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A Description of the UMTRI Driving Simulator 
' Architecture and Alternatives 

a 0 4 .  

A3 surnmary UMTRI Technical Report 97-17 
Alan Olson and Paul Green 
University of Michigan, Ann Arbor, Michigan,, USA 

Why Use a Networked Configuration? 

goal: low cost but reasonable pe~formance 

networking avoids overloading single processor with traffic and scene computations, 
thus decreasing frame rate 
networking allows for greater code reuse: most of new code is user interface 
use of PCs for processing reduces capltal outlay 
PCs are highly reliable, readily repared. and easy to replace 
low cost, commodity software used 
using the same type of computer for all aspects of the system reduces support cost 

Which Setwork Should 13e Used? 

Assumptions 1 .  Token ring and ATM roo expensive or not available for Mac 
2. otherwise hardware cost 1s unimportant (<$loo), so issue is software 

IYhich Physical and Data Link Layers Should Be Used? 

Which Protocol Should De Ijsed'? 

Advantages/Disadvantages 
least bandwidth; custom protocols; difficult to 
implement: now used for 1-way connection to IP; 
needs software to forward messages between 
port$ 
bro~ldi';lst network, message forwarding not 
necilcd 
mo51 bandwidth, broadcast network, message 
foru.ardine not needed 

Option 
send 

LocalTalk 

Ethernet  
t' (chosen)  

Availabil~ty on Mac 
2 IEEE-422 pons; 
can form daisy-cha~incd 
network (no limit) 

standard 

standard; IOBase-T aliou5 up 
to 8 Macs w/o huh 

Opt~on 
TCPIIP 

EtherTalk tl 
(AppleTalk on an 
Ethernet network) 

Advantacges 
widely used (protocol uscd hj, the Internet); 
well documenrcd 

prev~ously uhed l o r  found computer; Name 
Binding Protocol c not In TCPAP) allows 
simulators to locate each other 

Disadvantages 
no way for simulators to 
locate one another; drivers 
regarded as unreliable 
small message size (586 
bytes) 



How Should Simulators Be Coordinated? 

How Should the Position of Vehicles Be Tracked? 

Disadvantages 
difficult to implement; 
sends more messages 

more variance in time between state 
transitions; 
more broadcasted messages 

Coordination 
Centraked 

Distributed 
4 

* uncertain which approach generates least processor load 

Advantages 
conceptually simple; 
less variance in time between state 
transitions 
easy to implement; 
sends fewer messages 

Future Developments 

Advantages 

each message is 
shorter 

generates much 
lower network load 
(fewer messages) 

smoother motion 
of traffic 

Trachng 
Mechanism* 
Continuous 
updates 
Dead 
reckoning 

4 

Multiple vehicles on a single traffic simulator 
Open Transport 
Apple's new operating system 

Summary 

each simulator broadcasts an update each frame (30 
timeisecond) 
each simulator broadcasts an update when the actual 
position begins to differ from that estimated by dead 
reckoning. In between broadcasts, each simulator uses 
dead reckoning (using last position and velocity) to estimate 
the current location of each vehicle. 
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PREFACE 

This report describes the design rationale for the UMTRI driving simulator. Those inte:rested in the 
experimental work conducted as a result of the simulator enhancements should see Yoo, Hunter, 
and Green (1996). 

This report is written for developers of other simulators who are considering adding a network 
capability to their simulators, potential sponsors who need information on UMTRI's capabilities, 
computer scientists interested in distributed networks, and interested parties at the National 
Academy of Sciences, Transportation Research Board (project sponsor). This report may also be 
used by new UMTRI personnel to provide them an inttoduction to the simulator and by 
programmers interested in enhancing the current network. 

Key contributors to the development of the simulator have been the following: 

Paul Green served as the project leader 
(UMTRI-Human Factors) 

Alan Olson implemented the network 
(UMTRI-Human Factors) 

Matt Reed 
(UMTRI-BioSciences) 

developed the original graphics 

Amitaabh Malhotra implemented the torque motor control algorithm 
(now with Lucent Technologies) 

Brian Davis developed sound module 
(U of Michigan, 
Electrical Engineering &r Computcr Sclence) 

Patrick b;ei stmed development of the torque motor 
(nous w ~ t h  Heujlett Packard) conuoller 

Charles illacAdam developed initial vehicle dynamics model 
(UMTRI-Eng~neering Research D~ir~s~on)  

Pat Waller 
(UMTRI Director) 

scned a$ the project advocate 

Greg Goetchius prov~dcd sound recordings of a Chrysler LH 
(Chrysler, h 'VH Group) 

Erik Anhur provided ideas concerning vibration 
(Universirq' of Minnesota 
now with M~crosoft) 
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Introduction 

For several years, the Human Factors Division at the University of Michigan Transporta.tion 
Research Institute (UMTRI) has used a driving simulator to assist in conducting studies of driver 
behavior. The simulator is capable of showing winding two-lane roads with a dashed centerline, 
signs, and other objects (as shown in Figure l ) ,  and collecting a variety of driver performance 
measures (steering wheel angle, throttle position, speed, lane position). Figure 1 shows a typical 
road scene. Readers interested in a more detailed description of the simulator hardware imd 
software (other than items specific to networking) should see Green and Olson (1997) or 
MacAdanl, Green, and Reed (1993). The Green and Olson (1997) report also lists some of the 
studies that have been conducted using the simulator. 

Figure 1 .  Example road scene with the Head-up display shown. 

