial
commun~cations for all networhnf would also rtqulre revis~ng the existing communications
software ilnk~ng the main simulator computer and Instrument panel computer. Finally, there were
considerable doubts about the avai,labiltr>, of c~thcr SLIP or PPP, meaning a custom data link (and
probably a custom protocol) would ha\^ to be Ii,rltten, greatly increasing development ti,me.

Ff'hich Protocol Shoulld Be L'sed?

Protocols, like networks, are built In lrlyers. The lowest layer, called (confusingly) the :network
layer, interacts with the data link layer bciou i t and provides a basic service for sending, receiving,
and routing messages. In the layers ab0i.c the network layer are various services, each building on
one or more of the services in layers belou. i t .

The process of selecting a protocol began by identifying two protocols that were thought capable of
doing what was required and which were supported by MacOS. These protocols were then
compared on the basis of the services they offered, and their stability and reliability under MacOS.
One was then selected on the basis of this comparison.

TCP/IP versus EtherTalk

Given the choice of Ethernet for the network, there are two protocols to choose from: TCP/IP and
EtherTalk. EtherTalk is used for communication with the sound computer, but since a single
Ethernet network can cany both TCPLP and EtherTalk traffic, this was not a major factor in the
decision.

TCP/IP is the protocol used by the Internet. TCPRP works well in both large and small networks.
TCP/IP is widely used and well documented.

EtherTalk is the name given to AppleTalk running on an Ethernet network. AppleTalk is limited to
networks of a few thousand computers, and is designed for small LANs. EtherTalk is used
primarily by Macintosh computers, and Apple Computer is the main source of documentation.

Protocol Services

The services the simulator requires from the protocol are fairly basic: fast delivery of messages
with minimal overhead, and some means of locating and contacting other simulators on the
network. Since the network is small, and there are no routers or gateways, there is little chance of
message loss, and therefore no need for guaranteed message delivery and its associated overhead.

User Datagram Protocol (UDP) is the TCPAP service that best fits the message delivery needs of
the simulator. I t is not the network level service (IP is), but it has reasonably low overhead. The
simulator must allocate a UDP port, and all messages for the simulator are sent to that port. There
is no way to communicate with the simulator unless its port number is known. Therefore, all
s~mulators must agree on what pon number they will use, and each must be able to allocate that
port number on its computer. Each simulator must then broadcast to that port number to see what
other s~mulators are currently runnlng. If another program allocates the port number used by the
simulator. ~t will not only prevent the s~mulator from running on the same computer, it will likely
be confused by the messages from other s~mulators.

Datagram Delivery Protocol (DDP) is the AppleTalk service that best fits the message delivery
needs of the simulator. I t is AppleTalk's network level service, and is therefore low level and low
overhead. The principle drawback of DDP is its maxlmum message size of 586 bytes. The
simulator must allocate a DDP socket (analogous to a UDP port), to which all messages are sent.
However. unlike TCP/IP, AppleTalk pro1.1des a scrvlce that allows one to determine which sockets
on which computers are assigned to which programs. By registering with the Name Binding
Protocol (IU'BP), a simulator can advcnlse ~ t s network address and socket number to other
simulators on the network. Simulators still tn to get the same socket number so they can use
broadcasting, but they can still locare and cooperate with one another even if they can't.

Protocol Stabilit, and Reliability

Support for a particular protocol is not enough. The software that provides this support must be
relatively stable and bug free. An unstablc lmplcmentation may change each time the operating
system is updated, causing previously working programs to fail. A bug-riddled implementation
can lengthen software development time as work-arounds for the various bugs are developed. It
can also halt development entirely if a crl~lcal service is not working.

At the time this work was started, Apple was in the process of creating a new network firamework
for MacBS. TCP/IP support, which had always been troublesome, had suffered greatly under this
new framework, and there were numerous reports of bugs and unimplemented services.

AppleTalk support was also fit into Apple's new network framework. However, Apple'ralk came
off far better than TCP/IP, perhaps; because the AppleTalk software was simply ported to the new
framework, while the TCP/IP software was largely rewritten from scratch. There were a few
reported hugs, but none that affected services the simulator used.

