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ABSTRACT

Real-Time Maintenance Policies in Manufacturing Systems

by

Xi Gu

Co-Chairs: Jun Ni & Yoram Koren

Effective and timely maintenance actions can sustain and improve both system avail-

ability and product quality in automated manufacturing systems. However, arbi-

trarily stopping machines for maintenance will occupy their production time and, in

turn, introduce production losses into the system. Real-time maintenance decision-

making in manufacturing systems is complex because it requires the integration of

multiple sources of information, such as the system configuration, current machine

health condition, real-time buffer level, and system throughout target.

The research presented in this thesis aims at developing tools to support real-time

maintenance decision-making in complex manufacturing systems. First, the concept

of passive maintenance opportunity window (PMOW) is introduced, which is defined

as the machine idle-time induced by the propagation of downtime of the other ma-

chines in the system. Real-time PMOWs are predicted in manufacturing systems

with serial and non-serial structures. Second, the concept of active maintenance op-

portunity window (AMOW) is proposed so that machines can be strategically shut

down for preventive maintenance (PM) while the system throughput requirement

can be still satisfied. A system decomposition method is developed to investigate the

xi



transient behavior of manufacturing systems with different configurations, based on

which real-time AMOWs are estimated. Third, maintenance policies are examined by

integrating the real-time buffer levels and machine degradation profiles. The system

throughputs under a control-limit policy and a Markov Decision Process approach

are evaluated and compared. Last, the propagation of downtime in serial-parallel

manufacturing systems is studied, based on which three resilience metrics (i.e., pro-

duction loss, throughput recovery time, and total underproduction time) are defined

and evaluated. An optimization problem is formulated for the design of a resilient

manufacturing system.

The model and methodology developed in this dissertation provide managerial

insights on conducting maintenance operations in complex manufacturing systems.

The effectiveness of the proposed model and algorithms is validated by case studies

with simulations, and measurements in an automotive assembly plant.

xii



CHAPTER I

Introduction

1.1 Motivation

To compete successfully in the market place, leading manufacturing companies are

pursuing effective maintenance operations [1]. Effective and timely maintenance poli-

cies can sustain and improve both system availability and product quality. However,

if maintenance policies are not well-developed, then machine downtime may increase

due to the machine degradation and the machine stoppage time for performing main-

tenance, which incurs huge cost. For example, in a typical automotive assembly line,

one minute of downtime could cost as much as $20,000 [2]. Surveys show that, in

the US manufacturing industry, one-third of all maintenance expenditures are wasted

due to the inefficient and ineffective utilization of maintenance resources [3].

Typically, large and complex manufacturing systems consist of 30 to 120 ma-

chines that produce one or multiple products, and maintenance decision-making in

these systems is not a trivial task. First, many factors need to be considered in the

maintenance operations, including: (a) current machine conditions (e.g., working,

down, idle), (b) maintenance schedule, (c) machine degradation profiles, (d) system

configurations, (e) costs of maintenance resources (e.g., labor, spare parts), and (f)

throughput target [4]. Second, there are different types of maintenance. Unsched-

uled maintenance, such as repairs, reacts to the random breakdowns of machines,
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while scheduled maintenance, such as preventive maintenance (PM), can restore the

machine health condition and prevent breakdowns before they actually occur.

Although maintenance can keep machines and equipment operating in good con-

dition, arbitrarily stopping machines for maintenance could cause interruption to reg-

ular production and affect system throughput. Therefore, a conflict arises between

the production manager and the maintenance manager: the former wants to keep

production lines operating to satisfy daily production targets but with little concern

about the machine health condition, while the latter wants sufficient stoppage time so

that adequate maintenance tasks can be completed. A traditional way to resolve the

conflict is to schedule maintenance tasks during non-production shifts or weekends [5].

Such practice is sometimes difficult to meet the required system performance in terms

of cost-effectiveness and production efficiency. First, it may incur overtime labor cost.

The overtime salaries for the maintenance crews are usually higher than their regular

salaries. Second, in large and complex manufacturing systems, there are usually too

many maintenance tasks in the queue that not all of them can be completed during

scheduled non-production time. Third, such PM policies are usually stationary, and

thus they fail to respond quickly to the real-time condition of the systems. Therefore,

instead of performing PM only during non-production time, opportunities for PM

during regular production time need to be investigated.

To this end, the concept of maintenance opportunity window (MOW) was intro-

duced by Chang et al. [6] as a time window for a specific machine being purposefully

shut down to do PM without substantially impacting the throughput of the system.

In this research, we further classify the concept of MOWs into two different types.

For the first type, machines can be purposefully shut down for maintenance during

production by leveraging the surrounding buffers to keep the desired production rate.

Such kind of maintenance opportunities is defined as active maintenance opportu-

nity windows (AMOWs). The second type of MOWs is created by the effects of the

2



downtime on other machines. If the repair time for the failed machine is long enough,

the downtime will eventually propagate to the surrounding machines, forcing the up-

stream machines to be blocked and the downstream machines to be starved. Such

blockage/starvation time can also be viewed as opportunities for maintenance. We

define such MOWs as passive maintenance opportunity windows (PMOWs), which

come from the idle duration caused by the downtime of other machines. To find both

AMOWs and PMOWs requires investigation on the transient behavior of the manu-

facturing system when planned downtime (e.g., maintenance) or unplanned downtime

(e.g., failure) occurs.

In previous work, Chang et al. [6] used a continuous flow model to investigate the

maintenance opportunities in serial lines, and further accounted for the location of the

slowest station [7]. However, the model developed in the work had two limitations.

First, it assumed that when one machine was down for PM, the other machines would

not fail. Second, only serial lines were considered. Therefore, research is still needed

to address the transient behavior of systems with unreliable machines and complex

configurations.

1.2 Literature Review

1.2.1 Maintenance policies

1.2.1.1 Types of maintenance policies

Maintenance policies have been extensively studied in the literature. These poli-

cies are built on the analysis of the criticality (e.g., frequency, downtime) of failure

events. For example, Fig. 1.1 shows the frequencies of subsystems of CNC lathes

where the failures occur, and the downtime caused by these failures, with the data

collected in [8]. In Fig. 1.1, different regions may correspond to different maintenance

policies [9]. Basically, these maintenance policies can be categorized into corrective

3



maintenance (CM) and preventive maintenance (PM). According to MIL-STD-721B,

corrective maintenance refers to all actions performed as a result of failure, to restore

an item to a specific condition, while preventive maintenance includes all actions per-

formed in an attempt to retain an item in specific condition by providing systematic

inspection, evaluation, and prevention of incipient failures [10]. In general, the cost

of CM is three to four times higher than that of PM [11]. Therefore, PM is usually

preferred in real practice, especially when the failure is critical.
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Figure 1.1: The criticality of failures of lathe machines

Moreover, PM can be classified into time-based maintenance (TBM) and condition-

based maintenance (CBM) [12]. TBM is a periodic maintenance based on the assumed

failure behavior such as mean time between failures (MTBF), while CBM recommends

maintenance decisions dynamically based on the information collected through condi-

tion monitoring. A CBM program can do diagnosis, prognosis, or both [13]. Usually,

CBM is more cost-effective than TBM because it preventively maintains the sys-

tem only when necessary, and thus can save maintenance cost and improve system

4



availability [14].

The existing CBM models in literature can be classified into two types [15]. The

first type of models treats the degradation state of machines as continuous. It is

assumed that the reliability function follows certain distribution (e.g., Weibull, ex-

ponential; see monographs [16–18]). Optimal maintenance or inspection policies are

developed in order to maximize the system availability or to reduce the total cost.

For example, Banjevic et al. [19] presented a control-limit policy for a deteriorating

system subject to inspections at discrete time points. Grall et al. [20] developed a

multi-level control-limit maintenance policy for a stochastically and continuously de-

teriorating single-unit system. Dieulle et al. [21] investigated the optimal sequential

replacement and inspection policy for a system whose deterioration was a Gamma

process.

The second type of models described the machine degradation as a Markov process

[22]. For example, Stadje and Zuckerman [23] used optimal control to find the optimal

threshold condition and the degree of repair for a unit whose degradation process was

a discrete-time Markov chain. Chen and Trivedi [24] developed a queueing model

to derive the closed-form analytical results. Chen and Trivedi [25] used a semi-

Markov Decision Process to jointly optimize the inspection rate and maintenance

policy. Xiang [26] used a discrete-time Markov chain model to jointly optimize the

control chart and maintenance policy.

1.2.1.2 Maintenance policies in multi-unit systems

Although these CBM policies shed light on the maintenance decision making,

they focus primarily on single-unit systems. For a multi-unit system, interactions

exist between units, and they can be classified into three different types: economic

dependence, structural dependence, and stochastic dependence (See reviews [27–30]).

Economic dependence implies that group maintenance actions either save cost or

5



result in higher costs as compared to individual maintenance. Structural dependence

applies if components structurally form a part, so that performing maintenance on one

component implies maintenance on all components. Stochastic dependence refers to

the situation that the condition of one component influences the lifetime distribution

of the other components in the system [30].

In a manufacturing system, the machines are usually economically dependent, and

the cost of system downtime may be much higher than the maintenance cost. There-

fore, there is often a great potential for cost savings by implementing opportunistic

maintenance policies [31]. For example, when one machine is down for maintenance,

we may have an opportunity to shut down another machine for maintenance with a

reduced set-up cost. This type of opportunity is called downtime opportunity [29].

Another opportunity is that when the inventory levels in the buffers are high, ap-

propriate maintenance tasks can be performed on the upstream machines without

affecting the end-of-line system throughput [6].

Maintenance policies in multi-unit systems with economic dependence have gained

more attention in the recent literatures. For example, Barbera et al. [32] investigated

the optimal maintenance policy in a two-unit system by conditioning on the total

deterioration of both units. Castanier et al. [33] developed an opportunistic replace-

ment policy for a two-unit system in series to reduce the total maintenance cost. Tian

and Liao [34] developed a proportional hazards model (PHM) based CBM policy by

assuming the economic dependence of the units. From the perspective of manufac-

turing systems, Van der Duyn Schouten and Vanneste [35] studied the maintenance

policies for the supplier in a supplier-buffer-customer system. Ambani et al. [36] used

a continuous-time Markov chain model to develop CBM policies in serial production

lines without intermediate buffers. Lee et al. [37] developed a Markovian model to

find the optimal inspection policy for a manufacturing system with two machines in

series or in parallel. However, the work did not represent the detailed dynamics for a
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manufacturing system, especially when the system is large and complex.

1.2.2 Manufacturing systems

1.2.2.1 System modeling

To study the effect of maintenance on the system performance, we need to first

study the dynamics of manufacturing systems. Modelling, analysis and design of

stochastic manufacturing systems have been studied for decades. Different models

have been developed, such as continuous-flow model, queueing model, and discrete

time Markov chain model (See reviews [5, 38–41], and monographs [42–46]).

The building block to study manufacturing systems is a two-machine-one-buffer

(2M1B) system. Following Gershwin and Berman [47], various two-machine-one-

buffer models have been developed, with assuming different probability distribution

of the processing times and machine reliabilities. In these models, the system state

is usually represented by the distribution of buffer levels, and its evolution depends

on the status of the machines. Li et al. [48] pointed out that the exact analysis

only existed for 2M1B systems, and compared the performance of six different 2M1B

models. Tan and Gershwin [49] developed a methodology to analyze general two-

stage Markovian continuous flow systems with a finite buffer. The flexibility of this

methodology helps analyze a wide range of systems by specifying the transition rates

and the flow rates associated with each state of each stage, and the applicability of

the methodology was demonstrated through examples with different problem settings

or different parameter distributions [50].

It is always assumed that in a 2M1B system, the upstream machine is never starved

and the downstream machine is never blocked. However, for a large manufacturing

system, some machine may be starved by its immediately upstream buffer or blocked

by its immediately downstream buffer. Therefore, the system state depends on the

levels of all the buffers in the system, and the number of states increases dramatically
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as the number of buffers increases, making exact analysis computationally intractable.

Approximation methods have been developed to analyze the system. Most of the

approximation methods are based on either machine decomposition or aggregation.

For the decomposition method [51], one machine Mi is decomposed into two pseudo-

machines MD
i and MU

i , where MD
i is the downstream machine in the 2M1B system

MU
i−1−Bi−1−MD

i and MU
i is the upstream machine in the 2M1B system MU

i −Bi−

MD
i+1 (Fig. 1.2(a)). For a continuous flow model, the parameters of the decomposed

machines can be solved by DDX algorithm [52]. For the aggregation method, the idea

is to aggregate the structures on the upstream and downstream of Bi as two virtual

machines, namely, M f
i and M b

i+1 (Fig.1.2(b)), where the superscripts ‘f ’ and ‘b’ stand

for forward and backward aggregation, respectively [46], and the characteristics of the

aggregated machines can be estimated by using recursive algorithms.

It can be seen from above that, both the decomposition and aggregation methods

share the same idea: to view the system from buffers’ perspective and represent

the system as several 2M1B systems to reduce the dimensionality. However, both

methods assume that the system is in the steady state, and are used to obtain the

average performance of a manufacturing system [53].

1.2.2.2 Analysis of transient behavior

Unlike the well-studied steady state performance, transient analysis of manufac-

turing systems has been relatively unexplored. Transient analysis is important if we

are interested in the system performance before entering the steady state, or that

during a finite interval [54]. Narahari and Viswanadham [54] used a queueing model

to analyze the transient behavior of a fail-repair model of a two-machine system with-

out buffers. Mitra [55] developed a fluid model to study the transient behavior of a

two-stage system coupled by a buffer, where each stage can have multiple parallel

machines. Meerkov and Zhang [56] built a Bernoulli model for a two-machine-one-
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Figure 1.2: Approximation methods for complex system analysis

buffer system, and found that the second largest eigenvalue of the transition matrix

determined transient characteristics of the system. Furthermore, Zhang et al. [57]

developed an aggregation method to extend the transient analysis from 2M1B system

to serial production lines with Bernoulli machines. Despite the initial work, transient

analysis still remains an open area of research, and more studies are required to ana-

lyze systems with complex structures, and machines with different reliability models

[5].

1.3 Research Objectives

In this research, we will study the propagation of the planned or unplanned down-

times in manufacturing systems. The analysis will provide managerial insights for

manufacturing system operations and design. The fundamental challenges and re-

search objectives of this dissertation are summarized as follows:
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• Develop a systematic approach to study the transient behavior of manufacturing

systems when maintenance is performed. The model should be applicable to

analyze the propagation of multiple downtime events in manufacturing systems

with different configurations (e.g., serial-parallel, assembly/disassembly, closed-

loop).

• Develop real-time maintenance policies in manufacturing systems by integrat-

ing the real-time health condition of the machines and the system production

information (e.g., buffer contents, short-term production requirement). In addi-

tion, some short-term maintenance decision support tools, such as PMOW and

AMOW, need to be developed. This objective is from system operations per-

spective. These developed tools will help maintenance crews make more effective

real-time maintenance decisions without affecting the system throughput.

• Design manufacturing systems for resilience, which is the system capability to

tolerate the propagation of downtime events. This objective is from system

design perspective. We need to quantitiatively investigate the resilience per-

formance of manufacturing systems (i.e., the capability to tolerate planned or

unplanned downtimes) by defining resilience metrics. The analysis will help sys-

tem designers to determine the optimal level of redundancy or flexibility that

should be built in the system.

1.4 Outline

The rest of this dissertation is organized as follows.

In Chapter II, passive maintenance opportunity windows (PMOWs) are predicted

in manufacturing systems. A deterministic model is built in order to study the PMOW

in manufacturing systems with serial or non-serial configurations, and when one or

multiple downtime events occur in the system. A case study in an automotive plant
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is presented to illustrate the results.

In Chapter III, active maintenance opportunity windows (AMOWs) are estimated

in manufacturing systems with unreliable machines and finite buffers. A two-period

model is developed to calculate the production losses during maintenance and that

after maintenance. Numerical case studies are presented to illustrate the advantages

of the AMOW-based maintenance policies.

In Chapter IV, we investigate the maintenance policies in manufacturing systems

by integrating machine degradation profiles. First, a system decomposition method

is developed to evaluate a control-limit policy in multi-stage manufacturing systems.

Then, an Markov Decision Process (MDP) approach is used to investigate the optimal

maintenance policy.

In Chapter V, three resilience metrics – production loss (PL), throughput recovery

time (TRT ), and total underproduction time (TUT ) – are defined. We investigate

how these resilience metrics can be affected by the system built-in redundancy or flex-

ibility. A design optimization problem is formulated to illustrate how these resilience

metrics can be considered in the system design stage.

In Chapter VI, the conclusions and contributions of this dissertation are summa-

rized, and future work is proposed.
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CHAPTER II

Prediction of Passive Maintenance Opportunity

Windows in Manufacturing Systems

2.1 Introduction

Maintenance optimization in multi-unit systems has been studied for decades.

Cho and Parlar [28] reviewed papers discussing this problem in the systems where

the components might or might not depend on each other, economically or stochas-

tically, and Nicolai and Dekker further considered the structural dependence [30].

Some group maintenance and opportunistic maintenance policies were reviewed by

Wang [31]. However, most of the literatures focus on the reliability of a single compo-

nent and make assumptions about the dependency, while not integrating the detailed

system information, such as system configuration and real-time buffer levels. Such

information is directly related to how the downtime could propagate to its surround-

ing machines [58], and hence it plays an important role for developing short-term

maintenance policies. Chang et al. [6] used a continuous flow model to investigate

the maintenance opportunities in serial lines, and further accounted for the location

of the slowest station [7]. Liu et al. [59] investigated the cost of downtime incidents

in serial lines, and found that once the downtime on the failure machine exceeded a

threshold, the cost would increase linearly with the downtime. This work provides us
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with insights on how the line physics changes when machine failures occur. However,

the above-mentioned works only dealt with serial lines, investigating the problem in

complex systems with both serial and non-serial configurations makes it more in-

teresting and challenging. Gu et al. [60] developed an equivalent pseudo serial line

method to decompose complex systems so that the problem could be equivalently

analyzed in multiple serial lines.

In this chapter, we investigate the PMOW prediction on the bottleneck machine in

a complex manufacturing system. The complex system in this work is where the down-

time of one machine may propagate to another machine through different branches

in the system. As introduced in Chapter I, PMOW is the starvation/blockage time

brought by the downtime of other machines in the system. The bottleneck machine

is the one whose stoppage could interrupt the system throughput in a strongest man-

ner [61]. Therefore, in practice, it is not preferred to actively shut down bottleneck

machines, making the prediction of PMOWs on them more important. Short-term

bottleneck machines can be detected by the “turning point” method [62], and Chang

et al. [7] showed that, the slowest machine in the system satisfied the concept of

turning point and thus could be regarded as the bottleneck machine. Moreover, it

is claimed in [59] that, the stoppage of the slowest machine will result in permanent

system production losses, demonstrating that the slowest machines are the ones we

would least like to stop. Therefore, in this chapter, we treat the bottleneck machine

and slowest machine as equivalent.

PMOWs on the bottleneck machine come from the occurrence of random failures

on other machines in the system. To determine whether a failure on a non-bottleneck

machine will make the bottleneck machine idle, we calculate the critical downtime

first. If the downtime on one machine is shorter than its critical downtime, it will

not force the bottleneck machine idle. For discrete production lines, Gu et al. [60]

calculated the critical downtime analytically in two-machine-one-buffer (2M1B) lines
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as a building block. They also developed an aggregation method to calculate it in

serial lines and extend it to complex systems by using the equivalent pseudo serial

line method.

Furthermore, as an event-driven decision support tool, the prediction of PMOW

should respond rapidly if there is updated failure information. In this chapter, we

not only consider PMOWs under a single failure, but also investigate how to up-

date PMOWs when multiple failures occur. With the prediction and updating of

PMOWs, maintenance crews can get prepared in advance, so that proper preventive

maintenance tasks can be carried out more effectively.

The remainder of the chapter is organized as follows. In Section 2.3, we investigate

the critical downtime (DT ∗) for machines in serial lines and use the equivalent pseudo

serial line (EPSL) method to derive DT ∗ in complex systems. Based on the critical

downtime, a mathematical model is developed in Section 2.4 to predict the PMOW on

the bottleneck machine. The PMOW is analyzed first under a single failure in complex

systems, and then under multiple failures in serial lines. Finally, these results are

combined to predict and update PMOWs under multiple failures in complex systems.

Section 2.5 presents two numerical case studies where the PMOW prediction model is

illustrated and its effectiveness is validated through simulations and real plant data.

Section 2.6 contains summaries and future work.

2.2 Model and Assumptions

The assumptions for the manufacturing systems discussed in this chapter are de-

scribed as follows:

(1) Machine Mi has a constant cycle time Ti.

(2) A machine may have multiple immediately upstream buffers, and it is starved if

one of its immediately upstream buffers is empty. The first machine is never starved.

(3) A machine may have multiple immediately downstream buffers, and it is blocked if
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one of its immediately downstream buffers is full. The last machine is never blocked.

(4) Buffer Bi has a capacity Ci, and a real-time buffer level Ni(0).

(5) The travelling time at buffers is negligible.

(6) Each buffer can only have one immediately upstream machine and one immedi-

ately downstream machine.

Note that, assumption (5) is made in order to simplify the mathematical expres-

sions. The algorithm developed in this chapter can be easily extended to cases that

consider the buffer travelling time. Assumptions (2), (3) and (6) define the type of

the systems that we discuss in this chapter. Especially, it is assumed that there are

no parallel machines in the systems, so that the bottleneck machine does not have

partial starvation or blockage.

2.3 Calculation of the Critical Downtime in Manufacturing

Systems

The critical downtime (DT ∗) is defined as the maximum time that one machine

can be down without making the bottleneck machine idle. In Section 2.3.1, the critical

downtime in a serial line is analyzed. In Section 2.3.2, an equivalent pseudo serial

line (EPSL) method is developed. Finally, Section 2.3.3 summarizes the calculation

of the critical downtime in complex systems.

2.3.1 Calculation of the critical downtime in a serial line

We consider an I-machine-(I − 1)-buffer serial line in Fig. 2.1, where machine

Mi is located either on the upstream or the downstream of the bottleneck machine

Mb. Backward and forward aggregation methods have been developed in [60] to

analytically derive DT ∗i , the critical downtime of machine Mi, when Mi is on the

upstream or downstream of machine Mb, respectively.
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Figure 2.1: An I-machine-(I − 1)-buffer serial line

The results are:

DT ∗i =



b−1∑
j=i

Nj(0)Tb −
b−1∑
j=i

Tj if 1 ≤ i < b

0 if i = b

i−1∑
j=b

(Cj −Nj(0))Tb if b < i ≤ I

(2.1)

where Ci and Ni(0) are the capacity and real-time contents of buffer Bi.

From Equation (2.1), although the expressions of DT ∗i ’s are different based on the

relative locations of Mi and Mb, their structures are similar. If Mi is on the upstream

of Mb, then
b−1∑
j=i

Nj(0)Tb is the time for Mb to process all the parts between machine

Mi and machine Mb, until Mb becomes starved; and
b−1∑
j=i

Tj is the time it will take to

allow Mb to resume working after Mi is restored from the downtime. Similarly, if Mi

is on the downstream of Mb, then
i−1∑
j=b

(Cj − Nj(0))Tb is the time for Mb to feed the

buffer space between machine Mi and Mb before Mb is blocked, which is the same as

the critical downtime since resuming Mi will immediately make Mb unblocked. These

similarities lead to the construction of an equivalent pseudo serial line (EPSL), which

will be discussed next.

2.3.2 Construction of equivalent pseudo serial lines

In a serial line, one machine is either on the upstream or downstream of another

machine, while in a complex system, the relative location of two machines may not

be so straightforward. Therefore, a unified form calculation of DT ∗i ’s is needed,

regardless of whether Mi is on the upstream or downstream of Mb.
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In this section, we develop an equivalent pseudo serial line (EPSL) method to

obtain DT ∗i ’s. If Mi is the machine whose critical downtime needs to be calculated,

then an EPSL is constructed in a way such that machine Mi is the first machine and

the bottleneck machine Mb is located at the end of the line. Based on the result in

[6], in the EPSL, the critical downtime for machine Mi can be calculated by

DT ∗i = T consi − T resi (2.2)

where T consi (time to consume) is the time it takes Mb to process all the buffer contents

between Mi and Mb, and T resi (time to resume) is the time it takes for the first part

processed by the repaired Mi to travel to Mb.

In order to construct an EPSL where the bottleneck machine is the last machine,

the machines that are located on the downstream of the bottleneck machine need to

be reversed to its upstream in the EPSL. For example, in order to analyze the effect

of the downtime of MI in the serial line in Fig. 2.1, Mb − Bb − · · · − BI−1 −MI are

reversed in the pseudo line M r
I −Br

I−1 − · · · −Br
b −M r

b , as shown in Fig.2.2.

If a failure occurs on machine Mi (i > b) in the original line, and the failure is

long enough, then machines Mi−1,Mi−2, . . . ,Mb will be blocked successively; and if

the failure occurs on the reversed machine M r
i , then machines M r

i−1,M
r
i−2, . . . ,M

r
b

will be starved successively. By an appropriate selection of the parameters of the

pseudo line, the starvation of M r
b will be equivalent to the blockage of Mb.

The real line and its EPSL are equivalent in terms of the time to consume and

the time to resume. More specifically, the time to fill the empty space in buffers

Bi−1, . . . , Bb equals the time to consume the parts in the reversed buffers Br
i−1, . . . , B

r
b ;

and the time to make Mb unblocked after the downtime of Mi ends is the same as

the time to make M r
b unstarved after M r

i resumes running. Consequently, the critical

downtimes in these two lines are also equivalent.
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Figure 2.2: A pseudo line for machines on the downstream of Mb

This result is stated in the following theorem.

Theorem 2.1. The effect of the failure occurring on the downstream of a bottleneck

machine can be equivalently analyzed by that on the corresponding upstream machine

in the EPSL, through the following transformation:

N r
i (0) = Ci(0)−Ni(0) for i = b, ..., I − 1 (2.3a)

T ri = 0 for i = b+ 1, ..., I (2.3b)

where N r
i (0) is the initial level of the reversed buffer Br

i and T ri is the cycle time of

the reversed machine M r
i in the EPSL.

Proof. See Appendix A.

A numerical example will be given in Section 2.5.1 to illustrate the construction

of an EPSL. The calculation of the critical downtime in such a line serves as a basis

for the calculation of the critical downtime in a complex system.

2.3.3 Calculation of the critical downtime in a complex system

In this chapter, we define a complex system as follows:

Definition 2.1. A complex manufacturing system is a system where there exist two

machines that are connected through multiple routes.

Based on the definition, in a complex manufacturing system, two machines Mi

and Mb may be connected through multiple equivalent serial lines (which may be
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either real or pseudo), and thus the downtime on Mi can propagate to Mb through

these different lines.

One example of such systems is illustrated in Fig. 2.3, where machine M1 is a

cutting machine, machines M2 to M5 are stamping machines, and the bottleneck

machine Mb is a welding machine which joins the parts from both lines together. In

such a system, the two stamping lines share the same cutting machine M1, and if a

failure occurs on M1, the impact of failure can propagate to Mb through both lines

l1,1 and l1,2 .

 

 

 

Mb

B4

B3 M4M2

M3 M5 B6

B5B1

B2

M1

Line l1,1

Line l1,2

Figure 2.3: An example of non-serial manufacturing systems

Generally, if there are Ki equivalent serial lines connecting Mi and Mb, then in

line li,k (k = 1, . . . , Ki), the critical downtime DT ∗i,k can be calculated as DT ∗i,k =

T consi,k − T resi,k . Then, the critical downtime for the system is the minimum of all

DT ∗i,k’s, i.e.,

DT ∗i = min
k=1,...,Ki

DT ∗i,k (2.4)

Therefore, if the actual downtime is within DT ∗i , then the bottleneck machine

will not be idle in any of the equivalent lines.
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2.4 Prediction of Passive Maintenance Opportunity Windows

The above method of critical downtime calculation enables us to predict the pas-

sive maintenance opportunity window (PMOW) on the bottleneck machine when

failures occur in the system. In this section, the PMOW is first predicted in a single

failure scenario, and then updated when sequential failures occur.

2.4.1 Prediction of PMOWs under a single failure in a complex system

Consider that at time 0, a failure occurs on machine Mi and will last for DTi.

Based on Section 2.3.3, the critical downtime of Mi can be calculated as DT ∗i =

min
k=1,...,Ki

(T consi,k − T resi,k ). If the actual downtime does not exceed the critical downtime,

i.e., DTi ≤ DT ∗i , the bottleneck machine Mb will not be starved or blocked. However,

if DTi > DT ∗i,k for any k = 1, . . . , Ki, Mb may have an idle interval resulting from line

li,k. To predict the PMOW on Mb requires the joint consideration of the idle intervals

in all of these lines.

First we consider these idle durations independently. In line li,k, Mb will be idle

from time T consi,k to DTi + T resi,k , i.e.,

PMOWk =
[
T consi,k , DTi + T resi,k

)
(k = 1, . . . , Ki) (2.5)

Also, the length of PMOWk is

|PMOWk| = max
(
0, DTi + T resi,k − T consi,k

)
= max

(
0, DTi −DT ∗i,k

)
(2.6)

Equation (2.6) demonstrates that if DTi is greater than the critical downtime

DT ∗i,k, Mb will have an idle duration of DTi − DT ∗i,k in line li,k. It agrees with the

result claimed in serial lines [59].

Next, we consider the PMOW resulted from lines l1,1, . . . , li,Ki
jointly. First, these
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lines are arranged in the ascending order of T consi,k , such that T consi,(1) ≤ · · · ≤ T consi,(Ki)
.

Then the earliest possible idle interval on machine Mb may occur in line li,(1), i.e.,

PMOW(1) =
[
T consi,(1) , DTi + T resi,(1)

)
(2.7)

Since Mb has an idle duration of |PMOW(1)|, which starts before time T consi,(2) , the

additional idle time that is caused by the downtime in li,(2) will start at T consi,(2) +

|PMOW(1)|, while it still ends at DTi + T resi,(2). Therefore, when the joint effects of

lines li,(1) and li,(2) on machine Mb are considered, the PMOW on machine Mb is

PMOW(2) = PMOW(1)

⋃[
T consi,(2) + |PMOW(1)|, DTi + T resi,(2)

)
(2.8)
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Figure 2.4: The states of the bottleneck machine in lines li,(1) and li,(2)

Figure 2.4 illustrates the state of the bottleneck machine Mb in lines li,(1) and

li,(2), when these two lines are considered independently (Fig. 2.4(a)) and jointly

(Fig. 2.4(b)). In this figure,“original” means the part that Mb is working on is in the
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original system before the failure occurs; and “new” means the part is processed by

Mi after it resumes running. It shows that, the idle duration on Mb caused in line

li,(1) delays the propagation of the downtime in line li,(2). The idea of calculating such

“delay of propagation” will be frequently used in the following analysis.

This procedure can be applied recursively to predict the PMOW on Mb, which is

caused jointly in lines li,(1), . . . , li,(k+1), as

PMOW(k+1) = PMOW(k)

⋃[
T consi,(k+1) + |PMOW(k)|, DTi + T resi,(k+1)

)
(2.9)

Moreover, since there are Ki lines connecting Mi and Mb, PMOW(Ki) is the final

PMOW caused by the single failure on machine Mi.

As discussed above, in a serial line, the total idle time on the bottleneck machine

increases linearly in DTi as long as DTi exceeds its threshold DT ∗i . The following

theorem demonstrates that the result still holds in a complex system.

Theorem 2.2. In a complex system, if machine Mi is down for time DTi, and

its critical downtime is DT ∗i , then the total idle time on the bottleneck machine is

|PMOWi| = (DTi −DT ∗i )+.