The simulator was originally developed as a task loader, providing a workload and task s'tructure 
similar to that of driving. As such, 11 was uwd for stud~es of in-vehicle devices (Reed and Green, 
1995). driving workload (Green, Lln. and Bagirln. 1993). and simulator design (Davis and Green, 
1995). However, both for those stild~c\ and for srud~cs of collision avoidance (Yoo, Hunter, and 
Green. 1996). i t  was readily apparenl the s ~ m u l ~ t o r  upould be improved considerably by t.he 
addlt~on of traffic. While prewous vcrslon\ of thc simulator did support other vehicles in the 
scene. thc vehicles were static. (For a b r ~ c i  per~od of tlme, there was a non-networked version of 
the simula~or with a single lead vehlclc u~th rn~n~mul functionality.) Since most crashes involve 
collisions with other vehicles that arc movlnz. adding traffic to the simulator was a high-priority 
enhancement. This upgrade greatl!, expanded tile range of useful studies that could be conducted. 

Specifically. consideration of the type{ of stud~ch ro be conducted led to the following 
requirements: 



1. The simultaneous simulation of multiple vehicles. 

Traffic often consists of more than just one lead vehicle. Further, vehicles may be oncoming 
or following. However, simulating more than four or five vehicles is of secondary 
importance, because interactions with large numbers only occur on expressways with a very 
large number of lanes under highly congested conditions, situations only experienced by 
commuters in big cities. 

2. The other vehicles are visible in each vehicle's view. 

The subject in an experiment cannot interact with other vehicles unless these vehicles are visible 
to him or her. Also, in cases where an experimenter is driving one of the other vehicles, the 
experimenter must be able to see the subject's vehcle to interact with it properly. 

3. The view from any vehicle may be displayed. 

It is very difficult to control a vehicle accurately without seeing the view from the vehicle. 
Thus, the subject must be able to see the view from his or her vehicle, and the experimenters 
must be able to see the view from any vehicle which he or she might wish to control. It is also 
possible that some experiments might require that the experimenter monitor the view from a 
particular vehicle. 

4. The views from multiple vehicles may be displayed simultaneously. 

The subject must be able to see the view from his or her vehicle. At the same time the 
experimenters must be able to see the views from the subject vehicle and the vehicles he or she 
is controlling. 

5 .  Each vehicle may be controlled either manually or by automatic pilot. 

While most experiments would involve test subjects responding to traffic following a 
preprogramrned script, there may be expenments in which the interactions of drivers in 
connec~ed simulators might bc of interest. 

The remainder of this report answers five questions that influenced the design of the simulator. 

1 .  Why should a networked simulator be used to present traffic? 
2. How should tasks be allocated among computers? 
3. M'hich network should be used? 
4. Hou' should simulators on differenr computers bc coordinated? 
5. How should s~mulators uack the locar~ons of veh~cles simulated on other computers? 



Why Use a Networked Simulator? 

A critical difference between simple and complex simulators used for driving is whethe:r traffic is 
simulated. In many simulators that provide traffic, traffic is generated on a statistical basis, rather 
than providing specific directions to a specific vehicle. Further, the computer to control traffic is 
generally different from other computers (such as those used for experiment control and graphics 
generation), and the system and software are specialized for modeling trafTic. There is little, if 
any, reuse of the code from the main simulation. Whlle this highly specialized approaclh provides a 
high performance simulator, each computer and each software module is unique, complicating 
maintenance, update, and system reliability. The number of support personnel can be considerable 
and the applications used for software development are generally not sold in volume. AJl of these 
characteristics make such simulators expensive and of diminished reliability. 

An alternative approach is a multiple-vehicle simulator - a single simulator, running on a single 
high-performance computer, which simulates the actions of all vehicles. There were three areas of 
concern. Perhaps the greatest concern at the start of the project was that having a single simulator 
simulate more than one vehicle would generate too great of a load. The dynamics model for a 
vehicle is a fairly complex set of e:quations involving floating-point computations, and dLoubling 
(tripling, quadrupling, etc.). This load might cause a noticeable drop in frame rate. As it turned 
out, floating-point computations on PowerMacs are so fast, and network overhead so great, this 
concern was misplaced. 

A secondary concern was the ability to see the views of and control these additional vehicles. A 
simulator cannot display more than one road scene without suffering an unacceptable reduction in 
frame rate, as updating the road scene is the most computationally intensive task in the simulation. 
Thus, the user can see only the view from one vehicle at a time. Manually controlling a vehicle 
without seeing its view is very difficult. Using a networked simulator allows the user to see the 
views from multiple vehicles simultaneously, without reducing frame rate. Networking also 
make\ ~t possible to manually conl:rol each of them. 

A tenian concern was the programming effort required to implement a multiple-vehicle simulator 
a5 opposed to a networked simulator. Adding the ability to simulate multiple vehicles (networked 
or otherwise) would be relatively simple. Further, modifying the graphics routines to di.splay these 
other vehicles properly in the road scene(s) would not be too difficult. But, a multiple-vehicle 
simulator would require a far more extensive overhaul of the simulator's user interface than would 
the networked simulator. Since the user interface accounts for a large part of the simula~tor source 
code. the authors concluded that modifying the user interface to make a multiple-vehicle simulator 
would take more time and effort than wrltlng the network code for the networked simulator. 

To pro~vide the desired functional~t),, the approach selected was to modify the existing simulator to 
m&e i t  a networked simulator. Tills approxh requires multiple computers connected by a suitable 
network. Each computer runs a s1:mulator. and each simulator simulates one vehicle and displays 
the vlew from its vehicle. The s~rnulators use the network to inform one another of the position of 
their vehicles, and to coordinate actlons such as stmlng and stopping simulation. 

