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i 

Abstract 

Which brain regions become selectively sensitive to phonological versus morphological 

manipulations as a factor of reading in Chinese? In order to answer this question, we investigated 

the brain bases of morphological awareness in connection with phonological and orthographic 

processing as all three are foundational for reading in Chinese. Unlike reading in alphabetic 

languages, such as English, reading in Chinese requires greater morpho-phonological processing. 

Native Chinese adults (N = 15, ages 19 - 28) completed phonological, morphological, and verbal 

word control judgment tasks during fMRI imaging. Neuroimaging results revealed five main 

regions of interest: left ventral IFG, dorsal IFG, Insular, Parietal, and MTG. The left vIFG and 

dIFG showed activation across both morphological and phonological awareness tasks. The 

remaining three ROIs showed task-specific differences: insular activated by phonology, MTG 

activated by morphology, and parietal activated by orthography. Exploration of the left STG 

region was conducted, revealing higher activation during morphological processing. Relative to 

alphabetic readers, Chinese readers showed a higher degree of neurological overlap with greater 

activation in the left posterior temporal regions during morphological awareness and in the left 

frontal regions during phonological awareness. The findings offer new insight for developing a 

comprehensive model of the brain bases that support reading across languages. 

 

Key words: Chinese literacy, morphological awareness, phonological awareness, reading 
acquisition 
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Introduction 

Proficient literacy requires rapid recognition of sounds and meanings in print (C. Perfetti, 

Cao, & Booth, 2013). Not surprisingly, literacy research consistently finds that individuals’ 

phonological and morphological awareness abilities, the ability to actively manipulate the units 

of sound and meaning (respectively), are the fundamental components of word reading fluency 

(Deacon, Chen, Luo, & Ramirez, 2013; Ziegler & Goswami, 2005). Phonemes are the smallest 

units of sound and morphemes are the smallest units of meaning; metalinguistic awareness is our 

ability to actively manipulate these units (Geva & Wang, 2001). Research into phonological 

awareness in alphabetic languages like English has provided a consistent link between 

phonological awareness and functionality of the left superior temporal region, STG (Pugh et al., 

2013). This link remains largely unclear for phonological awareness in Chinese (Brennan, Cao, 

Pedroarena-Leal, Mcnorgan, & Booth, 2013; Siok, Niu, Jin, Perfetti, & Tan, 2008).  

Moreover, little is known about the brain bases of morphological awareness for learning 

to read across languages, including Chinese (L. Liu et al., 2013). Newly emerging evidence 

suggests a tighter interconnection between phonological and morphological awareness abilities 

in Chinese than in English (Zhao et al., 2014). Therefore, a comparison of morphological and 

phonological awareness within fluent Chinese readers should not only illuminate the lesser 

known component of literacy, morphological awareness, but also disambiguate the link between 

left STG functioning and Chinese literacy. We hypothesized that the salience and the high 

predictability with which Chinese morpho-syllabic units map onto characters should result in 

significant left STG activation during morphological awareness as compared to a verbal word 

control task and possibly even as compared to phonological awareness. To test this hypothesis, 

we asked proficient adult Chinese readers to complete tasks of morphological and phonological 
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awareness across both auditory and visual modalities during functional Magnetic Resonance 

Imaging (fMRI).  

There is now a wealth of evidence supporting the critical contributions of phonological 

and morphological language abilities towards proficient reading processing across orthographies 

(Carlisle & Stone, 2003; Deacon et al., 2007; Geva & Wang, 2001; Ziegler & Goswami, 2005). 

However, disproportionately more is known about the brain bases of phonological awareness. To 

uncover these brain bases, neuroimaging studies often use rhyme judgment tasks that require 

individuals to segment the word into constituent units and decide if those units sound the same or 

not (e.g., cat-hat rhyme and dog-table do not). The left STG region has become prominent in 

phonological awareness inquiry since this region is known to support phonological processing 

across spoken and sign languages (Petitto, Holowka, Sergio, & Ostry, 2001). Using rhyme and 

similar phonological awareness tasks, alphabetic language studies generally find the left STG 

region active in typical readers (Kovelman et al., 2012). Conversely, left STG gray matter 

volume is thinner and hypoactive in readers with dyslexia who display phonology-related 

reading deficits (Hoeft et al., 2007).   

Yet, the few studies of phonological awareness and dyslexia in Chinese have not found 

reduced levels of gray matter volume or activation in the left STG of readers with dyslexia (Siok 

et al., 2009). Importantly, comparisons between English speaking adults and children have 

revealed an increase in left STG activation in older and more proficient readers. This type of 

increase in activation is not found for Chinese readers (Brennan et al., 2013; Cao, Brennan, & 

Booth, 2015), suggesting that the left STG region undergoes an orthography-specific adaptation. 

It is important to note however, that orthographic characteristics of Chinese take root in Chinese 

language structure. 
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In speech and in print, English syllables can be meaningful (e.g., -er and player) or 

meaningless (e.g., –er in flower). In Chinese, however, most syllables are meaningful 

morphemes, often with multiple possible meanings, and often mapping onto meaning-related 

characters (e.g. “��  (érzi)” = son −“�� (tùzi)” = rabbit) (C. A. Perfetti, Liu, & Tan, 2005). 

In considering these spoken and orthographic characteristics of Chinese, it is logical that 

morphological awareness makes a powerful, early-emerging, and long-lasting contribution to 

Chinese literacy (Pan et al., 2015). Unfortunately, little is known about the brain bases of 

morphological awareness in Chinese or other languages in both the spoken and written 

modalities (Arredondo, Ip, Shih Ju Hsu, Tardif, & Kovelman, 2015; L. Liu et al., 2013). The 

study by Arredondo et al. (2015) suggests both overlapping (IFG [BA 45]) as well as distinct 

neurological bases for phonological and morphological awareness in English (ventral IFG [BA 

47]). This pattern of activation is typical of phonological versus semantic word processing. 

Intriguingly, newly emerging work with Chinese suggests that this overlap might be greater for 

Chinese speakers (Zhao et al., 2014; Zou, Packard, Xia, Liu, & Shu, 2016). This is consistent 

with both theoretical and empirical research findings that relative to English speakers, Chinese 

speakers form stronger sound-to-print associations in addition to having stronger meaning-to-

print associations (C. A. Perfetti et al., 2005).  

In sum, morphemes are a salient unit of both spoken and orthographic processing in 

Chinese, with stronger links to phonological and orthographic representations in Chinese than in 

English (Guan, Perfetti, & Meng, 2015). Theoretical frameworks aiming to explain learning to 

read across orthographies emphasize the importance of morpho-phonological processing. The 

variation in how morphological and phonological processing relate to each other across 

languages is foundational in understanding the universal principles of orthographic processing 
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(Frost, 2012). Theoretical frameworks aiming to explain language organization in the brain 

further suggest that left posterior temporal regions, including superior and middle temporal 

regions, are especially sensitive to abstract linguistic representations of word sounds and 

meanings (Hickok & Poeppel, 2007). Finally, the morphological awareness neuroimaging study 

by Arredondo et al. (2015) finds significant correlation between participants’ phonological 

awareness ability and brain activation during morphological awareness in the left STG region. 

