

Predictions of Temperatures in

Winter Months in Detroit based on

Temperatures in a nearby city Chicago:

An FDA Regression

Avery Wu

Advised by Professor Edward Rothman

DEPARTMENT OF STATISTICS

UNIVERSITY OF MICHIGAN – ANN ARBOR

1

Table of Contents

1, Abstract ... 2

2, Introduction .. 3

3, Materials ... 5

4, Method of Analysis ... 8

(1) B-spline Curve Fitting and Smoothing ... 8

(2) Linear Models for Functional Responses ... 11

(3) Landmark Registration ... 14

(4) Ordinary Least Squares Linear Model .. 17

5, Results .. 18

6, Acknowledgements ... 19

7, References .. 19

8, Appendix of Code ... 20

(1) Data Input ... 20

(2) B-spline Curve Fitting and Smoothing ... 23

(3) Linear Models for Functional Responses ... 26

(4) Landmark Registration ... 33

(5) Ordinary Least Squares Linear Model .. 47

2

1, Abstract

This study practiced the functional data analysis (F.D.A.) modeling method for

estimating the winter daily mean temperature in Detroit using that from Chicago. We

hypothesized that there exists a relationship in time scale between the temperatures of

the two cities. To put it into test, we applied F.D.A. methods including B-spline curve

fitting, as well as smoothing by sum of least squares and roughness penalty, to

transform the observed data into functions. The method of constructing linear models

for functional responses (functional regression) reveals a strong relationship between

the subjects. Predictions values are given by applying time warping functions in the

landmark registration approach. As a result, this study compared the accuracy

between the predictions from the F.D.A. regression model and the ordinary least

squares (OLS) linear model; we then analyzed the pros and cons regarding the two

general methods, and gave suggestions in model choosing for further relevant studies.

3

2, Introduction

Exposure in extreme low temperature could make a huge impact both economically

and socially. In the week of January 1st to 7th, 2014, there were 193 emergency

department visits in Michigan with self-reported cold-related injury complaints, for an

average of 27.6 visits per day (Michigan Government report, 2014). The situation

became worse in 2015, in which the previous 114-year record for the coldest

temperatures were shattered in a number of cities in Michigan, with one of them

dropped to -39 degrees Celsius, only 5 degrees warmer than the North Pole (MLive

Weather, 2015). The freezing temperatures lasted until May, and brought a 47 percent

decrease in sweet cherry production.

The more accurate our weather forecasting is, the more prepared we will be when

facing these extreme weather conditions. Over the years, meteorologists have been

working diligently to develop better models for precise forecasting. Common

approaches nowadays include the persistence method, which assumes that the

conditions at the time of the forecast would be consistent, and the trends method,

which determines the speed and direction of fronts’ movement, the location of high

and low pressure centers, cloud distribution, as well as precipitation.

There are also several other forecasting methods. The climatology approach takes

the average of the weather statistics over many years to make predictions. The analog

approach examines the forecasting scenario at present, and search for a similar

situation in the past to take as an analog. There is also the numerical weather

prediction approach, in which mathematical models that predicts on climatic

4

parameters such as temperature, pressure, air flow, and precipitation are adopted and

calculated by super computers.

In this paper, we used a statistical method, functional data analysis regression

models, to determine the quantitative relationship between the winter daily mean

temperature in Detroit and that in Chicago. Functional data analysis models the

discrete observed data into continuous differentiable functional curves, and provides

several options to reveal the underlying functional relationship between seemingly

irrelevant variables.

5

3, Materials

The data for this paper were part of the Federal Climate Complex Global Surface

Summary of Day Data version 7, from the National Climatic Data Center – NNDC

Climate Data Online. Here we selected daily recordings from Detroit (station number

720113, WBAN number 54829) and Chicago (station number 725300, WBAN

number 94846).

The dataset contains daily climatic records from January 1st, 1973 to February

28th, 2015. Selected variables that are used in this paper includes the daily means of

temperature, sea level pressure, station pressure, wind speed in knots, as well as the

daily maximum wind gust reported in knots. All temperatures are in degrees

Fahrenheit.

To study Detroit in the coldest time of the year, we used the meteorological

definition of winter, which is the period that runs from December 1st to February 28th

for a total of 90 days. These three months are the coldest times of the year in the

northern hemisphere, and is different from the commonly used astronomical winter,

which refers to the winter season and is based on when the sun reaches the most

southern point on the globe.

6

Fig. 1 The wind direction distribution (from which the wind came from) in Detroit

As is shown in Figure 1, for the months of December, January and February,

more than 80% of the wind came from the West direction, especially from around

WSW (247.5⁰ on compass) and SW (225⁰ on compass). Given that the geographic

7

coordinates of Detroit is 42⁰19’53’’N, 83⁰02’45’’W, and Chicago is on 41⁰50’13’’N,

87⁰41’05’’W, we calculated the initial bearing from Detroit to Chicago is 263⁰23’12’’,

between the directions of W and WSW. Hence, a large portion of wind in Detroit

during the winter months comes from the direction of Chicago. Therefore, by intuition,

there should be a relationship between the temperatures in these two cities. In this

paper, we applied functional data analysis to model this relationship, and make

predictions of the temperatures in winter months in Detroit using that in Chicago.

8

4, Method of Analysis

(1) B-spline Curve Fitting and Smoothing

We first used the B-spline method to functionalize the temperature data from the two

cities in each winter. Using a set of functional building blocks 𝜙𝑘, with 𝑘 = 1, … , K

as the basis functions, we defined a basis function expansion 𝑥(𝑡) as a linear

combination of the building blocks:

𝑥(𝑡) = ∑ 𝑐𝑘 ⋅ 𝜙𝑘(𝑡) = 𝐜′ ⋅ 𝜙(𝑡),

𝐾

𝑘=1

in which 𝑐1, 𝑐2, … , 𝑐𝐾 are coefficients, and 𝐜 the K-vector of them. Here 𝐜′ is the

transpose of 𝐜.

Notice that by default, the B-spline function in R would smooth the data with the

sum of localized unweighted least squares fitting method, in which it uses the

following error model:

𝑦𝑗 = 𝑥(𝑡𝑗) + 𝜀𝑗 = 𝐜′ ⋅ 𝜙(𝑡) + 𝜀𝑗 = 𝜙′(𝑡𝑗) ⋅ 𝐜 + 𝜀𝑗 ,

with 𝑦𝑗 as the 𝑗th true value in our observed data, and 𝜀𝑗 as the error term of

our 𝑗th estimation. Using this error model, the unweighted least squares estimation,

which is the sum of all error terms, is calculated as:

SMSSE(𝐲|𝐜) = ∑ [𝑦𝑗 − ∑[𝑐𝑘 ⋅ 𝜙𝑘(𝑡𝑗)]

𝐾

𝑘

]

2𝑛

𝑗

= ∑ [𝑦𝑗 − 𝜙(𝑡𝑗)
′

⋅ 𝐜]
2

𝑛

𝑗

.

