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Abstract 

 

More than half of the energy in conventional wastewater treatment is consumed by 

aeration. To achieve substantial energy savings and comply with increasingly stringent effluent 

nutrient regulations, wastewater utilities are beginning to control and minimize aeration, thereby 

operating at a lower dissolved oxygen (DO) concentration. As utilities implement low DO 

processes, the impact of DO on non-regulated pollutants, such as pharmaceuticals, warrants 

attention to understand the impact of these technologies on pharmaceutical loads to the 

environment. This dissertation focuses on the impact of DO on pharmaceutical biotransformation 

during treatment. Low DO treatment could impact pharmaceutical biotransformation directly by 

acting as a limiting substrate and slowing the activity of microorganisms involved in 

biotransformation, and indirectly by selecting for a community that is more (or less) effective at 

biotransformation. The objective of this work was to evaluate and characterize both direct and 

indirect impacts of low DO conditions in wastewater treatment bioprocesses on pharmaceutical 

biotransformation.  

To characterize how DO concentration directly impacts pharmaceutical biotransformation 

rates, oxygen half-saturation constants (KO2) were determined for a suite of compounds that 

describe the impact of DO on a compound’s biotransformation rate. Indirect impacts of DO 

concentration on pharmaceutical biotransformation rates were demonstrated using bench-scale 

nitrifying bioreactors operated for over a year under low (~0.3 mg-DO/L) and high (>4 mg-DO/L) 



 xiii 

DO conditions. Results showed that long-term low DO conditions resulted in a greater biomass 

concentration in the low DO reactor compared to high DO reactor. The greater biomass 

concentration in the low DO reactor resulted in a community with lower specific pharmaceutical 

biotransformation rates but greater net biotransformation rates under non-limiting DO conditions. 

In addition, the low DO reactor supported the growth of a more diverse microbial community. To 

follow up on this finding, a direct test of how microbial diversity affects pharmaceutical 

biotransformation was performed using a dilution-to-extinction approach. The results showed a 

strong positive association between biodiversity and collective pharmaceutical biotransformation 

rates. Taken together, these studies demonstrate that that substantial energy savings can be 

achieved by operating at lower bulk liquid DO concentrations (0.5 - 1 mg/L) without 

compromising net pharmaceutical biotransformation rates. 
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Chapter 1.  

Introduction 

 

1.1 Background 

Wastewater collection emerged in the 1800’s in response to outbreaks of disease, and the 

first biological treatment was introduced in the late 19th century when cities became aware of the 

deleterious impact of discharging raw sewage into local water bodies (Riffat, 2012). Over a century 

after activated sludge was first introduced by Ardern and Lockett (Ardern and Lockett, 1914), 

substantial advances in wastewater treatment technology are being driven by current needs. Today, 

the water industry grapples with the stressors of climate change (Zouboulis and Tolkou, 2015), 

rapid population growth and urbanization (e.g. Semadeni-Davies et al., 2008), ageing water and 

wastewater infrastructure (ASCE, 2009), increasingly stringent effluent regulations (e.g. EPA, 

2008), and the adverse impacts of a society that practices “better living through chemistry” (Crane 

et al., 2006). In an effort to increase sustainability and achieve cost savings, wastewater utilities 

are beginning to prioritize improvements in energy efficiency. Concurrently, mounting evidence 

shows that trace chemical contaminants present in wastewater, such as pharmaceuticals, personal 

care products, and pesticides, pose a threat to environmental health (Santos et al., 2010). The intent 

of this research was to elucidate a complex relationship between two environmental sustainability 

goals relevant to wastewater treatment: enhancing energy efficiency and reducing pharmaceutical 

contamination.  
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One of the original and primary goals of wastewater treatment is carbon removal. After it 

became clear that nutrients were also responsible for eutrophication in receiving water bodies, 

advanced treatment systems were developed to remove nitrogen and phosphorus (U.S. EPA, 

2008). Today, we are still discovering pollutants in wastewater, such as trace organic chemicals, 

that threaten environmental health (e.g. Brodin et al., 2013; Kidd et al., 2007). Humans excrete 

thousands of chemicals used in medicines as the active pharmaceutical ingredient (API) and in 

metabolized forms; both are conveyed through collected sewage to wastewater treatment plants 

(WWTPs).  If a particular pharmaceutical or its metabolite is not removed by wastewater treatment 

processes through one of several mechanisms before entering our waterways (Deblonde et al., 

2011), then it becomes trace contaminant pollution in the receiving stream. In this way, WWTPs 

represent a primary entry point for the proliferation of pharmaceuticals in the environment (Kolpin 

et al., 2002), but they are also a last line of defense against this form of chemical pollution. 

Pharmaceuticals have been widely detected in surface and groundwater (Focazio et al., 2008), and 

have detrimental impacts on aquatic life at extremely low concentrations (Jobling et al., 1998; 

Kidd et al., 2007; Painter et al., 2009). As reusing wastewater for drinking water and irrigation 

becomes more commonplace as a sustainable solution to ensure water access in water-scarce 

regions and to improve water security in urban areas, the cycling of pharmaceuticals could pose a 

more serious and direct threat to human health. 

Our limited understanding of pharmaceutical degradation and transformation pathways 

prevents us from aligning the design and operation of WWTPs to reduce pharmaceutical exposure 

and associated risks in receiving environments (Stadler et al., 2012). In addition, as wastewater 

utilities move toward implementing lower energy technologies in the name of sustainability, they 

must recognize the consequences these systems have on other treatment objectives, such as 
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pharmaceutical removal. One strategy for implementing sustainable wastewater management 

practices involves a reduction in the energy consumption used in conventional activated sludge 

wastewater treatment by moving towards treatment that minimizes aeration (Leu et al., 2009), as 

conventional treatment is an extremely energy intensive process. Aeration is the most energy 

intensive operation in activated sludge wastewater treatment, accounting for approximately 3% of 

the US electrical energy demand (U.S. EPA, 2006) and making up 45–75% of a typical WWTP’s 

total energy costs (Rosso et al., 2008). Conventional activated sludge WWTPs typically operate 

with bulk liquid dissolved oxygen (DO) concentrations of greater than 2 mg/L to ensure complete 

nitrification and stable nitrifying populations (WEF, 2008). There is mounting evidence that stable 

carbon removal and nitrification can occur at low DO concentrations (<0.7 mg/L) (Schuyler et al., 

2009; Jimenez et al., 2011), suggesting that substantial energy and cost savings are possible by 

reducing DO concentrations. Despite this benefit, we still lack an understanding of how reducing 

operational DO concentration will impact pharmaceutical fate in WWTPs. 

It is necessary to understand the ecology and physiology of microorganisms that are central 

to wastewater treatment and the impact of low DO on their abundance and activity to understand 

the impact of DO on pharmaceutical biotransformation. Many studies have measured 

pharmaceutical biotransformation rates in wastewater systems (e.g. Abegglen et al., 2009; Urase 

and Kikuta, 2005) and proposed to classify the relative biodegradability of individual compounds 

based on their transformation rate (Joss et al., 2006; Salgado et al., 2012).  Despite these efforts, 

few studies have reported measured rates in different redox environments and even fewer have 

linked microbial community characteristics with pharmaceutical biotransformation patterns. The 

objective of this dissertation was to elucidate how low DO impacts the activity and structure of 

wastewater microbial communities, and thus affects pharmaceutical biotransformation rates. Low 
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DO treatment could impact pharmaceutical biotransformation directly by slowing the activity of 

microorganisms involved in biotransformation by acting as a limiting substrate, and indirectly by 

selecting for a community that is more (or less) effective at biotransformation (Figure 1-1).  

 

 

 

Figure 1-1. Direct and indirect impacts of DO on pharmaceutical biotransformation during wastewater 
treatment. 

 

Monod-type equations are typically used to describe the direct impact of varying 

concentrations of a growth rate-limiting substrate on process rates. However, no studies to date 

have determined oxygen half-saturation constants to characterize the impact of DO concentration 

on pharmaceutical biotransformation rates. Kinetic parameters that describe pharmaceutical 

biotransformation, such as KO2 values, are necessary to model the transformation of 

pharmaceuticals in existing wastewater treatment plant models (Plósz et al., 2012). Researchers, 

consultants, and utilities have regularly used wastewater models to inform the design of new 

WWTPs and improve treatment performance. Model-based approaches allow for systematic 
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evaluations that would not be feasible experimentally. Models, however, are only as good as the 

parameters that they employ. To advance pharmaceutical fate models, there is a clear need for 

experimentally-determined kinetic parameters, such as oxygen half saturation constants, that 

describe the impact of DO on biotransformation rates. Eventually, with the establishment of 

calibrated kinetic parameters, models can be used to predict the fate of pharmaceuticals in 

emerging and advanced treatment processes and reduce time- and resource-intensive monitoring. 

Integrated treatment performance and ecotoxicity models can be used to advance a technology-

based regulatory framework favoring technologies that reduce pharmaceutical impacts on the 

environment, instead of setting regulations for concentrations of individual compounds (Clouzot 

et al., 2013).   

In addition to direct impacts of DO limitation on pharmaceutical biotransformation rates, 

long-term low DO treatment could indirectly impact pharmaceutical biotransformation by shaping 

the wastewater microbial community or by selecting for microorganisms with greater oxygen 

affinities (Park and Noguera, 2004; Liu and Wang, 2015), and/or modified maximum 

biotransformation rates. WWTPs, which harbor complex assemblages of microorganisms, have 

been used as model systems to study microbial ecology. Ecological theory predicts that limiting 

resources drive competition that, in turn, drives diversification in microbial communities (Huston, 

1994). Mounting evidence, from both macro and microbial ecology suggests a strong positive 

association between biodiversity and ecosystem function (Duffy, 2008; Cardinale et al., 2012). 

The degree to which DO concentration influences biodiversity in WWTPs is not known. A better 

fundamental understanding of how DO shapes wastewater microbial communities and the 

microorganisms involved in pharmaceutical biotransformation will improve our ability to design 

WWTPs that both reduce energy demands and transform pharmaceuticals.  
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1.2 Overview of dissertation 

 This dissertation seeks to advance our understanding of both direct and indirect impacts of 

DO concentration on pharmaceutical biotransformation during wastewater treatment. Chapter 2 

provides background on where and why low DO wastewater treatment is emerging, and how it 

might impact microbial physiology and community structure. It also lays the foundation for how 

we understand both the fate of pharmaceuticals during wastewater treatment, and factors that are 

thought to impact overall pharmaceutical removal, such as nitrification and microbial biodiversity.  

To determine if low DO wastewater treatment causes differences in the extent of 

pharmaceutical removal, an investigation into the fate of six pharmaceuticals in sequencing batch 

reactors operated under different redox conditions was performed (Chapter 3). The results of this 

initial investigation suggest that redox environment is an important variable that defines 

pharmaceutical fate, and motivated subsequent studies focused on identifying mechanisms that 

explain observed differences in pharmaceutical loss under different redox conditions. To tease 

apart direct and indirect impacts of DO concentration on pharmaceutical removal, parent nitrifying 

enrichment bioreactors were operated under low and high DO conditions for over a year.  Batch 

experiments were performed using biomass from each parent reactor under low and high DO 

conditions to measure pharmaceutical biotransformation rates (Chapter 4). By characterizing the 

microbial communities in the parent enrichment bioreactors and performing short-term batch 

kinetic experiments, we were able to discern between direct and indirect impacts of DO on 

biotransformation rates and begin to link microbial community characteristics with enhanced 

biotransformation. Further characterization of the direct impact of DO concentration on 

pharmaceutical biotransformation was performed using biomass from a full-scale wastewater 

treatment plant (Chapter 5). Oxygen half-saturation constants that can be used to model the impact 
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of DO concentration on pharmaceutical biotransformation rates were determined for eight 

pharmaceuticals. In addition, correlations between active phylogenetic groups (based on 16S 

rRNA) and pharmaceutical biotransformation rates were developed and indicated phylotypes that 

might mediate these transformations. The role of nitrifiers, whose activity has been implicated (but 

not proven) to explain enhanced pharmaceutical removal in nitrifier enrichment cultures that 

include heterotrophs (e.g. Tran et al., 2013), and who have been shown to degrade the synthetic 

estrogen 17α-ethinylestradiol more rapidly than heterotrophs (Khunjar et al., 2011), was assessed 

using inhibitors (Chapters 4 and 5).  Chapter 6 followed up on the findings from Chapter 4 and 

directly tested the impact of microbial biodiversity on pharmaceutical biotransformation using a 

dilution to extinction approach. Biotransformation batch experiments combined with sequencing 

of the 16S rRNA gene, 16S rRNA, metagenome, and metatranscriptome were performed to assess 

diversity-function relationships and identify taxa and genes associated with pharmaceutical 

biotransformation. Drawing on these findings, I discuss the impact of this research on the 

wastewater treatment field (Chapter 7).   
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Chapter 2. 

Background 

 
2.1 Low dissolved oxygen wastewater treatment 

 Wastewater treatment plants (WWTPs) in the US consumed over 30 terawatt hours of 

electricity in 2011, and aeration accounted for over half of of the electricity use (Pabi et al., 2013). 

Conventionally, wastewater treatment plants were designed to operate at dissolved oxygen (DO) 

concentrations of 2 mg/L or greater because nitrification performance was thought to be highly 

sensitive to DO limitation. However, mounting evidence has demonstrated that complete and 

stable nitrification can occur at DO concentrations of 0.5 mg/L or less (Hanaki et al., 1990; Park 

and Noguera, 2004; Bellucci et al., 2011), and instabilities in low DO nitrification performance 

can be countered by increasing the solids retention time (SRT) of a system (Liu and Wang, 2015).  

The amount of aeration required in a WWTP is a function of oxygen demand, oxygen 

transfer efficiency, and mixing requirements. Oxygen demand depends on the amount of substrates 

(pollutants and decay products) oxidized. Thus, the amount of biomass produced and decay rate 

can have a major impact on the oxygen demand of a system. A few studies have demonstrated 

reduced biomass decay rates under low DO conditions (< 0.5 mg-DO/L) as compared to fully 

aerobic conditions (> 2 mg-DO/L) (Habermacher et al., 2015; Liu and Wang, 2015). The impact 

of DO concentration on decay rates of heterotrophs and nitrifiers has only been evaluated by a few 

studies and is typically not accounted for in activated sludge models. The endogenous decay 
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coefficient, used to model decay in wastewater treatment models, accounts for loss in cell mass 

due to oxidation of internal storage products for energy required for cell maintenance and death, 

as well as predation by other organisms (Lawrence and McCarty, 1970). Liu and Wang (2013, 

2015) found that long-term low DO treatment selects for nitrifiers with higher oxygen affinities 

and a substantially lower decay rate, and concluded that only a 10% increase in SRT is necessary 

to maintain effluent quality when DO is reduced from 2.0 mg/L to 0.5 mg/L. Previous studies have 

shown that low DO inhibits select protozoan predators, which may also impact the observed decay 

rate and biomass concentration (Madoni, 1993). The oxygen transfer efficiency of a system 

depends on factors such as diffuser design and placement, operational DO concentration, 

temperature, and suspended solids concentration (Tchobanoglous et al., 2003). Reducing the 

operational bulk liquid DO concentration from 2.0 to 0.5 mg-DO/L would result in an increase in 

oxygen transfer efficiency by at least 15% (Tchobanoglous et al., 2003). Thus, reducing 

operational DO concentrations could reduce aeration energy by both reducing oxygen demands by 

selecting for biomass with higher oxygen affinities and reducing decay, and increasing oxygen 

transfer efficiency. However, aeration also provides mixing in activated sludge systems. In the 

winter, the aeration may be driven my mixing requirements as opposed to oxygen demands. Thus, 

additional mixing mechanisms may be necessary if aeration is reduced, which would negate the 

energy benefits of reduced aeration to some degree. 

2.1.1 Applications of low DO wastewater treatment 

Operating under low DO conditions can achieve nitrogen removal in some instances by 

supporting the growth of both nitrifiers and denitrifiers, a process referred to as simultaneous 

nitrification-denitrification (SND) (Daigger and Littleton, 2000; Baek and Pagilla, 2008; Jimenez 

et al., 2011). Many full scale SND systems have demonstrated effective nitrogen removal from 
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domestic wastewater (80 – 90% TN removal) by operating at constant low DO levels (Jimenez et 

al., 2013). Nitrite-shunt processes that stop nitrification at nitrite and prevent the oxidation of 

nitrite to nitrate can also employ low DO environments (Jimenez et al., 2014).   

Wastewater treatment plants increasingly are installing more advanced aeration control 

systems to realize energy savings and meet more stringent effluent nutrient requirements (Jimenez 

et al., 2013; Uprety et al., 2015). Aeration control strategies, such as DO set point based aeration 

control and ammonia based aeration control (ABAC) are two strategies that have been 

implemented in full-scale treatment plants that have resulted in reduced bulk liquid DO 

concentrations and significant treatment plant energy savings (Vrecko et al., 2006; Rieger et al., 

2014). With DO set point control, airflow is controlled via feedback from online DO sensors to 

prevent over-aeration and maintain a set point DO concentration, typically around 2 mg/L. ABAC 

uses both DO and ammonia concentrations as feedback variables to control airflow. In this 

strategy, aeration is controlled around a DO set point that is calculated based on the ammonia 

concentration that is determined in real time using ammonia probes located at the end of the 

aeration tanks. This strategy can enable partial nitrification, in which only a portion of the influent 

ammonia is oxidized, and simultaneous nitrification and denitrification by maintaining the aerobic 

zones at low DO concentrations (typically between 0.5 and 0.8 mg-DO/L (Uprety et al., 2015). 

Full-scale demonstrations of ABAC have reported not only substantial energy savings, but also 

substantial reductions in supplemental carbon usage to achieve effluent TN requirements (Uprety 

et al., 2015).  

2.1.2 Impact of low DO on microbial physiology and community structure 

 DO concentration impacts both microbial physiology and community structure, and 

consequently affects process rates and effluent quality. If acting as a limiting substrate, DO will 
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influence microbial physiology and directly impact the activity of aerobic microorganisms, and 

thus the kinetics of substrate utilization. Monod-type equations are typically used to describe the 

impact of DO concentration on process rates. DO concentration can also shape a WWTP’s 

microbial community structure by selecting for organisms that outcompete in an oxygen-limiting 

environment. For example, long-term low DO operation may select for microorganisms with high 

oxygen affinities over fast growth rates because oxygen scavenging ability dictates their survival 

in a low DO environment (Gudelj et al., 2007). Low DO can also result in oxygen-free niches, 

such as within flocs or granules, and support the growth of anaerobic microorganisms and/or 

increase the activity of anaerobic metabolisms (Hocaoglu et al., 2011). 

