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ABSTRACT

Hidden Horizons in Non-relativistic AdS/CFT
with Fermions
Youngshin Kim

Department of Physics, University of Michigan
Bachelor of Science

There has been much interest in the Lifshitz spacetime as a possible holographic dual of
field theories without Lorentz invariance. It has been shown that the holographic Green’s
function from the pure Lifshitz spacetime with bosons exhibits exponential insensitivity to
the horizon boundary condition in the low energy, large momentum limit. This posed the
interesting question whether the same pattern persists in AdS/CFT with fermions, which is
more relavent to realistic condensed matter systems.

In this thesis, we show numerically that the same exponential suppression occurs in the
fermionic Green’s function constructed from the pure Lifshitz background (z = 2, 3, 4). In
particular, we found that the exponential factors calculated from the WKB approximation in
the bosonic theory carries over to the fermionic theory, with the additional factor of 2. This
thesis includes a review of calculating the Green’s function with the bosonic AdS/CFT pre-
scription in the pure AdS and Lifshitz spacetime, and the useful techniques therein including
the analytic method, WKB approximation, and numerical method.
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Chapter 1

Introduction

1.1 The AdS/CFT correspondence

According to black hole thermodynamics, the entropy of black hole is proportional to the

area of its horizon [1]. This idea inspired the holographic principle, which states that a

region with boundary of area A is fully described by no more than A/4 degrees of freedom,

or about 1 bit of information per Plank area [2].

The most explicit realization of this principle is the AdS/CFT correspondence [3]. The

AdS/CFT correspondence originated from superstring theory, which unify four fundamen-

tal forces in nature, the gravity, electromagnetic force, weak force, and strong force. The

correspondence claims that the two theories, 4-dimensional gauge theory and 5-dimensional

gravitational theory in the AdS spacetime (the anti-de Sitter spacetime) are equivalent.

The AdS spacetime is a spacetime with a negative curvature, analgous to hyperbolic

spaces. It is a vacuum solution of Einstein equation, and the opposite of de Sitter spacetime,

which has a constant curvature, analogous to elliptical spaces. The AdS spacetime has a

notion of boundary, and the gauge theory is called the boundary theory, while a gravitational

theory is called the bulk theory.
1
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A conformal field theory, or CFT, is a theory that has conformal symmetry. In AdS/CFT,

a supersymmetric gauge theory has been typically considered, whose simplest example is the

N=4 supersymmetric Yang-Mills theory. This theory has no dimensionful parameter, so has

scale invariance. It also possesses conformal symmetry, which contains the Poincaré group

and scale invariance. For this reason, the correspondence is called AdS/CFT.

The AdS/CFT duality is interesting in its own right, but it also has a practical impor-

tance. While gauge theory describes all forces except gravity, it is not easy to calculate a

gauge theory when the coupling is strong. The duality states that one theory is strongly-

coupled when the other is weakly coupled. Therefore one can analyze a strongly coupled

gauge theory via a gravitational theory in the AdS spacetime with a small curvature.

In the gravitational theory, it is known that a black hole is endowed with entropy and

temperature, due to the Hawking radiation. Therefore, a strongly-coupled gauge theory

at finite temperature is equivalent to the gravitational theory in an AdS black hole black-

ground. In addition, a strongly-coupled guage theory at zero temperature is equivalent to a

gravitational theory in the pure AdS spacetime, which we focus on in this thesis.

Recently, interest in applying the AdS/CFT duality to theories without Lorentz invari-

ance has been growing, due to its relevance to condensed matter systems (see, e.g., [4; 5; 6; 7]).

It is hoped that the AdS/CFT duality can provide insight into materials involving strongly

correlated electrons that are challenging for the traditional condensed matter paradigm (see,

e.g., [8; 9]).

The Lifshitz spacetime is one of the famous example as a possible dual to nonrelativistic

systems. This spacetime has a scale invariance

t→ λzt, x→ λx, z 6= 1 (1.1)

called "dynamic scaling", which is found in fixed points governing phase transitions in many

condensed matter systems. It has been shown that the boundary to bulk mapping via
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smearing functions breaks down for the pure Lifshitz spacetime [11]. Moreover, in bosonic

AdS/CFT, the boundary Green’s function, which is expected to probe the entire bulk from

the boundary to the horizon, becomes exponentially insensitive in the low-energy limit [12].

The main goal of this thesis is to investigate the boundary Green’s function from the

Lifshitz background using fermionic AdS/CFT.1 Since the fermions couple to gravity differ-

ently from bosons, it is reasonable to ask whether the insensitivity of Green’s function is also

observed in the fermionic theory.

The result of our analysis is that the pattern holds for the Lifshitz z = 2, 3, 4 backgrounds

in the fermionic theory. This thesis is organized as follows. In section 2, we review the bosonic

AdS/CFT in the AdS and Lifshitz backgrounds, and explain the major techniques, namely,

the analytic method, the WKB approximation, and the numerical method. In section 3,

we apply the same techniques to calculate the boundary Green’s function and the spectral

function using fermionic AdS/CFT from the AdS and Lifshitz backgounds, and discuss some

of its feature similar to the bosonic cases.

1In this thesis, we follow the AdS/CFT prescription with spinors formulated in [17].



Chapter 2

Review of Non-relativistic AdS/CFT

with Bosons

2.1 Calculating the Green’s function via AdS/CFT

In this section, we outline the holographic calculation of the field theory Green’s function.

The scalar Green’s function is obtained from the boundary of bulk spacetime, in which we

calculate the equation of motion of a scalar particle coupled to gravity. The scalar field

equation in a curved space is obtained from the action:

S =

∫ √
−g[−gµν∂µφ∂νφ−m2φ2]dnx (2.1)

By the variational principle, the field equation is obtained as

1√
−g

∂µ(
√
−ggµν∂νφ)−m2φ = 0 (2.2)

4



2.1 Calculating the Green’s function via AdS/CFT 5

For the pure AdSn+2 and Lifshitz geometry we are considering, the metric is given by 1

ds2 = −
(
L

r

)2z

dt2 +

(
L

r

)2

(d~x2
n + dr2). (2.4)

Then the field equation (2.2) takes the form of

− r2z∂2
t φ+ r2∂2

i φ+ (−z − n+ 1)r∂rφ+ r2∂2
rφ−m2φ = 0 (2.5)

where i runs over the spatial indices and we set L = 1. Since we are mainly interested in

the Green’s function in terms of energy ω and momentum ~k, we move to momentum space.