Why EtherTalk Was Selected

The most important reasons for selecting EtherTalk were the availability of NBP and fears about
the stability of TCP/IP. Using EtherTalk also allowed for some code reuse between the functions
that comrr~unicated with the sound computer, and those that communicated with other simulators.
Finally, an EtherTalk implementation allows simulators to proceed even though they cannot
allocate the desired socket number, and does not need to use broadcasts to find other simulators.
This is not of major importance in the isolated lab environment, but is much more robust in the
office environment where simulatolr development and testing are done.

TCPAP suffered primarily from a bugey implementation. There were also concerns about the
procedures necessary to locate other s~mularors. While these procedures are unlikely to cause
problems in the lab, they could cause problems in an office environment.

How Should Simulators Be Coordinated?

Coordination is the problem of synchronizing the starting and stopping of simulations on different
simulators. Synchronization of the start of simulation is necessary to ensure that the elapsed times
recorded by different simulators are comparable. Synchronization of the stopping of simulation
relieves the experimenter of the task of stopping each simulation manually.

The process of selecting a coordination method began by generating a careful definition of what it
meant to be coordinated and how coordination was to be specified. Then, two promising
coordination methods were selected. They were then compared on various performance measures
and ease of implementation. One of the methods was then selected on the basis of t h ~ s
comparison.

How is Coordination Defined?

To better define coordination, it is necessary to divide simulator operation into three states
(Table 2), which the simulator moves between.

Table 2. Simulator States

The problem of coordination 1s therefore the problem of ensuring the simultaneous transition of
s~mulaton from waitin,g,-to-run to running, and from running to stopped. In addition, some
non~~multaneous transltlons need to bc allowed for as well. (e.g., a simulator that starts running
a f t : all the others and stops before they do.)

State
Stopped
Waltlng-to-run

R u n n i n l

To control coordination of transltlonh bcrwecn thcse states, a simple scheme was developed. Four
propcnics were defined. of uhlch a slmularor may have all, none, or any subset. The user decides
urhlch s~mulators have which propenlcs. and careful selection of whch simulators have which
propcnics can produce practically any dchlrcd bcha~.ior. The properties and how they affect
transitions follow (Table 3).

Description
The simulator IS not runnlncg 11s simulation.
The simulator wlshes to run its simulation, but is waiting until other
simulators are either waiting to run or running their simulations.
The simulator 1s runnln; 11s simulation.

Tahlc 3 Tr~n\ttlon Properties

Propen\
Stan Independence

Start veto

Stop Independence

Stop conrrol

Descnpr~on
The s~mulctror ~mnlcdl~lcl! mdc4 the transition from waitin?-to-run
to running upon bc~nc told ro do so by the user.
The simulator proh1b1t4 orhcr s~mulators which do not have start
independence from mctklng the transition from waitine-to-run to
running un t i l t h c {irnulator I \ waitinz-to-run or running.
The s~mularor makc\ rnc rrun4lrion from running to s tou~ed only
when told to do \o h\ rhc u + c r .
The slmularor torcc\ othcr s~rnuiators which do not have stop
independence and Jrc running lo immediately make the transition to
stopped uhcn rhc \~mularor makes the transition from running to
stopped.

In most cases, all simulators will start and stop their simulations simultaneously, and therefore all
simulators will have start veto and stop control and, no simulators will have start independence or
stop independence. A simulator that starts its simulation before other simulators needs !;tart
independence. A simulator that starts its simulation after other simulators should not have start
veto. A simulator that stops its silmulation after other simulators needs stop independenlce. A
simulator that stops its simulation before other simulators should not have stop control.

Deciding when a simulator starts running its simulation is simple. A simulator makes the transition
from stormed to waiting-to-run when the user tells it to start its simulation. If the simulator has
start independence it immediately makes the transition from waitinz-to-run to running. Otherwise,
a check is done to see if any other simulators have start veto. If none do, or if all that do are
waiting-to-run or running, the sirn~ulator makes the transition from waiting-to-run to running.
Otherwise, the simulator waits until the preceding condition is satisfied.

Deciding when a simulator stops running its simulation is also simple. A simulator always makes
the transition from running to stopped if told to do so by the user. If a simulator does not have
stop independence it must also monitor the states of other simulators. If it sees a simulator with
stop control make the transition friom running to stopped, then it also makes the transitia~n from
running to s t o ~ p e d .