Proof. See Appendix A.

However, unlike a serial line, where the bottleneck machine could have at most

one idle duration, in a complex system, a failure event may cause multiple idle dura-

tions on the bottleneck machine. Naturally, one may consider grouping the separate

idle durations together and strategically shutting the bottleneck machine down for

|PMOWi|. The following proposition shows that, such grouping will not bring ad-

ditional idle time to the bottleneck machine, as long as it is shut down before the

failure event actually propagates to it.
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Proposition 2.1. Let j1 = min
k=1,...,Ki

{
k : DTi > DT ∗i,(k)

}
, then for any T0 < T consi,(j1), if

the bottleneck machine Mb is shut down during time [T0, T0 + |PMOWi|), it will have

no additional idle time afterwards if no future failure occurs.

Proof. See Appendix A.

Note that, the maintenance crews can only move the entire or partial idle dura-

tions on the bottleneck machine earlier; otherwise the total length of PMOW will be

reduced. For example, if a PMOW starts 5 minutes later but the maintenance crews

cannot get prepared in 7 minutes, at least 2 minutes of the maintenance opportunities

will be wasted. Moreover, whether or not to take the opportunity in advance also

depends on the urgency of the maintenance tasks.

2.4.2 Prediction of PMOWs under multiple failures in a serial line

In Section 2.4.1, PMOWs have been predicted under a single failure. However, it

is possible that, during the downtime of one machine, another random failure occurs.

In this section, we investigate how to update PMOWs in response to multiple failures

in a serial line.

Assume that the jth failure Fj occurs on machine Mij at time Tj, and lasts for

DTij . The corresponding time to consume and time to resume are denoted as T consij

and T resij
, respectively. The updated PMOW on the bottleneck machine Mb at time

Tj (after Fj occurs) is denoted as PMOW (Tj). Then, after the first failure F1,

PMOW (T1) can be predicted by Equation (2.5), as

PMOW (T1) =
[
T1 + T consi1

, T1 +DTi1 + T resi1

)
(2.10)

When the second failure F2 occurs, PMOW (T2) can be updated according to the

following two cases.

Case 1 T2 + T consi2
≥ T1 + T consi1

:
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In this case, the impact of failure F1 will propagate to Mb before that of F2, so the

occurrence of F2 will not affect PMOW (T1). Moreover, the existence of PMOW (T1)

on Mb may delay the time when the impact of F2 propagates to Mb. We denote D(F2)

as this delay, which can be calculated as

D(F2) =
[
T1 + T consi1

, T1 +DTi1 + T resi1

)
∩ [T2,+∞) (2.11)

Then, PMOW (T2) can be updated as

PMOW (T2) =
[
T1 + T consi1

, T1 +DTi1 + T resi1

)
⋃[

T2 + T consi2
+ |D(F2)|, T2 +DTi2 + T resi2

) (2.12)

Case 2 T2 + T consi2
< T1 + T consi1

:

The second case occurs when the first idle duration on machine is caused by F2.

Then this idle duration will delay the propagation of F1, and this delay is calculated

as

D(F1) =
[
T2 + T consi2

, T2 +DTi2 + T resi2

)
(2.13)

PMOW (T2) is then updated as

PMOW (T2) =
[
T2 + T consi2

, T2 +DTi2 + T resi2

)
⋃[

T1 + T consi1
+ |D(F1)|, T1 +DTi1 + T resi1

) (2.14)

To conclude the two cases, the PMOW after the second failure F2 can be updated

as

PMOW (T2) =
2⋃

k=1

[
Tk + T consik

+ |D(Fk)|, Tk +DTik + T resik

)
(2.15)
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where

D(F1) =


[
T2 + T consi2

, T2 +DTi2 + T resi2

)
if T2 + T consi2

< T1 + T consi1

∅ if T2 + T consi2
≥ T1 + T consi1

D(F2) =


∅ if T2 + T consi2

< T1 + T consi1[
T1 + T consi1

, T1 +DTi1 + T resi1

)
∩ [T2,+∞) if T2 + T consi2

≥ T1 + T consi1

Next, we use mathematical induction to generalize the PMOW updating procedure

under multiple failures in a serial line. Define function

Θs(Fk) :=
[
Tk + T consik

+ |D(Fk)|, Tk +DTik + T resik

)
which is the additional PMOW on the bottleneck machine that is caused by failure

Fk, and D(Fk) is the delay of the propagation of the impact of failure Fk to Mb.

Based on Equation (2.15), it is assumed that the PMOW after failure Fn can be

updated as

PMOW (Tn) =
n⋃
k=1

Θs(Fk) = Θs(F(k)) (2.16)

where the order of F(k)’s satisfies T(k)+T
cons
i(k)

+|D(F(k))| ≤ T(k+1)+T
cons
i(k+1)

+|D(F(k+1))|,

such that the impact of failure F(k) propagates to Mb before F(k+1).

Then, when a failure Fn+1 occurs at time Tn+1, PMOW (Tn+1) can be updated

through the following steps:

Step 1. Arrange the n + 1 failures in an ascending order of the time when their

impacts propagate to Mb.

Step 1a. Initially, set the delay of propagation for the new failure Fn+1 as D(Fn+1) =

∅ and its order index j = 1.

Step 1b. Determine whether the impact of failure Fn+1 propagates to Mb before that

of failure F(j):
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1b.1. If Tn+1 + T consin+1
+ |D(Fn+1)| < T(j) + T consi(j)

+ |D(F(j))|, then Fn+1 impacts Mb

before F(j). Go to Step 1c;

1b.2. If Tn+1 +T consin+1
+|D(Fn+1)| ≥ T(j) +T consi(j)

+|D(F(j))|, then Fn+1 impacts Mb after

F(j). Update the delay of propagation for Fn+1 as D(Fn+1) = D(Fn+1)
⋃{

Θs(F(j))∩

[Tn+1,+∞)
}

, and set j = j+1. If j = n+1, then Fn+1 is the last failure that impacts

Mb, and go to Step 1c. Otherwise, repeat Step 1b to compare Fn+1 with the updated

F(j).

Step 1c. Arrange all of the n + 1 failures in the ascending order of the time when

they impact Mb, as

F̃(k) =


F(k) if k = 1, . . . , j − 1

Fn+1 if k = j

F(k−1) if k = j + 1, . . . , n+ 1

where the “=” means that the parameters of the updated failure F̃ , such as T̃ , D̃T ,

˜T cons and ˜T res, are equivalent to those of the corresponding failure F ’s.

Step 2. Update the delay of propagation for the failures that impact Mb after Fn+1,

as D( ˜F(k)) =
⋃k−1
j=1 Θs(F̃(j))

⋂
[T(k),+∞) for k = j + 1, . . . , n+ 1.

Step 3. Update the new PMOW as PMOW (Tn+1) =
⋃n+1
k=1 Θs(F̃(k)). Set F(k) =

F̃(k)(k = 1, . . . , n+ 1), so that it can be written as

PMOW (Tn+1) =
n+1⋃
k=1

Θs(F(k)) (2.17)

Equation (2.17) has the same format as Equation (2.16), which completes the

mathematical induction. Therefore, these steps can be used recursively for updating

PMOW when a new failure occurs. Moreover, among these three steps, Step 1 is the

key. Once the sequence of the failures (in terms of when they start to take effect) is
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obtained, it is not difficult to update the delays and PMOW (Tn+1).

2.4.3 Prediction of PMOWs under multiple failures in a complex system

In Sections 2.4.1 and 2.4.2, PMOWs have been predicted under a single failure in a

complex system, and under multiple failures in a serial line, respectively. The former

prediction is built upon the construction of equivalent pseudo serial lines and the latter

updates the PMOWs when sequential failures occur in a serial line. The integration

of the two scenarios leads to the prediction of PMOW in a more general scenario, i.e.,

PMOWs under multiple failures in a complex system. Figure 2.5 illustrates the idea

of such integration: once a new machine failure occurs in a complex system, it can

be decomposed into multiple failures that occur simultaneously in equivalent serial

lines; and then, for each of the equivalent failures, PMOWs can be updated.

 

 

 

Single Failure

Serial Line

Single Failure

Complex System

Multiple Failures

Serial Line

Multiple Failures

Complex System

Decompose a failure 

into multiple failures 

Update PMOW based 

on a new failure

Update PMOW based on  multiple 

simultaneous failures

Figure 2.5: Prediction of PMOW under multiple failures in a complex system

Assume at time T1, the first failure F1 occurs on machine Mi1 , which is connected

to the bottleneck machine Mb through Ki1 equivalent serial lines. Therefore, it can

be regarded as there are totally Ki1 equivalent failures occurring simultaneously at
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time T1, and the PMOW can be predicted based on the analysis in Section 2.4.1. We

denote F1,k as an equivalent failure of F1 in the kth line, and order them by F(k) = F1,(k)

(k = 1, . . . , Ki1) such that T cons1,(k) ≤ T cons1,(k+1). From Equation (2.9), PMOW at time T1

can be calculated as

PMOW (T1) =

Ki1⋃
k=1

Θc(F(k)) (2.18)

where Θc(F(k)) =
[
Tg(k) + T consig(k),h(k) + |D(F(k))|, Tg(k) +DTig(k),h(k) + T resig(k),h(k)

)
is the

PMOW caused by failure F(k); andD(F(k)) =
⋃k−1
l=1 Θc(F(l)) is the delay of propagation

for failure F(k). g(k) and h(k) are the machine and line indices, such that an equivalent

failure F(k) comes from the effect of the actual failure Fg(k) in line h(k), i.e., F(k) =

Fg(k),h(k). Note that, g(k) = 1 for all k = 1, . . . , Ki1 .

Then we assume at time T2, a second failure F2 occurs on machine Mi2 , which

is connected to the bottleneck machine through Ki2 lines. The procedure to update

PMOW is outlined as follows:

Step 1. Decompose failure F2 into its equivalent failures F2,(k) (k = 1, . . . , Ki2) such

that T consi2,(1) ≤ · · · ≤ T consi2,(Ki2
).

Step 2. For each F2,(k) (k = 1, . . . , Ki2), apply Steps 1–3 in Section 2.4.2 to up-

date PMOW (T2,(k)), which is the PMOW caused jointly by F1,(1), . . . , F1,(Ki1
) and

F2,(1), . . . , F2,(k).

Step 3. Finally, the PMOW at time T2 can be updated as

PMOW (T2) = PMOW (T2,(Ki2
)) =

Ki1
+Ki2⋃
k=1

Θc(F(k)) (2.19)

Furthermore, if a future failure occurs, the PMOW can be updated again by

following these steps. Generally, when a failure Fn+1 occurs at time Tn+1, the flowchart

to update PMOW (Tn+1) from PMOW (Tn) is shown in Fig. 2.6.
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Figure 2.6: Flowchart for PMOW prediction under multiple failures in complex sys-
tems
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2.5 Case Studies

In this section, we present two case studies to illustrate the PMOW prediction

algorithm. The first case study predicts the PMOW on the bottleneck machine in a

closed-loop system, and the analytical result is validated by simulation. The second

case study focuses on PMOW prediction under multiple failures using data from a

real automotive plant.

2.5.1 Case study I: PMOW prediction in a closed-loop system

In the first case study, we investigate PMOWs in a closed-loop system as shown

in Fig. 2.7. In the closed-loop systems, such as automotive production paint shops,

some machines are not only starved by parts, but also by pallets that are used for

transporting the parts. In this case study, machines M1, M2, M3 and M4 are where the

parts are processed on the pallets. After machine M4 completes its work, the finished

parts and the pallet will be sent to buffers B4 and B0, respectively. Therefore, M4

will be blocked if either buffer B4 or B0 is full. Moreover, although it is assumed that

machine M1 is not starved by parts, it may be starved by pallets (when B0 is empty).

The machine cycle times, buffer capacities, and their initial contents are shown in

Table 2.1.

 

 

 

M4 M5B2 M3M2 B3 B4 B5B1 M6M1

B0

Figure 2.7: The layout of the system for case study I

We investigate the PMOW for different cases of the downtime of machine M2

(i.e., DT2). l2,1 and l2,2 are the two equivalent lines connecting from machine M2 to

M6, as shown in Fig. 2.8(a) and (b), respectively. The cycle times of the reversed
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Table 2.1: System parameters for case study 1

machine M1 M2 M3 M4 M5 M6

cycle time (sec) 62 60 59 61 60 65

buffer B0 B1 B2 B3 B4 B5

capacity 5 3 2 4 3 5
initial level 4 2 1 2 1 2

machines, as well as the initial levels of the reversed buffers are shown in Table 2.2.

Based on the analysis in Sections 2.2 and 2.3, it can be calculated that T cons2,1 = 390,

T res2,1 = 240 and T cons2,2 = 325, T res2,2 = 60. Therefore, DT ∗2,1 = 150 and DT ∗2,2 = 265,

and PMOW2 = [325, DT2 + 60)
⋃[

390 + |[325, DT2 + 60)|, DT2 + 240
)

.

(a) 

(b) 

 

 

 

M4 M5B2 M3M2 B3 B4 B5 M6

M5B4 B5 M62

rM 1

rB 1

rM
0

rB
4

rM

Figure 2.8: Decomposition of the closed-loop system

Table 2.2: Parameters of the reversed machines and buffers

machine M r
1 M r

2 M r
4 buffer Br

0 Br
1

cycle time (sec) 0 0 0 initial level 1 1

To validate the effectiveness of the prediction algorithm, we have built a simu-

lation model of the closed-loop system by using a commercial simulation software,

SIMUL8 [63]. Moreover, in order to make the case more practical, the machine cycle

times in the simulations are assumed to follow Gaussian distributions.

First, we study the |PMOW2| under different DT2’s. The standard deviation of

the processing time on each machine is set to be 2%, 5% and 10% of its mean. The

total idle time of the bottleneck machine before it completes 20 parts is logged, and

its mean and standard deviation (s.d.) are shown in Table 2.3 and Fig. 2.9. These
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results show that, when DT2 > 150, |PMOW2| will increase approximately linearly

with DT2. This agrees with the analytical result in Theorem 2.2. Therefore, the

PMOW prediction algorithm is applicable to the systems where the variations of the

machine cycle times are small. Moreover, since the PMOW prediction is analytical,

it is more efficient than simulations, especially for real-time application.

Table 2.3: PMOW prediction for case study I

DT2(sec)
|PMOW2| (sec)

analytical
2% 5% 10%

mean s.d. mean s.d. mean s.d.
0 0 0 0 0 0 0 0
50 0 0 0 0 0 0.06 0.95
100 0 0 0 0 0 1.44 5.91
150 0 1.73 2.62 5.91 7.32 23.34 19.96
200 50 50.40 4.04 54.23 10.37 70.87 23.55
250 100 100.31 3.87 104.10 10.13 119.65 23.55
300 150 150.19 3.93 153.95 10.11 170.59 24.83
350 200 200.16 3.96 203.84 10.19 220.80 22.66
400 250 250.22 3.96 254.03 10.18 269.82 25.56
450 300 300.21 3.97 304.01 10.20 320.23 23.00
500 350 350.24 3.99 353.97 10.16 369.90 23.55
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Figure 2.9: The relationship between |PMOW2| and DT2

Then we study the working/idle status of the bottleneck machine M6 under dif-

ferent DTi’s. The results for DT2 = 150, 250, 350 and 450 seconds are shown in

Fig. 2.10 (the standard deviation on the processing time is assumed to be 2% of its

mean). These results demonstrate that, if DT2 is within 150 seconds, there is almost
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no PMOW on M6. When DT2 increases to 250 seconds, which is between DT ∗2,1 and

DT ∗2,2, one idle duration occurs on M6, and it results from line l2,1. However, when

DT2 is greater than DT ∗2,2, such as 350 and 450 seconds, M6 will have two separate

idle durations (the third one is negligible), where the first one is caused in l2,2 and

the second is in l2,1. When DT2 continues to increase, the first idle duration keeps

growing while the length of the second idle duration remains constant.
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Figure 2.10: Status of the bottleneck machine M6 over time (1 – working; 0 – idle)

Moreover, this case study shows that, the PMOW prediction tool is also appli-

cable to the case when the downtime DTi is not deterministic. If the probability

distribution of DTi is known, then the probability distribution of PMOW can be

predicted accordingly. Maintenance policies under such probabilistic PMOWs will be

investigated in the future.
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2.5.2 Case study II: PMOW prediction under multiple failures in a real

manufacturing plant

The PMOW prediction tool has been implemented in a real automotive assembly

plant to validate its effectiveness in practice. The system in this case study con-

sists of 3 groups of machines, and conveyors between successive groups, as shown in

Fig. 2.11(a). The bottleneck machine Mb is the first machine in group 3. Moreover,

if a failure occurs, maintenance will be carried out on that machine and the whole

group of machines will be stopped while the parts being processed are kept on the

machines, until the maintenance is completed. Therefore, here we only consider the

PMOWs caused by failures in groups 1 and 2. This system can be modeled as a 3M2B

system, as shown in Fig. 2.11(b), with the system parameters in Table 2.4. The cycle

time of machine Mi (i = 1, 2) in Fig. 2.11(b) is equal to the summation of the cycle

times of all the machines in group i. Moreover, the cycle times of the conveyors will

be counted in the calculation of T res .
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Figure 2.11: System structure and its model for case study II
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Table 2.4: Parameters of the 3M2B system

machine/buffer M1 B1 M2 B2 Mb

capacity 6 11 7 24 1
cycle time (min) 4.44 0.71 6.23 3.53 1

In order to show how the PMOW was updated under multiple failures, we con-

ducted the following two “failure” events:

(1) F1: at 1:00 p.m., machine M16 was shut down for 15 minutes; and

(2) F2: at 1:20 p.m., machine M14 was shut down for 10 minutes.

The factory information system (FIS) updated the WIP of all buffers and machines

every 5 minutes, as shown in Fig. 2.12. Based on the real-time information at 1:00

p.m., the PMOW under F1 was predicted as [1:25:00, 1:26:13), indicating a 73-s idle

duration on the bottleneck machine Mb, which would start from 1:25 p.m. When

the second failure F2 occurred at time 1:20 p.m., the PMOW could be updated as

[1 : 25 : 00, 1 : 26 : 13)
⋃

[1 : 32 : 13, 1 : 41 : 13), indicating that another 9-min idle

duration on Mb would start at 1:32 p.m.

Then, we utilized the real-time plant floor data after 1:20 p.m. (also shown in

Fig. 2.12) to validate the prediction (i.e., to see if machine Mb would be idle during

[1 : 25 : 00, 1 : 26 : 13)
⋃

[1 : 32 : 13, 1 : 41 : 13)). From the WIP records in

FIS, there were indeed two idle durations on Mb – one was around 1:25 p.m., and

the other was around 1:35 to 1:40 p.m. – as predicted. Moreover, with a detailed

observation of the WIP in buffer B2, one could obtain a more accurate estimation of

the starting/completion time of the two idle durations. For the first idle duration, it

showed that at 1:20 p.m., buffer B2 had 4 parts, which would allow Mb to process

for additional 4 minutes before it got starved; and at 1:25 p.m., B2 had one “new”

part in it, which would be delivered to Mb shortly. Similarly, B2 had 2 parts at 1:30

p.m., indicating that the second idle duration would start at around 1:32 p.m.; while

B2 had a large WIP at 1:40 p.m., so that the second idle duration on Mb would end
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soon. These results validated the effectiveness of PMOW prediction algorithm under

multiple failures.
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Figure 2.12: PMOW prediction and validation using real-time data from FIS

2.6 Summary

In this chapter, an analytical model has been developed to predict the PMOWs

on the bottleneck machine in a manufacturing system. First, through the proposed

technique of generating equivalent pseudo serial lines, the critical downtime for each

machine in a complex system is calculated. Then, a PMOW prediction algorithm

for a complex system is developed when a single failure occurs on one machine. It

is found that, in a complex system, the total idle time of the bottleneck machine

equals to the difference between the machines actual downtime caused by the failure

and its critical downtime. Moreover, the PMOW prediction algorithm under multiple

failures has also been investigated. Case studies in simulations and a real automotive

plant have been conducted to demonstrate the methodology and insights.
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The effectiveness of the PMOW prediction algorithm has also been validated when

it is applied to systems with small variations in processing time. The analytical

model also provides a sound basis for research on systems with more uncertainties and

variations, such as large variation on machine processing time, probabilistic downtime

caused by the failure, etc. Such randomness will be taken into consideration in

our future work, to make PMOW prediction algorithm more robust for real plant

implementation.

The future work related to the PMOW technique includes: (1) estimating PMOWs

analytically when the cycle times of machines are not constant; (2) developing meth-

ods to correct PMOW based on the feedback information; and (3) integrating main-

tenance opportunities into the design of manufacturing systems.
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CHAPTER III

Estimation of Active Maintenance Opportunity

Windows in Manufacturing Systems

3.1 Introduction

In Chapter II, we developed algorithm to predict the passive maintenance oppor-

tunity windows (PMOWs), which came from the downtime of other machines in the

system. However, the goal for maintenance management is to achieve near-zero down-

time [64], and it is desired to perform preventive maintenance tasks before the actual

failures occur. Therefore, in addition to “passively” taking advantage of the down-

time, we need to look for the opportunities such that one machine can be “actively”

shut down for preventive maintenance (PM) during production, without bringing pro-

duction losses. We call such opportunities active maintenance opportunity windows

(AMOWs).

AMOWs come from extra buffer contents or spaces, which will keep the surround-

ing machines operating for a certain period of time, even if some other machines

are undergoing PM. Chang et al. [6] investigated AMOWs by only considering the

production losses during the preventive maintenance, while did not calculate the po-

tential production losses due to future machine failures. In this chapter, we estimate

the AMOWs by considering the production losses both during the PM and after the
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PM.

The production loss caused by preventive maintenance can be evaluated for two

periods: the time when PM is performed (the during-PM period), and the time period

after PM (the post-PM period). By evaluating the production loss in the two periods,

we are able to decide how many buffer contents or empty space can be utilized for

AMOW calculation. If we only need to satisfy the system production rate during the

AMOW, then all of the buffer contents can be leveraged to do PM, and this case is the

same as the one in [6]. However, when random machine failures are considered, the

problem becomes more complicated. We need to reserve contents or empty space in

the buffers to protect the system against the random failures in the post-PM period.

Early work suggests that using all of the contents (or empty space) in buffers may

cause a future production loss. For example, simulation results in [56] showed that,

with all buffers being empty initially, the production loss in one shift could be as large

as 10% of the required number of production. Experiments in [6] also indicated that

in a balanced line, 50% of the buffer capacity should be reserved as safety stocks such

that there would be no further production loss. Both works investigated the problem

using simulations. There are also some other studies using a similar idea to determine

safety stocks and PM policies jointly. For example, Srinivasan and Lee [65] developed

an (s, S) policy where PM was performed when the inventory level reached a certain

threshold. Cheung and Hausman [66] derived an optima finished goods inventory

(FGI) when machines had increasing failure rate and the repair times were constant

or exponentially distributed. Chelbi and Ait-Kadi [67] determined simultaneously an

optimal safety stock level and the PM period. Kyriakidis and Dimitrakos [68] used a

Markov decision process to determine when PM should be performed, based on buffer

levels as well as machine degradation states. Jin et al. [69] developed an option-based

model for a joint production and preventive maintenance system to reduce the risks

under stochastic demand. Again, most of these policies are based on steady-state
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analysis, with the objective of minimizing average cost over a long run.

In this chapter, we develop an AMOW-based PM policy based on real-time pro-

duction information: buffer levels and machine reliabilities. We estimate AMOWs

in manufacturing systems with unreliable machines and finite buffers. The remain-

der of the chapter is organized as follows. Section 3.2 introduces the model and

assumptions. In Section 3.3, the analytical solution to AMOWs for a two-machine-

one-buffer (2M1B) system is provided. In Section 3.4, a decomposition method is

developed to estimate AMOWs in manufacturing systems with different configura-

tions, and a heuristic algorithm for AMOW estimation in balanced lines is proposed.

Section 3.5 summarizes this chapter.

3.2 Model and Assumptions

 

M1 B1 M2 B2 M3 B3 M4

M9

B4 M5 B5

M10 B10 M11 B11

B9

M6 B6 M7

B8

B7 M8

Figure 3.1: A sample manufacturing system

We consider a system consisting of I machines and B buffers. For example,

Fig. 3.1 shows an 11-machine-11-buffer (11M11B) system. Considering random ma-

chine breakdowns, we assume that the system follows Bernoulli reliability, satisfying:

(1) All machines have an identical cycle time, which is denoted as the time unit.

(2) At time k, Mi (i = 1, 2, ..., I) is “up” with probability pi(k), and is “down”

with probability 1 − pi(k). If Mi is stopped for PM at time k, pi(k) = 0; otherwise

pi(k) = pi, where pi is the reliability of Mi. Define p(k) := [p1(k) · · · pI(k)].

(3) Bi (i = 1, 2, . . . , B) has capacity Ci. Its buffer level Ni(k) is counted at the end
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of time k. Define C := [C1 · · · CB], and N(k) := [N1(k) · · · NB(k)].

(4) A machine will be starved if one of its immediately upstream buffers is empty. A

machine with no upstream buffer is never starved.

(5) A machine will be blocked if one of its immediately downstream buffers is full and

the machine on the downstream of that buffer fails to take one part out. A machine

with no downstream buffers is never blocked.

(6) The required system throughput is constant over time and equals to the system

throughput in the steady state.

(7) At most one AMOW-based PM is performed, and it is performed at the current

time unit.

The Bernoulli model, based on assumptions (1) to (5), has been studied by Li

and Meerkov [46], and its practical effectiveness has been validated [57, 70, 71]. The

reasons for assumption (6) are two-fold. On the one hand, if the required system

throughput is greater than the steady-state one, there is no AMOW because the

system cannot fulfill its long-term production requirement. On the other hand, if the

steady-state system throughput is greater than the required one, PM can take as long

as needed because eventually the lost production in the system will be made up. In

assumption (7), it is assumed that we do not perform simultaneous AMOWs-based

PM tasks on multiple machines, because the objective is to find the maximum possible

AMOW, while the consideration of multiple AMOWs makes the AMOWs on each

machine relatively smaller. Assumption (7) also indicates that AMOWs in future

time is not considered. This is reasonable because future production information

is required to estimate future AMOWs. Additionally, the consideration of future

AMOWs will also decrease the real-time AMOW. Since there is only one AMOW

considered, we always denote the real-time buffer level (i.e., the prior-PM buffer

level) as N(0), and the time afterwards as k = 1, 2, . . . .

The reasons the Bernoulli model is used to study our problem are as follows. First,
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the Bernoulli models can be represented by a discrete time Markov chain (DTMC).

System performance measures, such as production rate (i.e., the expected number of

parts produced by the last machine of the system per time unit), and work-in-process

(WIP), can be obtained by solving linear equations, requiring less computational

effort compared with other reliability models. Moreover, some continuous models,

where the mean time to repair (MTTR) and the mean time between failures (MTBF)

have other distributions, can be effectively transformed into Bernoulli models by using

discretization techniques.

In the following section, AMOWs will be estimated in two-machine-one-buffer

(2M1B) lines.

3.3 Estimation of AMOWs in Two-Machine-One-Buffer Lines

3.3.1 Problem formulation

In a 2M1B line, there is only one buffer. For convenience, we denote the buffer

as B, its capacity as C and its content at time k as N(k). Given a real-time buffer

level N(0), the decision variable n is an indicator of the post-PM buffer level where

the machine under PM should be resumed so that production losses are avoided. If

PM is performed on M1, we have n < N(0) and the buffer level decreases at a rate

of p2 (Fig. 3.2(a)), while n > N(0) indicates that PM is performed on M2, and buffer

level increases at a rate of p1 (Fig. 3.2(b)). Let PL(N(0), n) denote the production

loss when the real-time buffer level is N(0) and the post-PM buffer level indicator is

n, then the AMOWs in 2M1B lines can be defined as follows:

Definition 3.1. In a 2M1B line with a real-time buffer level N(0), the AMOWs for

M1 and M2 are AMOW1(N(0)) := maxn∈Λ(N(0) − n)/p2 and AMOW2(N(0)) :=

maxn∈Λ(n−N(0))/p1, respectively, where Λ = {n : PL(N(0), n) ≤ 0}.

Remark 3.1. From Definition 3.1, there is a one-to-one correspondence between the
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post-PM buffer level indicator n and AMOW. Without loss of generality, we allow the

post-PM buffer level indicator n to be negative or greater than the buffer capacity,

corresponding to the cases that PM is still being performed when the buffer is already

empty or already full, respectively.

B
n

M1 M2

N(0)

 

B
N(0)

M1 M2
n

 

(a) (b) 

 Figure 3.2: Two-machine-one-buffer (2M1B) production lines

In order to obtain the AMOWs in Definition 3.1, the closed-form expression of

the production loss PL(N(0), n) needs to be derived first, which is the focus of the

next section.

3.3.2 Calculation of production loss

The production loss is the expected total number of the unfulfilled production

units, which can be calculated as

PL =
∞∑
k=1

(
PRreq − PRAMOW (k)

)
(3.1)

where PRreq is the required system production rate, and PRAMOW (k) is the expected

system production rate at time k under the AMOW-based maintenance.

Based on assumption (6), there will be no production loss once the system enters

its steady state. Then the production loss can be evaluated over two periods: period

1 is the during-PM period, and period 2 is the duration from PM completion until

the system enters its steady state. Note that, the production loss in period 1 depends

on both the real-time buffer level N(0) and the post-PM buffer level n, while that

in period 2 only depends on n. Therefore, the production loss in periods 1 and 2
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can be denoted as PL
(1)
N(0),n and PL

(2)
n , respectively. The total production loss is the

summation of these two:

PL(N(0), n) = PL
(1)
N(0),n + PL(2)

n (3.2)

Figures 3.3 (a) and (b) are the illustrations of these two periods when PM is

performed on M1 and M2, respectively. The area patterned with “/” represents the

case that the actual production rate is greater than the required production rate (i.e.,

a production gain), while that patterned with “×” indicates a production loss.

3.3.2.1 Calculation of the required system production rate (PRreq)

To calculate the production loss, we first determine the required production rate.

The state space of the 2M1B line is S = {0, 1, . . . , C}. Let πs = limk→∞ πs(k) be the

probability that in the steady state, the system is in state s (s = 0, 1, . . . , C). Then

πs can be obtained by solving π = P(p1, p2, C + 1)π, where π = [π0 · · · πC ]T , and

P(p1, p2, C + 1) is the transition matrix, given by

P(p1, p2, C + 1) =



1− p1 p− 0 · · · 0

p1 1− p−p+ p− · · · 0

0 p+ 1− p−p+ . . .
...

...
...

. . . 1− p−p+ p−

0 0 · · · p+ 1− p−


(C+1)×(C+1)

(3.3)

where p+ = p1(1 − p2) and p− = (1 − p1)p2 denote the probabilities that the buffer

level increases and decreases in one time unit, respectively (when the buffer is not

empty or full).
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Figure 3.3: Illustrations of the two-period model
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Based on [46], the required system production rate can be calculated as

PRreq = (1− π0)p2 =


p1(1−(p+/p−)C)

p2(1−p1/p2 (̇p+/p−)C)
if p1 6= p2

Cp
C+1−p if p1 = p2 = p

(3.4)

Then, we analytically calculate the production losses in periods 1 and 2.

3.3.2.2 Calculation of the production loss in period 1 (PL
(1)
N(0),n)

In period 1, stopping M1 or M2 for PM has different effects on the system through-

put. Performing PM on M2 interrupts the system throughput immediately. If PM is

performed on M1, however, the interruptive effect on the end-of-line throughput is not

immediate. The system has continuous throughput until the buffer becomes empty.