This finding suggests the left STG region is multifunctional in supporting children’s 

improvement in phonological and morphological abilities for learning to read. We ask would it 

then be possible that morphological awareness tasks in Chinese are more effective at eliciting left 

STG activations. 

Prior studies have examined the degree of neurological overlap between morphological, 

orthographic, and phonological processing with mixed results. Devlin et al. (2004) asked 

participants to match a presented word to one of two choices and to read presented words out 

loud. It was found that every English reader showed overlap between morphological, 

orthographic, and semantic processing (Devlin, Jamison, Matthews, & Gonnerman, 2004). This 

finding is significant because it indicates morphological processing is convergent with form and 

meaning rather than a separate network of processing. In contrast, studies conducted by Bick et 

al. (2008; 2010) with adult Hebrew readers have suggested morphological and phonological 

processing occur independent of each other. Participants completed five tests measuring 

phonological, morphological, orthographic, and semantic processing skills plus a visual control 

task in which they determined whether two lines were the same or not. During these tasks 

participants were required to judge whether two words rhymed, were derived from the same root, 

looked the same, or were related in meaning (Bick, Goelman, & Frost, 2008). Bick et al. (2010) 
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tested the same abilities, but looked at them implicitly through tasks involving phonologically-, 

morphologically-, orthographically-, and semantically-related primes. Participants indicated 

whether a letter string was an existing Hebrew word following a prime. Both studies found 

Hebrew readers engage separate brain regions during morphological processing that are 

independent from the neural bases responsible for orthographic and phonological processing 

(Bick et al., 2008; Bick, Frost, & Goelman, 2010).  This finding is significant because it suggests 

that depending on language structure, readers may engage brain regions differently.   

Studies conducted on adult Chinese readers have revealed a greater degree of 

neurological overlap for morphological, phonological, and orthographic processing than 

observed in English readers. More specifically, when Chinese adult readers were tested on 

phonological and semantic processing, both tasks recruited similar brain regions in the left 

hemisphere indicating an even divide in labor during reading. This is unlike in English, where 

readers showed a greater division in brain activation depending on semantic or phonological 

processing demands (Zhao et al., 2014). Furthermore, adult Chinese readers who were asked to 

judge whether the first syllable of two stimuli were the same following morphemic, 

orthographic, or both morpho-orthographic manipulations showed considerable overlap in 

neurological activation across all conditions (Zou et al., 2016). These findings support the 

significance of the tight relationship between sound-and-meaning along with meaning-and-print 

in Chinese as compared to English. In sum, the language structure of Chinese leads to overlap in 

neural networks during morphological and phonological processing. The question of which brain 

regions become selectively sensitive to phonological versus morphological manipulations and to 

what degree as a factor of reading in Chinese remains generally unknown leading to the present 

investigation. 
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The present study examined the brain bases of phonological and morphological 

awareness in Chinese to illuminate the impact of learning a morphology-salient language on 

individuals’ neural organization for lexical processing. A key feature of this study was the use of 

phonological and morphological awareness tasks that were modeled after measures typically 

used with young Chinese-speaking children to predict their gains in learning to read and 

dyslexia. This was done to offer evidence that could inform theories aiming to explain literacy 

and learning to read across orthographies.  

We hypothesized that both morphological and phonological awareness tasks in Chinese 

would engage similar brain regions (Zhao et al., 2014), but that these regions would be 

differentially affected by the salience and degree of language-to-print predictability offered by 

morphological versus phonological information. To test this hypothesis, we asked proficient 

Chinese adult readers to complete tasks of morphological and phonological awareness, as well as 

a control word-matching task. All tasks were presented in both the auditory and visual 

modalities. First, we predicted that proficient morphological processing, the processing that has 

its focus on syllabic processing with the greatest language-to-print predictability in Chinese, 

should be associated with greater activation in regions typically associated with more automated 

and rule-governed language-to-print associations, especially left posterior temporal regions 

(Meschyan & Hernandez, 2006; Paulesu et al., 2000). Second, we predicted that proficient 

phonological processing, the processing that has lesser language-to-print predictability in 

Chinese, should engage greater activation in left frontal regions typically associated with 

analytically-complex language-to-print assembly (Das, Padakannaya, Pugh, & Singh, 2011; Siok 

et al., 2008).   
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The study used fMRI imaging of Chinese adults. Participants performed behavioral and 

in-scanner tasks designed to measure their morphological and phonological awareness, reading 

proficiency, and mastery of Mandarin. Unlike previous studies which used lexical judgment 

tasks (L. Liu et al., 2013; Zhao et al., 2014; Zou et al., 2016), we chose to use morphological 

awareness tasks modeled after those used by child literacy studies, including those used to 

identify dyslexia in preliterate children (Newman, Tardif, Huang, & Shu, 2011). During the 

phonological awareness task, participants saw or heard two words and decided if they rhymed or 

not (modeled after Liu et al., 2009). During the morphological awareness task, participants saw 

or heard two words. The first word was a real compound word and the second word was a 

similar but novel compound word that either confirmed or violated the structural constraints of 

morphological compounding in Mandarin (modeled after developmental tasks that presented 

children with a compound word and then asked them to produce a novel compound word that 

was similar to the first one; McBride-Chang et al., 2003; pilot work with 60 Chinese-speaking 

children ages 6-12 showed that the task is a significant predictor of children’s literacy after 

controlling for age, phonological awareness, and vocabulary; Hsu et al., under review). During 

the control task, participants saw or heard two words and decided if the words were the same, 

thereby engaging phonological and lexicosemantic word processing, but without the additional 

phonological or morphological manipulations.  

Methods 

Participants 

           Fifteen right-handed, neurotypical adult native speakers of Chinese (7 females; mean age 

= 23.60 years; standard deviation [SD] = 2.92; age range = 19 - 28) participated in the study. The 

participants were international students from China studying in the United States for a bachelor’s 
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or master’s degree and had lived in the US for 2-5 years at the time of testing. The participants 

were born, raised, and educated in China. All participants completed a background screening 

questionnaire in which they reported being highly proficient in Chinese without a history of 

language, literacy, or hearing impairments. Participants also completed behavioral measures 

(detailed below) that confirmed the normative levels of participants’ Chinese proficiency. All 

participants reported having high to moderate levels of English speaking, reading and writing 

fluency. One participant failed to complete the entire experiment and therefore only 14 

participants were used for subsequent data analyses. 