 The impact of aeration on enhanced biological phosphorus removal (EBPR), and 

specifically on the competition between polyphosphate accumulating organisms (PAOs) and 

glycogen accumulating organisms (GAOs), has also been studied to understand how energy saving 

strategies affect EBPR performance. A recent study found that low DO treatment could be 

beneficial for EBPR performance because Accumulibacter PAOs have a competitive advantage 

over Competibacter  GAOs at low DO levels due to the PAO’s higher oxygen affinity (Carvalheira 

et al., 2014). Carvalheira et al. (2014) also found that aerobic HRT affected PAO-GAO 

competition, with longer aerobic HRTs resulting in reduced P release and uptake by PAOs, and 

favoring the growth of GAOs. Thus reducing aeration and controlling the aerobic HRT are 

promising strategies that could result in both reduced aeration energy and improvements in EBPR 

performance.  

In addition to phosphorus removal, a substantial amount of research on low DO wastewater 

treatment has focused on nitrification, as nitrifiers have lower oxygen affinities than heterotrophs 

and are thus more sensitive to oxygen limitation. One proposed hypothesis for the impact of 
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oxygen limitation on nitrifying communities is that the community undergoes a physiological, as 

opposed to structural, adaptation to low DO conditions. Arnaldos et al. (2013) observed an 

enhanced expression of a particular heme protein and increased specific oxygen uptake rates in a 

nitrifying enrichment culture adapted to low DO conditions (0.1 mg-DO/L) as compared to a high 

DO enrichment that was operated near saturation.  This suggests that microorganisms may ramp 

up oxygen delivery machinery, such as heme proteins that transport oxygen, in response to oxygen 

limitation.  

Other studies have hypothesized that low DO environments select for nitrifier lineages that 

have high oxygen affinities (Gieseke et al., 2001; Park and Noguera, 2004; Bellucci et al., 2011). 

The results, however, have been conflicting in terms of the specific lineages of AOBs enriched for 

under low DO conditions.  Park and Noguera (2004) reported that the dominant AOBs present 

under low DO conditions (< 0.24 mg/L) were members of Nitrosomonas europaea, whereas 

members of the Nitrosomonas oligotropha lineage were present in the high DO system.  Bellucci 

et al. (2011) also found that the dominant AOB in both their low (0.5 mg/L) and high DO 

enrichments belonged to the Nitrosomonas oligotropha lineage.  Liu and Wang (2013) found that 

long-term low DO conditions enriched for Nitrosomonas europaea/eutropha as the dominant 

AOB.  

It is not clear whether oxygen affinity is the sole trait necessary for thriving in low DO 

environments. Park and Noguera (2007) characterized two AOB isolated from low DO reactors 

and found that the Nitrosomonas europaea strain had a high affinity for oxygen and low affinity 

for ammonia, while the Nitrosomonas oligotropha strain had a low affinity for oxygen and a high 

affinity for ammonia. This suggests that there may be other mechanisms, such as ammonia affinity, 

that allow AOB to persist in low DO environments. In general, Nitrosomonas-type AOB and 
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Nitrobacter-type NOB are thought to be “r” strategists with high specific growth rates and low 

substrate affinities that thrive in low SRT, high substrate conditions (Dytczak et al., 2008). 

Whereas Nitrosopsira-type AOB and Nitrospira-type NOB are thought to be “K” strategists with 

low specific growth rates and high substrate affinities that thrive in low substrate, long SRT 

systems (Schramm et al., 1999; Kim and Kim, 2006; Dytczak et al., 2008). At present, not enough 

is known about the relationship between electron donor and acceptor substrate affinities, or their 

relative importance, to predict how low DO environments select for specific lineages of AOB and 

NOB.  

2.2 Pharmaceutical fate in wastewater treatment 

 Pharmaceuticals are of increasing environmental and public health concern because of their 

widespread detection in the aquatic environment (Hirsch et al., 1999; Zuccato et al., 2000; Kolpin 

et al., 2002) and drinking water sources (Benotti et al., 2008; Focazio et al., 2008), and their threat 

to ecological health (Arnold et al., 2014). Pharmaceuticals are present in influent wastewater 

because we take medications, but only a fraction of what we consume enters our bloodstream. The 

remainder of the ingested chemicals pass through our bodies and are excreted either in intact or 

metabolized forms, primarily in urine (Daughton, 2010). These chemicals then reach wastewater 

treatment plants (WWTPs), where they may be completely mineralized, partially metabolized, or 

pass through unchanged and are released into the environment (Onesios et al., 2009). The microbes 

that we harness to treat wastewater and remove conventional pollutants such as carbon, nitrogen, 

and phosphorus are also capable of transforming many pharmaceuticals during treatment. Thus, 

WWTPs represent an important barrier of entry for pharmaceuticals in the environment. The 

factors that impact the degree that microbes degrade pharmaceuticals are numerous, complex, and 
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interconnected, making it challenging to align the design and operation of WWTPs to maximize 

pharmaceutical transformations.  

 The removal of an individual pharmaceutical compound depends on factors such as its 

molecular properties, influent wastewater composition, and treatment configuration (Khan and 

Ongerth, 2002; Blair et al., 2013). Monitoring of full-scale WWTPs and bench-scale reactor 

studies have generated a substantial body of data describing the fate of a wide range of 

pharmaceuticals in wastewater; however, as new pharmaceuticals are constantly entering the 

market, only a small fraction of all pharmaceuticals have been investigated. Volatilization, 

sorption, and biodegradation are three major pathways that describe the fate of chemicals during 

treatment. Volatilization is expected to be negligible for most pharmaceuticals (Jones et al., 2002), 

and thus sorption to biomass and biodegradation constitute the two primary removal mechanisms 

during treatment. There is a growing body of research focused on predicting removal by sorption 

and biodegradation based on a chemical’s structure, such as via quantitative structure–activity 

relationship (QSAR) models (Khan and Ongerth, 2004). While these models have been 

experimentally validated for some compounds, there are many other environmental factors such 

as redox environment (Ericson, 2007; Stadler et al., 2015), active microbial groups (Tran et al., 

2009), and physical factors such as reactor configuration (Clara et al., 2005a) and solids retention 

time (Clara et al., 2005b), that have been shown to impact removal. 

Where biologically-mediated transformation is the primary loss mechanism for a 

compound, most studies have simply quantified overall removal efficiencies by comparing a 

WWTP’s liquid phase influent and effluent concentrations. It is increasingly apparent that for 

many pharmaceuticals, transformation products (TPs) (conjugated or metabolized forms of the 

parent compound) exist and may even exceed the parent form in both concentration and toxicity 
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in WWTP effluents. For example, oxidation of the antiviral drug acyclovir and its biodegradation 

product carboxy-acyclovir, produces a TP more acutely toxic than its parent form (Prasse et al., 

2012).  TPs complicate our understanding of how treatment conditions affect pharmaceutical fate 

and are a contributing factor for large reported differences in removal of pharmaceuticals across 

WWTPs. In a Viewpoint that was published in Environmental Science & Technology (Stadler et 

al., 2012), we argued that misleading conclusions might arise by describing pharmaceutical fate in 

wastewater treatment in terms of compound "removal."  To more accurately interpret 

environmental data, focus should shift from “removal” as currently used to a comprehensive 

understanding of pharmaceutical fate that incorporates the mechanisms and kinetics of TP 

formation and disappearance. While research on TPs is increasing (e.g. Escher and Fenner, 2011, 

Pérez et al., 2006) and analytical capabilities for detecting and screening for “unknown” TPs are 

improving (Gómez et al., 2010; de Jongh et al., 2012), the research presented in this dissertation 

focuses primarily on the loss of parent compounds. The research would be strengthened by an 

understanding of the formation and further conversion of TPs and thus this represents an area with 

great potential for future research. 

2.2.1 Impact of redox environment on pharmaceutical biotransformation 

Environmental conditions such as redox state influence the biodegradation pathways 

employed by microorganisms.  Oxygen availability impacts the terminal enzymes of the electron 

transport train and the synthesis of enzymes involved in biodegradation (Çinar et al., 2003). Some 

pharmaceuticals can be transformed in aerobic, anoxic, and anaerobic environments; however, 

transformation rates may vary and biotransformation pathways and products will differ based on 

redox environment. The strategy often employed by microorganisms to degrade pharmaceuticals 

in aerobic environments depends on the availability of oxygen as a reactant. Microbial aerobic 
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degradation pathways for substituted and unsubstituted aromatic rings, a structure common to 

many pharmaceuticals, have been studied extensively (e.g. Dagley, 1971; Harayama et al., 1992; 

Hayaishi, 1994). In oxic environments, oxygenase enzymes transform aromatic compounds by 

incorporating one or two oxygen molecules into them, which also enhances their biodegradability 

by other enzymes.  Dihydroxylation, a prerequisite of ring cleavage, can occur by either 

monooxygenase enzymes that add one oxygen atom at a time, or dioxygenase enzymes that add 

two oxygen atoms simultaneously. The resulting catechol can be cleaved by dioxygenase enzymes, 

thereby making the target compound more amenable to further biodegradation via central 

metabolism. In anaerobic environments, aromatic compounds undergo reduction prior to ring 

cleavage.  Central intermediates (e.g. benzoyl-CoA) in anaerobic degradation pathways have 

substituents with an electron-withdrawing effect that enables the transfer of electrons to the ring 

(Fuchs et al., 2011).  In low redox environments, hydroxylation of adjoining carbon atoms is the 

primary mechanism for ring cleavage and degradation of aromatic compounds (Pitter and 

Chudoba, 1990).  However, the nature and location of substituents on aromatic rings can either 

promote or suppress hydroxylation, and therefore a compound’s biodegradability.  While some 

substituents, such as carboxyl and hydroxyl groups, promote ring cleavage, others occupy sites on 

the ring preventing direct hydroxylation or spatially interfere with enzymes that might degrade it 

(Wackett and Ellis, 1999).   

As more monitoring studies of pharmaceuticals in WWTPs are performed, there is an 

emerging body of research on the impact of redox environments relevant to WWTPs on 

pharmaceutical fate.  Most monitoring studies of WWTPs normally only consider influent and 

effluent concentrations of pharmaceuticals, making it difficult to understand the impact of anoxic 

versus aerobic treatment.  Exceptions include Andersen et al. (2003), in which they individually 
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sampled the denitrification and nitrification tanks at a WWTP.  Joss et al. (2004) and Suarez et al. 

(2010) also performed experiments to compare the fate of pharmaceuticals in aerobic and anoxic 

environments.  In general, the studies observed that while some compounds were recalcitrant in 

both aerobic and anoxic environments, the remainder of compounds were transformed at a faster 

rate in aerobic than anoxic environments.  This may be explained by faster growth rates of aerobic 

microorganisms due to greater energy gained from using oxygen as an electron acceptor and 

because many of the compounds may be more amenable to aerobic biodegradation pathways.   

Most studies on aerobic environments in WWTPs have examined oxygen saturated or DO 

> 4 mg/L in the system of interest.  As low DO environments become more commonplace to reduce 

energy demands associated with aeration and reduce effluent nutrient concentrations, there is a 

need to understand the impact of DO on pharmaceutical transformation rates. Prior studies have 

shown that slowly biodegradable aromatic compounds, such as benzene, toluene, o-, m-, and p-

xylene (BTX compounds), are biotransformed equally if not more efficiently in low DO conditions 

in the presence of nitrite or nitrate as compared to oxygen saturated conditions (Ma and Love, 

2001). These results motivate a desire for a deeper understanding of why biotransformation rates 

are faster under low DO environments, whether those impacts are true for all or only a subset of 

compounds, and why. Further, the impact of DO on pharmaceutical transformation by different 

microbial populations (e.g. heterotrophs and nitrifiers) is not well understood. It is possible that 

certain groups of microorganism are more equipped to adapt to low DO conditions, and therefore 

their ability to biotransform pharmaceuticals is less affected by low DO operation. 

2.2.2 Links between nitrification and pharmaceutical biotransformation 

Ammonia oxidizers, which perform the first step of nitrification and use the enzyme 

ammonia monooxygenase (AMO) for catabolism, may play a major role in pharmaceutical 
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biotransformation and contribute to greater observed overall losses of pharmaceuticals at long 

SRTs.  AMO is a fairly nonspecific enzyme and can catalyze the oxidation of a relatively wide 

range of substrates (Arp et al., 2002). Several studies have shown that pharmaceutical 

transformation is enhanced in nitrifying activated sludge systems (e.g. Tran et al., 2009), and have 

implicated the involvement of AMO. Pure culture work has shown the ability of AMO to 

biotransform several pharmaceuticals (Shi et al., 2004; Khunjar et al., 2011; Sun et al., 2012).  For 

example, previous research revealed that AOBs biotransformed 17α-ethinylestradiol (EE2) five 

times faster than heterotrophs (Khunjar et al., 2011). This study and others (Shi et al., 2004; Yi 

and Harper, 2007) suggest that AMO, the enzyme that oxidizes ammonia to hydroxylamine on its 

way to nitrite, is involved in the biotransformation of certain pharmaceuticals, such as EE2.  

For pharmaceuticals that are transformed by AMO cometabolically, both ammonia and 

oxygen are necessary substrates to activate AMO. Previous research showed that AMO is 

regulated by ammonia (NH3) at the transcriptional (Sayavedra-Soto et al., 1996), translational 

(Hyman and Arp, 1995; Stein et al., 1997), and post-translational levels (Stein et al., 1997).  Stein 

et al. (1997) hypothesized that there are two different types of AMO activity in Nitrosomonas 

europaea: the first type is a base level of activity that is insensitive to changes in available 

ammonia concentration and the second type of activity is increased in response to increases in 

ammonia concentration. These types of activity appear to be regulated differently and allow N. 

europaea to respond to fluctuations in ammonia concentrations. Other substrates, such as methane 

which is a competitive inhibitor of ammonia oxidation by AMO (Hyman and Wood, 1983), have 

been shown to preserve AMO activity when ammonium is limiting (Stein and Arp, 1998). The 

impact of pharmaceuticals on the regulation and activity of AMO is not well understood. 

Pharmaceuticals could serve as substrates or competitive inhibitors of AMO.  High concentrations 
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of ammonium have been found to repress co-metabolic transformations of pharmaceuticals by 

AOB (Fernandez-Fontaina et al., 2012). Teasing out the importance of ammonia and oxygen 

availability on pharmaceutical transformation rates by AMO is clearly needed to understand how 

the design and operation of WWTPs may dictate the fate of certain pharmaceuticals. 

While AMO has been linked to the transformation of natural and synthetic estrogens and 

bisphenol A in pure culture experiments (Khunjar et al., 2011; Shi et al., 2004; Sun et al., 2012) 

and of antibiotics, antidepressants, synthetic estrogens, and other pharmaceutical compounds in 

wastewater communities through the use of AMO-inhibitors (Helbling et al., 2012; Khunjar et al., 

2011; Shi et al., 2004; Tran et al., 2009; Yi et al., 2007), other enzymes may be involved and may 

be the primary catalysts of oxidation reactions.  In a study by Helbling et al. (2012), 

biotransformation rates of isoproturon (a herbicide), ranitidine (an antacid), and venlafaxine (an 

antidepressant) were found to positively associate with archaeal amoA expression.  However, in 

experiments where AMO was inhibited, inhibition of pharmaceutical biotransformation was not 

observed for any compounds with the exception of one (isoproturon).  This suggests that while 

greater AMO activity may be indicative of environments capable of enhanced biotransformation, 

other microbial processes are responsible or are major contributors to catalyzing transformations. 

In wastewater microbial communities both heterotrophs and nitrifiers may contribute to 

biotransformation reactions, as has been demonstrated for 17α-ethinylestradiol (Khunjar et al., 

2011) and tetrabromobisphenol A (a flame retardant, Li et al., 2015), thus their removal may be 

enhanced in a nitrifying system. 

2.2.3 Links between biodiversity and pharmaceutical biotransformation 

 The microbial communities present in WWTPs are a complex assemblage of bacteria, 

archaea, eukaryote (protozoa and fungi), and viruses. The biomass is primarily comprised of 
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bacteria, which are extremely diverse and play an important role in the removal of traditional 

pollutants such as carbon, nitrogen, and phosphorus, as well as emerging contaminants such as 

pharmaceuticals and personal care products. Advances in sequencing technologies and analytical 

tools has propelled our knowledge of the microbial groups and vast diversity of the 

microorganisms present in WWTPs. In a survey of 10 full-scale WWTPs, taxonomic richness was 

found to differ by 4- to 6-fold among the treatment systems (Johnson et al., 2014). Solids retention 

time (SRT) has been shown to have a strong correlation with the capacity of a WWTPs to remove 

micropollutants (Clara et al., 2005b). This observation may be explained by the fact that longer 

SRTs support the growth of slower growing organisms, resulting in more diverse microbial 

communities. Differences in microbial community biodiversity is one factor that may explain wide 

ranges of observed pharmaceutical removal efficiencies across WWTPs.  

The relationship between microbial biodiversity and ecosystem function is an area of 

considerable research and debate in ecology. Microbial model systems have been commonly used 

to study this phenomenon (Cook et al., 2006; Franklin and Mills, 2006; Peter et al., 2010; Levine 

et al., 2011). Many decades of research in ecology has demonstrated a positive relationship 

between biodiversity and ecosystem functioning (Cardinale et al., 2012). If many different taxa 

present in the community perform the same function but occupy different niches, resulting in 

complementary effects, this would result in a positive relationship between richness and process 

rates. A positive relationship between diversity (or richness) and process rates would also emerge 

if facilitative interactions between different species occurred; for example, if the presence of one 

taxa enhances the activity of another taxa (e.g. via detoxification or producing limiting-nutrients). 

Levine et al. (2011) studied soil microbial communities and found that for narrow processes, i.e. 

processes performed by few species, (e.g., methanotrophy), increased diversity resulted in 
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increased functionality (process rate). Conversely, for broad processes such as denitrification, 

increased diversity did not positively associate with process rates because many functionally 

redundant populations coexist to perform denitrification.  

In wastewater treatment systems, there are thousands of different pharmaceutical 

compounds and a vast number of mechanisms for their biodegradation. Substantial research has 

advanced our knowledge of pharmaceutical biotransformation pathways (Ellis et al., 2006), but 

few studies have linked chemical transformation data with microbial ecology to develop predictive 

relationships between the characteristics of the microbial community and pharmaceutical 

biotransformation pathways and rates. In a previous study of 10 full-scale WWTPs, a positive 

association between biodiversity and some, but not all, micropollutants was observed (Johnson et 

al., 2015). The relationship between biodiversity and an individual compound’s biotransformation 

rate is a function of whether its biotransformation is a narrow or broad process. We lack an 

understanding of which pharmaceutical biotransformations are broad processes catalyzed by 

highly redundant populations, and which are narrow processes performed by rare taxa. By 

advancing our knowledge of the specific taxa and enzymes that catalyze pharmaceutical 

biotransformation and the environmental factors that influence their abundance and activity, we 

will be able to exploit opportunities for enhancing biotransformation during wastewater treatment. 
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Chapter 3. 