Central ized versus Distributed Coordination

The problem of coordination is then one of ensuring that state transitions that should be
simultaneous are s~rnultaneous (or nearly so). Two coordination methods were considered:
centralized coordination and distrihuted coordination.

Centralized coordination is, on the surface, the simplest solution. A single simulator is the master,
and all the remaining simulators are slaves. Simulators make the transition from stopped to
urai ting-to-run when told to do so by the user. but only make transitions from waiting-to-run to
running and running to stouped when told to do so by the master. Simultaneity is achieved
through broadcasted messages from the master order~ng state changes for one or more s.imulators.

Distributed coordination is more complex. Each s~mulator is responsible for deciding for itself
when to change state. Simularoril make thc transitions from stopped to waiting-to-run and from
running to stopped when told to do so bit the user. Simulators also broadcast their state changes to
the rest of the simulators so that each s~mulator is aware of the current state of the others. Each
simulator uses this information to detcrm~nc when to make the transition from waiting-to-run to
runnlng, 2nd whether i t should make thc transltlon from running to stouped. Simultaneity is
ach~eved b)' the broadcasted changc of sratc rncils2,rcs.

Performance and implementation

Centralized and distributed coordlriat~on achicvc thc same ends by two very different means. The
choice between them was made on rtlc bail]\ of how well they did theirjob, how much network
load they generated, and how much proframmlnf cffon would be required. To this end, the two
approaches were compared in threc arc&(: s~multanclty of state transitions, network traffic
generated, and ease of implementation

The maxlrnum time difference betwccn 1n.o "simultaneous" stare transitions is the same for either
centralized or distributed coordination. ~llthouph the variance in time difference is slightly higher
for the distributed case. This is becau~c In both cases the state transitions are in response to a
broadcasted message. Simulators check for new messages once each frame and there arc 30
frames per second, so each simulator u,ill see the message and perform the state transition within
1130th of a second (assuming message scnd tlme is negligible). With centralized coordin~ation the

state transitions occur randomly throughout the 1130th-of-a-second interval. With distributed
coordination one of the state transitions occurs at the beginning of the interval, and the remaining
occur randomly throughout, resulting in slightly more variance in the time difference between state
transitions.

The total network traffic is somewhat greater for centralized coordination than it is for distributed
coordination. However, centralized coordination generates fewer broadcasted messages, so most
simulators have fewer messages to process. This is because the only broadcasted messages with
centralized control are those ordering state transitions, while with distributed control all state
transitions result in a broadcasted message. Since each broadcast from the master can order more
than one state transition, centralized coordination has fewer broadcasts, and slaves will process
fewer messages than they would with distributed coordination. Centralized coordination produces
more messages, however, because change of state messages are still sent, but only the master must
process them.

Centralized coordination is significantly more difficult to implement than distributed coordination.
The first problem is selecting the master, and informing all the slaves who the master is. The
master must check for messages constantly, so any lengthy operation must be interrupted
regularly. Finally, there must be two procedures developed for determining state changes: one for
the master and one for the slaves. With distributed coordination all simulators use the same
procedure to determine state changes. Furthermore, this procedure is easier to implement than the
procedure for the master simulator, since i t must decide for only one simulator instead of every
simulator.

U'hy Distributed Coordination Was Selected

The primary reason for selecting distributed coordination was ease of implementation. The greater
variance in time difference between simultaneous state transitions was of some concern, but it was
deemed smdl enough to be acceptable. The Increase in message broadcasts was not considered
significant, since they only occur at state transit~ons. and state transitions are relatively rare.

Centralized coordination was judged to be too difficult to implement. Since software development
was expected to be the major expense (both in time and money) for this project, anything that
would make software development more difficult would have to be justified by significant
performance advantages. Centralized coordination had no significant performance advantages.

How Should the Position of Vehicles Be Tracked?

Tracking is the problem of a simulator knowing at all times the current position of not only its own
vehicle, but of the vehicles of other simulators as well. Without this information, each :simulator
would be unable to display these vehicles in its view of the world, and users of the simulator
would be unable to interact with them.