Behavioral Measures 

All participants completed published experimental measures of literacy, language and 

cognitive abilities in Chinese. These included: 

Morphological awareness. Participants completed a Morphological Construction task 

that had been used in a previous study (McBride-Chang et al., 2003; total items= 20). 

Participants were required to combine known morphemes in new ways (e.g., If a ball made from 

snow is called “snowball” /xue1qiu2/, what would a ball made from mud be called? The correct 

answer would be “mudball” /ni2qiu2/). The maximum score for this test was 30. 

Phonological awareness. Participants completed the Chinese phoneme deletion task 

(Newman et al., 2011; total items= 54) that was adapted from the elision subtest of the 

Comprehensive Test of Phonological Processing (CTOPP). Participants were asked to pronounce 

a word while omitting a phonetic unit from a word, starting with simple items such as syllables 

and then moving to smaller phonetic units with greater complexity and different positioning 

within the word (e.g., /xi1gua1/, meaning watermelon, without /xi1/ would be gua1/). The 

maximum score for this test was 48. 
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Reading fluency. The reading fluency task was modeled after a previous study (Lei et al., 

2011; total items= 90) whereby participants were asked to read as many sentences as possible 

within 3 minutes while indicating if the sentence was correct or incorrect. The maximum score 

for this test was 98. Scores from this task were used as an indication of the participants’ level of 

proficiency in Mandarin. Higher score indicated better performance.  

Digit Span. Participants completed forward and backward digit span from the Chinese 

Wechsler Adult Intelligence Scale–Revised in China (WAIS-RC; Gong, 1992). Forward digit 

span measures attention and concentration. Participants were asked to orally repeat digit 

sequences of increasing length in the same order that the experimenter presented them. 

Backward digit span measures short-term working memory. Participants were asked to orally 

repeat digit sequences of increasing length in the reversed order that the experimenter presented 

them. This task was scored by number of digits correctly repeated in the forward and backward 

sequence. Higher score indicated better performance.  

fMRI Tasks  

During neuroimaging, participants completed tasks of morphological awareness, 

phonological awareness as well as verbal and perceptual control conditions. Each condition 

included auditory and visual trial types. During the auditory trials, participants heard two words 

or two tones, during the visual trials participants saw two words or line stimuli.  

Morphological awareness. Participants completed a Chinese compound morphology task 

which was modeled after the Chinese Morphological Construction task previously shown to 

predict reading acquisition in Chinese (McBride-Chang et al., 2003). During this condition, 

participants heard or saw two words consecutively. The first word was a real word [e.g., “��” 

(sick-man) or “��” (snow-man)]; while the second word was a pseudoword that resembled the 
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first real word and either confirmed [e.g., “��” (sick-flower)] or violated [e.g.,“��” (cat-

snow)] the structural constraints of morphological compounding in Mandarin. Participants were 

instructed to indicate as quickly and as accurately as possible via button press whether the 

pseudoword was “good” or “bad” (i.e. whether it confirmed or violated morphological 

constraints). For instance, “��” (sick-man) - “��” (sick-flower) is acceptable because the 

two morphemes were arranged such that the morpheme “�” (sick) can modify the noun “�” 

(flower); conversely for “��” (snow-man) -“��” (cat-snow) word pair, “��” (cat-snow) 

is unacceptable because the arrangement of the two morphemes is ungrammatical. The words in 

this condition had an average of 2.6 ± 0.5 syllables, 7.2 ± 1.6 phonemes, 2.6 ± 0.5 characters, and 

20.9 ± 6.3 strokes.  

  Phonological awareness. Participants completed a rhyme judgment task during which 

they either heard or saw two words consecutively and were instructed to respond as quickly and 

as accurately as possible with a button press indicating whether the two words rhymed or not 

based on the last character (e.g., “�� (yin1hang2)” - “�� (xin1lang2)” = rhyme; “
� 

(da2gu3)” - “�� (tou2fa3)” = do not rhyme) (L. Liu et al., 2009). The words in this condition 

had an average of 2.0 ± 0 syllables, 5.9 ± 0.8 phonemes, 2.0 ± 0 characters, and 17.7 ± 4.2 

strokes.  

 Verbal Control Word-Match. During the verbal control condition, participants either 

heard or saw two words, consecutively, and decided if the words were the same or different (e.g. 

“	� (jia1xiang1)” - “	� (jia1xiang1)” = same; “�� (hai3dai4)” - “�
 (di4qiu2)” = 

different). Similar to the morphological and phonological awareness conditions, the participants 

had to make a judgment about the two words. Unlike the morphological and phonological 

awareness conditions, the control condition did not require any additional manipulation upon the 
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words’ morphemic or phonemic units. We created two versions of the verbal control task, one to 

match the morphological awareness stimuli and one to match the phonological awareness 

stimuli. This was done because the morphological awareness words were significantly longer 

than the phonological awareness words. The control condition that matched the morphological 

stimuli included an average of 2.6 ± 0.5 syllables, 7.4 ± 1.9 phonemes, 2.6 ± 0.5 characters, and 

20.2 ± 6.6 strokes. The control condition that matched the phonological stimuli included an 

average of 2.0 ± 0 syllables, 5.6 ± 0.8 phonemes, 2.0 ± 0 characters, and 16.8 ± 4.3 strokes.  

Note that as can be seen in Table 1, although the morphological awareness words were 

longer, participants were more accurate and took less time to complete morphological than 

phonological awareness judgment tasks. See Appendix 1 for a complete listing of experimental 

word stimuli.  

 Procedure. Prior to neuroimaging, participants completed practice trials of the 

experimental measures (with words that differed from in-scanner word stimuli). Participants 

were asked to respond as quickly and as accurately as possible with a button press. The study 

used a block design, with 12 blocks per condition, with auditory and visual trials separated 

between blocks, resulting in 6 blocks per modality per condition. For instance, there were 12 

blocks of morphology, 6 of which were auditory and 6 of which were visual. Each 24s block 

included 6 trials. Within each 4s trial, the first word was presented at the beginning of the trial, 

followed by the second word after 1.5s, then followed by a question mark. There was a 20s rest 

period between each experimental block and during this rest period participants saw a white 

fixation cross on a black background.  