To  keep costs low, the plan was to use off-the-shelf personal computers with no special,-purpose 
hardware. This meant that capital costs would be low and the components would be highly 
reliable. Since suitable computers were In w~de  use in the Division, if a computer ever failed, a 
replacement could be borrowed from someone's office at a moments notice. In fact, while there 
were some start-up problems with the s~mulator during earlier stages of software develojpment, 
there has never been a simulator computer hardware failure over the last four years. Thus is not 
the case where special-purpose or h~gh-performance computers are used. 



To a large degree, UMTRI's consideration of a networked simulator was due to the distributed 
interactive simulation program within the U.S. Department of Defense (Simulation Interoperability 
Standards Organization, 1996). To date, distributed interactive simulation has been of minor 
interest to the automotive community. The Department of Defense work has led to a standard 
protocol for exchange of data (Institute of Electrical and Electronics Engineers, 1995) and the 
widespread use of distributed simulation for training, the evaluation of new weapon systems, battle 
planning, and other purposes. This program has been successful because it is much less costly to 
operate simulated systems than real ones, and there are no real casualties. 

While simulator developers at UMTRI have adopted many of the conceptual ideas from the 
government Distributed Interactive Simulation program, program details have not been 
implemented because the scale of military simulations is much larger (hundreds of players 
distributed over great distances, support for weapons features (and explosions), multispectral 
target signatures (IR, radar, acoustic, etc.), and radio and data traffic. Furthermore, because the 
literature is extensive, the entry cost is high. Nonetheless, just the success of the approach proved 
to be an important motivator for the effort described in this report. 



How Should Tasks Be Allocated? 

The primary simulator tasks were: 

handling experimenter interface input and output 
sensing the steering wheel angle and sending commands to the torque motor 
sensing the accelerator and brake pedal positions 
computing the subject's position and orientation based on the steering wheel, accelerator, and 
brake inputs, road slope, current velocity, and vehicle dynamics 
computing the position and 0rie:ntation of traffic (other vehicles) on the network 
updating the road scene to reflect the current position of the subject's vehicle, traffic, and 
changing terrain 
generating the appropriate sour~ds for the subject's environment (both from their vehicle and 
other vehicles) 
updating the instrument cluster display 
saving the driving performance data 

At the time the simulator was being developed, precise figures on the time required to handle 
various tasks were not available, so decisions concerning task allocation were based on general 
impressions and likely future enhancements. Tasks that needed to be tightly time synchronized 
were put on the same computer. Tasks were distributed if, in combination, they would overload a 
single computer. Tasks were also grouped if their combination simplified programming. 

The most computationally intensive task is updating the road scene, a task whose update: rate is 
very sensitive to the amount of derail in the scene. In fact, at high levels of detail, updatle rates 
were unsatisfactory. Hence, to the extent possible, this task was allocated to a dedicated computer. 
The scene display must be tightly time synchronized with the torque motor controls, which in turn 
needed to be synchronized with sensing input from the subject. It was logical, therefore:, that both 
should bc handled by the same computer. The computational load for the latter tasks was expected 
to be low. 

Processing experimenter input and output and saving the driving performance data were also 
allocated to the main computer to slmplify programming. Since these tasks did not occur while the 
subject was drli'ing, processor overload ( i n  conjunction with the scene display software) was not a 
concern. 

In  many simulators, sound is also handled by the main computer, as this is a task of moderate 
processln; load. However, the UMTRI driving simulator uses multiple channels of sampled 
stereo sounds. and varies playback rate and volume according to current conditions. The 
processor load Imposed by sound generation I S  significant enough to warrant allocating a computer 
speciflcallj, for this task. 

As a consequence of these decisions. tasks were allocated as shown in Table 1. 



Table 1. Task allocation 

Figure 1 shows the simulator logical network that resulted. Additional details concerning the 
network design appear in the remainder of this report. 

Computer 
main 

traffic (may be more 
than one computer) 
sound 
~nstrument cluster 

- - - - - - _  - - - - - -  - - 
_ c - I  _ - - - _ - - - - - -  

L - 
.. ir 

*q@;G:y*~ 
.~GS*~;*,&:* 'i.saa 5, p . \$A. ,> 

Overhead 
Projector 
& LCD Panel 

1 for Road 
Scene 

Subwoofer 

Supervisor 
Shakers Display 

- - I Traff IC 

- - - 
EtherTalk 

Task 
handle expenmenter interface input and output 
sense the steering wheel angle 
control the torque motor 
sense the accelerator and brake pedal positions 
compute the subject's position and orientation 
update the subject's road scene 
save the dnving performance data 
compute the position and orientation of other vehicles 

generate sounds tromsTbject's vehicle 
update the instrument cluster 

- 
F~gurc I S~mulator block diagram 



Which Network Should Be Used? 

What Should Be Considered in Selecting a Network? 

While a network may seem like a single entity to its users, in reality it is a complex collection of 
interrelated parts. The traditional view is of networks as a series of layers, with each layer adding 
new functions and capabilities to those of the layers below it. For the purpose of explarlation, the 
network is considered to have three layers. 

