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ABSTRACT

Convolutional Top-Down Mask Generator for Performance Improvement of Neural

Network Classifiers

by

Yihe Tang

Advisor: Professor Benjamin Kuipers

This paper introduces a novel mask module which can be integrated into the existing

neural network classifiers to improve the classification performance by generating a

mask to filter the irrelevant background. The mask generator utilizes the top-down

feedback to select useful features for the neural network classifier. It improves the

classification performance of a given neural network algorithm especially when the

input is corrupted by noise or background interference.



CHAPTER I

Introduction

While recent technology booming significantly improved the computational power

available to the publics, one old topic is getting hot: how can computer see? Object

recognition algorithms are the key to the answer. For decades, it has been an area

of extensive research with the development of modern computer science.

Generally, there are two types of recognition: recognition of a special object and

classification of a general category. For the first case, an instance of a special class

is being identified, for example, your neighbor’s car, Steve Job’s face, and Apple’s

logo. For the second case, objects are classified into different categories, for example,

numbers, letters, cars, cats, dogs, and airplanes. Both cases of recognition need to

prepare some characteristic features to recognize a certain object or category.

The scientists started from various hand-crafted features, such as the Harris de-

tector, the Hessian detector, the Laplacian-of-Gaussian (LoG) detector, the Hessian-

of-Gaussian (HoG) detector and the SIFT detector [20]. These detectors utilize the

deep insight of the characteristic features and proved to be effective. Many object rec-

ognizers were built based on these feature detectors, such as the SIFT face detector,

the HoG person detector and the Bag-of-Words image classification [8]. Although

they had competitive performance at the time they were invented, there is no such a

1
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general way to improve the performance of the object recognition by hand-crafting

a feature detector: the researcher does not have an automatic way to prove whether

the detector is optimal with the current setting.

Machine learning provides a systematic way to select, generate and optimize fea-

tures. The systematic generation enables researchers to obtain better high level

features that are something even beyond their imagination. Neural network is one

of the most popular models in machine learning with astounding flexibility on fea-

ture selection, generation and optimization. For example, sparse autoencoder is a

typical neural network algorithm [?]. If trained on suitable datasets, it can auto-

matically reconstruct the familiar hand-crafted corner features and the edge features

in the different layer. See figure 1.1 for the edge features generated in the middle

layer of the autoencoder. In the higher layer, it can even generate the eigen-object

— the first few dominant orthogonal components of the whole object space (figure

1.2) which are hard to make by hands. The superb feature generation efficiency by

sparse autoencoder shows the potential of utilizing neural networks for better feature

selection, generation and optimization.

1.1 Motivation

When seeing an object in real world, the neural networks in human brains separate

the object from the background, which is not easy for computer programs. In real

world, the scene is usually complicated, since many background objects can have

ambiguous colors and brightness compared to the foreground object. It takes humans

a long time to learn the features of objects in their early life. These understanding is

crucial for human’s excellence in separating objects from the ambiguous backgrounds.

Compared to the human beings, it is difficult for computers to summarize useful
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Figure 1.1:
Visualization of the extracted edge features (middle features) of MNIST handwritten
digits by my implementation of sparse autoencoder. The final accuracy classifed by
softmax regression using the extracted eigen-stroke features (final features) is 98.18%.
The experiment setting is different from the setting in chaper V and cannot compare
to the results in chaper V.

Figure 1.2:
Visualization of the extracted eigen-strokes of MNIST handwritten digits by my im-
plementation of sparse autoencoder. The final accuracy classifed by softmax regression
using the extracted feature is 98.18%. The experiment setting is different from the
setting in chaper V and cannot compare to the results in chaper V.
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features in the chaotic backgrounds since there is no enough information for the easy

separation of foreground and background. This is different from the humans’ learning

process: the additional information provided by three dimensional human vision

helps the understanding of the relationship between foreground and background and

thus to separate them. In the last decade, the researchers proposed lots of different

neural network architectures. The growing recognition ratio under different settings

makes it possible to put them into practical use. Meanwhile, those algorithms usually

suffer a performance loss in the chaotic and noising real-world backgrounds.