φ(r) = ei(
~k·~x−ωt)f(r) (2.6)

Then we obtain the following equation for the radial wavefunction.

r2f ′′(r) + (−z − n+ 1)rf ′(r) + (r2zω2 − r2k2 −m2)f(r) = 0 (2.7)

where k = |~k|.

According to the holographic prescription to calculate the boundary retarded Green’s

function, we need to impose infalling boundary conditions to the radial wavefunction. For

our coordinate system, we have r → 0 as the boundary, and r → ∞ as the horizon. The

infalling particle means that it only approaches to the horizon, but does not escape from

it. To set up this boundary condition, we need to examine the asymptotic form of the

wavefunction at r → ∞. The condition is slightly different for the AdS background z = 1

and the Liftshitz background z > 1. For the AdS case, by taking the limit r →∞, one can

find the radial wavefunction f(r) assumes

f(r) = rn/2(aeiqr + be−iqr), q =
√
ω2 − k2, (2.8)

1This geometry was well studied in [12]. In that paper, the following form of metric was used.

ds2 =

(
L

zρ

)2

(−dt2 + dρ2) +

(
L

zρ

)2/z

d~x2n (2.3)

This transforms to ours with scaling ρ→ (L/z)rz, t→ Lt, and ~x→ L~x.
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where a and b are some constants. If we restrict ourselves to q > 0, the first term is the

infalling wave, and the second term is the outgoing wave. Then the infalling boundary

condition means b = 0.

For the Lifshitz case, it is easier if we transform the radial equation (2.7) to the Schrödinger

like equation. By scaling f(r)→ r(z+n−1)/2f(r), one gets

− f ′′(r) + Uf(r) = 0, U =
ν2 − 1/4

r2
− r2(z−1)ω2 + k2, (2.9)

with the effective potential U and the effective energy 0. In the limit r →∞, the potential

U approaches to U ∼ −r2(z−1)ω2. We try the WKB approximation in the classical region,

which results in

f(r) =
C

4
√
−U

exp[±i
∫ √

−Udr] = C
rn/2√
ω

exp[±iωrz/z]. (2.10)

By reversing the scaling r(z+n−1)/2f(r) → f(r), we get the following limiting form near

horizon.

f(r →∞) = rn/2(aeiωr
z/z + be−iωr

z/z) (2.11)

Again, the infalling boundary condition means that we drop the outgoing wave, b = 0.

With the boundary condition and the differential equation (2.7), one can completely

determine the radial wavefunction f(r). The next step of the holographic calculation is to

inspect the boundary behavior of f(r). The asymptotic form of f(r) near boundary can be

obtained from the radial equation (2.7) by taking the limit r → 0 and trying the power series

solution f(r) = rα, which results in

f(r → 0) = Ar
z+n
2
−ν +Br

z+n
2

+ν , ν =

√
m2 +

(
z + n

2

)2

. (2.12)

When r approaches 0, the second term converges to 0, but the first term diverges to the

infinity. According to AdS/CFT, the boundary Green’s function is equal to the ratio of the
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normalizable mode B to the non-normalizable mode A, i.e.,

G(ω,~k) = K
B

A
(2.13)

for some normalization constant K. In addition, the spectral function is captured in the

imaginary part of the Green’s function by

χ(ω,~k) = 2ImGR(ω,~k), (2.14)

which gives the density of states in the boundary theory.

In case when the differential equation (2.7) can be solved exactly and we can obtain the

radial wavefuction f(r) in a closed form, we can also obtain the retarded Green’s function

exactly through AdS/CFT. If we cannot get the exact f(r), then we can try to solve it

numerically. In either case, we will be able to see how the Green’s function probes the pure

AdS and Lifshitz geometry, and how it is different for the relativistic and non-relativistic

spacetimes.

Lastly, we remark that the Green’s function is expected to possess the scale-invariance

inherited from the bulk geometry. That is to say, the AdS and Lifshitz metric is scale-

invariant under the scaling,

t→ λzt, , ~x→ λ~x, r → λr, (2.15)

from which the momentum is scaled by,

~k →
~k

λ
, ω → ω

λz
, (2.16)

which is deduced from the plane wave solution (2.6). Let us consider that the Green’s

function is spherically symmetric. If the Green’s function is scale-invariant, it only picks up

a constant under scaling by

G(ω, k)→ λsG(ω, k) (2.17)
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for some constant s. By expanding the Green’s function into a power series in ω and k and

choosing only the terms with appropriate scaling behavior, we find that the Green’s function

behaves as

G(ω, k) = aks + bωs/z + cωs/zζ(
k

ω1/z
) (2.18)

for some constant a, b, and c and some function ζ. Therefore we expect that the Green’s

function we calculate to be consistent with the above expression.

2.2 The Exact Green’s function for the AdSn+2 and Lif-

shitz z = 2 Backgrounds

In this section, we calculate the retarded Green’s function in the closed forms for the AdSn+2

and the Lifshitz z = 2 backgrounds, using the AdS/CFT prescription. Then we discuss some

features of the spectral functions, especially those unique in the non-relativistic case (z = 2).

In the AdSn+2 background (z = 1), the solution to the differential equation (2.7) is a

linear combination of Bessel functions.

f(r) = r(n+1)/2(C1Jν(qr) + C2Yν(qr)), q =
√
ω2 − k2 (2.19)

If we restrict ourselves to ν > 0, the asymptotic forms near horizon of Bessel functions are

given by

Jν(qr →∞) ∼
√

2

πqr
cos(qr − πν

2
− π

4
) (2.20)

Yν(qr →∞) ∼
√

2

πqr
sin(qr − πν

2
− π

4
). (2.21)

Using these forms, one can find the coefficients C1 and C2 that match to the infalling bound-

ary condition f(r → ∞) = aeiqr. Then we expand f(r) near the boundary, using the
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asymptotic forms of Bessel functions.