Effect of redox conditions on pharmaceutical loss during biological 
wastewater treatment using sequencing batch reactors 

 

Reprinted with permission from (Lauren B. Stadler, Lijuan Su, Christopher J. Moline, Alexi S. 
Ernstoff, Diana S. Aga, and Nancy G. Love, Effect of redox conditions on pharmaceutical loss 
during biological wastewater treatment using sequencing batch reactors, Journal of Hazardous 
Materials, 2015, 282, 106 – 115), Copyright (2015) American Chemical Society. 
 

3.1 Introduction 

Concerns are rising due to the widespread detection of pharmaceuticals in the aquatic 

environment (Heberer, 2002; Kolpin et al., 2002; Vieno et al., 2005; Metcalfe et al., 2010). There 

is evidence that very low concentrations of pharmaceuticals, similar to those found in wastewater 

treatment plant (WWTP) effluents, disrupt fish behavior and may collapse entire ecosystems (Kidd 

et al., 2007; Brodin et al., 2013). Biologically active pharmaceuticals enter water bodies by way 

of WWTPs that are not designed or regulated to remove such compounds. During wastewater 

treatment, pharmaceuticals have various fates; they may be involved in abiotic or biotic reactions 

to form transformation products (TPs) or be mineralized completely to carbon dioxide, sorb to 

biosolids, or pass through unaltered. While WWTPs represent an entry point for the environmental 

proliferation of pharmaceuticals (Golet et al., 2002; Kolpin et al., 2002; Giger et al., 2003; Metcalfe 

et al., 2003; Ternes et al., 2004; Vieno et al., 2006), they are also a last line of defense against 

environmental release. There is a clear need to understand the effect of WWTP process parameters 
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on pharmaceutical fate in order to mitigate the proliferation of these compounds in the 

environment. 

Reported pharmaceutical removal efficiencies in WWTPs vary widely in the literature.  For 

a given pharmaceutical, there is a large suite of potential TPs formed in the human body, sewer 

system, or during treatment that often is not considered and consequently complicate removal 

efficiency metrics. For this reason, the disappearance of a parent compound herein is referred to 

as “loss” as opposed to “removal”. TP concentrations can exceed that of the parent compound in 

WWTP influent and/or effluent, and result in the reformation of the parent compound during 

treatment (Plósz et al., 2010; Griffith et al., 2014). Accounting for TPs is imperative to improving 

our understanding of pharmaceutical fate during wastewater treatment and developing 

technologies that enable mineralization or conversion to stable and benign TPs (Stadler et al., 

2012).  

In order to harness WWTPs to mitigate the loading of pharmaceuticals on the aquatic 

environment, a better understanding of how WWTP process design and operation impact parent 

compound and TP loss is needed. To date, studies have investigated the impact of hydraulic 

residence time (HRT), solids residence time (SRT), and temperature on pharmaceutical loss 

(reviewed by Cirja et al. (2008)), but few studies have directly investigated the impact of redox 

environment. As energy conservation strategies and more stringent regulations on effluent nutrient 

concentrations are enacted, it is likely WWTPs will increasingly employ a range of redox 

environments beyond conventional aerobic processes. Energy consumption can be reduced by 

adopting controls to minimize aeration and dissolved oxygen (DO) set points (Flores-Alsina et al., 

2011). Low DO treatment strategies (DO < 1 mg/L; hereafter referred to as microaerobic) may 

offer other advantages such as nitrogen removal (Collivignarelli and Bertanza, 1999; Daigger and 
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Littleton, 2000; Baek and Pagilla, 2008; Jimenez et al., 2011). In general, faster degradation rates 

have been observed for pharmaceuticals and other trace organic compounds transformed under 

aerobic conditions than anoxic or anaerobic conditions (Joss et al., 2004; Suarez et al., 2010) with 

a few notable exceptions such as certain refractory compounds (Hai et al., 2011). A better 

understanding of how redox conditions impact biodegradation pathways and rates is needed to 

predict pharmaceutical fate during wastewater treatment.  

The objective of this work was to determine the extent of pharmaceutical transformation 

under various redox environments common to wastewater treatment processes. Sequencing batch 

reactors (SBRs) were operated in the lab to treat local domestic wastewater under different redox 

conditions: fully aerobic, anoxic/aerobic, and microaerobic conditions. Carbon and nitrogen 

removal was characterized in each SBR because understanding reactor performance is important 

to understanding pharmaceutical fate as the physiological and metabolic state of the microbial 

community can influence the degree and types of biotransformations that occur. Six 

environmentally relevant pharmaceuticals and several TPs were monitored in the influent, across 

the reaction cycle, and in the effluent of each SBR to characterize their transformation during 

treatment. As real time aeration control is implemented and microaerobic treatment strategies 

become more commonplace for saving energy and achieving nutrient removal (Åmand et al., 

2013), the impact of DO concentration on pharmaceutical biotransformation must be considered, 

particularly if tradeoffs exist between energy efficiency gains and pharmaceutical loss. 
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3.2 Methods 

3.2.1 Sequencing batch reactors (SBRs) 

Four SBRs were operated in the laboratory for 351 days to examine the impact of redox 

environment on pharmaceutical fate during wastewater treatment. Each SBR had a working 

volume of 1.8 L and was inoculated with activated sludge collected from the aeration basin of a 

local domestic WWTP that operates an anoxic/aerobic process without recirculation and at an 

average SRT of 8 days. Each reactor had an SRT of 10 days and HRT of 24 hours. SRT was 

controlled by manually wasting mixed liquor, with consideration given to reactor effluent total 

suspended solids (TSS). The reactors were operated with an 8-hour cycle where one third of the 

reactor liquid volume was decanted after solids settling at the end of each cycle. The cycle 

consisted of four periods: 6 minute fill; 7 hour-24 minute reaction; 25 minute settle; and 5 minute 

decant. The influent to the reactors was primary effluent collected weekly from the WWTP. 

Primary effluent was frozen at -18 °C and thawed prior to use. Due to weekly variation and 

relatively dilute primary effluent (averaged approximately 150 mg-COD/L), it was supplemented 

with additional substrate in the form of acetate, glycerol, and yeast extract (equal parts as COD) 

and additional nutrients in the form of ammonia chloride and a trace elements solution (Table A1, 

Appendix A). Upon collection, primary effluent was analyzed for organic carbon and ammonium 

in order to determine the nutrient additions required to reach final concentrations of 250 mg-

COD/L and 25 mg-NH4-N/L. The concentrations of carbon, nitrogen, and pharmaceuticals in the 

reactors at the beginning of the reaction period were calculated based on their concentration in the 

effluent at the end of the previous cycle (which made up 1/3 of the reactor volume) and the 

concentrations in the influent (making up the remaining 2/3 of the reactor volume). pH was 

controlled at 7.5 ± 0.1 in each reactor via automated base addition (30 mg/L sodium bicarbonate). 
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Aeration was controlled to achieve the desired redox conditions in each reactor. The 

anoxic/aerobic reactor (reactor A) was aerated only during the second half of the reaction period, 

to a DO concentration greater than 2 mg/L. The fully aerobic reactor (reactor B) was constantly 

aerated to maintain a DO concentration greater than 2 mg/L. The microaerobic reactors (reactors 

C and D) were operated and controlled to maintain an average DO concentration of approximately 

0.30 mg/L. This was achieved via real-time feedback from optical DO probes (Orion RDO® Pro, 

In-Situ Inc.) that controlled the aerators. Reactors C and D were controlled slightly differently: 

microaerobic reactor C was operated so that DO fluctuated ± 0.10 mg/L around 0.30 mg/L, and 

microaerobic reactor D was operated so that the DO averaged 0.3 mg/L but fluctuated between 

0.01 and 0.60 mg/L. The redox condition in the reactors was also monitored using an oxidation 

reduction potential (ORP) probe (Van London-Pheonix Co.).  

3.2.2 Water quality analyses 

Standard water quality parameters were used to characterize reactor influent and effluent 

and overall reactor performance. Reactor total and volatile suspended solids (TSS and VSS) were 

determined weekly according to Standard Methods (2005). Twice weekly effluent samples were 

analyzed for soluble and total chemical oxygen demand (sCOD and COD), dissolved organic 

carbon and non-purgeable dissolved organic carbon (DOC and NPOC), ammonium, nitrite, nitrate, 

and total nitrogen. Samples were filtered through 0.45 μm nitrocellulose filters prior to analysis of 

soluble chemicals. Reactor performance results are based on samples collected over the last 140 

days of operation, which corresponds to when samples were collected for pharmaceutical analysis. 

In addition to influent and effluent samples, samples were collected across the reaction cycle in 

each reactor to characterize if and when during the reaction period carbon oxidation, nitrification, 

and denitrification occurred. 
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3.2.3 Selection of pharmaceuticals 

The following compounds were selected for evaluation in this study: atenolol (a beta-

blocker), venlafaxine and desvenlafaxine (antidepressants), phenytoin (an anticonvulsant), 

trimethoprim (an antibiotic), and sulfamethoxazole (an antibiotic). These compounds were 

selected based on their prevalence in WWTP effluents, potential for environmental impact, 

structural characteristics, and reported low sorption to biomass (e.g., biotransformation is the 

primary loss mechanism) (Table 3-1). Preliminary experiments were performed to verify low 

sorption to biomass (Love et al., 2012), and results were consistent with reported literature 

findings. Compounds were not artificially supplemented in experiments; rather, all experiments 

were performed using local domestic wastewater and compounds were present at endogenous 

concentrations. Therefore, the pharmaceutical selection was in part based on what compounds 

could be detected at endogenous concentrations in local primary effluent, which served as influent 

to the reactors.  In addition to the compounds listed above, TPs of sulfamethoxazole and 

desvenlafaxine were also screened for. Specifically, acetyl-sulfamethoxazole and 

sulfamethoxazole-glucuronide, conjugated forms of sulfamethoxazole, and desvenlafaxine-

glucuronide, a conjugated form of desvenlafaxine, were quantified in select influent, effluent, and 

reactor samples. 
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Table 3-1. Target pharmaceuticals and transformation products under Investigation: Structure, Properties, and Wastewater Concentration(Kow – 
octanol-water partition coefficient; Kd – solid-liquid partition coefficient; pKa – acid dissociation constant; TP – transformation product; NF – not 

found).  

aGros et al., 2006; bScheurer et al. 2010; cStevens-Garmon et al., 2011; dRadjenović et al., 2009; eCarballa et al., 2008; fShaver et al., 2011; gRosal et al., 2010; 
hLajeunesse et al., 2012; iBalasubramaniam et al., 2008; jNi et al., 2002

Chemical Structure Use log Kow log Kd pKa 
WWTP Primary Effluent 

Incidence Concentration  [ng/L] 

Atenolol 
 

Beta-blocker 0.16a  0.5b 9.6a 1,630 ± 560 
(n=9) 

Trimethoprim 

 

Antibiotic 0.91a 2.2-2.6c, d 7.1a 500 ± 120 
(n=9) 

Sulfamethoxazole 

 

Antibiotic 0.89a <2.17e 6.0a 1,430 ± 290 
(n=9) 

Acetyl-
sulfamethoxazole 

 
Antibiotic TP NF NF NF 1,680 ± 100 

(n=3) 

Sulfamethoxazole-
glucuronide 

 

Antibiotic TP NF NF NF 140 ± 40 
(n=3) 

Desvenlafaxine 

 

Antidepressant  
(drug & TP) 0.74f 1.8-2.26h 9.7f 890 ± 250 

(n=9)  

Venlafaxine 

 

Antidepressant 0.43- 0.87f, g 2.30-3.17h 9.4i 370 ± 120 
(n=7)  

Desvenlafaxine-
glucuronide 

 

Antidepressant TP N.F. N.F. N.F. 190 ± 90 
(n=7) 

Phenytoin 

 

Antiepileptic 2.47j 1.51-1.91c  8.33j 70 ± 10 
(n=7) 
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3.2.4 Sampling campaigns 

Seven distinct sampling campaigns were performed on separate days over a four month 

period. These sampling events involved quantifying concentrations of the monitored compounds 

in the influent and effluent of each SBR to calculate each compound’s overall percent loss, defined 

as (influent concentration – effluent concentration)/(influent concentration)*100%. A Student’s t-

test was used to determine whether the percent loss of each compound based on the seven sampling 

campaigns was significantly different between reactors. Probability (p) values less than 0.05 were 

considered significant. In addition to influent and effluent sampling, four cross-cycle sampling 

events were performed in which samples were collected at different time points during the reactors’ 

cycles. These were performed to understand patterns of transformation during the 8-hour reaction 

cycle. 

3.2.5 Sample preparation and LC/MS/MS analysis  

Samples were concentrated prior to pharmaceutical concentration quantification using 

solid phase extraction (SPE) in order to detect endogenous concentrations present in wastewater 

samples. Extraction volumes were optimized using the matrix of the samples being analyzed. Prior 

to SPE, samples were filtered through a 0.45 µm nitrocellulose filter. Oasis® HLB cartridges (500 

mg, 6 mL, Waters Corp., Milford, MA) were used for SPE. Cartridges were pre-conditioned with 

6 mL LC/MS-grade acetonitrile (Sigma-Aldrich, St. Louis, MO), followed by 6 mL water. 

Samples were loaded on the SPE cartridges and drawn through by vacuum pressure at 

approximately 4 mL/min. After loading, the cartridges were rinsed with 6 mL of 5% HPLC-grade 

methanol (Honeywell B & J, Muskegon, MI) in water and allowed to dry on a vacuum manifold 

(Supelco Visiprep TM, Sigma-Aldrich, St. Louis, MO) for 30 min. Cartridges were stored at -20 
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°C prior to elution. To unload the target analytes, the cartridges were eluted with 8 mL LC-MS 

grade acetonitrile. Each eluent was collected in a pre-cleaned, baked 10 mL graduated tube, and 

was evaporated to 0.1 mL under a stream of nitrogen gas at 35°C. Then, 100 µL of methanol was 

added and vortexed to recover the very lipophilic compounds. Samples were reconstituted in water 

to a final sample volume of 1 mL.  

Isotope dilution was used to correct for any losses that may have occurred during SPE and 

quantify the compounds while accounting for matrix effects inherent to wastewater samples. 

Specifically, nitrocellulose membrane-filtered samples were supplemented with 50 µL of a 

surrogate standard mixture containing 1 mg/L of deuterated analogs of the target compounds 

(Table A2, Appendix A) prior to SPE. After LC/MS/MS analysis, target compounds were 

quantified by using the ratio of the signal of the deuterated surrogate and the signal of the target 

analyte to calculate the concentration of the analyte in the sample. Acetyl-sulfamethoxazole and 

sulfamethoxazole-glucuronide were quantified using an external calibration curve using standards 

of acetyl-sulfamethoxazole and sulfamethoxazole-glucuronide (Toronto Research Chemicals, 

Inc.), as no deuterated surrogates of these compounds were added to the samples prior to SPE. 

This method likely underestimates the concentrations of the compounds in samples as there is no 

correction for losses during SPE. d6-Desvelanfaxine was used to quantify desvenlafaxine-

glucuronide using isotope dilution. 

Analysis of pharmaceutical compounds was performed on an Agilent 1100 HPLC coupled 

with Agilent triple quadruple Mass Spectrometry, MSD 6410 (Palo Alto, CA). Separation was 

achieved on a Thermo Scientific BetaBasic-18 C18 2.1 × 100 mm, 3-µm particle size column and 

a guard column with the same material (Fullerton, CA). A 10 µL sample was injected at the 

beginning and a gradient of water with 0.3% formic acid and acetonitrile was used to elute all 
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compounds with minimal overlap (gradient details provided in the SI). The total run time for one 

sample was 21 min at a flow rate of 0.2 mL/min.  

Ionization was achieved by positive electron spray ionization (ESI), using a spray voltage 

of 4 kV situated at a 90° angle to the entrance. Drying gas temperature was set as 350 °C, nebulizer 

pressure (N2) as 22 psi and drying gas flow rate as 11 L/min to achieve the highest sensitivity. All 

compounds were monitored at positive ESI mode by using two product ions in multiple reaction 

monitoring. The fragmentor and collision energy were tuned for each specific analyte to achieve 

the optimum signal-to-noise ratio (Table A2, Appendix A). All data were collected and processed 

using the Agilent Technologies MassHunter Software Version B (Palo Alto, CA).  

3.3 Results and discussion 

3.3.1 Reactors achieved stable carbon removal and nitrification 

All reactors achieved stable carbon oxidation and there were no significant differences in 

carbon removal performance (p > 0.2 in all comparisons), which averaged 93 ± 2% sCOD removal. 

Cross-cycle sampling indicated that NPOC was consumed rapidly in the first 30 minutes in all 

reactors (data not shown). Mixed liquor suspended solids concentrations were similar in all 

reactors and averaged 1,125 ± 93 (anoxic/aerobic), 951 ± 176 (aerobic), 1,038 ± 188 (microaerobic 

C), and 1,053 ± 200 (microaerobic D) mg/L. While low DO operation has been associated with 

poor settleability and high effluent solids (Wilén and Balmér, 1999; Martins et al., 2003), we did 

not observe any detrimental impacts on settleability in the microaerobic SBRs resulting from the 

presence of filamentous bacteria. In fact, lower effluent solids were observed in the microaerobic 

SBRs (reactor C and D effluent TSS averaged 8 ± 4 and 5 ± 2 mg/L, respectively), as compared to 

the aerobic reactor (13 ± 6 mg/L) and the anoxic/aerobic reactor (11 ± 4 mg/L). The microaerobic 

reactors also had the highest average sludge volume index (111 ± 23 and 99 ± 21 ml/g, respectively 
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for C and D), although the values were still within a range considered typical of good settleability 

(Tchobanoglous et al., 2003). The reactors were operated as SBRs, and therefore achieved a 

concentration gradient across the reaction cycle which allowed for floc formers to sequester most 

of the organic carbon and prevent the proliferation of filamentous organisms, similar to how a 

selector functions (Chudoba et al., 1973).  A study on full-scale and lab-scale systems that used 

low DO treatment found that limited filamentous bulking resulted in lower effluent suspended 

solids than conditions with no bulking (Guo et al., 2010). These results suggest that DO control 

and appropriate management of filamentous bacterial growth, substantial energy savings are 

possible by reducing DO levels while still achieving water quality goals typical for secondary 

effluents. 