The major motivation for this thesis is to improve the performance of existing

neural network classifiers by applying a mask on one of their bottom layers for

feature selection. By applying the mask, we can reduce noise and mitigate the

interference from the unrelated background. The features improving the classification

performance are expected to be retained in the selection process, while those useless

or even harmful features will be eliminated. Such feature selection idea drives the

design.

Another merit of adding mask is the pure differentiability of the masking operation

(element-wise product), which makes it possible be trained with traditional back-

propagation.



CHAPTER II

Related Work

Sequential multi-layer neural networks have achieved the state of the art in many

classification tasks. For example, in the ImageNet Classification Challenges, some

of them achieves the best performance among other algorithms [10, 22]. However,

these algorithms usually suffer notable performance loss if the target object hides in

the chaotic background [10].

Some segmentation algorithms built on deep neural networks have good perfor-

mance [4, 14]. However, these segmentation algorithms are usually built on some

other neural network classifiers. They are not intended to help classification but to

focus on segmentation which is regarded as a harder challenge [14].

Wang, J. Zhang, Song and Z. Zhang have proposed an attentional neural network

(ANN) which can select features by cognitive feedback [21]. The structure of the

network is similar to the mask generator proposed in this thesis. The ANN [21]

and the method proposed in this thesis both utilize top-down information and both

tested the model on MNIST variations datasets. However, the ANN [21] focuses on

cognitive bias. The bias itself is not generated from the model. Instead, it is a given

input. It cannot solve the problem proposed in this thesis: improve the performance

of a given model when the data is mixed with unrelated background. But our model,

5
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the mask generator can generate the mask according to the given input to select the

features automatically, which successfully solved our problem.



CHAPTER III

The Structure of the Mask Generator

3.1 Overview

The mask generator is a separate module existed alongside with the original neural

network classifier (see figure 3.1 and 3.2). Depending on the depth of the given

neural network algorithm, the mask is applied to different layers. For shallow neural

network, the mask should be applied on the input layer of the network, since the

upper layers are mostly occupied with high level features. Blocking any of these

features is unnecessary, because almost all of the features will contribute to the

classification (they are close to the output layer), which is further explained in section

4.3. Figure 3.1 illustrates the general structure of the mask module working with

shallow neural networks.

For deep neural network, the mask may better apply to lower feature layers. Ap-

plying the mask to the input layer directly is usually computationally inefficient.

Since the feature layers usually have lower dimensions than the input layer, applying

the mask to the preliminary features generated in the bottom of the network reduces

the amount of computational work and benefits from the translation invariance pro-

vided by lower layers. Figure 3.2 shows the general structure of the mask module

applied to deep neural networks.

7
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Input image

Mask Module

Classifer

Bitwise product

Figure 3.1: Mask module applies to shallow neural networks.

Lower Layers 
of Network

Mask Module

Higher Layers 
of Network

Bitwise product

Input image

Figure 3.2: Mask module applies to deep neural networks.
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The inner structure of the mask generator is shown in figure 3.3. The mask

generator consists of several feedback units. For example, the mask generator shown

in figure 3.3 has two feedback units. The number of the units in the mask generator

is determined by the complexity of the original neural network, and specifically the

layers between the masked layer and the label (output) layer. The detail setting

of the mask generator such as its number of the feedback units, the number of the

feature maps for each convolutional layers and the size of pooling block need to be

determined case by case.

Input layer
Padded Full 
Convolution

al layer

Max pool
layer

Padded Full 
Convolution

al layer

Max pool
layer

Padded Full 
Convolution

al layer

Padded Full 
Convolution

al layer

Padded Full 
Convolution

al layer

Mask

Unit 1 Unit 2

Unpool Unpool

Padded Full 
Convolution

Figure 3.3: The structure of the mask generator with two units.
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3.2 Convolutional Layer

The motivation of convolutional neural network comes from monkey’s visual

cortex.[5, 9]. The cells on the cortex are arranged in a special way, so that it is

only sensitive to a small contiguous block of the visual field, called receptive field[5].

These small contiguous blocks together cover the whole visual field[5]. Since each of

them is only sensitive to a small region on the visual field, they can be trained to

exploit the locally spatial correlations [5].