Jν(qr → 0) ∼ 1

Γ(ν + 1)

(qr
2

)ν
(2.22)

Yν(qr → 0) ∼ − 1

π

[
cos(πν)Γ(−ν)

(z
2

)ν
− Γ(ν)

(qr
2

)−ν]
(2.23)

Then we identify the coefficient of r(n+1)/2−ν as A and r(n+1)/2+ν as B, which gives the

following response to source ratio, which is the retarded Green’s function of boundary theory.

GR(q) = K
B

A
= Ke−iπν

Γ(−ν)

Γ(ν)

(q
2

)2ν

(2.24)

We observe that the Green’s function and the spectral function from the AdS background

is proportional to (ω2 − k2)ν , which obeys the expected behavior argued from the scale-

invariance.

For the Lifshitz background z = 2, the solution to the differential equation is found to

be a linear combination of the Kummer’s confluent hypergeometric functions U(a, b, z) and

M(a, b, z) by

f(r) = e−ir
2ω/2r(n+2)/2+ν [C1U(a, b, ir2ω) + C2M(a, b, ir2ω)] (2.25)

where a and b are given by

a =
1

2
(−iα + ν + 1), b = ν + 1, α =

k2

2ω
. (2.26)

Again, we match the limiting form of f(r) at r → ∞ to the infalling boundary condition

f(r →∞) = arn/2eiωr
2/2. At a large variable, U and M become

U(a, b, |z| → ∞) ∼ (z)−a (2.27)

M(a, b, |z| → ∞) ∼ Γ(b)

Γ(a)
ezza−b +

Γ(b)

Γ(b− a)
(−z)−a. (2.28)
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Using these expressions, one can find C1 and C2 in terms of a. For our calculation, we only

need the ratio C2/C1, which is

C2

C1

= −e−iπaΓ(b− a)

Γ(b)
(2.29)

To find the source A and the response B, we expand f(r) near boundary using the limiting

forms of U and M at a small variable given by

U(a, b, |z| → 0) = z−b+1 Γ(b− 1)

Γ(a)
+

Γ(1− b)
Γ(1 + a− b)

(2.30)

M(a, b, |z| → 0) = 1. (2.31)

Then one obtains the expression for A and B in terms of C1 and C2. From its ratio, the

retarded Green’s function is found as

GR = K
B

A
= ωνe−iπν/2

Γ(−ν)Γ((iα + ν + 1)/2)

Γ(ν)Γ((iα− ν + 1)/2)
, α =

k2

2ω
(2.32)

Similar to the AdS case, we find that the Green’s function shows the power law behavior,

ων . The spectral function constructed from it shares the general features with that of

the AdS case, i.e., the growth with increasing ω and the decline with increasing k (see

figure 2.1). What’s interesting is the factor α in the gamma function. For the large ω limit,

or equivalently α� ν, the role of α in the gamma funtion is not significant, and the behavior

is dominated by the monomial factor ων . However, for the small ω, namely α � ν, the α

factor becomes significant. Using the Euler’s reflection formula Γ(1 − z)Γ(z) = π/sin(πz)

and the Stirling’s approximation Γ(z) ∼ exp[(z−1/2) log z−z]
√

2π(1+O(z−1)) for the large

variable, one finds the leading term as

GR(ω,~k) ∼ K
Γ(−ν)

Γ(ν)

(
k

2

)2ν

(1 + e−iπνe−πα), α� ν, (2.33)

and the spectral function can be found immediately as

χ(ω,~k) = −2K
Γ(−ν)

Γ(ν)

(
k

2

)2ν

sin(πν)e−πα, α� ν. (2.34)
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This result shows that in the large α limit, the spectral function vanishes by the expo-

nential factor e−πα. That is, in the region of momentum space k2/ν � ω, χ is suppressed

exponentially. This is a pattern not found in the AdS spacetime (see figure 2.2 and 2.3). With

more careful analysis done in [12], it can also be shown that the Green’s function is insensitive

to the change of horizon boundary condition in this limit. For example, changing the bound-

ary condition from the infalling one to the outgoing one will have an exponentially small

influence on the Green’s function. Moreover, according to the Minkowski AdS/CFT, the in-

falling boundary condition gives the retarded Green’s function, and the outgoing boundary

condition gives the advanced Green’s function. In this case, the spectral function is given by

χ(ω,~k) = 2ImGR(ω,~k) = −i(GR(ω,~k)−GA(ω,~k)). (2.35)

Since the spectral function becomes exponentially small in this limit, the effect of changing

boundary condition also gets harder to be seen through it. This implies that the low-energy

physics is hidden from the boundary, and the transition to such low-energy physics occurs

at k2/ω ∼ ν in the Lifshitz z = 2 background. This pattern is also observed for the z > 2

cases, which is the subject of next section.
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Figure 2.1 The exact spectral functions for the AdS background (dashed) and the Lifshitz

background (continous) with fixed k = 2 (left plot) and with fixed w = 2 (right plot) for

m = 2.

Figure 2.2 The exact spectral function for the AdS background with m = 2. The contour

lines were drawn at |χ(ω, k)| = 10, 1, 0.1, 0.01, 0.001. The contours converge to k = ω line,

manifesting the relativistic energy relation ω2 = k2 +m2.
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Figure 2.3 The exact spectral function for the Lifshitz z = 2 background with m = 2. The

contour lines were drawn at |χ(ω, k)| = 10, 1, 0.1, 0.01, 0.001. Compared to the relativistic

case, we see that the contours are sparsely distributed in the region of small ω. Moreover,

the contours are similar to the curve k2/ω ∼ ν, rather than k = ω.
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2.3 WKB Approximation for the Lifshitz z > 1 Back-

grounds

In this section, we analyze the process that the horizon information reaches the boundary

from the viewpoint of tunneling barrier and WKB approximation. This approach will gen-

eralize the feature of spectral functions at the low-energy found from the analytic method

for the z = 2 case to the z > 2 cases. The starting point is the Schrödinger like form of the

radial differential equation (2.9) we obtained earlier by scaling f(r)→ r(z+n−1)/2f(r).