Complete and stable nitrification was also achieved in all SBRs. Cross-cycle sampling 

showed that nitrification (based on ammonia removal) was complete within 4 hours in the aerobic 

and microaerobic reactors (Figure 3-1). Denitrification was discerned through total nitrogen loss 

and occurred in the anoxic/aerobic and microaerobic reactors, which had average effluent total 

nitrogen concentrations of 10.0 + 0.9 mg-N/L and 18.8 + 3.6 mg-N/L primarily as nitrate, 

respectively. These levels were considerably less than the average effluent total nitrogen 

concentration in the aerobic-only reactor, which averaged 25.7 ± 2.3 mg/L as N, primarily as 

nitrate. For the first 30 minutes after the influent feed was added, both microaerobic reactors (C & 

D) experienced an initial phase where the DO concentration was below detection (< 0.01 mg/L) 

despite aeration throughout the period, during which carbon was being consumed. After the initial 

phase, the microaerobic reactors were maintained in low DO conditions, averaging 0.30 mg/L. 

Cross-cycle sampling of the microaerobic reactors demonstrated that denitrification occurred 

during that initial phase, as opposed to throughout the cycle (Figure 3-1). Overall total nitrogen 
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removal averaged 74 ± 3%, 26 ± 1%, 45 ± 8% and 44 ± 7% in the anoxic/aerobic A, aerobic B, 

microaerobic C and microaerobic D reactors, respectively. No significant difference in nitrogen 

removal was observed between the microaerobic C and D reactors despite the larger DO 

fluctuations in reactor D.  

 

Figure 3-1. Representative cross-cycle profile of nitrogen species in each reactor (r). rA – anoxic/aerobic 
SBR; rB – aerobic SBR; rC and rD – microaerobic SBRs. TIN – total inorganic nitrogen; TN – total 

nitrogen. 

 

Conventional nitrifying activated sludge WWTPs typically operate at bulk DO 

concentrations of greater than 2 mg/L to ensure complete nitrification and stable nitrifying 

populations (WEF, 2008). This study, as well as several others (Park and Noguera, 2004; Bellucci 
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et al., 2011; Arnaldos et al., 2013; Liu and Wang, 2013), demonstrates that stable nitrification is 

possible at substantially lower DO concentrations than are typically found in nitrifying WWTPs. 

WWTPs can achieve low DO concentrations at high oxygen transfer efficiencies by operating at 

reduced air flow rates (Tchobanoglous et al., 2003), offering the potential for considerable aeration 

energy savings. Advances in blower technologies, aeration control programs, and online sensors 

has enabled many WWTP to implement aeration control and achieve energy savings (e.g. Åmand 

and Carlsson, 2013; Flores et al., 2013, reviewed by Åmand et al. (2013)) and can further support 

stable, low DO operation. While low DO treatment may save energy during aeration, it can also 

increase nitrous oxide (N2O) emissions from both nitrifier denitrification and heterotrophic 

denitrification (Chandran et al., 2011). Therefore, low DO operating conditions offer tradeoffs 

between reduced energy demand for aeration and the potential for reasonable pharmaceutical 

transformation versus greenhouse gas emissions.  

Low DO treatment has an added benefit of achieving greater nitrogen removal as compared 

to fully-aerobic conventional activated sludge processes that only achieve nitrification. Many full 

scale simultaneous nitrification-denitrification (SND) systems have demonstrated effective 

nitrogen removal from domestic wastewater (80-90% TN removal) by operating at constant low 

DO levels between 0.25-0.5 mg/L (Jimenez et al., 2013). SND activity and nitrogen removal 

performance depends on a number of factors, such as the influent carbon to nitrogen (C:N) ratio, 

bulk DO concentration, bioreactor configuration and mixing (macro environment), and floc size 

(micro environment) (Pochana and Keller, 1999; Daigger and Littleton, 2000; Littleton et al., 2003; 

Ju et al., 2007; Jimenez et al., 2010). It is likely that the aeration or feeding process could have 

been optimized to encourage floc formation and improve overall nitrogen removal in the 

microaerobic SBRs.  
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3.3.2 Atenolol loss was highest with aerobic treatment 

The greatest degree of loss was observed for atenolol in all treatment conditions as 

compared to the other compounds studied (Figure 3-2). The greatest loss of atenolol was observed 

in the aerobic (89 ± 13%), followed by the microaerobic (73 ± 10%, average of both reactors), and 

then the anoxic/aerobic SBR (63 ± 20%). Atenolol losses were significantly different between the 

aerobic and anoxic/aerobic SBR (p = 0.019) and between the aerobic and microaerobic SBRs (p = 

0.043). However, losses of atenolol in the anoxic/aerobic and microaerobic SBRs were not 

significantly different from each other (p = 0.25). Based on cross-cycle monitoring, atenolol loss 

occurred during both anoxic and aerobic periods of the cycle to a similar extent (no significant 

differences based on three cross-cycle sampling campaigns, Figure A1, Appendix A).  

Reported losses of atenolol across treatment plants vary widely in the literature. Miège et 

al. (2009) reported an average loss of approximately 10 ± 5% for atenolol based on the results of 

29 different studies. While this average is significantly lower than our findings, a number of other 

studies not included in the Miège et al. study have also reported considerably greater losses. 

Radjenovic et al. (2009) examined a full-scale conventional activated sludge treatment plant and 

a pilot-scale membrane bioreactor system and reported losses of 61% and 73%, respectively. 

Similarly, Kasprzyk-Hordern et al. (2008) also reported losses in the range of 70 to 80% for 

atenolol for systems with trickling filters and activated sludge. Two studies also observed atenolol 

loss in anoxic environments, such as in a constructed wetland treating wastewater effluent (Park 

et al., 2009) and laboratory-scale SBRs treating municipal wastewater (Carucci et al., 2006). We 

observed the highest loss of atenolol in the aerobic SBR, and also observed substantial losses in 

the microaerobic SBRs and anoxic/aerobic SBR. While significant loss was observed in all 
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reactors (averaged 75 ± 11% in all SBRs), our results suggest that aerobic conditions are more 

favorable for atenolol transformation than anoxic or microaerobic conditions. 

 

Figure 3-2. Overall percent losses of pharmaceuticals in each reactor (n=7), where negative percent loss 
refers to higher concentrations observed in effluent than influent (*statistically different from other 

reactors (p-value < 0.05)) 

 

3.3.3 Limited trimethoprim loss was observed under all conditions 

Trimethoprim was not significantly removed in any SBR, with percent losses of < 10% in 

all reactors except the aerobic reactor, which had an average loss of 19.9 ± 10%. Pairwise t-test 

comparisons between different redox environments indicated that loss of trimethoprim was 

significantly different between the aerobic and anoxic/aerobic SBR (p = 0.019) and significantly 

different between the aerobic and microaerobic SBRs (p = 0.027). Loss of trimethoprim in the 

anoxic/aerobic and microaerobic SBRs were not significantly different from each other (p = 0.74).  

There are large variations in reported losses for lab, pilot, and full-scale treatment systems. 

Laboratory batch studies showed minimal to no significant loss in aerobic environments and 

concluded that trimethoprim is not readily aerobically biodegradable (Alexy et al., 2004; Carucci 
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et al., 2006). Conversely, several other studies reported significantly greater losses (40 to 85%) in 

full-scale aerobic WWTPs (Karthikeyan and Meyer, 2006; Batt et al., 2007; Watkinson et al., 

2007; Radjenović et al., 2009). Another set of studies observed negative loss across full-scale 

treatment processes, with losses between -60% and -4%, likely due to deconjugation reactions that 

resulted in the reformation of the parent compound (Lindberg et al., 2006; Gulkowska et al., 2008; 

Plósz et al., 2010). The link between nitrification and trimethoprim is still unclear; Batt et al. (2006) 

observed enhanced biodegradation of trimethoprim in nitrifying activated sludge but did not clarify 

the role of nitrifiers versus heterotrophic bacteria; however, in a later study, limited to no 

transformation of trimethoprim by pure cultures of Nitrosomonas europaea was observed (Khunjar 

et al., 2011). In the present study, complete nitrification occurred in all SBRs, further indicating 

no explicit link between nitrification and trimethoprim biodegradation. The highest observed loss, 

albeit low, was in the fully aerobic SBR, suggesting aerobic environments are most favorable for 

trimethoprim transformation, but not necessarily due to nitrifier activity.  

3.3.4 Sulfamethoxazole loss was highest in microaerobic treatment and TPs resulted in 

reformation of sulfamethoxazole 

Sulfamethoxazole, an antimicrobial commonly detected in wastewater effluents and 

surface water (Hirsch et al., 1999; Kolpin et al., 2002; Batt and Aga, 2005), was the only compound 

for which we observed significantly higher loss in the microaerobic SBRs than the fully aerobic 

(p = 0.019) and anoxic/aerobic SBRs (p = 0.044). Differences in sulfamethoxazole loss were not 

significantly different between the aerobic and anoxic/aerobic SBRs (p = 0.51). Reported WWTP 

losses for sulfamethoxazole range greatly from -138% to 96% (Carballa et al., 2004; Lindberg et 

al., 2005; Karthikeyan and Meyer, 2006; Batt et al., 2007; Watkinson et al., 2007; Radjenović et 

al., 2009; Plósz et al., 2010), but only a fraction of the studies explicitly state the redox 
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environments used in the treatment processes studied (Table 3-2). Regarding the effect of redox 

conditions, a previous study by Hai et al. (2011) investigated the fate of sulfamethoxazole in 

microaerobic (DO = 0.5 mg/L) and fully aerobic (DO > 2 mg/L) membrane bioreactors and found 

comparable biodegradation irrespective of DO concentration. A limited number of studies have 

also observed biodegradation of sulfamethoxazole in anoxic environments (Park et al., 2009; Plósz 

et al., 2009). Plósz et al. (2009) found comparable biodegradation rates of sulfamethoxazole in 

aerobic and anoxic batch experiments using primary effluent and activated sludge. Our results 

suggest that microaerobic treatment may be advantageous over fully aerobic treatment for the 

biodegradation of sulfamethoxazole. Enhanced loss of sulfamethoxazole under microaerobic 

conditions may occur because the conditions support both aerobic and anoxic metabolisms, 

potentially allowing for multiple transformation pathways and rendering the compound more 

biodegradable. Further research is needed to understand likely biodegradation pathways and the 

redox conditions that enable them.  
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Table 3-2. Losses in aerobic, anoxic/aerobic, and microaerobic treatment determined in this study alongside reported literature values  
(MLE = Modified Ludzack-Ettinger; BNR = biological nutrient removal; CAS – conventional activated sludge; NF = not found). 

 
 Experimental Results Loss (%) Literature Results Loss (%) 

 Anox/aer 
(A) 

Aerobic 
(B) 

Microaerobic 
(avg. of C & D) 

Anox/aer 
(i.e. MLE or other 

BNR) 

Aerobic  
(i.e. CAS) Microaerobic 

Atenolol 63 ± 20 89 ± 13 73 ± 10 36-76a,b <10-81b,c,d,e,f,g NF 

Trimethoprim 3.4 ± 14 21 ± 10 5.8 ± 13 -20-60h -42-97a,i,j,k,l,m,n NF 

Sulfamethoxazole 35 ± 19 38 ± 17 62 ± 18 -138-60h -24-96a,j,l,m,n,o,p 65q 

Venlafaxine-family -5.3 ± 16 0.1 ± 12 -4.7 ± 12 -91-80r -142-56s,t,u,v,w NF 

Phenytoin -5.6 ± 20 -3.1 ± 10 -14 ± 32 44x ~0y NF 

aMaurer et al., 2007, bCarucci et al., 2006; cRadjenović et al., 2009, dCastiglioni et al., 2006; eKasprzyk-Hordern et al., 2009; fBehera et al. 2011; gPaxeus et al., 2004; hPlósz et al., 
2010; iGulkowska et al., 2008; jLindberg et al., 2005; kLindberg et al., 2006; lBatt et al., 2007; mKarthikeyan et al., 2006; nGöbel et al., 2007; oCarballa et al., 2004; pWatkinson et 
al., 2007; qHai et al., 2011; rGasser et al., 2012; sMetcalfe et al., 2010; tGracia-Lor et al., 2012; uRua-Gomez et al., 2012; vLajeunesse et al., 2012; wKasprzyk-Hordern et al., 2010; 
xYu et al., 2006; yGerrity et al., 2011 
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Reported negative losses in published studies are likely due to deconjugation of conjugated 

sulfamethoxazole compounds commonly detected in urine and raw wastewater. Cross-cycle 

sampling revealed that sulfamethoxazole formation occurred during treatment (Figure A2, 

Appendix A). This observation is likely explained by the presence of TPs of sulfamethoxazole in 

the reactor influent that deconjugated to reform sulfamethoxazole during the reaction cycle. After 

ingestion, sulfamethoxazole is excreted by humans in both its parent form as well as the conjugated 

forms acetyl-sulfamethoxazole and sulfamethoxazole-glucuronide, which can comprise 45% and 

9 to 15% of the total excreted dose of sulfamethoxazole, respectively (van der Ven et al., 1994, 

1995). Acetyl-sulfamethoxazole has been detected in wastewater influents (Hilton and Thomas, 

2003; Göbel et al., 2005), and it readily deconjugates to reform sulfamethoxazole (Radke et al., 

2009; Hai et al., 2011).   

To investigate the presence of acetyl-sulfamethoxazole and sulfamethoxazole-glucuronide 

in reactor influent and cross-cycle samples, several samples from three different dates were 

selected for quantification of the compounds. Influent and cross-cycle samples were selected based 

on when significant increases in sulfamethoxazole were observed. Acetyl-sulfamethoxazole and 

sulfamethoxazole-glucuronide were detected in the influent in all samples analyzed (n=3), and 

their average concentrations were 1,680 ± 100 and 140 ± 40 ng/L, respectively. Increases in 

sulfamethoxazole concentrations in cross-cycle samples corresponded with decreases in acetyl-

sulfamethoxazole and sulfamethoxazole-glucuronide concentrations. These results strongly 

suggest that acetyl-sulfamethoxazole and sulfamethoxazole-glucuronide deconjugate rapidly in 

both redox environments, and deconjugation is faster than sulfamethoxazole degradation (Figure 

3-3). This is a likely explanation for reported “negative removal” values in the literature for 

sulfamethoxazole across wastewater treatment plants. Overall losses of acetyl-sulfamethoxazole 
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in the anoxic/aerobic and microaerobic (C) reactors were 84 and 90%, respectively. 

Sulfamethoxazole-glucuronide loss was also significant, with >90% loss in both reactors. These 

results indicate that attention must be paid to the metabolites and conjugated forms of 

pharmaceuticals and their fate in WWTPs and the environment to avoid promoting systems with 

excellent “removal” that may simply result in the discharge of compounds that could retransform 

back into their active parent form in the environment. 

 

Figure 3-3. Deconjugation and conjugation reactions between sulfamethoxazole and its transformation 
products, acetyl-sulfamethoxazole and sulfamethoxazole-glucuronide. Size of arrows implies relative 

rates observed during wastewater treatment. 

3.3.5 Desvenlafaxine TPs resulted in desvenlafaxine formation 

Desvenlafaxine was observed at higher concentrations in the effluent than the influent of 

the reactors (Figure 3-2). Upon further investigation, TPs were found in the influent that 

deconjugated to reform desvenlafaxine during treatment, as previously observed (Gasser et al., 

2012). Desvenlafaxine is a biologically active metabolite of venlafaxine. Both desvenlafaxine and 

venlafaxine are serotonin/norepinephrine reuptake inhibitors prescribed to treat depression. In 

humans, desvenlafaxine may pass through unaltered or undergo conjugation. Approximately 19% 
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of administered dose is excreted as desvenlafaxine-glucuronide (Withdrawal Assessment Report, 

2009). Other metabolites, such as N,O-di-desmethyl can also be formed, but typically comprise 

less than 5% percent of the administered dose. By accounting for venlafaxine and desvenlafaxine-

glucuronide in addition to desvenlafaxine in the influent and effluent of the reactors, we observed 

limited loss of the desvenlafaxine-family of compounds in all SBRs (<10%; Table A5, Appendix 

A). The increase in desvenlafaxine can be explained by the deconjugation of desvenlafaxine-

glucuronide, which was detected in the influent at 189 ± 83 ng/L (n = 7) and was removed (>99%) 

in all SBRs. 

Previous studies on full-scale municipal wastewater treatment systems report moderate 

losses for venlafaxine and its metabolites: Metcalfe et al. (2010b) observed 40% loss of 

venlafaxine and its demethylation products, and Rúa-Gómez and Püttmann (2012) also reported 

partial losses (25 – 50%) of venlafaxine and desvenlafaxine in four German WWTPs. Lajeunesse 

et al. (2012) observed less than 10% loss of venlafaxine in both a secondary biological WWTP 

and chemically enhanced primary treatment. It is unclear from these survey studies how WWTP 

configuration and operation impact the fate of desvenlafaxine and venlafaxine. Helbling et al.  

(2012) found an association between venlafaxine biotransformation and the abundance of archaeal 

ammonia monooxygenase transcripts in batch experiments using activated sludge samples from 

10 different WWTPs. This suggests that ammonia oxidizers may play a role in the oxidation of 

venlafaxine. In our systems, complete nitrification occurred in all SBRs and the presence of 

ammonia oxidizing archaea was not known. Further research is needed to investigate the 

relationship between nitrification and venlafaxine and desvenlafaxine biotransformations and the 

relative contributions of different ammonia oxidizers. Our results highlight the importance of 

considering major metabolites and conjugated forms when tracking the fate of compounds across 



 53 

a treatment process as “in” versus “out” concentrations may be misleading when compounds are 

being formed during treatment due to deconjugation processes.  

3.4 Summary and conclusions 

In this study, four SBRs operated under different redox conditions achieved different levels 

of nitrogen removal and pharmaceutical loss. Stable COD removal and nitrification were achieved 

at a DO concentration of 0.3 mg/L with good settleability, highlighting the potential for energy 

savings by reducing aeration during treatment. Nitrogen removal occurred to a greater extent in 

microaerobic than fully aerobic conditions, while sequential anoxic/aerobic conditions achieved 

the most nitrogen removal. Redox environment influenced the overall loss of atenolol, 

trimethoprim, and sulfamethoxazole. The greatest overall loss of atenolol and trimethoprim was 

observed in the aerobic SBR, whereas the greatest loss of sulfamethoxazole was found in the 

microaerobic SBRs. Conjugated forms of sulfamethoxazole and desvenlafaxine were detected in 

the influent (local primary effluent) and contributed to the observed increases in sulfamethoxazole 

and desvenlafaxine across the reaction cycles. The results of this study imply that redox 

environment is an important factor that can influence the biodegradability of certain persistent 

micropollutants. Attention must be given to TPs to accurately account for pharmaceutical fate 

during wastewater treatment and estimate pharmaceutical loading on receiving waters. Further 

research should focus on elucidating the biotransformation pathways and microbes responsible for 

the degradation of these pharmaceuticals and their TPs in each redox environment in order to 

prevent their introduction into the aquatic environment.  