The definition of the convolution is given as follows:

Definition III.1. Denote matrix W as the weight map, matrix I as the input layer.

Then the (Padded Full) Convolution of I and W is defined as

C = I ∗W

where

Cm,n =
∞∑

i=−∞

∞∑
j=−∞

Ii,jWm−i,n−j

If the operation only returns the part of the convolution that can be computed with-

out assuming I as zero-padded, it is called convolution. If zero-padded is assumed,

the operation is called the padded full convolution.

Each convolutional layer has a number of shared weight maps. The output of a

convolutional layer is a set of feature maps, which are the convolution of each weight

map W i and the input layer I. The shared weight maps is also called the hidden

units. The neural network mainly consists of convolutional layers (and corresponding

pooling layers) are called convolutional neural networks (CNN).

Compared to fully connected networks, instead of connecting to all the pixels

(features) of the previous layer, CNN is locally connected. The hidden units only
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connect to a small contiguous block of pixels (features) as in the definition of the

convolution operation. This enables CNN to find out locally spatial correlations like

the animal’s visual cortex does.

By the definition of convolutional neural network, the weight map W i is shared

throughout the whole input layer. This allows the network to discover translation

invariance, which means that finding out features regardless of their position in the

input layer. The shared weight also reduces the total number of the free parameters,

which increases the learning efficiency [5]. The structure of convolutional layer is

shown in figure 3.4 [1].

Figure 3.4:
Illustration of a convolutional layer and its corresponding pooling (sub-sample) layer.
(Bishop [1].)
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3.3 ReLU Nonlinearity

ReLU stands for rectified linear unit, which is a neuron in the neural network

using rectifier for nonlinearity. The rectifier function is defined as

f(x) = max(0, x)

Krizhevshky, Sutskever and Hinton claims that compared to using traditional non-

linear unit sigmoid function (f(x) = (1 + e−x)−1) and tanh(x), ReLU is significantly

faster in the training process [10]. My own verification is given in section 4.4.

3.4 Pooling

Directly utilizing the extracted features from convolutional layer can be challeng-

ing. Suppose that we have learned n of m ×m feature maps. The total number of

the features is n × m × m. For example in our experiment, at C1 layer, there are

28× 28× 18 = 14112 features, which is relatively large. On the one hand, it can be

computationally expensive to use this information directly. On the other hand, large

number of features sometimes may be prone to overfitting.

We use pooling to solve this problem. Pooling can reduce the number of features

and also emphasize significant features by statistical information. Statistics is good

at describing large number of data with a short summary. The summary is in much

lower dimensions, and describes the local information effectively. For example, we can

apply mean or max function to each of the non-overlapping small blocks in the output

feature maps of a convolutional layer, to find out a local statistical representation of

the block. (We do not consider min function, since zero does not represent anything

special). In the project, we set the non-overlapping block as 2 × 2 and use max

function for the statistical representation.
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The mechanism of pooling is shown in figure 3.5 [15]. Pooling process divides the

input layer into non-overlapping fixed-size blocks. Then it selects the largest number

in each block and omits other values in the block. The selected values make up the

new output layer.

Figure 3.5: Ilustration of pooling [15]. 1 is the maximum value in the red area.

Besides, pooling also provides a form of translation invariance [15]. Assuming

the block size is 2 × 2 and the image input is translated by one pixels, there are

eight possibilities for such translation. After pooling, three out of the eight possible

configurations will produce the exactly same output, which leads to better feature

robustness. Choosing a larger block size enables stronger translation invariance, but

the block size cannot be too large, since there will be fewer details at the same time.

3.5 Unpooling

In order to generate a mask for noise reduction and background separation, higher

level information is needed since the mask is generated in the lower layer of the

network. In the traditional models, the architecture is usually “sequential”, in other

words, it does not contain a “loop”. In these models, the lower layers are unable
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to get insight from higher level features. Similar to Zeiler, Matthew D and Taylor’s

(max) unpooling [23], we define (full) unpooling as adding the value of current pixel

to all the corresponding (mapped) pixels in the “unpooled” layer. It can gather

higher level abstraction into lower level mask generation. In the rest of the thesis,

unpooling will mean (full) unpooling instead of (max) unpooling proposed in [23].