− f ′′(r) + Uf(r) = 0, U =
ν2 − 1/4

r2
− r2(z−1)ω2 + k2, (2.36)

We think of this equation as representing a particle with an effective energy 0 in an effective

potential U . While the WKB approximation is only valid when the potential is varying

slowly, the analysis in [11] showed that it is applicable to our potential if we make a shift

ν2 → ν2 + 1/4. The classical turning point r0 is given by U(r0) = 0, and the WKB

approximation gives the following wavefunctions in the tunneling and classical regions.

fWKB(r < r0) =
1

4
√
U

(Ce
∫ r0
r dr

√
U +De

∫ r0
r dr

√
U) (2.37)

fWKB(r > r0) =
1

4
√
−U

(aei
∫ r0
r dr

√
−U + be−i

∫ r0
r dr

√
−U) (2.38)

The connection between two region is obtained by approximating the potential near the

turning point by a linear potential, i.e., U ∼ −U0(r − r0). The solution of Schrödinger

equation for this potential is known as the Airy functions, and matching their asymptotic

forms with fWKB in both regions gives the connection formula.C
D

 =

e−iπ/4 eiπ/4

1
2
eiπ/4 1

2
e−iπ/4


a
b

 (2.39)
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The next step is to join fWKB with the boundary form of the exact wavefunction in order

to find the source and response. The boundary limit of f(r) is found from the Schrödinger

equation (2.36) as

fexact(r → 0) = Ar
1
2
−ν +Br

1
2

+ν . (2.40)

We want the fexact and fWKB to be joined up to its first derivative at some point r = ε,

which we send to 0 at the end. The connection is expressed in a compact form, first by

defining

fexact(r → 0) = Af1 +Bf2

fWKB(r < r0) = Cf3 +Df4.

Then the two expression is tied byA
B

 =
1

W12

W32 W42

W13 W14


C
D

 , Wij ≡ (fif
′
j − f ′ifj)|r=ε (2.41)

where Wij are found to be

W12 = 2ν, W32 = 2
√
νενe

∫ r0
ε dr

√
U , W14 = 2

√
νε−νe−

∫ ε0
ε dr

√
U , W13 = W42 = 0.

Now we can find the Green’s function and the spectral function from the response to source

ratio B/A. For the infalling boundary condition b = 0, the spectral function is found as

χ(ω,~k) = 2ImG(ω,~k) =
K√
ν
ε−2ν exp[−2

∫ r0

ε

dr
√
U ]. (2.42)

From this expression, we find that the exponential suppression comes from the form of

potential U . We can obtain more precise behavior of the spectral function by working out

the integral. For example, let us consider the potential U for the z = 2 case in the large

k2/ω limit. The potential is given by

U =
ν2

r2
− r2ω2 + k2. (2.43)
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Figure 2.4 The potential U = ν2/r2 − r2ω2 + k2 for ν = 3, ω = 1, and k = 5 (red line). The

blue dashed line and the purple dashed line represent ν2/r2 and −r2ω2 + k2. The potential

is close to the first term before r∗ ∼ ν/k, and close to the last two terms beyond this point.

When r < r∗ ∼ ν/k, the first term ν2/r2 dominates. Beyond r∗, this term falls off quickly,

and the potential can be approximated by the last two terms up to the classical turning

point r0 (see figure 2.4). Therefore we divide the scope of integration into two regions by∫ r∗

ε

√
ν2

r2
dr +

∫ r0

r∗

√
−r2ω2 + k2dr (2.44)

The first integration provides ∼ (εω)2ν in the spectral function, which cancels ε−2ν and gives

a power law behavior. It is the second integration that introduces the suppression factor

exp[−π
4
k2

ω
] into the spectral function, which is equal to the exponential factor that we found

from the analytic method. Therefore we observe that in the view of the Shrödinger equation,

the potential that falls off slower than ∼ 1/r2 and extends to the classical turning point gives

rise to the exponential decay of the wavefunction near boundary.

Finally, we remark that, while we discussed for the z = 2 case here, the same pattern

holds for the higher values of z in the Lifshitz background. The asymptotic behavior of the

spectral function χWKB ∼ exp[−λα1/ζ ] for the general values of z was worked out in [12],
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where the constants are given by

λ =

√
πΓ(1/ζ − 1/2)

2Γ(1/ζ)
, α =

(ω
z

)ζ (k
ω

)2

, ζ = 2(1− 1

z
). (2.45)

Our main goal of this thesis is to see whether the exponential decoupling of horizon is

observed in AdS/CFT with spinors. If so, our next question will be whether the above

formula also carries over, which will be addressed in the second chapter.

2.4 Numerical Approximation

As another way of investigating the Lifshitz background for higher z, we discuss the numerical

approximation. This also serves as a consistency check of the earlier derivations with the

exact method and the WKB approximation. The general scheme to obtain the boundary

Green’s function is the same as that used for the analytic calculation. The only difference is

that we solve the radial differential equation (2.7) numerically. With the infalling boundary

condition, one can integrate the differential equation from sufficiently large r to r ∼ 0. Then

we fit the numerical solution to the asymptotic form near boundary to find the source A and

the response B. The asymptotic form near boundary is given by,

f(r) = Ar
z+n
2
−ν(1 + α1r + α2r

2 + ...) +Br
z+n
2

+ν(1 + β1r + β2r
2 + ...). (2.46)

We can improve the precision by including higher order terms, but fitting does not give a

good result for B, as it is overwhelmed by A. Therefore we first obtain A, and strip off the

phase of A, phA = eiφ (φ = argA) from the numerical solution for f(r). Then we take the

imaginary part of this stripped solution, to obtain the imaginary part of response divided

by the phase of A, i.e., Im[e−φB].