  



 54 

3.5 Literature cited 

Alexy, R.; Kümpel, T.; Kümmerer, K. Assessment of Degradation of 18 Antibiotics in the Closed 
Bottle Test. Chemosphere 2004, 57 (6), 505–512. 

Åmand, L.; Carlsson, B. The Optimal Dissolved Oxygen Profile in a Nitrifying Activated Sludge 
Process-Comparisons with Ammonium Feedback Control. Water Sci. Technol. 2013, 68 (3), 641-
649. 

Åmand, L.; Olsson, G.; Carlsson, B. Aeration Control – A Review. Water Sci. Technol. 2013, 67 
(11), 2374–2398. 

APHA; AWWA; WEF, Standard Methods for the Examination of Water and Wastewater. 21st Ed. 
Washington, D.C., 2005. 

Arnaldos, M.; Kunkel, S.; Stark, B.; Pagilla, K. Enhanced Heme Protein Expression by Ammonia-
Oxidizing Communities Acclimated to Low Dissolved Oxygen Conditions. Appl. Microbiol. 
Biotechnol. 2013, 97 (23), 10211–10221. 

Baek, S. H.; Pagilla, K. R. Simultaneous Nitrification and Denitrification of Municipal Wastewater 
in Aerobic Membrane Bioreactors. Water Environ. Res. 2008, 80 (2), 109–117. 

Batt, A. L.; Aga, D. S. Simultaneous Analysis of Multiple Classes of Antibiotics by Ion Trap 
LC/MS/MS for Assessing Surface Water and Groundwater Contamination. Anal. Chem. 2005, 77 
(9), 2940–2947. 

Batt, A. L.; Kim, S.; Aga, D. S. Enhanced Biodegradation of Iopromide and Trimethoprim in 
Nitrifying Activated Sludge. Environ. Sci. Technol. 2006, 40 (23), 7367–7373. 

Batt, A. L.; Kim, S.; Aga, D. S. Comparison of the Occurrence of Antibiotics in Four Full-Scale 
Wastewater Treatment Plants with Varying Designs and Operations. Chemosphere 2007, 68 (3), 
428–435. 

Bellucci, M.; Ofiţeru, I. D.; Graham, D. W.; Head, I. M.; Curtis, T. P. Low-Dissolved-Oxygen 
Nitrifying Systems Exploit Ammonia-Oxidizing Bacteria with Unusually High Yields. Appl Env. 
Microbiol. 2011, 77 (21), 7787–7796. 

Brodin, T.; Fick, J.; Jonsson, M.; Klaminder, J. Dilute Concentrations of a Psychiatric Drug Alter 
Behavior of Fish from Natural Populations. Science 2013, 339 (6121), 814–815. 

Carballa, M.; Omil, F.; Lema, J. M.; Llompart, M.; Garcı́a-Jares, C.; Rodrı́guez, I.; Gomez, M.; 
Ternes, T. Behavior of Pharmaceuticals, Cosmetics and Hormones in a Sewage Treatment Plant. 
Water Res. 2004, 38 (12), 2918–2926. 

Carucci, A.; Cappai, G.; Piredda, M. Biodegradability and Toxicity of Pharmaceuticals in 



 55 

Biological Wastewater Treatment Plants. J. Environ. Sci. Heal. Part A 2006, 41 (9), 1831–1842. 

Chandran, K.; Stein, L. Y.; Klotz, M. G.; van Loosdrecht, M. C. M. Nitrous Oxide Production by 
Lithotrophic Ammonia-Oxidizing Bacteria and Implications for Engineered Nitrogen-Removal 
Systems. Biochem. Soc. Trans. 2011, 39 (6), 1832. 

Chudoba, J.; Grau, P.; Ottová, V. Control of Activated-Sludge Filamentous Bulking–II. Selection 
of Microorganisms by Means of a Selector. Water Res. 1973, 7 (10), 1389–1406. 

Cirja, M.; Ivashechkin, P.; Schäffer, A.; Corvini, P. F. X. Factors Affecting the Removal of 
Organic Micropollutants from Wastewater in Conventional Treatment Plants (CTP) and 
Membrane Bioreactors (MBR). Rev. Environ. Sci. Biotechnol. 2008, 7 (1), 61–78. 

Collivignarelli, C.; Bertanza, G. Simultaneous Nitrification-Denitrification Processes in Activated 
Sludge Plants: Performance and Applicability. Water Sci. Technol. 1999, 40 (4–5), 187–194. 

Daigger, G. T.; Littleton, H. X. Characterization of Simultaneous Nutrient Removal in Staged, 
Closed-Loop Bioreactors. Water Environ. Res. 2000, 72 (3), 330–339. 

Flores, V. R.; Sanchez, E. N.; Béteau, J.-F.; Hernandez, S. C. Dissolved Oxygen Regulation by 
Logarithmic/antilogarithmic Control to Improve a Wastewater Treatment Process. Environ. 
Technol. 2013, 34 (23), 3103–3116. 

Flores-Alsina, X.; Corominas, L.; Snip, L.; Vanrolleghem, P. A. Including Greenhouse Gas 
Emissions during Benchmarking of Wastewater Treatment Plant Control Strategies. Water Res. 
2011, 45 (16), 4700–4710. 

Gasser, G.; Pankratov, I.; Elhanany, S.; Werner, P.; Gun, J.; Gelman, F.; Lev, O. Field and 
Laboratory Studies of the Fate and Enantiomeric Enrichment of Venlafaxine and O-
Desmethylvenlafaxine under Aerobic and Anaerobic Conditions. Chemosphere 2012, 88 (1), 98–
105. 

Giger, W.; Alder, A. C.; Golet, E. M.; Kohler, H.-P. E.; McArdell, C. S.; Molnar, E.; Siegrist, H.; 
Suter, M. J. F. Occurrence and Fate of Antibiotics as Trace Contaminants in Wastewaters, Sewage 
Sludges, and Surface Waters. Chim. Int. J. Chem. 2003, 57 (9), 485–491. 

Göbel, A.; Thomsen, A.; McArdell, C. S.; Joss, A.; Giger, W. Occurrence and Sorption Behavior 
of Sulfonamides, Macrolides, and Trimethoprim in Activated Sludge Treatment. Environ. Sci. 
Technol. 2005, 39 (11), 3981–3989. 

Golet, E. M.; Alder, A. C.; Giger, W. Environmental Exposure and Risk Assessment of 
Fluoroquinolone Antibacterial Agents in Wastewater and River Water of the Glatt Valley 
Watershed, Switzerland. Environ. Sci. Technol. 2002, 36 (17), 3645–3651. 

Griffith, D. R.; Kido Soule, M. C.; Matsufuji, H.; Eglinton, T. I.; Kujawinski, E. B.; Gschwend, P. 
M. Measuring Free, Conjugated, and Halogenated Estrogens in Secondary Treated Wastewater 



 56 

Effluent. Environ. Sci. Technol. 2014, 48 (5), 2569–2578. 

Gulkowska, A.; Leung, H. W.; So, M. K.; Taniyasu, S.; Yamashita, N.; Yeung, L. W. Y.; 
Richardson, B. J.; Lei, A. P.; Giesy, J. P.; Lam, P. K. S. Removal of Antibiotics from Wastewater 
by Sewage Treatment Facilities in Hong Kong and Shenzhen, China. Water Re.s 2008, 42 (1), 
395–403. 

Guo, J. H.; Peng, Y. Z.; Peng, C. Y.; Wang, S. Y.; Chen, Y.; Huang, H. J.; Sun, Z. R. Energy 
Saving Achieved by Limited Filamentous Bulking Sludge under Low Dissolved Oxygen. 
Bioresour. Technol. 2010, 101 (4), 1120–1126. 

Hai, F. I.; Li, X.; Price, W. E.; Nghiem, L. D. Removal of Carbamazepine and Sulfamethoxazole 
by MBR under Anoxic and Aerobic Conditions. Bioresour. Technol. 2011, 102 (22), 10386–
10390. 

Heberer, T. Occurrence, Fate, and Removal of Pharmaceutical Residues in the Aquatic 
Environment: A Review of Recent Research Data. Toxicol. Lett. 2002, 131 (1), 5–17. 

Helbling, D. E.; Johnson, D. R.; Honti, M.; Fenner, K. Micropollutant Biotransformation Kinetics 
Associate with WWTP Process Parameters and Microbial Community Characteristics. Environ. 
Sci. Technol. 2012, 46 (19), 10579–10588. 

Hilton, M. J.; Thomas, K. V. Determination of Selected Human Pharmaceutical Compounds in 
Effluent and Surface Water Samples by High-Performance Liquid Chromatography–electrospray 
Tandem Mass Spectrometry. J. Chromatogr. A 2003, 1015 (1), 129–141. 

Hirsch, R.; Ternes, T.; Haberer, K.; Kratz, K.-L. Occurrence of Antibiotics in the Aquatic 
Environment. Sci. Total Environ. 1999, 225 (1–2), 109–118. 

Jimenez, J.; Dursun, D.; Dold, P.; Bratby, J.; Keller, J.; Parker, D. Simultaneous Nitrification-
Denitrification to Meet Low Effluent Nitrogen Limits: Modeling, Performance and Reliability. 
Proc. Water Environ. Fed. 2010, 2404–2421. 

Jimenez, J.; Dold, P.; La Motta, E.; Houweling, D.; Bratby, J.; Parker, D. Simultaneous Biological 
Nutrient Removal in a Single-Stage, Low Oxygen Aerobic Reactor. Proc. Water Environ. Fed. 
2011, 31–48. 

Jimenez, J.; Bott, C.; Regmi, P.; Rieger, L. Process Control Strategies for Simultaneous Nitrogen 
Removal Systems. Proc. Water Environ. Fed. Nutrient. 2013, 492–505. 

Joss, A.; Andersen, H.; Ternes, T.; Richle, P. R.; Siegrist, H. Removal of Estrogens in Municipal 
Wastewater Treatment under Aerobic and Anaerobic Conditions: Consequences for Plant 
Optimization. Environ. Sci. Technol. 2004, 38 (11), 3047–3055. 

Ju, L. K.; Huang, L.; Trivedi, H. Simultaneous Nitrification, Denitrification, and Phosphorus 
Removal in Single-Tank Low-Dissolved-Oxygen Systems under Cyclic Aeration. Water Environ. 



 57 

Res. 2007, 79 (8), 912–920. 

Karthikeyan, K. G.; Meyer, M. T. Occurrence of Antibiotics in Wastewater Treatment Facilities 
in Wisconsin, USA. Sci. Total Environ. 2006, 361 (1), 196–207. 

Kasprzyk-Hordern, B.; Dinsdale, R.; Guwy, A. Multiresidue Methods for the Analysis of 
Pharmaceuticals, Personal Care Products and Illicit Drugs in Surface Water and Wastewater by 
Solid-Phase Extraction and Ultra Performance Liquid Chromatography–electrospray Tandem 
Mass Spectrometry. Anal. Bioanal. Chem. 2008, 391 (4), 1293–1308. 

Khunjar, W. O.; Mackintosh, S. A.; Skotnicka-Pitak, J.; Baik, S.; Aga, D. S.; Yi, T.; Jr., W. F. H.; 
Love, N. G. Elucidating the Relative Roles of Ammonia Oxidizing and Heterotrophic Bacteria 
during the Biotransformation of 17α-Ethinylestradiol and Trimethoprim. Environ. Sci. Technol. 
2011, 45 (8), 3605–3612. 

Kidd, K. A.; Blanchfield, P. J.; Mills, K. H.; Palace, V. P.; Evans, R. E.; Lazorchak, J. M.; Flick, 
R. W. Collapse of a Fish Population after Exposure to a Synthetic Estrogen. Proc. Natl. Acad. Sci. 
2007, 104 (21), 8897–8901. 

Kolpin, D. W.; Furlong, E. T.; Meyer, M. T.; Thurman, E. M.; Zaugg, S. D.; Barber, L. B.; Buxton, 
H. T. Pharmaceuticals, Hormones, and Other Organic Wastewater Contaminants in U.S. Streams, 
1999−2000: A National Reconnaissance. Environ. Sci. Technol. 2002, 36 (6), 1202–1211. 

Lajeunesse, A.; Smyth, S. A.; Barclay, K.; Sauvé, S.; Gagnon, C. Distribution of Antidepressant 
Residues in Wastewater and Biosolids Following Different Treatment Processes by Municipal 
Wastewater Treatment Plants in Canada. Water Res. 2012, 46 (17), 5600–5612. 

Lindberg, R. H.; Wennberg, P.; Johansson, M. I.; Tysklind, M.; Andersson, B. a V. Screening of 
Human Antibiotic Substances and Determination of Weekly Mass Flows in Five Sewage 
Treatment Plants in Sweden. Environ. Sci. Technol. 2005, 39 (10), 3421–3429. 

Lindberg, R. H.; Olofsson, U.; Rendahl, P.; Johansson, M. I.; Tysklind, M.; Andersson, B. A. V. 
Behavior of Fluoroquinolones and Trimethoprim during Mechanical, Chemical, and Active Sludge 
Treatment of Sewage Water and Digestion of Sludge. Environ. Sci. Technol. 2006, 40 (3), 1042–
1048. 

Littleton, H. X.; Daigger, G. T.; Strom, P. F. Summary Paper: Mechanisms of Simultaneous 
Biological Nutrient Removal in Closed Loop Bioreactors. Proc. Water Environ. Fed. 2003, 641–
658. 

Liu, G.; Wang, J. Long-Term Low DO Enriches and Shifts Nitrifier Community in Activated 
Sludge. Environ. Sci. Technol. 2013, 47 (10), 5109–5117. 

Love, N. G.; Moline, C.; Ernstoff, A. S.; Stadler, L. B.; Aga, D. S.; Su, L. Pharmaceutical Fate 
Under Varying Redox Biological Treatment Environments; Water Environment Research 



 58 

Foundation, 2012. 

Martins, A. M. P.; Heijnen, J. J.; Van Loosdrecht, M. C. M. Effect of Dissolved Oxygen 
Concentration on Sludge Settleability. Appl. Microbiol. Biotechnol. 2003, 62 (5-6), 586–593. 

Metcalfe, C. D.; Koenig, B. G.; Bennie, D. T.; Servos, M.; Ternes, T. A.; Hirsch, R. Occurrence 
of Neutral and Acidic Drugs in the Effluents of Canadian Sewage Treatment Plants. Environ. 
Toxicol. Chem. 2003, 22 (12), 2872–2880. 

Metcalfe, C. D.; Chu, S.; Judt, C.; Li, H.; Oakes, K. D.; Servos, M. R.; Andrews, D. M. 
Antidepressants and Their Metabolites in Municipal Wastewater, and Downstream Exposure in an 
Urban Watershed. Environ. Toxicol. Chem. 2010, 29 (1), 79–89. 

Miège, C.; Choubert, J. M.; Ribeiro, L.; Eusèbe, M.; Coquery, M. Fate of Pharmaceuticals and 
Personal Care Products in Wastewater Treatment Plants – Conception of a Database and First 
Results. Environ. Pollut. 2009, 157 (5), 1721–1726. 

Park, H. D.; Noguera, D. R. Evaluating the Effect of Dissolved Oxygen on Ammonia-Oxidizing 
Bacterial Communities in Activated Sludge. Water Res. 2004, 38 (14-15), 3275–3286. 

Park, N.; Vanderford, B. J.; Snyder, S. A.; Sarp, S.; Kim, S. D.; Cho, J. Effective Controls of 
Micropollutants Included in Wastewater Effluent Using Constructed Wetlands under Anoxic 
Condition. Ecol. Eng. 2009, 35 (3), 418–423. 

Plósz, B. G.; Leknes, H.; Thomas, K. V. Impacts of Competitive Inhibition, Parent Compound 
Formation and Partitioning Behavior on the Removal of Antibiotics in Municipal Wastewater 
Treatment. Environ. Sci. Technol. 2009, 44 (2), 734–742. 

Plósz, B. G.; Leknes, H.; Liltved, H.; Thomas, K. V. Diurnal Variations in the Occurrence and the 
Fate of Hormones and Antibiotics in Activated Sludge Wastewater Treatment in Oslo, Norway. 
Sci. Total Environ. 2010, 408 (8), 1915–1924. 

Pochana, K.; Keller, J. Study of Factors Affecting Simultaneous Nitrification and Denitrification 
(SND). Water Sci. Technol. 1999, 39 (6), 61–68. 

Radjenović, J.; Petrović, M.; Barceló, D. Fate and Distribution of Pharmaceuticals in Wastewater 
and Sewage Sludge of the Conventional Activated Sludge (CAS) and Advanced Membrane 
Bioreactor (MBR) Treatment. Water Res. 2009, 43 (3), 831–841. 

Radke, M.; Lauwigi, C.; Heinkele, G.; Mürdter, T. E.; Letzel, M. Fate of the Antibiotic 
Sulfamethoxazole and Its Two Major Human Metabolites in a Water Sediment Test. Environ. Sci. 
Technol. 2009, 43 (9), 3135–3141. 

Rúa-Gómez, P.; Püttmann, W. Occurrence and Removal of Lidocaine, Tramadol, Venlafaxine, 
and Their Metabolites in German Wastewater Treatment Plants. Environ. Sci. Pollut. Res. 2012, 
19 (3), 689–699. 



 59 

Stadler, L. B.; Ernstoff, A. S.; Aga, D. S.; Love, N. G. Micropollutant Fate in Wastewater 
Treatment: Redefining “Removal.” Environ. Sci. Technol. 2012, 46 (19), 10485–10486. 

Suarez, S.; Lema, J. M.; Omil, F. Removal of Pharmaceutical and Personal Care Products (PPCPs) 
under Nitrifying and Denitrifying Conditions. Water Res. 2010, 44 (10), 3214–3224. 

Tchobanoglous, G.; Burton, F. L.; Stensel, H. D. Wastewater Engineering: Treatment and Reuse, 
4th Ed. McGraw-Hill: New York, NY, 2003. 

Ternes, T. A.; Joss, A.; Siegrist, H. Peer Reviewed: Scrutinizing Pharmaceuticals and Personal 
Care Products in Wastewater Treatment. Environ. Sci. Technol. 2004, 38 (20), 392A – 399A. 

van der Ven, A. J.; Mantel, M. A.; Vree, T. B.; Koopmans, P. P.; van der Meer, J. W. Formation 
and Elimination of Sulphamethoxazole Hydroxylamine after Oral Administration of 
Sulphamethoxazole. Br. J. Clin. Pharmacol. 1994, 38 (2), 147–150. 

van der Ven, A. J.; Vree, T. B.; van Ewijk-Beneken Kolmer, E. W.; Koopmans, P. P.; van der 
Meer, J. W. Urinary Recovery and Kinetics of Sulphamethoxazole and Its Metabolites in HIV-
Seropositive Patients and Healthy Volunteers after a Single Oral Dose of Sulphamethoxazole. Br. 
J. Clin. Pharmacol. 1995, 39 (6), 621–625. 