The physical layer, the lowest layer, consists of cables, connectors, cards, etc. This layer 
specifies the physical representation of data as i t  is transmitted (e.g., voltage levels, light 
pulses). 
The data link layer expands the physical layer's ability to transmit data into the abil.ity to 
communicate between two or more computers. To do this, the data link layer must perform 
two functions. The first is to control who can transmit and when. For example, in Ethernet 
networks, a computer with data to transmit will attempt to do so as soon as it sees no other 
computers are transmitting. If two computers happen to transmit at the same time each will 
detect a collision, and will wait a random period of time before attempting to retransmit their 
data. The second function is to specify the format of data transmitted. For example, in 
LocalTalk networks data is transmitted in packets. The packet starts with a three-byte header 
identifying which computer sent the data. which computer is to receive the data, and the type of 
data. The rest of the packet is the data itself, which may be up to 600 bytes long. 
The protocol layer expands the data link layer's communication abilities by allowing the 
linking together of multiple networks, even those of different types. For example, TCPIIP 
links together a variety of ne~u,orks all over the world to form the Internet. Protocols also 
commonly provide a number of high-level communication facilities, which go beyond the 
simple sending of messages. For example. AppleTalk provides AppleTalk Data Stre:am 
Protocol. a facility that allou,s a stream of byes to be sent from one computer to another, and 
guarantees the bytes in  the stream u.111 m ~ v e  in the order in which they were sent. 

These layers are not independent. :I$ the cholce for one layer will limit the available choices for the 
other layers. In particular, there I +  a v c n  cloce association between the physical and data link 
layers. Therefore, the physical and data I ~ n k  layers are chosen as a unit, and the protocol layer is 
choscn separately. 

In  making choices, performance was given primary consideration. However, also considered 
ulere the availability and reliabili[y of thc ncccssary drlvers, as well as any effects on software 
development. Cost of hardware ~ ' 2 s  no1 a slgn~f~c~lnr factor in the choice. All the alternatives 
considered cost less than S 100 per computer, and glvcn that software development time was 
expected to take several weeks at least. hardu.urc coct+ were expected to be small in comparison to 
software costs. 

Which physical and data link l a c r s  should be used? 

Although multiple protocols commonl!. work irh a p~lrtlcular data link, multiple data links rarely 
work with a panicular phys~cal I;l,cr Thcrcforc, thc choice of physical layer usually det.ermines 
the choice of data link layer. 

The process began with the selection of thrcc physicalldata link combinations that were available 
for Macintosh computers, and which wcrc thought to meet the simulator's needs. These 
alternatives were then compared 011 the bas~s of bandwidth and whether they supported the 
protocols of interest. One was then xlcctcd on the basis of this comparison. 



Serial versus LocalTalk versus Ethernet 

Three possibilities for the physical and data link layers were considered: serial lines, a LocalTalk 
network, and an Ethernet network. Other options, such as Token Ring and ATM, were either too 
expensive or unavailable for the Macintosh. 

Using serial lines involves connecting Macintosh computers via their IEEE422 serial ports. Each 
Macintosh has two such ports, and a network of any number of computers may be daisy-chained 
together. The physical layer is the serial lines themselves, and the data link layer is either custom 
built or a standard such as SLIP or PPP. The protocol layer must handle the task of forwarding 
messages between serial lines when necessary. A serial line was already used for communication 
between the main simulator computer and the instrument panel computer. Using serial lines for 
communication between simulators would require this existing implementation be modified and 
expanded. 

LocalTalk is a simple network standard established by Apple Computer and used primarily on 
Macintosh computers. Any Macintosh may be connected to a LocalTa1.k network via a LocalTalk 
transceiver connected to one of its serial pons. The physical layer is either LocalTalk cables and 
transceivers developed by Apple (which use a custom three-wire cable), or PhoneNet cables and 
transceivers (which use standard phone cord). There is no difference in performance between 
them. The data link layer is the LocalTalk Link Access Protocol (LLAP), which is a part of 
MacOS. 

Ethernet is a network standard used with a wide variety of computers. All high-end Macintosh 
computers, and all those depicted in Figure 1,  come with Ethernet on their motherboards. The 
physical layer may be any of a number of standards, with a variety of performance characteristics. 
I OBase-T was selected for consideration for three reasons: 10Base-T was already used for 
communication between the man and sound computers, a daisy-chainable 10Base-T transceiver 
was a~failable which allowed up to eight computers to be networked without the need for a hub, 
and the UMTRI building network uses IOBase-T. The data link layer is the EtherTalk Link Access 
Protocol (ELAP), which is a part of MacOS. 

Bandwidth Comparison 

Bandwidth (how quickly data may be transmitted) is a primary consideration when selecting the 
physicalldata l ink layers. They must be able to handle the expected message load, and should have 
some extra capacity for the inevitable upgrades and new features. Of the three options, serial lines 
had the least bandwidth and Ethernet the mos!. 

Macintosh serial ports are normally only capable of speeds up to 57,600 bits per second (bps), but 
newer models with serial DMA (D~rect Memory Access) can achieve serial speeds of 115,200 bps 
or even 230,400 bps. However. thcsc h l p h  speeds place a considerable demand on the software, 
and great care must be taken to produce an cffic~ent ~mplementation. The effective bandwidth is 
also somewhat less than these theore~~cal maxlma due to delays encountered when a message must 
be fomarded between serial ports. 

LocalT~llk transmits at a rate of 330.400 bps. However, carrier sense, collisions, and protocol 
overhead reduce the effective bandwidth from this maximum. LocalTalk is a broadcast network, 
so any transmission is seen simultaneousl~~ by all computers on the network. Therefore, there is 
no need for any computer to fornard rncshagcs, as with serial connections. 

Ethernet on 10Base-T transmits at a ratc of 10,000,000 bps. However, carrier sense, collisions, 
and protocol overhead reduce the effective bandwidth, just as with LocalTalk. A general rule of 



thumb with Ethernet is that effective maximum bandwidth is one-third theoretical maxirnum 
bandwidth. Ethernet is also a broadcast network, so there is no need for forwarding of messages. 