The principle problem in tracking the position of another simulator's vehicle is that a sinnulator may
only know where the vehicle was, not where i t is. As time passes, knowing where the vehicle was
is less and less helphl because i t has almost certainly moved and is now somewhere else.
Tracking, then, comes down to the problem of using what is known about where a vehicle was to
determine where it is, at least in alpproximation.

The process of selecting a tracking method began by identifying two tracking methods c,ommonly
used in distributed simulations. These were then compared on the basis of several performance
measures and ease of implementation. One was then selected.

Continuous Updates versus Dead Reckoning

Either of the two general approaches commonly used in distributed simulations for tracking vehicle
position, continuous updates and dead reckoning, could be easily adapted for use with the UMTRI
driving simulator. Continuous updates operates on the principle that if where a vehicle ,was just a
verv short time ago is known, then the difference between where it was and where it is too small to
maiter. Once each frame, immediately after the simulator has updated a vehicle's position, the
simulator broadcasts the new position to every other simulator. The position of other simulator's
vehicles is taken to be their most recently reported position.

Dead reckoning operates on the principle that i f one knows where the vehicle was and which
direction the vehicle was going. one can make a good estimate of where the vehicle is. Each
simulator not only calculates the current position of its vehicle, but also an estimated position.
Li'hcn the distance between the actual and estimated positions exceeds some threshold, the
simulator broadcasts a message that contains not only the vehicle's actual position, but d.ynamics
informarlon such as speed, acceleration. head~ng, turn rate, etc. All simulators (includin,g the one
that sent the message) use this informar~on 10 estlmate the current position of the vehicle.

Performance and Implementation

Both continuous updates and dead reckonrng have been used successfully in other programs.
Continuous updates is used by most multlplayer action games (e.g., Doom.) Dead reck~oning is
used In Distributed Interactive Simulation IDIS 1. thc d~stributed simulation standard developed and
wed by the US military. To evaluclre altcmat~ve approaches for tracking vehicles for usr: with the
UMTRI clri\g~ng simulator, they were comparcd i n four areas: network load, processor load, how
smoothly vehicles appear to move, and ~niplcmentatron.

Continuous updates generates a much higher nctwork load than dead reckoning. Continuous
updates requlre each simulator broadcasl once each frame. or 30 times a second. Dead rleckoning
broadcasts longer messages, but usual1 only has to do so a few times a second. Approximate
message slze can be computed to gct II fccl Tor the difference in network load. Both met.hods have
to send messages containing a five-byte DDP header plus 16 bytes for vehicle position and
heading. In addition, dead reckonln~ must send speed. acceleration, and turn rate values, all 4-
byte quantities. Therefore, continuous updates sends 2 1 -byte messages versus 33-byte messages
for dead reckoning. Since dead reckoning was expected to reduce the number of messages by a
factor of a least five, it reduces network load significantly over continuous updates.

Whether continuous updates or dead reckoning causes a greater load on the processor is uncertain.
Continuous updates require no computation to determine the position of other simulator's vehicles,
while dead reckoning requires that a new estimated position be computed each frame. However,
continuous updates requires the processing of far more messages, each requiring processor time.

The apparent movement of vehicles is not as smooth with continuous updates as it is with dead
reckoning. Simulator frame rates vary somewhat, and frames are not synchronized between
simulators. Therefore, with continuous updates a simulator may not receive any position updates
from another simulator during one frame and could receive two updates during the next frame.
The result is an apparent "freeze" in the motion of the vehcle, followed by a "jump." With dead
reckoning the estimated position of the vehicle is calculated for each frame and thus appears to
move smoothly. There is some danger of a discontinuity when a new position update is sent out,
but this is minimized by sending out position updates before the error in estimated position gets
large.

The continuous updates approach is easier to implement than dead reckoning. A continuous
updates approach only requires that position updates be broadcast each frame and that the most
recently updated positions be used for each vehicle. Dead reckoning requires dynamic information
be sent with each position update. Further, each frame the position of each vehicle must be
estimated. A simulator must also compare the estimated position of its vehicle with the actual
position calculated from the dynamics model, and send out updates if the estimated position is too
far off.

Why Dead Reckoning \.!'as Selected

The primary reasons for selecting dead reckoning were reduced network load and smoother
movemen[. a critical characterist~c i f useful data on driver performance and behavior is to be
obtained. The added implementation effon was deemed justified in light of these advantages.