Vieno, N. M.; Tuhkanen, T.; Kronberg, L. Seasonal Variation in the Occurrence of 
Pharmaceuticals in Effluents from a Sewage Treatment Plant and in the Recipient Water. Environ. 
Sci. Technol. 2005, 39 (21), 8220–8226. 

Vieno, N. M.; Tuhkanen, T.; Kronberg, L. Analysis of Neutral and Basic Pharmaceuticals in 
Sewage Treatment Plants and in Recipient Rivers Using Solid Phase Extraction and Liquid 
Chromatography–Tandem Mass Spectrometry Detection. J. Chromatogr. A 2006, 1134 (1–2), 
101–111. 

Watkinson,  A. J.; Murby, E. J.; Costanzo, S. D. Removal of Antibiotics in Conventional and 
Advanced Wastewater Treatment: Implications for Environmental Discharge and Wastewater 
Recycling. Water Res. 2007, 41 (18), 4164–4176. 

WEF. Activated Sludge. In Operation of Municipal Wastewater Treatment Plants: MoP No. 11, 
Sixth Edition; McGraw Hill Professional, Access Engineering: Water Environment Federation, 
2008. 

Wilén, B. M.; Balmér, P. The Effect of Dissolved Oxygen Concentration on the Structure, Size 
and Size Distribution of Activated Sludge Flocs. Water Res. 1999, 33 (2), 391–400. 

Withdrawal Assessment Report for Ellefore (International Nonproprietary Name: 
Desvenlafaxine). European Medicines Agency Report, 2009.  



 60 

 
 
 
 
 

Chapter 4. 

Impact of microbial physiology and microbial community structure on 
pharmaceutical fate driven by dissolved oxygen concentration in nitrifying 

bioreactors 

 

Lauren B. Stadler1 and Nancy G. Love1 

1Department of Civil and Environmental Engineering, University of Michigan 

4.1 Introduction 

 Energy conservation is an increasingly desirable goal in wastewater treatment given rising 

concerns over fossil fuel energy resources and climate change. The most energy intensive process 

in activated sludge wastewater treatment is aeration, which makes up 45- 75% of a conventional 

wastewater treatment plant’s (WWTP’s) total energy costs (Rosso et al., 2008).  Therefore, one 

strategy for implementing more sustainable wastewater treatment involves a reduction in energy 

consumption by moving towards treatment that minimizes aeration (Rosso et al., 2008; Leu et al., 

2009; Flores-Alsina et al., 2011). Conventional nitrifying activated sludge WWTPs typically 

operate with bulk liquid dissolved oxygen (DO) concentrations of greater than 2 mg/L to ensure 

complete nitrification and stable nitrifying populations (WEF, 2008), which results in a substantial 

energy demand for aeration. There is mounting evidence that stable carbon removal and 

nitrification can occur at low DO concentrations (<1 mg/L) (Schuyler et al., 2009; Jimenez et al., 

2011), suggesting that substantial energy and cost savings are possible by reducing DO levels. 
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Advances in sensor technology and aeration control strategies in recent years have demonstrated 

that strategies such as ammonia-based aeration control can result in operation at DO concentrations 

between 1 and 0.5 mg/L (Rieger et al., 2014; Uprety et al., 2015). Low DO treatment also can also 

enable simultaneous nitrification and denitrification, resulting in supplemental carbon savings in 

addition to aeration energy savings (Daigger and Littleton, 2000; Jimenez et al., 2011).   

Fundamental research on low DO wastewater treatment has focused mostly on nitrification; 

nitrifiers grow relatively slowly as compared to heterotrophs due to their chemolithoautotrophic 

metabolism and inferior oxygen scavenging ability. Selecting for nitrifiers that are adapted to low 

DO environments and taking advantage of improvements in mass transfer efficiencies during low 

DO operation can result in at least 20% less energy for aeration (Arnaldos and Pagilla, 2014). As 

we move toward low DO treatment processes, there is a need to better understand how low DO 

environments affect the function and structure of nitrifying wastewater communities to ensure 

stable performance without compromising treatment outcomes.  

Ammonia oxidizers, which perform the first step of nitrification using the enzyme 

ammonia monooxygenase (AMO), may also play a major role in pharmaceutical biotransformation 

during wastewater treatment. AMO can catalyze the oxidation of a relatively wide range of 

substrates (Arp et al., 2002). Several studies have shown that pharmaceutical loss is enhanced in 

nitrifying activated sludge systems (e.g. Tran et al., 2009), and have implicated the involvement 

of AMO. Further, pure culture work has shown the ability of AMO to biotransform compounds 

such as natural and synthetic estrogens, as well as bisphenol A (Shi et al., 2004; Khunjar et al., 

2011; Sun et al., 2012).  While AMO has been linked to the transformation of some 

pharmaceuticals, other enzymes may be involved as primary and/or secondary catalysts of 

oxidation reactions.  WWTPs with long solids retention times (SRTs) that support the growth of 
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nitrifiers also support the growth of other slow growing heterotrophs that can biotransform 

pharmaceuticals.  Thus, while greater nitrifying activity may be indicative of environments capable 

of enhanced biotransformation, other microbial processes may be responsible for those 

biotransformations, many of which are poorly understood and not well-characterized.  

 Low DO treatment can impact the rate and extent of pharmaceutical biotransformation by 

1) slowing the activity of the microorganisms involved in biotransformation because DO acts as a 

limiting substrate in respiration or catabolic reactions; and/or 2) selecting for a community that is 

more (or less) efficient at biotransformation. The objective of this work was to determine the 

impact of low DO treatment on pharmaceutical biotransformations by nitrifying communities, and 

specifically to discern between effects of DO concentration on microbial physiology (activity) and 

on microbial community structure (selection). Parent chemostat reactors were used to grow 

nitrifying enrichment cultures under low (~ 0.3 mg/L) and high (> 4 mg/L) DO concentrations to 

understand how DO growth conditions impact microbial community structure. Short-term batch 

experiments using the biomass from the parent reactors were performed under low and high DO 

conditions to understand how DO concentration impacts microbial physiology.  This experimental 

design allowed us to distinguish between long-term (microbial community structure) and short- 

term (physiologic) effects of DO on pharmaceutical biotransformations. Allylthiourea-inhibited 

batch experiments were also conducted to assess the link between nitrification and pharmaceutical 

biotransformations. This research will contribute to improvements in the design and operation of 

WWTPs using low DO-adapted metabolisms in wastewater treatment and a better understanding 

of the impact that energy efficient treatment strategies on pharmaceutical removal. 
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4.2 Materials and methods 

4.2.1 Parent reactors and water quality analyses 

Two parent chemostat reactors, a high DO and a low DO reactor, were operated for over a 

year. Each reactor consisted of a 19 L plastic bucket with a liquid volume of 12 L. The residence 

time in each reactor was 20 days, and this was achieved by intermittently feeding 25 mL of influent 

and wasting 25 mL every hour. The influent to the reactors was a synthetic medium containing 

195 mg-N/L as ammonia-N plus trace nutrients (influent details provided in Table B1, Appendix 

B). pH was controlled via base addition (30 g/L sodium bicarbonate) to maintain the pH at 

approximately 7.5. The high DO parent reactor was aerated constantly to maintain a DO 

concentration above 4 mg/L. The DO concentration in the low DO parent reactor was controlled 

using real-time feedback from an optical DO probe (Orion RDO® Pro, In Situ Inc.). The DO probe 

triggered the aerator to turn on when the DO dropped below the setpoint of 0.2 mg/L, which 

resulted in a DO concentration that fluctuated between 0.2 and 0.4 mg/L. The reactors were 

operated at room temperature (typically between 21 and 24 °C). Both reactors were seeded with 

sludge from the Ann Arbor, MI WWTP, which uses an anaerobic-aerobic process to achieve 

biological phosphorus removal and nitrification. The Ann Arbor WWTP has an SRT of 

approximately 9 days and operates at a DO concentration of 2-3 mg/L in the aerobic basins. 

Samples were collected from the parent reactors one or two times per week and analyzed for 

soluble nitrogen species concentrations (ammonia-N, nitrite-N, and nitrate-N) according to 

Standard Methods (methods 4500F-NH3, 4500B-NO2
-, and 4110; 2005). Samples were filtered 

through 0.45 µm nitrocellulose filters and stored at 4°C until analysis (within one week of 

sampling).  
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4.2.2 Pharmaceutical selection 

The pharmaceuticals selected for investigation included: atenolol, 17α-ethinylestradiol 

(EE2), ibuprofen, sulfamethoxazole, trimethoprim, venlafaxine, acetaminophen, acetyl-

sulfamethoxazole, caffeine, carbamazepine, glyburide, naproxen, sucralose, and erythromycin 

(Table 4-1). These compounds were selected based on their prevalence in WWTP influents and 

effluents, structural characteristics, and reported low sorption to biomass such that 

biotransformation is likely the primary mechanism responsible for loss during treatment.  

4.2.3 Pharmaceutical biotransformation batch experiments 

Batch experiments were performed using the biomass taken from the low and high DO 

parent reactors (after over a year of operation) to determine the extent and rate of pharmaceutical 

biotransformation by each parent community. Batch experiments were performed for each parent 

biomass at two different DO concentrations: high DO (constantly aerated) and low DO (DO 

maintained between 0.2 and 0.4 mg/L). DO control in the low DO batch reactors during the batch 

experiments was performed by sparging with a mixture of nitrogen gas and air. Optical DO probes 

(WTW, Weilheim, Germany) were used to monitor the DO concentration throughout each batch 

experiment. Biomass from the parent reactors was concentrated and washed prior to initiating the 

batch experiments. For each batch experiment, 500 mL of the mixed liquor from a parent reactor 

was centrifuged (5 min at 5,500 rpm, 20 °C) to pellet, and then washed three times with N-free 

media. The pelleted and washed biomass was then re-suspended in N-free media to make a final 

volume of 200 mL.  
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Table 4-1. Compounds selected for investigation 
 

 

A mixture of the pharmaceuticals dissolved in methanol was added to 500 mL glass flasks 

(250 µL of a 1 mg/L mixture) and allowed to evaporate until dry in a fume hood. After evaporation 

was complete, 50 mL of a phosphate buffered media containing 150 mg-N/L as ammonia-N was 

Chemical Structure Chemical Formula 
and Molecular Weight Use 

Acetaminophen 
 

C8H9NO2 
151.16 g/mol 

Analgesic and 
antipyretic 

Acetyl-sulfamethoxazole 
 

C12H13N3O4S 
295.31 g/mol Antibiotic TP 

Atenolol 
 

C14H22N2O3 
266.34 g/mol Beta-blocker 

Caffeine 

 

C8H10N4O2  
194.19 g/mol Stimulant 

Carbamazepine 
 

C15H12N2O  
236.27 g/mol Anticonvulsant 

17α-Ethinylestradiol 

 

C20H24O2  
296.40 g/mol Synthetic hormone 

Glyburide 

 

C23H28ClN3O5S  
494.00 g/mol Antidiabetic 

Ibuprofen 

 

C13H18O2 
206.29 g/mol 

Nonsteroidal anti-
inflammatory drug 

Naproxen 
 

C14H14O3 
230.26 g/mol 

Nonsteroidal anti-
inflammatory drug  

Sulfamethoxazole 
 

C10H11N3O3S  
253.28 g/mol Antibiotic 

Trimethoprim 

 

C14H18N4O3 
290.32 g/mol Antibiotic 

Venlafaxine 

 

C17H27NO2  
277.40 g/mol Antidepressant 
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added to each flask such that after the 200 mL of washed biomass was added to the flask the initial 

concentration of each compound, ammonia, and phosphate buffer were 1 µg/L, 30 mg-N/L, and 

0.05 M, respectively. The flask with 50 mL of buffered nitrogen media was placed on a stir plate 

for 1 hour to allow the dried compounds to re-dissolve in the media prior to adding the washed 

biomass and initiating the biotransformation experiment. Two batch reactors were aerated 

constantly (high DO batch conditions), two reactors were maintained at low DO concentrations 

(as described above), two reactors were supplemented with 10 mg/L of allylthiourea (ATU) 

(Khunjar et al., 2011), an ammonia oxidation inhibitor, to understand the role of nitrifiers in 

pharmaceutical biotransformation, and a final batch reactor consisted of biomass inactivated with 

sodium azide (0.1% w/v; Batt et al., 2007). Complete ammonia oxidation inhibition using ATU 

was confirmed by measuring the concentration of ammonia-N across the batch experiments 

(Figure B1, Appendix B). 

4.2.4 Samples collection and analysis from biotransformation experiments 

Samples were collected from each batch reactor at approximately t = 2 min, 2.5 h, 5 h, 8.5 

h, 12 h, 1 d, 2 d, and 3 d. To sample, 10 mL was collected from each flask using a graduated glass 

pipette, the sample was spiked with 100 µL of 50 µg/L stock containing a mixture of deuterated 

pharmaceutical analogs (Toronto Research Chemicals, Toronto, ON, Canada), filtered through a 

0.3 glass fiber filter (Sterlitech Inc., Kent, Washington), and stored at 4°C until analysis. 

Ammonia-N, nitrite-N, and nitrate-N concentrations were determined in all samples as described 

above. Pharmaceutical concentrations were determined in samples corresponding to time points of 

2 min, 5 h, 12 h, 1 d, 2 d, and 3 d via on-line solid phase extraction, liquid chromatography, and 

mass spectrometry (described below). 
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Biomass samples for microbial community analysis were collected from the parent reactors 

on the day that biomass was taken from them for the biotransformation batch experiments. Briefly, 

50 mL samples of mixed liquor were collected from each parent reactor, biomass was pelleted via 

centrifugation at 6,200 x g for 5 minutes at 4°C and the supernatant was discarded. The biomass 

pellet was transferred to a 2 mL microcentrifuge tube, re-pelleted, decanted, and the biomass was 

stored at -80°C until DNA was extracted. Total and volatile suspended solids (TSS/VSS) 

concentrations of the parent reactors were also determined according to Standard Methods (method 

2540; 2005) on the day of the batch experiments. 

4.2.5 Pharmaceutical quantification 

Pharmaceuticals were quantified via on-line pre-concentration followed by high 

performance liquid chromatography (HPLC) and high resolution mass spectrometry (HRMS). 

Matrix-matched external calibration curves containing a mixture of the target compounds and 

deuterated analogs were used for quantification. On-line pre-concentration of the compounds of 

interest was performed using the Equan™ system (Thermo Fisher Scientific, Grand Island, New 

York) (system details are provided in Fayad et al., 2013). The on-line pre-concentration was 

performed using a Hypersil Gold aQ trapping column (20 x 2.1 mm, 12 µM particle size; Thermo 

Fisher Scientific) and chromatographic separation was done with an Accucore aQ column (50 x 

2.1 mm, 2.6 µm particle size; Thermo Fisher Scientific). A 500 µL sample was injected onto the 

trapping column. A mobile phase containing water with 0.1% formic acid and methanol with 0.1% 

formic acid was applied via gradient flow to elute all compounds with minimal overlap. Total run 

time for one sample was 16 minutes at a flow rate of 1 mL/min on the trapping column and 0.175-

0.250 mL/min on the analytical column. Complete method details including gradient flow rates 

are provided in Appendix B. 
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Ionization of the compounds was achieved by positive electron spray ionization (ESI) for: 

atenolol, 17α-ethinylestradiol (EE2), sulfamethoxazole, trimethoprim, venlafaxine, acetyl-

sulfamethoxazole, caffeine, carbamazepine, acetaminophen, glyburide, and erythromycin; 

negative ESI was used for: ibuprofen, naproxen, triclosan, and sucralose. The following source 

parameters were used: capillary temperature of 250 °C, auxiliary gas heater temperature of 275 

°C, a spray voltage of 3.5 kV, sheath gas flow rate of 30 arbitrary units, auxiliary gas flow rate of 

20 arbitrary units, and sweep gas flow rate of 1 arbitrary unit. In both positive and negative mode 

a full scan ranging from 150 to 750 m/z was performed at a resolution of 70,000 and target 

automatic gain control (AGC) of 1 x 10-6. All data were collected and processed using the Thermo 

TraceFinder Software Version 3.2 (Thermo Fisher Scientific). 

4.2.6 Molecular analyses 

DNA was extracted from the frozen biomass samples collected from the parent reactor on 

the day of the biotransformation batch experiments, as described above. DNA extraction involved 

three bead beating steps (Mini-Beadbeater-96, BioSpec Products, Bartlesville, OK) with 0.1 mm 

diameter zirconium beads in lysis buffer, followed by proteinase K digestion, and automated 

extraction using the Maxwell 16 Blood LEV kit according to the manufacturer’s instructions 

(Promega, Madison, WI). Extracted DNA quality was verified using a NanoDrop 

spectrophotometer (Thermo Fisher Scientific, Waltham, MA) and DNA quantity was determined 

using the QuantiFluor dsDNA kit (Promega, Madison, WI). DNA extracts were stored at -20 °C 

until they were submitted for sequencing or analyzed by quantitative polymerase chain reaction 

(qPCR). 

Polymerase chain reaction (PCR), multiplexing, and sequencing was performed by the 

Center for Microbial Systems (University of Michigan, Ann Arbor, MI) using the Illumina MiSeq 
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platform (San Diego, CA) targeting the V4 region of the 16S rRNA gene (Caporaso et al., 2011). 

The resulting sequences were processed and analyzed using Mothur (version 1.33.3) (Schloss et 

al., 2009) following the MiSeq standard operating procedure. Sequence classification was 

performed using the Ribosomal Database Project (Cole et al., 2009) and the Basic Local Alignment 

Search Tool (BLAST; NCBI, Bethesda, MD). 

The abundance of ammonia oxidizers was quantified in the parent reactor biomass samples 

via qPCR. Primers targeting the bacterial ammonia monooxygenase gene (amoA) were used 

(amoA-1F (5’-GGGGTTTCTACTGGTGGT-3’) and amoA-2R (5’-

CCCCTCKGSAAAGCCTTCTTC-3’); Rotthauwe et al., 1997). qPCR standards were prepared 

using PCR-amplified amoA products from pooled DNA extracts from the parent reactors (detailed 

in Appendix B) (He and McMahon, 2011; Sonthiphand et al., 2013). qPCR was performed on a 

Mastercycler Realplex ep (Eppendorf, Hamburg, Germany). 20 µL qPCR reaction volumes 

consisted of 10 µL of 2x EvaGreen Fast Plus qPCR Master Mix (Biotium, Hayward, CA), 0.2 µL 

each of 50 µM forward and reverse primer (final concentration of 50 µM), 8.6 µL of nuclease free 

water, and 1 µL of DNA template. All samples were run in triplicate at three different dilutions: 

5x, 50x, and 500x and each plate contained no template controls. 