 The participants completed four experimental runs: visual morphology, auditory 

morphology, visual phonology, and auditory phonology. Each run included the experimental 
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task, a verbal control task of the same modality, plus a perceptual filler condition to optimize the 

hemodynamic response (during the visual filler condition participants saw an array of lines and 

decided if those were the same or different; during the auditory filler condition participant heard 

two tones and decided if those were the same or different). For example, the visual morphology 

run included blocks of visual morphology, visual verbal control and visual perceptual filler 

condition. The order of the blocks was randomized within each run and preceded by a 2s 

reminder of the type of block the participants were about to complete (e.g., “rhyme judgment 

now”) as well as a specific background color for the 4 types of tasks (phonology, morphology, 

verbal control, fillers). Finally, the order of the runs was randomized across participants. 

fMRI Data Acquisition and Analyses 

fMRI Data Acquisition & Processing. All fMRI images were collected on a 3-T GE 

MR750 scanner with an 8HRBRAIN head coil (General Electric, Milwaukee, WI). Functional 

T2*images that were acquired using a reverse spiral sequence (43 mm slices, 64 x64 resolution) 

were then captured (TR = 2000 ms, TE = 30 ms, FA = 90°, FOV= 22 cm). Anatomical images 

were acquired using a 3D BRAVO Sequence echo image (TR = 12.2 ms, TE = 5.2 ms, TI = 500 

ms, FA = 15°, FOV = 26 cm, 1.2mm slice thickness, 124 axial slices). 

SPM8 (Wellcome Department of Cognitive Neurology, London, UK), implemented in 

Matlab R2012a (matworks Inc, Sherborn, MA) was used for standard pre-processing and 

statistical analyses. Pre-processing included slice timing correction, realignment, co-registration 

of the anatomical to the functional images, normalization of the images to the SPM template in 

MNI space, and smoothing with an 8 mm FWHM Gaussian kernel (see Weng, Xiao, & Xie, 

2011 for further details). Each subject's data were high-pass filtered at 128s. 
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fMRI Data Analyses. Each subject’s data was then analyzed using a fixed-effects model 

that included morphology and control conditions as the two factors. For each participant, BOLD 

impulse response was then modeled using the dual-gamma canonical hemodynamic response 

function.  Statistical images for the following contrasts were generated for each condition, 

including condition > verbal control and condition > resting baseline contrasts. Second-level 

analyses were performed to obtain group-level contrast images, which were then examined using 

one-sample t-tests for whole-brain activations at FDR-corrected threshold of p < 0.001 and 

extent threshold (ET) of > 25 voxels. The main effects of morphology versus phonology were 

examined using a 2 X 2 ANOVA with condition > verbal control contrasts, thresholded at p < 

0.001 and extent threshold (ET) of >25 voxels, uncorrected for multiple comparisons.  

ROI Extraction. We used MarsBaR toolbox (Brett, Anton, Valabregue, & Poline, 2002) 

in SPM8 to create 8-mm spheres. We extracted these regions’ beta values from the experimental 

conditions > verbal control contrasts for each task in each modality as these contrasts were most 

conservative in terms of revealing the brain activations for morphological and phonological 

awareness that were incurred by these tasks over and above the typical word processing 

requirements. During ROI extraction, the data was normalized using a hemodynamic response 

function and the temporal derivate to extract the percent signal change of contrast images (see 

http://marsbar.sourceforge.net/ for more details).  

ROI Identification & Analyses: Conjunction Analyses and ANOVA with a Mask. Our a-

prior hypotheses included semantic regions of vIFG and MTG as well as phonological regions of 

dIFG and STG. Given that our hypothesis was that all four regions should be active during the 

phonology and morphology tasks, but possibly differentially so across those tasks, we used two 

approaches to identifying those regions. The first was the conjunction analysis and the second 
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was a 2 X 2 ANOVA that included a mask for common activations between the two tasks.  

Conjunction Analysis. For the conjunction analysis we used task > control contrasts for 

each of the four experimental conditions, thresholded at p < 0.005 with an extent threshold > 

150.  

ANOVA with a Mask. The 2 X 2 ANOVA included task > resting baseline contrasts for 

each of the four conditions. First we created a mask of common regions of activation. To 

uncover regions that were common to the four conditions but selectively modulated by either 

morphology or phonology we conducted the subsequent main effect of task and condition 

analyses with the use of the mask.  The mask was thresholded at p < 0.001 uncorrected and the 

contrasts were further thresholded at p < 0.01 uncorrected, extent threshold > 25.   

Morphological and Phonological Exploratory Analysis. Our alternate plan for identifying 

the four ROI loci in case the above-mentioned methods of identifying study-specific ROIs 

should fail, was to use phonology-specific coordinates reported by Brennan et al. (2013) and 

morphology-specific coordinates reported by P. D. Liu et al. (2013). These studies were effective 

at identifying brain regions that changed (or failed to change, P. D. Liu et al., 2013) in 

functionality as a measure of learning to read in Chinese in typical development and dyslexia. 

Two types of analyses were conducted with the ROIs: 

(1) Main Effects of Conditions: 

Brain Bases of (a) Morphological and (b) Phonological Awareness. First we used a-prior 

t-tests to identify which of the four regions were significantly active during the experimental task 

relative to the control task (p < 0.05). 

(2) Brain-behavior correlations:  

Brain-behavior and front-temporal correlations. For regions that were significantly 
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active, we conducted brain-behavior correlations with in-scanner rhyme and morphological 

awareness RT values. We also conducted fronto-temporal correlations of the frontal (IFG, 

Insular) and temporal (MTG) regions to identify whether those would be significant for each 

task. Participants were either pursuing an undergraduate or master’s degree with native 

proficiency in the Chinese language. Consequently, a ceiling effect of task performance was 

observed and thus correlations could not be performed for behavioral tasks and in-scanner 

performance nor fronto-temporal regions.    

Results 

Main Effects of Conditions 

(a) Brain Bases of Morphological Awareness. The first step in our analyses was to 

investigate the brain bases of morphological awareness relative to the control condition. As can 

be seen in Figure 1, t-test comparisons for the morphological awareness minus the verbal control 

contrasts revealed greater left IFG activation during both auditory and visual conditions as well 

as greater left MTG activation for the auditory condition and greater left MFG and parietal 

activations for the visual condition (see Table 2 for the coordinate listings).  

(b) Brain Bases of Phonological Awareness. As can be seen in Figure 1, t-test 

comparisons for the phonological awareness minus the control contrasts revealed greater 

activations in left IFG, MFG and parietal across both auditory and visual conditions, as well as 

greater activation in MTG/STG and occipital-temporal regions during the visual condition (see 

Table 2).  

Brain Bases of Morphological Awareness relative to Phonological Awareness. In order to 

directly identify brain regions more specifically related to morphological relative to phonological 

awareness processes, we compared the two conditions using three 2 (morphology/phonology) X 
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2 (auditory/visual) repeated measures ANOVAs, one with task > control contrasts and one with 

task > resting baseline contrasts. Neither of the two analyses revealed any main significant 

effects of experimental task or interactions. Both analyses revealed the main effect of modality in 

left STG region (x = -50, y = -30, z = 12) for the task minus control comparison and in bilateral 

STG (x = 56, y -12, z = 4 and x = -46, y = -18, z = 4) and occipital (x = 18, y = -90, z = 0 and x = 

-44, y = -80, z = -4) regions for the task minus resting baseline comparison.  