In the matrix form, we have:

SMSSE(𝐲|𝐜) = (𝐲 − 𝚽 ⋅ 𝐜)′(𝐲 − 𝚽 ⋅ 𝐜) = ||𝐲 − 𝚽 ⋅ 𝐜||𝟐 ,

with the n by K matrix 𝚽 containing the values of the K basis functions 𝜙(𝑡) at the

9

n sampling points, and y is the vector of our observed discrete data that is to be

smoothed.

Therefore, to minimize SMSSE, we took its derivative corresponding to the

coefficient vector 𝐜, and let the result be 0 to yield 2𝚽𝚽′𝐜 − 2𝚽′𝐲 = 0. By solving

this equation, we calculated our estimation for 𝐜 is 𝐜̂ = (𝚽′𝚽)−𝟏𝚽′𝐲, and then we

have the estimation for the response variable is 𝐲̂ = 𝚽𝐜̂ = 𝚽 ⋅ (𝚽′𝚽)−𝟏𝚽′𝐲 = S𝜙 ⋅

𝐲. The corresponding projection operator to the basis function set is S𝜙 = 𝚽 ⋅

(𝚽′𝚽)−𝟏𝚽′ . By choosing values in 𝐜 to minimize SSE, the B-spline curve is

smoothed.

For our model, since the winter temperature data in a certain location is not

periodic, here we used B-splines instead of Fourier series to construct our basis. In

order to do so, we defined a set of K = 20 B-spline basis functions over the

subintervals of our observation to be polynomials of a fixed degree or order, with each

day of the three-month winter period to be a knot.

Fig. 2 The temperature line graph and the B-spline curves of Chicago (left) and Detroit (right) in

the winter of 2014-2015, using 20 (upper) and 45 (lower) basis functions.

10

By smoothing the functions using our observed data, in this case is the daily

temperature records from either Detroit or Chicago in a certain winter, we found the

appropriate 𝐜̂ respectively and then received fitted B-spline curves, as is shown in

Figure 2. The more basis functions we use, the more accurate is the resulting B-spline

curve.

Fitting basis expansions by unweighted least squares means that we only have

clumsy discontinuous control over the degree of smoothing. In order to get better

results, we switched to a more powerful option, the roughness penalty smoothing

approach, when a higher level of precision is needed later in this paper.

After functionalization of the data, we would like to check if there is a

relationship between the daily temperatures in Chicago and Detroit in the winter

months. We adopted 20 basis functions to capture the changing trend of the

temperatures, and further we applied the B-spline curves to functional regression.

11

(2) Linear Models for Functional Responses

Using the B-spline curves, we applied the functional regression method to identify if

there is a relationship of the winter temperatures between Detroit and Chicago. Since

the direction of wind is from Chicago to Detroit, we treated the temperature in

Chicago as the independent variable, and the temperature in Detroit as the response

variable.

For each city in each year, we have modeled the temperature records as a

B-spline basis function expansion 𝑥(𝑡). Therefore, our independent and response

variables are both functional. Considering the distance between Chicago and Detroit,

we would like to see a time lag between their temperatures. Hence, we have the 𝑖th

linear model for our functional response is:

𝑦𝑖(𝑡) = 𝛽0(𝑡) + ∫ 𝑥𝑖(𝑠) ⋅ 𝛽1(𝑡, 𝑠)d𝑠
Ω𝑡

+ 𝜀𝑖(𝑡),

in which the bivariate regression coefficient function 𝛽1(𝑡, 𝑠) defines the dependence

of 𝑦𝑖(𝑡) on the covariate function 𝑥𝑖(𝑠) at time 𝑡, and 𝛺𝑡 is the range of values of

𝑠, in which 𝑥𝑖(𝑠) is considered influential to the value of 𝑦𝑖(𝑡). Notice that it is not

necessary for 𝑥𝑖(𝑠) to be defined over the same range of time as 𝑦𝑖(𝑡) since the

model is not concurrent.

For temperature prediction, let 𝑥(𝑠) to be the temperature of Chicago at time 𝑠,

and y(𝑡) to be the temperature of Detroit at time 𝑡. Set 𝛺𝑡 = {𝑠|1 ≤ 𝑠 < 𝑡} to

imply forward causation. Therefore, by default of the R function, we used the

integrated residual sum of squares as the unweighted fitting criterion, in which we

integrated the sum of squares of 𝜀𝑖(𝑡) over all models and all time. The formula is

12

shown as below:

LMSSE(𝛽0, 𝛽1) = ∫ ∑ [𝑦𝑖(𝑡) − 𝛽0(𝑡) − ∫ 𝑥𝑖(𝑠) ⋅ 𝛽1(𝑡, 𝑠) d𝑠]
2𝑁

𝑖=1

d𝑡.

When the fitting criterion is minimized, the corresponding 𝛽0(𝑡) and 𝛽1(𝑡, 𝑠)

are the functions that we desired. In the R environment, first we constructed three

functional parameters for 𝛽0, 𝛽1(𝑡) and 𝛽1(𝑠), and then we applied them as well as

the B-spline basis function expansions for the temperatures of the two cities to the

function linmod to get the finalized unweighted fitted model.

Notice that for better accuracy, we recalculated the B-spline basis function

expansions using the roughness penalty smoothing approach. The smoothing

parameter 𝜆 is chosen by the generalized cross-validation measure GCV, when the

following criterion is at its minimum:

GCV(𝜆) =
𝑛−1 ⋅ SSE

[𝑛−1 ⋅ trace(I − S𝜙,𝜆)]
2 = (

𝑛

𝑛 − d𝑓(𝜆)
)(

SSE

𝑛 − d𝑓(𝜆)
)

in which the projection operator S𝜙,𝜆 = 𝚽 ⋅ (𝚽′𝚽 + 𝜆𝐑)−𝟏𝚽′ is an order n

symmetric matrix, and d𝑓(𝜆) = trace(S𝜙,𝜆) is the degrees of freedom value for the

spline smooth. The n by K matrix 𝚽 is the basis function values at a certain time 𝑡,

as is defined previously in the B-spline Curve and Smoothing section.

Comparing to the sum of squares smoothing method we practiced in the B-spline

Curve and Smoothing section, the only difference in the projection operator formulas

is the addition of the penalty term 𝜆𝐑 inside the parentheses of inverse. The penalty

term would not be influential when 𝜆 = 0.

For our temperature data, the smoothing parameter 𝜆 is 1.65 for Detroit, and is

13

0.38 for Chicago. Using these values and the temperature data, we re-smoothed the

B-spline basis function expansions, and with the beta functional parameters we

constructed linear models for functional responses.