Therefore, the production loss in period 1 needs to be discussed separately when PM

is performed on M1 (indicated by N(0) > n), or M2 (indicated by N(0) < n).

Case 1 PM is performed on M1:

Case 1a n > 0: In this case, the buffer is not empty for any time k in period 1, and

thus π0(k) = 0. Consequently, PL
(1)
N(0),n = (PRreq−p2)(N(0)−n)/p2 = −π0(N(0)−n).

Note that, when n > 0, PL
(1)
N(0),n is smaller than 0, indicating a production gain in

period 1. The reason for this production gain is that, while the buffer is not empty,

the system will keep a constant production rate p2, which is larger than PRreq (as

shown in Equation (3.4)).

Case 1b n ≤ 0: M2 will be starved when the buffer becomes empty, bringing a

production loss of −(1− π0)n afterwards. In this case, the production loss in period

1 can be calculated as PL
(1)
N(0),n = −π0N(0)− (1− π0)n.

Case 2 PM is performed on M2:

If M2 is shut down for PM, there will be no throughput during the entire period

1, and thus the production loss in period 1 is PL
(1)
N(0),n = PRreq(n − N(0))/p1 =

(1− π0)(n−N(0))p2/p1.
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Summarizing both cases above, we obtain the system production loss in period 1

as follows:

PL
(1)
N(0),n =


−π0N(0)− (1− π0)n if n < 0

−π0(N(0)− n) if 0 ≤ n < N(0)

(1− π0)(n−N(0))p2/p1 if n > N(0)

(3.5)

3.3.2.3 Calculation of the production loss in period 2 (PL
(2)
n )

A sample path of how the buffer level N(k) evolves in period 2 is shown in Fig. 3.4.

The system dynamics can be represented by π(k + 1) = P(p1, p2, C + 1)π(k), where

P(p1, p2, C + 1) is the time-invariant transition matrix defined in Equation 3.3, and

the transition probability Pmn := Pr(N(k + 1) = m|N(k) = n) (0 ≤ n,m ≤ C) lies

in the (n+ 1)th column and the (m+ 1)th row of P(p1, p2, C + 1).

…...

nmsmns

n

m

k

nns

( )N k

1

mnt
2

mnt
nnt

Figure 3.4: A sample path of the buffer level evolution in period 2

We define smn := min{k : N(k + s) = m, k > 0|N(s) = n} and tmn :=∑smn

k=0 1{N(k) = 0}, where 1{X} is an indicator function (i.e., 1{X} = 1 if X is

true). In other words, smn is the time duration from state n to the first time the

system reaches state m, and tmn is total time that the buffer is empty during smn .

For the example in Fig. 3.4, smn = 16, snm = 10 , snn = 6; and tmn = t1mn + t2mn = 3,

tmn = 0, tnn = 2. If we denote Tmn = E[tmn] and Smn = E[smn], then all Tmn’s and
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Smn’s can be calculated by solving the equations Tmn = 1{n = 0}+
∑

l 6=m PlnTml and

Smn = 1 +
∑

l 6=m PlnSml for all n,m ∈ {0, 1, . . . , C}. Then Tmn can be calculated as:

If p1 6= p2

Tmn =



0 if m < n

(p−/p+)n−(p−/p+)m

p1(1−p−/p+)
if m > n

(p−)n

p1(p+)n−1 if m = n > 0

1 if m = n = 0

(3.6a)

If p1 = p2

Tmn =



0 if m < n

m−n
p

if m > n

1− p if m = n > 0

1 if m = n = 0

(3.6b)

And Smn can be calculated as:

If p1 6= p2

Smn =



1
p−

(
n−m
p−−p+ −

(p+/p−)C+1−n−(p+/p−)C+1−m

p−(1−p+/p−)2

)
if m < n

(p−/p+)n−(p−/p+)m

p1(1−p−/p+)
+ m−n

p+−p− −
(p−/p+)n−(p−/p+)m

p+(1−p−/p+)2
if m > n(

p+

p−

)C−n
1−(p−/p+)C

1−p−/p+ + p−(p−/p+)n−1

p1
if m = n > 0

1 + p1(1−(p+/p−)C)
p−−p+ if m = n = 0

(3.7a)

If p1 = p2
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Smn =



(C−m+1)(C−m))−(C−n+1)(C−n))
2p(1−p) if m < n

m−n
p

+ m(m−1)−n(n−1)
2p(1−p) if m > n

C + 1− p if m = n > 0

C+1−p
1−p if m = n = 0

(3.7b)

These equations lead to the following lemma.

Lemma 3.1. π0 = Tnn/Snn for all n = 0, . . . , C.

Lemma 3.1 demonstrates that, the proportion of the expected time that the buffer

is empty during two consecutive visits to state n, is equal to the probability that the

buffer is empty in the steady-state. This result can also be proved by the renewal

theory, and leads to the following lemma.

Lemma 3.2. The production loss from state n to state m is equal to the production

loss during the time the system first reaches state m from state n.

Proof. See Appendex B.

Next, we derive the expression for PLn, the production loss starting from state n

until the system reaches its steady state. Assume ks is the time point that the system

enters its steady state, satisfying πm(ks) = πm. Then PLn can be calculated as

PLn = PLn(ks) =
C∑

m=0

PLmn(ks)πm(ks) =
C∑

m=0

(Tmn − π0Smn)p2πm (n = 0, . . . , C)

(3.8)

which can be further calculated as:

If p1 6= p2

PLn =
a+ bn+ c(p+/p−)C−n

p2(1− p1/p2(p+/p−)C)2
(3.9a)
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where

a = (−2p1C − p+)(p+/p−)C +
p1(1− (p+/p−)C

1− p+/p−
,

b = p1(p+/p−)C − p2,

c = p+ +
p1

(
(p+/p−)− (p+/p−)C+1

)
1− p+/p−

.

If p1 = p2 = p

PLn =
3(C + 1− p)n2 − 3(2C2 + 3C − 2PC − P + 1)n+ C(C + 1)(2C + 1)

6(C + 1− p)2

(3.9b)

The following theorem demonstrates the properties of PLn.

Theorem 3.1. The production loss function PLn (n = 0, ..., C) is a convex and

decreasing function of n, and −C < PLn < C.

Proof. See Appendix B.

Theorem 3.1 indicates that, a higher n results in a smaller production loss (or a

larger production gain) in period 2. Moreover, the production loss/gain is bounded

by the buffer capacity.

Then, we come back to PL
(2)
n , the production loss in period 2. Based on remark

3.1, if the n in PL
(2)
n is larger than C, then period 2 starts with a buffer level C (a

full buffer), and if n < 0, period 2 starts with a buffer level 0 (an empty buffer).

Therefore, PL
(2)
n can be expressed as

PL(2)
n =


PL0 n ≤ 0

PLn 0 < n ≤ C

PLC n > C

(3.10)
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where the closed-form expressions of PLn are shown in Equation (3.9).

3.3.3 AMOW estimation based on the production loss

Next, we compute the AMOWs in general 2M1B lines. For any real-time buffer

level N(0), we define the upper and lower bounds of the feasible post-PM buffer levels

as NU(N(0)), and NL(N(0)), respectively, i.e.,

NU(N(0)) = arg max
n

{
n : PL(N(0), n) ≤ 0

}
(3.11)

NL(N(0)) = arg min
n

{
n : PL(N(0), n) ≤ 0

}
(3.12)

Once these bounds are calculated, the AMOWs can be obtained from Defini-

tion 3.1, as

AMOW1(N(0)) = (N(0)−NL(N(0)))/p2 (3.13)

AMOW2(N(0)) = (NU(N(0))−N(0))/p1 (3.14)

Clearly, the AMOWs for both machines are functions of N(0). The following

theorem demonstrates the monotonicity of the AMOWs with respect to N(0).

Theorem 3.2. AMOW1(N(0)) and AMOW2(N(0)) are non-decreasing in the real-

time buffer level, N(0). Moreover, AMOW2(N(0)) = AMOW2(N∗(0)) when N(0) >

N∗(0) where N∗(0) = min{N(0) : PL(N(0), C) ≤ 0}.

Proof. See Appendix B.

Theorem 3.2 shows the structures of AMOW1 and AMOW2 with regard to the

real-time buffer level N(0). It indicates that, the buffer with more contents can offer

longer AMOWs to both machines. More specifically, if the PM is performed on M1, a

higher buffer level can keep M2 running for a longer time, and thus the production loss

in period 1 will be smaller; if the PM is performed on M2, then based on Theorem 3.1,
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a higher buffer level will result in a smaller production loss in period 2. This result

further demonstrates that AMOWs exist from the extra contents in the buffer. The

second part of Theorem 3.2 states that, as N(0) reaches a threshold value N∗(0),

AMOW2 will be constant as N(0) increases. In the following section, we will further

investigate the properties of AMOWs through numerical examples.

3.3.4 Model exploration and insights

In this section, we present numerical studies to explore the structural properties

of the lower and upper bounds, with which the AMOWs can be calculated according

to Equations (3.13) and (3.14). We test the AMOW estimation methods in various

system settings and obtain meaningful insights from numerical studies.

In our preliminary experiments, we take three cases p1 = p2, p1 > p2, and p1 < p2

as typical scenarios in a 2M1B line.

Case 1 p1 = p2 = p:

The key to finding the AMOW for any given real-time buffer level N(0), is to

calculate the production loss for the post-PM buffer level n. The numerical examples

for p = 0.95, 0.80, and C = 20, 50, are investigated as shown in Fig. 3.5, where the

area of the feasible solutions satisfying PL(N(0), n) ≤ 0 is shaded. The diagonal

line D is the line n = N(0), so the shaded area below (resp., above) line D indicates

the existence of AMOW1 (resp., AMOW2). For each N(0), the lower and upper

bounds of the shaded region are the lower bound (NL) and upper bound (NU) for

the post-PM buffer levels, respectively. (In this section, the “N(0)” in NL(N(0)) and

NU(N(0)) are omitted for brevity.) Moreover, in Fig. 3.5, AMOW1(N(0)) (resp.,

AMOW2(N(0))) is illustrated as the vertical distance between its corresponding NL

(resp., NU) and line D, multiplied by a scale parameter 1/p1 (resp., 1/p2). For

example, in the line where p1 = p2 = 0.95 and C = 20, if the real-time buffer level

N(0) = 15, it can be seen from Fig. 3.5 that NL = 9 and NU = 18. Then we obtain
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AMOW1(15) = (15− 9)/0.95 = 6.316 and AMOW2(15) = (18− 15)/0.95 = 3.158.
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Figure 3.5: The structures of NU and NL in balanced lines

Figure 3.5 indicates that NL is constant when N(0) varies. The reason is that,

when PM is performed on M1, the production loss mainly comes from period 2.

However, for PM on M2, period 1 also contributes to the production loss, resulting in

an NU dependent on N(0). Figure 3.5 also demonstrates that, when NU is smaller

than the buffer capacity C, it increases at least as fast as the diagonal line D. When

NU exceeds C, NU − C becomes a constant. This result agrees with Theorem 3.2.

Moreover, Fig. 3.5 also shows that NL is less than the steady-state buffer level

NS (see [46] for its calculation), which is the dashed line between 0 and the buffer

capacity. The following proposition addresses the relationship between NL and NS

in balanced lines.

Proposition 3.1. In a 2M1B line where p1 = p2, the lower bound for the post-PM

buffer level NL and the steady-state buffer level NS satisfy NL ≤ dNSe , where dNSe

is the smallest integer that is greater than or equal to NS.

Proof. See Appendix B.
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Last but not least, Fig. 3.5 illustrates that, for a given N(0), NL’s are the same

for p = 0.90 and 0.80; and so are the NU ’s. As the machine reliability decreases, the

scale parameter 1/p increases, and accordingly, both AMOW1 and AMOW2 increase.

This is because the parts in the buffer can keep a less reliable machine running for a

longer time.

To summarize the results above, in a balanced line where p1 = p2 = p: (1)AMOWs

exist for both machines whenN(0) exceeds half of the buffer capacity; (2) forAMOW1,

there exists a lower bound for the post-PM buffer level NL, which is independent of

N(0) and approximately half of the buffer capacity; (3) for AMOW2, the upper

bound for the post-PM buffer level NU is dependent on N(0); and (4) for a given

N(0), AMOWs increase as the machine reliability decreases.

Case 2 p1 > p2:

The PL(N(0), n)’s for p1 = 0.95, 0.96, p2 = 0.94, and C = 20 are plotted in

Fig. 3.6. The shaded area above line D indicates that M2 has almost no AMOW.

This is because M2 is more critical for both short-term and long-term performance,

which should be less preferred to be actively stopped. Fig. 3.6 also shows that there

exists a fixed lower bound NL, which is positive but smaller than NS. This is similar

to the situation in a balanced line. In fact, the following result holds for production

lines where p1 ≥ p2.

LN

UN
SN LN

UN
SN

C C

D D

 
Figure 3.6: The structures of NU and NL when p1 > p2
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Proposition 3.2. In a 2M1B line where p1 ≥ p2, NL(N(0)) ≥ 0 for any N(0).

Proof. See Appendix B.

Proposition 3.2 demonstrates that if p1 ≥ p2, M1 should be resumed no later than

the buffer becomes empty; otherwise, M2 will be starved and thereby interrupting

the throughput.

Figure 3.6 also implies that, NL increases as p1 increases. However, based on one’s

intuition, if p1 gets larger, it is easier for M1 to catch up with M2 eventually, so M1

should have a longer AMOW. We now introduce a slack constraint to interpret such

counterintuitive phenomenon.

We investigate the behavior of NU and NL when introducing a slack constraint

such that a small production loss is allowed, namely, the constraint Λ = {n :

PL(N(0), n) ≤ 0} in Definition 3.1 is replaced by Λ = {n : PL(N(0), n) ≤ ∆},

where ∆ is a positive number representing the allowed production loss. Figure 3.7

shows NU and NL of the two systems when the slackness is set as ∆ = 0.1 and 0.5.

Comparing Fig. 3.6 and Fig. 3.7, one can see that NL decreases as ∆ increases, indi-

cating that there exist a longer AMOW for M1 if a larger production loss is allowed.

Moreover, NL decreases as p1 increases, indicating that a larger p1 results a longer

AMOW1, which now agrees with one’s intuition.

The following results summarize the characteristics of AMOWs in a 2M1B line

where p1 > p2, and PL(N(0), n) ≤ ∆ (∆ ≥ 0): (1) M2 has almost no AMOWs; (2)

the lower bound NL w.r.t. PM on M1 is constant, which is smaller than NS; and (3)

NL is non-increasing in ∆ and p1.

Case 3: p1 < p2

The last case is for the lines where p1 < p2. In this case, M2 is more critical in period

1 while M1 is more critical from the long-term perspective. With a fixed p2 = 0.96,

the feasible solution areas for PL(N(0), n) ≤ 0 under varying p1 = 0.95, 0.90, 0.85,

and 0.80, are shown in Fig. 3.8.
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Figure 3.7: The structures of NU and NL when p1 > p2 and PL(N(0), n) ≤ ∆

LN

UN

SN
LN

UN

SN

LN

UN

SN

UN

SNLN

C

0

0

C

C

0

0

C

D D

D D

 

Figure 3.8: The structures of NU and NL when p1 < p2
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As shown in Fig. 3.8, given a fixed p2, the change of p1, the reliability of M1, could

affect both AMOW1 and AMOW2, and result in changes of the feasible solution area.

If p1 is close to p2, the structure is similar to the one in a balanced line, i.e., NL is

constant while NU has a step-like shape. As p1 decreases, NU increases, which agrees

with one’s intuition that as p1 gets smaller, the system production rate depends more

on M1. This provides more maintenance opportunities to M2.

However, one may argue that there should be no AMOW for M1, especially when

p1 is much smaller than p2, while in Fig. 3.8 there is quite an amount of shaded area

below the diagonal line D, and in the last two cases there are even some negative

NL’s. The explanation for the counterintuitive behavior is that, the real-time AMOW

estimation only considers meeting the future production requirement, while any pro-

duction loss in the past is neglected. For example, if the real-time buffer level N(0) is

found to be greater than its steady-state buffer level NS, one of the possible reasons

is that M2 has suffered a downtime previously, while this downtime may have already

induced some production losses. We introduce a tight constraint by considering such

a previous production loss.

In order to compensate for a previous production loss, we investigate the problem

of a tighter constraint on the production loss. In practice, we can specify a required

production gain that is needed to compensate for the production loss in the past,

based on the production information. Here, it is assumed that (1) if N(0) ≤ NS, no

production losses are allowed (PL(N(0), n) = 0); (2) if N(0) > NS, a production gain

of N(0) − NS is required to compensate for the previous production loss. In other

words, the constraint in Definition 3.1 is changed into Λ = {n : PL(N(0), n) ≤ ∆},

where ∆ = min(0,−(N(0) − NS)). However, under this constraint, there is almost

no AMOW for either M1 or M2, so we relax ∆ as ∆ = min(0,−(N(0)−NS) + 0.1).

The results are shown in Fig. 3.9. It demonstrate that, under the tight constraint,

there is almost no AMOW1, because M1 is less reliable than M2. Moreover, when p1
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decreases, NU gets larger, indicating a larger AMOW2. The reason is that, when p1

is smaller, M2 is more likely to eventually catch up with M1 in period 2.
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Figure 3.9: The structures of NU and NL when p1 < p2, PL(N(0), n) ≤ ∆ and
∆ = min(0,−(N(0)−NS) + 0.1)

In summary, in a line where p1 < p2 = p, and PL(N(0), n) ≤ ∆ : (1) if ∆ = 0,

there exist AMOWs for both M1 and M2. If p1 is smaller, AMOW1 is smaller while

AMOW2 is larger; and (2) if ∆ = min(0,−(N(0) − NS) + δ), M1 has no AMOW,

while AMOW2 increases as p1 decreases or δ increases (δ is a small positive number).

This section shows that, in a general 2M1B line with a real-time buffer level N(0),

the upper and lower bounds of the post-PM buffer level n can be estimated based

on the analytical PL(N(0), n), and the AMOWs for both machines can be calculated

correspondingly. In the next section, we extend the AMOW estimation problem to

manufacturing systems consisting of more than two machines.
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3.4 Estimation of AMOWs in Manufacturing Systems

3.4.1 AMOW estimation based on system decomposition

Our objective is to generalize the findings of maintenance opportunities from a

2M1B line to systems with I (I > 2) machines ( e.g., the 11M11B system shown in

Fig. 3.1). However, as the number of machines, I, increases, the interaction between

machines and buffers is significantly complicated, and the size of the state space

|S| =
∏B

i=1(1 + Ci) increases dramatically, which makes the exact analysis of the

problem intractable. To reduce the computational complexity in the analysis, some

approximation methods have been developed, such as the decomposition method [44]

and the aggregation method [46]. The traditional aggregation method is used to

analyze the system performance in the steady state. Recently, Zhang et al. [57]

developed a recursive procedure to obtain the reliabilities of the aggregated machines

in transients, and evaluated the transient performance of serial lines. Here, we extend

the work in [57] to system with more complex structures.

In this chapter, we use decomposition method to study AMOW in manufacturing

systems. The idea is to view the system from each buffer’s perspective, and decompose

its upstream (resp., downstream) machine as a virtual machine which is non-starved

(resp., non-blocked). For instance, for buffer Bi, we decompose its upstream and

downstream machines as two virtual machines, namely, MNSi

U(Bi)
and MNBi

D(Bi)
, where

the superscripts ‘NSi’ (resp., ‘NBi’) stands for non-starvation (resp., non-blockage)

for buffer Bi, and U(Bi) (resp., D(Bi)) is the index of the machine on the upstream

(resp., downstream) of Bi. We also denote U(Mi) (resp., D(Mi)) as the set of the

indices of the buffers on the upstream (reps., downstream) of machine Mi.

Then we set equations to calculate the reliabilities of the decomposed machines.

Note that, machine will be starved for buffer Bi if one of its immediately downstream

buffers (except Bi) is full, and the following machine fails to take one part out.
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Therefore,

pNSi

U(Bi)
(k) = pU(Bi)(k) ·

∏
j1∈U(MU(Bi)

)

([0 1 · · · 1]πj1(k − 1))

·
∏

j2∈D(MU(Bi)
)

j2 6=i

(
[1 · · · 1 p

NBj2

D(Bj2
)(k)]πj2(k − 1)

) (3.15)

Similarly, for the downstream decomposed machine MNBi

U(i) , we have

pNBi

D(Bi)
(k) = pD(Bi)(k) ·

∏
j1∈U(MU(Bi)

)

j1 6=i

([0 1 · · · 1]πj1(k − 1))

·
∏

j2∈D(MU(Bi)
)

(
[1 · · · 1 p

NBj2

D(Bj2
)(k)]πj2(k − 1)

) (3.16)

Equations (3.15) and (3.16) can be built for each buffer. Therefore, for a system

consisting of B buffers, 2B equations can be built, from which we can get the reli-

abilities for the 2B decomposed machines. Once these reliabilities (i.e., pNSi

U(Bi)
and

pNBi

D(Bi)
; i = 1, . . . , B) are obtained, the buffer states at time k can be updated as

πi(k) = P(pNSi

U(Bi)
(k), pNBi

D(Bi)
(k), Ci)πi(k − 1) ∀i (3.17)

Then we calculate the maintenance opportunity window AMOWi(N(0)) for any

machine Mi, given any prior-PM buffer level N(0). Denote Ti as the time duration

that Mi is stopped for PM, then the reliabilities of the undecomposed machines can

be updated as

pi(k) =


0 if k ≤ Ti

pi if k > Ti

and pj(k) = pj for j 6= i (3.18)

By substituting Equation (3.18) into Equations (3.15) and (3.16), and then fol-

60



lowing Equations (3.15) to (3.17) recursively, we can calculate the reliabilities of all

decomposed machines at k = 1, 2, . . . until we find a K >> Ti such that

max
(
| pNSi

U(Bi)
(K)− pNSi

U(Bi)
(K − 1) |, | pNBi

D(Bi)
(K)− pNBi

D(Bi)
(K − 1) |

)
≤ ε ∀i

Then the production loss under Ti can be calculated as

PL(N(0), Ti) = K · PR(K)−
K∑
j=1

PR(j) (3.19)

Remark 3.2. In a complex system, we directly use the PM time as the decision vari-

able, instead of the post-PM buffer level that is used in the 2M1B system. In a 2M1B

system, the buffer level decreases (resp., increases) when PM is performed on the

upstream (resp., downstream) machine, so the optimal post-PM buffer level can be

directly translated into AMOW. However, in a complex system, even if the optimal

post-PM buffer levels can be found, it is difficult to translate them into AMOWs,

because of the complex dynamics of the system.

Remark 3.3. ε is a predetermined small positive number used as the termination

criteria for stopping the iterations. We set ε = 10−8 in the following examples.

The flowchart for AMOW estimation is shown in Fig. 3.10. In the following

sections, we use the algorithm to investigate the AMOW in serial lines and systems

with complex structures.

3.4.2 AMOW estimation in serial lines

The recursive algorithm can be utilized to estimate the AMOW for any machine

in a serial line. As an illustration, we consider eight different 5M4B lines, namely,

Line 1 to 8, with different machine reliabilities, as shown in Table 3.1. The buffer

capacities for all lines are C = [10 10 10 10].

Note that, in Line 1, all the aggregated 2M1B lines are balanced, i.e., pNSi = pNBi+1
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Choose Ti  satisfying  TLi ≤ Ti ≤ TUi 

Set k = 1 

Update the reliability of Mi under Ti

Calculate the time-variant reliabilities of all 

decomposed machines at time k 

k = K?

Calculate the throughput at time k

Production loss ? 

Set TLi = Ti 

 Set k = k +1 

Update the states of 

all buffers at new k

Set TUi = Ti - 1

No

Yes

Initialize the upper and lower bounds of 

AMOWi  as TUi = ∞  and TLi = 0  

Decompose the system into 2M1B systems

 TLi  = TUi ?

Yes

No

Yes

AMOWi = TLi 

No

Ti = 0 ?

No

Yes

AMOWi = 0  

Figure 3.10: Flowchart for AMOW estimation
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Table 3.1: Machine reliabilities in eight different lines

Line
machine reliabilities

p1 p2 p3 p4 p5

1 0.8943 0.9038 0.9038 0.9038 0.8943
2 0.9 0.9 0.9 0.9 0.9
3 0.95 0.9 0.9 0.9 0.9
4 0.9 0.9 0.95 0.9 0.9
5 0.9 0.9 0.9 0.9 0.95
6 0.85 0.9 0.9 0.9 0.9
7 0.9 0.9 0.85 0.9 0.9
8 0.9 0.9 0.9 0.9 0.85

for i = 1, 2, 3, 4 (In serial lines, any machine cannot have more than one upstream

buffers or downstream buffers, so pNSi
i and pNBi

i+1 can be simplified as pNSi and pNBi+1 ,

respectively, without introducing any confusion). Here, we call such a line a balanced

line, and the way to construct it can be found in [46]. All the machines in Line 2 have

an identical reliability. For Lines 3 through 5, one machine in each line is more reliable

than the other machines. The more reliable machine is located in the beginning of

Line 3, in the middle of Line 4 and at the end of Line 5. Lines 6 through 8 are similar

to Lines 3 through 5 respectively, except that the more reliable machine (p = 0.95)

is replaced by a machine that is less reliable than the others (p = 0.85).

For each line, the AMOWs are estimated under seven cases with different real-

time buffer levels N(0), as shown in Table 3.2. We denote Case 1 as the baseline case;

Case 2 and Case 3 as Pair 1 (where only the initial buffer levels of B4 are changed);

Case 4 and Case 5 as Pair 2 (where only the initial buffer levels in B1 are changed);

and Case 6 and Case 7 as Pair 3 (where buffer levels in B2 and B3 are changed). The

comparison of the AMOWs in Case 1 and the three pairs are plotted in the three

columns in Fig. 3.11. In each subplot, the horizontal axis is the machine index i, and

the vertical axis is the AMOW calculated by the recursive algorithm.

Figure 3.11 reveals how system parameters affect AMOWs in long lines. First,

AMOWs depend on the machine reliabilities. The machine with a higher (resp., lower)
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 Comparison of AMOWs in 
Case 1 and Pair 1  

Comparison of AMOWs in 
Case 1 and Pair 2 

Comparison of AMOWs in 
Case 1 and Pair 3 

Line 1 

Line 2 

Line 3 

Line 4 

Line 5 

Line 6 

Line 7 

Line 8 

Fig. 11. Comparison of the AMOWs in 5M4B lines 
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Figure 3.11: Comparison of the AMOWs in 5M4B lines
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Table 3.2: Real-time buffer levels in seven cases

case N(0) case N(0) case N(0)

1 [6 6 6 6]
2 [6 6 6 4] 3 [6 6 6 8]
4 [4 6 6 6] 5 [8 6 6 6]
6 [6 8 4 6] 7 [6 4 8 6]

reliability has a longer (reps., shorter) AMOW (See Lines 3 through 7). Second, the

AMOW is also sensitive to the position of the machine. The machine closer to the

most (resp., least) reliable machine has a longer (resp., shorter) AMOW than the

distant machines (See Lines 3 through 7). Last, the real-time buffer levels play an

important role in AMOWs. A higher prior-PM level in one buffer results in longer

AMOWs, especially for its upstream machines (See Columns 1 and 2). Also, different

prior-PM levels in a distant upstream buffer have little influence on the AMOWs of

downstream machines (See Column 2).

Note that, not all real-time buffer levels result in AMOWs. For example, no

AMOW exists in Line 8 in any case but Case 3. In Line 8, the least reliable machine

is located at the end of the line, and thus Line 8 has a high steady-state work-in-

process (which can be calculated as [8.39 8.37 8.37 8.37]). Among all the cases, only

the real-time buffer levels in Case 3 are sufficient to provide AMOWs.

Based on these results, the monotonicity property in Theorem 3.2 can be extended

to long lines, as Theorem 3.3 below.

Theorem 3.3. In an I-machine-(I−1)-buffer line, AMOWi(NB(0)) ≥ AMOWi(NA(0))

for all i = 1, . . . , I, if NB(0) > NA(0).

Proof. See Appendix B.

The above results give insight on the structures and values of AMOWs in long

lines. Since the production lines are usually well balanced, we propose a heuristic

algorithm to estimate AMOWs in balanced lines in the next section.
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3.4.3 Heuristic algorithm for AMOW estimation in balanced lines

Although AMOWs can be effectively estimated by the recursive algorithm in Sec-

tion 3.4.2, it is computationally intensive, especially when the line is long, the buffer

size is large, or the parameter ε is small. Therefore, it is not computationally effi-

cient for real-time applications. In this section, we propose a heuristic algorithm to

estimate AMOWs in balanced lines more efficiently.

As mentioned in Section 3.4.2, an I-machine-(I − 1)-buffer balanced line can be

analyzed by I − 1 decomposed 2M1B balanced systems, where the reliabilities of all

decomposed machines are the same, as p1 = pNSi = pNBi+1 = pI (i = 2, . . . , I − 1). To

estimate the AMOW of Mi (i = 1, . . . , I) in such a line, we consider the prior-PM

levels of both its upstream and downstream buffers.

First, we estimate the AMOW provided by its downstream buffers, and denote it as

AMOW d
i (N(0). From Section 3.3.4, in a balanced 2M1B line, the lower bound of the

post-PM buffer level is approximately half of the buffer capacity. Therefore, for the

last buffer BI−1, if its real-time buffer levelNI−1(0) is larger than CI−1/2, the excessive

parts can provide the decomposed machine MNS
I−1 an AMOW of (NI−1(0)−CI−1/2)/p1.

Within this time period, all of the machines M1 to MI−1 in the original line can

be stopped for maintenance. After this time period, the excessive parts in buffer

BI−2 can offer MNS
I−2 an AMOW, which is equal to (NI−2(0)− CI−2/2)/p1. Based on

this argument, AMOW d
i (N(0) can be calculated from the excessive contents in any

downstream buffer Bj (j = i, . . . , I − 1):

AMOW d
i (N(0) =

I−1∑
j=i

(Nj(0)− Cj/2)/p1 (3.20)

Then we consider AMOW u
i (N(0), the AMOW provided by the upstream buffers

of Mi. From Section 3.4.2, the prior-PM levels in the distant upstream buffers have

little impact on the AMOW. Taking this fact into consideration, we group all the
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upstream buffers together to build a virtual buffer B̃i−1, whose capacity and real-

time buffer level are C̃i−1 =
[∑i−1

j=1 p
i−1−j
1 Cj

]
, and Ñi−1(0) =

[∑i−1
j=1 p

i−1−j
1 Nj(0)

]
,

respectively. pi−1−j is the weighting parameter, which increases when j increases (i.e.,

when buffer Bj is closer to machine Mi). Then the AMOW can be calculated in a

2M1B line MNS
i−1 − B̃i−1−MNB

i , where both machines have reliability p1. We assume

that when Mi is down for AMOW d
i (N(0)), the buffer level in B̃i−1 increases at a rate

of p1. Then the buffer level of B̃i−1 after AMOW d
i (N(0)) can be updated as

Ñ ′i−1 = min
{
C̃i−1,

[
Ñi−1(0) +

I−1∑
j=i

(Nj(0)− Cj/2)
]}
,

with which AMOW u
i (N(0)) can be estimated. To be more specific, AMOW u

i (N(0))

can be approximated by the AMOW of the downstream machine in a 2M1B balanced

line, with the machine reliability p1, the buffer capacity C̃i−1 , and the real-time buffer

level Ñ ′i−1.

