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1, Abstract 

This study practiced the functional data analysis (F.D.A.) modeling method for 

estimating the winter daily mean temperature in Detroit using that from Chicago. We 

hypothesized that there exists a relationship in time scale between the temperatures of 

the two cities. To put it into test, we applied F.D.A. methods including B-spline curve 

fitting, as well as smoothing by sum of least squares and roughness penalty, to 

transform the observed data into functions. The method of constructing linear models 

for functional responses (functional regression) reveals a strong relationship between 

the subjects. Predictions values are given by applying time warping functions in the 

landmark registration approach. As a result, this study compared the accuracy 

between the predictions from the F.D.A. regression model and the ordinary least 

squares (OLS) linear model; we then analyzed the pros and cons regarding the two 

general methods, and gave suggestions in model choosing for further relevant studies. 
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2, Introduction 

Exposure in extreme low temperature could make a huge impact both economically 

and socially. In the week of January 1st to 7th, 2014, there were 193 emergency 

department visits in Michigan with self-reported cold-related injury complaints, for an 

average of 27.6 visits per day (Michigan Government report, 2014). The situation 

became worse in 2015, in which the previous 114-year record for the coldest 

temperatures were shattered in a number of cities in Michigan, with one of them 

dropped to -39 degrees Celsius, only 5 degrees warmer than the North Pole (MLive 

Weather, 2015). The freezing temperatures lasted until May, and brought a 47 percent 

decrease in sweet cherry production.  

The more accurate our weather forecasting is, the more prepared we will be when 

facing these extreme weather conditions. Over the years, meteorologists have been 

working diligently to develop better models for precise forecasting. Common 

approaches nowadays include the persistence method, which assumes that the 

conditions at the time of the forecast would be consistent, and the trends method, 

which determines the speed and direction of fronts’ movement, the location of high 

and low pressure centers, cloud distribution, as well as precipitation.  

There are also several other forecasting methods. The climatology approach takes 

the average of the weather statistics over many years to make predictions. The analog 

approach examines the forecasting scenario at present, and search for a similar 

situation in the past to take as an analog. There is also the numerical weather 

prediction approach, in which mathematical models that predicts on climatic 
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parameters such as temperature, pressure, air flow, and precipitation are adopted and 

calculated by super computers.  

In this paper, we used a statistical method, functional data analysis regression 

models, to determine the quantitative relationship between the winter daily mean 

temperature in Detroit and that in Chicago. Functional data analysis models the 

discrete observed data into continuous differentiable functional curves, and provides 

several options to reveal the underlying functional relationship between seemingly 

irrelevant variables. 

  



5 

 

3, Materials 

The data for this paper were part of the Federal Climate Complex Global Surface 

Summary of Day Data version 7, from the National Climatic Data Center – NNDC 

Climate Data Online. Here we selected daily recordings from Detroit (station number 

720113, WBAN number 54829) and Chicago (station number 725300, WBAN 

number 94846).  

The dataset contains daily climatic records from January 1st, 1973 to February 

28th, 2015. Selected variables that are used in this paper includes the daily means of 

temperature, sea level pressure, station pressure, wind speed in knots, as well as the 

daily maximum wind gust reported in knots. All temperatures are in degrees 

Fahrenheit. 

To study Detroit in the coldest time of the year, we used the meteorological 

definition of winter, which is the period that runs from December 1st to February 28th 

for a total of 90 days. These three months are the coldest times of the year in the 

northern hemisphere, and is different from the commonly used astronomical winter, 

which refers to the winter season and is based on when the sun reaches the most 

southern point on the globe.  
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Fig. 1 The wind direction distribution (from which the wind came from) in Detroit 

 

As is shown in Figure 1, for the months of December, January and February, 

more than 80% of the wind came from the West direction, especially from around 

WSW (247.5⁰ on compass) and SW (225⁰ on compass). Given that the geographic 
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coordinates of Detroit is 42⁰19’53’’N, 83⁰02’45’’W, and Chicago is on 41⁰50’13’’N, 

87⁰41’05’’W, we calculated the initial bearing from Detroit to Chicago is 263⁰23’12’’, 

between the directions of W and WSW. Hence, a large portion of wind in Detroit 

during the winter months comes from the direction of Chicago. Therefore, by intuition, 

there should be a relationship between the temperatures in these two cities. In this 

paper, we applied functional data analysis to model this relationship, and make 

predictions of the temperatures in winter months in Detroit using that in Chicago. 
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4, Method of Analysis 

(1) B-spline Curve Fitting and Smoothing 

We first used the B-spline method to functionalize the temperature data from the two 

cities in each winter. Using a set of functional building blocks 𝜙𝑘, with 𝑘 = 1, … , K 

as the basis functions, we defined a basis function expansion 𝑥(𝑡) as a linear 

combination of the building blocks: 

𝑥(𝑡) =  ∑ 𝑐𝑘 ⋅ 𝜙𝑘(𝑡) = 𝐜′ ⋅ 𝜙(𝑡),

𝐾

𝑘=1

 

in which 𝑐1, 𝑐2, … , 𝑐𝐾 are coefficients, and 𝐜 the K-vector of them. Here 𝐜′ is the 

transpose of 𝐜.  

Notice that by default, the B-spline function in R would smooth the data with the 

sum of localized unweighted least squares fitting method, in which it uses the 

following error model: 

𝑦𝑗 = 𝑥(𝑡𝑗) + 𝜀𝑗 =  𝐜′ ⋅ 𝜙(𝑡) + 𝜀𝑗 = 𝜙′(𝑡𝑗) ⋅ 𝐜 + 𝜀𝑗 , 

with 𝑦𝑗 as the 𝑗th true value in our observed data, and 𝜀𝑗  as the error term of 

our 𝑗th estimation. Using this error model, the unweighted least squares estimation, 

which is the sum of all error terms, is calculated as: 

SMSSE(𝐲|𝐜) = ∑ [𝑦𝑗 − ∑[𝑐𝑘 ⋅ 𝜙𝑘(𝑡𝑗)]

𝐾

𝑘

]

2𝑛

𝑗

= ∑ [𝑦𝑗 − 𝜙(𝑡𝑗)
′

⋅ 𝐜]
2

𝑛

𝑗

. 

In the matrix form, we have: 

SMSSE(𝐲|𝐜) = (𝐲 − 𝚽 ⋅ 𝐜)′(𝐲 − 𝚽 ⋅ 𝐜) = ||𝐲 − 𝚽 ⋅ 𝐜||𝟐 , 

with the n by K matrix 𝚽 containing the values of the K basis functions 𝜙(𝑡) at the 
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n sampling points, and y is the vector of our observed discrete data that is to be 

smoothed.  