Fig. 3 The functional parameter function 𝛽1(𝑡, 𝑠) for the prediction of Detroit 2014-2015 winter

daily temperature from that in Chicago, estimated directly from observed climate data.

Figure 3 shows the estimated functional regression plane of 𝛽1(𝑡, 𝑠) for the

winter of 2014-2015, with the range of the estimated intercept function 𝛽0(𝑡) about

4 orders of magnitude smaller than the response functions 𝑦𝑖(𝑡). Considering the

magnitude of our original observed data, we took 𝛽0(𝑡) to be essentially 0. The

significant ridge at around the diagonal indicated that the winter daily temperature in

Detroit is highly related to that in Chicago, with a time lag very close to 0. To

investigate on the amount of time lag with even higher accuracy, we adopted the

landmark registration method to find the time warping function of the two curves in a

specific winter.

14

(3) Landmark Registration

In landmark registration, our particular focus is on the transformation of the time

variable 𝑡, instead of on the values of 𝑥(𝑡) as we did in functional regression.

Landmark registration emphasizes on two types of variability in the functional curves:

amplitude and phase. Amplitude variability is the change of 𝑥(𝑡) in the vertical

direction and not considering the value of 𝑡, phase variability is the change of 𝑡 in

the horizontal direction and not considering the value of 𝑥(𝑡).

For our temperature model, we identified the local extrema points as the

landmark points. Therefore, the first order derivative of the B-spline curve at these

points should all be equal to 0. In our case, the points were targeted by plotting the

first order derivative function of the B-spline curve, and then applied the R function

locator to hand-pick the locations of crossings of zero. A small error may be

induced by this hand-selection method.

Mark the B-spline curve for Detroit temperature in a certain winter as 𝑥1(𝑡), and

that for Chicago as 𝑥0(𝑡). For each curve 𝑥𝑖(𝑡), 𝑖 = 0, 1, mark the 𝐹 landmark

points that we identified as 𝑡𝑖𝑓 , 𝑓 = 1, … , 𝐹. We would like to find such a time

warping function ℎ(𝑡) that best satisfies:

𝑥2(𝑡0𝑓) = 𝑥1[ℎ(𝑡1𝑓)].

Notice that there are four restrictions on ℎ(𝑡): ℎ(1) = 1 and ℎ(90) = 90, since

the time range of our temperature data is from Day 1 to Day 90 in each

winter ; ℎ(𝑡1𝑓) = 𝑡0𝑓 , since the time warping function aligns 𝑥1 at 𝑡1𝑓 to 𝑥0

at 𝑡0𝑓 ; ℎ(𝑡) is strictly monotonic, with 𝑠 < 𝑡 implies ℎ(𝑠) < ℎ(𝑡) . Following

15

these restrictions, the R function landmarkreg would use the linear interpolation

method to estimate the time warping function between 𝑡0𝑓 and 𝑡𝑖𝑓 for all

suitable 𝑓, using the following formula:

ℎ(𝑡) − 𝑡0𝑓

𝑡 − 𝑡1𝑓
=

𝑡0𝑓 − 𝑡0(𝑓+1)

𝑡1𝑓 − 𝑡1(𝑓+1)
.

Fig. 4 The comparison between registered and unregistered B-spline curves of Chicago and

Detroit daily temperature in 2009-2010 winter.

Figure 4 compares the landmark registration result for B-spline curves from the

winter of 2009-2010. The dashed lines in the upper plot marks 𝑡0𝑓 (Chicago, blue

line) and 𝑡1𝑓 (Detroit, red line). Obviously, the two B-spline curves have very similar

pattern, and 𝑡0𝑓 < 𝑡1𝑓 for nearly all 𝑓. This again justifies that there exists a time

warping relationship between the daily temperatures in Chicago and Detroit in the

winter months.

After applying landmark registration to the curves, as is shown in the lower plot,

the dashed lines combined since ℎ(𝑡1𝑓) = 𝑡0𝑓 warped 𝑡0𝑓 and 𝑡1𝑓 together. The

16

slight shift of the curves in the lower plot comparing to the upper one indicates that

the time lag between Chicago and Detroit is small.

Fig. 5 The magnitude of (𝑡1𝑓 − 𝑡0𝑓) for Chicago and Detroit temperature B-spline curves in

2009-2010 winter.

As is shown in Figure 5, the time lag between Chicago and Detroit winter

temperature in 2009-2010 is smaller than 0.6 days. Hence, by monitoring the

temperature in Chicago in winter, we should be able to use this model and predict the

temperature in Detroit within hours.

17

(4) Ordinary Least Squares Linear Model

Since pressure influences the speed of air flow, we built an ordinary least squares

(OLS) linear model to estimate the temperature in Detroit using relevant

meteorological data from both Chicago and Detroit, and compared to the estimated

time lag with what we found using F.D.A. regression.

Fig. 6 The summary of ordinary least squares (OLS) linear model using the temperature in

Chicago and the station pressure in Chicago and Detroit to estimate the temperature in Detroit in

the winter of 2009-2010.

Fig. 7 The comparison of the sum of temperature differences between Chicago temperature at

time t and Detroit temperature at time (t+𝛿), with the time lag 𝛿 estimated by OLS and F.D.A.

As is shown in Figure 6, OLS proves that the station air pressure in both cities

and the temperature in Chicago are significant predictors for the temperature in

Detroit. Furthermore, Figure 7 shows that in terms of the sum of error (in degrees

Fahrenheit), the F.D.A. regression model has the same accuracy as the OLS model.

18

5, Results

The final comparison indicates that the F.D.A. model is equally accurate as the OLS

model. In terms of the pros and cons, the amount of observed data that the OLS model

requires is multiples of that needed by the F.D.A. approach, the latter saves much

labor force and research funding. On the other hand, the F.D.A. model is constructed

by functionalizing the true value of the response variable, in this paper is the Detroit

winter temperature for a given year, while the OLS method regresses on influential

parameters, the latter makes more sense for making predictions.

Nevertheless, the advantage of using the F.D.A. approach is obvious. We could

control the trade-off between smoothness and accuracy in fitting curves by changing

parameters such as norder, nbasis, and λ, etc. In addition, the functionalized

curve provides more information on derivatives, therefore is more convenient for

investigations relevant to rate, velocity, and acceleration, etc.

19

6, Acknowledgements

The author would like to express much thanks to Prof. Edward Rothman (University

of Michigan – Ann Arbor) for supervising this research, and for patiently helping and

proving advice as well as instructions for carrying out the data analysis and modeling.

Gratitude is also extended to the viewers and editors for reading this manuscript.

Additional thanks to the National Climatic Data Center for providing the data.