Finally, the heuristic AMOW can be expressed as the summation of the AMOWs

provided by both the upstream and downstream buffers, as

AMOWi(N(0)) = max
(
0, bAMOW d

i (N(0)) + AMOW u
i (N(0))c

)
(3.21)

In order to evaluate the performance of the heuristic algorithm, we use it to esti-

mate the AMOWs of each machine in Line 1 described in Section 3.4.2, and compare

them with the AMOWs calculated from the recursive algorithm. The AMOWs in all

seven cases of the real-time buffer levels are calculated, and the results are shown in

Table 3.3.

Table 3.3 shows that in most case, the heuristic AMOWs are smaller than the ones

calculated from the recursive algorithm, which indicates that the heuristic algorithm

is conservative. The exception lies for machines M1, M3 and M5 in Case 2, where the

heuristic AMOWs are larger. However, when taking a detailed look at the production
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Table 3.3: The AMOWs from the recursive algorithm (R) and the heuristic algorithm
(H) in Line 1

case
AMOW1 AMOW2 AMOW3 AMOW4 AMOW5

R H R H R H R H R H
1 5 4 5 4 4 4 4 3 3 2

2 1 2(a) 1 1 0 1(b) 0 0 0 1(c)

3 8 5 7 5 7 6 7 5 4 3
4 3 2 5 3 4 3 4 2 3 2
5 7 5 5 4 5 4 4 3 3 3
6 5 4 5 4 2 2 4 3 3 2
7 5 4 5 4 7 6 4 3 3 3

production losses under heuristic AMOWs: (a)0.21, (b)0.02, (c)0.00

loss when one machine is shut down for its corresponding heuristic AMOWs, we find

it is smaller than 0.21 production unit. Therefore, in this example, we conclude that

the AMOWs calculated from the heuristic algorithm result no or small production

losses.

Next, we investigate the performance of the heuristic algorithm in a balanced line

with more general cases of real-time buffer level. We construct a 10M9B balanced

line (Line 9) with p1 = p10 = 0.8923, pi = 0.9010 (i = 2, . . . , 9), and Ci = 10

(i = 1, . . . , 9). The real-time buffer level for each buffer can take values among 0, 5,

and 10. Therefore, there are 39 = 19683 cases of the prior-PM buffer in total. In each

case, the heuristic AMOWs for all ten machines are calculated. We measure the extra

production loss under the heuristic AMOWs as follows. In some cases (e.g., initially

all buffers are near empty), even if the machine is not shut down for PM, the system

still has production losses because the initial buffer levels are below the steady-state

buffer levels. Such production losses are mainly attributed to the insufficient buffer

contents, rather than AMOWs. Therefore, if a system has a positive production

loss even when no PM is performed, the extra production loss is measured by the

production loss under heuristic AMOWs minus the production loss when no PM is
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performed. Mathematically, the extra production loss ∆PL can be calculated as

∆PL = min

(
0,
∞∑
k=1

(
PR0(k)− PRreq

))
+
∞∑
k=1

(
PRreq − PRAMOW (k)

)
(3.22)

The histograms of the extra production losses under the heuristic AMOWs are

plotted in Fig. 3.12. It shows that, the heuristic AMOW does not cause extra pro-

duction losses in the system in most of the cases. Moreover, both the production

gain (i.e., the absolute value of the extra production loss when it is negative) and loss

are small, indicating that, the heuristic AMOW successfully takes advantages of the

extra buffer contents (in terms of small production gains) while still satisfying the

throughput requirement (in term of small production losses). These results further

validate the effectiveness of the heuristic algorithm.

In summary, the proposed heuristic algorithm is conservative in general, and able

to effectively predict the AMOWs in balanced lines given the real-time buffer levels. It

should be noted that, the heuristic may not work so well in some unbalanced systems.

One reason is that the lower bound of the post-PM buffer level in an unbalanced

2M1B line cannot be approximated by half of the buffer capacity, especially when

some slackness is introduced. However, the AMOWs in unbalanced lines can still be

estimated by the recursive algorithm, and heuristics will be investigated in the future.

3.4.4 AMOW estimation in complex systems

In the previous analysis, we assume that the constraint is to meet the long-term

system production rate, which is equal to the steady-state production rate (Assump-

tion (7)). Sometimes, however, the short-term throughput is of more practical inter-

est. To this end, we need to estimate AMOWs without sacrificing the throughput

requirement during a specific time horizon. This problem can also be solved by the

AMOW algorithm listed in Section 3.4.1, with K = K ′ and Equation (3.19) replaced
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Figure 3.12: Extra production losses under the heuristic AMOWs in Line 9

70



by

PL(N(0), Ti) = K ′ · PRreq −
K′∑
j=1

PR(j) (3.23)

where K ′ is the specified time horizon and PRreq is the required average production

rate during the horizon.

The next numerical example estimates AMOWs for specific horizons. The system

we study here is the one in Fig. 3.1, whose buffer capacities are shown in Table 3.4.

Table 3.4: Buffer capacities of the sample system

buffer B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

capacity 10 10 10 10 10 10 10 15 12 10 12

Three cases of the real-time system information (denoted as Cases 1, 2 and 3)

are studied here. The buffer contents and machine reliabilities of the three cases are

shown in Table 3.3. Moreover, in each of the three cases, we estimate the AMOWs

under three throughput requirements (denoted as Requirements 1, 2 and 3). Their

time horizons are 500, 100 and 20, and the required production rate is 0.9 for all cases.

The first requirement is a relatively long-term requirement and the last requirement

is a relatively short-term one.

Table 3.5: Real-time information of the system under different cases

Case 1

buffer B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

level 6 5 5 5 5 4 5 8 6 5 6
machine M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

reliability .94 .95 .95 .96 .95 .95 .95 .96 .95 .94 .95

Case 2

buffer B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

level 6 5 5 5 5 4 5 8 6 5 6
machine M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

reliability .98 .95 .95 .91 .91 .91 .95 .96 .96 .98 .94

Case 3

buffer B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

level 6 4 3 2 6 7 7 8 3 8 8
machine M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

reliability .94 .95 .95 .96 .95 .95 .95 .96 .95 .94 .95

The given system can be decomposed into eleven 2M1B systems, where machines
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M2, M4, M6 and M7 are decomposed into three machines, and machines M3, M5

and M11 are decomposed into two machines. By following the procedure in Fig. 3.10,

the AMOWs in each case can be estimated. Moreover, we compare the estimated

AMOWs with the baseline policy, where the remaining time in the horizon is used

for maintenance after the production requirement has been satisfied. The results are

plotted in Fig. 3.13, which indicates that the AMOW-based maintenance policy will

provide us with more time for maintenance than the policy that PM is performed

after the production requirement is satisfied.
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Fig. 3.14 Comparison of AMOW and PPMOW in the sample system 
Figure 3.13: Comparison of AMOW and the baseline policy in the sample system

Figure 3.13 also shows how the AMOWs in the system are affected by the through-

put requirement and its horizon. The end-of-line machine (i.e., M8) is more critical

for the short-term system throughput, and thus it has a shorter AMOW under Re-
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quirement 3. However, when the horizon is long, the less reliable machines (e.g., M4,

M5 and M6 in Case 2) in the system will be more important, and they will have

shorter AMOWs. Also, the machines in the system with a higher reliability (Cases 1

and 3) have longer AMOWs than those in a less reliable system (Case 2), especially

when the horizon of the throughput requirement is long. Also, since the AMOW-

based policy performs PM earlier than the baseline policy, it can help to reduce the

risk of machine breakdown due to degradation.

3.5 Summary

This chapter presents the concept of active maintenance opportunity windows

(AMOWs) to seek real-time opportunities of performing preventive maintenance dur-

ing production time. We have proposed analytical models to estimate how long one

machine can be shut down for maintenance while still satisfying the system through-

put requirement. We first build a Bernoulli model to estimate AMOWs analytically

in general 2M1B lines. The results show that, in a balanced line, both machines have

AMOWs when the real-time buffer level exceeds half of the buffer capacity. In an

unbalanced line, the less reliable machine has a shorter AMOW. A recursive proce-

dure based on decomposition method is used to investigate AMOWs in manufacturing

systems with different configurations. We find that the AMOWs depend on multiple

factors, such as throughput requirement, machine reliability, machine position and

real-time buffer levels. We also propose a heuristic approach to estimate AMOWs

in balanced lines, where the real-time contents in both upstream and downstream

buffers are considered. The performance of the heuristic approach is evaluated with

numerical studies.

However, as a decision support tool, AMOW does not make any decisions on

how to schedule the maintenance tasks. To further develop maintenance policies in

terms of scheduling and prioritization, we need to integrate the estimated AMOW
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with other information of the system, such as the degradation of machines, the list of

PM tasks and their impact on machine reliabilities, the availability of maintenance

resources, and the skill levels of maintenance crews. This integration will affect the

estimation of AMOW, and make the problem more challenging.
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CHAPTER IV

Maintenance Decision-Making in Manufacturing

Systems

4.1 Introduction

In the previous chapters, we studied the propagation of a planned or an unplanned

downtime in manufacturing systems consisting of machines whose reliabilities are

constant over time. Based on the analysis of the system transient behavior, real-

time maintenance decision support tools, including PMOW and AMOW, have been

developed. In order to make optimal real-time maintenance decisions, one should

consider other factors, such as machine degradation profiles, duration of maintenance

tasks and their impact on the machine reliabilities, etc. In this chapter, we consider

a maintenance decision-making problem by integrating such information.

In many models for single-unit systems, the optimal policy is a control limit policy,

where maintenance or replacement is carried out when the degree of deterioration is

greater than a critical level (or the machine reliability is below a critical level). The

sufficient conditions for the optimality of control limit policies were discussed when

the changes of state are Markovian [72] or Semi-Markovian [73, 74]. Douer and

Yechiali [75] investigated the control limit policy where the effect of maintenance was

stochastic. Stadje and Zuckerman [23] studied the policy with a general degree of
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repair.

However, in multi-unit systems, components are dependent in different ways, so

that the maintenance decision on one machine depends not only on the machine itself,

but also on the status of other machines in the system. Ambani et al. [36] used a

continuous-time Markov chain model to develop CBM policy in serial production

lines. Lee et al. [37] developed a Markovian model to find the optimal inspection

policy for a manufacturing system with two machines in series or in parallel. The

systems studied in their models consisted of no buffers. The buffer size and level,

however, also play an important role in maintenance decision-making [35, 68, 76].

Van der Duyn Schouten and Vanneste [35] studied the optimal maintenance policy

in an installation-buffer-production system, where the installation was subjected to

random failures and was where the maintenance decision should be made. Kyriakidis

and Dimitrakos [68] generalized the problem in [35] to the case where the installation

had a non-stationary deterioration. Meller and Kim [76] investigated how the system

cost and optimal buffer size were impacted by preventive maintenance (PM). In these

studies, the production equipment (i.e., the downstream machine) was assumed to

be perfectly reliable, and maintenance decision was only made on the installation

(i.e.,the upstream machine), which limited their practical application.

Additionally, most of the previous work used a queueing model to study the prob-

lem, where the repair time was assumed to be exponentially distributed, and would

resettle every time when the system dynamics changed. Such memoryless assumption

cannot effectively capture the remaining maintenance time, which may be unrealistic

in many cases.

In this chapter, we consider a serial line consisting of multiple machines and

buffers, where each machine is subject to a degradation process. The maintenance

decision should be made on each machine based on the real-time condition of the

system, including the machine conditions and buffer levels. Moreover, the machine
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states consist of both the machine degradation states (when the machine is working)

and the remaining maintenance time (when the machine is under maintenance).

The remaining chapter is structured as follows. In Section 4.2, the mathemat-

ical model and assumptions are introduced. In Section 4.3, a control limit policy

is developed as the baseline policy, and it is evaluated in multi-stage systems. In

Section 4.4, the optimal policy is investigated by using a Markov Decision Process

(MDP) approach. Section 4.5 presents case studies to illustrate the structure of the

optimal policy, and compare it with the baseline policy. Section 4.6 summarizes this

chapter.

4.2 Model and Assumptions

4.2.1 Modeling of machine degradation

We consider a machine whose state can only change at discrete time t = 1, 2, . . . .

The degradation state of the machine is also discrete, and denoted by d (d = 1, . . . , D+

1), where a larger d represents a more severe degradation level. The assumptions of

the machine and maintenance models are summarized as follows:

(1) When the degradation state of the machine is d (d = 2, . . . , D), one can choose

to perform a preventive maintenance (PM) or not.

(2) If PM is performed, the machine should be stopped for T (d−1) units of time to

complete the PM, and the system will be restored to the “as good as new” state (i.e.,

degradation state 1).

(3) Given that PM is not performed, then during the machine cycle time, a random

failure may occur with a probability f (d), which is dependent on the machine degra-

dation state d (d = 1, ..., D). The random failure will be handled by a minimal repair

(MR) [77], which restores the system to the “as bad as old” state (i.e., degradation

state d, the state right before the random failure occurs). It is assumed the minimal
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repair always takes one unit of time regardless of the machine degradation state.

(4) Given that PM is not performed and no random failure occurs, there may be a

degradation. When the machine degradation state is d (d = 1, ..., D), the degradation

state in the next time unit becomes d + 1 with probability q(d), and remains d with

probability q(d) (i.e.,1− q(d)). For simplicity, we assume q(d) = q ∀d.

(5) When the degradation state of the machine is D + 1, a corrective maintenance

(CM) must be performed. The CM takes T (D) units of time, and restores the system

to the “as good as new” state (i.e., degradation state 1).

In addition, we assume the following two conditions hold.

Condition 5.1 f (d+1) > f (d) for 0 < d ≤ D.

Condition 5.2 T (d+1) ≥ T (d) for 0 < d < D and T (d+1) − T (d) ≥ T (d) − T (d−1) for

1 < d < D.

These two conditions state that, a random failure is more likely to occur when

the machine is in a more severe degradation state. Also, it will take a longer time

for the PM to be completed when the machine is more degraded. Moreover, the PM

duration is a convex function on the degradation state d.

The state of the machine can be defined as S = SD × SM, where SD and SM

consist of the degradation state of the machine and the remaining maintenance time

on the machine. Note that, SD and SM are mutually exclusive because the formal

indicates that the machine is not under maintenance while the latter represents the

cases where the machine is under maintenance. Therefore, the state index of one
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machine can be defined as

S :=



d
if the machine is not under maintenance,

and its degradation state is d (d = 1, . . . , D)

D + 1 + T (D) − t
if the machine is under maintenance,

and its remaining maintenance time is t, (t = 1, . . . , T (D))

(4.1)

d=1 d=2 d=D d=D+1...

F

Machine 

Degradation

Remaining 

Maintenance 

Time

...t=0 ( 1)Dt T 
( )Dt T(1)t T ... ...

PM

MR

PM CM

F MR F MR

( ) 1Dt T 

Figure 4.1: Machine degradation and maintenance model

Table 4.1 shows the state indices and their corresponding degradation level/remaining

maintenance time. Note that, when the machine is in its failure state, CM will be

carried out immediately, resulting a remaining maintenance time T (D). Hence, the

degradation state D + 1 is the same as the state that has a remaining maintenance

time T (D). Additionally, the system enters the degradation state 1 as soon as the

maintenance ends, so state 1 also represents the case where the remaining mainte-

nance time t = 0. From Table 4.1, S can take D + T (D) possible values.
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Table 4.1: State index of the single machine

state degradation level remaining maintenance time
1 1 0
2 2 NA
...

...
...

D D NA

D + 1 D + 1 T (D)

D + 2 NA T (D) − 1
...

...
...

D + T (D) NA 1

4.2.2 Modeling of system

We still consider the I-machine-(I − 1)-buffer system that is depicted in Fig. 2.1.

The subscript “i” is used to represent the corresponding parameters for machine Mi.

Specifically, the degradation state for Mi (i = 1, . . . , I) is represented by 1, . . . , Di,

and when the degradation state of machine Mi is di (di = 1, . . . , Di), its probabilities

for a random failure and machine degradation are f
(di)
i and qi, respectively; and

its PM durations is T
(di−1)
i . Moreover, the time for CM is T

(Di)
i , and that for the

minimal repair is one unit time, regardless of the degradation states. The blockage

and starvation rules, are the same as in Chapter III. This system can be modeled as

a discrete time controlled Markov chain, and its dynamics will be further discussed

in Sections 4.3 and 4.4.

4.3 Baseline Maintenance Policy: A Control Limit Policy

In this section, we evaluate the control limit policy for a single machine, as well

as in multi-stage manufacturing systems.

4.3.1 Evaluation of the control limit policy for a single machine

For the single machine problem, the policy can be analyzed by a (delayed) renewal

process, as shown in Fig. 4.2. It is well-known that a control limit policy exists for
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a single machine, i.e., the machine should be repaired when its degradation state

reaches a threshold value.

Let TTD(d) be the expected time to degradation from state d to state d+ 1, then

it can be calculated by the following equation:

TTD(d) = 1 + f (d)
(
q · TTD(d) + q · 0

)
+ f (d) · TTD(d)

=⇒ TTD(d) = 1/(f (d) · q)

Then, the total number of units produced when the machine is in degradation

state d can be calculated as f (d) · TTD(d) = 1/q.
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Figure 4.2: Production rate for a single degrading machine

Let d0 be the initial state of the system. If d0 = 1, the process is a renewal process,

and the expected performance in each cycle is the same (a cycle is the time from the

completion of one PM until the completion of the next PM). Let PRd be the expected

system production rate when the maintenance is performed at the degradation state

d. Then PRd can be calculated as

PRd =

d−1∑
d′=1

1/q

d−1∑
d′=1

1/(f (d′) · q) + T (d−1)

(4.2)
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Therefore, d∗, the critical degradation state where the maintenance should be

performed, can be calculated as

d∗ = arg max
d

PRd (4.3)

However, if d0 6= d∗, the process is a delayed renewal process, where except for the

first cycle, all other cycles start with degradation state 1 (Fig. 4.2). Therefore, the

policy starting from the second cycle is to always perform maintenance at degradation

state d∗. We only need to determine the degradation state at which the maintenance

should be performed in the first cycle, which is denoted as d1. Then, d1 can be

calculated as

d1 = arg max
d

[
d−1∑
d′=d0

1/q − PRd∗

(
d−1∑
d′=d0

1/(f (d′) · q) + T (d−1)

)]
(4.4)

where
d−1∑
d′=d0

1/q and
d−1∑
d′=d0

1/(f (d′)·q)+T (d−1) are the expected number of the production

units in the first cycle and the expected duration of the first cycle, respectively. Thus,

the expression in the square brackets is the excessive number of parts produced in

the first cycle.

Theorem 4.1. d1 = max(d0, d
∗).

Proof. See Appendix C

Theorem 4.1 shows that, if the initial degradation state d0 is not more severe than

the threshold state d∗, then the policy is to perform maintenance when the machine

degrades to state d∗. However, if the initial state d0 ≥ d∗, the optimal control action

is to perform maintenance immediately.
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4.3.2 Evaluation of the control limit policy in multi-stage systems

Next, we denote the control limit policy as a baseline policy and evaluate it in

a serial line consisting of multiple machines. To be more specific, the control limit

policy is to perform maintenance on one machine when its degradation state reaches

its threshold value d∗i that is calculated from Equation (4.3). The objective is to

calculate PRcl, the expected system production rate under the control limit policy.

4.3.2.1 Evaluation of the control limit policy in two-machine-one-buffer

(2M1B) systems

First we evaluate the control limit policy in a two-machine-one-buffer (2M1B)

system M1 − B − M2. The Markov chain model under the control limit policy is

illustrated in Fig. 4.3. The state of the 2M1B system can be represented by a three-

tuple (S ′1, S
′
2, N), where N is the buffer level, S ′i is the modified state of machine Mi,

which removes all the transient states under the control limit policy, and is defined

as

S ′i :=


Si if Si = 1, . . . , d∗i − 1

d∗i + T
(d∗i−1)
i − ti if the remaining maintenance time is ti (ti = 1, . . . , T

(d∗i−1)
i )

(4.5)

Then the total number of states of the system is
(
d∗1 + T

(d∗1−1)
1

)(
d∗2 + T

(d∗2−1)
2

)
(C+

1), where C is the buffer capacity. We define the state index as

I(S ′1, S
′
2, N) = (S ′1 − 1)(d∗2 + T

(d∗2−1)
2 )(C + 1) + (S ′2 − 1)(C + 1) +N + 1 (4.6)

Table 4.2 illustrates the state index I(S ′1, S
′
2, N) and the corresponding machine

and buffer states.

Definition 4.1. Denote Π(P) as the steady-state distribution associated with tran-
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Table 4.2: State index of the 2M1B system

I(S ′1, S
′
2, N) S ′1 S ′2 N

1 1 1 0
2 1 1 1
...

...
...

...
C + 1 1 1 C
C + 2 1 2 0

...
...

...
...

2(C + 1) 1 2 C
...

...
...

...

(d∗2 + T
(d∗2−1)
2 )(C + 1) 1 d∗2 + T

(d∗2−1)
2 C

(d∗2 + T
(d∗2−1)
2 )(C + 1) + 1 2 1 0

...
...

...
...

2(d∗2 + T
(d∗2−1)
2 )(C + 1) 2 d∗2 + T

(d∗2−1)
2 C

...
...

...
...

(d∗1 + T
(d∗1−1)
1 )(d∗2 + T

(d∗2−1)
2 )(C + 1) d∗1 + T

(d∗1−1)
1 d∗2 + T

(d∗2−1)
2 C

sition matrix P, such that ||Π(P)||1 = 1 and Π(P) = P ·Π(P).

Remark 4.1. Mathematically, if Pmn is the element at the (n + 1)th column and the

(m+ 1)th row of matrix P, then

Π(P) =



P00 − 1 P01 · · · P0,C−1 P0C

P10 P11 − 1 · · · P1,C−1 P1C

...
...

. . .
...

...

PC−1,0 PC−1,1 · · · PC−1,C−1 − 1 PC−1,C

1 1 · · · 1 1



−1 

0

0

...

0

1


(4.7)

Numerically, given any π0, Π(P) can be calculated as Π(P) = PK ·π0 recursively

by K = 1, 2, ... until |PK · π0 − PK−1 · π0| < ε, where ε is a predetermined small

number.

Let πS(S′1,S′2,N) be the stationary distribution of state (S ′1, S
′
2, N), and πS be the

column vector whose I(S ′1, S
′
2, N)th element is πS(S′1,S′2,N). Then based on Definition 4.1,
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πS = Π(P), where

M1 B M2

F

*

1 1d 

MR

PM/CM

*
1( 1)*

1 1

    1

dd T 



1 1 1d 

F MR

*

1 2d 

…
1d 

…

F

*

2 1d 

MR

PM/CM

1 2 1d  

F MR

*

2 2d 

…
2d 

…
*
2( 1)*

2 2

    1

dd T 



Figure 4.3: Baseline policy in a 2M1B system

P =



A1 B
d∗1+T

(d∗1−1)

1

B1
. . .

. . . Ad∗1−1

Bd∗1−1

. . .

B
d∗1+T

(d∗1−1)

1 −1


(4.8a)

=: P(f
(1:d∗1−1)
1 , f

(1:d∗2−1)
2 , q1, q2, T

(d∗1−1)
1 , T

(d∗2−1)
2 ) (4.8b)
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Ai =



Ci1 D
i,d∗2+T

(d∗2−1)

2

Di1
. . .

. . . Ci,d∗2−1

Di,d∗2−1

. . .

D
i,d∗2+T

(d∗2−1)

2 −1


(4.8c)

Bi =



Ei1 F
i,d∗2+T

(d∗2−1)

2

Fi1
. . .

. . . Ei,d∗2−1

Fi,d∗2−1

. . .

F
i,d∗2+T

(d∗2−1)

2 −1


(4.8d)

Cij =



f
(i)
1 f

(i)
1 f

(j)
2 · q2

f
(i)
1 · q1 c0

. . .

f
(i)
1 f

(j)
2 · q1

. . . f
(i)
1 f

(j)
2 · q2

. . . c0 f
(i)
1 f

(j)
2 · q2

f
(i)
1 f

(j)
2 q1 f

(j)
2 + f

(i)
1 · f

(j)
2 · q1 · q2


(4.8e)
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Dij =





0 f
(i)
1 f

(j)
2 q2

f
(i)
1 · f

(j)
2 · q1q2

. . .

. . . f
(i)
1 f

(j)
2 q2

f
(i)
1 · f

(j)
2 · q1q2


if j < d∗2



f
(i)
1

f
(i)
1 · q1

. . .

. . . f
(i)
1

f
(i)
1 · q1 1


if j ≥ d∗2

(4.8f)

Eij =





0

f
(i)
1 q1 f

(i)
1 · f

(j)
2 q1q2

f
(i)
1 f

(j)
2 q1

. . .

. . . f
(i)
1 · f

(j)
2 q1q2 0

f
(i)
1 f

(j)
2 q1 f

(i)
1 · f

(j)
2 q1q2


if i < d∗1



1 f
(j)
2 · q2

0 f
(j)
2

. . .

. . . f
(j)
2 · q2

f
(j)
2


if i ≥ d∗1

(4.8g)
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Fij =





0

f
(i)
1 · f

(j)
2 q1q2

. . .

f
(i)
1 · f

(j)
2 q1q2


if i < d∗1, j < d∗2



0

f
(i)
1 q1

. . .

f
(i)
1 q1 0


if i < d∗1, j ≥ d∗2



0 f
(j)
2 q2

. . .

f
(j)
2 q2

0


if i ≥ d∗1, j < d∗2

I if i ≥ d∗1, j ≥ d∗2

(4.8h)

and c0 = f
(i)
1 f

(j)
2 + f

(i)
1 · f

(j)
2 · q1 · q2.

All of the matrices in Equation (4.8) are square matrices, and their dimensions

are summarized in Table 4.3.

Table 4.3: Matrix and dimension

matrix dimension

P (d∗1 + T
(d∗1−1)
1 )(d∗2 + T

(d∗2−1)
2 )(C + 1)

A,B (d∗2 + T
(d∗2−1)
2 )(C + 1)

C,D,E,F C + 1

In these matrices, i and j represent the states of machinesM1 andM2, respectively.

Ai (i < d∗1) is the matrix of transition probabilities that M1 is working but not

degrading while Bi is the matrix of transition probabilities that M1 is degrading or
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under maintenance. Moreover, Ai consists of Cij (j < d∗2) and Dij, and Bi consists of

Eij (j < d∗2) and Fij, where Cij and Eij consist of transition probabilities that M2 is

working but not degrading, while Dij and Fij consist of transition probabilities that

M2 is degrading or under maintenance.

Then the steady-state system production rate under the control limit policy can

be calculated as

PRcl = Pr(N > 0, M2 is working)

=

d∗2−1∑
S′2=1

C∑
N=1

Pr(N,S ′2) · Pr(M2 is working|S ′2)

=

d∗2−1∑
S′2=1

d∗1+T
(d∗1−1)

1∑
S′1=1

C∑
N=1

Pr(S ′1, S
′
2, N) · Pr(M2 is working|S ′2)

=

d∗2−1∑
S′2=1

d∗1+T
(d∗1−1)

1∑
S′1=1

C∑
N=1

πS(S′1,S′2,N)f
(S′2)
2

(4.9)

Moreover, when the degradation state of machine M2 is S ′2 (S ′2 = 1, . . . , d∗2 − 1),

the probability that M2 is not starved is

ns
(S′2)
2 =

Pr(N > 0, S ′2)

Pr(S ′2)
=

d∗1+T
(d∗1−1)

1∑
S′1=1

C∑
N=1

πS(S′1,S′2,N)

d∗1+T
(d∗1−1)

1∑
S′1=1

C∑
N=0

πS(S′1,S′2,N)

(4.10)

Similarly, one can calculate the consumption rate of the system, which takes the
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form

CRcl = Pr(M1 is working and not blocked)

=

(
C−1∑
N=0

Pr(N) + Pr(N = C, M2 is working)

)
· Pr(M1 is working)

=

d∗2+T
(d∗2−1)

2∑
S′2=1

C−1∑
N=0

Pr(N,S ′2) +

d∗2−1∑
S′2=1

Pr(N = C, S ′2) · Pr(M2 is working|S ′2)


· Pr(M1 is working)

=

d∗1−1∑
S′1=1

d∗2+T
(d∗2−1)

2∑
S′2=1

C−1∑
N=0

πS(S′1,S′2,N) +

d∗2−1∑
S′2=1

πS(S′1,S′2,C)f
(S′2)
2

Pr(M1 is working|S ′1)

=

d∗1−1∑
S′1=1

d∗2+T
(d∗2−1)

2∑
S′2=1

C−1∑
N=0

πS(S′1,S′2,N) +

d∗2−1∑
S′2=1

πS(S′1,S′2,C)f
(S′2)
2

 f
(S′1)
1

(4.11)

and the probability that machine M1 is not blocked when its degradation state is S ′1

(S ′1 = 1, . . . , d∗1 − 1) is

nb
(S′1)
1 =

Pr(S ′1, M1 is not blocked)

Pr(S ′1)
=

d∗2+T
(d∗2−1)

2∑
S′2=1

C−1∑
N=0

πS(S′1,S′2,N) +
d∗2−1∑
S′2=1

πS(S′1,S′2,C)f
(S′2)
2

d∗2+T
(d∗2−1)

2∑
S′2=1

C∑
N=0

πS(S′1,S′2,N)

(4.12)

The analysis for a 2M1B system can be utilized as a building block to evaluate the

control limit policy in multi-stage systems, which will be studied in the next section.

4.3.2.2 Evaluation of the control limit policy in multi-stage systems

Similar as in Chapter III, we use the decomposition method to approximately

study the performance of a multi-stage system under the control limit policy. We de-

compose every machine (except M1 and MI) into its non-starvation and non-blockage
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“dummy” parts, so that in the decomposed 2M1B systems, all of the upstream ma-

chines are non-starved and all of the downstream machines are non-blocked. Then

these systems can be analyzed by the method in Section 4.3.2.1.

Here, the key is to find the probability that each machine is non-blocked or non-

starved when it is in a specific degradation state. Let nfs
(di)
i (resp., nbs

(di)
i ) be the

probability that, given machine Mi is in state di (di = 1, . . . , d∗i − 1), it is not starved

(resp., not blocked) and no random failure occurs on it.

Then, nfs
(di)
i can be calculated as

nfs
(di)
i =Pr{Mi is up and not starved | Si = di}

=
Pr{Mi is up and not starved, Si = di}

Pr{Si = di}

=
Pr{Mi is up |Mi is not starved, Si = di} · Pr{Mi is not starved, Si = di}

Pr{Si = di}

=Pr{Mi is up | Si = di} ·
Pr{Mi is not starved, Si = di}

Pr{Si = di}

=Pr{Mi is up | Si = di} · Pr{Mi is not starved | Si = di}

=f
(di)
i ns

(di)
i

(4.13)

where ns
(di)
i is the non-starvation probability when Mi is in state di, and it can be

calculated by using Equation (4.10) in the 2M1B system MNS
i−1 −Bi−1 −MNB

i .

Simiarly, nfb
(di)
i can be calculated as

nfb
(di)
i =Pr{Mi is up and not blocked | Si = di}

=Pr{Mi is up | Si = di} · Pr{Mi is not blocked | Si = di}

=f
(di)
i nb

(di)
i

(4.14)

where nb
(di)
i is the non-blockage probability when Mi is in state di, and it can be

calculated by applying Equation (4.12) in the 2M1B system MNS
i −Bi −MNB

i+1 .

The following recursive procedure is developed to calculate the system production
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rate in the steady state.

Recursive Procedure 4.1. We solve the following equations recursively for a =

0, 1, 2, . . . :

Step 1. Set the initial and boundary conditions:

initial conditions: nb
(di)
i (0) = 1, and ns

(di)
i (0) = 1, ∀i, di;

boundary conditions: nb
(dI)
I (a) = 1, and ns

(d1)
1 (a) = 1, ∀a, d1, dI .