4.3 Results and discussion 

4.3.1 Reactor performance and microbial community characteristics of parent reactors 

Complete and stable nitrification was achieved in both parent reactors. The low and high 

DO parent reactors achieved ammonia removal efficiencies of 99.0 ± 2.3% and 99.9 ± 0.1%, 

respectively, over the 6 months prior to when the batch experiments were performed. Further, no 

buildup of nitrite was observed in either reactor, demonstrating complete nitrification. Effluent 
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total inorganic nitrogen (sum of ammonia, nitrite, and nitrate-N) concentrations were slightly 

lower in the low DO than the high DO parent reactor, with average total inorganic nitrogen (TIN) 

removal efficiencies of 11% and 2%, respectively, indicating slightly more denitrification occurred 

in the low DO parent reactor. 

While the low and high DO parent reactors achieved similar effluent quality and 

performance with respect to nitrification efficiency, there were observable differences in biomass 

concentration between the reactors. The suspended solids concentration in the low DO parent 

reactor was significantly higher than the high DO parent reactor (Figure 4-1), despite being loaded 

with the same amount of electron donor (195 mg ammonia-N/L/day). qPCR indicated that the low 

DO parent reactor had significantly more ammonia oxidizers than the high DO parent reactor 

(Figure 4-1). Further, the ratio of ammonia oxidizers to total biomass concentration (as VSS) was 

more than two times greater in the low than the high DO parent reactor. Therefore, low DO growth 

conditions not only resulted in greater biomass concentrations and a greater abundance of ammonia 

oxidizers, but also an enriched ammonia oxidizer population. Previous studies have found that 

nitrifiers grown under low DO conditions had greater observed yields than nitrifiers grown under 

high DO conditions (Bellucci et al., 2011; Liu and Wang, 2013). The observed yield coefficient is 

determined by the true growth yield, endogenous decay rate, and the sludge age (Grady et al., 

2011). The endogenous decay coefficient is a lumped parameter that accounts for loss in cell mass 

due to oxidation of internal storage products for energy required for cell maintenance and death 

and predation by other organisms (Lawrence and McCarty, 1970). A reduced endogenous decay 

rate in low DO environments is consistent with the greater observed yield in the low versus high 

DO parent reactor. It is also consistent with previous research that showed increased observed 

yields and reduced specific sludge degradation rates under low DO conditions compared to fully 
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aerobic conditions (Habermacher et al., 2015).  One explanation for why this happens is that low 

DO inhibits select protozoan predators (Madoni, 1993), which reduces decay rate and increases 

biomass concentration. 

 

Figure 4-1. Volatile suspended solids (VSS) concentration (striped bar) and amoA copies per milliliter 
(open bars) in the low and high DO parent reactors. Error bars represent the standard deviation from the 

mean of technical triplicates. 

 

The batch experiments were performed by taking the same volume of mixed liquor from 

each of the reactors, and this resulted in the batch experiments with the low DO parent reactor 

biomass having greater total biomass concentrations and a greater abundance of ammonia 

oxidizers than those performed using the high DO parent reactor biomass. Ammonia oxidation 

rates in the batch experiments were significantly different under low and high DO batch conditions, 

and between the low and high DO parent reactors (Figure 4-2).  Faster ammonia oxidation rates 

were observed in the high DO batch conditions, regardless of parent reactor biomass, illustrating 

the direct impact of DO as a limiting substrate. Under low DO batch conditions, the low DO parent 

biomass performed ammonia oxidation slightly faster than the high DO parent biomass. However, 

when normalized to amoA copy concentration, the rates were not significantly different between 
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the batch experiments (unpaired t-test, p = 0.65). Under high DO batch conditions, the ammonia 

oxidation rates normalized to amoA copy concentration for the low DO parent biomass were 

significantly slower than the high DO parent biomass (unpaired t-test, p = 0.025). Thus, while the 

low DO parent reactor harbored a more abundant population of ammonia oxidizers, they were 

slower at performing ammonia oxidation under high DO conditions. Furthermore, this 

demonstrated that the low DO parent reactor biomass was not able to adapt well to high DO 

conditions over the three day batch experiments. Trade-offs between substrate affinity and 

maximum substrate utilization rates have been demonstrated in pure cultures (Wirtz, 2002; Elbing 

et al., 2004) and this biochemical trade-off is theorized to be a driver of microbial diversification 

(Gudelj et al., 2007). Our results indicate that low DO growth conditions may select for ammonia 

and nitrite oxidizers with high oxygen affinities, i.e. “K” strategists, with high substrate affinities 

and low maximum activity, as opposed to “r” strategists. Even though the normalized rates were 

different between the low and high DO parent reactor biomasses, the raw rates were not 

significantly different (unpaired t-test, p = 0.30). The increased abundance of ammonia oxidizers 

due to low DO growth conditions compensated for the slower per organism rates of ammonia 

oxidation.  
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Figure 4-2. Ammonia oxidation rates in the batch experiments with biomass from each parent reactor. 
Non-normalized ammonia oxidation rates are shown in blue bars (A) and ammonia oxidation rates 

normalized to amoA copies per mL are shown in orange bars (B). Bars represent the average of duplicates 
and the dots represent the individual measurements.  

 
In addition to characterizing the impact of DO concentration on the abundance of 

microorganisms and ammonia oxidizers, amplicon sequencing of the 16S rRNA gene was 

performed to understand community composition differences between the low and high DO parent 

reactors. At equal sequencing depths, three diversity indices that vary in their weighting of 

abundance all show that the low DO parent reactor supported the growth of a much more diverse 

community (larger value for all indices) than the high DO reactor (Table 4-2).  While the microbial 

community as a whole was more diverse in the low DO reactor, the dominant AOB and NOB in 

the reactors were similar (AOB: Nitrosomonas-type; NOB: Nitrospira-type) based on OTU 

groupings with a 97% similarity threshold (Table B4, Appendix B).  

Table 4-2. Richness and diversity indices of the low and high DO parent reactor communities 
 

 Operational taxonomic 
unit (OTU) richness 

Inverse Simpson 
diversity 

Shannon 
diversity 

Low DO 1,140 59 5.2 
High DO 350 21 3.8 
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4.3.2 Direct impact of DO concentration on pharmaceutical transformations 

Only a subset of the compounds biotransformed during the batch experiments. No 

significant biotransformation of trimethoprim, venlafaxine, acetyl-sulfamethoxazole, caffeine, 

carbamazepine, glyburide, sucralose, and erythromycin was observed by either the low or high 

DO parent communities. For the compounds for which we observed significant biotransformation 

(ibuprofen, sulfamethoxazole, 17α-ethinylestradiol, acetaminophen, and atenolol), both DO 

concentration during the batch experiment and the DO concentration of the parent reactor impacted 

the degree of biotransformation.  

For ibuprofen, sulfamethoxazole, 17α-ethinylestradiol, and acetaminophen, greater loss of 

the parent compound was observed in high versus low DO batch conditions (Figure 4-3). Atenolol 

was the one exception – greater loss was observed under low DO than high DO batch conditions 

(Figure 4-3). The first-order rate constant describing the biotransformation rate of each of the 

compounds varied significantly between compounds (Table 4-3). Ibuprofen biotransformation 

occurred most rapidly, with a half-life of 2-6 hours in high DO batch conditions. Conversely, 

complete loss of the other compounds was not observed over the 3-day batch experiments, and the 

biotransformation rate constants were significantly lower (Table 4-3). These results are consistent 

with previous studies that report the relative biodegradability of these compounds in wastewater 

systems (Joss et al., 2006; Yu et al., 2006).  
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Figure 4-3. Percent loss of ibuprofen, sulfamethoxazole, 17α-ethinylestradiol (EE2), acetaminophen, and 
atenolol in the low (red) and high (blue) DO parent communities. The solid markers represent low DO 
batch conditions (0.2-0.3 mg/L), and the open markers represent high DO batch conditions (constantly 
aerated, DO > 4 mg/L). Black outlined markers represent inhibited batch conditions. Azide-inhibited 

controls are not shown for EE2 and acetaminophen because of abiotic reactions with azide contributed to 
losses of these compounds (details in Appendix B). 

 
Table 4-3. Observed specific kinetic biotransformation constants (normalized by VSS concentration) for 

ibuprofen, EE2, sulfamethoxazole, acetaminophen, and atenolol. No biotransformation rate is reported for 
EE2 for low DO batch conditions because no significant biotransformation occurred. 

 

 kobs [L mg-1 day-1] 

 Ibuprofen EE2 Sulfamethoxazole Acetaminophen Atenolol 

Low DO parent & 
low DO batch 

2.4E-02 ± 
1.3E-03 N.A. 2.8E-03 ±  

1.2E-03 
2.9E-03 ±  
1.6E-03 

3.8E-03 ± 
2.4E-04 

Low DO parent & 
high DO batch 

1.1 E-01 ± 
6.4E-03 

2.1E-02 ± 
2.2E-03 

3.3E-03 ±  
2.1E-04 

2.4E-02 ±  
7.7E-03 

1.9E-03 ± 
2.0E-04 

High DO parent & 
low DO batch 

1.4E-02 ± 
6.0E-03 N.A. 2.2E-03 ±  

8.1E-05 
7.0E-03 ±  
3.8E-03 

2.9E-03 ± 
3.7E-04 

High DO parent & 
high DO batch 

1.0E-01 ± 
3.0E-02 

1.3E-02 ± 
4.1E-03 

3.1E-03 ± 
 9.5E-04 

2.1E-02 ±  
6.2E-03 

8.3E-04 ± 
2.8E-04 
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While complete and stable nitrification is possible at considerably lower bulk liquid DO 

concentrations than typically used in conventional activated sludge treatment systems, these results 

(and other previous studies, e.g. Jimenez et al., 2011) indicate that low DO slows the rate of 

ammonia oxidation. Our results show that this also reduces the rate of trace chemical 

transformations. If DO is a limiting substrate, it will slow the activity of aerobic microorganisms 

and impact their kinetics, resulting in reduced rates of biotransformation of primary and 

cometabolic substrates.  These results suggest that DO concentration will impact the degree of 

transformation of these compounds during treatment and that the oxygen half-saturation constant 

(KO2) of the microbial groups involved in biotransformation is an important parameter to predict 

the impact of DO concentration on the rate of pharmaceutical biotransformation. More research is 

needed to determine oxygen half-saturation constants (KO2) for pharmaceuticals in order to 

accurately model their fate in wastewater treatment and determine appropriate operational targets 

for DO concentration that do not negatively impact pharmaceutical removal, and this topic is 

further investigated in Chapter 5. 

Atenolol was the only compound for which we observed a faster biotransformation rate 

under low than high DO batch conditions. Other studies have reported that atenolol undergoes an 

initial amide-hydrolysis and is converted to atenolol-acid in wastewater treatment systems (Kern 

et al., 2010; Barbieri et al., 2012a). Hydrolysis reactions, unlike hydroxylation reactions, do not 

use oxygen as a substrate in catalysis. Faster hydrolysis rates in low DO conditions indicate that 

oxygen is not a limiting substrate in this reaction and might be enhanced as low DO environments 

can enable the growth of both aerobic and anoxic organisms. Previous studies have observed 

atenolol loss in anoxic environments during wastewater treatment (Carucci et al., 2006; Park et al., 

2009; Stadler et al., 2015). Our previous study on sequencing batch reactors treating real municipal 
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wastewater observed greater loss of atenolol in high than low DO conditions (Stadler et al., 2015). 

Another study of atenolol fate in different redox conditions in aquifer material found that removal 

occurred fastest in the most reducing conditions considered (sulfate reducing conditions; Barbieri 

et al., 2011). The collective results suggest that we do not fully understand the factors that control 

atenolol transformation and there may be a complex relationship between redox condition and 

transformation rate.  

4.3.3 Links between nitrification and pharmaceutical biotransformation 

Batch experiments were performed using allylthiourea, a specific inhibitor of ammonia 

oxidation, to understand the relationship between nitrification and pharmaceutical 

biotransformation. Allylthiourea inhibits ammonia oxidation and acts by binding to the copper 

center of ammonia monooxygenase (Bédard and Knowles, 1989).  As expected, no ammonia loss 

was observed in batch experiments with allylthiourea (Figure B1, Appendix B). Batch experiment 

results showed that the biotransformation of certain compounds (sulfamethoxazole, 17α-

ethinylestradiol, and acetaminophen) was linked to nitrification, as the extent and rate of 

transformation of these compounds were reduced in the presence of allylthiourea (Figure 4-3). 

Allylthiourea did not cease the transformation of these compounds, which indicates that both 

heterotrophs and nitrifiers are involved in their biotransformation in the uninhibited batches. For 

ibuprofen, the presence of the inhibitor had no significant effect on the rate of transformation. 

However, for atenolol, the presence of the inhibitor resulted in an increase in the rate of 

biotransformation, indicating that reduced competition with nitrifiers enabled greater atenolol 

transformation. 

The link between enhanced transformation of several compounds and nitrification could 

be due to several different factors: first, ammonia oxidizers are directly involved in the 
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transformation of these compounds. Ammonia monooxygenase is a non-specific enzyme that is 

capable of oxidizing alternative substrates (Hyman et al., 1994; Keener and Arp, 1994; Roh et al., 

2009). Previous studies have demonstrated the ability of ammonia oxidizers to transform EE2 

using pure cultures and ATU-inhibited experiments (Shi et al., 2004; Yi and Harper, 2007; Khunjar 

et al., 2011). Therefore, our results are consistent with previous findings suggesting that ammonia 

oxidizers are likely major contributors to the biotransformation of these compounds. Another 

possible explanation is that nitrite oxidizers are involved in the biotransformation of these 

compounds. Few studies have directly investigated the role of the nitrite oxidizers in 

pharmaceutical biotransformation, and their contribution is often overlooked as compared to 

ammonia oxidizers. Inhibition of ammonia oxidation with allylthiourea also ceases the production 

of nitrite, and therefore decreases the activity of nitrite oxidizers. A final possible explanation of 

the link between transformation and nitrification is that the products of nitrification (nitrite and 

nitrate) may be involved in abiotic transformations of these compounds. Previous studies have 

observed the biologically mediated abiotic transformation of sulfamethoxazole with nitrite under 

anoxic conditions (Barbieri et al., 2012b; Nödler et al., 2012). Another study demonstrated that 

EE2 underwent abiotic nitritation in the presence of high nitrite concentrations (10 - 500 mg-NO2
-

-N/L), and that this reaction was enhanced at low pH (Gaulke et al., 2008). In our experiments, 

nitrite concentrations were always significantly lower than those reported in these studies (below 

2.5 mg-NO2
—N/L) and the pH was near neutral; therefore, nitrite-mediated abiotic transformations 

are unlikely to be a primary mechanism of transformation.  

4.3.4 Indirect impacts of DO concentration on pharmaceutical transformations 

By comparing biotransformation rates between experiments using biomass from the low 

versus high DO parent reactor, the indirect impacts of DO on pharmaceutical biotransformation 
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via changes in microbial community structure were identified. For all of the compounds studied, 

greater loss of the parent compound (Figure 4-3) and faster biotransformation (Table B3, Appendix 

B) was observed in batch experiments using low DO parent reactor biomass than the high DO 

parent (under equivalent batch DO conditions). These results suggest that DO growth condition 

impacts the microbial community, and that selection in turn impacts the potential for 

pharmaceutical biotransformation.  

One selection impact of long-term low DO growth conditions was reduced specific activity 

with respect to ammonia oxidation rates in high DO conditions. The observed nitrification rates 

were comparable between the low and high DO parent reactors under high DO batch conditions 

because of the increased abundance of ammonia oxidizers in the low DO parent reactor. For 

ibuprofen, sulfamethoxazole, and acetaminophen, the faster observed biotransformation rates 

under high DO batch conditions could be explained by the increased biomass concentration in the 

low DO parent reactor as the VSS-normalized biotransformation rate constants were comparable 

between the low and high DO parent biomass (Table 4-3). However, for EE2 and atenolol, the 

specific biotransformation rate constants (VSS-normalized) were greater for the biomass from the 

low DO parent than the high DO parent reactor. Unlike for ammonia oxidation, these results 

indicate that low DO conditions selected for a community with comparable or faster specific 

pharmaceutical biotransformation rates compared to the high DO parent reactor.  

Despite identifying similar dominant AOB and NOB genera (Nitrosomonas-type and 

Nitrospira-type, respectively) in the low and high DO parent reactors, the communities functioned 

differently based on nitrification rates. One possible explanation for the differences in specific 

activity could be microdiveristy (Gruber-Dorninger et al., 2015). The length and region of the 16S 

rRNA gene that was sequenced only provides resolution at the genus level, and thus diversity 
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within Nitrosomonas and Nitrospira-type groupings was not discernable with the methods applied. 

Sequencing of the ammonia monooxygenase gene would likely better capture diversity within the 

ammonia oxidizing populations. A number of studies on low DO nitrification systems have 

reported conflicting results with respect to how DO shifts (or does not shift) the nitrifying 

microbial community. Several studies have hypothesized that low DO environments select for 

nitrifier lineages that have high oxygen affinities (Gieseke et al., 2001; Park and Noguera, 2004). 

The results, however, have been conflicting in terms of the specific lineages of AOBs identified in 

low DO environments, with several studies identifying AOB belonging to the Nitrosomonas 

genera (Park and Noguera, 2004; Bellucci et al., 2011; Arnaldos et al., 2013) and others finding 

that Nitrosopira (Li et al., 2007) dominated in low DO conditions. Further, the recent discovery of 

organisms within the genus of Nitrospira that completely oxidize ammonia to nitrate (comammox) 

has altered our understanding of the aerobic nitrification process (Daims et al., 2015; van Kessel 

et al., 2015). It is not yet known how low DO conditions influence the abundance and activity of 

comammox and whether comammox are involved in pharmaceutical biotransformation. Low DO 

conditions have been shown to favor the growth of Nitrospira sp. over Nitrobacter sp. performing 

nitrite oxidation (Daims et al., 2001; Schramm et al., 1998), and thus could also possibly favor 

Nitrospira that perform complete ammonia oxidation.  

An alternative hypothesis for the impact of oxygen limitation on ammonia oxidizing 

communities is that the community undergoes a physiological, as opposed to structural, adaptation 

to low DO conditions. Kowalchuk et al. (1998) found no correlation between differences in 

ammonia oxidizer community structure and oxygen availability in 5 different soil/sediments, and 

therefore suggested that physiological differences may outplay phylogenetic groupings.  In another 

study by Arnaldos et al. (2013), enhanced expression of a particular heme protein and increased 



 81 

specific oxygen uptake rates were observed in a nitrifying enrichment culture adapted to low DO 

conditions in comparison to a high DO enrichment that was operated near saturation. This suggests 

that microorganisms may ramp up oxygen delivery machinery such as heme proteins that transport 

oxygen, and key enzymes that use oxygen such as terminal oxidases and oxygenases, in response 

to oxygen limitation. In this study, it is unclear whether structural or physiological variation is the 

predominant explanation for the observed differences in specific activity between the low and high 

DO parent reactors as we were unable to capture sub genera-level diversity with the sequencing 

effort employed.  