Im[e−iφf(r)] = Im[e−iφB]r
z+d
2

+ν(1 + β1r + β2r
2 + ...) (2.47)
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Figure 2.5 The holographic spectral function calculated numerically from the AdS (dashed)

and the Lifshitz z = 2, 3, 4 (blue, orange, green) backgrounds for k = 2, m = 2 (left plot)

and for w = 2, m = 2 (right plot).

This gives the enough information to construct the imaginary part of the Green’s function,

from which we can obtain the spectral function.

Im[G(w,~k)] = KIm[
B

A
] = K

Im[e−iφB]

|A|
(2.48)

The numerical calculation of spectral functions is consistent with the previous analysis

with a few percent error for the AdS and Lifshitz z = 2 cases. In general, the spectral

functions from the pure AdS and pure Lifshitz spacetime shows the power law behavior (see

figure 2.5), which is consistent with the scale invariance of theory. Overall, the numerical

calculation is proven useful, and we will revisit this approach in the analysis of fermionic

AdS/CFT.



Chapter 3

Non-relativistic AdS/CFT with Fermions

3.1 Spinors in the Curved Spacetime

In this section, we summarize the derivation of the field equation for the radial coordinate

r. As for the bosonic case, we start from the field equation in a flat spactime. The fermions

are described by the Dirac equation,1

(γµ̄∂µ −m)ψ = 0 (3.1)

where the gamma matrix satisfies {γµ̄, γ ν̄} = ηµ̄ν̄ . In a curved spacetime, a different treat-

ment is required for the gamma matrix and the derivative of spinor fields ψ. That is, the

anticommutation relation becomes

{γµ, γν} = 2gµν (3.2)

and we replace the partial derivative with the local Lorentz covariant derivative, namely,

∇µψ = ∂µψ +
1

4
ωµνλγ

νλψ (3.3)

1Used the bar to indicate the flat spacetime only in this section.

19
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where γµν is defined as 1
2
[γµ, γν ] and ωµνλ is known as the spin connection.2 For the diagonal

metric we consider, it can be obtained as

ωµνλ = gµ[ν,λ] =
1

2
(gµν,λ − gµλ,ν). (3.4)

Let us consider a general form of a diagonal metric,

ds2 = −e2A(r)dt2 + e2B(r)d~x2
n + e2C(r)dr2 (3.5)

where n denotes the number of spatial dimensions. Then one finds the four non-vanishing

spin connections, which are

ωttr = −ωtrt = −dA
dr
e2A, ωiir = −ωiri =

dB

dr
e2B (3.6)

With these expressions, the Dirac equation assumes the following form.3

( /∇−m)ψ = (γt∂t + γi∂i + γr∂r +
1

2
γr(A′ + nB′)−m)ψ = 0 (3.7)

Further simplification is possible through scaling, ψ → e−
1
2

(A+nB)ψ, which eliminates the

1
2
γr(A′+nB′) term. In addition, we can express the gamma matrices in the curved spacetime

in terms of those in the flat spacetime. Noticing the relations, γµ̄γµ̄ = ηµ̄µ̄ and γµγµ = gµµ,

one finds

γt = γ t̄e−A, γt = γ īe−B, γt = γ r̄e−C . (3.8)

We can proceed further by working in the momentum space. We consider a plane wave

solution, ψ = ei(
~k·~x−ωt)f(r). By putting together, one finds the following equation for the

radial coordinate.

(e−Aγ t̄(−it) + e−Bγ ī(iki) + e−Cγ r̄∂r −m)f(r) = 0 (3.9)
2For the more detailed formulation in terms of the frame field for fermions coupled to gravity, see [18].
3The tensor operation is still done using the Minkowski metric.
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Our next task is to find the solution for f(r), and use the AdS/CFT prescription to obtain

the boundary Green’s function, as outlined in [17]. The exact solution is possible for the pure

AdS background. However, we resort to the numerical method for the Lifshitz background.4

3.2 The Exact Green’s function for the AdSn+2 Back-

ground

In this section, we obtain the exact radial wavefunction f(r) the pure AdSn+2 background,

calculate the boundary Green’s function, and examine the spectral function. While the

retarded Green’s function for this background was worked out before in [17], we use a different

coordinate system for r and use the Weyl basis. The result will also serve as a check for our

numerical calculation later. The AdSn+2 metric is given by

ds2 =

(
L

r

)2

(−dt2 + d~x2
n + dr2). (3.10)

We choose the Weyl basis for the representation of gamma matrix, as the Dirac equation

takes a simpler form than that with the Dirac basis.

γt = i

0 1

1 0

 , γi = i

 0 σi

σi 0

 , γr =

−1 0

0 1

 (3.11)

Using this representation, one finds the Dirac equation (3.9) takes the form of−∂r −m/r ω − ~k · ~σ

ω + ~k · ~σ ∂r −m/r

 f(r) = 0, f(r) =

fa(r)
fb(r)

 (3.12)

where we set L = 1 for convenience and divided f(r) into the upper and lower parts. This

equation can be decoupled into two second order linear differential equations for fa and fb,
4For m = 0, the exact solution was worked out in [16].
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which are

[∂2
r + ω2 − k2 − 1

r2
(ν2
± −

1

4
)]fa/b(r) = 0, ν± = m± 1

2
. (3.13)

This equation has the Bessel functions as solutions. One can find a complete set of solutions

by first expressing fa in terms of the Bessel functions, and by plugging it into (3.12) to find

fb. That is to say, the solutions for fa and fb are

fa(r) =
√
r(C1Jν+(qr) + C2Yν+(qr)), (3.14)

fb(r) =

(
ω + ~k · ~σ

q

)
√
r(C1Jν−(qr) + C2Yν−(qr)) (3.15)

where q =
√
ω2 − k2 and we also used the identity J ′ν(z) = Jν−1(z) − ν

z
Jν(z) to obtain the

second expression.