Step 2a. For i = I − 1, . . . , 1, do Steps 2a.1− 2a.3 recursively :

2a.1. Set nfb
(di+1)
i+1 (a+ 1) = f

(di+1)
i+1 nb

(di+1)
i+1 (a+ 1) ∀di+1;

2a.2. Calculate πS
i , the distribution of buffer Bi, as

πS
i (a+ 1/2) = Π

(
P
(
nfs

(1:d∗i−1)
i (a), nfb

(1:d∗i+1−1)

i+1 (a+ 1), qi, qi+1, T
(d∗i−1)
i , T

(d∗i+1−1)

i+1

))
.

2a.3. Substituting πS
i (a+ 1/2) into Equation (4.12), calculate nb

(di)
i (a+ 1).

Step 2b. For i = 1, . . . , I − 1, do Steps 2b.1− 2b.3 recursively:

2b.1. Set nfs
(di)
i (a+ 1) = f

(di)
i ns

(di)
i (a+ 1) ∀di;

2b.2. Calculate πS
i , the distribution of buffer Bi, as

πS
i (a+ 1) = Π

(
P
(
nfs

(1:d∗i−1)
i (a+ 1), nfb

(1:d∗i+1−1)

i+1 (a+ 1), qi, qi+1, T
(d∗i−1)
i , T

(d∗i+1−1)

i+1

))
.

2b.3. Substituting πS
i (a+ 1) into Equation (4.10), calculate ns

(di+1)
i+1 (a+ 1).

Step 3. Compare πS
i (a) and πS

i (a + 1). Given a predetermined ε > 0, if |πS
i (a) −

πS
i (a+ 1)| ≤ ε for all i, go to Step 4. Otherwise, set a = a+ 1 and go back to Step 2.

Step 4. Based on πS
I−1(a+ 1), use Equation (4.9) to calculate PRcl, the steady-state

production rate of the system under the control limit policy.

The approximation method based on system decomposition is used to calculate

the system production rate under the control limit policy in seven different lines,

whose parameters are shown in Table 4.4. All machines in Lines 1 to 4 are identical,
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while the machines in Lines 5 to 7 have different degradation profiles. (In addition to

the changes in the buffer capacities, Line 6 is constructed by adding M3 to the two

existing machines in Line 5, and Line 7 is constructed by adding M4 and M5 to Line

6.) For each machine Mi, the critical degradation state d∗i can be calculated based

on Equation (4.3): in Lines 1 to 4, d∗i = 3 ∀i; and in Lines 5 to 7, d∗1 = 3, d∗2 = 4,

d∗3 = 3, d∗4 = 3, d∗5 = 2.

To validate the effectiveness of the approximation method, we use Monte Carlo

method to simulate the system production rates at every time unit of these seven

lines. The simulated average system production rate is calculated by PRsim =
R∑
r=1

K∑
k=1

PRr(k)/(KR), where R is the number of repetition, K is the total time in

each repetition, and PRr(k) is the system production rate at time k in repetition r.

In the numerical results, we set K = 100000 and R = 100.

Moreover, we set the capacity of each buffer Ci =2, 4, 6, 8, and 10. Under each

of the buffer capacities, the steady-state system production rates by using both the

approximation method and Monte Carlo simulation method are plotted in Figure 4.4.

It can be seen that, no matter the machines are identical (Lines 1 to 4) or not (Lines 5

to 7), the accuracy of the approximation method decreases as the number of machines

increases, while it increases as the buffer capacity increases.

Table 4.4: Line parameters

Line
type failure degradation maintenance
size probability probability time

1 2M1B

f
(1:Di)
i =[.02 .05 .1 .15] qi = .01 T

(1:Di)
i =[8 10 15 20]

2 3M2B
3 5M4B
4 10M9B

5 2M1B
f

(1:D1)
1 =[.02 .05 .1 .15] q1 = .002 T

(1:D1)
1 =[25 30 35 40]

f
(1:D2)
2 =[.01 .03 .04 .1] q2 = .005 T

(1:D2)
2 =[15 17 20 25]

6 3M2B f
(1:D3)
3 =[.01 .025 .05 .1] q3 = .0025 T

(1:D3)
3 =[15 20 25 30]

7 5M4B
f

(1:D4)
4 =[.02 .04 .06 .1] q4 = .003 T

(1:D4)
4 =[20 25 30 40]

f
(1:D5)
5 =[.01 .04 .1 .2] q5 = .004 T

(1:D5)
5 =[15 17 20 25]
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Figure 4.4: Comparison of system production rates
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The numerical results show that the approximation method can be used to ef-

fectively evaluate the control limit policy in I-machine-(I − 1)-buffer serial lines,

especially when the number of machines I is small or the buffer capacity is large.

Moreover, based on the system decomposition method in Section 3.4, the approxima-

tion method can also be extended to evaluate the control limit policy in systems with

more complex structures. However, this policy only considers the degradation states

of independent machines, and thereby is not optimal from a system point of view. In

the next section, we will study the optimal policy by using a Markov Decision Process

(MDP) approach.

4.4 Optimal Maintenance Policy: A Markov Decision Pro-

cess Approach

We implement the machine degradation model in Section 4.2.1 to investigate the

optimal maintenance policies. In this section, we only use a 2M1B system as an

example. Similar to the analysis in Section 4.3.2.1, the system state can be represented

by (S1, S2, N), where 1 ≤ Si ≤ Di + T
(Di)
i (i = 1, 2) and 0 ≤ N ≤ C. Therefore, the

total number of the states is (C + 1)
∏2

i=1

(
Di + T

(Di)
i

)
.

decision on M2 decision on M1

t t + 1

observe the transition of  M1, M2, and B

t+

time
observe the up/down state of M2 

Figure 4.5: The decision-making and state transition processes at time t

There are three actions on each machine: preventive maintenance, stop (for one

cycle time), and default (i.e., keep its working or maintenance state), where the first

two actions are only feasible when the machine is not under maintenance. Based on

the assumption of the starvation/blockage rule, the blockage of machine M1 depends

on the state of machine M2 (when the buffer is full), while the starvation of M2 does
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not depend on the state of M1. Therefore, the decision is made on M2 first, and

then on M1. Figure 4.5 shows the process during one time interval. At time t, one

decision is made on machine M2, and if the action is “keep M2 working” (which is

only feasible when S2 ≤ D2), then a Bernoulli trial is followed to determine whether

a random failure occurs on M2 or not. Based on the observation of the up/down state

of M2, a decision is made on M1 at time t+, after which the actual transition of the

states of M1, M2, and the buffer B start. Whether the machines degrade or not will

be known at the beginning of time t+ 1.

Note that, when the decision is made on M1, the up/down state of M2 is already

known. There are two cases, namely, case a and case b, corresponding to the situation

where M2 is working or not working, respectively. Also, if M2 is not working, its state

at time t+ 1 is the same as that at time t (i.e., S2(t+ 1) = S2(t)), and thus S2(t+ 1)

can be determined before time t+. Therefore, in case b, the action on M1 can be

made based upon S2(t+ 1). The determination of the state transitions in both cases

is shown in Fig. 4.6.

decision on M2 decision on M1

(M2 is working)

t t + 1

determine S1(t+1),  S2(t+1), and N(t+1)

t+

time

case a

decision on M2 decision on M1

(M2 is not working)

t t + 1

determine S1(t+1) and N(t+1)

t+

case b

time
determine S2(t+1)

(S1(t), S2(t), N(t)) (S1(t), S2(t), N(t)) (S1(t+1), S2(t+1), N(t+1))

(S1(t), S2(t), N(t)) (S1(t), S2(t+1), N(t)) (S1(t+1), S2(t+1), N(t+1))

Figure 4.6: Determination of the state transitions at time t

Let a2 be the action on machine M2, and aa1 and ab1 be the actions on M1 in case a,

and case b, respetively. The actions “preventive maintenance”, “stop”, and “default”
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are denoted as “M”, “S” and “D”, respectively. Note that, action aa1 is always set as

the same as ab1 if case a does not exist (i.e., when M2 is not working). Moreover, if

M1 (resp., M2) is blocked (resp., starved), then actions “S” and “D” are the same,

which will be denoted as “D”.

Denote the reward as “1” if there is a production unit. Let Vt(S1, S2, N) be the

maximal total reward when the remaining time is t. Then,

Vt(S1, S2, N) =



max


V b
t (S1, S

++
2 , N)

V b
t (S1, S2, N)

f
(S2)
2 V a

t (S1, S2, N) + f
(S2)
2 V b

t (S1, S2, N)

S2 ≤ D2, N ≥ 1

max


V b
t (S1, S

++
2 , N)

V b
t (S1, S2, N)

S2 ≤ D2, N = 0

V b
t (S1, S

+
2 , N) S2 > D2

(4.15)

where

V a
t (S1, S2, N) = 1+



max


q2Vt−1(S++

1 , S2, N
−) + q2Vt−1(S++

1 , S+
2 , N

−)

q2Vt−1(S1, S2, N
−) + q2Vt−1(S1, S

+
2 , N

−)

q2φt−1(S1, S2, N
−) + q2φt−1(S1, S

+
2 , N

−)

S1 ≤ D1

q2Vt−1(S+
1 , S2, N

−) + q2Vt−1(S+
1 , S

+
2 , N

−) S1 > D1

(4.16)

V b
t (S1, S2, N) =



max


Vt−1(S++

1 , S2, N)

Vt−1(S1, S2, N)

φt−1(S1, S2, N)

S1 ≤ D1

Vt−1(S+
1 , S2, N) S1 > D1

(4.17)
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φt(S1, S2, N)

=


f

(S1)
1

[
q1Vt(S1, S2, N

+) + q1Vt(S
+
1 , S2, N

+)
]

+ f
(S1)
1 Vt(S1, S2, N) 0 ≤ N < C

Vt(S1, S2, C) N = C

(4.18)

and

s+ =


s+ 1 if s < Di + T

(Di)
i

1 if s = Di + T
(Di)
i

,

s++ = Di + T
(Di)
i − T (s−1)

i + 2,

N+ = N + 1, N− = N − 1.

(4.19)

Equation (4.15) shows the state transition of machine M2 before the decision is

made on M1 (i.e., the state transition during time [t, t+) in Fig. 4.6). The superscripts

“a” and “b” represent cases a and b, respectively. Note that, case a only occurs when

M2 is not under maintenance (S2 ≤ D2), M2 is not starved (N ≥ 1), the action is

default (a2=D), and no random failure occurs (with a probability f
(S2)
2 ). While case

b always exists no matter what is the state of M2 and what action is taken.

Equation (4.16) (resp., Equation (4.17)) represents the transition of the system

states after the decision is made on M1 (i.e., the state transition during time [t+, t+1)

in Fig. 4.6), in case a (resp., case b).

In Equation (4.19), s+ means the transition from s when the machine degrades,

or when the remaining maintenance time is decreased by 1. s++ represents the tran-

sition when maintenance is performed (i.e., the transition from degradation state s to

remaining maintenance time T
(s−1)
i − 1). N+ (resp., N−) represents the case where

the buffer level increases (resp., decreases) by 1.

Theorem 4.2. Vt(S1, S2, N) has the following properties:

(1) 0 ≤ Vt(S1, S2, N
+)− Vt(S1, S2, N) ≤ 1;

(2) Vt(S
+
1 , S2, N) ≤ Vt(S1, S2, N) for S1 ≤ D1;
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(3) Vt(S
+
1 , S2, N) ≥ Vt(S1, S2, N) for S1 > D1;

(4) Vt(S1, S
+
2 , N) ≤ Vt(S1, S2, N) for S2 ≤ D2;

(5) Vt(S1, S
+
2 , N) ≥ Vt(S1, S2, N) for S2 > D2.

Proof. See Appendix C.

Theorem 4.2 shows that, the model developed with an MDP approach guarantees

the following properties of the maximal rewards Vt(S1, S2, N). First, when machines

M1 and M2 have the same state, the system with a higher buffer level results in a

larger reward (Property (1)). Second, when M1 (or M2) is not under maintenance,

the machine with a less degraded state results in a larger reward (Properties (2) and

(4)). Moreover, when M1 (or M2) is under maintenance, the machine with a shorter

remaining maintenance time results in a larger reward (Properties (3) and (5)).

Note that, by combining Equations (4.15) to (4.18), one can obtain the Bellman

Equation, as

Vt(S1, S2, N)

= max
(aa1 ,a

b
1,a2)∈A

{ ∑
(S′1,S

′
2,N
′)

Pr{(S ′1, S ′2, N ′)|
(
(S1, S2, N), (aa1, a

b
1, a2)

)
}·

[
PR
(
(S1, S2, N), (aa1, a

b
1, a2), (S ′1, S

′
2, N

′)
)

+ Vt−1(S ′1, S
′
2, N

′)
]}

=Ψt((S1, S2, N),A)

(4.20)

whereA is the action space, Pr{(S ′1, S ′2, N ′)|
(
(S1, S2, N), (aa1, a

b
1, a2)

)
} is the transition

probability from state (S1, S2, N) to state (S ′1, S
′
2, N

′) when action (aa1, a
b
1, a2) is taken,

and PR
(
(S1, S2, N), (aa1, a

b
1, a2), (S ′1, S

′
2, N

′)
)

is the immediate reward (either 1 or 0)

associated with the transition.

The next lemma shows that, removing the action “stopping both machines” from

the action space will not affect the value of Vt(S1, S2, N).
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Table 4.5: Possible actions associated with different (S1, S2, N)

(S1, S2, N) (aa1, a
b
1, a2)

S1 ≤ D1, S2 ≤ D2, N = 0 (M,M,M),(S,S,M),(D,D,M),(M,M,D),(D,D,D)

S1 ≤ D1, S2 ≤ D2, 0 < N < C
(M,M,M),(S,S,M),(D,D,M),(M,M,S),(D,D,S),
(M,M,D),(M,S,D),(M,D,D),(S,M,D),(S,S,D),

(S,D,D),(D,M,D),(D,S,D),(D,D,D)

S1 ≤ D1, S2 ≤ D2, N = C
(M,M,M),(D,D,M),(M,M,S),(M,M,D),(M,D,D),

(S,M,D),(S,D,D),(D,M,D),(D,D,D)
S1 ≤ D1, S2 > D2, N < C (M,M,D),(S,S,D),(D,D,D)
S1 ≤ D1, S2 > D2, N = C (M,M,D),(D,D,D)
S1 > D1, S2 ≤ D2, N = 0 (D,D,M),(D,D,D)
S1 > D1, S2 ≤ D2, N > 0 (D,D,M),(D,D,S),(D,D,D)

S1 > D1, S2 > D2 (D,D,D)

Lemma 4.1. Action (aa1, a
b
1, a2) =(S, S, S) can be removed from the action space

without loss of optimality.

Proof. See Appendix C.

Then all the possible actions at every state (S1, S2, N) are summarized in Table 4.5,

which shows that, for any (S1, S2, N), the maximum number of actions is 14 (i.e.,

|A| = 14, when S1 ≤ D1, S2 ≤ D2, 0 < N < C). Moreover, if the maintenance times

on all degradation states are the same, then the action space can be further reduced,

as stated in the following corollary.

Corollary 4.1. If T
(di+1)
i = T

(di)
i ∀i, di, then the actions space can be reduced to

A′ =
{

(M,M,M), (M,M,D), (D,M,M), (D,M,D), (D,D,M), (D,D,D)
}

without

loss of optimality.

Proof. See Appendix C.

Let V (S1, S2, N) be the maximal average reward when the initial state is (S1, S2, N).

Mathematically,

V (S1, S2, N) = lim sup
T→∞

[ T−1∑
t=0

Vt(S1, S2, N)/T

]
(4.21)
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V (S1, S2, N) is independent of the initial state (S1, S2, N), as stated in the next

lemma.

Lemma 4.2. V (S1, S2, N) is constant ∀(S1, S2, N).

Proof. We consider a policy that only CM is performed on both machines (although

such a policy may not be optimal). Under such a policy, every state (S1, S2, N)

is accessible from another state. Then, the states of the system satisfy the weak

accessibility (WA) condition [78]. According to [78], if WA condition holds, then the

average reward V (S1, S2, N) is independent of the initial state (S1, S2, N).

Let PRmdp be the maximal average reward that is calculated by the MDP ap-

proach. Then PRmdp = V (S1, S2, N) ∀ (S1, S2, N), and it can be calculated by using

a relative value iteration approach [78]. In the next section, the system production

rate under the control limit policy (PRcl) and that under the MDP policy (PRmdp)

will be compared through case studies.

4.5 Case Studies

4.5.1 Case study I: structure of the optimal policy

We consider the maintenance policy in a 2M1B system, where the buffer capacity

is C = 10. The two machines are identical, and their parameters are: D = 4,

f (1:4) = [0.02 0.05 0.1 0.2], q = 0.002, and T (1:4) = [25 30 40 60].

By solving the MDP problem in Section 4.4, one can obtain the optimal policy.

The system production rate under the optimal policy is calculated as PRmdp = 0.9078.

It is noticed that, if we remove all the actions that contain “stop”, or aa1 6= ab2, the sys-

tem production rate is ˜PRmdp = 0.9078. Since there is no difference between PRmdp

and ˜PRmdp, to simplify the analysis, we only discuss the remaining four actions, i.e.,

(M,M,M),(M,M,D),(D,D,M) and (D,D,D).
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Figure 4.7 shows the optimal policy on the downstream machine M2. In these

figures, the optimal policy for “PM” and “default” are represented in black and

white, respectively. The vertical axes represent the state of M2, which is set to be

S2 ≤ D2, because otherwise, M2 is under maintenance and the only available decision

on it is “default”. The horizontal axes represent the state of M1. For the figures

in the left column, machine M1 is in a degradation state (i.e., S1 ≤ D1), while the

figures in the right column are where M1 is under maintenance (S1 > D1). Different

rows in Fig. 4.7 represent different real-time buffer levels. These buffer levels are

low (N = 0, 1), medium (N = 5), and high (N = 9, 10). The horizontal line is

the threshold degradation state for M2, that is calculated from Section 4.3.1. The

control limit policy is to always perform PM if and only if the state of M2 reaches

the threshold state.

Based on Fig. 4.7, the optimal policy differs from the control limit policy in the

following two ways.

On the one hand, there are areas where PM is not needed on machine M2 even

if M2 reaches its threshold degradation state. In other words, maintenance can be

postponed to the time when the machine degradation state is worse than the threshold

state. We call such policy a “postponement” policy. The postponement policy is

optimal if M1 is in a degradation state that is more severe than d∗2, because S1 > d∗2

indicates that M1 will suffer a maintenance time which is longer than T (d∗2−1), and

during the maintenance of M1, the system can tolerate a similar length of downtime

of M2. For the same reason, if M1 is already under maintenance, and its remaining

maintenance time is long (e.g., longer than T (d∗2−1)), then the maintenance on M2 can

also be postponed.

On the other hand, there is also area where the PM should be performed before

the machine degrades to its threshold state. We denote it as an “advancement”

policy, because the PM is performed in advance compared to the control limit policy.

102



default

1 2 3 4 5

2

4

policy on M
2
 (N=0,S

1
  D

1
)

S
1

S
2

20 40 60

2

4

policy on M
2
 (N=0, S

1
>D

1
)

S
1

S
2

1 2 3 4 5

2

4

policy on M
2
 (N=1,S

1
  D

1
)

S
1

S
2

20 40 60

2

4

policy on M
2
 (N=1, S

1
>D

1
)

S
1

S
2

1 2 3 4 5

2

4

policy on M
2
 (N=5,S

1
  D

1
)

S
1

S
2

20 40 60

2

4

policy on M
2
 (N=5,S

1
>D

1
)

S
1

S
2

1 2 3 4 5

2

4

policy on M
2
 (N=9,S

1
  D

1
)

S
1

S
2

20 40 60

2

4

policy on M
2
 (N=9, S

1
>D

1
)

S
1

S
2

1 2 3 4 5

2

4

policy on M
2
 (N=10,S

1
  D

1
)

S
1

S
2

20 40 60

2

4

policy on M
2
 (N=10,S

1
>D

1
)

S
1

S
2

1 2 3 4 5

2

4

policy on M
1
 (N=0,S

2
 D

2
)

S
2

S
1

20 40 60

2

4

policy on M
1
 (N=0,S

2
>D

2
)

S
2

S
1

1 2 3 4 5

2

4

policy on M
1
 (N=1,S

2
 D

2
)

S
2

S
1

20 40 60

2

4

policy on M
1
 (N=1,S

2
>D

2
)

S
2

S
1

1 2 3 4 5

2

4

policy on M
1
 (N=5,S

2
  D

2
)

S
2

S
1

20 40 60

2

4

policy on M
1
 (N=5, S

2
>D

2
)

S
2

S
1

1 2 3 4 5

2

4

policy on M
1
 (N=9, S

2
  D

2
)

S
2

S
1

20 40 60

2

4

policy on M
1
 (N=9, S

2
>D

2
)

S
2

S
1

1 2 3 4 5

2

4

policy on M
1
 (N=10, S

2
  D

2
)

S
2

S
1

20 40 60

2

4

policy on M
1
 (N=10, S

2
>D

2
)

S
2

S
1

threshold

threshold

threshold

threshold

threshold

5

5

5

5

5

threshold

5

threshold

5

threshold

5

threshold

5

threshold

5

A

A

A

A

A

A

A

A

default

P

P

P

P

P

P

P

P A

A

P

P

P

P

P

P

P

P

PM on M1

PM on M2

Figure 4.7: Optimal policy for M2

103



As the remaining maintenance time on M1 becomes shorter, the downtime of M2 that

the system can tolerate also becomes shorter. Therefore, it is preferred to performing

maintenance on M2 before it degrades to its threshold state, in order to prevent M2

from a longer downtime. However, if the maintenance on M1 is close to completion,

the “advancement” policy is not optimal because stopping M2 for maintenance will

block M1 later after M1 resumes working.

The area where the “postponement” policy (resp. “advancement” policy) is opti-

mal is marked with “P” (resp. “A”) in Fig. 4.7. It can be seen that these areas are

also affected by the real-time buffer level N . Based on the analysis in Chapter III,

the lower N is, the longer time that M2 can be down for maintenance without making

M1 blocked. Therefore, if N is lower, then there are more opportunities for “post-

ponement” policies on M2, and the area associated with the “advancement” policy

is allocated where the remaining maintenance time on M1 is smaller. Especially, if

the buffer is empty (N = 0), then M2 is starved. In this case, maintenance on M2

can be carried out immediately instead of being postponed, and therefore, there is no

“postponement” area.

Similarly, the structure of the optimal policy on the upstream machine M1 can

be analyzed, as shown in Fig. 4.8. There exist areas where the optimal policy is the

“postponement” policy (when the degradation state of M2 is severe or the remaining

maintenance time on M2 is long) or the “advancement” policy (when the remaining

maintenance time on M2 is short but not close to completion). The allocation of these

areas is affected by the buffer levelN : if N is higher, then there are more opportunities

for the “postponement” policy, and the area associated with the “advancement” policy

is allocated when S2 is larger. Moreover, if the buffer is full, then M1 is blocked, and

PM on M1 does not need to be postponed.

Figure 4.9 shows the optimal policy on M1 and M2 jointly, when both machines

are in degradation states (i.e., S1 ≤ D1 and S2 ≤ D2). However, in most of the cases
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(i.e., 3 ≤ N ≤ 8), the action “PM on both machines” only occurs when both machines

are in the same degradation state that exceeds their threshold degradation state (i.e.,

S1 = S2 ≥ d∗i , i = 1, 2), so these two machines will have synchronized maintenance

periods. Moreover, if the buffer level is low but not empty (i.e., N = 1, 2), the

maintenance on M2 can be postponed; if the buffer level is high but not full (i.e.,

N = 9), the maintenance on M1 can be postponed. The “advancement” policy on

M1 is optimal only when the buffer is full and M1 is blocked, and that on M2 is

optimal when the buffer is empty and M2 is starved.

4.5.2 Case study II: comparison of the MDP policy and the control limit

policy

Next, we compare the system production rates under the control limit policy

and the MDP policy. The results are compared in 2M1B and 3M2B systems con-

sisting of identical machines. The parameters of the machine are: D = 4, f (1:4) =

[0.02 0.05 0.1 0.15], q = 0.01, and T (1:4) = [8 10 15 20]. In both systems, the total

buffer capacity varies among 2, 4, . . . , 20. The calculated system production rates

are shown in Table 4.6.

Table 4.6: Comparison of baseline and optimal policies

two-machine-one-buffer (2M1B) system
buffer capacity 2 4 6 8 10

PRcl 0.8677 0.8781 0.8847 0.8905 0.8959
PRmdp 0.8861 0.8941 0.8977 0.9003 0.9027

increment(%) 2.12 1.82 1.47 1.10 0.76

three-machine-two-buffer (3M2B) system
buffer capacity 2 4 6 8 10

PRcl 0.7966 0.8273 0.8393 0.8479 0.8551
PRmdp 0.8396 0.8637 0.8727 0.8778 0.8814

increment(%) 5.40 4.40 3.98 3.53 3.08

Table 4.6 illustrates that, in both systems, as the buffer capacity increases, the

steady-state system production rates under both policies increase, because a larger
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buffer can reduce the chance of making the upstream machine blocked and the down-

stream machine starved. Moreover, the difference of the MDP policy and the control

limit policy decreases as buffer capacity increases. This is also reasonable because

if the buffer level is infinity, then the upstream and the downstream machines work

independently, so that the control limit policy is optimal. Moreover, comparing the

increment in the 2M1B and 3M2B systems, when the system has more machines, the

interdependence between these machines and buffers will become more complicated,

and the MDP approach will become more advantageous.

4.6 Summary

In this chapter, a discrete-time Markov chain model is developed to investigate

the condition-based maintenance policy by incorporating the degradation states or

remaining maintenance time of machines, and the contents in the intermediate buffers.

First, a control limit policy is denoted as a baseline policy, where the maintenance is

only carried out on one machine when its degradation state reaches a threshold value.

The control limit policy is evaluated in multi-stage manufacturing systems. Then,

an optimal policy is developed by using a Markov Decision Process approach. The

baseline policy and the optimal policy are compared by numerical case studies, in

2M1B and 3M2B systems. The result shows that the difference between the optimal

policy and the baseline policy increases as the number of machines increases, but it

diminishes as the buffer capacity increases.

Future extension of this work is to efficiently investigate heuristic maintenance

policies. Although the MDP approach offers an optimal solution, practically it may

not be efficient when the number of machines in the system is large. Heuristics for

large and complex systems still need to be developed, based on some approximation

techniques, such as Approximate Dynamic Programming (ADP).
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CHAPTER V

Manufacturing System Design for Resilience

5.1 Introduction

As manufacturing systems age, there are possibilities for increased degradation

and failures of systems, subsystems, and components that may cause significant per-

formance and yield losses, increase system life-cycle cost, or create new failure modes.

In todays global market, manufacturing enterprises face more frequent and unpre-

dictable changes and disruptions, both externally (e.g., loss of suppliers, operational

environment) and internally (e.g., machine breakdowns, machine degradation). These

disruptive events may severely impact the system performance.

Therefore, there is a need to improve the system capability of remaining produc-

tive during adverse conditions and recovering quickly from faults/failures to normal

conditions with minimum performance loss. Such a capability can be viewed as the

resilience of a manufacturing system against disruption. Resilience is regarded as

an important property for today’s manufacturing systems in terms of achieving a

sustainable success [79].

In this chapter, we consider a disruptive event that occurs on one machine and

causes the machine nonproductive for a certain period of time. After the disruption

ends, the machine resumes to its normal working condition and the system recovery

begins, and eventually, the system will recover to its original steady state. Figure 5.1
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shows the evolution of the system throughput when an unexpected disruption occurs.

To understand how the system throughout is affected by the disruption, several re-

search questions need to be addressed: (1) What is the production loss caused by the

disruption? (2) After the disruption, how long will it take for the system to recover

to its steady state? (3) What is the total time that the system is underproducing?

In order to answer these three questions, in this chapter, we study three resilience

metrics: production loss (PL), throughput recovery time (TRTε) and total under-

production time (TUTε). Similarly as Chapters II to IV, these resilience metrics are

evaluated based on the analysis of downtime propagation. However, Chapters II to

IV studied the downtime propagation from system operations perspective, while this

chapter investigates the problem from system design perspective.

disruption starts disruption ends
time

throughput

“fully” recover

TUTε

TRTε

PL
threshold

Figure 5.1: The impact of a disruptive event on the system throughput

A resilient system can return to its stable state by incorporating adaptation [80].

Hence, it should be designed with a certain degree of redundancy or flexibility. In this

chapter, we consider two types of polices to mitigate the impact of disruptions: (1)

the use of built-in system redundancy, and (2) the use of built-in system flexibility.

To be more specific, the first policy is to increase the speed of the other machines

in the system when disruption occurs. North American automotive factories operate
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typically at utilization levels of 60% to 70%, so if needed, there exists an opportu-

nity to increase the speed of machines [81]. The systems that are not run at full

capacity or operation speed are regarded to have redundancy. The second policy is

to take advantages of the built-in flexibility of the system. Specifically, we consider

in this chapter the capability of system reconfiguration. Reconfigurable manufactur-

ing system (RMS), suggested by Koren et al. [82], is a system that can rapidly and

cost-effectively adjust its production resources in response to unpredictable market

changes and intrinsic system events [83, 84]. Such a system has the ability to reallo-

cate its tasks and rebalance itself when its capacity changes [85, 86]. In this chapter,

we study how the system throughput will be affected when the system is designed

with such redundancy and flexibility.

In this chapter, we study resilience for a system with a RMS configuration (or

serial-parallel configuration, i.e., multiple stages connected by crossovers) [83]. Fig-

ure 5.2 [85] is the schematic layout of such a system, which consists of multiple parallel

CNC machines or reconfigurable machines in each stage. The reasons for studying

such a system are two-fold. First, this system is the easiest to be reconfigured [85].

Second, the built-in buffers in the system can delay the propagation of the disruption,

and mitigate its negative impact on the system throughput.

The objective of this chapter is to define a set of resilience metrics, develop new

modeling and analytical tools to evaluate system resilience, and pursue resilience-

based design optimization including redundancy and flexibility allocation, in order to

mitigate the impact of disruptions in manufacturing systems.

Resilience is a concept originally from the field of ecology [87]. In recent years, this

concept is extended from ecology to other fields such as psychology, economics, orga-

nizational science, and engineering [88]. The difference between engineering resilience

and ecological resilience is that an engineering system has only one equilibrium state,

while an ecological system may have more than one equilibrium state [87]. Zhang et
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al. [89] defined resilience as the system property on how the system can still function

to a desired level when the system suffers from a partial damage, and they distin-

guished the concept of resilience from other concepts such as reliability, robustness,

and fault-tolerance.

For manufacturing community, most of these studies deal with supply chain dis-

ruptions at the enterprise level. Christopher and Peck [90] discussed the design prin-

ciples for resilient supply chains, including “keeping several options open” and “re-

examing the efficiency vs redundancy tradeoff”. Sheffi and Rice [91] discussed how

resilience could be enhanced by investing redundancy and flexibility into the supply

chain. Klibi et al. [92] reviewed the papers on supply chain design under uncertainties,

and emphasized the importance of resilience for the design. There have been efforts in

modeling and analysis of the performance of supply chains under disruptions. Hu et

al. [93] studied the optimal capacity control policy in serial manufacturing networks

under a disruptive event that could be known in advance. Tomlin [94] investigated

the optimal strategy for a system with two suppliers: one unreliable and the other

reliable but expensive. Hishamuddin et al. [95] developed a real-time recovery model

for a single stage production-inventory system under disruption. DeCroix [96] inves-

tigated the optimal ordering policy in an assembly system where one or more of the

items was subject to random supply disruptions. However, in these studies, a manu-

facturing system is usually simplified as a node in the manufacturing network, and the

detailed information inside the manufacturing system is usually ignored. Few studies

have investigated the resilience of manufacturing systems with regard to instrinsic

machine-level disruptions.