Protocol Support 

Different types of networks support different protocols. Of specific interest were App1e:Talk (a 
protocol suite developed by Apple Computer), and TCPIIP (the protocol suite used on the 
Internet), since MacOS offers support for both of these protocols. 

Serial communications generally use custom protocols. All parties agree on how data is formatted, 
and the format is specific to the task at hand. It is possible to use T C P m  with serial lin~es with the 
assistance of either SLIP or PPP. IP routing could then be used to solve the problem of 
forwarding messages between se~ial  lines. However, at the time this approach was first 
considered there were few reliable Macintosh implementations of SLIP or PPP, and Macintosh 
implementations of T C P m  did not allow the computer to serve as a router. 

LocalTalk was originally designed to support AppleTalk, but can also support TCPfIP. There was 
some concern over LocalTalk's relatively small, 600-byte packet size. The protocol must break up 
long messages into smaller pieces which can f i t  into a LocaITalk packet. The process of breaking 
up long messages (called packetizat~on) and reassembling them at the receiving end (called de- 
packetlzation) adds considerable overhead. However, AppleTalk always breaks up messages into 
pieces no larger than 586 bytes, arid TCPAP implementations are not required to accept messages 
longer than 576 bytes. So any message longer than a LocalTalk packet would likely be packetized 
by both AppleTalk and TCPAP, no matter what physical and data link layers were being used. 

Ethernet is often used with TCPAP. but i t  can be used with many different protocols, including 
AppleTalk. AppleTalk running on Ethernet is usually called EtherTalk in order to distinguish it 
from AppleTalk running on LocalTalk. 

\Vhy Ethernet  \\'as Selected 

The most important points in  fa~.or of Ethernet were high bandwidth and support for the: protocols 
of interest. Also, a 10Base-T Ethcrnct could be plugged into the UMTRI network to allow access 
to the outside world. This would mahe file transfers between office and simulator computers 
possible, and would allow for backups of simulator computers. 

LocalTalk w a  thought to be mar~!nal. at best. in  terms of bandwidth, and it offered nothing that 
was not available wlth Ethernet. I-~nall>, whilc both Ethernet and serial lines were alrea.dy in use, 
there was no existing LocalTalk network. Add~n; a LocalTalk network would introduct: yet 
another type of hardwarelcable. compllcat~n; suppon 

Serial l~nes  had too little bandw~dth. and also were difficult to implement. Using serial 
commun~cations for all networhnf would also rtqulre revis~ng the existing communications 
software ilnk~ng the main simulator computer and Instrument panel computer. Finally, there were 
considerable doubts about the avai,labiltr>, of c~thcr SLIP or PPP, meaning a custom data link (and 
probably a custom protocol) would  ha\^ to be Ii,rltten, greatly increasing development ti,me. 

Ff'hich Protocol Shoulld Be L'sed? 

Protocols, like networks, are built In lrlyers. The lowest layer, called (confusingly) the :network 
layer, interacts with the data link layer bciou i t  and provides a basic service for sending, receiving, 
and routing messages. In the layers ab0i.c the network layer are various services, each building on 
one or more of the services in layers belou. i t .  



The process of selecting a protocol began by identifying two protocols that were thought capable of 
doing what was required and which were supported by MacOS. These protocols were then 
compared on the basis of the services they offered, and their stability and reliability under MacOS. 
One was then selected on the basis of this comparison. 

TCP/IP versus EtherTalk 

Given the choice of Ethernet for the network, there are two protocols to choose from: TCP/IP and 
EtherTalk. EtherTalk is used for communication with the sound computer, but since a single 
Ethernet network can cany both TCPLP and EtherTalk traffic, this was not a major factor in the 
decision. 

TCP/IP is the protocol used by the Internet. TCPRP works well in both large and small networks. 
TCP/IP is widely used and well documented. 

EtherTalk is the name given to AppleTalk running on an Ethernet network. AppleTalk is limited to 
networks of a few thousand computers, and is designed for small LANs. EtherTalk is used 
primarily by Macintosh computers, and Apple Computer is the main source of documentation. 

Protocol Services 

The services the simulator requires from the protocol are fairly basic: fast delivery of messages 
with minimal overhead, and some means of locating and contacting other simulators on the 
network. Since the network is small, and there are no routers or gateways, there is little chance of 
message loss, and therefore no need for guaranteed message delivery and its associated overhead. 

User Datagram Protocol (UDP) is the TCPAP service that best fits the message delivery needs of 
the simulator. I t  is not the network level service (IP is), but it has reasonably low overhead. The 
simulator must allocate a UDP port, and all messages for the simulator are sent to that port. There 
is no way to communicate with the simulator unless its port number is known. Therefore, all 
s~mulators must agree on what pon number they will use, and each must be able to allocate that 
port number on its computer. Each simulator must then broadcast to that port number to see what 
other s~mulators are currently runnlng. If another program allocates the port number used by the 
simulator. ~t will not only prevent the s~mulator from running on the same computer, it will likely 
be confused by the messages from other s~mulators. 

Datagram Delivery Protocol (DDP) is the AppleTalk service that best fits the message delivery 
needs of the simulator. I t  is AppleTalk's network level service, and is therefore low level and low 
overhead. The principle drawback of DDP is its maxlmum message size of 586 bytes. The 
simulator must allocate a DDP socket (analogous to a UDP port), to which all messages are sent. 
However. unlike TCP/IP, AppleTalk pro1.1des a scrvlce that allows one to determine which sockets 
on which computers are assigned to which programs. By registering with the Name Binding 
Protocol (IU'BP), a simulator can advcnlse ~ t s  network address and socket number to other 
simulators on the network. Simulators still tn to get the same socket number so they can use 
broadcasting, but they can still locare and cooperate with one another even if they can't. 