In sum, matching our prediction regarding regions of neural activation during 

morphological awareness, the t-test revealed significant left temporal activations for the auditory 

morphology (regions typically associated with the retrieval of phonological and semantic 

representations; Hickok & Poeppel, 2007) but not the visual morphology condition. Further 

supporting our predictions, the t-test comparison also revealed a significant and extensive 

activation in the left frontal lobe during the visual phonology condition, especially the dorsal 

aspect of left IFG typically associated with phonological processing (Hickok & Poeppel, 2007). 

Frontal lobe activations appeared smaller during the visual morphology condition (Table 2). Yet, 

the 2 X 2 ANOVA comparison of the morphology and phonology conditions to each other did 

not reveal any significant differences. This corroborates our third prediction that the two 

conditions likely engage highly overlapping brain regions of the word processing network.  

ROI Identification: Conjunction Analysis and ANOVA with a Mask   

As specified in the methods section above, we used conjunction analysis and a 2 X 2 

ANOVA with a mask that was common to the phonology and morphology activations to identify 

the four regions of interest that would be common to the two tasks but yet differentially 

modulated by the two (Figure 2). 
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Conjunction ROIs.  Conjunction analysis revealed two ROIs that were common to all 

conditions, left dIFG and left Parietal (see above). Specifically, the left Parietal BA 7 (x = -30, y 

= -62, z = 38) showed greater activation during the visual morphology and phonology 

conditions, particularly phonology. The extracted parietal region of activation encompassed both 

inferior and superior parietal lobules. Concomitantly, the conjunction analysis across both 

auditory and visual morphology and phonology also revealed activation in the left dIFG BA 44-

46/9 (x = -46, y = 12, z = 24).  

 ANOVA with a Mask. The results from the mask revealed a main effect of task 

(morphology and phonology combined) in left vIFG BA 47 (x = -46 y = 38 z = 12). The results 

further revealed greater activation in the left posterior MTG region during morphological relative 

to phonological awareness (x = -66, y = -34, z = -6). Additional activation was revealed in the 

Insular region with greater activation during the phonological relative to the morphological 

awareness task (x = -38, y = 22, z = 4). 

ROI Analysis: Conjunction Analysis and ANOVA with a Mask   

In sum, the conjunction and the ANOVA analyses identified a total of 5 regions of 

significant activation: vIFG, dIFG, Insular, MTG and Parietal regions. Following the ROI 

extraction, we compared participants’ activation within each region using 2 

(morphology/phonology) X 2 (auditory/visual) repeated measures ANOVAs. 

Conjunction Analysis. In the left dIFG, participants showed activation across all four 

tasks. For the left parietal region, participants showed a main effect of modality for visual 

relative to auditory (F (1, 12) = 9.320, p = 0.01, effect size = .437). No significant interactions 

between task and modality for parietal and dIFG were observed. 
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ANOVA with a Mask. In the left vIFG, participants showed a main effect of condition 

indicating activation across all morphological tasks. In the Insular region, a marginal main effect 

of modality for visual relative to auditory was observed (F (1, 12) = 4.009, p = 0.07, effect size = 

.250). There were no significant interactions between task and modality for the left vIFG and the 

Insular regions. A significant interaction between task and modality was observed for the MTG 

region (F (1, 12) = 5.700, p = .034, effect size = .322; Figure 2). We followed up the significant 

interaction with Bonferroni post-hoc t-tests corrected for multiple comparisons in the MTG, 

which revealed that the auditory modality predominantly drives the interaction (t (12) = 2.581, p 

= 0.024).  

Strength of Activation in ROIs during morphological and phonological awareness tasks. 

As can be seen in Figure 1, participants had significantly greater activation during the 

morphology relative to the control condition in left vIFG (t (13) = 2.6, p = 0.02), and MTG (t 

(13) = 2.9 p = 0.01)). Greater activation during the phonological relative to the control task 

occurred in left dIFG (t (13) = 5.2, p < 0.001), Parietal (t (13) = 5.3, p < 0.001), and Insular (t 

(13) = 2.6, p = 0.04). The region that was significantly more active during the phonological 

relative to the control task was the left Insular region (t (13) = 5.7, p < 0.001).  

 Exploratory Analysis of STG. Left pSTG was one of the a-priori regions of interest. 

Unfortunately, neither the ANOVA 2 X 2 nor the conjunction analyses revealed a pSTG region, 

which we therefore, as planned, selected from Brennan et al., 2013. This STG location (x = -48, 

y = -44, z = 8) is of particular interest because it is one in which only English but not Chinese 

speakers have shown a developmental change (increase in activation with age) during a 

phonological awareness task, prompting the authors to suggest that this region was sensitive to 

the cross-linguistic experiences.  Here we further investigated this idea by asking whether this 
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region might be selectively sensitive to morphological tasks rather than phonological tasks in 

Chinese. Indeed, a t-test comparison between participants’ activation during the morphology and 

phonology tasks (combined across modality) revealed greater left pSTG activation during the 

morphology task (t (13) = 2.272, p = .041). As can be seen in Figure 3, this effect generalizes 

across modalities. 

Discussion 

The present study investigated the brain bases of reading in Chinese adults by asking 

them to perform morphological and phonological awareness tasks in the auditory and visual 

modalities. We used these tasks of language and literacy in both modalities to determine specific 

sensitivity of brain regions in Chinese readers to phonological versus morphological 

manipulations. We hypothesized that both morphological and phonological awareness tasks in 

Chinese would engage similar brain regions (Zhao et al., 2014), but that these regions would be 

differentially affected by the salience and degree of language-to-print predictability offered by 

morphological versus phonological information. Supporting our hypothesis, we found 

considerable overlap during morphological and phonological processing in the left vIFG and 

dIFG. Morphology-specific activation was found in the left MTG and exploratory analysis 

further revealed preferential STG activation during morphology. The left insular region showed 

phonology-specific activation and the parietal region showed orthography-specific activation 

across tasks. Our tasks thus confirmed that Chinese readers have considerable overlap of brain 

activation during morphological and phonological awareness with specific sensitivity in the left 

posterior temporal regions during morphological awareness and in the left frontal regions during 

phonological awareness. 
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Our finding of high neurological overlap in Chinese readers is consistent with prior 

research. Devlin et al. (2004) found that English adult readers who performed tasks measuring 

morphological, orthographic, and semantic awareness showed a limited degree of overlap in 

brain activation. Unlike English, the close relationship between sound-and-meaning as well as 

meaning-and-print in Chinese leads to this greater observed overlap of brain regions during 

morphological and phonological processing (Devlin et al., 2004). However, our findings are 

unlike those seen in adult Hebrew readers, who also completed morphological, phonological, and 

orthographic manipulation tasks. Rather than revealing a separate neural network of activation 

for each type of processing (Bick et al., 2008; Bick et al., 2010), we found Chinese readers 

showed a high convergence of neural networks likely due to the morphological processing 

engaged across tasks. Similar to previous findings looking at Chinese adults, as described in the 

introduction (Zhao et al., 2014; Zou et al., 2016), our findings revealed that Chinese readers had 

similar brain regions activated for both morphological and phonological awareness tasks.  