Therefore, to minimize SMSSE, we took its derivative corresponding to the 

coefficient vector 𝐜, and let the result be 0 to yield 2𝚽𝚽′𝐜 − 2𝚽′𝐲 = 0. By solving 

this equation, we calculated our estimation for 𝐜 is 𝐜̂ = (𝚽′𝚽)−𝟏𝚽′𝐲, and then we 

have the estimation for the response variable is 𝐲̂ = 𝚽𝐜̂ = 𝚽 ⋅ (𝚽′𝚽)−𝟏𝚽′𝐲 =  S𝜙 ⋅

𝐲. The corresponding projection operator to the basis function set is  S𝜙 = 𝚽 ⋅

(𝚽′𝚽)−𝟏𝚽′ . By choosing values in 𝐜 to minimize SSE, the B-spline curve is 

smoothed. 

For our model, since the winter temperature data in a certain location is not 

periodic, here we used B-splines instead of Fourier series to construct our basis. In 

order to do so, we defined a set of K = 20 B-spline basis functions over the 

subintervals of our observation to be polynomials of a fixed degree or order, with each 

day of the three-month winter period to be a knot.  

 

 

Fig. 2 The temperature line graph and the B-spline curves of Chicago (left) and Detroit (right) in 

the winter of 2014-2015, using 20 (upper) and 45 (lower) basis functions. 
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By smoothing the functions using our observed data, in this case is the daily 

temperature records from either Detroit or Chicago in a certain winter, we found the 

appropriate 𝐜̂ respectively and then received fitted B-spline curves, as is shown in 

Figure 2. The more basis functions we use, the more accurate is the resulting B-spline 

curve.  

Fitting basis expansions by unweighted least squares means that we only have 

clumsy discontinuous control over the degree of smoothing. In order to get better 

results, we switched to a more powerful option, the roughness penalty smoothing 

approach, when a higher level of precision is needed later in this paper.  

After functionalization of the data, we would like to check if there is a 

relationship between the daily temperatures in Chicago and Detroit in the winter 

months. We adopted 20 basis functions to capture the changing trend of the 

temperatures, and further we applied the B-spline curves to functional regression.  
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(2) Linear Models for Functional Responses 

Using the B-spline curves, we applied the functional regression method to identify if 

there is a relationship of the winter temperatures between Detroit and Chicago. Since 

the direction of wind is from Chicago to Detroit, we treated the temperature in 

Chicago as the independent variable, and the temperature in Detroit as the response 

variable. 

For each city in each year, we have modeled the temperature records as a 

B-spline basis function expansion 𝑥(𝑡). Therefore, our independent and response 

variables are both functional. Considering the distance between Chicago and Detroit, 

we would like to see a time lag between their temperatures. Hence, we have the 𝑖th 

linear model for our functional response is: 

𝑦𝑖(𝑡) = 𝛽0(𝑡) + ∫ 𝑥𝑖(𝑠) ⋅ 𝛽1(𝑡, 𝑠)d𝑠
Ω𝑡

+ 𝜀𝑖(𝑡), 

in which the bivariate regression coefficient function 𝛽1(𝑡, 𝑠) defines the dependence 

of 𝑦𝑖(𝑡) on the covariate function 𝑥𝑖(𝑠) at time 𝑡, and 𝛺𝑡 is the range of values of 

𝑠, in which 𝑥𝑖(𝑠) is considered influential to the value of 𝑦𝑖(𝑡). Notice that it is not 

necessary for 𝑥𝑖(𝑠) to be defined over the same range of time as 𝑦𝑖(𝑡) since the 

model is not concurrent.  

For temperature prediction, let 𝑥(𝑠) to be the temperature of Chicago at time 𝑠, 

and  y(𝑡) to be the temperature of Detroit at time 𝑡. Set 𝛺𝑡 = {𝑠|1 ≤ 𝑠 < 𝑡} to 

imply forward causation. Therefore, by default of the R function, we used the 

integrated residual sum of squares as the unweighted fitting criterion, in which we 

integrated the sum of squares of 𝜀𝑖(𝑡) over all models and all time. The formula is 
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shown as below:  

LMSSE(𝛽0, 𝛽1) = ∫ ∑ [𝑦𝑖(𝑡) − 𝛽0(𝑡) − ∫ 𝑥𝑖(𝑠) ⋅ 𝛽1(𝑡, 𝑠) d𝑠]
2𝑁

𝑖=1

d𝑡. 

When the fitting criterion is minimized, the corresponding 𝛽0(𝑡) and 𝛽1(𝑡, 𝑠) 

are the functions that we desired. In the R environment, first we constructed three 

functional parameters for 𝛽0, 𝛽1(𝑡) and 𝛽1(𝑠), and then we applied them as well as 

the B-spline basis function expansions for the temperatures of the two cities to the 

function linmod to get the finalized unweighted fitted model. 

Notice that for better accuracy, we recalculated the B-spline basis function 

expansions using the roughness penalty smoothing approach. The smoothing 

parameter 𝜆 is chosen by the generalized cross-validation measure GCV, when the 

following criterion is at its minimum: 

GCV(𝜆) =
𝑛−1 ⋅ SSE

[𝑛−1 ⋅ trace(I − S𝜙,𝜆)]
2 = (

𝑛

𝑛 − d𝑓(𝜆)
)(

SSE

𝑛 − d𝑓(𝜆)
) 

in which the projection operator S𝜙,𝜆 = 𝚽 ⋅ (𝚽′𝚽 + 𝜆𝐑)−𝟏𝚽′  is an order n 

symmetric matrix, and d𝑓(𝜆) = trace(S𝜙,𝜆) is the degrees of freedom value for the 

spline smooth. The n by K matrix 𝚽 is the basis function values at a certain time 𝑡, 

as is defined previously in the B-spline Curve and Smoothing section. 

Comparing to the sum of squares smoothing method we practiced in the B-spline 

Curve and Smoothing section, the only difference in the projection operator formulas 

is the addition of the penalty term 𝜆𝐑 inside the parentheses of inverse. The penalty 

term would not be influential when 𝜆 = 0. 

For our temperature data, the smoothing parameter 𝜆 is 1.65 for Detroit, and is 
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0.38 for Chicago. Using these values and the temperature data, we re-smoothed the 

B-spline basis function expansions, and with the beta functional parameters we 

constructed linear models for functional responses.  

 

 

Fig. 3 The functional parameter function 𝛽1(𝑡, 𝑠) for the prediction of Detroit 2014-2015 winter 

daily temperature from that in Chicago, estimated directly from observed climate data. 

 

Figure 3 shows the estimated functional regression plane of 𝛽1(𝑡, 𝑠) for the 

winter of 2014-2015, with the range of the estimated intercept function 𝛽0(𝑡) about 

4 orders of magnitude smaller than the response functions 𝑦𝑖(𝑡). Considering the 

magnitude of our original observed data, we took 𝛽0(𝑡) to be essentially 0. The 

significant ridge at around the diagonal indicated that the winter daily temperature in 

Detroit is highly related to that in Chicago, with a time lag very close to 0. To 

investigate on the amount of time lag with even higher accuracy, we adopted the 

landmark registration method to find the time warping function of the two curves in a 

specific winter. 
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(3) Landmark Registration 

In landmark registration, our particular focus is on the transformation of the time 

variable 𝑡, instead of on the values of  𝑥(𝑡) as we did in functional regression. 