The unpooling operation is essential to the proposed mask generation module. It

just adds the value of a given pixel in the higher layer to all the pixels that map to it

from the lower layer. Unpooling can be viewed as the inverse operation of traditional

pooling, which recovers original input from the pooled features by utilizing the top-

down feedback in mask generation.

3.6 Training Method

The training of the network uses the same back-propagation algorithm of multi-

layer neural network. Notice that the mask operation is compatible with the back-

propagation, as shown below:

Let M be the mask matrix, H be the activation value before masking and A be

the masked activation value. Let J be the cost function, Mij, Hij and Aij denote

the elements in M,H,A respectively. Then we have

Aij = HijMij

∂J

∂Mij

=
∂J

∂Aij

∂Aij

∂Mij

=
∂J

∂Aij

Hij

which can be use in the back-propagation. In addition, we use sigmoid as the acti-

vation function for the mask matrix so that they are constrained within the interval

(0, 1).

However, with the addition of the musk module, the training procedure becomes

crucial. Each iteration of the back-propagation can be divided into four steps, as
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shown in figure 3.6.

Input layer
Padded Full 
Convolution

al layer

Max pool
layer

Padded Full 
Convolution

al layer

Max pool
layer

Padded Full 
Convolution

al layer

Padded Full 
Convolution

al layer

Padded Full 
Convolution

al layer

Mask

Unpool Unpool

Padded Full 
Convolution

Step 1

Step 2

Step 3

Step 4 Step 4

Step 5

ClassifierInput layer

Figure 3.6: Illustration of the training steps in one iteration of training.
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Evaluation of the Mask Generator

To evaluate the mask generator, we conducted an experiments with details de-

scribed in the sub-sections.

4.1 Dataset

The selected datasets for the evaluation should satisfy three criteria:

• The selected data for the experiment needs to be trained without intensive

computation. Without access to strong GPU-based computational power, the

selected data for performance benchmark needs to be trainable in the CAEN

lab. Specifically, the CAEN lab desktop should be able to train the data within

several hours.

• The data used in the experiment should be capable to illustrate how the mask

module improves the performance of the original neural network in background

interference and random noise.

• The data should be widely used among other researchers, which makes it pos-

sible to compare with some other modern object recognition algorithms.

Based on these criteria, I chose a published variation of the MNIST handwritten

digits database [13]. MNIST stands for Mixed National Institute of Standards and

16
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Technology, a well-known database of handwritten digits. It contains 60000 training

images and 10000 testing images. Each of the images is pre-processed to fit into a

28× 28 bounding box. They are also anti-aliased, grayscaled and centered by mass

of the pixels.

MNIST Variations are a set of databases generated by MNIST. It contains five

databases and each of them is modified as follows (Erhan [6]):

mnist-basic each of the digits were rotated by 0◦, 90◦, 180◦, 270◦ uniformly.

mnist-rot each of the digits were rotated by 0◦ to 180 ◦ uniformly.

mnist-back-rand each of the digits were put on a random background. The pixels

on the background was uniformly generated between 0 and 255.

mnist-back-image each of the digits were randomly put on a patch of grayscaled

image.

mnist-rot-back-image combine the perturbations used in mnist-rot and mnist-

back-image, namely, the images have random grayscaled background and also

rotated from 0◦ to 180 ◦ uniformly.

Another advantage for this dataset is that it uses much less data in the training

phase and much more data in testing compared to original MNIST database. It uses

12000 for training (2000 for validation) and 50000 for testing. For a machine learning

algorithm, most of the computational time is spent on training. Smaller size of

training data can save time for the researchers who do not have strong computational

power. The large number of testing images also decreases the variance in the testing,

making the testing benchmark more reliable.



18

4.2 Selected Neural Network

In order to test the efficiency of adding a mask module to an existing neural

network classifier, we selected a simple but efficient neural network classifier. The

structure of this convolutional neural network is shown in figure 4.1. The network

consists of two sets of convolutional and pooling units, then follows by a softmax

classifier. See table 4.1 for detailed settings.