The performance of multi-stage manufacturing systems with parallel machines

have been studied for decades. For a two-stage system, there exists an exact ana-

lytical solution for ther performance analysis. For example, Tan and Gershwin [49]

developed a general two-stage continuous-flow model where both stages could have
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parallel machines. Alexandros and Chrissoleon [97] investigated the behavior of a

two-stage system with non-identical parallel machines via an exact Markovian analy-

sis. Liu et al. [98] used Matrix-Analytic method to analyze a two-stage parallel system

where machines had three states (working, down, idle). For multi-stage serial-parallel

systems, Burman [99] developed a method to aggregate the parallel machines in one

stage into one virtual machine, so that the system could be analyzed as a serial

line. Such aggregation method is popular in dealing with multi-stage parallel sys-

tems [100, 101]. However, the aggregation method is developed to approximate the

steady-state behavior of the system, while its transient characteristics may be lost.

In order to analyze the transient behavior of systems under the disruption, more

analytical work is still needed.

Figure 5.2: Schematic layout of a reconfigurable manufacturing system

The remaining of the chapter is organized as follows. In Section 5.2, we introduce

the model and assumptions, as well as different policies that are available because

of the built-in redundancy or flexibility of the system. In Sections 5.3 and 5.4, the

resilience metrics are evaluated in a two-stage-one-buffer (2S1B) system and a multi-

stage system, respectively. Section 5.5 formulates a design optimization problem. In
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Section 5.6, a numerical case study is conducted to study the optimal design problem

and investigate how the system resilience metrics are affected by different design

factors. The summaries and future work are given in Section 5.7.

5.2 Problem Statement

5.2.1 Model and assumptions

Figure 5.3: An I-stage reconfigurable manufacturing system

We consider an I-stage serial-parallel manufacturing system as shown in Fig. 5.3.

There are Si machines in stage i, with a cycle time Ti (i = 1, 2, ..., I). Bi (i =

1, 2, ..., I− 1) is the intermediate buffer between stage i and stage i+ 1. The assump-

tions for the system are:

(1) In normal operation, all machines have an identical cycle time (i.e., Ti = T ∀i) and

synchronous operations. All stages have the same number of machines (i.e., Si = S

∀i).

(2) In every cycle, each machine in stage i is “up” with probability pi, and “down”

with probability 1− pi.

(3) If the number of “up” machines in stage Si is larger than the number of parts in

buffer Bi−1, then the excessive machines will be starved; if the number of “up” ma-
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chines in stage i is larger than the available space in buffer Bi (after the non-starved

machines in stage i + 1 have taken some parts out from Bi), the excessive machines

will be blocked. Machines in stage 1 are never starved and machines in stage I are

never blocked.

(4) If one machine is blocked or starved at the beginning of the cycle, then it will be

blocked or starved during the entire cycle.

(5) Only one disruptive event is considered, and when it occurs, the system is in the

steady state. The disruption occurs in stage iD, and lasts for tD.

(6) The system required production rate is constant and equal to the system produc-

tion rate in the steady state.

Remark 5.1. Assumption (1) states that, before and after the disruption, the system

is homogeneous (all machines have an identical cycle time) [5]. This assumption is

made for simplifying the steady-state analysis. If the machine cycle time is changed

during the disruption, the system becomes inhomogeneous. In this chapter, we will

also investigate the performance of general and inhomogeneous systems (see Sections

5.3.2 and 5.4.2). Assumption (4) guarantees that the machines in the same stage have

synchronous cycles.

5.2.2 Description of the process

A resilient system is designed with redundancy or flexibility so that it can miti-

gate the effects of disruption. If the system is designed with these capabilities, then

associated actions are available to deal with unexpected disruption. Figure 5.4 shows

the system throughput profile when the system is designed with different capabilities.

If the system is designed with redundancy, then during the disruption, the speed

of machines in stage iD can be increased, or equivalently, their cycle time can be

reduced. This is denoted as policy A. It is assumed that the time to change machine

speed is negligible. Let ∆ be the maximal percentage of the cycle time reduction.
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Figure 5.4: Comparison of system production rate under policies O, A, or B

Then, during the disruption, the cycle time of stage i can be calculated as

TAi =


max{T (1−∆), (S − 1)T/S} i = iD

T i 6= iD

Note that, it is unnecessary to make the cycle time smaller than (S − 1)T/S,

because otherwise the stage will overproduce.

If the system is designed with flexibility, then when the disruption occurs, the

system can be reconfigured; and before the disruption ends, the system is reconfig-

ured back to its original operation. This policy is denoted as policy B. Although

reconfiguration can help mitigate the effect of disruption, the reconfiguration process

itself is usually not instant and requires the production system to be shut down. We

assume both reconfigurations take tR units of time, and during each reconfiguration

period, tasks are reallocated and the completed operations on the work-in-process

parts can be adjusted for the system after this reconfiguration. Under the disruption,

the productive period is tR < k ≤ tD− tR, and let TBi be the cycle time of stage i dur-

ing this period. It is assumed that, the system can be perfectly reconfigured so that

116



the isolated production rates for every stage are the same (i.e., TBiD/(S − 1) = TBi /S

∀i 6= iD). Therefore, TBi can be calculated as

TBi =


(S − 1)IT/(SI − 1) i = iD

SIT/(SI − 1) i 6= iD

Specially, we also denote policy O for the system designed with no redundancy or

flexibility, as regard it as a baseline policy. Policy O means no action can be taken

during the disruption, and it can be regarded as a special case of policy A where

∆ = 0.

To summarize, if we denote tXprep = tR ·δXB as the preparation time for conducting

policy X (X = O,A,B), then the system is productive during periods tXprep < k ≤

tD − tXprep and k > tD. Let tXi,avail be the time that machines in stage i are available

(i.e., when the required operations on the previous parts are completed, and the stage

is ready to work on the next parts) under policy X, and it can be calculated as

tXi,avail =


tXprep + hTi h = 1, ..., btD − tXprep)/TXi c

tD + hT h = 1, 2, ...

(5.1)

Let PLX , TRTXε and TUTXε be the three resilience metrics under policy X (X =

0, A,B). In Section 5.3, we evaluate them in two-stage-one-buffer (2S1B) systems,

and in Section 5.4, we extend the analysis to multi-stage systems.

5.3 Resilience Metrics in Two-Stage-One-Buffer Systems

5.3.1 Analysis of steady-state performance of 2S1B systems

First, we perform an exact analysis for a two-stage system, where there are S1

upstream machines and S2 downstream machines. Since there is only one buffer, we
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denote it as B, its capacity as C and its inventory level at time k as N(k).

In our model, since all the machines have an identical cycle time and work syn-

chronously, the system state will only change at time k = 0, T, 2T, ... Therefore, in

this section, we only consider the system behavior at these time points. Similarly

with Chapter III, we let πSn = limh→+∞ Pr{N(hT ) = n} be the probability that the

buffer level is n in the steady state. Then steady-state distribution of the buffer level,

πS = [πS0 πS1 · · · πSC ]T , can be calculated as

πS =



r1(0) 0 · · · 0 0

r1(1) r1(0) · · · 0 0

...
...

. . .
...

...

r1(C − 1) r1(C − 2) · · · r1(0) 0
S1∑
j=C

r1(j)
S1∑

j=C−1

r1(j) · · ·
S1∑
j=1

r1(j)
S1∑
j=C

r1(j)



·



S2∑
j=0

r2(j)
S2∑
j=1

r2(j) · · ·
S2∑

j=C−1

r2(j)
S2∑
j=C

r2(j)

0 r2(0) · · · r2(C − 2) r2(C − 1)

...
...

. . .
...

...

0 0 · · · r2(0) r2(1)

0 0 · · · 0 r2(0)


πS

:=P(r1, r2, C)πS

(5.2)

where ri = [ri(0) ri(1) · · · ri(Si)]T (i = 1, 2) and P(r1, r2, C) is the (C+ 1)× (C+ 1)

matrix of the transition probabilities. Let Pmn be the element at the (n+1)th column

and the (m+ 1)th row of P(r1, r2, C), and it is easy to get

Pmn =


n−1∑
l=0

r2(l)r1(l +m− n) + r1(m)
S2∑
l=n

r2(l) if m < C

n+S1∑
h=C

(
n−1∑
l=0

r2(l)r1(l + h− n) + r1(h)
S2∑
l=n

r2(l)

)
if m = C

(5.3)

Moreover, in the two-stage system, the upstream machines are never starved and

118



the downstream machines are never blocked. Therefore,

ri(j) =


(
Si

j

)
pji (1− pi)Si−j if 0 ≤ j ≤ C

0 otherwise

(i = 1, 2) (5.4)

Note that when S1 = S2 = 1, the system is the two-machine-one-buffer system in

Chapter III.

From Equation (5.2), the steady-state distribution of the buffer πS can be calcu-

lated as

πS = Π(P) := πS(r1, r2, C) (5.5)

where Π(·) is defined in Definition 4.1.

Let pr(j) be the probability that the number of parts completed by stage 2 is

j; cr(j) be the probability that the number of parts entering stage 1 is j; st(j) be

the probability that the number of starved machines in stage 2 is j; and bl(j) be

the probability that the number of blocked machines in stage 1 is j. The analytical

expressions of these metrics in the steady state are summarized in Lemma 5.1.

Lemma 5.1. The steady-state prS(j), crS(j), stS(j), and blS(j) can be calculated as

follows:

(1)

prS = [pr(0) · · · pr(S2)]T = p(r2, C)πS(r1, r2, C) (5.6)

where pmn =
n∑
l=0

δlmr2(m) + δnm
S2∑

l=n+1

r2(l);

(2)

crS = [cr(0) · · · cr(S1)]T = c(r1, r2, C)πS(r1, r2, C) (5.7)

where cm,C−n = r1(m)
S2∑

l=m−n
r2(l) + r2(m− n)

S1∑
l=m+1

r1(l);

(3)

stS = [st(0) · · · st(S2)]T = s(r2, C)πS(r1, r2, C) (5.8)
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where smn = r2(n+m);

(4)

blS = [bl(0) · · · bl(S1)]T = b(r1, r2, C)πS(r1, r2, C), (5.9)

where bm,C−n =
S2∑
l=0

r1(n+m+ l)r2(l).

Proof. The elements can be easily obtained by taking condition on the number of

machines that are available in either stage.

Based on these metrics, one can easily calculate the steady-state production rate

as PRS = [0 · · · S2]prS, consumption rate as CRS = [0 · · · S1]crS, ex-

pected number of starved machines as ST S = [0 · · · S2]stS , expected number

of blocked machines as blS = [0 · · · S1]blS, and work-in-process as WIP S =

[0 · · · C]πS(r1, r2, C) .

5.3.2 Analysis of transient performance of 2S1B systems

Then we analyze the transient behavior of the 2S1B system. The methodology

developed in this section can be generally used to evaluate the resilience metrics

for the system under any policy X (X = O,A,B). Therefore, in the analysis, the

superscript “X” is omitted for convenience.

As mentioned in Section 5.2.2, the system behavior needs to be investigated in two

periods. The first period tXprep < k ≤ tD−tXprep is the time when policy X is conducted,

and in the second period k > tD, the system is back to its normal operation.

The transient system dynamics in both periods can be obtained by applying Equa-

tion (5.2) at time k, as

π(k) = P(r1(k), r2(k), C)π(k − 1) (5.10)
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where

ri(j, k) =


δj0 if k 6= ti,avail(
Si−1
j

)
pji (1− pi)Si−1−j if i = iD, k ≤ tD and k = ti,avail(

Si

j

)
pji (1− pi)Si−j otherwise

(5.11)

and the system production rate at time k can be calculated as

PR(k) = [0 · · ·S2]p(r2(k), C)π(k − 1) (5.12)

Based on the transient system production rate PR(k), three resilience metrics can

be evaluated.

Production Loss (PL): The first resilience metric is the total production loss

before the system returns to its steady state. It is defined as

PL =
∞∑
k=1

[
PRS/T − PR(k)

]
. (5.13)

However, Equation (5.13) requires to calculate PR(k) for every k until k is

sufficiently large. Next, we develop a method to calculate PL without obtaining

PR(k) for all k’s. From Equation (5.13), the production loss during the disruption

is
tD∑
k=1

[
PRS/T − PR(k)

]
. Similarly to Chapter III, the production loss after the

disruption ends can be calculated by using a delayed renewal process.

We define vmn := min{h : N((h + s)T ) = m,h > 0|N(sT ) = n} and t
(l)
mn :=

vmn∑
h=1

δN(hT ),l for l = 0, 1, ..., S2 − 1. In other words, vmn is the time duration from

state n to the first time the system reaches state m, and t
(l)
mn is total time that the

buffer level is l during vmn. Denote Vmn = E[vmn] and T
(l)
mn = E[t

(l)
mn], and they can be

obtained from the following theorem.

Theorem 5.1. Denote Vn = [V0n · · · VCn], Tn = [T0n · · · TCn] (n = 0, ..., C),
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and V = [V0 · · · VC ], T(l) = [T
(l)
0 · · · T

(l)
C ] (l = 0, ..., S2 − 1). Then, V =

(I−WT )−1 · 1T and T(l) = (I−WT )−1[δ0l · 1 · · · δCl · 1], where 1 = [1 · · · 1],

W =


W00 · · · W0C

...
. . .

...

WC0 · · · WCC

, and Wmn = Pmn


1− δ0m

. . .

1− δCm

.

Proof. See Appendix D.

Then we calculate the production loss from state n to state m. When the system

buffer level is l, the expected production rate can be calculated as
∑S2

h=0 hphl, where

phl is calculated in Lemma 5.1. Note that, when the buffer level is greater or equal to

the number of machines in the second stage (i.e., l ≥ S2), no downstream machines

will be starved, and thus phl = r2(h). The expected production loss from state n to

state m can thus be calculated as

PLmn = VmnPR
S −

S2−1∑
l=0

S2∑
h=0

T (l)
mn · h · phl − (Vmn −

S2−1∑
l=0

T (l)
mn)

S2∑
h=0

h · r2(h) (5.14)

Finally, the expected production loss caused by the disruption can be calculated

as

PL =

tD∑
k=1

[
PRS/T − PR(k)

]
+ πT (tD)


PL00 · · · PL0C

...
. . .

...

PLC0 · · · PLCC


T

πS(r1, r2, C) (5.15)

where the first item is the production loss during the disruption and the second item

is the production loss after the machine resumes working. Numerical result shows

that the production losses calculated from Equations (5.13) and (5.15) are equal.

Throughput recovery time (TRTε): The second resilience metric TRTε is the

elapse time after tD that system production rate returns to (1 − ε)PRS , and never
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drops below that value afterwards. Mathematically,

TRTε = max{h | h ≥ tD/T, PR(hT ) < (1− ε)PRS})T − tD (5.16)

Total underproduction time (TUTε): The third resilience metric TUTε is the

total time when the system is underproducing. Note that, the required production

rate is PRS in every T units of time. In other words, for any h, the required production

units in time interval (hT +1, hT +T ] is PRS. Under any policy, if the actual number

of the production units in (hT+1, hT+T ] is smaller than PRS, the system is regarded

to underproduce during the entire T units of time. Therefore, TUTε is defined as

TUTε =
∞∑
h=0

1{
T∑
l=1

PR(hT + l) < (1− ε)PRS}T (5.17)

5.4 Resilience Metrics in Multi-Stage Systems

As the number of stages increases, the number of states increases dramatically,

making the exact solution difficult to obtain. In Chapter III, we have developed a

decomposition method to study the transient behavior of manufacturing system where

there is only one machine in each stage. In this chapter, we extend the analysis to

the multi-stage systems with parallel machines in each stage.

5.4.1 Analysis of the steady-state performance of multi-stage systems

For the 2S1B system studied in Section 5.3, the upstream machines are never

starved and the downstream machines are never blocked. In order to analyze the

decomposed 2S1B system, we need to find the non-starved and the non-blocked parts

of the stages. We denote SNSi (resp., SNBi ) as the virtual stage that represents the

non-starved (resp., non-blocked) part of stage i, and it can be characterized by rNSi =

[rNSi (0) · · · rNSi (Si)] (resp., rNBi = [rNBi (0) · · · rNBi (Si)]), where rNSi (j) (resp.,
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rNBi (j)) is the probability that there are j machines in stage i that are up and not

starved (resp., up and not blocked). Then, viewed from buffer Bi (i = 1, ..., I − 1),

the system can be represented as a two-stage system, SNSi − Bi − SNBi+1 . Hence, the

entire system can be decomposed into I − 1 2S1B systems (i.e., SNSi −Bi − SNBi+1 for

i = 1, ..., I − 1), where each 2S1B system can be analyzed by the approach developed

in Section 5.3. The remaining challenge is to find rNSi and rNBi .
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Figure 5.5: Decomposition of the I-stage system

First, because the first stage is never starved and the last stage is never blocked,

we have rNS1 = r1 and rNBI = rI .Then we consider the other stages. By definition,

rNSi (j) (i = 2, ..., I; j = 0, ..., Si) is the probability that there are j machine in stage i

that are available and not starved. Since the starvation of stage Si comes from buffer

Bi−1, we consider the two-stage system SNSi−1 − Bi − SNBi . By Equation (5.5), the

stationary distribution of Bi−1 can be written as πS(ri−1, ri, Ci−1). By Lemma 5.1,

p(ri, Ci−1) transforms the distribution of the buffer level into the distribution of the

production rate of stage i with the starvation taken into consideration. Therefore, we

have
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rNSi = p(ri, Ci−1)πS(rNSi−1, r
NB
i , Ci−1) (i = 2, ..., I − 1) (5.18)

Similarly, we can obtain rNBi (i = 1, .., I − 1), the vector characterizing the distri-

bution of the number of the non-blocked machines in stage i, which can also be illus-

trated as the distribution of the consumption rate of the 2S1B system SNSi −Bi−SNBi+1

considering the blockage (but not starvation) of stage i. Hence,

rNBi = c(ri, r
NB
i+1 , Ci)π

S(rNSi , rNBi+1 , Ci) (i = 2, ..., I − 1) (5.19)

Moreover, rNBi and rNSi in Equations (5.18) and (5.19) can be obtained by using

the following recursive procedure, whose convergence is given in Theorem5.2.

Recursive Procedure 5.1. We solve the following equations recursively for a =

0, 1, 2, ...

Step 1. For i = 2, ..., I − 1:

rNSi (a+ 1) = p(ri, Ci−1)πS(rNSi−1(a+ 1), rNBi (a), Ci−1); (5.20)

Step 2. For i = I − 1, ..., 2:

rNBi (a+ 1) = c(ri, r
NB
i+1(a+ 1), Ci)π

S(rNSi (a+ 1), rNBi+1(a+ 1), Ci); (5.21)

with the initial condition

rNBi (0) = ri (i = 2, ..., I − 1); (5.22)

and the boundary conditions

rNS1 (a) = rNS1 and rNBI (a) = rNBI (∀a). (5.23)
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Theorem 5.2. Recursive Procedure 5.1 is convergent, i.e.

lim
a→∞

rNSi (a) = rNSi , and lim
a→∞

rNBi (a) = rNBi (∀i) (5.24)

Proof. See Appendix D.

Now, we are able to calculate the steady-state production rate of the system,

which is the production rate of the last 2S1B subsystem, SNSI−1 −BI−1 − SNBI , as

PRS = [0 1 · · · SI ]p(rI , CI−1)πS(rNSI−1, rI , CI−1) (5.25)

5.4.2 Analysis of the transient performance of multi-stage systems

The dynamics of a multi-stage serial-parallel system is shown in Equations (5.18)

and (5.19). However, instead of finding the steady-state rNSi and rNBi , we need

to calculate them at each time unit k; which are denoted as rNSi (k) and rNBi (k) ,

respectively. Based on Assumption (3), the blockage of one machine may depend on

the states of its downstream machines, while the starvation of that machine does not

depend on the states of its upstream machines. Therefore, the following backward

recursive procedure is developed to recursively calculate the transient reliabilities at

each time unit k.

Recursive Procedure 5.2. We solve the following equations recursively for k =

1, 2, ...

Step 1. For i = I − 1, ..., 1: πi(0) = πS(rNSi , rNBi+1 , Ci), where rNSi and rNBi+1 can be

obtained from Recursive Procedure 5.1.

Step 2. Then we solve Steps 2a to 2c recursively for k = 1, 2, ...

Step 2a. For i = 2, ..., I: rNSi (k) = p(ri(k), Ci−1)πi−1(k − 1);

Step 2b. For i = I−1, ..., 1: rNBi (k) = c(ri(k), rNBi+1(k), Ci)πi(k−1) with the boundary

condition rNBI = rI ;
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Step 2c. For i = 1, ..., I − 1: πi(k) = P(rNSi (k), rNBi+1 i(k), Ci)πi(k − 1) with the

boundary condition rNS1 = r1.

Similarly as Equation (5.25), the production rate at k (k = 1, 2, ...) can be calcu-

lated as

PR(k) = [0 1 · · · SI ]p(rI , CI−1)π(k − 1) (5.26)

Once all PR(k)’s are obtained, one can use Equations (5.13), (5.16) and (5.17) to

evaluate PL, TRTε, and TUTε, respectively.

5.5 Manufacturing System Design for Resilience

In Sections 5.3 and 5.4, three resilience metrics are evaluated in multi-stage man-

ufacturing systems. Next, we formulate an optimization problem to illustrate how

these resilience metrics can be utilized for system design. More specifically, one can

decide the optimal degree of redundancy and flexibility to be allocated in the system

so that the system is both resilient and cost-effective. These decisions include the

system configuration, the capabilities of machines, and the capacities of buffers, etc.

In the design optimization problem, there are two kinds of cost to be considered:

one is the investment cost on the equipment such as machines and buffers, and the

second is the operating cost. Furthermore, the operating cost consists of the cost

associated with the regular production (e.g., energy consumption, labor cost, etc.),

and the cost associated with the disruption-induced performance loss (e.g., it incurs

an overtime cost if one uses overtime to compensate for the lost production).

We consider the problem of designing a manufacturing system with a design life

of Y years. Let cinv be the total investment cost, cop(y) be the operating cost in year

y, and ω be the discount factor. The objective of the design optimization problem is

to minimize the total cost over the system designed life cycle, as
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min cinv +
Y∑
y=1

ωy−1 · cop(y) (5.27)

where

cop(y) = κ ·DEM(y)/PRS +
∑
D

[
fD(y) ·

(
α ·PLD +β ·TRTε,D +γ ·TUTε,D

)]
(5.28)

In Equation (5.28), κ is the unit time cost associated with the normal operation,

DEM(y) is the demand in year y, PRS is the system production rate when it is in

normal operation. Moreover, fD(y) is the frequency of the disruption event D in year

y, which can be practically predicted or estimated by using prognostics and health

management (PHM) tools [102]. PLD, TRTε,D and TUTε,D are the corresponding

resilience metrics under the disruptive event D; and α, β, γ are the cost parameters

associated with these resilience metrics.

5.6 Case Studies

5.6.1 System description

We consider the design optimization problem of a 6-machine system, in order to

satisfy a demand of 300,000 units/year. The manufacturing process consists of a

sequence of 30 operations, each of which taking 10 s. Therefore, the total processing

time to complete one part is 300 s. Two alternative configurations are used for

comparison, as shown in Fig. 5.6.

In each configuration, one can choose three types of machines: dedicated machine

(machine with neither redundancy nor flexibility), machine with redundancy, and ma-

chine with flexibility (reconfigurability). Additionally, one can choose the capacities

of the buffers in the system. Table 5.1 shows the investment cost on machines and

buffers in both configurations. The reliability of all machines is assumed to be 0.95.
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Figure 5.6: Configurations of the six-machine systems

Note that, the cost of machines in configuration (a) is higher than those in configura-

tion (b) because there are more tasks assigned on each machine in configuration (a)

than configuration (b).

Table 5.1: Investment cost of machines and buffers

configuration (a) (b)
dedicated machine ($/machine) 120,000 90,000

machine with redundancy ($/machine) 150,000 120,000
machine with flexibility ($/machine) 170,000 160,000

buffer ($/capacity) 10,000

If the system is designed with redundancy or flexibility, then the machine cycle

time can be changed during the disruption. If the system has built-in redundancy,

then under policy A, the machine cycle time can be reduced. It is assumed that

under policy A, the cycle time of each machine can be reduced by at most 20% (i.e.,

∆ = 0.2), and under policy O, ∆ = 0. If the system is designed with flexibility

(reconfigurability), then it is assumed that each reconfiguration period is 5 min (300

s), and the system can be perfectly reconfigured under policy B. Figure 5.6 shows the

machine cycle times under different policies when the disruption occurs in the first

stage. For example, in configuration (a), the machine cycle time is 150 s under policy

O, and 120 s under policy A, which is a 20% reduction. Under policy B, the cycle time

of the first stage (120 s) is 2/3 of that of the second stage (180 s). It indicates that,
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during the first reconfiguration period, 3 operations should be reallocated from the

second stage to the first stage. A similar calculation can be applied to configuration

(b).

Policy O Policy A Policy B
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Figure 5.7: Machine cycle times under different policies

Table 5.2 shows the operating cost of the system, including the cost when the

system is under normal operation (i.e., when no disruptive event occurs), and the

additional cost associated with the resilience metrics under disruptions.

Table 5.2: Operating cost of the system

configuration (a) (b)
normal operation cost ($/h) 300 260

additional operating cost associated with PL ($/unit) 8
additional operating cost associated with TRT0.02 ($/h) 5
additional operating cost associated with TUT0.02 ($/h) 5

Additionally, it is assumed that 10 possible disruptive events may occur, whose

durations and frequencies can be found in Table 5.3. Some of the disruptive events

(i.e., Events 1, 2, 5, 6, 8) are more likely to occur in configuration (a) because each

machine in configuration (a) needs to perform more operations. For simplicity, we

assume that the disruption profile is the same in different years, and it only depends

on the system configurations, regardless of the types of the machines in the system.

Moreover, we assumed that, all of the ten disruptive events can occur on any of the
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six machines, and with an equal probability. For example, the frequency of event 1

occurring on any specific machine in configuration (a) is 0.002 times/hour.

Table 5.3: Disruptive events

disruptive events duration (h)
frequency (times/h)

configuration (a) configuration (b)
Event 1 0.25 0.012 0.01
Event 2 0.5 0.025 0.02
Event 3 0.75 0.04 0.04
Event 4 1 0.05 0.05
Event 5 1.25 0.12 0.1
Event 6 1.5 0.12 0.1
Event 7 1.75 0.05 0.05
Event 8 2 0.025 0.02
Event 9 2.25 0.01 0.01
Event 10 2.5 0.01 0.01

Next, we study the resilience metrics and the design optimization problem in these

two configurations.

5.6.2 Resilience metrics

In Sections 5.3 and 5.4, we have developed methods to evaluate the three re-

silience metrics (i.e., production loss PL, throughput recovery time TRTε, and total

underproduction time TUTε) for manufacturing systems designed with different ca-

pabilities. In this section, we numerically investigate how these resilience metrics are

affected by different factors, including system configuration, duration and location of

the disruption. The total buffer capacity in this section is set to be 20.

5.6.2.1 Transient production rate

First, we assume that the disruption lasts for half an hour (1800 s), and the

total buffer capacity is 20. Based on Recursive Procedures 5.2, the evolution of the

system production rate under policy X (X = O,A,B) can be calculated, as plotted

in Fig. 5.8. It shows that, if the disruption occurs in the end-of-line stage, then during
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the machine downtime, all PRX(k)’s (X = O,A,B) drop to around (S − 1)PRS/S,

but under policies A and B, the production frequency (i.e., the frequency that the

batch of products is produced) is greater than that under policy O. It is because under

policy A or B, the cycle time of the last stage is reduced. If the disruption occurs in

a non-end-of-line stage, PRO(k) and PRA(k) also decrease to around (S − 1)PRS/S

during the disruption, but periodically PRA(k) returns to around PRS; while under

policy B, PRB(k) is always close to PRS, but the production frequency is reduced.

Based on the production rates, one can use Equations (5.13), (5.16) and (5.17) to

obtain the resilience metrics of the system with policy X (PLX , TRTXε , TUTXε ; X =

O,A,B). These resilience metrics will be studied in Sections 5.6.2.2 to 5.6.2.4, where

the durations of the disruptions are set as tD = 900n (n = 1, ..., 10) s, corresponding

to durations of the 10 disruptive events in Table 5.3.

5.6.2.2 Production loss

The first resilience metric PLX (X = O,A,B) is shown in Fig. 5.9. PLO and PLA

in configuration (a) are larger than that in configuration (b), while PLB’s in these two

configurations are similar. Because the system can be perfectly reconfigured, when

tR < k ≤ tD− tR, about 1/6 of the required production is lost in both configurations.

Moreover, when the duration of the disruption is short, PLB mainly comes from

the reconfiguration periods, and is greater than PLO and PLA. However, as the

duration of disruption increases, PLB becomes smaller than PLO and PLA, which

makes reconfiguration increasingly beneficial.

Figure 5.9 also illustrates that, production losses not only depend on the system

configuration and the disruption duration, but also depend on where the disruption

occurs. In configuration (b), if the disruption occurs in the middle stage of the

system, the PLO is larger than if the disruption occurs in the first and last stages of

the system. The reason is that, the machines in the middle of the systems are more

132



0 500 1000 1500 2000 2500
0

1

2

3

4

5

6

k (sec)

P
R

(k
)

configuration (a), stage 1

 

 

policy O
policy A
policy B

0 500 1000 1500 2000 2500
0

1

2

3

4

5

6

k (sec)

P
R

(k
)

configuration (a), stage 2

 

 

policy O
policy A
policy B

0 500 1000 1500 2000 2500
0

1

2

3

4

k (sec)

P
R

(k
)

configuration (b), stage 1

 

 

policy O
policy A
policy B

0 500 1000 1500 2000 2500
0

1

2

3

4

k (sec)

P
R

(k
)

configuration (b), stage 2

 

 

policy O
policy A
policy B

0 500 1000 1500 2000 2500
0

1

2

3

4

k (sec)

P
R

(k
)

configuration (b), stage 3

 

 

policy O
policy A
policy B

Figure 5.8: Evolution of the production rates (PRO(k), PRA(k) and PRB(k)) in both
configurations
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likely to be starved or blocked than the machines in the other stages, so the downtime

on them has a more severe impact on the system throughput.

5.6.2.3 Throughput recovery time

The second resilience metric TRTX0.02 (X = O,A,B) is shown in Fig. 5.10. If

the disruption occurs in an upstream stage, then its TRTO0.02 will increase with the

duration of disruption tD, and it will reach a constant value if tD is long enough.

The reason is that, the shorter the disruption is, the easier its effect can be mitigated

by the contents in the buffers. Moreover, TRTO0.02 decreases as iD increases. This is

because it will take a longer time for the resume of an upstream machine to propagate

to the end-of-line than a downstream machine. Moreover, TRTA0.02 is shorter than or

equal to TRTO0.02, and when the disruption is long enough, TRTB0.02 is equal to or close

to zero, indicating a quick throughput recovery after the disruption.

5.6.2.4 Total underproduction time

The third resilience metric TUTX0.02, (X = O,A,B) is shown in Fig. 5.11. TUTO0.02

decreases as iD increases, indicating that, the downtime propagates to the last stage

faster than the recovery does. Moreover, TUTA0.02 is smaller than TUTO0.02 , and when

the duration of the disruption is long enough, TUTB0.02 is the smallest of the three.