Landmark registration emphasizes on two types of variability in the functional curves: 

amplitude and phase. Amplitude variability is the change of  𝑥(𝑡) in the vertical 

direction and not considering the value of  𝑡, phase variability is the change of  𝑡 in 

the horizontal direction and not considering the value of 𝑥(𝑡).  

For our temperature model, we identified the local extrema points as the 

landmark points. Therefore, the first order derivative of the B-spline curve at these 

points should all be equal to 0. In our case, the points were targeted by plotting the 

first order derivative function of the B-spline curve, and then applied the R function 

locator to hand-pick the locations of crossings of zero. A small error may be 

induced by this hand-selection method.  

Mark the B-spline curve for Detroit temperature in a certain winter as 𝑥1(𝑡), and 

that for Chicago as  𝑥0(𝑡). For each curve  𝑥𝑖(𝑡), 𝑖 = 0, 1, mark the 𝐹 landmark 

points that we identified as  𝑡𝑖𝑓 , 𝑓 = 1, … , 𝐹. We would like to find such a time 

warping function ℎ(𝑡) that best satisfies: 

𝑥2(𝑡0𝑓) =  𝑥1[ℎ(𝑡1𝑓)]. 

Notice that there are four restrictions on ℎ(𝑡): ℎ(1) = 1 and ℎ(90) = 90, since 

the time range of our temperature data is from Day 1 to Day 90 in each 

winter ;  ℎ(𝑡1𝑓) = 𝑡0𝑓 , since the time warping function aligns  𝑥1  at 𝑡1𝑓  to  𝑥0 

at  𝑡0𝑓 ;  ℎ(𝑡)  is strictly monotonic, with  𝑠 < 𝑡 implies ℎ(𝑠) < ℎ(𝑡) . Following 
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these restrictions, the R function landmarkreg would use the linear interpolation 

method to estimate the time warping function between  𝑡0𝑓 and 𝑡𝑖𝑓  for all 

suitable 𝑓, using the following formula: 

ℎ(𝑡) − 𝑡0𝑓

𝑡 − 𝑡1𝑓
=

𝑡0𝑓 − 𝑡0(𝑓+1)

𝑡1𝑓 − 𝑡1(𝑓+1)
. 

 

 

Fig. 4 The comparison between registered and unregistered B-spline curves of Chicago and 

Detroit daily temperature in 2009-2010 winter. 

 

Figure 4 compares the landmark registration result for B-spline curves from the 

winter of 2009-2010. The dashed lines in the upper plot marks 𝑡0𝑓 (Chicago, blue 

line) and 𝑡1𝑓 (Detroit, red line). Obviously, the two B-spline curves have very similar 

pattern, and 𝑡0𝑓 < 𝑡1𝑓 for nearly all 𝑓. This again justifies that there exists a time 

warping relationship between the daily temperatures in Chicago and Detroit in the 

winter months.  

After applying landmark registration to the curves, as is shown in the lower plot, 

the dashed lines combined since ℎ(𝑡1𝑓) = 𝑡0𝑓 warped 𝑡0𝑓 and 𝑡1𝑓 together. The 
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slight shift of the curves in the lower plot comparing to the upper one indicates that 

the time lag between Chicago and Detroit is small.  

 

 

Fig. 5 The magnitude of (𝑡1𝑓 − 𝑡0𝑓) for Chicago and Detroit temperature B-spline curves in 

2009-2010 winter. 

 

As is shown in Figure 5, the time lag between Chicago and Detroit winter 

temperature in 2009-2010 is smaller than 0.6 days. Hence, by monitoring the 

temperature in Chicago in winter, we should be able to use this model and predict the 

temperature in Detroit within hours.  
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(4) Ordinary Least Squares Linear Model 

Since pressure influences the speed of air flow, we built an ordinary least squares 

(OLS) linear model to estimate the temperature in Detroit using relevant 

meteorological data from both Chicago and Detroit, and compared to the estimated 

time lag with what we found using F.D.A. regression.  

 

 

Fig. 6 The summary of ordinary least squares (OLS) linear model using the temperature in 

Chicago and the station pressure in Chicago and Detroit to estimate the temperature in Detroit in 

the winter of 2009-2010. 

 

 

 

Fig. 7 The comparison of the sum of temperature differences between Chicago temperature at 

time t and Detroit temperature at time (t+𝛿), with the time lag 𝛿 estimated by OLS and F.D.A. 

 

As is shown in Figure 6, OLS proves that the station air pressure in both cities 

and the temperature in Chicago are significant predictors for the temperature in 

Detroit. Furthermore, Figure 7 shows that in terms of the sum of error (in degrees 

Fahrenheit), the F.D.A. regression model has the same accuracy as the OLS model.  
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5, Results 

The final comparison indicates that the F.D.A. model is equally accurate as the OLS 

model. In terms of the pros and cons, the amount of observed data that the OLS model 

requires is multiples of that needed by the F.D.A. approach, the latter saves much 

labor force and research funding. On the other hand, the F.D.A. model is constructed 

by functionalizing the true value of the response variable, in this paper is the Detroit 

winter temperature for a given year, while the OLS method regresses on influential 

parameters, the latter makes more sense for making predictions.  

Nevertheless, the advantage of using the F.D.A. approach is obvious. We could 

control the trade-off between smoothness and accuracy in fitting curves by changing 

parameters such as norder, nbasis, and λ, etc. In addition, the functionalized 

curve provides more information on derivatives, therefore is more convenient for 

investigations relevant to rate, velocity, and acceleration, etc.  
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8, Appendix of Code 

(1) Data Input 

########## Total data ##########  

data = read.table("MI - 19361201-19660430.txt", header = TRUE, dec = ".") 

data = data[with(data, order(data$YEARMODA)), ] 

MItotal = data 

 

data = read.table("MI - 19660501-19760430.txt", header = TRUE, dec = ".") 

data = data[with(data, order(data$YEARMODA)), ] 

MItotal = rbind(MItotal,data) 

 

data = read.table("MI - 19760501-19820430.txt", header = TRUE, dec = ".") 

data = data[with(data, order(data$YEARMODA)), ] 

MItotal = rbind(MItotal,data) 

 

data = read.table("MI - 19820501-19870430.txt", header = TRUE, dec = ".") 

data = data[with(data, order(data$YEARMODA)), ] 

MItotal = rbind(MItotal,data) 

 

data = read.table("MI - 19870501-19910430.txt", header = TRUE, dec = ".") 

data = data[with(data, order(data$YEARMODA)), ] 

MItotal = rbind(MItotal,data) 



21 

 

 

data = read.table("MI - 19910501-19960430.txt", header = TRUE, dec = ".") 

data = data[with(data, order(data$YEARMODA)), ] 

MItotal = rbind(MItotal,data) 

 

data = read.table("MI - 19960501-20010430.txt", header = TRUE, dec = ".") 

data = data[with(data, order(data$YEARMODA)), ] 

MItotal = rbind(MItotal,data) 

 

data = read.table("MI - 20010501-20060430.txt", header = TRUE, dec = ".") 

data = data[with(data, order(data$YEARMODA)), ] 

MItotal = rbind(MItotal,data) 

 

data = read.table("MI - 20060501-20100430.txt", header = TRUE, dec = ".") 

data = data[with(data, order(data$YEARMODA)), ] 

MItotal = rbind(MItotal,data) 

 

data = read.table("MI - 20100501-20140430.txt", header = TRUE, dec = ".") 

data = data[with(data, order(data$YEARMODA)), ] 

MItotal = rbind(MItotal,data) 

 

data = read.table("MI - 20140501-20150501.txt", header = TRUE, dec = ".") 