Input image
(28×28×1)

Padded Full 
Convolution

al layer
(28×28×18)

Max pool
layer

(14×14×18)

Padded Full 
Convolution

al layer
(14×14×24)

Max pool
layer

(7×7×24)

Softmax 
Classifier

(using 1176 
features)

I C1 P1 C2 P2 L

Figure 4.1: The structure of the selected neural network.

Layer Feature Maps Dimensions Number of Feature Maps Convolutional Patch Size
I 28× 28 - -
C1 28× 28 18 9
P1 14× 14 18 -
C2 14× 14 24 5
P2 7× 7 24 -
L 1× 1 1176 -

Table 4.1: Details of the selected neural network.

4.3 Details of the Mask Generator

The structure of the mask generator for the selected neural network is shown in

figure 4.2. Since the selected convolutional neural network only has two convolutional

and pooling units and the dimensions of the input layer is only 28×28, two feedback
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units are used in the mask generator.

According to our experiment, applying the mask at the second layer of the original

CNN can lead to worse performance (achieving 0.6534 in mnist-rot-back-image, a

worse performance compared to the result in table 4.3). This follows the discussion

in section 3.1.

The detailed setting of the layers is given in table 4.2.

Input image
(28×28×1)

Padded Full 
Convolution

al layer
(28×28×18)

Max pool
layer

(14×14×18)

Padded Full 
Convolution

al layer
(14×14×24)

Max pool
layer

(7×7×24)

Padded Full 
Convolution

al layer
(28×28×12)

Padded Full 
Convolution

al layer
(14×14×12)

Padded Full 
Convolution

al layer
(7×7×12)

Mask
(28×28×1)

Padded Full 
Convolution

UnpoolUnpool

Figure 4.2: The structure of the mask generator applied to the selected neural network.

4.4 Selection between ReLU and Sigmoid

In order to verify the conclusion given in section 3.3, we need to test the practical

performance of ReLU and sigmoid function. Choose the selected two level convo-

lutional neural network introduced in section 4.2 and test the performance between
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Layer Feature Maps Dimension Feature Maps Number Convolutional Patch Size
I 28× 28 / /
C1 28× 28 18 9
P1 14× 14 18 /
C2 14× 14 24 5
P2 7× 7 24 /
C3 28× 28 12 9
C4 14× 14 12 5
C5 28× 28 12 3
M 28× 28 1 1

Table 4.2: Detail setting of the mask generator.

rectifier and sigmoid function as the non-linearity in the neural units. The result is

shown in figure 4.3. The result indicates that in our setting, ReLU learns faster than
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Figure 4.3:
Training a two layer convolutional neural network using sigmoid function and rectifier
through a hundred epochs.

traditional sigmoid neural units. For further applications of the mask generator, us-

ing ReLU can achieve better performance influence for large models trained on large

datasets.
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4.5 Result of the Mask Generation

Figure 4.6, 4.7, 4.8, 4.9 and 4.10 show the result of the mask generation on different

corrupted MNIST datasets. Table 4.3 is the benchmark summary of the evaluation.

Datasets CNN without Mask CNN with Mask Recognition Ratio Improvement
mnist-basic 97.51 97.98 0.47
mnist-rot 87.34 89.86 2.52

mnist-back-rand 93.22 94.07 0.85
mnist-back-image 89.51 92.52 3.01

mnist-rot-back-image 61.24 70.92 9.68

Table 4.3: Performance comparison between the existence of the mask module.

4.5.1 mnist basic and mnist rotation

For datasets mnist basic and mnist rotation, the generated masks are the identical

mask (all one), which seems to be overfitted. However, this is within the expecta-

tion. For the datasets mnist basic and mnist rotation, no random noise or unrelated

background is added, because MNIST database already pre-processed images to nor-

malize them. The images in the database have already been centred, anti-aliased,

grayscaled and unified. The only difference between MNIST variations mnist basic,

mnist rotation and the original MNIST database is the orientation of the digits.

Therefore, the mask in this case should not block anything. We see the results on

mnist basic, and mnist rotation do follow the expectation. The only non-one regions

lie in the corners. This can be explained. The L2 regularization in the training

process punishes large values in the mask. The mask can only be all ones if staying all

ones is considerably beneficial, which is impossible in this case. Meanwhile, blocking

the corners will not influence the classification since the digits are centred. This

explains the almost-all-one mask with few non-ones in the corners derived from the

mask generator.