5.6.3 Optimal design

In this case study, we consider 30 different candidate designs, as shown in Ta-

ble 5.4. These designs have different configurations, consisting of machines with

different capabilities, and buffers with different capacities.

Based on the analysis in Section 5.5, one can calculate the investment cost and

the operating cost for all these 30 different designs, as plotted in Fig. 5.12. Note

that, one may not necessarily use the built-in capabilities when disruption occurs.
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Figure 5.9: Production losses (PLO, PLA and PLB) under different duration of
disruptions
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Figure 5.10: Throughput recovery times (TRTO0.02, TRTA0.02 and TRTB0.02) under dif-
ferent duration of disruptions
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Figure 5.11: Total underproduction times (TUTO0.02, TUTA0.02 and TUTB0.02) under
different duration of disruptions
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Table 5.4: Indecies for different designs

design no. configuration machine type buffer capacity
1-5 (a) dedicated machine 10, 20, 30, 40, 50
6-10 (a) machine with redundancy 10, 20, 30, 40, 50
11-15 (a) machine with flexibility 10, 20, 30, 40, 50
16-20 (b) dedicated machine 10, 20, 30, 40, 50
21-25 (b) machine with redundancy 10, 20, 30, 40, 50
26-30 (b) machine with flexibility 10, 20, 30, 40, 50

For example, under disruptive event 1 (which takes 15 min), reconfiguration is not

desired to be performed because of the two 5-min reconfiguration periods.

For different system design life Y ’s, the optimal design may be different. However,

since the objective function Equation (5.27) has a weighted sum format, all possible

optimal solution should be on the convex hull of the Pareto set [103]. It is shown

in Fig. 5.12 that all possible optimal designs numbers are 16, 21, 26, 27, and 10.

Among these five designs, design no. 16 (configuration (b), dedicated machines,

buffer capacity 10) has the smallest investment cost but the largest operating cost,

while design no. 10 (configuration (a), machine with redundancy, buffer capacity 50)

has the largest investment cost but the smallest operating cost. Design no. 10 is more

resilient than design no. 16 with regard to the configuration, the type of machines,

and the buffer capacity.

Figure 5.13 shows the total cost of the five designs under different system design

lifes. It can be seen that, as the system design life Y increases, a system design with

a smaller operating cost is more preferable. Table 5.5 summarizes the relationship

between the system design life and the optimal design no. It can be seen that under

different Y ’s, all of the five designs can be optimal, and these five designs are all the

possible optimal designs.

Table 5.5: System design life and optimal design

system design life Y 1 2 3, 4, 5, 6 8, 9, 10 > 10
optimal design no. 16 21 26 27 10
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Figure 5.12: Cost analysis for different designs

5.7 Summary

In this chapter, we analyzed three important resilience metrics for manufacturing

systems under disruptions: production loss (PL), throughput recovery time (TRTε),

and total underproduction time (TUTε). By using a Bernoulli reliability model, we

performed an exact analysis to calculate the resilience metrics in two-stage systems,

and developed an approximation method based on system decomposition to study

general inhomogeneous multi-stage manufacturing systems. Numerical studies are

conducted to investigate how the system resilience metrics are affected by built-in

redundancy or flexibility, and how these resilience metrics can be integrated into the

system design stage.

The results show that: (1) system resilience can be improved by building redun-

dancy (e.g., increasing the degree of cycle time reduction, and increasing the buffer

capacities) or flexibility (i.e., the option for system reconfiguration) in the system; (2)

the system with a more parallel configuration is more resilient; (3) reconfigurability
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is very advantageous when the duration of disruption is relatively long; and (4) the

optimal design of the system depends on the investment costs, the operating costs,

as well as the system design life.

The resilience analysis considering the propagation of unexpected disruptive events

and the capability of recovery provides a useful guidance for manufacturing system

design. It also provides a knowledge base for better planning and controlling of

manufacturing systems to mitigate the risks from the disruptions.

The model and methodology that we have developed in this chapter can be ex-

tended to study other resilience-related problems. For example, it can be easily

implemented to study the resilience metrics for systems that only have the capability

for partial reconfiguration, or have both built-in redundancy and flexibility. Another

extension is to develop optimal real-time control policies for systems under disrup-

tions. If the system is designed with redundancy or flexibility, then given the real-time

buffer levels and machine reliabilities, should these capabilities be used? The third

extension is to integrate the degradation of machines into the problem. In this case,

how to jointly develop the resilient control policy and maintenance policy, so that the

system has the best resilience performance in the long run? These problems will also

be investigated in the future.
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CHAPTER VI

Conclusions and Future Work

6.1 Conclusions

This research investigates the real-time maintenance policies for complex manu-

facturing systems by incorporating real-time production information.

The major achievements of this dissertation can be summarized as follows.

In Chapter II, we have proposed the concept of passive maintenance opportunity

window (PMOW), which is the time that one machine is starved or blocked due to

the occurrence of downtime on the other machines in the system. A deterministic

model has been developed to predict real-time PMOW on the bottleneck machine in

manufacturing systems with serial and non-serial structures. It is found that, such

PMOWs exist if the duration of the machine downtime exceeds a threshold value.

Moreover, a dynamic PMOW updating algorithm has been developed when multiple

failures occur in the system. Simulation and real plant case studies validate the

effectiveness of the proposed algorithm.

In Chapter III, we have introduced the concept of active maintenance opportunity

window (AMOW), which is the time that one machine can be actively shut down for

preventive maintenance while the production requirement is still satisfied. We have

developed a Bernoulli model to analytically estimate AMOWs in a stochastic two-

machine-one-buffer production line. A recursive procedure based on system decompo-
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sition has been developed to estimate AMOWs in manufacturing systems with com-

plex structures. Also, a heuristic approach has been proposed to estimate AMOWs

in balanced serial lines. Numerical case studies demonstrate that, the AMOW-based

maintenance policies is able to provide more time for maintenance compared with

the baseline policy where maintenance is carried out after the system production

requirement has been satisfied.

In Chapter IV, we have incorporated machine degradation into the maintenance

decision-making. A system decomposition method has been utilized to evaluate the

performance of multi-stage manufacturing systems under the control limit policy. A

Markov decision process approach has been developed to investigate the optimal pol-

icy in two-machine-one-buffer systems. These two policies are compared by numerical

case studies, which show that the optimal policy depends on not only the machine

health conditions, but also buffer levels. However, as the buffer capacity increases, the

machines become less coupled, and the control limit policy approaches the optimal

policy.

In Chapter V, we have analyzed the resilience performance of the system, which

is the capability of a system to tolerate and recover from a downtime. We propose

production loss (PL), throughput recovery time (TRT ), and total underproduction

time (TUT ) as three measures to analyze the resilience of multi-stage serial-parallel

systems. Based on these resilience metrics, a system design optimization problem

is formulated. Numerical case studies have been conducted to compare the designs

with different levels of built-in redundancy and flexibility. We find that: (1) a system

with more parallel machines in each stage is more resilient; (2) system resilience can

be improved by built-in redundancy, including the capability of speed increase and

buffer capacities; and (3) reconfiguration is advantageous when the downtime is long;

and (4) the optimal system design depends on the system resilience capability and its

corresponding investment cost, as well as the system design life. These results provide
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significant managerial insights to the design of resilient manufacturing systems.

6.2 Contributions

The model-based approach in this dissertation aims to provide more efficient and

effective maintenance strategies for complex manufacturing systems.

The scientific contributions of the research are summarized as follows.

1. An equivalent pseudo serial line method has been developed to study the

propagation of downtime in a manufacturing system with complex structures.

2. System decomposition methods have been developed to study the transient

behavior of complex manufacturing systems with Bernoulli machines. Particularly,

in this work, such analysis is applied to systems including: (1) serial line, assembly

system, disassembly system, and closed-loop system, with one machine in every stage;

(2) systems with serial-parallel configurations, with non-degrading machines; and (3)

systems with degrading machines.

3. A novel model, integrating the real-time machine states (including its health

condition when the machine is up or the remaining maintenance time when the ma-

chine is under maintenance) and the real-time buffer level, has been developed to

investigate the optimal maintenance policy.

4. Resilience metrics for manufacturing systems are proposed. These resilience

metrics can be used as tools for system designers in evaluating the resilience of

system with different configurations, and determining the optimal level of redun-

dancy/flexibility to be built in the system.

6.3 Future Work

Some possible directions for future research are summarized below.

1. To develop group maintenance policies by integrating PMOW and AMOW.
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AMOW and PMOW depend on each other in different ways: when random failure

occurs in the system, the real-time AMOW can still be calculated by estimating the

transient production rate under both the downtime and AMOW-based PM; when one

machine is down for AMOW-based PM, the real-time AMOWs and PMOWs on other

machines can also be updated. Therefore, if resources (e.g., maintenance crews, spare

parts) are sufficient, one can consider to perform maintenance on different machines

simultaneously. How to effectively perform such group maintenance policies can be

further studied.

2. To extend the transient behavior analysis to systems with continuous materials.

In Chapters III to V, the system is built by a discrete-time Markov chain. Such

model is effective in modeling system that produce discrete manufacturing products

such as automobiles. However, in continuous manufacturing systems such as chemical

manufacturing systems, this model cannot be directly used, because the buffer levels

are not discretely changed. Therefore, for these continuous manufacturing systems,

other models (such as continuous flow models) need to be built, and their transient

behavior needs to be further investigated.

3. To develop heuristic maintenance policy for large production systems with

degrading machines. In Chapter IV, the MDP policy is only investigated in two-

machine-one-buffer and three-machine-two-buffer systems. The curse of dimensional-

ity arises if the number of machine increases. Therefore, we need to develop heuristics

polices for large systems. The heuristics need to be more computationally effective,

and more easily implemented.

4. To further develop dynamical maintenance policies in manufacturing systems

by integrating more information. Such information includes the availability of main-

tenance resources, the skill levels of maintenance crews, etc. These factors will place

more constraints as well as challenges on the maintenance decision-making problems.

5. To investigate the joint maintenance and resilient system control strategies.
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Maintenance actions can improve system resilience in a long run because it increases

the machine reliability. However, in a short time, it is a disruption to the system

throughput. When maintenance is performed, resilience control actions can be taken

simultaneously. The system maintenance strategies and resilience capabilities need

to be jointly considered in the system design stage.
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APPENDIX A

Proof for Chapter II

Proof of Theorem 2.1

Proof. We consider a machine Mi on the downstream of the bottleneck machine in

2.1, i.e., i = b+ 1, . . . , I, and its corresponding machine M r
i in the equivalent pseudo

serial line (Fig. 2.2). Based on the above analysis, in the equivalent pseudo line, the

time to consume is

T cons,ri =
i∑

j=b+1

N r
j−1(0) · Tb =

i−1∑
j=b

(Cj −Nj(0))Tb (A.1)

which is also the time to consume all the empty space between machines Mi and Mb

in the original line.

Moreover, the time to resume in the equivalent pseudo serial line can be calculated

as

T res,ri =
i∑

j=b+1

T rj = 0 (A.2)

which is equal to that in the original line (when the travelling time between buffers

is negligible, Mb will run immediately after Mi resumes running).

Moreover, for the critical downtime of machine in Fig. 2.2, we have
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DT ∗,ri = T cons,ri − T res,ri =
i∑

j=b+1

N r
j−1(0) · Tb −

i∑
j=b+1

T rj =
i−1∑
j=b

(Cj −Nj(0))Tb = DT ∗i

(A.3)

which agrees with the result in Equation (2.1) when machine Mi is on the downstream

of Mb. Therefore, the effect of a failure on machine Mi which is on the downstream

of Mb can be evaluated in the EPSL.

Proof of Theorem 2.2

Proof. If DTi ≤ DT ∗i , PMOWi = ∅ and |PMOWi| = 0, the result simply holds.

Otherwise, we prove it by mathmatical induction.

Step 1. Define j∗ = arg min
k=1,...,j

DT ∗i,(k). Then j∗1 = arg min
k=1,...,j1

DT ∗i,(k) = j1, PMOW(j1) =[
T consi,(j1), DTi + T resi,(j∗1 )

)
and |PMOW(j1)| = DTi −DTi,(j∗1 ) > 0.

Step 2. Assume that there exist jm ∈ 1, . . . , Ki and j∗m = arg min
k=1,...,jm

DT ∗i,(k), such that

PMOW(jm) =
[
T consi,(j1), DTi + T resi,(j∗1 )

)
and |PMOW(j1)| = DTi − DT ∗i,(j1). Then there

are two possible cases.

Case 1 DTi ≤ DT ∗i,(k) for all k = jm+1, . . . , Ki:

In this case, K∗i = j∗m and PMOWi = PMOW(j∗m). Proved.

Case 2 ∃k ∈ jm+1,...,Ki
, such that DTi > DT ∗i,(k):

In this case, we let jm+1 = min
k=jm+1,...,Ki

{
k : DTi > DT ∗i,(k)

}
and j∗m+1 = DT ∗i,(k)

k=1,...,jm

.

From Equation (2.9),

PMOW(jm+1) = PMOW(jm)

⋃[
DTi + T resi,(j∗m) − T consi,(j∗m) + T consi,(jm+1), DTi + T resi,(jm+1)

)
.

Case 2 can be further divided into the following two cases.
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Case 2a DTi,(jm+1)∗ ≥ DT ∗i,(jm+1)∗ : Then j∗m+1 = j∗m and

[
DTi + T resi,(j∗m) − T consi,(j∗m) + T consi,(jm+1), DTi + T resi,(jm+1)

)
= ∅,

Therefore, PMOW(jm+1) = PMOW(j∗m+1), and
∣∣PMOW(jm+1)

∣∣ = DTi−DT ∗i,(jm+1).

Case 2b DTi,(jm+1)∗ < DT ∗i,(jm+1)∗ : Then j∗m+1 = jm+1, T resi,(jm+1) > T resi,(j∗m) − T consi,(j∗m) +

T consi,(jm+1), and

∣∣PMOW(jm+1)

∣∣ =
∣∣PMOW(jm)

∣∣+
∣∣[DTi + T resi,(j∗m) − T consi,(j∗m) + T consi,(jm+1), DTi + T resi,(jm+1)

)∣∣
= DTi −DT ∗i,(j∗m+1)

These results prove that PMOW(jm+1) ⊆
[
T consi,(j1), DTi + T resi,(j∗m+1)

)
and

∣∣PMOW(jm+1)

∣∣ =

DTi −DT ∗i,(j∗m+1).

Step 3. Based on Steps 1 and 2,

|PMOW(j)| = DTi −DT ∗i,(j∗) ∀j

Let jM = max
k=1,...,Ki

{
k : DTi > DT ∗i,(k)

}
and j∗M = arg min

k=1,...,jM

DT ∗i,(k) = K∗i . Then

DT ∗i,j∗M = DT ∗i M , and

|PMOW(i)| = |PMOW(jM )| = DTi −DT ∗i,(j∗M ) = DTi −DT ∗i,(K∗i ) = DTi −DT ∗i

Summarizing the results from all cases, we have |PMOWi| = max (0, DTi −DT ∗i ).

Proof of Proposition 2.1

Proof. If |PMOWi| = 0, there is no downtime on Mb, and the proposition is true.

Otherwise, |PMOWi| = DTi − DT ∗i > 0. We consider a virtual line li,0, where
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T consi,(0) = T0 and T resi,(0) = T0 − DT ∗i , such that DT resi,(0) = DT ∗i and PMOW(0) =

[T0, T0 + |PMOWi|).

Then based on Theorem 2.2, PMOW(k+1) = PMOW(k) if DT ∗i,(k+1) ≥ DT ∗i,(k).

Since DT ∗i,(0) = DT ∗i = min
k=1,...,Ki

DT ∗i,(k), PMOW(k) = PMOW(0) for all k = 1, . . . , Ki.

Therefore, there are no additional idle durations on Mb in lines li,(1), . . . , li,(Ki).
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APPENDIX B

Proof for Chapter III

Proof of Lemma 3.2

Proof. We consider a process starting from state n at time 0 and arriving at state

m at time km. Denoting PLmn(km) as the expected production losses during time

interval [0, km]. We also assume that during time interval [0, km], the system has

entered state m l times, i.e., at time km1 , km2 , . . . , kml
, respectively. Then,

PLmn(km) = PLmn(km)− PLmn(km−1) + · · ·+ PLmn(km2)− PLmn(km1) + PLmn(km1)

= (l − 1)PLmn + PLmn(km1)

(B.1)

where PLmm is the expected production losses between two successive events of en-

tering into state m, and from Lemma 3.1, PLmm = (Tmm−π0Vmm)p2 = 0. Therefore,

PLmn(km) = PLmn(km1) = (1−π0)Vmnp2−(Smn−Tmn)p2 = (Tmn−π0Vmn)p2 (B.2)

where (Tmn−π0Vmn)p2 is the actual units produced and Tmnp2 is the required number

of production.
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Proof of Theorem 3.1

Proof. By substituting Equations (3.6) and (3.7) into Equation (B.2) , the production

losses form state n to state m, PLmn, can be obtained as

If p1 6= p2:

PLmn =
(m− n)(1− p+/p−)−

(
(p+/p−)C+1−m − (p+/p−)C+1−n )

(1− p+/p−)(1− p1/p2(p+/p−)C)

=
f(n)− f(m)

(1− p+/p−)(1− p1/p2(p+/p−)C)

(B.3)

where f(x) := −x(1− p+/p−) + (p+/p−)C+1−x + j(1− p+/p−)− (p+/p−)C+1−j. Then,

f ′(x) = −(1− p+/p−)− log(p+/p−)(p+/p−)C+1−x, (B.4)

and

f ′′(x) = log2(p+/p−)(p+/p−)C+1−x > 0. (B.5)

which indicates that f ′(x) is increasing in x when x ∈ [0, C].

Let h(x) = 1 − x + x log x (x > 0), then h′′(x) = 1/x > 0. Thus h(x) is convex

and hmin(x) = h(1) = 0 (h(x) reaches its minimum when h′(x) = log x = 0). Since

p+/p− 6= 1, we have

f ′(C) = −h(p+/p−) < 0. (B.6)

Based on Equations (B.5) and (B.6), f ′(x) < 0 when x ∈ [0, C], and thus f(x) is

monotonically decreasing.

From Equation (3.9a),

PLn =
C∑

m=0

PLmnπm =

∑C
m=0 f(n)πm

p2(1− p+/p−)(1− p1/p2(p+/p−)C)
. (B.7)

PLn is a convex and decreasing function of n because f ′(n) < 0 and f ′′(n) > 0.
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Similarly, if p1 = p2 = p:

PLmn =
(C − n)(C + 1− n)− (C −m)(C + 1−m)

2(C + 1− p)
=
g(n)− g(m)

2(C + 1− p)
(B.8)

where g(x) := (C − n)(C + 1− n).

When 0 ≤ x ≤ C, g′(x) := 2x− (2C + 1) < 0, and g′′(x) = 2x ≥ 0. Therefore,

PLn =
C∑

m=0

PLmnπm =

∑C
m=0 g(n)πm −

∑C
m=0 g(m)πm

2(C + 1− p)
(B.9)

is convex and decreasing.

Then we prove −C < PLn < C. We only need to prove that PL0 < C and

PLC > −C.

If p1 6= p2:

PL0 =
p1(1 + (p+/p−)C+1(1− (p+/p−)C)/(1− p+/p−)− 2C(p+/p−)C)

p2(1− p1/p2(p+/p−)C)2

PL0 < C ⇔

(
1 + (p+/p−)C+1

) (
1− (p+/p−)C

)
/(1−p+/p−) < C(p2/p1+p1/p2(p+/p−)2C) (B.10)

LHS of (B.10) =
C−1∑
n=0

(
(p+/p−)n + (p+/p−)2C−n)

<
C−1∑
n=0

(
(p+/p−)0 + (p+/p−)2C

)
< C(p2/p1 + p1/p2(p+/p−)2C) = RHS of (B.10)
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Moreover,

PLC =
p1(1 + (p+/p−)(1− (p+/p−)C)/(1− p+/p−)− (p1C + p+)(p+/p−)C) + p+ − p2C

p2(1− p1/p2(p+/p−)C)2

PLC > −C ⇔

(1 + (1− p2)/(1− p1))
(
1− (p+/p−)C

)
/(1−p+/p−)+p1/p2C(p+/p−)2C > 3C(p+/p−)C

(B.11)

LHS of (B.11) =
C−1∑
n=0

(
(p+/p−)n + (1− p2)/(1− p1)(p+/p−)C−n + p1/p2(p+/p−)2C

)
>

C−1∑
n=0

(
3(p+/p−)C

)
= RHS of (B.11).

Therefore, PL0 < C and PLC > −C are proved when p1 6= p2.

If p1 = p2 = p:

PL0 =
C(C + 1)(2C + 1)

6(C + 1− p)2
<
C(C + 1)(2C + 1)

6C2
=
C

3
+

1

2
+

1

6C
≤ C

3
+
C

2
+
C2

6C
= C

(B.12)

and

PLC =
−C3 − 3(1− p)C2 + (3p− 2)C

6(C + 1− p)2
> −C ⇔

−C2 − 3(1− p)C + (3p− 2) > −6(C + 1− p)2 (B.13)

Let φ(p) := −C2−3(1−p)C+(3p−2)+6(C+1−p)2. Then φ′(p) = 12p−9(C+1) <

0, and thus φ(p) is decreasing in p. Since 0 < p < 1, φmin(p) > φ(1) = 5C2 + 1 > 0,

which proves Inequality (B.13).
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Proof of Theorem 3.2

Proof. Consider two systems A and B where the prior-PM buffer levels satisfying

NA(0) < NB(0). The lower and upper bounds of buffer level for system A are

NL(NA(0)) and NU(NA(0)), respectively. Then based on the definition of AMOW,

PL
(
NA(0), NL(NA(0))

)
≤ 0 < PL

(
NA(0), NL(NA(0))− 1

)
(B.14)

and

PL
(
NA(0), NU(NA(0))

)
≤ 0 < PL

(
NA(0), NU(NA(0)) + 1

)
(B.15)

Let N1
B be the buffer level if M1 in system B is stopped for AMOW1(NA(0)). Then

N1
B = NL(NA(0))−NA(0) +NB(0) > NL(NA(0)) (B.16)

and from Equations (3.2), (3.5) and (3.10),

PL
(
NB(0), N1

B

)
− PL

(
NA(0), NL(NA(0))

)

=


PLN1

B
− PLNL(NA(0)) if NL(NA(0)) ≥ 0

PLN1
B
− PL0 +NL(NA(0)) if NL(NA(0)) < 0 ≤ N1

B

NL(NA(0))−N1
B if N1

B < 0

(B.17)

By Theorem 3.1, PLm is decreasing in m. It can be concluded from Equa-

tion (B.17) that PL(NB(0), N1
B) < PL(NA(0)), NL(NA(0))) ≤ 0. Therefore, the

lower bound of the post-PM buffer level in system B satisfies NL(NB(0)) ≤ N1
B, and

thus AMOW1(NB(0)) ≥ AMOW1(NA(0)).

Similarly, letN2
B be the buffer level ifM2 in system B is stopped forAMOW2(NA(0)).

Then

N2
B = NU(NA(0))−NA(0) +NB(0) > NU(NA(0)) (B.18)
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and

PL(NB(0), N2
B)− PL(NA(0)), NU(NA(0))) = PLmin(N2

B ,C) − PLmin(NU (NA(0)),C) ≤ 0.

(B.19)

Therefore, NU(NB(0)) ≥ N2
B, and AMOW2(NB(0)) ≥ AMOW2(NA(0)).

Specially, when NU(NA(0)) ≥ C, PLmin(N2
B ,C) − PLmin(NU (NA(0)),C) = 0. In this

case

PL(NB(0), N2
B + 1) = PL(NA(0)), NU(NA(0)) + 1) > 0. (B.20)

which implies that NU(NB(0)) < N2
B + 1.

Therefore, when NU(NA(0)) ≥ C, NU(NA(0)) = N2
B and AMOW2(NB(0)) =

AMOW2(NA(0)).

Proof of Proposition 3.1

Proof. Since p1 = p2 = p ∈ (0, 1), we have

NS =
C(C + 1)

2(C + 1− p)
>
C

2

and then dNSe ≥ d(C + 1)/2e.

When n = (C + 1)/2, the numerator of Equation (3.9b) becomes

−(C3 − C)

4
− 3(1− p)(C2 + C +

3

4
) < 0

which indicates that PLd(C+1)/2e ≤ PL(C+1)/2 < 0.

Therefore, NL ≤ d(C + 1)/2e ≤ dNSe.

157



Proof of Proposition 3.2

Proof. If n < 0,

PL(N(0), n) = −π0N(0)− (1− π0)n+ PL0 ≥ −π0C + 1− π0 + PL0. (B.21)

Then we prove −π0C + 1− π0 + PL0 > 0 under the following two cases:

Case 1 p1 = p2 = p:

−π0C + 1− π0 + PL0 =
Cp

C + 1− p
+ PL0 > 0. (B.22)

Case 2 p1 > p2:

−π0C + 1− π0 + PL0 > −π0C + 1− π0 =
1− p1/p2(p+/p−)C − (C + 1)(1− p1/p2)

1− p1/p2(p+/p−)C

:=
θ(C)

1− p1/p2(p+/p−)C

(B.23)

Since p1/p2 > 1, we have p+/p− = p1/p2 · (1 − p2)/(1 − p1) > 1, and then

1− p1/p2(p+/p−)C < 0. For θ(C), by taking second derivative on the capacity C, we

have

θ′′(C) = p1/p2 · (p+/p−)C · log2(p+/p−) > 0 (B.24)

So θ(C) is convex on C.

Moreover, θ(1) = 2p1/p2 − (1 + p1/p2 · (p+/p−)) < 2p1/p2 − (1 + p2
1/p

2
2) < 0, and

limC→∞ θ(C) < 0. By Jensen’s inequality, θ(C) < 0 for all C ≥ 1, which shows that

the nominator is also negative, resulting −π0C + 1− π0 + PL0 > 0.

Proof of Theorem 3.3

Proof. Assume that we have two I-machine-(I − 1)-buffer lines A and B where the

corresponding machines always have the same “up” or “down” states. We prove that
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if NB(k) ≥ NA(k), then NB(k + 1) ≥ NA(k + 1). If this statement is not correct,

then there exists one sample path (based on the up/down states of machines), and a

buffer Bi (i = 1, . . . , I) such that NB,i(k + 1) < NA,i(k + 1).

Note that, in one cycle, the buffer level goes up or down by at most one unit.

Therefore, NB,i(k+ 1) ≥ NA,i(k+ 1) and NB,i(k+ 1) < NA,i(k+ 1) implies one of the

following two situations occurs:

Case 1 NA,i(k + 1) = NA,i(k) + 1: In this case, at time k, machine Mi is up, and

machine Mi+1 is either down or blocked. If Mi+1 is down in system A, then it is also

down in system B; if Mi+1 is blocked in system A, it will also be blocked in system B,

since NB,j(k+1) ≥ NA,j(k+1) for all the downstream buffer Bj (j = i+1, . . . , I−1).

In both situations, NB,i(k + 1) = min(Ci, NB,i(k) + 1) ≥ NA,i(k + 1). Contradiction.

Case 2 NB,i(k + 1) = NB,i(k) − 1: This indicates that in system B, Mi is down,

and Mi+1 is up and unblocked. However, since NB,j(k + 1) ≥ NA,j(k + 1) for all the

downstream buffer Bj (j = i + 1, . . . , I − 1), Mi+1 is unblocked in system B implies

that it is also unblocked in system A. Therefore, NA,i(k+ 1) = max(0, NA,i(k)− 1) ≤

NB,i(k + 1). Contradiction.

Summarizing the two cases, if NB(k) ≥ NA(k), then NB(k + 1) ≥ NA(k + 1).

Therefore, if Mi (i = 1, . . . , I) is down for the time in system A and B, the transient

production rate of system B will always be higher than that of system A, indicating

that AMOWi(NB(0)) ≥ AMOWi(NA(0)) .
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APPENDIX C

Proof for Chapter IV

Proof of Theorem 4.1

Proof. We prove it by contradiction.

(A) When d0 ≤ d∗:

If d1 6= d∗, then from Equation (4.4), we have

d1−1∑
d′=d0

1/q − PRd∗

(
d1−1∑
d′=d0

1/(f (d′) · q) + T (d1−1)

)

>
d∗−1∑
d′=d0

1/q − PRd∗

(
d∗−1∑
d′=d0

1/(f (d′) · q) + T (d∗−1)

)

=⇒
d1−1∑
d′=1

1/q − PRd∗

(
d1−1∑
d′=1

1/(f (d′) · q) + T (d1−1)

)

>
d∗−1∑
d′=1

1/q − PRd∗

(
d∗−1∑
d′=1

1/(f (d′) · q) + T (d∗−1)

)
= 0

Therefore,

PRd1 =

d1−1∑
d′=1

1/q

d∗−1∑
d′=1

1/(f (d′) · q) + T (d1−1)

> PRd∗
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which contradicts with Equation (4.3).

(B) When d0 > d∗:

Assume d1 6= d0. Then,

d1−1∑
d′=d0

1/q − PRd∗

(
d1−1∑
d′=d0

1/(f (d′) · q) + T (d1−1)

)
> −PRd∗ · T (d0−1)

We have

PRd∗ <

d1−1∑
d′=d0

1/q

d1−1∑
d′=d0

1/(f (d′) · q) + T (d1−1) − T (d0−1)

=

d1−1∑
d′=d0

1/q

d1−1∑
d′=d0

(
1/(f (d′) · q) + T (d′) − T (d′−1)

)

<

d1−d0+d∗−1∑
d′=d∗

1/q

d1−d0+d∗−1∑
d′=d∗

(
1/(f (d′) · q) + T (d′) − T (d′−1)

) (by Conditions 5.1 and 5.2)

Therefore,

PRd∗ <

d∗−1∑
d′=1

1/q +
d1−d0+d∗−1∑

d′=d∗
1/q

d∗−1∑
d′=1

1/(f (d′) · q) + T (d∗−1) +
d1−d0+d∗−1∑

d′=d∗

(
1/(f (d′) · q) + T (d′) − T (d′−1)

)

=

d1−d0+d∗−1∑
d′=1

1/q

d1−d0+d∗−1∑
d′=1

1/(f (d′) · q)− T (d1−d0+d∗−1)

= PRd1−d0+d∗

which contradicts with Equation (4.3).

Based on (A) and (B), d1 = d0 when d0 ≤ d∗; and d1 = d∗ when d0 > d∗.
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Proof of Theorem 4.2

Proof. We use induction to prove these properties.

Step 1. When t = 0, V0(S1, S2, N) = 0 for any (S1, S2, N). All five properties hold.

Step 2. Assume that properties (1) to (5) hold for t = 0, ..., t′. Then we prove that

these five properties also hold for t = t′ + 1.

(A) Proof of Property (1)

(1) First, we prove that φt′(S1, S2, N
+) ≥ φt′(S1, S2, N) for 0 ≤ N ≤ C − 1, and

φt′(S1, S2, N
+)− φt′(S1, S2, N) ≤ 1 for 0 ≤ N < C − 1.