22 

 

data = data[with(data, order(data$YEARMODA)), ] 

MItotal = rbind(MItotal,data) 

 

write.csv(MItotal, "MItotal - 19361201-20150501.csv", quote=FALSE) 

rm(data) 

 

MItotal = read.csv("MItotal - 19361201-20150501.csv") 

MIdaily = read.csv("MIdaily - 19361201-20150501.csv") 

 

# Due to limited pages, Data Processing code is not shown in this paper 
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(2) B-spline Curve Fitting and Smoothing  

# B-spline 

plot(c(1:90), chicagonewmat[,9], type="o", lwd=2, xlab="Day", ylab="Temperature 

(F)", main="Chicago Winter Temperture and B-spline Curve in 1994"), 

par(mfrow=c(2,2)) 

 

tempbasis = create.bspline.basis(c(1,90),nbasis=20)  

tempbasismat = eval.basis(c(1:90), tempbasis) 

templist = smooth.basis(c(1:90), chicagonewmat[,9], tempbasis) 

tempcoef = solve( crossprod(tempbasismat), crossprod(tempbasismat, 

chicagonewmat[,9]) ) 

tempfd = fd(tempcoef, tempbasis) 

plot(tempfd, lty=1, lwd=2, col=1) 

plotfit.fd(chicagonewmat[,9], c(1:90), tempfd[1], col="red", xlab="Day", 

ylab="Temperature (F)", main="Chicago Temperature and B-spline Curve in 

2014-2015 Winter, with 20 basis functions") 

points(c(1:90), chicagonewmat[,9], type="o", col="blue") 

legend("topright", c("Temperature", "B-spline"), col=c("blue","red"), lty=c(1,1)) 

 

tempbasis = create.bspline.basis(c(1,90),nbasis=20)  

tempbasismat = eval.basis(c(1:90), tempbasis) 

templist = smooth.basis(c(1:90), detroitnewmat[,9], tempbasis) 
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tempcoef = solve( crossprod(tempbasismat), crossprod(tempbasismat, 

detroitnewmat[,9])) 

tempfd = fd(tempcoef, tempbasis) 

plot(tempfd, lty=1, lwd=2, col=1) 

plotfit.fd(detroitnewmat[,9], c(1:90), tempfd[1], col="red", xlab="Day", 

ylab="Temperature (F)", main="Detroit Temperature and B-spline Curve in 

2014-2015 Winter, with 20 basis functions") 

points(c(1:90), detroitnewmat[,9], type="o", col="blue") 

legend("topright", c("Temperature", "B-spline"), col=c("blue","red"), lty=c(1,1)) 

 

tempbasis = create.bspline.basis(c(1,90),nbasis=45)  

tempbasismat = eval.basis(c(1:90), tempbasis) 

templist = smooth.basis(c(1:90), chicagonewmat[,9], tempbasis) 

tempcoef = solve( crossprod(tempbasismat), crossprod(tempbasismat, 

chicagonewmat[,9])) 

tempfd = fd(tempcoef, tempbasis) 

plot(tempfd, lty=1, lwd=2, col=1) 

plotfit.fd(chicagonewmat[,9], c(1:90), tempfd[1], col="red", xlab="Day", 

ylab="Temperature (F)", main="Chicago Temperature and B-spline Curve in 

2014-2015 Winter, with 45 basis functions") 

points(c(1:90), chicagonewmat[,9], type="o", col="blue") 

legend("topright", c("Temperature", "B-spline"), col=c("blue","red"), lty=c(1,1)) 
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tempbasis = create.bspline.basis(c(1,90),nbasis=45)  

tempbasismat = eval.basis(c(1:90), tempbasis) 

templist = smooth.basis(c(1:90), detroitnewmat[,9], tempbasis) 

tempcoef = solve( crossprod(tempbasismat), crossprod(tempbasismat, 

detroitnewmat[,9])) 

tempfd = fd(tempcoef, tempbasis) 

plot(tempfd, lty=1, lwd=2, col=1) 

plotfit.fd(detroitnewmat[,9], c(1:90), tempfd[1], col="red", xlab="Day", 

ylab="Temperature (F)", main="Detroit Temperature and B-spline Curve in 

2014-2015 Winter, with 45 basis functions") 

points(c(1:90), detroitnewmat[,9], type="o", col="blue") 

legend("topright", c("Temperature", "B-spline"), col=c("blue","red"), lty=c(1,1)) 
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(3) Linear Models for Functional Responses  

nbasis = 20 

norder = 6 

yearRng = c(1,90) 

 

library(fda) 

yearBasis = create.bspline.basis(yearRng, nbasis) 

 

# choosing smoothing parameter lambda - GCV 

#  set up a saturated basis: as many basis functions as observations 

dayrange = c(1,90); dayTime = 1:90 

daybasis = create.fourier.basis(dayrange, nbasis) 

 

#  set up the harmonic acceleration operator 

Lcoef        = c(0,(2*pi/diff(dayrange))^2,0) 

harmaccelLfd = vec2Lfd(Lcoef, dayrange) 

 

#  step through values of log(lambda) 

 

loglam        = seq(0.379,0.382,0.0001) 

nlam          = length(loglam) 

dfsave        = rep(NA,nlam) 
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names(dfsave) = loglam 

gcvsave       = dfsave 

for (ilam in 1:nlam) { 

  cat(paste('log10 lambda =',loglam[ilam],'\n')) 

  lambda        = 10^loglam[ilam] 

  fdParobj      = fdPar(daybasis, harmaccelLfd, lambda) 

  smoothlist    = smooth.basis((0.5+0:89), chicagonewmat[,9], fdParobj) 

  dfsave[ilam]  = smoothlist$df 

  gcvsave[ilam] = sum(smoothlist$gcv) 

} 

plot(loglam, gcvsave, type='b', lwd=2, ylab='GCV Criterion', 

     xlab=expression(log[10](lambda)) ) 

 

# use the GCV lambda = 10^(0.685) on fdPar for detroitnewmat[,9] 

D2fdPar = fdPar(yearBasis, lambda=10^(1.65)) 

detroitfd = smooth.basis(dayTime, detroitnewmat[,9], D2fdPar)$fd 

 