Now we follow the AdS/CFT prescription with spinnors to obtain the retarded Green’s

function. We first impose the infalling boundary condition as follows.

fa(r →∞) = aeiqr, fb(r →∞) =
ω + ~k · ~σ

q
iaeiqr (3.16)

Here a is a constant vector, and we restrict the momentum to be timelike w > |~k| so that q is

real. To match the boundary condition and our solution, it is convenient to use the Hankel

functions, which are related to the Bessel functions as

H(1)
ν (z) = Jν(z) + iYν(z), H(2)

ν (z) = Jν(z)− iYν(z) (3.17)

and whose asymptotic forms are

H(1)
ν (|z| → ∞) ∼

√
2

πz
ei(z−

1
2
νπ− 1

4
π), H(2)

ν (|z| → ∞) ∼
√

2

πz
e−i(z−

1
2
νπ− 1

4
π). (3.18)

By comparing these forms with the infalling boundary condition, one finds that the radial

wavefunctions assume

fa(r) =

√
πqr

2
ei(ν+π/2+π/4)aH(1)

ν+
(qr) (3.19)
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fb(r) =
ω + ~k · ~σ

q

√
πqr

2
e−i(ν+π/2+π/4)iaH(1)

ν− (qr). (3.20)

Meanwhile, one can show from the Dirac equation (3.12) that the limiting form of the

wavefunctions near the boundary are

fa(r → 0) = Ar−m +Brm+1, fb(r → 0) = Cr−m+1 +Drm. (3.21)

where the coefficients are related as (2m+1)B = (ω−~k·~σ)D and (2m−1)C = (ω+~k·~σ)A. We

identify the term Ar−m as the non-normalizable mode, and the termDrm as the normalizable

mode. Let them be related by D = SA. According to the AdS/CFT recipe, A corresponds

to the source, D corresponds to the expectation value, and the retarded Green’s function is

given as

GR = −iSγt (3.22)

where γ0 = iσt = i in our basis.

Now we examine the limiting form of equations (3.20) at the boundary to find the co-

efficients A and B. We restrict ourselves to the case ν± > 0. Then the Hankel function in

(3.20) takes the limiting form of

H(1)
ν± (|z| → 0) = Jν±(z) + iYν±(z)

=
(z/2)ν±

Γ(ν± + 1)
− i

π

[
Γ(ν±)

(z
2

)−ν±
+ cos(πν)Γ(−ν±)

(z
2

)ν±]
as |z| → 0. Using this expression, one can identify the terms with r−m and rm, so one finds

A and B. Then the retarded Green’s function is found to be

GR(ω,~k) =
−πe−iπ(m−1/2)

sin(π(m− 1/2))[Γ(m+ 1/2)]2
ω + ~k · ~σ

q

(q
2

)2m

. (3.23)

The spectral function is given by A(k, ω) = − 1
π
Im(Tr(GR)). One can see that, as for the

bosonic case, the pure AdS background corresponds to the spectral distribution that grows
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Figure 3.1 The exact spectral function χ(ω, k) = − 1
π
Im(Tr(GR)) constructed from the AdS

background for m = 2. The contours are drawn at |A| = 0.01, 0.1, 1, 10, 100. The slope is

polynomial, and there is no exponential suppression.

polynomially in ω from ω = |~k| to ω = ∞ (see figure 3.1). It reaches 0 at ω = ~k, as the

frequency is confined by the relativistic energy-momentum relation ω2 = ~k2 +m2.

Finally, we note that the spectral function does not exhibit the exponential suppression

in the limit ω → 0.

3.3 Numerical Approximation for the AdSn+2 and Lif-

shitz z > 1 Backgrounds

In this section, we outline the procedure to obtain the solution numerically for the Lifshitz

z > 1 backgrounds. The story is the same for the AdS case except minor modification.

We first validate our method by comparing the spectral functions obtained through the

numerical method with the exact method for the AdS case. Then we present the result of
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the calculation for the imaginary Green’s function constructed from the Lifshitz z = 2, 3, 4

background and discuss some of its features. With the Lifshitz metric,

ds2 = −
(
L

r

)2z

dt2 +

(
L

r

)2

(d~x2
n + dr2). (3.24)

and the Weyl basis, the Dirac equation assumes the following form. −∂r −m/r ωrz−1 − ~k · ~σ

ωrz−1 + ~k · ~σ ∂r −m/r

 f(r) = 0, f(r) =

fa(r)
fb(r)

 (3.25)

We first find the expression of infalling boundary condition. From the Dirac equation (3.25),

one can find the limiting form of equation for fa as

(∂2
r −

z − 1

r
∂r + ω2r2z−2)fa(r) = 0. (3.26)

With the scaling fa → r(z−2)/2fa, the equation transforms to a Schrödinger type equation.

(−∂2
r + U(r))fa(r) = 0, U(r) =

z

4r2
− ω2r2z−2 (3.27)

Using the WKB approximation, one finds

fa(r) ∼
1

4
√
−U

exp[±i
∫
dr
√
−U ] ∼ C

r(z−1)/2
exp[±iωrz/z] (3.28)

for some constant C. Now by scaling back r(z−2)/2fa → fa, we find the infalling wavefunctions

near horizon as

fa(r →∞) = aeiωr
z/z, fb(r →∞) = iaeiωr

z/z (3.29)

in which fb is found by plugging fa into the Dirac’s equation and a is an arbitrary constant

vector.

Now let us consider the limiting forms of wavefunctions at the boundary, which are found

from the Dirac equation as before,

fa(r → 0) = Ar−m(1 + α1r + α2r
2 + . . . ) +Brm+1(1 + β1r + β2r

2 + . . . ) (3.30)
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fb(r → 0) = Cr−m+1(1 + γ1r + γ2r
2 + . . . ) +Drm(1 + δ1r + δ2r

2 + . . . ). (3.31)

where the coefficients are related as ~σ · ~k(2m + 1)B = −~k2D and ~σ · ~k(2m − 1)C = ~k2A.

The Green’s function is obtained by identifying A as the source and D as the expectation

value. A direct approach to the numerical approximation is to start with the two second

order linear differential equations for fa and fb obtained from the Dirac equation. Then we

impose the infalling boundary condition at the horizon, and integrate numerically from the

horizon to the boundary. We match the numerical solutions to the above limiting forms

using the appropriate number of higher order terms for accuracy. However, it is not easy to

find the coefficient D via this way, since the value of function is dominated by the r−m+1

term.