In table 4.3, as expected, the performance difference between the existence of the
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mask is very small for mnist-basic. However, the performance difference is pretty

large for mnist-rot. The joint training process complicates the whole network. The

increasing complexity may provide the network an opportunity to avoid staying in the

current local maximum and to move forward. There is a notable phenomenon that at

the beginning stage of the training, the mask looks very similar to the mask in mnist-

back-rand, mnist-back-image and mnist-rot-back-images. The outline of the digits can

be seen on the mask as seen in figure 4.4. Compare the validation recognition ratio

in the training process (see figure 4.5), we see the masked version is trained better at

the beginning. This supports our assumption that although the mask in these two

cases does not function at the final stage, they are still useful in the early stages.

4.5.2 mnist-back-rand

For mnist-back-rand dataset, the generated mask reduced most of the random

noise. Shown in figure 4.8, compared to the original image, the masked image has

far less random noise than before. However, in table 4.3, we notice the small perfor-

mance difference between the masked CNN and unmasked CNN. Why an effective

denoising process does not improve the ratio of recognition? We think the locally

spatial correlation of CNN homogenizes the random noise in the training process by

twice convolutions and poolings. Although the recognition ratio does not increase

significantly, the mask does good job for denoising the input as shown in figure 4.8.

4.5.3 mnist-back-image and mnist-rot-back-image

For mnist-back-image and mnist-rot-back-image, the mask generator does a good

job on separating the unrelated background as seen in the figure 4.9 and figure

4.10. The successful separation of the foreground digits and the background random

images enhances the recognition ratio, especially for mnist-rot-back-image as seen in
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Figure 4.4:
Visualization of the generated mask on mnist-rot dataset throught the training process.
We can see the generated mask starts from almost 0 at everywhere. Then we can figure
out a vague outline of the digits. Finally it turns out to be all pass (all one) mask.
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Figure 4.5:
Comparision between the validation recognition ratio in the training process of masked
and unmasked CNN-2 on mnist-rot dataset.

Figure 4.6:
Visualization of the generated mask on mnist-basic dataset. Note that the image on
the left, in the middle and on the right are the orignal image, the generated mask by
our mask generator, and the justified image by appling the mask to the original image
respectively.
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Figure 4.7:
Visualization of the generated mask on mnist-rot dataset. Note that the image on
the left, in the middle and on the right are the orignal image, the generated mask by
our mask generator, and the justified image by appling the mask to the original image
respectively

table 4.3.

Figure 4.8:
Visualization of the generated mask on mnist-back-rand dataset. Note that the image
on the left, in the middle and on the right are the orignal image, the generated mask by
our mask generator, and the justified image by appling the mask to the original image
respectively

4.5.4 Comparison to the State-of-the-Art Classification Result of MNIST Variations

According to the survey paper [12] and all the reachable papers since 2014 related

to MNIST variations classification [19, 11, 25, 2], we compare our result to other

models. We exclude the models with different training and testing settings, such



26

Figure 4.9:
Visualization of the generated mask on mnist-back-image dataset. Note that the image
on the left, in the middle and on the right are the orignal image, the generated mask by
our mask generator, and the justified image by appling the mask to the original image
respectively

Figure 4.10:
Visualization of the generated mask on mnist-rot-back-image dataset. Note that the
image on the left, in the middle and on the right are the orignal image, the generated
mask by our mask generator, and the justified image by appling the mask to the
original image respectively
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as [24]. As shown in figure 4.4, our simple model with the mask generator outper-

forms the-state-of-the-art result in mnist-back-rand and mnist-back-image, and also

wins the second place in mnist-rot-back-image, showing the promise to improve the

recognition ratio of a given network under noisy and chaotic backgrounds.