We observed common activation across tasks in both the left vIFG and dIFG. Our finding 

of activation in these regions during both morphological and phonological processing aligns with 

previous research findings. Chinese adult readers who were tested on semantic awareness 

through a meaning association judgment task that required identifying if the second word 

presented matched the first, and phonological awareness through a rhyme judgment task, showed 

common activation in the left vIFG and dIFG regions across tasks (L. Liu et al., 2009). The 

semantic nature of Chinese due to the clear sound-to-meaning and meaning-to-print associations, 

support our expectation of seeing the vIFG and dIFG regions involved in both phonological and 

morphological processing.  
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We also expected to see task-specific activation with morphological awareness tasks 

activating the left posterior temporal regions and phonological awareness tasks activating the left 

frontal regions. In support of our hypothesis, we found task-specific activations in the left MTG 

for morphology and in the insular region for phonology. The role of the left MTG region in 

morphological awareness for Chinese is consistent with prior findings. Chinese adult readers 

who performed a morphological judgment task accessing concepts of whole word semantics and 

initial morpheme meaning, demonstrated high activation in the left MTG region (Zou et al., 

2016). The insular region’s role in phonological processing matches previous findings as well. 

Young Chinese dyslexic readers who were asked to perform rhyme judgment tasks showed 

reduced insular activity compared to normal Chinese readers, implicating the insular region’s 

role in phonological processing (Siok et al., 2008).  

Beyond the activation seen in the left posterior temporal and frontal regions, we found 

significant parietal activation during both morphological and phonological awareness tasks with 

greatest activation during visual presentation of stimuli. This indicates the parietal’s role in 

orthographic processing. Prior research has established the role of the parietal region in Chinese 

literacy. Perfetti et al. (2013) described the role of the parietal region in supporting orthographic 

judgment in order to engage in phonological processing upon reading printed script. The parietal 

region is engaged in cross-modal integration of speech-to-print mapping, which is especially 

salient for reading in Chinese (C. Perfetti et al., 2013). Another study that also found consistent 

activation within the left Parietal (BA 7) region, asked participants to compare the semantic 

processing of Chinese characters and pictures, demonstrating the parietal’s role in morphological 

awareness (Chee, Tan, & Thiel, 1999). A similar study also testing semantic judgment required 

participants to complete a semantically-related word generation and precision task and resulted 
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in engagement of the left superior parietal lobule, implicating its role in Chinese literacy (Tan et 

al., 2000). In support of these findings, our data corroborates the role of the parietal region in 

Chinese reading ability.  

Uniquely, we sought to identify a link between reading in Chinese and left STG 

functionality with the expectation that morphological awareness tasks would require greater STG 

sensitivity. Confirming our hypothesis, we found that in the auditory modality the left posterior 

STG (pSTG) region was more active during morphological awareness versus control tasks, but 

not during phonological awareness versus control tasks. Since the auditory modality precedes 

and predicts learning to read, the left STG activation observed during morphological awareness 

tasks indicates the sensitivity of the region to automated, intuitive and early-emerging 

morphological awareness computations. We further confirmed the relationship between STG and 

morphological awareness in Chinese based on participants’ performance on the behavioral tasks. 

Participants showed higher accuracy and faster reaction time for the morphological judgment 

task compared to the phonological. The fact that participants performed higher and faster during 

morphological processing indicates its ease relative to phonological processing. This, combined 

with the selective STG activation seen during the in-scanner morphological awareness task 

compared to during the in-scanner phonological task, which led to high overall brain activation 

indicating the task’s difficulty, demonstrates the sensitivity of STG activation in Chinese to 

morphological awareness independent of task difficulty.  

Importantly for our study, ROI analyses performed on the left STG were conducted based 

on Brennan et al. (2013). Through the use of a phonological judgment task asking whether two 

stimuli rhymed in Chinese and English, Brennan et al. (2013) found greater STG activation for 

English adults as compared to English speaking children, while not observing higher activation 
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in Chinese adults as compared to Chinese-speaking children. Based on these results, the authors 

inferred that the pSTG is selectively modulated by literacy experiences. Indeed, ROI analyses of 

our findings for the pSTG region identified by Brennan et al. (2013) did not reveal significantly 

greater activation for the phonological awareness task relative to the verbal control task (across 

both visual and auditory modalities). In contrast, this region did show greater activation for the 

morphological awareness task relative to the verbal control task (also across both visual and 

auditory modalities). In this manner we have both confirmed and extended the Brennan et al. 

(2013) findings to suggest that the pSTG region is selectively impacted by linguistic experiences, 

and in the case of Chinese this might mean greater sensitivity to the morphological than the 

phonological tasks. Taken together, both the lack of pSTG activation during phonological 

awareness and the presence of pSTG activation during morphological awareness in Chinese 

supports the hypothesis that parts of the left STG should be selectively sensitive to morpho-

phonological units that are most salient to Chinese language and orthographic structure. 

Specifically, the left posterior temporal regions should show greater activation in response to 

morphological processing which focuses on syllabic processing and has the greatest language-to-

print reliability in Chinese.  

 In addition to understanding the brain bases of morphological awareness within proficient 

Chinese readers, we were interested in brain activation resulting from phonological awareness. 

We expected to see higher engagement within the left frontal regions during phonological 

processing due to the lesser language-to-print predictability of Chinese (Das et al., 2011; Siok et 

al., 2008).  Supporting our expectation, we found that auditory presentation of stimuli during 

phonological awareness tasks compared to control tasks selectively activated frontal regions. 

Likewise, visual presentation of the rhyme task led to giant bilateral activation of the frontal 
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regions. This pattern of activation was observed because Chinese is a phonologically-opaque 

language with poor sound-to-print correspondences. In contrast, morphemes map onto 

characters, so Chinese can be seen as “morphologically-transparent,” meaning it has high 

meaning-to-print predictability. Therefore, phonological awareness tasks involve complex 

computations due to the low predictability in sound-to-print processing therefore leading to 

whole brain activation. Additionally, the visual rhyme pattern of brain activation is in accordance 

with prior research where Chinese readers performed a similar visual rhyme judgment task (Siok 

et al., 2008) and further extends beyond that prior data by placing it in context together with 

morphology. This allows for a more sensitive understanding of the brain regions involved in 

phonological processing.  