7, References

[1] Ramsay J, Hooker G, Graves S, “Functional Data Analysis with R and MATLAB”,

Springer Publishing Company, 2009

[2] Ramsay J, Silverman B, “Functional Data Analysis”, Springer Publishing

Company, 2005

[3] Ramsay J, Silverman B, “Applied functional data analysis: methods and case

studies (Vol. 77)”, New York: Springer, 2002

[4] Ramsay J, Dalzell C, “Some tools for functional data analysis”, Journal of the

Royal Statistical Society, Series B (Methodological), pp. 539-572, 1991

[5] Huld T, Šúri M, Dunlop E, Micale F, “Estimating average daytime and daily

temperature profiles within Europe”, Environmental Modelling & Software, 21(12),

pp.1650-1661, 2006

20

8, Appendix of Code

(1) Data Input

########## Total data ##########

data = read.table("MI - 19361201-19660430.txt", header = TRUE, dec = ".")

data = data[with(data, order(data$YEARMODA)),]

MItotal = data

data = read.table("MI - 19660501-19760430.txt", header = TRUE, dec = ".")

data = data[with(data, order(data$YEARMODA)),]

MItotal = rbind(MItotal,data)

data = read.table("MI - 19760501-19820430.txt", header = TRUE, dec = ".")

data = data[with(data, order(data$YEARMODA)),]

MItotal = rbind(MItotal,data)

data = read.table("MI - 19820501-19870430.txt", header = TRUE, dec = ".")

data = data[with(data, order(data$YEARMODA)),]

MItotal = rbind(MItotal,data)

data = read.table("MI - 19870501-19910430.txt", header = TRUE, dec = ".")

data = data[with(data, order(data$YEARMODA)),]

MItotal = rbind(MItotal,data)

21

data = read.table("MI - 19910501-19960430.txt", header = TRUE, dec = ".")

data = data[with(data, order(data$YEARMODA)),]

MItotal = rbind(MItotal,data)

data = read.table("MI - 19960501-20010430.txt", header = TRUE, dec = ".")

data = data[with(data, order(data$YEARMODA)),]

MItotal = rbind(MItotal,data)

data = read.table("MI - 20010501-20060430.txt", header = TRUE, dec = ".")

data = data[with(data, order(data$YEARMODA)),]

MItotal = rbind(MItotal,data)

data = read.table("MI - 20060501-20100430.txt", header = TRUE, dec = ".")

data = data[with(data, order(data$YEARMODA)),]

MItotal = rbind(MItotal,data)

data = read.table("MI - 20100501-20140430.txt", header = TRUE, dec = ".")

data = data[with(data, order(data$YEARMODA)),]

MItotal = rbind(MItotal,data)

data = read.table("MI - 20140501-20150501.txt", header = TRUE, dec = ".")

22

data = data[with(data, order(data$YEARMODA)),]

MItotal = rbind(MItotal,data)

write.csv(MItotal, "MItotal - 19361201-20150501.csv", quote=FALSE)

rm(data)

MItotal = read.csv("MItotal - 19361201-20150501.csv")

MIdaily = read.csv("MIdaily - 19361201-20150501.csv")

Due to limited pages, Data Processing code is not shown in this paper

23

(2) B-spline Curve Fitting and Smoothing

B-spline

plot(c(1:90), chicagonewmat[,9], type="o", lwd=2, xlab="Day", ylab="Temperature

(F)", main="Chicago Winter Temperture and B-spline Curve in 1994"),

par(mfrow=c(2,2))

tempbasis = create.bspline.basis(c(1,90),nbasis=20)

tempbasismat = eval.basis(c(1:90), tempbasis)

templist = smooth.basis(c(1:90), chicagonewmat[,9], tempbasis)

tempcoef = solve(crossprod(tempbasismat), crossprod(tempbasismat,

chicagonewmat[,9]))

tempfd = fd(tempcoef, tempbasis)

plot(tempfd, lty=1, lwd=2, col=1)

plotfit.fd(chicagonewmat[,9], c(1:90), tempfd[1], col="red", xlab="Day",

ylab="Temperature (F)", main="Chicago Temperature and B-spline Curve in

2014-2015 Winter, with 20 basis functions")

points(c(1:90), chicagonewmat[,9], type="o", col="blue")

legend("topright", c("Temperature", "B-spline"), col=c("blue","red"), lty=c(1,1))

tempbasis = create.bspline.basis(c(1,90),nbasis=20)

tempbasismat = eval.basis(c(1:90), tempbasis)

templist = smooth.basis(c(1:90), detroitnewmat[,9], tempbasis)

24

tempcoef = solve(crossprod(tempbasismat), crossprod(tempbasismat,

detroitnewmat[,9]))

tempfd = fd(tempcoef, tempbasis)

plot(tempfd, lty=1, lwd=2, col=1)

plotfit.fd(detroitnewmat[,9], c(1:90), tempfd[1], col="red", xlab="Day",

ylab="Temperature (F)", main="Detroit Temperature and B-spline Curve in

2014-2015 Winter, with 20 basis functions")

points(c(1:90), detroitnewmat[,9], type="o", col="blue")

legend("topright", c("Temperature", "B-spline"), col=c("blue","red"), lty=c(1,1))

tempbasis = create.bspline.basis(c(1,90),nbasis=45)

tempbasismat = eval.basis(c(1:90), tempbasis)

templist = smooth.basis(c(1:90), chicagonewmat[,9], tempbasis)

tempcoef = solve(crossprod(tempbasismat), crossprod(tempbasismat,

chicagonewmat[,9]))

tempfd = fd(tempcoef, tempbasis)

plot(tempfd, lty=1, lwd=2, col=1)

plotfit.fd(chicagonewmat[,9], c(1:90), tempfd[1], col="red", xlab="Day",

ylab="Temperature (F)", main="Chicago Temperature and B-spline Curve in

2014-2015 Winter, with 45 basis functions")

points(c(1:90), chicagonewmat[,9], type="o", col="blue")

legend("topright", c("Temperature", "B-spline"), col=c("blue","red"), lty=c(1,1))

25

tempbasis = create.bspline.basis(c(1,90),nbasis=45)

tempbasismat = eval.basis(c(1:90), tempbasis)

templist = smooth.basis(c(1:90), detroitnewmat[,9], tempbasis)

tempcoef = solve(crossprod(tempbasismat), crossprod(tempbasismat,

detroitnewmat[,9]))

tempfd = fd(tempcoef, tempbasis)

plot(tempfd, lty=1, lwd=2, col=1)

plotfit.fd(detroitnewmat[,9], c(1:90), tempfd[1], col="red", xlab="Day",

ylab="Temperature (F)", main="Detroit Temperature and B-spline Curve in

2014-2015 Winter, with 45 basis functions")

points(c(1:90), detroitnewmat[,9], type="o", col="blue")

legend("topright", c("Temperature", "B-spline"), col=c("blue","red"), lty=c(1,1))