# use the GCV lambda = 10^(0.685) on fdPar for chicagonewmat[,9] 

D2fdPar = fdPar(yearBasis, lambda=10^(0.38)) 

chicagofd = smooth.basis(dayTime, chicagonewmat[,9], D2fdPar)$fd 
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# for each of 144 birth year cohorts 

plotfit.fd(detroitnewmat[,9],dayTime,detroitfd,col="red") 

points(c(1:90), detroitnewmat[,9], type="o", col="blue") 

legend("topright", c("Temperature", "B-spline"), col=c("blue","red"), lty=c(1,1)) 

 

plotfit.fd(chicagonewmat[,9],dayTime,chicagofd) 

 

# Set up for the list of regression coefficient fdPar objects 

 

tempBetaBasis = create.bspline.basis(yearRng,nbasis) 

 

tempBeta0Par = fdPar(tempBetaBasis, 2) 

 

tempBeta1fd  = bifd(matrix(0,20,20), tempBetaBasis, tempBetaBasis) 

 

tempBeta1Par = bifdPar(tempBeta1fd, 2, 2,5000,5000) 

 

tempBetaList = list(tempBeta0Par, tempBeta1Par, tempBeta1Par) 

 

#  Define the dependent and independent variable objects 

 

Next = detroitfd 
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Last = chicagofd 

 

#  Do the regression analysis 

# override function linmod using linmod.R 

temp.linmod = linmod(Last, Next, tempBetaList) 

 

temp.days = seq(1, 90, 1) # original: seq(1, 365, 8) 

temp.beta0mat = eval.fd(temp.days, temp.linmod$beta0estfd) 

temp.beta1mat = eval.bifd(temp.days, temp.days, temp.linmod$beta1estbifd) 

 

# temp.beta1mat +/- 1~2 

temp.beta1matp1 = eval.bifd(c(2:90), c(1:89), temp.linmod$beta1estbifd) 

temp.beta1matm1 = eval.bifd(c(1:89), c(2:90), temp.linmod$beta1estbifd) 

temp.beta1matp2 = eval.bifd(c(3:90), c(1:88), temp.linmod$beta1estbifd) 

temp.beta1matm2 = eval.bifd(c(1:88), c(3:90), temp.linmod$beta1estbifd) 

 

# Figure 10.11 

nrz <- length(temp.days) 

ncz <- length(temp.days) 

jet.colors <- colorRampPalette( c("floralwhite", "midnightblue") )  

nbcol <- 100 

color <- jet.colors(nbcol) 
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zfacet <- temp.beta1mat[-1, -1] + temp.beta1mat[-1, -ncz] +  

  temp.beta1mat[-nrz, -1] + temp.beta1mat[-nrz, -ncz] 

# Recode facet z-values into color indices 

facetcol <- cut(zfacet, nbcol) 

 

# change temp.days = seq(1, 365, 8) before plotting 

persp(temp.days, temp.days, temp.beta1mat, xlab="Days", 

ylab="Days",zlab="beta(s,t)", 

      cex.lab=1.2,cex.axis=2, phi=25, theta=-30,expand=1, 

      border="black",col=color[facetcol]) 

legend("bottomright","z-axis not shrinked") 

 

library(latex2exp) 

plot(temp.beta0mat,xlab="Days",ylab=latex2exp('$\\alpha$(t)'),type='o', 

     main=latex2exp('Detroit ~ Chicago 1973-2014 functional regression 

$\\alpha$(t)')) 

 

plot(diag(temp.beta1mat),xlab="Days",ylab=latex2exp('$\\beta$'),type="l",col=1, 

     main=latex2exp('Detroit ~ Chicago 1973-2014 functional regression $\\beta$')) 

lines(y=diag(temp.beta1matp1),x=c(1:89),type="l",col=2) 

lines(y=diag(temp.beta1matm1),x=c(2:90),type="l",col=3) 

lines(y=diag(temp.beta1matp2),x=c(1:88),type="l",col=4) 
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lines(y=diag(temp.beta1matm2),x=c(3:90),type="l",col=5) 

legend("top",c(latex2exp('$\\beta$(t, t)'), latex2exp('$\\beta$(t+1, t)'), 

               latex2exp('$\\beta$(t-1, t)'), latex2exp('$\\beta$(t+2, t)'), 

               latex2exp('$\\beta$(t-2, t)')), 

       lty=1, col=c(1,2,3,4,5)) 

 

# Data processing 

detroitnewtotal = MItotal[(which(MItotal$STN...==725370)),] 

detroittotal = detroitnewtotal 

rm(detroitnewtotal) 

 

data = detroittotal[,c("YEARMODA","TEMP","SLP","STP","MAX","MIN")] 

which(data$YEARMODA == 19731201)  # = 1850 

data = data[c(1850:nrow(data)),] 

summary(data) 

 

dat = data[0,] 

for (i in 1:nrow(data)) { 

  print(i) 

  n = data[i,1]%%10000 

  if (n < 229 || n > 1200) { 

    dat = rbind(dat,data[i,]) 
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  } 

} 

rm(n,i,j) 

 

data = dat; rm(dat); row.names(data) = NULL 

length(which(data$STP==9999.9)) 

 

data[,c(5,6)] = lapply(data[,c(5,6)], as.character) 

for (i in 1:nrow(data)) { 

  for (j in 5:6) { 

    print(i) 

    if (substr(data[i,j], nchar(data[i,j]), nchar(data[i,j])) < '0' || substr(data[i,j], 

nchar(data[i,j]), nchar(data[i,j])) > '9') { 

      data[i,j] = substr(data[i,j], 1, nchar(data[i,j])-1) } 

  } 

} 

data[,c(5,6)] = lapply(data[,c(5,6)], as.numeric) 

data = data[with(data, order(YEARMODA)), ] 

 

detroit = data 

rm(data) 

detroit$DTR = detroit$MAX - detroit$MIN 
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(4) Landmark Registration 

plot(chicagomat,col=c(1:42)) 

matplot(c(1:90),chicagomat[,c(1:5)],type="l") 

 

nbasis = 65 

yearBasis = create.bspline.basis(norder=6,breaks=c(1:90)) 

 

#  comsider = 3 for penalize curvature of acceleration 

Lfdobj    = c(0,(2*pi/diff(dayrange))^2,0) 

 

detroitlambda    = 10^(1.7)  #  smoothing parameter 

chicagolambda    = 10^(0.327)  #  smoothing parameter 

 

detroitvecf     = matrix(0, yearBasis$nbasis, ncol(detroitmat)) 

chicagovecf     = matrix(0, yearBasis$nbasis, ncol(chicagomat)) 

 

dimnames(detroitvecf) = list(yearBasis$names, dimnames(detroitmat)[[2]]) 

dimnames(chicagovecf) = list(yearBasis$names, dimnames(chicagomat)[[2]]) 