 This study’s innovation comes from fMRI imaging of proficient Chinese readers to 

investigate the brain regions involved in phonological and morphological awareness. The study 

incorporated measures of morphological and phonological judgment compared to a verbal word-

matching control task. Similar to the experimental tasks, the control task also engaged 

phonological, morphological, and semantic processes necessary to access word form and 

meaning. Yet, some of the limitations of this study include a small sample size along with a 

narrow range of behavioral measures. The study also does not include a participant group of 

English adult readers, which would have allowed for greater comparison of brain activation 

during the morphological and phonological awareness tasks based on language structure. 

Nonetheless, the convergence between present and past behavioral, neuroimaging and cross-

linguistic findings reinforces the idea that the reading brain network in non-alphabetic languages, 

such as Chinese, relies more significantly on morphological awareness than phonological. 

Another significant limitation is that this study only included behavioral tasks of a low level of 
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difficulty. Thus correlations between behavioral and in-scanner task performance could not be 

completed as most participants hit ceiling on the behavioral measures. 

Future Implications 

 In the future, developmental research and the study of dyslexia should incorporate both 

morphological and phonological processing tasks. A previous study in the field considering both 

morphology and phonology in Chinese readers, compared performance on a semantic relatedness 

task as well as a phonological control task. Participants were children who either had a reading 

disability or were typically developing. P.D. Liu et al. (2013) found children with the reading 

disability showed weaker morphological awareness with lower brain activation, but on the 

phonological task both groups showed similar levels of frontal brain activation. Once again, this 

demonstrates the importance of morphological awareness in Chinese literacy.  

A second study using event-related potential (ERP) also asked participants to access 

morphological awareness during a semantic judgment task. Chinese dyslexic children 

performing the task lacked the N400 effect consistently seen across experimental conditions in 

Chinese readers of the control group. This finding implies a weakness in morphological 

processing likely contributed to the dyslexic children’s poor reading performance (Tong, Chung, 

& McBride, 2014).  Taken together, the performance of the dyslexic and control Chinese readers 

demonstrates the pivotal role of morphological processing in supporting Chinese reading ability. 

Overall, the results of our experiment combined with findings from studies in the field highlight 

the necessity of including both morphological and phonological processing tasks in future 

developmental research and studies of dyslexia. 
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Conclusion 

  The results of this study demonstrate that Chinese reading requires both morphological 

and phonological awareness with activation during reading occurring in the left hemisphere, 

particularly within the vIFG, dIFG, Insular, MTG, Parietal, and STG regions. Combined with 

new theoretical perspectives, the consideration of morphological awareness in addition to the 

typically considered phonological awareness can better allow for an understanding of the brain 

regions involved in reading ability across languages (Frost, 2012; Geva, Esther, Wang, 2001; 

Zhang et al., 2014). This study aimed to shed light on the brain bases of morphological and 

phonological awareness in Chinese-speaking adults. During the morphological awareness task 

relative to the verbal control word-matching task, participants showed significant STG 

activation.  This finding suggests that sensitivity of the STG region is towards automated, 

intuitive and early-emerging morphological awareness computations.  Moreover, the significant 

activation observed in the frontal brain regions during the phonological awareness task as 

compared to the verbal control word-matching task, highlights the lesser sound-to-print meaning 

found in Chinese. Taken together, these findings pave the way for new insights that allow for the 

development of a comprehensive model of the brain bases supporting reading across languages. 
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Table 1. Behavioral Tasks (N = 14) 
Task Mean ± SD 
Age (years) 23.64 ± 3.03 
Behavioral Measures  
Orthological Judgment2 0.98 ± 0.02 
CTOPP Elision Percentage 0.95 ± 0.04 
Reading Fluency RT 168.2 ± 17.78 
Reading Fluency Percentage 0.95 ± 0.07 
Digit Span Forward Percentage1 0.99 ± 0.02 
Digit Span Backward Percentage1 0.82 ± 0.11 
In-Scanner Task Performance  
Auditory 
Accuracy 
Phonological Awareness 
Morphological Awareness 
Control for Phonology 
Control for Morphology 
Reaction time (ms) 
Phonological Awareness 
Morphological Awareness 
Control for Phonology 
Control for Morphology 
Visual 

 
 
0.89 ± 0.14  
0.97 ± 0.05 
0.97 ± 0.03 
0.96 ± 0.05 
 
1953.51 ± 160.74 
1683.89 ± 251.84 
1695 ± 208.55 
1416.97 ± 262.53 

Accuracy 
Phonological Awareness 
Morphological Awareness 
Control for Phonology 
Control for Morphology 
Reaction Time (ms) 
Phonological Awareness 
Morphological Awareness 
Control for Phonology 
Control for Morphology 

 
0.89 ± 0.09 
0.98 ± 0.02 
0.98 ± 0.04 
0.99 ± 0.02 
 
1297.93 ± 325.66 
1279.96 ± 313.60 
990.33 ± 345.66 
977.53 ± 287.56 

1Participants 14 and 15 did not complete the task 
2Participant 1 did not complete the task 
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Table 2. Participant activation during Phonological and Morphological Awareness tasks relative to the Control task 

  Auditory Visual 
  Morphology  Phonology Morphology Phonology 

Regions H x y z T Voxel x y z T Voxel x y z T Voxel x y z T Voxel 
IFG/MFG R   — — — — — — — — — — — — — — — 36 6 26 5.66 188 
  — — — — — — — — — — — — — — — 6 30 38 4.92 67 
MTG/STG R — — — — — — — — — — — — — — — — — — — — 
Parietal R — — —  — — — — — — — 20 -64 40 4.61 49 28 -52 40 5.23 144 
Cuneus R — — — — — — — — — — — — — — — 4 -80 6 5.10 45 
Cerebellum R 6 -50 -20 9.08 92* — — — — — 22 -68 -30 6.48 101 — — — — — 
Anterior 
Cingulate 
Cortex/Cingulate 

R — — — — — — — — — — — — — — — — — — — — 

Caudate R — — — — — — — — — — — — — — — 20 8 12 5.17 60 
IFG/MFG L -54 20 26 5.27 54 -38 28 20 6.51 451 -52 14 2 6.21 75 -22 4 32 8.82 3981* 
  — — — — — -34 4 38 6.12 216 -46 14 24 5.41 460 — — — — — 
MTG/STG L -56 -34 -2 7.17 669* — — — — — — — — — — -62 -24 0 5.50 40 

  — — — — — — — — — — — — — — — -52 -60 -10 4.44 40 

Parietal L — — — — — -34 60 36 5.16 85 -36 -64 52 5.57 625 -34 -46 38 6.67 1278* 
 L — — — — — — — — — — — — — — — -18 -34 56 4.69 49 
Cuneus L — — — — — — — — — — — — — — — -24 -94 2 5.07 149 
Cerebellum L — — — — — — — — — — — — — — — — — — — — 
Anterior 
Cingulate 
Cortex/Cingulate 