Protocol Stabilit, and Reliability 

Support for a particular protocol is not enough. The software that provides this support must be 
relatively stable and bug free. An unstablc lmplcmentation may change each time the operating 
system is updated, causing previously working programs to fail. A bug-riddled implementation 
can lengthen software development time as work-arounds for the various bugs are developed. It 
can also halt development entirely if a crl~lcal service is not working. 



At the time this work was started, Apple was in the process of creating a new network firamework 
for MacBS. TCP/IP support, which had always been troublesome, had suffered greatly under this 
new framework, and there were numerous reports of bugs and unimplemented services. 

AppleTalk support was also fit into Apple's new network framework. However, Apple'ralk came 
off far better than TCP/IP, perhaps; because the AppleTalk software was simply ported to the new 
framework, while the TCP/IP software was largely rewritten from scratch. There were a few 
reported hugs, but none that affected services the simulator used. 

Why EtherTalk Was Selected 

The most important reasons for selecting EtherTalk were the availability of NBP and fears about 
the stability of TCP/IP. Using EtherTalk also allowed for some code reuse between the functions 
that comrr~unicated with the sound computer, and those that communicated with other simulators. 
Finally, an EtherTalk implementation allows simulators to proceed even though they cannot 
allocate the desired socket number, and does not need to use broadcasts to find other simulators. 
This is not of major importance in the isolated lab environment, but is much more robust in the 
office environment where simulatolr development and testing are done. 

TCPAP suffered primarily from a bugey implementation. There were also concerns about the 
procedures necessary to locate other s~mularors. While these procedures are unlikely to cause 
problems in the lab, they could cause problems in an office environment. 



How Should Simulators Be Coordinated? 

Coordination is the problem of synchronizing the starting and stopping of simulations on different 
simulators. Synchronization of the start of simulation is necessary to ensure that the elapsed times 
recorded by different simulators are comparable. Synchronization of the stopping of simulation 
relieves the experimenter of the task of stopping each simulation manually. 

The process of selecting a coordination method began by generating a careful definition of what it 
meant to be coordinated and how coordination was to be specified. Then, two promising 
coordination methods were selected. They were then compared on various performance measures 
and ease of implementation. One of the methods was then selected on the basis of t h ~ s  
comparison. 

How is Coordination Defined? 

To better define coordination, it is necessary to divide simulator operation into three states 
(Table 2), which the simulator moves between. 

Table 2. Simulator States 

The problem of coordination 1s therefore the problem of ensuring the simultaneous transition of 
s~mulaton from waitin,g,-to-run to running, and from running to stopped. In addition, some 
non~~multaneous transltlons need to bc allowed for as well. (e.g., a simulator that starts running 
a f t :  all the others and stops before they do.) 

State 
Stopped 
Waltlng-to-run 

R u n n i n l  

To control coordination of transltlonh bcrwecn thcse states, a simple scheme was developed. Four 
propcnics were defined. of uhlch a slmularor may have all, none, or any subset. The user decides 
urhlch s~mulators have which propenlcs. and careful selection of whch simulators have which 
propcnics can produce practically any dchlrcd bcha~.ior. The properties and how they affect 
transitions follow (Table 3). 

Description 
The simulator IS not runnlncg 11s simulation. 
The simulator wlshes to run its simulation, but is waiting until other 
simulators are either waiting to run or running their simulations. 
The simulator 1s runnln; 11s simulation. 

Tahlc 3 Tr~n\ttlon Properties 

Propen\ 
Stan Independence 

Start veto 

Stop Independence 

Stop conrrol 

Descnpr~on 
The s~mulctror ~mnlcdl~lcl! mdc4 the transition from waitin?-to-run 
to running upon bc~nc told ro do so by the user. 
The simulator proh1b1t4 orhcr s~mulators which do not have start 
independence from mctklng the transition from waitine-to-run to 
running un t i l  t h c  {irnulator I \  waitinz-to-run or running. 
The s~mularor makc\ rnc rrun4lrion from running to s tou~ed only 
when told to do \o h\ rhc u + c r .  
The slmularor torcc\ othcr s~rnuiators which do not have stop 
independence and Jrc running lo immediately make the transition to 
stopped uhcn rhc \~mularor makes the transition from running to 
stopped. 



In most cases, all simulators will start and stop their simulations simultaneously, and therefore all 
simulators will have start veto and stop control and, no simulators will have start independence or 
stop independence. A simulator that starts its simulation before other simulators needs !;tart 
independence. A simulator that starts its simulation after other simulators should not have start 
veto. A simulator that stops its silmulation after other simulators needs stop independenlce. A 
simulator that stops its simulation before other simulators should not have stop control. 

Deciding when a simulator starts running its simulation is simple. A simulator makes the transition 
from stormed to waiting-to-run when the user tells it to start its simulation. If the simulator has 
start independence it immediately makes the transition from waitinz-to-run to running. Otherwise, 
a check is done to see if any other simulators have start veto. If none do, or if all that do are 
waiting-to-run or running, the sirn~ulator makes the transition from waiting-to-run to running. 
Otherwise, the simulator waits until the preceding condition is satisfied. 

Deciding when a simulator stops running its simulation is also simple. A simulator always makes 
the transition from running to stopped if told to do so by the user. If a simulator does not have 
stop independence it must also monitor the states of other simulators. If it sees a simulator with 
stop control make the transition friom running to stopped, then it also makes the transitia~n from 
running to s t o ~ p e d .  

Central ized versus Distributed Coordination 

The problem of coordination is then one of ensuring that state transitions that should be 
simultaneous are s~rnultaneous (or nearly so). Two coordination methods were considered: 
centralized coordination and distrihuted coordination. 