26

(3) Linear Models for Functional Responses

nbasis = 20

norder = 6

yearRng = c(1,90)

library(fda)

yearBasis = create.bspline.basis(yearRng, nbasis)

choosing smoothing parameter lambda - GCV

set up a saturated basis: as many basis functions as observations

dayrange = c(1,90); dayTime = 1:90

daybasis = create.fourier.basis(dayrange, nbasis)

set up the harmonic acceleration operator

Lcoef = c(0,(2*pi/diff(dayrange))^2,0)

harmaccelLfd = vec2Lfd(Lcoef, dayrange)

step through values of log(lambda)

loglam = seq(0.379,0.382,0.0001)

nlam = length(loglam)

dfsave = rep(NA,nlam)

27

names(dfsave) = loglam

gcvsave = dfsave

for (ilam in 1:nlam) {

 cat(paste('log10 lambda =',loglam[ilam],'\n'))

 lambda = 10^loglam[ilam]

 fdParobj = fdPar(daybasis, harmaccelLfd, lambda)

 smoothlist = smooth.basis((0.5+0:89), chicagonewmat[,9], fdParobj)

 dfsave[ilam] = smoothlist$df

 gcvsave[ilam] = sum(smoothlist$gcv)

}

plot(loglam, gcvsave, type='b', lwd=2, ylab='GCV Criterion',

 xlab=expression(log[10](lambda)))

use the GCV lambda = 10^(0.685) on fdPar for detroitnewmat[,9]

D2fdPar = fdPar(yearBasis, lambda=10^(1.65))

detroitfd = smooth.basis(dayTime, detroitnewmat[,9], D2fdPar)$fd

use the GCV lambda = 10^(0.685) on fdPar for chicagonewmat[,9]

D2fdPar = fdPar(yearBasis, lambda=10^(0.38))

chicagofd = smooth.basis(dayTime, chicagonewmat[,9], D2fdPar)$fd

28

for each of 144 birth year cohorts

plotfit.fd(detroitnewmat[,9],dayTime,detroitfd,col="red")

points(c(1:90), detroitnewmat[,9], type="o", col="blue")

legend("topright", c("Temperature", "B-spline"), col=c("blue","red"), lty=c(1,1))

plotfit.fd(chicagonewmat[,9],dayTime,chicagofd)

Set up for the list of regression coefficient fdPar objects

tempBetaBasis = create.bspline.basis(yearRng,nbasis)

tempBeta0Par = fdPar(tempBetaBasis, 2)

tempBeta1fd = bifd(matrix(0,20,20), tempBetaBasis, tempBetaBasis)

tempBeta1Par = bifdPar(tempBeta1fd, 2, 2,5000,5000)

tempBetaList = list(tempBeta0Par, tempBeta1Par, tempBeta1Par)

Define the dependent and independent variable objects

Next = detroitfd

29

Last = chicagofd

Do the regression analysis

override function linmod using linmod.R

temp.linmod = linmod(Last, Next, tempBetaList)

temp.days = seq(1, 90, 1) # original: seq(1, 365, 8)

temp.beta0mat = eval.fd(temp.days, temp.linmod$beta0estfd)

temp.beta1mat = eval.bifd(temp.days, temp.days, temp.linmod$beta1estbifd)

temp.beta1mat +/- 1~2

temp.beta1matp1 = eval.bifd(c(2:90), c(1:89), temp.linmod$beta1estbifd)

temp.beta1matm1 = eval.bifd(c(1:89), c(2:90), temp.linmod$beta1estbifd)

temp.beta1matp2 = eval.bifd(c(3:90), c(1:88), temp.linmod$beta1estbifd)

temp.beta1matm2 = eval.bifd(c(1:88), c(3:90), temp.linmod$beta1estbifd)

Figure 10.11

nrz <- length(temp.days)

ncz <- length(temp.days)

jet.colors <- colorRampPalette(c("floralwhite", "midnightblue"))

nbcol <- 100

color <- jet.colors(nbcol)

30

zfacet <- temp.beta1mat[-1, -1] + temp.beta1mat[-1, -ncz] +

 temp.beta1mat[-nrz, -1] + temp.beta1mat[-nrz, -ncz]

Recode facet z-values into color indices

facetcol <- cut(zfacet, nbcol)

change temp.days = seq(1, 365, 8) before plotting

persp(temp.days, temp.days, temp.beta1mat, xlab="Days",

ylab="Days",zlab="beta(s,t)",

 cex.lab=1.2,cex.axis=2, phi=25, theta=-30,expand=1,

 border="black",col=color[facetcol])

legend("bottomright","z-axis not shrinked")

library(latex2exp)

plot(temp.beta0mat,xlab="Days",ylab=latex2exp('$\\alpha$(t)'),type='o',

 main=latex2exp('Detroit ~ Chicago 1973-2014 functional regression

$\\alpha$(t)'))

plot(diag(temp.beta1mat),xlab="Days",ylab=latex2exp('$\\beta$'),type="l",col=1,

 main=latex2exp('Detroit ~ Chicago 1973-2014 functional regression $\\beta$'))

lines(y=diag(temp.beta1matp1),x=c(1:89),type="l",col=2)

lines(y=diag(temp.beta1matm1),x=c(2:90),type="l",col=3)

lines(y=diag(temp.beta1matp2),x=c(1:88),type="l",col=4)

31

lines(y=diag(temp.beta1matm2),x=c(3:90),type="l",col=5)

legend("top",c(latex2exp('$\\beta$(t, t)'), latex2exp('$\\beta$(t+1, t)'),

 latex2exp('$\\beta$(t-1, t)'), latex2exp('$\\beta$(t+2, t)'),

 latex2exp('$\\beta$(t-2, t)')),

 lty=1, col=c(1,2,3,4,5))

Data processing

detroitnewtotal = MItotal[(which(MItotal$STN...==725370)),]

detroittotal = detroitnewtotal

rm(detroitnewtotal)

data = detroittotal[,c("YEARMODA","TEMP","SLP","STP","MAX","MIN")]

which(data$YEARMODA == 19731201) # = 1850

data = data[c(1850:nrow(data)),]

summary(data)

dat = data[0,]

for (i in 1:nrow(data)) {

 print(i)

 n = data[i,1]%%10000

 if (n < 229 || n > 1200) {

 dat = rbind(dat,data[i,])