Model basic rot back-rand back-image rot-back-image
Masked CNN-2 2.02 10.14 5.93 7.48 29.08

SVMrbf [12] 3.03 10.38 14.58 22.61 32.62
SVMpoly[12] 3.69 13.61 16.62 24.01 37.59

NNet[12] 4.69 17.62 20.04 27.41 42.17
DBN-1[12] 3.94 12.11 9.80 16.15 31.84
SAA-3[12] 3.46 11.43 11.28 23.00 24.09
DBN-3[12] 3.11 12.30 6.73 16.31 28.51

CR-SAE [11] - 12.86 10.98 18.59 47.68
SAE[11] - 14.23 13.60 19.97 53.56

CAE-1[11] - 11.59 13.57 16.70 48.10
CAE-2[11] - 9.66 10.90 15.50 45.23
SdA-3[11] - 10.29 10.38 16.68 44.49
RBM [19] - - 11.39 15.42 49.89

imRBM [19] - - 10.46 16.35 51.03
discRBM [19] - - 10.29 15.56 48.34
RBM-FS [19] - - 11.42 15.20 49.65
PGBM [19] - - 7.27 13.33 45.45

Supervised PGBM [19] - - 6.87 12.85 44.67
PGBM+DN-1 [19] - - 6.08 12.25 36.76

DAE-2J [25] 2.44 8.40 8.98 17.11 46.94
CAE-3J [25] 2.78 7.91 13.67 17.24 47.19
TIRBM [2] - 4.20 - - 35.50

ScatNet-2 [2] 1.27 7.48 12.30 18.40 50.48
RandNet-1 [2] 1.86 14.25 18.81 15.97 51.82
RandNet-2 [2] 1.25 8.47 13.47 11.65 43.69
PCANet-1 [2] 1.44 10.55 6.77 11.11 42.03
PCANet-2 [2] 1.06 7.37 6.19 10.95 35.48
LDANet-1[2] 1.61 11.40 7.16 13.03 43.86
LDANet-2 [2] 1.05 7.52 6.81 12.42 38.54

Table 4.4: Performance comparison between the masked CNN and the-state-of-the-art result.



CHAPTER V

Future Work

5.1 Further Refinement of the Structure

Due to the limitation of the computing resource, we chose a very simple structure

to evaluate our mask generator. Adding more layers in each feedback units can

significantly increase the training time which stops us from making improvements

and debugging efficiently. Therefore we sticked to this simple structure. However,

it is promising to increase the effectiveness of the feature selection by improving the

structure of the mask, specially adding some full connected layers after max-pooling

layers. This may be able to extract higher level features in the mask generating

module, so that the unpooling process can do better feedback on the mask layer.

The way for feedback from higher level of the network to the lower level can also

be refined. The unpooling operation simply adds the higher level abstractions to

corresponding lower layer regions. Although this is effective enough as shown in our

evaluation and the locally spatial correlation is exploited in the process, however,

the higher abstraction is also restrained by the locally spatial correlation. What if

the higher abstraction is not local? The current feedback system cannot handle this

well.

28
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5.2 Weakly Supervised Learning on Large Datasets

Convolutional neural networks construct successive feature vectors that progres-

sively describe the properties of larger and larger image areas [7, 10, 16]. Recent

works [17, 18, 3] train convolutional feature extractors on a large supervised image

classification task, such as ImageNet, and transfer the trained feature extractors to

other object recognition tasks, such as the Pascal VOC tasks.

Oquab, Bottou, Laptev and Sivic’s weakly supervised CNN architecture [16] has

successfully reached the state-of-art result on Pascal VOC 2012 without using bound-

ing boxes. However, although the error ratio of recognition is comparatively low, the

boundary of the detected objects are not clear enough. Combining this successful

deep CNN structure with the novel feature selection ideas proposed in this thesis, we

may modify [16] and design a mask generating module to generate feature masks for

immediate features. This further feature selection may block some harmful features

and provide better segmentation for the detected objects.

5.3 Foreground and Background Separation

The results in section 4.5.2 and 4.5.3 show effective mask generators for noisy

digits and digits with unrelated background images. The trained mask generators

can not only be applied to their corresponding neural network classifiers where they

are trained, but they can also be used independently after the training. Given an

input image, the mask generator can produce a mask to filter out the background.

In section 4.5.2 and 4.5.3, we see the separation is impressive. The independently

used mask can be used in many fields of computer vision, such as segmentation.

Further improvement on the structure of the mask module and also training method

of the current model may build a more reliable foreground background separator for
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general propose with better capability of separation under complex settings.
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