 

detroitfd0   = fd(detroitvecf, yearBasis) 

detroitfdPar = fdPar(detroitfd0, Lfdobj, detroitlambda) 

chicagofd0   = fd(chicagovecf, yearBasis) 
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chicagofdPar = fdPar(chicagofd0, Lfdobj, chicagolambda) 

 

detroitsmooth = smooth.basis(c(1:90), detroitmat, detroitfdPar) 

detroitfd = detroitsmooth$fd 

chicagosmooth = smooth.basis(c(1:90), chicagomat, chicagofdPar) 

chicagofd = chicagosmooth$fd 

 

detroitaccelfd     = deriv.fd(detroitfd, 2) 

detroitaccelmeanfd = mean(detroitaccelfd) 

 

chicagoaccelfd     = deriv.fd(chicagofd, 2) 

chicagoaccelmeanfd = mean(chicagoaccelfd) 

 

plot(detroitaccelfd, lty=1, lwd=2, xlab="Day", ylab="Acceleration (F/day^2)", 

     main="Detroit unregistered curves") 

plot(detroitaccelfd[seq(1,42,by=2)], lty=1, lwd=2, xlab="Day", ylab="Acceleration 

(F/day^2)", 

     main="Detroit unregistered curves (1973, 1977, 1981, ..., 2009, 2013)") 

 

plot(chicagoaccelfd, lty=1, lwd=2, xlab="Day", ylab="Acceleration (F/day^2)", 

     main="Chicago unregistered curves") 

plot(chicagoaccelfd[seq(1,42,by=4)], lty=1, lwd=2, xlab="Day", ylab="Acceleration 
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(F/day^2)", 

     main="Chicago unregistered curves (1973, 1977, 1981, ..., 2009, 2013)") 

 

# try out other variables besides TEMP 

detroitmat = matrix(detroit[,2],nrow=90,byrow=F) 

dimnames(detroitmat)[[2]] <- paste(1973:2014, sep='') 

 

detroitSLPmat = matrix(detroit[,3],nrow=90,byrow=F) 

dimnames(detroitSLPmat)[[2]] <- paste(1973:2014, sep='') 

 

detroitMAXmat = matrix(detroit[,5],nrow=90,byrow=F) 

dimnames(detroitMAXmat)[[2]] <- paste(1973:2014, sep='') 

 

detroitMINmat = matrix(detroit[,6],nrow=90,byrow=F) 

dimnames(detroitMINmat)[[2]] <- paste(1973:2014, sep='') 

 

detroitDTRmat = matrix(detroit[,7],nrow=90,byrow=F) 

dimnames(detroitDTRmat)[[2]] <- paste(1973:2014, sep='') 

 

######################### sample years #########################  

sampleyear = seq(1974,2014,by=5)  # 1974 1979 1984 1989 1994 1999 2004 2009 

2014 
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sampleyearcol = seq(2,42,by=5) 

# colnames(chicagomat)[sampleyearcol] == sampleyear 

chicagonewmat = chicagomat[,sampleyearcol] 

detroitnewmat = detroitmat[,sampleyearcol] 

tempnewmat = list(cbind(chicagonewmat[,1],detroitnewmat[,1]), 

                  cbind(chicagonewmat[,2],detroitnewmat[,2]), 

                  cbind(chicagonewmat[,3],detroitnewmat[,3]), 

                  cbind(chicagonewmat[,4],detroitnewmat[,4]), 

                  cbind(chicagonewmat[,5],detroitnewmat[,5]), 

                  cbind(chicagonewmat[,6],detroitnewmat[,6]), 

                  cbind(chicagonewmat[,7],detroitnewmat[,7]), 

                  cbind(chicagonewmat[,8],detroitnewmat[,8]), 

                  cbind(chicagonewmat[,9],detroitnewmat[,9])) 

 

# registration 

matplot(c(1:90),tempnewmat[[9]],type="l", 

        xlab="Day", ylab="Daily mean temperature", 

        main="2014 winter daily mean temp") 

 

nbasis = 65 

yearBasis = create.bspline.basis(norder=6,breaks=c(1:90)) 
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#  comsider = 3 for penalize curvature of acceleration 

# Lfdobj    = c(0,(2*pi/diff(dayrange))^2,0) 

Lfdobj    = 3 

 

loglam        = seq(2.27,2.28,0.001) 

nlam          = length(loglam) 

dfsave        = rep(NA,nlam) 

names(dfsave) = loglam 

gcvsave       = dfsave 

for (ilam in 1:nlam) { 

  cat(paste('log10 lambda =',loglam[ilam],'\n')) 

  lambda        = 10^loglam[ilam] 

  fdParobj      = fdPar(daybasis, harmaccelLfd, lambda) 

  smoothlist    = smooth.basis((0.5+0:89), tempnewmat[[4]], fdParobj) 

  dfsave[ilam]  = smoothlist$df 

  gcvsave[ilam] = sum(smoothlist$gcv) 

} 

plot(loglam, gcvsave, type='b', lwd=2, ylab='GCV Criterion', 

     xlab=expression(log[10](lambda)) ) 

 

#  smoothing parameter 

detroitnewmatlambda = 10^c(2.2, 3.12, 2.29, 3.36, 0.51, 2.69, 4.01, 0.043, 3.19)     
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chicagonewmatlambda = 10^c(2.42, 3.1, 2.26, 3.46, 2.648, 2.22, 3.45, 0.085, 3.049) 

# tempnewlambda = list(cbind(chicagonewmatlambda[1],detroitnewmatlambda[1]), 

#                      

cbind(chicagonewmatlambda[2],detroitnewmatlambda[2]), 

#                      

cbind(chicagonewmatlambda[3],detroitnewmatlambda[3]), 

#                      

cbind(chicagonewmatlambda[4],detroitnewmatlambda[4]), 

#                      

cbind(chicagonewmatlambda[5],detroitnewmatlambda[5]), 

#                      

cbind(chicagonewmatlambda[6],detroitnewmatlambda[6]), 

#                      

cbind(chicagonewmatlambda[7],detroitnewmatlambda[7]), 

#                      

cbind(chicagonewmatlambda[8],detroitnewmatlambda[8]), 

#                      

cbind(chicagonewmatlambda[9],detroitnewmatlambda[9])) 

tempnewlambda = (detroitnewmatlambda + chicagonewmatlambda) / 2 

 

detroitnewvecf     = matrix(0, yearBasis$nbasis, 1) 

chicagonewvecf     = matrix(0, yearBasis$nbasis, 1) 
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tempnewvecf        = matrix(0, yearBasis$nbasis, 2) # run for each element in 

tempnewmat 

 

# now process: 2009 

dimnames(detroitnewvecf) = list(yearBasis$names, sampleyear[1]) 

dimnames(chicagonewvecf) = list(yearBasis$names, sampleyear[1]) 

dimnames(tempnewvecf)    = list(yearBasis$names, c("Chicago", "Detroit")) 