32

 }

}

rm(n,i,j)

data = dat; rm(dat); row.names(data) = NULL

length(which(data$STP==9999.9))

data[,c(5,6)] = lapply(data[,c(5,6)], as.character)

for (i in 1:nrow(data)) {

 for (j in 5:6) {

 print(i)

 if (substr(data[i,j], nchar(data[i,j]), nchar(data[i,j])) < '0' || substr(data[i,j],

nchar(data[i,j]), nchar(data[i,j])) > '9') {

 data[i,j] = substr(data[i,j], 1, nchar(data[i,j])-1) }

 }

}

data[,c(5,6)] = lapply(data[,c(5,6)], as.numeric)

data = data[with(data, order(YEARMODA)),]

detroit = data

rm(data)

detroit$DTR = detroit$MAX - detroit$MIN

33

(4) Landmark Registration

plot(chicagomat,col=c(1:42))

matplot(c(1:90),chicagomat[,c(1:5)],type="l")

nbasis = 65

yearBasis = create.bspline.basis(norder=6,breaks=c(1:90))

comsider = 3 for penalize curvature of acceleration

Lfdobj = c(0,(2*pi/diff(dayrange))^2,0)

detroitlambda = 10^(1.7) # smoothing parameter

chicagolambda = 10^(0.327) # smoothing parameter

detroitvecf = matrix(0, yearBasis$nbasis, ncol(detroitmat))

chicagovecf = matrix(0, yearBasis$nbasis, ncol(chicagomat))

dimnames(detroitvecf) = list(yearBasis$names, dimnames(detroitmat)[[2]])

dimnames(chicagovecf) = list(yearBasis$names, dimnames(chicagomat)[[2]])

detroitfd0 = fd(detroitvecf, yearBasis)

detroitfdPar = fdPar(detroitfd0, Lfdobj, detroitlambda)

chicagofd0 = fd(chicagovecf, yearBasis)

34

chicagofdPar = fdPar(chicagofd0, Lfdobj, chicagolambda)

detroitsmooth = smooth.basis(c(1:90), detroitmat, detroitfdPar)

detroitfd = detroitsmooth$fd

chicagosmooth = smooth.basis(c(1:90), chicagomat, chicagofdPar)

chicagofd = chicagosmooth$fd

detroitaccelfd = deriv.fd(detroitfd, 2)

detroitaccelmeanfd = mean(detroitaccelfd)

chicagoaccelfd = deriv.fd(chicagofd, 2)

chicagoaccelmeanfd = mean(chicagoaccelfd)

plot(detroitaccelfd, lty=1, lwd=2, xlab="Day", ylab="Acceleration (F/day^2)",

 main="Detroit unregistered curves")

plot(detroitaccelfd[seq(1,42,by=2)], lty=1, lwd=2, xlab="Day", ylab="Acceleration

(F/day^2)",

 main="Detroit unregistered curves (1973, 1977, 1981, ..., 2009, 2013)")

plot(chicagoaccelfd, lty=1, lwd=2, xlab="Day", ylab="Acceleration (F/day^2)",

 main="Chicago unregistered curves")

plot(chicagoaccelfd[seq(1,42,by=4)], lty=1, lwd=2, xlab="Day", ylab="Acceleration

35

(F/day^2)",

 main="Chicago unregistered curves (1973, 1977, 1981, ..., 2009, 2013)")

try out other variables besides TEMP

detroitmat = matrix(detroit[,2],nrow=90,byrow=F)

dimnames(detroitmat)[[2]] <- paste(1973:2014, sep='')

detroitSLPmat = matrix(detroit[,3],nrow=90,byrow=F)

dimnames(detroitSLPmat)[[2]] <- paste(1973:2014, sep='')

detroitMAXmat = matrix(detroit[,5],nrow=90,byrow=F)

dimnames(detroitMAXmat)[[2]] <- paste(1973:2014, sep='')

detroitMINmat = matrix(detroit[,6],nrow=90,byrow=F)

dimnames(detroitMINmat)[[2]] <- paste(1973:2014, sep='')

detroitDTRmat = matrix(detroit[,7],nrow=90,byrow=F)

dimnames(detroitDTRmat)[[2]] <- paste(1973:2014, sep='')

######################### sample years #########################

sampleyear = seq(1974,2014,by=5) # 1974 1979 1984 1989 1994 1999 2004 2009

2014

36

sampleyearcol = seq(2,42,by=5)

colnames(chicagomat)[sampleyearcol] == sampleyear

chicagonewmat = chicagomat[,sampleyearcol]

detroitnewmat = detroitmat[,sampleyearcol]

tempnewmat = list(cbind(chicagonewmat[,1],detroitnewmat[,1]),

 cbind(chicagonewmat[,2],detroitnewmat[,2]),

 cbind(chicagonewmat[,3],detroitnewmat[,3]),

 cbind(chicagonewmat[,4],detroitnewmat[,4]),

 cbind(chicagonewmat[,5],detroitnewmat[,5]),

 cbind(chicagonewmat[,6],detroitnewmat[,6]),

 cbind(chicagonewmat[,7],detroitnewmat[,7]),

 cbind(chicagonewmat[,8],detroitnewmat[,8]),

 cbind(chicagonewmat[,9],detroitnewmat[,9]))

registration

matplot(c(1:90),tempnewmat[[9]],type="l",

 xlab="Day", ylab="Daily mean temperature",

 main="2014 winter daily mean temp")

nbasis = 65

yearBasis = create.bspline.basis(norder=6,breaks=c(1:90))

37

comsider = 3 for penalize curvature of acceleration

Lfdobj = c(0,(2*pi/diff(dayrange))^2,0)

Lfdobj = 3

loglam = seq(2.27,2.28,0.001)

nlam = length(loglam)

dfsave = rep(NA,nlam)

names(dfsave) = loglam

gcvsave = dfsave

for (ilam in 1:nlam) {

 cat(paste('log10 lambda =',loglam[ilam],'\n'))

 lambda = 10^loglam[ilam]

 fdParobj = fdPar(daybasis, harmaccelLfd, lambda)

 smoothlist = smooth.basis((0.5+0:89), tempnewmat[[4]], fdParobj)

 dfsave[ilam] = smoothlist$df

 gcvsave[ilam] = sum(smoothlist$gcv)

}

plot(loglam, gcvsave, type='b', lwd=2, ylab='GCV Criterion',

 xlab=expression(log[10](lambda)))

smoothing parameter

detroitnewmatlambda = 10^c(2.2, 3.12, 2.29, 3.36, 0.51, 2.69, 4.01, 0.043, 3.19)

38

chicagonewmatlambda = 10^c(2.42, 3.1, 2.26, 3.46, 2.648, 2.22, 3.45, 0.085, 3.049)

tempnewlambda = list(cbind(chicagonewmatlambda[1],detroitnewmatlambda[1]),

cbind(chicagonewmatlambda[2],detroitnewmatlambda[2]),

cbind(chicagonewmatlambda[3],detroitnewmatlambda[3]),

cbind(chicagonewmatlambda[4],detroitnewmatlambda[4]),

cbind(chicagonewmatlambda[5],detroitnewmatlambda[5]),

cbind(chicagonewmatlambda[6],detroitnewmatlambda[6]),

cbind(chicagonewmatlambda[7],detroitnewmatlambda[7]),

cbind(chicagonewmatlambda[8],detroitnewmatlambda[8]),

cbind(chicagonewmatlambda[9],detroitnewmatlambda[9]))

tempnewlambda = (detroitnewmatlambda + chicagonewmatlambda) / 2

detroitnewvecf = matrix(0, yearBasis$nbasis, 1)

chicagonewvecf = matrix(0, yearBasis$nbasis, 1)