L — — — — — -16 22 38 4.56 39 — — — — — — — — — — 

Caudate L — — — — — — — — — — — — — — — — — — — — 

H = hemisphere; L = left; R = right; x, y, z: Montreal Neurological Institute coordinates; T = t score; IFG = inferior frontal gyrus; MFG = middle frontal gyrus; STG = superior temporal gyrus; 
MTG = middle temporal gyrus 
* p < 0.05  
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Figure 1. Task > Match. One sample t-test of activation across participants demonstrating common areas of activation across task and 

modality. 
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Figure 2. Task > Match. Exhaustive localization and activation of regions that appeared as Regions of Interest (ROIs). (A) 

Localization of ROIs (B-C) ROIs from conjunction analysis (D-F) ROIs from 2 x 2 ANOVA with mask for common activations (D) 

Main effect of condition indicating common activation across all four conditions (E) Main effect of task driven by phonology > 

morphology (F) Main effect of task driven by morphology > phonology. 
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Figure 3. Task > Match. (A) Localization of pSTG (B) Activation across pSTG region. ROI derived from Brennan et al., 2013 

coordinates.
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Appendix A.  
Experimental Stimuli for in-scanner behavioral imaging tasks 

1a. Auditory Rhyme   2a. Visual Rhyme   3a. Auditory Morphology   4a. Visual Morphology 
Stimuli 

1 
Stimuli 

2 Decision  
Stimuli 

1 
Stimuli 

2 Decision  
Stimuli 

1 
Stimuli 

2 Decision  Stimuli 1 Stimuli 
2 Decision 

šø ?" NO  ªŉ ŰĨ NO  |:� �:, NO  �� V� YES 

÷* �Ŝ YES  �F 9æ NO  �C; ;CÖ NO  �qk k>q NO 

ĩŘ Ūƅ NO  ĵƕ ¿ľ NO  �# Ö# YES  �ƍ ƍĜ NO 

àº {/ NO  ïƏ şŁ YES  §z# §·# YES  �ŗ ŗô NO 

Ɨż ÕĬ YES  2ě @� NO  ²;H ²ĢH YES  į|Ø ØŃį NO 

âK Ęë NO  'Z ž2 YES  ��ď ��ď YES  W× WK YES 

E4 �Ľ NO  �m ûò YES  Ő�µ Ő�Î YES  �*; *Ģ� NO 

ĴI ý� YES  ÍŖ äĸ NO  ô� Éô NO  vÎ v` YES 

Şå ƚƙ YES  Õ¯ �G YES  ½� ½K YES  _u# #%_ NO 

ĕ© ũ¿ YES  đƃ iË NO  YP� YPÊ YES  Ɖ×� ×ùƉ NO 

wĺ ţÈ NO  ³¦ îŹ NO  Â`Ɩ ƖÂŤ NO  zĹ Ĺć NO 

ĊÊ \Q NO  »ŕ 
Ɔ YES  �Ŷ Ť� NO  8ŵŀ 8ŵŊ YES 

�n çų NO  �Ĳ ĢƎ YES  Ɣ|ĳ ,ĳƔ NO  ãß ıã NO 

Üƌ Nŷ YES  �ī �Ñ YES  ƂÎŻ ÎúƂ NO  ā,# ā�# YES 

7N fŒ YES  RÇ éT NO  vÎ v` YES  á�K áĮK YES 

ŝŚ Ħê YES  �W ±ŋ NO  Ň,ƈ Ň;, NO  ��` ��« YES 

Ɖ� ì� NO  þs ēt YES  Ê@ŧ µ@ŧ YES  �� @� YES 

ėÒ 3¼ NO  »ř ăŽ YES  Iª ª� NO  `Ā@ ĳĀ@ YES 

�¸ �r YES  ½y +Ľ NO  �Ƈ Ƈ� NO  �ĭĻ Ļßĭ NO 

�' ƐƓ YES  "Ï xů YES  ęł ęù YES  ,Čč |Čč YES 
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Word-match control stimuli for in-scanner behavioral imaging tasks 
1b. Auditory Rhyme Match  2b. Visual Rhyme Match  3b. Auditory Morphology Match  4b. Visual Morphology Match 

Stimuli 
1 

Stimuli 
2 Decision  

Stimuli 
1 

Stimuli 
2 Decision  Stimuli 1 Stimuli 2 Decision  Stimuli 1 Stimuli 2 Decision 

�¡ �¡ YES  ťū íĪ NO  �µ �µ YES  ®J[ u.Ě NO 

;Ɓ ;Ɓ YES  Ìű ġĐ NO  Ë; Ő« NO  Ŏ¬ Ŏ¬ YES 

<} �� NO  8ň ƄÚ NO  ��{ ÓÅ� NO  Sőņ ��= NO 

�ŗ ×X NO  ¤Ď ¤Ď YES  ļKè ļKè YES  x~# x~# YES 

¾
 ¾
 YES  
ģ 
ģ YES  �ač ŔŌK NO  6ę ąĒ NO 

r� Ɖ� NO  ]! ]! YES  ��	 �cĢ NO  ţÈ� ţÈ� YES 

¹U ¹U YES  ŦÆ 5ƒ NO  �W �W YES  pƘ ´3 NO 

�r ĥ� NO  Ąö Ÿ� NO  �aÄ �aÄ YES  |ŏ |ŏ YES 

ĝ� "� NO  Ųſ Ųſ YES  Ôœ Ôœ YES  ��ņ &�
 NO 

"v �
 NO  �À ōĿ NO  ,ƀ ,ƀ YES  Á�« Á�« YES 

)Ñ �Ã NO  Ŵİ A� NO  õ^/ õ^/ YES  �¢ �¢ YES 

&Ġ &Ġ YES   Ţ  Ţ YES  �¶ |v NO  ��1 ��1 YES 

Úł [� NO  ;Ĉ ŠƋ NO  §�- §�- YES  �1Ŭ �KÜ NO 

.ğ ÿÞ NO  ŭƊ ŭƊ YES  1OŨ S�; NO  ķ�ó Û�l NO 

ĔØ ĔØ YES  ŮP ƛƝ NO  0Ăò 0Ăò YES  1eÝ �Dd NO 

K° K° YES  Ƒ� Ƒ� YES  Wś �� NO  LĆ LĆ YES 

ą¨ ą¨ YES  bj bj YES  ħċ ñĞ NO  B3o B3o YES 

(ĉ ńa NO  ôK Ső NO   Mü è$Ĥ NO  ð­ŗ ð­ŗ YES 

"Ð "Ð YES  $Ņ $Ņ YES  #Ù� hE# NO  Vó Ėg NO 

)£ )£ YES  Ɯź Ɯź YES  2|# 2|# YES  {k ¥Ķ NO 
 