 

detroitnewfd0   = fd(detroitnewvecf, yearBasis) 

detroitnewfdPar = fdPar(detroitnewfd0, Lfdobj, detroitnewmatlambda[1]) 

chicagonewfd0   = fd(chicagonewvecf, yearBasis) 

chicagonewfdPar = fdPar(chicagonewfd0, Lfdobj, chicagonewmatlambda[1]) 

tempnewfd0   = fd(tempnewvecf, yearBasis) 

tempnewfdPar = fdPar(tempnewfd0, Lfdobj, tempnewlambda[8]) 

 

detroitnewsmooth = smooth.basis(c(1:90), detroitnewmat[,1], detroitnewfdPar) 

detroitnewfd = detroitnewsmooth$fd 

chicagonewsmooth = smooth.basis(c(1:90), chicagonewmat[,1], chicagonewfdPar) 

chicagonewfd = chicagonewsmooth$fd 

tempnewsmooth = smooth.basis(c(1:90), tempnewmat[[8]], tempnewfdPar) 

tempnewfd = tempnewsmooth$fd 
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# detroitnewaccelfd     = deriv.fd(detroitnewfd, 2) 

# detroitnewaccelmeanfd = mean(detroitnewaccelfd) 

# chicagonewaccelfd     = deriv.fd(chicagonewfd, 2) 

# chicagonewaccelmeanfd = mean(chicagonewaccelfd) 

# tempnewaccelfd     = deriv.fd(tempnewfd, 2) 

# tempnewaccelmeanfd = mean(tempnewaccelfd) 

 

plot(detroitnewaccelfd, lty=1, lwd=2, xlab="Day", ylab="Acceleration (F/day^2)", 

     main="Detroit unregistered curves") 

plot(chicagonewaccelfd, lty=1, lwd=2, xlab="Day", ylab="Acceleration (F/day^2)", 

     main="Chicago unregistered curves") 

 

# legend("bottomleft",c("Chicago", "Detroit"), lty=1, col=c(1,2)) 

plot(tempnewfd,Lfdobj=1) 

 

# PGS spurt identification 

# index  = 1:600  #  wide limits 

# nindex = length(index) 

# ageval = seq(15,75,len=600) 

# ncasef = 2 

# PGSctr = rep(0,ncasef) 

# op = par(mfrow=c(2,1)) 
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# for (icase in 1:ncasef) { 

#   accveci = eval.fd(ageval, tempnewfd[icase]) 

#   aup     = accveci[2:nindex] - 25 

#   adn     = accveci[1:(nindex-1)] - 25 

#   indx    = (1:600)[adn*aup < 0 & adn > 0] 

#   plot(ageval[2:nindex],aup,"p") 

#   lines(c(0,90),c(25,25),lty=2) 

#   for (j in 1:length(indx)) { 

#     indxj = indx[j] 

#     aupj  = aup[indxj] 

#     adnj  = adn[indxj] 

#     agej  = ageval[indxj] + 0.1*(adnj/(adnj-aupj)) 

#     if (j == length(indx)) { 

#       PGSctr[icase] = agej 

#       lines(c(agej,agej),c(-15,15),lty=1) 

#       lines(c(15,75),c(0,0),lty=3) 

#     } else { 

#       lines(c(agej,agej),c(-15,15),lty=3) 

#       lines(c(15,75),c(0,0),lty=3) 

#     } 

#   } 

#   title(paste('City ',c("Chicago", "Detroit")[icase])) 
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# } 

# par(op) 

 

cities = 1:2 

landmarkpts = 21 

nfine   = 90 

dayfine = seq(1, 90, length=nfine) 

 

# use 1st order derivatives to find landmark points 

TEMPctr = matrix(0,nrow=length(cities), ncol=landmarkpts) 

for (icase in cities) { 

  TEMPveci = eval.fd(dayfine, tempnewfd[icase]) 

  plot(tempnewfd,Lfdobj=1) 

   

  for (ptscase in 1:landmarkpts) { 

    TEMPctr[icase, ptscase] = locator(1)$x 

  } 

} 

 

TEMPctrmean = mean(TEMPctr) 

 

# plot unregistrated curves 
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plot(tempnewfd, lty=1, xlab="Day", ylab="Temperature (F)", col=c("blue","red"), 

     main="Chicago and Detroit Temperature B-spline Curves in 2004-2005 Winter 

(Unregistered)") 

abline(v =TEMPctr[1,], col="blue", lty=3) 

abline(v =TEMPctr[2,], col="red", lty=4) 

legend("topright", c("Chicago", "Detroit"), col=c("blue","red"), lty=c(3,4)) 

 

#  Define the basis for the function W(t). 

wbasisLM = create.bspline.basis(c(1,90), nbasis=27, norder=6, 

c(1,colMeans(TEMPctr),90)) # nbasis = norder + length(breaks) - 2 

WfdLM    = fd(matrix(0,27,1),wbasisLM) 

WfdParLM = fdPar(WfdLM,1,1e3) 

 

#  Carry out landmark registration. 

 

regListLM = landmarkreg(tempnewfd, TEMPctr, colMeans(TEMPctr), WfdParLM, 

TRUE) # Detroit -> Chicago 

 

accelfdLM     = regListLM$regfd 

accelmeanfdLM = mean(accelfdLM) 

 

#  plot registered curves 
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plot(accelfdLM, lty=1, lwd=1, main="2009 winter 3 Months Landmark registration", 

     cex=2, xlab="Day", ylab="Temperature (F)") 

abline(v =colMeans(TEMPctr), col=1, lty=3) 

 

lines(accelmeanfdLM, col=1, lwd=2, lty=2) 

lines(c(TEMPctrmean,TEMPctrmean), c(10,40), lty=2, lwd=1.5) 

lines(c(0,90), c(25,25), lty=2, lwd=1.5) 

 

plot(accelfdLM[1:2], lty=1, lwd=1, 

     cex=2, xlab="", ylab="Acceleration (cm/yr/yr)") 

lines(mean(accelfdLM), col=1, lwd=2, lty=2) 

lines(c(TEMPctrmean,TEMPctrmean), c(-3,1.5), lty=2, lwd=1.5) 

 

#  plot warping functions 

warpfdLM  = regListLM$warpfd 

warpmatLM = eval.fd(dayfine, warpfdLM) 

warpmatLM = as.data.frame(warpmatLM) 

warpmatLM$Mean = apply(warpmatLM,1,mean) 

 

plot(tempnewfd[1], lty=1, lwd=2, 

     xlab="", ylab="") 
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lines(c(TEMPctrmean,TEMPctrmean), c(1,90), lty=2, lwd=1.5) 

plot(dayfine, warpmatLM[,2], "l", lty=1, lwd=2, col=1, cex=1.2, 

     xlab="Days", ylab="Time warping function h(t)",main="2009 Winter: 

Dec-Feb") 

lines(dayfine,  dayfine, lty=2, lwd=1.5,col=2) 

lines(c(TEMPctrmean,TEMPctrmean), c(1,90), lty=2, lwd=1.5) 