Continuous updates was expected to use too much network bandwidth. This was seen as
espec~liliy critical early in developmcni. before i t became clear how much bandwidth was available
and hou, much message traffic each s~mulator could handle.

Summary

The need to study the interaction between multiple vehicles, especially for collision avoidance
research, prompted the development of a networked version of the UMTRI Driving Sirriulator. In
this version, simulators running on separate computers connected by a network interact to produce
the illusion of a single simulation involving multiple vehicles.

In producing this version, problems faced included what network and protocol to use, how to
coordinate the simulators, and how simulators were to track the vehicles of other simulators.
Several solutions were considered for each of these problems. Choices were made with an eye
towards performance, flexibility, and ease of implementation. The solutions chosen were:

10Base-T Ethernet using AppleTalk protocol

distributed coordination

dead reckoning

The networked simulator has been i n operation since fall 1995. The simulator has work.ed well,
both on the isolated network in the simulator laboratory and on the office network where: there is a
great deal of other traffic (where development takes place.) This experience validates the choices
made.

Future Developments

Since network upgrade began there have been several changes to the Macintosh operating system,
and with Apple Computer itself, which may affect future work.

Multiple-vehicle trafic simulator. While allowing the main simulator to simulate more than one
vehicle was originally considered as an alternative to a networked simulator, the idea was
rejected because of processor load concerns. However, future upgrades will allow any
simulator to simulate multiple vehicles. A primary concern is cost reduction: the number of
computers needed is no longer equal to the number of vehicles. The restrictions on multiple
vehicle simulators mentioned above still apply: only one vehicle's view may be displayed, and
all but one vehicle must be on automatic pilot. Rarely is more than one manually controlled
vehicle needed.

Open Transport. When this latest simulator upgrade began Apple was in the process of
replacing its network framework with Open Transport. Open Transport was not used for the
simulator because it was considered unstable. It has now stabilized, and if this project had
been started in 1997 instead of 1995, Open Transport would have been used instead of the
"classic" Macintosh networking.

Apple's new operating system. At the end of 1996, Apple Computer acquired NeXT Inc., and
announced plans to produce a new Macintosh operating system based on NeXT's OpenStep.
OpenStep is Unix-based and comes with a TCP/IP stack, but does not currently support
AppleTalk. An AppleTalk stack is supposed to be ready by the time the new operating system
ships, but given the time constraints i t is doubtful the AppleTalk stack will be reliable, if it
ships on time. These concerns about future AppleTalk support might have led to a decision to
use TCPJIP for a network protocol.

References

Davis, B.T. and Green, P. (1995). Benefits of Sound for Driving Simulation: An Experimental
Evaluation (Technical Report UMTRI-95- 16), Ann Arbor, M[: The University of Mchigan
Transportation Research Institute.

Green, P. and Olson, A. (1996). Practical Aspects of Prototyping Instrument Clusters, (SAE
paper 960532), Warrendale, PA: Society of Automotive Engineers.

Green, P. and Olson, A. (1997). A Technical Description of the UMTRI Driving Simulator
Fanlilv (Technical Report UMTRI-97- 12), Ann Arbor, MI: University of Michigan
Transportation Research Institute.

Institute of Electrical and Electronics Engineers (1995). Standard for Distributed Interac-
Simulation - Ap~lication Protocols (IEEE Standard 1278.1-1995), New York: Institute of
Electrical and Electronics Engineers.

MacAdam, C.C., Green, P.A., and Reed, M.P. (1993). An Overview of Current UMT'RI Driving
Simulators, UMTRI Research Review, July-August, 2 (1) , 1-8.

Simulation Interoperability Standards Organization (1996). 15th Workshop on Standards for the
Interoperability of Defense Simulations (Technical report IST-CF-96-01. l), Orlando, FL: -
University of Central Florida, Institute for Simulation and Training.

Yoo, H., Hunter, D., and Green. Y . (1996). Automotive Collision Warning: E f f e c t i v e n e d
Simulator Comparison of Text vs. Icons (Technical Report UMTRI-96-29), Ann Arbor, MI:
The University of Michigan 'Transportarion Research Institute.