For this reason, we introduce

ζ+(r) =
fb+
fa+

, ζ−(r) =
fb−
fa−

, fa =

fa+

fa−

 , fb =

fb+
fb−

 . (3.32)

Then the horizon boundary condition becomes

ζ±(r →∞) = i. (3.33)

In the meantime, ζ± takes the following asymptotic forms near the boundary.

ζ±(r → 0) =
C±
A±

r +
D±
A±

r2m (3.34)

where we divided each coefficient into two parts as

A =

A+

A−

 , B =

B+

B−

 , C =

C+

C−

 , D =

D+

D−

 . (3.35)

We already know that A and C are related as ~σ · ~k(2m− 1)C = ~k2A. If we use the freedom

to choose the direction of momentum to make ~σ · ~k to be

~σ · ~k =

k
−k

 , k = |~k|, (3.36)
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then they are related as (2m− 1)C± = ±kA±. Therefore the ratio C±/A± is now real, and

we can eliminate the first term in (3.34) by taking the imaginary part of it, and obtain the

imaginary part of the ratio D±/A±. For our purpose, it is enough to know the imaginary

part, as the spectral function comes from the imaginary part of the retarded Green’s function.

Finally, we need the differential expression for ζ± to connect the horizon to the boundary.

By taking the derivative, one finds

ζ ′± = −ζ±
f ′a±
fa±

+
f ′b±
fa±

. (3.37)

Using the Dirac’s equation (3.25), one can turn this into the differential equation for ζ±.

ζ ′± + (ωrz−1 ∓ k)ζ2
± −

2m

r
ζ± + (ωrz−1 ± k) = 0 (3.38)

Finally, with the infalling boundary condition, we integrate ζ± numerically from the

horizon to the boundary, and match the imaginary part of our numerical solution to the

asymptotic form at the boundary (3.34) to find Im[D±/A±]. Then the imaginary part of

the retarded Green’s function is given by

Im[GR] = Im[−iSγt] =

Im[D+/A+]

Im[D−/A−]

 , (3.39)

and the spectral function is obtained from χ(k, ω) = − 1
π
Im(Tr(GR)).

With this procedure described so far, we calculated the spectral function from the AdS

background (see figure 3.2), and compared the numerical calculation with the exact calcu-

lation of previous section. While there existed some errors for the small values of ω < 1,

the relative error was small enough to understand the general behavior, and the numerical

calculation converged very closely to the exact solution in the most range (see table A.1).

Now let us consider the spectral function constructed numerically from the Lifshitz z > 1

background. The general structure is the same as that from the pure AdS background.
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That is, it grows with increasing ω and decline with increasing k with the power law (see

figure 3.3 and 3.4), as predicted from the scale invariance of the metric. On the other hand,

the spectral function shows the two features that differs from those of the relativistic case.

1. When the spectral function is small (around A(ω, k) ∼ 1), its contour line resembles

ω = k2/2m, which is the non-relativistic energy-momentum relation (see figure 3.3).

2. When ω is smaller than k2/2m, the spectral function gets suppressed exponentially.

The exponent α in the suppression factor e−α, which is found from fitting (see figure 3.5

and table 3.1), is very close to twice that of the spectral function in the bosonic theory.

In the bosonic case, the factor was derived as the formula (2.45) using the WKB

approximation. From that formula, α for the fermionic case is obtained as

α =


π
2
k2

ω
for z = 2

√
π

3
Γ(1/4)
Γ(3/4)

√
k3

ω
for z = 3

√
π

4
Γ(1/6)
Γ(2/3)

3

√
k4

ω
for z = 4

(3.40)

First, we note that the dependence of α on the kz/ω, which is consistent with scale

invariance of the metric. In addition, it is interesting that not only both of the spectral

functions for bosons and fermions exhibits the exponential suppression in certain regions of

momentum space (ω � 1, k � 1), but also the exponent of the factor only differs by 2.

While we do not have an explanation at this moment, we expect that the pattern also can

be understood in the same way that the bosonic case was explained, that is, in terms of the

tunneling barrier and the WKB approximation near boundary.
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Figure 3.2 The spectral function χ(w, k) obtained numerically from the AdS background.

Figure 3.3 The spectral function χ(w, k) obtained numerically from the Lifshitz z = 2 back-

ground for m = 1. The contour lines are drawn at χ(ω, k) = 0.001, 0.01, 0.1, 1. One can

see that the contour line approaches ω = k2/2m near χ(ω, k) = 1, and χ(ω, k) decreases

exponentially beyond this line.
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Figure 3.4 The holographic spectral function calculated numerically from the AdS (dashed)

and the Lifshitz z = 2, 3, 4 (blue, red, green) backgrounds for k = 2 (left plot) or ω = 2

(right plot) with m = 2. We set the normalization constant K = 1 except for the AdS case

with fixed k, where K = 0.1.

Figure 3.5 The values of spectral function Logχ(ω, k) obtained numerically from the Lifshitz

z = 2 background form = 2 and k = 5. The red line is the result of fit of α0(k2/ω)+constant

in the region ω < k2/2m. For this case, α0 = 1.6038. We ignored the points where ω is so

small that the numerical result is not reliable.
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z = 2 z = 3 z = 4

α2
k2

ω
α3

2

√
k3

ω
α4

3

√
k4

ω

m k α2 α3 α4

1 3 1.5935 1.7875 1.8691

1 5 1.5917 1.7715 1.8405

1 7 1.5824 1.7510 1.8287

2 3 1.5941 1.8533 1.9655

2 5 1.6038 1.8175 1.8813

2 7 1.5977 1.7993 1.8453

3 3 1.5968 1.9975 2.0830

3 5 1.6006 1.8806 1.9167

3 7 1.5855 1.8575 1.8334

2αi,WKB 1.5707 1.7480 1.8214

Table 3.1 The exponents of the exponential factors in the spectral function from the Lifshitz

z = 2, 3, 4 background with fermions (left table) and the constant αi in the exponent (right

table) in the limit ω � 1, k � 1. They were obtained by fitting the exponents to logχ(ω, k)

in the region ω < k2/2m. The last row is twice the constant in the exponent of exponential

factor in the spectral function from bosonic AdS/CFT.