 

plot(dayfine, warpmatLM[,2]-warpmatLM[,1], "l", lty=1, lwd=2, col=1, cex=1.2, 

     xlab="Days", ylab="d[h(t)]",main="2009 Winter: Dec-Feb d[h(t)]") 

text(TEMPctrmean+0.1, warpmatLM[61,3]+0.3, "o", lwd=2) 

 

# delta h(t) and delta pressure 

dPressure = chicago$STP - detroit$STP 

chicago_detroit_2009$dPressure_SLP = chicago$SLP[3241:3330] - 

detroit$SLP[3241:3330] 

chicago_detroit_2009$dPressure_STP = chicago$STP[3241:3330] - 

detroit$STP[3241:3330] 

 

chicago_detroit_2009$detroit_STP = detroit$STP[3241:3330] 

chicago_detroit_2009$chicago_STP = chicago$STP[3241:3330] 

 

chicago_detroit_2009$detroit_SLP = detroit$SLP[3241:3330] 
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chicago_detroit_2009$chicago_SLP = chicago$SLP[3241:3330] 

 

# Year 2004: row 2701-2790 

# dWarp = (warpmatLM[,2]-warpmatLM[,1])[seq(1,500,length.out=90)] 

dWarp = warpmatLM[,2]-warpmatLM[,1] 

chicago_detroit_2009$dWarp = warpmatLM[,2]-warpmatLM[,1] 

chicago_detroit_2009_select = 

chicago_detroit_2009[which(chicago_detroit_2009$dWarp > 0),] 
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(5) Ordinary Least Squares Linear Model  

reg09=glm(chicago_detroit_2009_select$dWarp~chicago_detroit_2009_select$dPress

ure, family=gaussian()) 

reg09=lm(chicago_detroit_2009_select$dWarp~chicago_detroit_2009_select$dPressu

re) 

summary(reg09) 

plot(chicago_detroit_2009_select$dPressure, chicago_detroit_2009_select$dWarp, 

main="2009 Winter: Dec-Feb dWarp~dPressure (STP)") 

abline(reg04) 

 

# consider inverse.gaussian and poisson for glm 

chicago_detroit_2009$dTemp=chicago_detroit_2009$chicago_TEMP-chicago_detroit

_2009$detroit_TEMP 

reg09 = glm(chicago_detroit_2009$dWarp~ 

              chicago_detroit_2009$chicago_STP 

            +chicago_detroit_2009$detroit_STP 

#            +chicago_detroit_2009$chicago_SLP 

#            +chicago_detroit_2009$detroit_SLP 

             +chicago_detroit_2009$chicago_TEMP 

#           +chicago_detroit_2009$detroit_TEMP 

            , family=gaussian()) 
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reg09 = lm((chicago_detroit_2009$dWarp)[2:89]~ 

              (chicago_detroit_2009$chicago_STP)[2:89] 

            +(chicago_detroit_2009$detroit_STP)[2:89] 

            +(chicago_detroit_2009$chicago_TEMP)[2:89]) 

 

summary(reg09) 

attach(chicago_detroit_2009) 

chicago_detroit_2009$predict = predict(reg09, chicago_detroit_2009[,c(2,3,5)]) 

chicago_detroit_2009$predict_diff = chicago_detroit_2009$predict - 

chicago_detroit_2009$dWarp 

sum(predict_diff*24 < 3) / length(predict_diff) 

 

reg09 = glm(chicago_detroit_2009$dWarp~chicago_detroit_2009$detroit_STP, 

family=gaussian()) 

reg09 = 

lm(chicago_detroit_2009$dWarp~chicago_detroit_2009$detroit_STP+chicago_detroi

t_2009$detroit_STP) 

 

plot(chicago_detroit_2009$dWarp, chicago_detroit_2009$detroit_STP, main="2009 

Winter: Dec-Feb dWarp~Detroit_STP") 

abline(reg04) 
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# cont. reg 

nwbasisCR = 65 

norderCR  =  6 

wbasisCR  = create.bspline.basis(c(1,90), nwbasisCR, norderCR) 

Wfd0CR    = fd(matrix(0,nwbasisCR,2),wbasisCR) 

lambdaCR  = tempnewlambda[1] 

WfdParCR  = fdPar(Wfd0CR, 1, lambdaCR) 

 

#  carry out the registration 

 

registerlistCR = register.fd(mean(tempnewfd), tempnewfd, WfdParCR) 

 

accelfdCR = registerlistCR$regfd 

WfdCR     = registerlistCR$Wfd 

 

#  plot landmark and continuously registered curves for the 

#  first 10 children 

 

accelmeanfdLM74 = mean(tempnewfd[c(1:2)]) 

accelmeanfdCR74 = mean(tempnewfd[c(1:2)]) 

 

plot(tempnewfd[c(1:2)], lty=1, lwd=1,main="Continuous registration", 
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     cex=2, xlab="Day", ylab="Temperature (F)") 

lines(accelmeanfdLM74, col=1, lwd=2, lty=2) 

lines(c(TEMPctrmean,TEMPctrmean), c(10,40), lty=2, lwd=1.5) 

lines(c(0,90), c(25,25), lty=2, lwd=1.5) 

 

 

# dPressure dig deep 

chicago_detroit_STP = as.data.frame(cbind(detroit$YEARMODA, detroit$STP, 

chicago$STP)) 

colnames(chicago_detroit_STP) = c("YEARMODA", "detroit_STP", "chicago_STP") 

# take STP in chicago - STP in detroit as dPressure 

chicago_detroit_STP$dPressure = chicago_detroit_STP$chicago_STP - 

chicago_detroit_STP$detroit_STP 

View(chicago_detroit_STP[which(chicago_detroit_STP$chicago_STP==9999.9 | 

chicago_detroit_STP$detroit_STP==9999.9),]) 

# missing STP for 2004 2003.1-2 2002 2001 1999 

 

# Hence, use Year 2009 as an example 

chicago_detroit_2009 = 

chicago_detroit_STP[which(chicago_detroit_STP$YEARMODA > 20091200  

                                               & 

chicago_detroit_STP$YEARMODA < 20100300),] 
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row.names(chicago_detroit_2009) = NULL 

chicago_detroit_2009$chicago_TEMP = chicagonewmat[,"2009"] 

chicago_detroit_2009$detroit_TEMP = detroitnewmat[,"2009"] 

 

# predict_diff = warpmatLM[,2]-warpmatLM[,1] 

 

output1 = cbind(predict,predict*24,predict_diff,predict_diff*24) 

colnames(output1) = c("OLS time lag (days)", "OLS time lag (hours)",  

                     "F.D.A. time lag (days)", "F.D.A. time lag (hours)") 

View(output1) 

 

timeols = c(1:90)-predict 

(OLS = sum(eval.fd(timeols[2:89],tempnewfd[1])-eval.fd(c(2:89),tempnewfd[2]))) 

(FDA=sum(eval.fd(warpmatLM[2:89,1],tempnewfd[1])-eval.fd(warpmatLM[2:89,2],t

empnewfd[2]))) 

cbind(OLS,FDA) 

 