39

tempnewvecf = matrix(0, yearBasis$nbasis, 2) # run for each element in

tempnewmat

now process: 2009

dimnames(detroitnewvecf) = list(yearBasis$names, sampleyear[1])

dimnames(chicagonewvecf) = list(yearBasis$names, sampleyear[1])

dimnames(tempnewvecf) = list(yearBasis$names, c("Chicago", "Detroit"))

detroitnewfd0 = fd(detroitnewvecf, yearBasis)

detroitnewfdPar = fdPar(detroitnewfd0, Lfdobj, detroitnewmatlambda[1])

chicagonewfd0 = fd(chicagonewvecf, yearBasis)

chicagonewfdPar = fdPar(chicagonewfd0, Lfdobj, chicagonewmatlambda[1])

tempnewfd0 = fd(tempnewvecf, yearBasis)

tempnewfdPar = fdPar(tempnewfd0, Lfdobj, tempnewlambda[8])

detroitnewsmooth = smooth.basis(c(1:90), detroitnewmat[,1], detroitnewfdPar)

detroitnewfd = detroitnewsmooth$fd

chicagonewsmooth = smooth.basis(c(1:90), chicagonewmat[,1], chicagonewfdPar)

chicagonewfd = chicagonewsmooth$fd

tempnewsmooth = smooth.basis(c(1:90), tempnewmat[[8]], tempnewfdPar)

tempnewfd = tempnewsmooth$fd

40

detroitnewaccelfd = deriv.fd(detroitnewfd, 2)

detroitnewaccelmeanfd = mean(detroitnewaccelfd)

chicagonewaccelfd = deriv.fd(chicagonewfd, 2)

chicagonewaccelmeanfd = mean(chicagonewaccelfd)

tempnewaccelfd = deriv.fd(tempnewfd, 2)

tempnewaccelmeanfd = mean(tempnewaccelfd)

plot(detroitnewaccelfd, lty=1, lwd=2, xlab="Day", ylab="Acceleration (F/day^2)",

 main="Detroit unregistered curves")

plot(chicagonewaccelfd, lty=1, lwd=2, xlab="Day", ylab="Acceleration (F/day^2)",

 main="Chicago unregistered curves")

legend("bottomleft",c("Chicago", "Detroit"), lty=1, col=c(1,2))

plot(tempnewfd,Lfdobj=1)

PGS spurt identification

index = 1:600 # wide limits

nindex = length(index)

ageval = seq(15,75,len=600)

ncasef = 2

PGSctr = rep(0,ncasef)

op = par(mfrow=c(2,1))

41

for (icase in 1:ncasef) {

accveci = eval.fd(ageval, tempnewfd[icase])

aup = accveci[2:nindex] - 25

adn = accveci[1:(nindex-1)] - 25

indx = (1:600)[adn*aup < 0 & adn > 0]

plot(ageval[2:nindex],aup,"p")

lines(c(0,90),c(25,25),lty=2)

for (j in 1:length(indx)) {

indxj = indx[j]

aupj = aup[indxj]

adnj = adn[indxj]

agej = ageval[indxj] + 0.1*(adnj/(adnj-aupj))

if (j == length(indx)) {

PGSctr[icase] = agej

lines(c(agej,agej),c(-15,15),lty=1)

lines(c(15,75),c(0,0),lty=3)

} else {

lines(c(agej,agej),c(-15,15),lty=3)

lines(c(15,75),c(0,0),lty=3)

}

}

title(paste('City ',c("Chicago", "Detroit")[icase]))

42

}

par(op)

cities = 1:2

landmarkpts = 21

nfine = 90

dayfine = seq(1, 90, length=nfine)

use 1st order derivatives to find landmark points

TEMPctr = matrix(0,nrow=length(cities), ncol=landmarkpts)

for (icase in cities) {

 TEMPveci = eval.fd(dayfine, tempnewfd[icase])

 plot(tempnewfd,Lfdobj=1)

 for (ptscase in 1:landmarkpts) {

 TEMPctr[icase, ptscase] = locator(1)$x

 }

}

TEMPctrmean = mean(TEMPctr)

plot unregistrated curves

43

plot(tempnewfd, lty=1, xlab="Day", ylab="Temperature (F)", col=c("blue","red"),

 main="Chicago and Detroit Temperature B-spline Curves in 2004-2005 Winter

(Unregistered)")

abline(v =TEMPctr[1,], col="blue", lty=3)

abline(v =TEMPctr[2,], col="red", lty=4)

legend("topright", c("Chicago", "Detroit"), col=c("blue","red"), lty=c(3,4))

Define the basis for the function W(t).

wbasisLM = create.bspline.basis(c(1,90), nbasis=27, norder=6,

c(1,colMeans(TEMPctr),90)) # nbasis = norder + length(breaks) - 2

WfdLM = fd(matrix(0,27,1),wbasisLM)

WfdParLM = fdPar(WfdLM,1,1e3)

Carry out landmark registration.

regListLM = landmarkreg(tempnewfd, TEMPctr, colMeans(TEMPctr), WfdParLM,

TRUE) # Detroit -> Chicago

accelfdLM = regListLM$regfd

accelmeanfdLM = mean(accelfdLM)

plot registered curves

44

plot(accelfdLM, lty=1, lwd=1, main="2009 winter 3 Months Landmark registration",

 cex=2, xlab="Day", ylab="Temperature (F)")

abline(v =colMeans(TEMPctr), col=1, lty=3)

lines(accelmeanfdLM, col=1, lwd=2, lty=2)

lines(c(TEMPctrmean,TEMPctrmean), c(10,40), lty=2, lwd=1.5)

lines(c(0,90), c(25,25), lty=2, lwd=1.5)

plot(accelfdLM[1:2], lty=1, lwd=1,

 cex=2, xlab="", ylab="Acceleration (cm/yr/yr)")

lines(mean(accelfdLM), col=1, lwd=2, lty=2)

lines(c(TEMPctrmean,TEMPctrmean), c(-3,1.5), lty=2, lwd=1.5)

plot warping functions

warpfdLM = regListLM$warpfd

warpmatLM = eval.fd(dayfine, warpfdLM)

warpmatLM = as.data.frame(warpmatLM)

warpmatLM$Mean = apply(warpmatLM,1,mean)

plot(tempnewfd[1], lty=1, lwd=2,

 xlab="", ylab="")

45

lines(c(TEMPctrmean,TEMPctrmean), c(1,90), lty=2, lwd=1.5)

plot(dayfine, warpmatLM[,2], "l", lty=1, lwd=2, col=1, cex=1.2,

 xlab="Days", ylab="Time warping function h(t)",main="2009 Winter:

Dec-Feb")

lines(dayfine, dayfine, lty=2, lwd=1.5,col=2)

lines(c(TEMPctrmean,TEMPctrmean), c(1,90), lty=2, lwd=1.5)

plot(dayfine, warpmatLM[,2]-warpmatLM[,1], "l", lty=1, lwd=2, col=1, cex=1.2,

 xlab="Days", ylab="d[h(t)]",main="2009 Winter: Dec-Feb d[h(t)]")

text(TEMPctrmean+0.1, warpmatLM[61,3]+0.3, "o", lwd=2)

delta h(t) and delta pressure

dPressure = chicago$STP - detroit$STP

chicago_detroit_2009$dPressure_SLP = chicago$SLP[3241:3330] -

detroit$SLP[3241:3330]

chicago_detroit_2009$dPressure_STP = chicago$STP[3241:3330] -

detroit$STP[3241:3330]

chicago_detroit_2009$detroit_STP = detroit$STP[3241:3330]

chicago_detroit_2009$chicago_STP = chicago$STP[3241:3330]

chicago_detroit_2009$detroit_SLP = detroit$SLP[3241:3330]

46

chicago_detroit_2009$chicago_SLP = chicago$SLP[3241:3330]

Year 2004: row 2701-2790

dWarp = (warpmatLM[,2]-warpmatLM[,1])[seq(1,500,length.out=90)]

dWarp = warpmatLM[,2]-warpmatLM[,1]

chicago_detroit_2009$dWarp = warpmatLM[,2]-warpmatLM[,1]

chicago_detroit_2009_select =

chicago_detroit_2009[which(chicago_detroit_2009$dWarp > 0),]

47

(5) Ordinary Least Squares Linear Model

reg09=glm(chicago_detroit_2009_select$dWarp~chicago_detroit_2009_select$dPress

ure, family=gaussian())

reg09=lm(chicago_detroit_2009_select$dWarp~chicago_detroit_2009_select$dPressu

re)

summary(reg09)

plot(chicago_detroit_2009_select$dPressure, chicago_detroit_2009_select$dWarp,

main="2009 Winter: Dec-Feb dWarp~dPressure (STP)")

abline(reg04)

consider inverse.gaussian and poisson for glm

chicago_detroit_2009$dTemp=chicago_detroit_2009$chicago_TEMP-chicago_detroit

_2009$detroit_TEMP

reg09 = glm(chicago_detroit_2009$dWarp~

 chicago_detroit_2009$chicago_STP

 +chicago_detroit_2009$detroit_STP

+chicago_detroit_2009$chicago_SLP

+chicago_detroit_2009$detroit_SLP

 +chicago_detroit_2009$chicago_TEMP

+chicago_detroit_2009$detroit_TEMP

 , family=gaussian())

48

reg09 = lm((chicago_detroit_2009$dWarp)[2:89]~

 (chicago_detroit_2009$chicago_STP)[2:89]

 +(chicago_detroit_2009$detroit_STP)[2:89]

 +(chicago_detroit_2009$chicago_TEMP)[2:89])

summary(reg09)

attach(chicago_detroit_2009)

chicago_detroit_2009$predict = predict(reg09, chicago_detroit_2009[,c(2,3,5)])

chicago_detroit_2009$predict_diff = chicago_detroit_2009$predict -

chicago_detroit_2009$dWarp

sum(predict_diff*24 < 3) / length(predict_diff)

reg09 = glm(chicago_detroit_2009$dWarp~chicago_detroit_2009$detroit_STP,

family=gaussian())

reg09 =

lm(chicago_detroit_2009$dWarp~chicago_detroit_2009$detroit_STP+chicago_detroi

t_2009$detroit_STP)

plot(chicago_detroit_2009$dWarp, chicago_detroit_2009$detroit_STP, main="2009

Winter: Dec-Feb dWarp~Detroit_STP")

abline(reg04)

49

cont. reg

nwbasisCR = 65

norderCR = 6

wbasisCR = create.bspline.basis(c(1,90), nwbasisCR, norderCR)

Wfd0CR = fd(matrix(0,nwbasisCR,2),wbasisCR)

lambdaCR = tempnewlambda[1]

WfdParCR = fdPar(Wfd0CR, 1, lambdaCR)

carry out the registration

registerlistCR = register.fd(mean(tempnewfd), tempnewfd, WfdParCR)

accelfdCR = registerlistCR$regfd

WfdCR = registerlistCR$Wfd

plot landmark and continuously registered curves for the

first 10 children

accelmeanfdLM74 = mean(tempnewfd[c(1:2)])

accelmeanfdCR74 = mean(tempnewfd[c(1:2)])

plot(tempnewfd[c(1:2)], lty=1, lwd=1,main="Continuous registration",

50

 cex=2, xlab="Day", ylab="Temperature (F)")

lines(accelmeanfdLM74, col=1, lwd=2, lty=2)

lines(c(TEMPctrmean,TEMPctrmean), c(10,40), lty=2, lwd=1.5)

lines(c(0,90), c(25,25), lty=2, lwd=1.5)

dPressure dig deep

chicago_detroit_STP = as.data.frame(cbind(detroit$YEARMODA, detroit$STP,

chicago$STP))

colnames(chicago_detroit_STP) = c("YEARMODA", "detroit_STP", "chicago_STP")

take STP in chicago - STP in detroit as dPressure

chicago_detroit_STP$dPressure = chicago_detroit_STP$chicago_STP -

chicago_detroit_STP$detroit_STP

View(chicago_detroit_STP[which(chicago_detroit_STP$chicago_STP==9999.9 |

chicago_detroit_STP$detroit_STP==9999.9),])

missing STP for 2004 2003.1-2 2002 2001 1999

Hence, use Year 2009 as an example

chicago_detroit_2009 =

chicago_detroit_STP[which(chicago_detroit_STP$YEARMODA > 20091200

 &

chicago_detroit_STP$YEARMODA < 20100300),]

51

row.names(chicago_detroit_2009) = NULL

chicago_detroit_2009$chicago_TEMP = chicagonewmat[,"2009"]

chicago_detroit_2009$detroit_TEMP = detroitnewmat[,"2009"]

predict_diff = warpmatLM[,2]-warpmatLM[,1]

output1 = cbind(predict,predict*24,predict_diff,predict_diff*24)

colnames(output1) = c("OLS time lag (days)", "OLS time lag (hours)",

 "F.D.A. time lag (days)", "F.D.A. time lag (hours)")

View(output1)

timeols = c(1:90)-predict

(OLS = sum(eval.fd(timeols[2:89],tempnewfd[1])-eval.fd(c(2:89),tempnewfd[2])))

(FDA=sum(eval.fd(warpmatLM[2:89,1],tempnewfd[1])-eval.fd(warpmatLM[2:89,2],t

empnewfd[2])))

cbind(OLS,FDA)