Centralized coordination is, on the surface, the simplest solution. A single simulator is the master, 
and all the remaining simulators are slaves. Simulators make the transition from stopped to 
urai ting-to-run when told to do so by the user. but only make transitions from waiting-to-run to 
running and running to stouped when told to do so by the master. Simultaneity is achieved 
through broadcasted messages from the master order~ng state changes for one or more s.imulators. 

Distributed coordination is more complex. Each s~mulator is responsible for deciding for itself 
when to change state. Simularoril make thc transitions from stopped to waiting-to-run and from 
running to stopped when told to do so bit the user. Simulators also broadcast their state changes to 
the rest of the simulators so that each s~mulator is aware of the current state of the others. Each 
simulator uses this information to detcrm~nc when to make the transition from waiting-to-run to 
runnlng, 2nd whether i t  should make thc transltlon from running to stouped. Simultaneity is 
ach~eved b)' the broadcasted changc of sratc rncils2,rcs. 

Performance and  implementation 

Centralized and distributed coordlriat~on achicvc thc same ends by two very different means. The 
choice between them was made on rtlc bail]\ of how well they did theirjob, how much network 
load they generated, and how much proframmlnf cffon would be required. To this end, the two 
approaches were compared in threc arc&(: s~multanclty of state transitions, network traffic 
generated, and ease of implementation 

The maxlrnum time difference betwccn 1n.o "simultaneous" stare transitions is the same for either 
centralized or distributed coordination. ~llthouph the variance in time difference is slightly higher 
for the distributed case. This is becau~c In both cases the state transitions are in response to a 
broadcasted message. Simulators check for new messages once each frame and there arc 30 
frames per second, so each simulator u,ill see the message and perform the state transition within 
1130th of a second (assuming message scnd tlme is negligible). With centralized coordin~ation the 



state transitions occur randomly throughout the 1130th-of-a-second interval. With distributed 
coordination one of the state transitions occurs at the beginning of the interval, and the remaining 
occur randomly throughout, resulting in slightly more variance in the time difference between state 
transitions. 

The total network traffic is somewhat greater for centralized coordination than it is for distributed 
coordination. However, centralized coordination generates fewer broadcasted messages, so most 
simulators have fewer messages to process. This is because the only broadcasted messages with 
centralized control are those ordering state transitions, while with distributed control all state 
transitions result in a broadcasted message. Since each broadcast from the master can order more 
than one state transition, centralized coordination has fewer broadcasts, and slaves will process 
fewer messages than they would with distributed coordination. Centralized coordination produces 
more messages, however, because change of state messages are still sent, but only the master must 
process them. 

Centralized coordination is significantly more difficult to implement than distributed coordination. 
The first problem is selecting the master, and informing all the slaves who the master is. The 
master must check for messages constantly, so any lengthy operation must be interrupted 
regularly. Finally, there must be two procedures developed for determining state changes: one for 
the master and one for the slaves. With distributed coordination all simulators use the same 
procedure to determine state changes. Furthermore, this procedure is easier to implement than the 
procedure for the master simulator, since i t  must decide for only one simulator instead of every 
simulator. 

U'hy Distributed Coordination Was Selected 

The primary reason for selecting distributed coordination was ease of implementation. The greater 
variance in time difference between simultaneous state transitions was of some concern, but it was 
deemed smdl  enough to be acceptable. The Increase in message broadcasts was not considered 
significant, since they only occur at state transit~ons. and state transitions are relatively rare. 

Centralized coordination was judged to be too difficult to implement. Since software development 
was expected to be the major expense (both in time and money) for this project, anything that 
would make software development more difficult would have to be justified by significant 
performance advantages. Centralized coordination had no significant performance advantages. 



How Should the Position of Vehicles Be Tracked? 

Tracking is the problem of a simulator knowing at all times the current position of not only its own 
vehicle, but of the vehicles of other simulators as well. Without this information, each :simulator 
would be unable to display these vehicles in its view of the world, and users of the simulator 
would be unable to interact with them. 

The principle problem in tracking the position of another simulator's vehicle is that a sinnulator may 
only know where the vehicle was, not where i t  is. As time passes, knowing where the vehicle was 
is less and less helphl because i t  has almost certainly moved and is now somewhere else. 
Tracking, then, comes down to the problem of using what is known about where a vehicle was to 
determine where it is, at least in alpproximation. 

The process of selecting a tracking method began by identifying two tracking methods c,ommonly 
used in distributed simulations. These were then compared on the basis of several performance 
measures and ease of implementation. One was then selected. 

Continuous Updates versus Dead Reckoning 

Either of the two general approaches commonly used in distributed simulations for tracking vehicle 
position, continuous updates and dead reckoning, could be easily adapted for use with the UMTRI 
driving simulator. Continuous updates operates on the principle that if where a vehicle ,was just a 
verv short time ago is known, then the difference between where it was and where it is too small to 
maiter. Once each frame, immediately after the simulator has updated a vehicle's position, the 
simulator broadcasts the new position to every other simulator. The position of other simulator's 
vehicles is taken to be their most recently reported position. 

Dead reckoning operates on the principle that i f  one knows where the vehicle was and which 
direction the vehicle was going. one can make a good estimate of where the vehicle is. Each 
simulator not only calculates the current position of its vehicle, but also an estimated position. 
Li'hcn the distance between the actual and estimated positions exceeds some threshold, the 
simulator broadcasts a message that contains not only the vehicle's actual position, but d.ynamics 
informarlon such as speed, acceleration. head~ng, turn rate, etc. All simulators (includin,g the one 
that sent the message) use this informar~on 10 estlmate the current position of the vehicle. 