φt′(S1, S2, N) =f
(S1)
1

[
q1Vt′(S1, S2, N

+) + q1Vt′(S
+
1 , S2, N

+)
]

+ f
(S1)
1 Vt′(S1, S2, N)

≤f (S1)
1

[
q1Vt′−1(S1, S2, (N

+)+) + q1Vt′(S
+
1 , S2, (N

+)+)
]

+ f
(S1)
1 Vt′(S1, S2, N

+)

=φt′(S1, S2, N
+)

φt′(S1, S2, N) ≥f (S1)
1

[
q1

(
Vt′(S1, S2, (N

+)+)− 1
)

+ q1

(
Vt′(S

+
1 , S2, (N

+)+)− 1
)]

+ f
(S1)
1

(
Vt′(S1, S2, N

+)− 1
)

=φt′(S1, S2, N
+)− 1

and when N = C − 1:

φt′(S1, S2, C − 1) =f
(S1)
1

[
q1Vt′(S1, S2, C) + q1Vt′(S

+
1 , S2, C)

]
+ f

(S1)
1 Vt′(S1, S2, C − 1)

≤f (S1)
1 Vt′(S1, S2, C) + f

(S1)
1 Vt′(S1, S2, C) = φt′(S1, S2, C)
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(2) Then, we prove 0 ≤ V b
t′+1(S1, S2, N

+)− V b
t′+1(S1, S2, N) ≤ 1.

Case 1 S1 ≤ D1:

V b
t′+1(S1, S2, N) = max


Vt′(S

++
1 , S2, N)

Vt′(S1, S2, N)

φt′(S1, S2, N)

≤ max


Vt′(S

++
1 , S2, N

+)

Vt′(S1, S2, N
+)

φt′(S1, S2, N
+)

= V b
t′+1(S1, S2, N

+)

V b
t′+1(S1, S2, N) ≥ max


Vt′(S

++
1 , S2, N

+)− 1

Vt′(S1, S2, N
+)− 1

φt′(S1, S2, N
+)− 1

= V b
t′+1(S1, S2, N

+)− 1

where the “≥” holds whenN = C−1 because V b
t′+1(S1, S2, C−1) ≥ Vt′(S1, S2, C−1) ≥

Vt′(S1, S2, C)− 1 = φt′(S1, S2, C)− 1.

Case 2 S1 > D1:

V b
t′+1(S1, S2, N) = Vt′(S

+
1 , S2, N) ≤ Vt′(S

+
1 , S2, N

+) = V b
t′+1(S1, S2, N

+)

V b
t′+1(S1, S2, N) ≥ Vt′(S

+
1 , S2, N

+)− 1 = V b
t′+1(S1, S2, N

+)− 1
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(3) Next, we prove 0 ≤ V a
t′+1(S1, S2, N

+)− V a
t′+1(S1, S2, N) ≤ 1.

Case 1 S1 ≤ D1:

V a
t′+1(S1, S2, N) = 1 + max


q2Vt′(S

++
1 , S2, N

−) + q2Vt′(S
++
1 , S+

2 , N
−)

q2Vt′(S1, S2, N
−) + q2Vt′(S1, S

+
2 , N

−)

q2φt′(S1, S2, N
−) + q2φt′(S1, S

+
2 , N

−)

≤ 1 + max


q2Vt′(S

++
1 , S2, N) + q2Vt′(S

++
1 , S+

2 , N)

q2Vt′(S1, S2, N) + q2Vt′(S1, S
+
2 , N)

q2φt′(S1, S2, N) + q2φt′(S1, S
+
2 , N)

= V a
t′+1(S1, S2, N

+)

V a
t′+1(S1, S2, N) ≥ 1 + max


q2

(
Vt′(S

++
1 , S2, N)− 1

)
+ q2

(
Vt′(S

++
1 , S+

2 , N)− 1
)

q2

(
Vt′(S1, S2, N)− 1

)
+ q2

(
Vt′(S1, S

+
2 , N)− 1

)
q2

(
φt′(S1, S2, N)− 1

)
+ q2

(
φt′(S1, S

+
2 , N)− 1

)
= V a

t′+1(S1, S2, N
+)− 1

Case 2 S1 > D1:

V a
t′+1(S1, S2, N) = 1 + q2Vt′(S

+
1 , S2, N

−) + q2Vt′(S
+
1 , S

+
2 , N

−)

≤ 1 + q2Vt′(S
+
1 , S2, N) + q2Vt′(S

+
1 , S

+
2 , N) = V a

t′+1(S1, S2, N
+)

V a
t′+1(S1, S2, N) ≥ 1 + q2

(
Vt′(S

+
1 , S2, N)− 1

)
+ q2

(
Vt′(S

+
1 , S

+
2 , N)− 1

)
= V a

t′+1(S1, S2, N
+)− 1

(4) Finally, from the definition of Vt(S1, S2, N) (Equation (4.15)), 0 ≤ Vt′+1(S1, S2, N
+)−

Vt′+1(S1, S2, N) ≤ 1.

(B) Proof of Properties (2) & (3)
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Case 1 S1 ≤ D1:

For N < C:

φt′(S
+
1 , S2, N) =f

(S+
1 )

1

[
q1Vt′(S

+
1 , S2, N

+) + q1Vt′((S
+
1 )+, S2, N

+)
]

+ f
(S+

1 )
1 Vt′(S

+
1 , S2, N)

≤f (S+
1 )

1 Vt′(S
+
1 , S2, N

+) + f
(S+

1 )
1 Vt′(S

+
1 , S2, N)

≤f (S1)
1 Vt′(S

+
1 , S2, N

+) + f
(S1)
1 Vt′(S

+
1 , S2, N)

≤f (S1)
1

[
q1Vt′(S1, S2, N

+) + q1Vt′(S
+
1 , S2, N

+)
]

+ f
(S1)
1 Vt′(S1, S2, N)

=φt′(S1, S2, N)

where the second “≤” holds because Vt′(S
+
1 , S2, N

+) ≥ Vt′(S
+
1 , S2, N) and f

(S1)
1 ≥

f
(S+

1 )
1 .

When N = C:

φt′(S
+
1 , S2, C) = Vt′(S

+
1 , S2, C) ≤ Vt′(S1, S2, C) = φt′(S1, S2, C)

Then:

V b
t′+1(S+

1 , S2, N) = max


Vt′((S

+
1 )++, S2, N)

Vt′(S
+
1 , S2, N)

φt′(S
+
1 , S2, N)

≤ max


Vt′(S

++
1 , S2, N)

Vt′(S1, S2, N)

φt′(S1, S2, N)

= V b
t′+1(S1, S2, N)
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and

V a
t′+1(S+

1 , S2, N) = 1 + max


q2Vt′((S

+
1 )++, S2, N

−) + q2Vt′((S
+
1 )++, S+

2 , N
−)

q2Vt′((S
+
1 , S2, N

−) + q2Vt′(S
+
1 , S

+
2 , N

−)

q2φt′((S
+
1 , S2, N

−) + q2φt′(S
+
1 , S

+
2 , N

−)

≤ 1 + max


q2Vt′(S

++
1 , S2, N

−) + q2Vt′(S
++
1 , S+

2 , N
−)

q2Vt′(S1, S2, N
−) + q2Vt′(S1, S

+
2 , N

−)

q2φt′(S1, S2, N
−) + q2φt′(S1, S

+
2 , N

−)

= V a
t′+1(S1, S2, N)

Therefore, in this case, V b
t′+1(S+

1 , S2, N) ≤ V b
t′+1(S1, S2, N) and V a

t′+1(S+
1 , S2, N) ≤

V a
t′+1(S1, S2, N). Property (2) follows from Equation (4.15).

Case 2 S1 > D1:

V b
t′+1(S+

1 , S2, N) = Vt′((S
+
1 )+, S2, N) ≥ Vt′(S

+
1 , S2, N) = V b

t′+1(S1, S2, N)

and

V a
t′+1(S+

1 , S2, N) = 1 + q2Vt′((S
+
1 )+, S2, N

−) + q2Vt′((S
+
1 )+, S+

2 , N
−)

≥ 1 + q2Vt′(S
+
1 , S2, N

−) + q2Vt′(S
+
1 , S

+
2 , N

−) = V a
t′+1(S1, S2, N)

Therefore, in this case, V b
t′+1(S+

1 , S2, N) ≥ V b
t′+1(S1, S2, N) and V a

t′+1(S+
1 , S2, N) ≥

V a
t′+1(S1, S2, N). Property (3) holds.

(C) Proof of Properties (4) & (5)
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First we consider the case where S2 ≤ D2. When N < C:

φt′(S1, S
+
2 , N) = f

(S1)
1

[
q1Vt′(S1, S

+
2 , N

+) + q1Vt′(S
+
1 , S

+
2 , N

+)
]

+ f
(S1)
1 Vt′(S1, S

+
2 , N)

≤ f
(S1)
1

[
q1Vt′(S1, S2, N

+) + q1Vt′(S
+
1 , S2, N

+)
]

+ f
(S1)
1 Vt′(S1, S2, N)

= φt′(S1, S2, N)

and when N = C:

φt′(S1, S
+
2 , C) = Vt′(S1, S

+
2 , C) ≤ Vt′(S1, S2, C) = φt′(S1, S2, C)

Case 1 S1 ≤ D1:

V b
t′+1(S1, S

+
2 , N) = max


Vt′(S

++
1 , S+

2 , N)

Vt′(S1, S
+
2 , N)

φt′(S1, S
+
2 , N)

≤max


Vt′(S

++
1 , S2, N)

Vt′(S1, S2, N)

φt′(S1, S2, N)

= V b
t′+1(S1, S2, N)
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V a
t′+1(S1, S

+
2 , N) = 1 + max


q2Vt′(S

++
1 , S+

2 , N
−) + q2Vt′(S

++
1 , (S+

2 )+, N−)

q2Vt′(S1, S2, N
−) + q2Vt′(S1, (S

+
2 )+, N−)

q2φt′(S1, S
+
2 , N

−) + q2φt′(S1, (S
+
2 )+, N−)

≤ 1 + V b
t′+1(S1, S

+
2 , N

−)

≤ 1 + max


q2Vt′(S

++
1 , S2, N

−) + q2Vt′(S
++
1 , S+

2 , N
−)

q2Vt′(S1, S2, N
−) + q2Vt′(S1, S

+
2 , N

−)

q2φt′(S1, S2, N
−) + q2φt′(S1, S

+
2 , N

−)

= V a
t′+1(S1, S2, N)

(C.1)

Case 2 S1 > D1:

V b
t′+1(S1, S

+
2 , N) = Vt′(S

+
1 , S

+
2 , N) ≤ Vt′(S

+
1 , S2, N) = V b

t′+1(S1, S2, N)

V a
t′+1(S1, S

+
2 , N) = 1 + q2Vt′(S

+
1 , S

+
2 , N

−) + q2Vt′(S
+
1 , (S

+
2 )+, N−)

≤ 1 + V b
t′+1(S1, S

+
2 , N

−)

≤ 1 + q2Vt′(S
+
1 , S2, N

−) + q2Vt′(S
+
1 , S

+
2 , N

−) = V a
t′+1(S1, S2, N)

(C.2)

Moreover, from (C.1) and (C.2), in both cases, when N > 0:

V b
t′+1(S1, S

+
2 , N) ≤ 1 + V b

t′+1(S1, S
+
2 , N

−) ≤ V a
t′+1(S1, S2, N)

Therefore,

f
(S+

2 )
2 V a

t′ (S1, S
+
2 , N) + f

(S+
2 )

2 V b
t′ (S1, S

+
2 , N)

≤f (S+
2 )

2 V a
t′ (S1, S2, N) + f

(S+
2 )

2 V b
t′ (S1, S

+
2 , N)

≤f (S2)
2 V a

t′ (S1, S2, N) + f
(S2)
2 V b

t′ (S1, S
+
2 , N)
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≤f (S2)
2 V a

t′ (S1, S2, N) + f
(S+

2 )
2 V b

t′ (S1, S2, N)

Therefore, when N > 0:

Vt′+1(S1, S
+
2 , N) = max


V b
t′+1(S1, (S

+
2 )++, N)

V b
t′+1(S1, S

+
2 , N)

f
(S+

2 )
2 V a

t′+1(S1, S
+
2 , N) + f

(S+
2 )

2 V b
t′+1(S1, S

+
2 , N)

≤ max


V b
t′+1(S1, S

++
2 , N)

V b
t′+1(S1, S2, N)

f
(S2)
2 V a

t′+1(S1, S2, N) + f
(S2)
2 V b

t′+1(S1, S2, N)

= Vt′+1(S1, S2, N)

and when N = 0:

Vt′+1(S1, S
+
2 , N) = max


V b
t′+1(S1, (S

+
2 )++, N)

V b
t′+1(S1, S

+
2 , N)

≤ max


V b
t′+1(S1, S

++
2 , N)

V b
t′+1(S1, S2, N)

= Vt′+1(S1, S2, N)

Property (4) is proved. Then we prove Property (5). If S2 > D2, then simi-

lar as (C.2), we have V b
t′+1(S1, S

+
2 , N) ≥ V b

t′+1(S1, S2, N), and from Equation (4.15),

Vt′+1(S1, S
+
2 , N) = V b

t′+1(S1, (S
+
2 )+, N) ≥ V b

t′+1(S1, S
+
2 , N) = Vt′+1(S1, S2, N).

Therefore, all five properties are proved when t = t′ + 1. Based on induction, all

the five properties hold for any t.
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Proof of Lemma 4.1

Proof. Equation (4.20) can be rewritten as

Vt(S1, S2, N) = max
{
Ṽt(S1, S2, N), Vt−1(S1, S2, N)

}
where Ṽt(S1, S2, N) = Ψt((S1, S2, N),A \ {(S,S,S)}).

Then we prove that Ṽt(S1, S2, N) ≥ Vt−1(S1, S2, N) ∀t, S1, S2, N by induction.

Step 1. When t = 1, it is obvious that Ṽ1(S1, S2, N) ≥ 0 = V0(S1, S2, N).

Step 2. Assume Ṽt(S1, S2, N) ≥ Vt−1(S1, S2, N) for t = 1, ..., t′. Then Vt′(S1, S2, N) =

Ṽt′(S1, S2, N). Assume the optimal action when the remaining time is t′ is (aa1, a
b
1, a2)∗.

Then we have

Ṽt′+1(S1, S2, N) ≥
{ ∑

(S′1,S
′
2,N
′)

Pr{(S ′1, S ′2, N ′)|
(
(S1, S2, N), (aa1, a

b
1, a2)∗

)
}·

[
PR
(
(S1, S2, N), (aa1, a

b
1, a2)∗, (S ′1, S

′
2, N

′)
)

+ Vt′(S
′
1, S

′
2, N

′)
]}

≥
{ ∑

(S′1,S
′
2,N
′)

Pr{(S ′1, S ′2, N ′)|
(
(S1, S2, N), (aa1, a

b
1, a2)∗

)
}·

[
PR
(
(S1, S2, N), (aa1, a

b
1, a2)∗, (S ′1, S

′
2, N

′)
)

+ Vt′−1(S ′1, S
′
2, N

′)
]}

=Ṽt′(S1, S2, N) = Vt′(S1, S2, N)

Based on Steps 1 and 2, Ṽt(S1, S2, N) ≥ Vt−1(S1, S2, N) ∀t, S1, S2, N . Therefore,

Vt(S1, S2, N) = Ṽt(S1, S2, N) ∀t.

Proof of Corollary 4.1

Proof. We use the similar approach as in the proof of Lemma 4.1.

Let V̂t(S1, S2, N) = Ψt((S1, S2, N),A′). Then we prove that V̂t(S1, S2, N) ≥

Vt(S1, S2, N) ∀t, S1, S2, N by induction.
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Step 1. When t = 1, it is obvious that

Ψt((S1, S2, N), {(aa1, ab1,M)}) = Ψt((S1, S2, N), {(aa1, ab1, S)}) = 0

and

Ψt((S1, S2, N), {(aa1, ab1,D)}) = f (S2).

Therefore, Ψ1((S1, S2, N),A′) ≥ Ψ1((S1, S2, N),A) and V̂1(S1, S2, N) ≥ V1(S1, S2, N).

Step 2. Assume V̂t(S1, S2, N) ≥ Vt(S1, S2, N) for t = 1, ..., t′ − 1. We need to prove

that V̂t′(S1, S2, N) ≥ Vt′(S1, S2, N), which is to prove, the action “stop” is not optimal

on either M1 or M2.

First, we show that the action “stop” is not optimal on M2 (when S2 < D2 and

N > 0, otherwise the action “stop” is infeasible). In other words, we need to prove

that actions (M,M,S) and (D,D,S) can be removed without loss of optimality. We

prove

Ψt′((S1, S2, N), (aa1, a
b
1,D)) ≥ Ψt′((S1, S2, N), {(aa1, ab1, S)}). (C.3)

Let at
′
i and ât

′
i be the actions on machines Mi (i = 1, 2) that is associated with

the cost function Vt′(S1, S2, N) and V̂t′(S1, S2, N), respectively.

Case 1 at
′

1 =MM:

If at
′

1 =MM and at
′−1

2 =M, then we construct a policy â1
t′ =MM and â2

t′−1 =M, then

it is easy to obtain that

Ψt′((S1, S2, N), {(M,M,D)})−Ψt′((S1, S2, N), {(M,M,S)})

=f (S2)
(
1 + q2Vt′−1(S++

1 , S+
2 , N

−) + q2Vt′−1(S++
1 , S2, N

−)− Vt′−1(S++
1 , S2, N)

)
≥f (S2)q2

(
Vt′−1(S++

1 , S+
2 , N)− Vt′−1(S++

1 , S2, N)
)
(from Theorem 4.2, Property 1)

=0 (Based on Vt′−2(S++
1 + 1, (S+

2 )++, N) = Vt′−2(S++
1 + 1, S++

2 , N))

If at
′

1 =MM and at
′−1

2 =D, then we construct a policy â1
t′ =MM and â2

t′−1 =S.
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Then the system states when the remaining time is t′ − 2 are the same. Therefore,

V̂t(S1, S2, N) ≥ Vt(S1, S2, N).

Case 2a at
′

1 =DD and S1 > D1:

This case is similar as Case 1. If at
′−1

2 =M or at
′−1

2 =D, we can construct a policy

â2
t′−1 =M or â2

t′−1 =S, respectively, so that (C.3) is satisfied.

Case 2b at
′

1 =DD and S1 ≤ D1:

In this case, at
′−1

2 may take three different values based on the different transition

states at time t
′

(i.e., M1 is not working, M1 is working and not degrading, and M1

is degrading). Denote at
′−1

2 = [at
′−1

2,1 , at
′−1

2,2 , at
′−1

2,3 ] as the actions in these three different

situations. We define a function ϕ(x) =M if x =M and ϕ(x) =S if x =D, then

the policy can be constructed as ât
′−1

2 = [ϕ(at
′−1

2,1 ), ϕ(at
′−1

2,2 ), ϕ(at
′−1

2,3 )], so that (C.3) is

satisfied.

Similarly, we can prove that the action “stop” is not optimal on M1. Let at
′

1 =

[at
′

1,1, · · · , at
′

1,n1,t′
] be the policy on M1 when the remaining time is t′, and at

′−1
1 =

[at
′−1

1,1 , · · · , at′−1
1,n1,t′−1

] be the policy when the remaining time is t′ − 1, then we can

construct a policy ât
′

1 = [ϕ′(at
′

1,1), · · · , ϕ′(at′1,n1,t′
)] where ϕ′(x) =D if x =S, and ϕ′(x) =

x if x 6=S, and ât
′−1

1 = [ϕ(at
′−1

1,1 ), · · · , ϕ(at
′−1

1,n1,t′−1
)]. By such construction, we have

V̂ ′t (S1, S2, N) ≥ V ′t (S1, S2, N).

Therefore, “stop” is not optimal on either M1 or M2 when t = t′. By induction,

V̂t(S1, S2, N) ≥ Vt(S1, S2, N) ∀t, S1, S2, N . Therefore, Vt(S1, S2, N) = V̂t(S1, S2, N)

∀t.
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APPENDIX D

Proof for Chapter V

Proof of Theorem 5.1

By taking one-step conditional expectation, Vmn’s and T
(l)
mn’s can be expressed as

Vmn = 1 +
∑
h6=m

PhnVmh (0 ≤ n,m ≤ C) (D.1)

and

T (l)
mn = δnl +

∑
h6=m

PhnT
(l)
mh (0 ≤ n,m ≤ C, 0 ≤ l ≤ S2 − 1) (D.2)

In the matrix form, Equations (D.1) and (D.2) can be written as

V = WTV + 1T (D.3)

and

T(l) = WTT(l) + [δ0l · 1 · · · δCl · 1]T (D.4)

The expressions of V and T(l) in Theorem 5.1 result directly from Equations (D.3)

and (D.4).
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Proof of Theorem 5.2

First, we state some results that are useful for the proof.

Definition D.1. Let a = [a1 · · · aM ]T and b = [b1 · · · bM ]T be two M ×1 vectors,

where
M∑
m=1

am =
M∑
m

bm = 1. We define a A b (or equivalently, b @ a) if
M ′∑
m=1

am ≥
M ′∑
m=1

bm (or equivalently,
M∑

m=M ′+1

am ≤
M∑

m=M ′+1

bm) for all M ′ = 1, ...,M − 1.

Then we have the following lemmas.

Lemma D.1. For any P(r1, r2, C), we have [P0n · · · PCn]T A [P0,n+1 · · · PC,n+1]T .

Proof. For any n = 0, ..., C − 1 and M ′ = 0, ..., C − 1,

M ′∑
m=0

(Pmn − Pm,n+1) =
M ′∑
m=0

(
S2∑

j=m+n−M ′
r1(m)r2(j)−

S2∑
j=m+n+1−M ′

r1(m)r2(j)

)

=
M ′∑
m=0

r1(m)r2(m+ n−M ′) ≥ 0.

[P0n · · · PCn]T A [P0,n+1 · · · PC,n+1]T follows immediately by Definition D.1.

Lemma D.2. Let P a
mn and P b

mn be the element at the (n + 1)th conlumn and the

(m + 1)th row of matrices P(ra1, r
a
2, C) and P(rb1, r

b
2, C), respectively. If ra1 @ rb1 and

ra2 A rb2, then [P a
0n · · · P a

Cn]T @ [P b
0n · · · P b

Cn]T (∀n).
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Proof. For n = 0, ..., C and M ′ = 0, ..., C − 1, we have

M ′∑
m=0

P a
mn −

M ′∑
m=0

P b
mn =

M ′∑
m=0

S2∑
j=m+n−M ′

(
ra1(m)ra2(j)− rb1(m)rb2(j)

)
=

M ′∑
m=0

S2∑
j=m+n−M ′

(
ra1(m)− rb1(m)

)
ra2(j)

+
M ′∑
m=0

S2∑
j=m+n−M ′

rb1(m)
(
ra2(j)− rb2(j)

)
=

S2∑
j=0

j+M ′−n∑
m=0

ra2(j)
(
ra1(m)− rb1(m)

)
+

M ′∑
m=0

S2∑
j=m+n−M ′

rb1(m)
(
ra2(j)− rb2(j)

)
.

Let A1 :=
S2∑
j=0

j+M ′−n∑
m=0

ra2(j)
(
ra1(m)− rb1(m)

)
and B1 :=

M ′∑
m=0

S2∑
j=m+n−M ′

[
rb1(m) ·(

ra2(j)− rb2(j)
) ]

. If ra1 @ rb1 and ra2 A rb2, then A1 ≤ 0 and B1 ≤ 0. Therefore,

A1 +B1 ≤ 0.

Lemma D.3. If ra1 @ rb1, ra2 A rb2 and πa @ πb, then P(ra1, r
a
2, C)πa @ P(rb1, r

b
2, C)πb.

Proof. Let π′a := P(ra1, r
a
2, C)πa and π′b := P(rb1, r

b
2, C)πb. Then for M ′ = 0, ..., C−1

M ′∑
m=0

π′am −
M ′∑
m=0

π′bm =
C∑
n=0

M ′∑
m=0

(
(P a

mn − P b
mn)πan + P b

mn(πan − πbn)
)

=
C∑
n=0

M ′∑
m=0

(P a
mn − P b

mn)πan +
M ′∑
m=0

C−1∑
n=0

n∑
l=0

(
(P b

mn − P b
m,n+1)(πal − πbl )

)
+

M ′∑
m=0

C∑
l=0

(
P b
Cm(πal − πbl )

)
=

C∑
n=0

M ′∑
m=0

(P a
mn − P b

mn)πan +
M ′∑
m=0

C−1∑
n=0

n∑
l=0

(
(P b

mn − P b
m,n+1)(πal − πbl )

)
.

Let A2 :=
C∑
n=0

M ′∑
m=0

(P a
mn−P b

mn)πan and B2 :=
M ′∑
m=0

C−1∑
n=0

n∑
l=0

(
(P b

mn − P b
m,n+1)(πal − πbl )

)
.

If ra1 @ rb1, ra2 A rb2 and πa A πb, then A2 ≤ 0 (by Lemma D.2) and B2 ≤ 0 (by
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Lemma D.1). Therefore, A2 +B2 ≤ 0.

Lemma D.4. If ra1 @ rb1 and ra2 A rb2, then πS(ra1, r
a
2, C) @ πS(rb1, r

b
2, C).

Proof. Let πa := πS(ra1, r
a
2, C) and πb := πS(rb1, r

b
2, C). Also,we define the following

recursive procedure:

πb(a+ 1) = Pbπb(a) (a = 0, 1, 2, ...)

with the initial condition πb(0) = πa. Then, πb can be calculated as πb = lima→∞ πb(a).

We use induction to show that πb(a+ 1) A πb(a).

Step 1. Based on Lemma D.3: πb(1) = Pbπb(0) A Paπb(0) = πb(0).

Step 2. When a ≥ 1, by Lemma D.3: πb(a+ 1) = Pbπb(a) A Pbπb(a− 1) = πb(a).

Step 3. By Steps 1 and 2, πb(a+ 1) A πb(a) ∀a = 0, 1, ....

Therefore, πb = lima→∞ πb(a) A πb(0) = πa.

Lemma D.5. If ra2 @ rb2 and πa @ πb, then ra2 @ p(ra2, C)πa @ p(rb2, C)πb.

Proof. For S ′2 = 0, ..., S2 − 1:

S2∑
s=S′2+1

pra(s) =

S2∑
s=S′2+1

ra2(s)

S2∑
s=S′2+1

πa(s) ≥
S2∑

s=S′2+1

rb2(s)

S2∑
s=S′2+1

πb(s) =

S2∑
s=S′2+1

prb(s)

and
S2∑

s=S′2+1

pra(s) =

S2∑
s=S′2+1

ra2(s)

S2∑
s=S′2+1

πa(s) ≤
S2∑

s=S′2+1

ra2(s).

Therefore, ra2 @ p(ra2, C)πa @ p(rb2, C)πb.

Lemma D.6. If ra1 A rb1, ra2 A rb2 and πa @ πb, then c(ra1, r
a
2, C)πa A c(rb1, r

b
2, C)πb A

rb1.

Proof. For S ′1 = 0, ..., S1 − 1:
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S1∑
s=S′1+1

cra(s) =

S1∑
l=S′1+1

ra1(l)

S2∑
j=0

C−S′1+j∑
s=0

πa(s)ra2(j)

≤
S1∑

l=S′1+1

rb1(l)

S2∑
j=0

C−S′1+j∑
s=0

πb(s)ra2(j) =

S1∑
l=S′1+1

rb1(l)
C∑
s=0

S2∑
j=C−S′1−s

ra2(j)πb(s)

≤
S1∑

l=S′1+1

rb1(l)
C∑
s=0

S2∑
j=C−S′1−s

rb2(j)πb(s) =

S1∑
s=S′1+1

crb(s)

=

S1∑
l=S′1+1

rb1(l)

S2∑
j=0

C−S′1+j∑
s=0

πb(s)rb2(j)

≤
S1∑

l=S′1+1

rb1(l).

Therefore, c(ra1, r
a
2, C)πa A c(rb1, r

b
2, C)πb A rb1.

Then we prove Theorem 5.2, i.e., the convergence of Recursive Procedure 5.1.

We prove by induction that rNBi (a+ 1) A rNBi (a) for i = 2, ..., I and a = 0, 1, ....

Step 1. By Lemma D.6, for i = 2, ..., I:

rNBi (1) = c(ri, r
NB
i+1(1), Ci)π

S(rNSi (1), rNBi+1(1), Ci) A ri = rNBi (0)

Moreover, based on Equation (5.23), rNS1 (a+1) A rNS1 (a) and rNBI (a+1) @ rNBI (a)

for all a. Therefore, rNBi (1) A rNBi (0) for i = 1, ..., I.

Step 2. Assume we have rNBi (a′) A rNBi (a′ − 1) for i = 1, ..., I and a′ = 1, ..., a;

rNSi (a + 1) @ rNSi (a) for i = 1, ..., i1 − 1(i1 ≤ I); and rNBi (a + 1) A rNBi (a) for

i = I, ..., i2 + 1(i2 ≥ 1).

By Lemmas D.4 and D.5,

rNSi1 (a+ 1) = p(ri1 , Ci1−1)πS(rNSi1−1(a+ 1), rNBi1 (a), Ci1−1)

@ p(ri1 , Ci1−1)πS(rNSi1−1(a), rNBi1 (a− 1), Ci1−1) = rNSi1 (a)

(D.5)

By applying (D.5) recursively for i = i1 + 1, ..., I, we have rNSi (a+ 1) @ rNSi (a) ∀i.
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Moreover, by Lemmas D.4 and D.6,

rNBi2 (a+ 1) = c(ri2 , r
NB
i2+1(a+ 1), Ci2)π

S(rNSi2 (a+ 1), rNBi2+1(a+ 1), Ci2)

A c(ri2 , r
NB
i2+1(a), Ci2)π

S(rNSi2 (a), rNBi2+1(a), Ci2) = rNBi2 (a)

(D.6)

Applying (D.6) recursively for i = i2 − 1, ..., 1 leads to rNBi (a+ 1) A rNBi (a) ∀i.

Step 3. By induction, rNBi (a+ 1) A rNBi (a) ∀a, i.

We define a sequence

W (a) :=

S2∑
s=0

s·rNB2 (s; a) =

S2−1∑
j=0

S2∑
s=S2−j

rNB2 (s; a) ≥
S2−1∑
j=0

S2∑
s=S2−j

rNB2 (s; a+1) = W (a+1).

Then W (a) is decreasing in a. Moreover, W (a) ≥ 0 for all a. Therefore, the

sequence W (a) converges, which proves the convergence of Recursive Procedure 5.1.
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[50] Barış Tan and Stanley B Gershwin. Modelling and analysis of markovian contin-
uous flow systems with a finite buffer. Annals of Operations Research, 182(1):5–
30, 2011.

[51] Stanley B Gershwin. An efficient decomposition method for the approximate
evaluation of tandem queues with finite storage space and blocking. Operations
Research, 35(2):291–305, 1987.

[52] Yves Dallery, Rene David, and X-L Xie. Approximate analysis of transfer lines
with unreliable machines and finite buffers. IEEE Transactions on Automatic
Control, 34(9):943–953, 1989.

183



[53] Saumil Ambani. Analytical estimation of throughput distribution for serial man-
ufacturing systems with multi-state machines and its application. PhD thesis,
The University of Michigan, 2011.

[54] Yadati Narahari and Nukala Viswanadham. Transient analysis of manufac-
turing systems performance. IEEE Transactions on Robotics & Automation,
10(2):230–244, 1994.

[55] Debasis Mitra. Stochastic theory of a fluid model of producers and consumers
coupled by a buffer. Advances in Applied Probability, pages 646–676, 1988.

[56] Semyon M Meerkov and Liang Zhang. Transient behavior of serial production
lines with bernoulli machines. IIE Transactions, 40(3):297–312, 2008.

[57] Liang Zhang, Chuanfeng Wang, Jorge Arinez, and Stephan Biller. Transient
analysis of bernoulli serial lines: performance evaluation and system-theoretic
properties. IIE Transactions, 45(5):528–543, 2013.
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