Chapter 4

Discussion

The main motivation of our study was to answer whether the holographic Green’s function

constructed from the Lifshitz spacetime and fermions exibits the exponential insensitivity to

the horizon boundary condition that was found using AdS/CFT with bosons in the certain

region of momentum space ω � 1, k � 1. This insensitivity was manifested in the expo-

nential vanishing of the spectral function in this region of momentum space. We found that

the answer is yes, that is, the spectral function shows the exponential suppression in the

low energy, large momemtum limit in the fermionic AdS/CFT, and the expression for the

exponential factor for each z carries over from the bosonic cases with the additional constant

factor. This is an interesting result considering the difference in the ways that scalars and

spinors couple to the curved spacetime.

As the fermions have more relevance to realistic condensed matter systems, our finding

may open the possibility to make connection between this duality and experiments. Since

the spectral function can be the measure for the density of states, it also can be used to

calculate transport coefficients such as thermal and electrical conductivities. Therefore the

universal behavior of spectral function in the low energy, large momentum limit for the

Lifshitz background can lead to universal predictions in the corresponding field theories.
32
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It is also interesting to consider how this insensitivity may rescue AdS/CFT with the

Lifshitz geometry. It has been shown that the Lifshitz geometry suffers from a naked singu-

larity at the horizon, which lead to unphysical results [19]. Various mechanisms to resolve

the singularity were introduced, which lead to different near horizon geometries. Our finding

solidifies the previous notion that the field theory may care little about how the Lifshitz

horizon is resolved [12]. The argument is that the geometric resolution at the horizon leads

to introducing a low-energy regulator, but this only gives an exponentially small correction

to the boundary Green’s function, as it becomes insensitive to the horizon geometry in the

low energy, large momentum limit.

What is lacking in our analysis is the explanation of this exponential decoupling. For

AdS/CFT with scalars, it was possible to find the exact Green’s function for the Lifshitz

z = 2 case, and examine its limiting behavior. In addition, we had a more intuitive picture in

terms of the effective potential and the WKB approximation. It was the region of potential

falling slower than ∼ 1/r2 that introduced the decay of amplitudes containing the horizon

boundary condition. We leave the search of exact boundary Green’s function and the WKB

approximation for the spinors in the Lifshitz geometry as future study.



Appendix A

Appendices

A.1 The Green’s Function and the Spectral Distribution

In this section, the relation between the Green’s function and the spectral distribution will be

discussed. The Green’s function allows to represent the solution of a differential equation in

terms of an integral and a source term. The Green’s function can be expressed in momentum

space by the Fourier transform. Assuming the source is concentrated at yµ = 0

G(xµ) =

∫
Ĝ(kµ)e−ikαx

α d4k

(2π)4
, (A.1)

where kα = (w,~k). Then �Ĝ(kµ) = 1, and also �Ĝ(kµ) = −kαkαĜ(kµ). Therefore the

Green’s function in momentum space and in coordinate space are related by

Ĝ(kµ) =
1

w2 − |~k|2
, (A.2)

G(xµ) =

∫
e−i(

~k·~x−ωt)

ω2 − |~k|2
dωd3~k

(2π)4
, (A.3)

This integral can be calculated through the contour integral with displaced poles.

G(xµ) =

∫
e−i(

~k·~x−ωt)

(ω + iε)2 − |~k|2
dωd3~k

(2π)4
, (A.4)

34
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It can be shown that G(xν) = 0 for t < 0, and for t > 0,

G(xµ) =
δ(r − ct)

4πr
. (A.5)

This is the manifestation of the field propagating at the speed of light. In the momentum

space, the Green’s function gives the information on the dispersion relation. By expanding

the Green’s function in the complex plane, one finds

Ĝ(kµ) =
1

ω2 − k2 + ε2
− 2iωε

(ω2 − k2 + ε2)2
. (A.6)

Therefore the imaginary part of the Green’s function tells us the dispersion relation for the

particle, and in this case ω = ±k. Hence from the distribution of the imaginary part of the

Green’s function, we are able to obtain the spectrum of dispersion relations corresponding

to the quasi-particles.
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k = 2 k = 5

ω χexact χnum. res. (%) χexact χnum res. (%)

0.5 0.0044209 0.0053435 -20.87 0 0

1 0.070735 0.066246 6.35 0 0

1.5 0.35809 0.28801 19.57 0 0

2 1.1317 1.1546 -2.02 0 0

2.5 2.7631 2.2452 18.74 0 0

3 5.7295 5.3148 7.24 0 0

3.5 10.614 10.148 4.39 0 0

4 18.108 17.742 2.02 0 0

4.5 29.006 28.853 0.53 0 0

5 44.209 44.033 0.40 0 0

5.5 64.727 64.554 0.27 4.679 4.3325 7.41

6 91.673 91.331 0.37 15.483 15.416 0.43

6.5 126.26 125.73 0.42 32.940 32.737 0.62

7 169.83 168.98 0.50 58.217 57.914 0.52

7.5 223.81 222.39 0.63 92.677 92.527 0.16

8 289.73 287.82 0.66 137.82 136.95 0.63

8.5 369.24 366.70 0.69 195.28 194.27 0.52

9 464.09 460.93 0.68 266.78 265.34 0.54

9.5 576.14 572.44 0.64 354.18 354.05 0.04

10 707.35 703.01 0.61 459.44 460.22 -0.17

Table A.1 The values of spectral functions χexact(ω, k) and χnum.(ω, k) calculated exactly

and numerically from the AdS spacetime using fermionic AdS/CFT, where the normalization

constant was set to be K = 1. The 4th and 7th columns are the residual errors of numerical

values as the percentage of exact value.
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