Performance and Implementation 

Both continuous updates and dead reckonrng have been used successfully in other programs. 
Continuous updates is used by most multlplayer action games (e.g., Doom.) Dead reck~oning is 
used In Distributed Interactive Simulation IDIS 1. thc d~stributed simulation standard developed and 
wed by the US military. To evaluclre altcmat~ve approaches for tracking vehicles for usr: with the 
UMTRI clri\g~ng simulator, they were comparcd i n  four areas: network load, processor load, how 
smoothly vehicles appear to move, and ~niplcmentatron. 

Continuous updates generates a much higher nctwork load than dead reckoning. Continuous 
updates requlre each simulator broadcasl once each frame. or 30 times a second. Dead rleckoning 
broadcasts longer messages, but usual1 only has to do so a few times a second. Approximate 
message slze can be computed to gct II fccl Tor the difference in network load. Both met.hods have 
to send messages containing a five-byte DDP header plus 16 bytes for vehicle position and 
heading. In  addition, dead reckonln~ must send speed. acceleration, and turn rate values, all 4- 
byte quantities. Therefore, continuous updates sends 2 1 -byte messages versus 33-byte messages 
for dead reckoning. Since dead reckoning was expected to reduce the number of messages by a 
factor of a least five, it reduces network load significantly over continuous updates. 



Whether continuous updates or dead reckoning causes a greater load on the processor is uncertain. 
Continuous updates require no computation to determine the position of other simulator's vehicles, 
while dead reckoning requires that a new estimated position be computed each frame. However, 
continuous updates requires the processing of far more messages, each requiring processor time. 

The apparent movement of vehicles is not as smooth with continuous updates as it is with dead 
reckoning. Simulator frame rates vary somewhat, and frames are not synchronized between 
simulators. Therefore, with continuous updates a simulator may not receive any position updates 
from another simulator during one frame and could receive two updates during the next frame. 
The result is an apparent "freeze" in the motion of the vehcle, followed by a "jump." With dead 
reckoning the estimated position of the vehicle is calculated for each frame and thus appears to 
move smoothly. There is some danger of a discontinuity when a new position update is sent out, 
but this is minimized by sending out position updates before the error in estimated position gets 
large. 

The continuous updates approach is easier to implement than dead reckoning. A continuous 
updates approach only requires that position updates be broadcast each frame and that the most 
recently updated positions be used for each vehicle. Dead reckoning requires dynamic information 
be sent with each position update. Further, each frame the position of each vehicle must be 
estimated. A simulator must also compare the estimated position of its vehicle with the actual 
position calculated from the dynamics model, and send out updates if the estimated position is too 
far off. 

Why Dead Reckoning \.!'as Selected 

The primary reasons for selecting dead reckoning were reduced network load and smoother 
movemen[. a critical characterist~c i f  useful data on driver performance and behavior is to be 
obtained. The added implementation effon was deemed justified in light of these advantages. 

Continuous updates was expected to use too much network bandwidth. This was seen as 
espec~liliy critical early in developmcni. before i t  became clear how much bandwidth was available 
and hou, much message traffic each s~mulator could handle. 



Summary 

The need to study the interaction between multiple vehicles, especially for collision avoidance 
research, prompted the development of a networked version of the UMTRI Driving Sirriulator. In 
this version, simulators running on separate computers connected by a network interact to produce 
the illusion of a single simulation involving multiple vehicles. 

In producing this version, problems faced included what network and protocol to use, how to 
coordinate the simulators, and how simulators were to track the vehicles of other simulators. 
Several solutions were considered for each of these problems. Choices were made with an eye 
towards performance, flexibility, and ease of implementation. The solutions chosen were: 

10Base-T Ethernet using AppleTalk protocol 

distributed coordination 

dead reckoning 

The networked simulator has been i n  operation since fall 1995. The simulator has work.ed well, 
both on the isolated network in the simulator laboratory and on the office network where: there is a 
great deal of other traffic (where development takes place.) This experience validates the choices 
made. 



Future Developments 

Since network upgrade began there have been several changes to the Macintosh operating system, 
and with Apple Computer itself, which may affect future work. 

Multiple-vehicle trafic simulator. While allowing the main simulator to simulate more than one 
vehicle was originally considered as an alternative to a networked simulator, the idea was 
rejected because of processor load concerns. However, future upgrades will allow any 
simulator to simulate multiple vehicles. A primary concern is cost reduction: the number of 
computers needed is no longer equal to the number of vehicles. The restrictions on multiple 
vehicle simulators mentioned above still apply: only one vehicle's view may be displayed, and 
all but one vehicle must be on automatic pilot. Rarely is more than one manually controlled 
vehicle needed. 

Open Transport. When this latest simulator upgrade began Apple was in the process of 
replacing its network framework with Open Transport. Open Transport was not used for the 
simulator because it was considered unstable. It has now stabilized, and if this project had 
been started in 1997 instead of 1995, Open Transport would have been used instead of the 
"classic" Macintosh networking. 

Apple's new operating system. At the end of 1996, Apple Computer acquired NeXT Inc., and 
announced plans to produce a new Macintosh operating system based on NeXT's OpenStep. 
OpenStep is Unix-based and comes with a TCP/IP stack, but does not currently support 
AppleTalk. An AppleTalk stack is supposed to be ready by the time the new operating system 
ships, but given the time constraints i t  is doubtful the AppleTalk stack will be reliable, if it 
ships on time. These concerns about future AppleTalk support might have led to a decision to 
use TCPJIP for a network protocol. 
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