Beyond nitrifiers, our results indicated that different DO concentrations in the parent 

reactors resulted in distinct microbial communities and greater microbial biodiversity in the low 

DO parent reactor. An additional limiting substrate (in this case, oxygen) can result in greater 

diversity according to resource competition theory because competition drives diversification 

(Huston, 1994). Biodiversity is generally believed to positively associate with productivity 

(Cardinale et al., 2012), but the relationship between biodiversity and function in WWTPs is not 

well understood. One study of 10 full-scale wastewater treatment systems observed a significant 

positive association between biodiversity and the collective rate of multiple pharmaceutical 

biotransformations (Johnson et al., 2014). Conversely, another study of estrogen fate in lab-scale 

bioreactors found conflicting results with respect to the removal of endocrine disruptors; they 

observed that a decrease in diversity correlated with an increase in the removal of endocrine 

disruptors (estrone (E1), 17β-estradiol (E2) and 17α-ethinylestradiol (EE2)) (Pholchan et al., 

2013).  This may be due to the choice of compounds in these studies; certain biotransformations 

might be functionally redundant (catalyzed by many species in the community), and therefore have 

no association with biodiversity. Conversely, other functions that are performed by few species in 
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the community would be more likely to have a positive association with biodiversity. Our results 

support the notion that increased biodiversity may have contributed to the greater collective 

biotransformation rates observed in the low DO than the high DO parent community, though 

additional studies are needed to directly test this relationship (investigated in Chapter 6). 

4.4 Summary and potential applications 

DO concentration can impact the rate of pharmaceutical biotransformation during 

wastewater treatment. The results of this study illustrate a nuanced relationship between DO 

concentration and pharmaceutical biotransformation rates, as DO impacts both microbial 

physiology and microbial community structure. Short term batch experiments showed that high 

DO conditions resulted in faster biotransformation rates for ibuprofen, sulfamethoxazole, EE2, and 

acetaminophen. Atenolol was the one exception for which faster biotransformation occurred in the 

low than the high DO batch experiments. Long-term low DO growth conditions also selected for 

a community that had faster net biotransformation rates, but lower specific activity with respect to 

ammonia oxidation. Long-term low DO growth conditions resulted in a greater biomass 

concentration, an enrichment of ammonia oxidizers, and increased microbial diversity compared 

to high DO growth conditions.  

Knowledge of oxygen half saturation constants for pharmaceuticals (investigated in 

Chapter 5) will allow utilities to poise the DO concentration such that it does not drastically impact 

biotransformation rates, while still saving on aeration energy and taking advantage of other 

benefits of low DO treatment (e.g. reduced decay and increased microbial diversity). This work 

and other studies (Liu and Wang, 2013) suggest that despite lower specific rates, reduced decay in 

low DO conditions that results in an enrichment of ammonia oxidizers can result in comparable 

nitrification performance to a high DO system. Higher biomass concentrations that could result 
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from long term low DO conditions could entail greater sludge handling requirements in a full-scale 

treatment system. If the sludge could be used to generate biogas via anaerobic digestion, benefits 

from greater sludge production could be realized. An energy balance accounting for aeration 

energy savings and energy associated with sludge handling should be performed to determine net 

energy benefits (or losses) of implementing a low DO treatment process.  This research also 

supports a positive association between microbial biodiversity and pharmaceutical 

biotransformation. DO concentration is one operational parameter that may influence microbial 

diversity in a treatment system, but there are likely many others, such as solids retention time, 

substrate quantity and quality, temperature, salinity, and physical configuration. Designing 

treatment systems that harbor diverse microbial communities may be one way to enhance 

pharmaceutical biotransformation during treatment. Cycling between low and high DO 

environments could be one strategy for both enhancing pharmaceutical biotransformation by 

supporting a diverse microbial community while also providing non oxygen-limiting conditions to 

enable maximum biotransformation rates. 
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5.1 Introduction 

Emerging aeration control strategies enabled by innovations in robust, low-cost sensors 

and real-time feedback control have resulted in substantial reductions in operational bulk liquid 

dissolved oxygen (DO) concentrations from above 2 mg/L to around 0.5 mg/L. For example, 

ammonia-based aeration control has resulted in reductions in aeration basin DO concentrations, 

electricity savings, and methanol savings by supporting simultaneous nitrification-denitrification 

activity (Uprety et al., 2015). As we move toward low DO treatment processes, there is a need for 

a better understanding of how low DO environments affect the function and structure of 

wastewater communities and the fate of micropollutants such as pharmaceuticals. Slowly 

biodegradable pharmaceutical biotransformation rates can be over three orders of magnitude 

slower than the rates of conventional pollutant transformations such as ammonia and organic 

carbon (Joss et al., 2006). Thus, if DO concentration impacts the physiology of the microorganisms 

involved in biotransformation, it could result in substantial reductions in the removal efficiencies 

of pharmaceuticals across treatment plants.  
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In order to predict the fate of pharmaceuticals during wastewater treatment and gain a more 

resolved understanding of the impact of DO concentration on their biotransformation, we need to 

establish a database of kinetic parameters such as first order or pseudo first order biotransformation 

rate constants and oxygen half-saturation constants. Considerable research has been conducted on 

the former (e.g. Abegglen et al., 2009; Joss et al., 2006; Urase and Kikuta, 2005); classification 

schemes and modeling efforts have been developed to categorize pharmaceuticals based on their 

relative biodegradability (Joss et al., 2006) and predict the biodegradability of a compound based 

on its chemical structure (Khan and Ongerth, 2004). No studies to our knowledge have 

experimentally determined oxygen half-saturation constants to describe the biotransformation of 

pharmaceuticals in full-scale wastewater treatment plants. KO2 values for heterotrophs and 

nitrifiers, which are commonly used in wastewater treatment plant modeling, are in the range of 

0.010 – 0.20 for heterotrophs and 0.74 – 1.8 for ammonia and nitrite oxidizers (Grady et al., 2011). 

For most pharmaceuticals, there is insufficient knowledge about which microorganisms are 

responsible for catalyzing their biotransformation. Thus, while the KO2 values for heterotrophs and 

nitrifiers might be effective at capturing the impact of oxygen limitation on biotransformation 

rates, they could also be grossly inaccurate if biotransformation is catalyzed by microorganisms 

that are particularly sensitive to oxygen limitation or if high DO concentrations inhibit 

biotransformation rates. 

In addition to estimating kinetic parameters that capture community-wide impacts of DO 

on process rates, we can sequence the 16S rRNA gene and 16S rRNA to characterize the impact 

of DO on microbial community structure and the activity of individual taxonomic groups. Linking 

microbial community structure and activity to community function is an active area of research in 

engineered and natural systems (Harter et al., 2014; Vanwonterghem et al., 2014; Zhi et al., 2014). 
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For specific processes, such as ammonia oxidation, associations between process rates and the 

abundance of taxa that perform ammonia oxidation have been observed (Wells et al., 2009). 

Researchers have proposed frameworks for establishing predictive relationships between 

microbial activity and biotransformation rates (Helbling et al., 2015), but more research is needed 

to identify taxonomic groups associated with pharmaceutical biotransformation and validate 

predictive models.  

The objective of this study was to characterize the impact of DO concentration on 

pharmaceutical biotransformation rates via two approaches: 1) determine oxygen half-saturation 

constants that can be used to describe the community-wide impact of DO on biotransformation 

rates; and 2) evaluate shifts in the relative activity of the microbial community due to DO 

concentration and test for associations between biotransformation rates and the relative activity of 

specific phylogenetic groups. We performed multiple batch experiments at different DO 

concentrations using biomass from a full-scale wastewater treatment plant and measured 

pharmaceutical biotransformation rates. In addition, we characterized the relative activity of the 

microbial community by performing 16S rRNA sequencing and tested for significant associations 

between biotransformation rates and the relative activity of phylogenetic groups. The results of 

this work advance our ability to predict and model the impact of DO concentration on 

pharmaceutical biotransformation during wastewater treatment and identify taxonomic groups 

associated with biotransformation. 

5.2 Materials and methods 

5.2.1 Batch experimental setup 

 Six sets of batch experiments were performed at different DO concentrations. Each batch 

experiment was six hours long and all of the experiments were performed over a period of 19 days 
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in July and August of 2015. For each experiment, mixed liquor was collected from the end of the 

aeration basin of the Ann Arbor, MI wastewater treatment plant, which operates a sequential 

anaerobic/aerobic process that maintains an average DO concentration of 2-3 mg/L during the 

aerobic phase. The mixed liquor was brought back to the lab where it was immediately centrifuged 

at 6,200 x g for 5 minutes, the supernatant was discarded, and the biomass was resuspended in 

effluent. The effluent used in the experiments was final effluent collected before disinfection from 

a biological nutrient removal facility in Southeastern Virginia. This effluent was chosen because 

of its low total nitrogen (TN; < 3 mg-N/L) as we intentionally wanted to capture biodegradation 

rates under low substrate conditions in the batch experiments. The effluent was shipped to Ann 

Arbor, Michigan overnight, filtered through 0.45 µm filter, aliquoted, and frozen at -20°C until 

use. An individual aliquot was defrosted for each batch experiment. The defrosted effluent was 

supplemented with KH2PO4 and K2HPO4 to achieve a final concentration of 15 mM phosphate 

buffer and pH of 7.5.  

 Batch experiments were performed at target bulk liquid DO concentrations of 6.0, 2.0, 0.5, 

0.25, 0.15, and 0.05 mg/L. The DO concentration was controlled by adjusting the airflow rates of 

air and nitrogen gas being supplied to a manifold that split the flow into the 8 flasks. Two optical 

DO probes were placed in the flasks and used to monitor the DO concentration during each batch 

experiment and for making adjustments to the gas flow rates throughout the experiment. Each 

batch experiment consisted of 8 flasks: 3 replicates with no inhibitors, 3 replicates with 10 mg/L 

of allylthiourea (ATU) to inhibit ammonia oxidation; and 2 replicates with 0.4% w/v of sodium 

azide to serve as abiotic controls. ATU was chosen as because it is selective inhibitor of ammonia 

oxidation that acts by binding to the copper center of ammonia monooxygenase (Bédard and 

Knowles, 1989). Inhibition of ammonia oxidation was confirmed by measuring the concentrations 
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of ammonia-N, nitrite-N, and nitrate-N across the batch experiments (Figures C1 and C2, 

Appendix C). Respirometry was used to determine the minimum concentration of sodium azide 

needed such that additional sodium azide did not further reduce the specific oxygen uptake rate 

(detailed in Appendix C). The 0.25 mg-DO/L batch experiment had a different allocation with 

respect to the 8 flasks: 2 replicates with no inhibitors; 2 replicates with allylthiourea; 2 replicates 

with sodium azide; and 2 replicates with no biomass (effluent-only controls). The effluent-only 

controls were only performed once to ensure that no non-biomass associated biotransformation of 

the pharmaceuticals occurred. 

 Pharmaceuticals selected for investigation in this study included: acetaminophen, atenolol, 

17α-ethinylestradiol (EE2), sulfamethoxazole, trimethoprim, venlafaxine, ibuprofen, and 

naproxen. Chemical information about each compound including chemical formula and accurate 

mass is provided in Table C1 in Appendix C.  Compounds were purchased from Sigma Aldrich 

(Saint Louis, Missouri) and Fischer Scientific (Waltham, Massachusetts). Stock solutions of each 

individual compound were prepared in methanol and frozen at -20°C until use. A 10 mg/L mixture 

of all compounds in methanol was prepared and before each batch experiment 150 µL of the 

mixture was added to 250 mL glass flasks and allowed to evaporate until dry. After evaporation, 

100 mL of buffered effluent was added to each flask and placed on a stir plate for 1 hour to re-

dissolve the dried compounds. The batch experiments were initiated by adding 50 mL of 

concentrated and washed biomass to each of the flasks, which yielded a target initial concentration 

of each pharmaceutical of 10 µg/L. 

5.2.2 Sampling 

 Five samples were collected from each flask across the experiment at time points 0, 0.5, 

1.5, 3, and 6 hours, with t=0 corresponding to 5 minutes after the biomass was added to the flasks 
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to ensure it was completely mixed. To sample, 10 mL was collected from each well-mixed flask, 

spiked with 100 µL of a 500 µg/L stock solution that consisted of a mixture of deuterated analogs 

of each of the compounds (compounds purchased individually from Toronto Research Chemicals, 

Toronto, Ontario, Canada) dissolved in water. The samples were then centrifuged at 4°C for 5 

minutes at 6,200 x g, the supernatants were filtered through 0.3 µm glass fiber filters (Sterlitech 

Inc., Kent, Washington), and samples were stored at 4°C until analysis (within 24 hours). 

Pharmaceutical concentrations were determined in all samples and ammonia-N, nitrite-N, and 

nitrate-N concentrations were determined according to Standard Methods (methods 4500F-NH3, 

4500B-NO2
-, and 4110; (2005)) in the initial and final samples for each flask. Total and volatile 

suspended solids (TSS/VSS) concentration was determined for each flask at the end of the 

experiment (Standard Methods (2005), method 2540). As the batch experiments were only 6 hours 

and there was no substrate provided aside from what was present in the effluent, it was assumed 

that no significant growth occurred across the experiment. Pharmaceuticals were quantified in each 

sample via online solid phase extraction followed by high performance liquid chromatography 

(HPLC) and high resolution mass spectrometry (HRMS) as detailed in Appendix C. 

5.2.3 Pharmaceutical biotransformation rates and determination of oxygen half-saturation 

constants for pharmaceuticals 

Biotransformation rates were determined by performing a linear fit of the non-substrate 

limited (zero-order kinetic) portion of the concentration versus time data for each compound in 

each batch experiment. Biotransformation rates were normalized to the volatile suspended solids 

(VSS) concentration, which was determined at the end of each batch experiment for each flask. 

Pharmaceutical quantification data from the batch experiments is provided in Appendix C. Mann-
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Whitney U tests were used to perform pairwise comparisons of the non-inhibited and ATU-

inhibited biotransformation rates.  

To represent the effect of DO on pharmaceutical biotransformation rates, a Monod-type 

kinetic equation (equation 1) or Andrews-type equation (equation 2) was used to fit the normalized 

biotransformation rate data. Kinetic parameters qmax (maximum substrate oxidation rate, 

ng/mg/hr), KO2 (oxygen half-saturation constant, mg-DO/L) and Ki,O2 (oxygen inhibition constant, 

mg-DO/L) were estimated based on the best-fit nonlinear least-squares regression to the 

experimental data using R (R Core Team, 2012). Measured variables were q (substrate oxidation 

rate normalized to biomass VSS concentration, ng/mg/hr) and SO2 (DO concentration, mg-DO/L). 

! = #$%&'()
*()+'()

       (1) 

  ! = !,-. '()
*()+'()+

/())
01,()

      (2) 

5.2.4 Respirometry to determine oxygen half-saturation constants for heterotrophs and nitrifiers 

The oxygen half-saturation constant (KO2) for both nitrifying (lumped AOB and NOB) and 

heterotrophic populations in Ann Arbor wastewater treatment plant biomass was determined by 

respirometry. Mixed liquor (ML) collected from the treatment plant for each batch experiment was 

initially aerated and stirred for at least five minutes to remove extant substrates. The pre-aeration 

time was determined by measuring the endogenous oxygen uptake rate of the biomass to ensure 

all extant substrates were completely oxidized (data not shown). A 22-mL aliquot was transferred 

into a glass vial, placed on a magnetic stir plate, and a real-time DO probe was inserted into the 

vial with a rubber stopper to seal the vial and eliminate gaseous headspace. This assembly was 

allowed to stand for 30 seconds to capture the endogenous oxygen uptake rate, before substrate 

(ammonium chloride for nitrifiers, sodium acetate for heterotrophs) was introduced to the vial via 
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a syringe such that it was in excess (approximately ten times the calculated stoichiometric amount 

that would be consumed given the oxygen concentration in the vial). DO concentration was logged 

every five seconds until it was completely consumed. Trials were run in triplicate and mixed liquor 

was re-aerated and stirred for three minutes prior to each subsequent trial to ensure oxygen 

saturation when the trial was initiated.  

Data were fitted to an integrated form of the Monod equation for substrate utilization rate 

(1), using weighted nonlinear least-squares analysis (Smith et al., 1998). To obtain good estimates 

for KO2, we fit the model to the low DO data range where the DO concentration curve transitions 

from the maximum utilization rate to a slower rate associated with DO-limited growth. We used 

true growth yield values of 0.24 g biomass COD/g N and 0.67 g biomass COD/g acetate as COD 

for nitrifiers and heterotrophs, respectively (Grady et al., 2011). 

5.2.5 Molecular methods 

 Biomass samples were collected for microbial community analysis at the 3-hour time point 

of the pharmaceutical batch experiments. The pellets resulting from centrifugation were 

transferred immediately to a -80°C freezer and flash frozen to preserve RNA integrity. RNA 

extractions and sequencing were only performed on the non-inhibited and allylthiourea-inhibited 

biomass samples. RNA was extracted with three bead-beating steps and automated extraction 

using Maxwell simplyRNA tissue kits,  according to the manufacturer’s instructions (Promega, 

Madison, Wisconsin) except 10 µL of DNase 1 (increased from 5 µL) was used to remove 

contaminating DNA. An additional DNase treatment was performed on the RNA extracts using 

the DNA-free™ DNA Removal Kit (Ambion, Grand Island, New York) according to the 

manufacturer’s “rigorous” procedure.  Total RNA concentrations were quantified with the 

Invitrogen Qubit fluorometer. Quantitative polymerase chain reaction of the 16S rRNA gene (as 
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described in Chapter 3) was used to confirm that the DNase treatment removed contaminating 

DNA from the RNA extracts. Reverse transcription to generate single-stranded complementary 

DNA (cDNA) from RNA extracts was performed using the SuperScript VILO cDNA Synthesis 

Kit according to manufacturer’s instructions (Life Technologies, Grand Island, NY). 

 Amplicon sequencing of the cDNA extracts was performed at the Host Microbiome 

Initiative (University of Michigan, Ann Arbor, Michigan) on the Illumina MiSeq platform as 

described in Chapter 3. Briefly, universal primers F515 and R806 targeting the V4 region of the 

16S rRNA gene (Caporaso et al., 2011) as modified by Kozich et al. (2013). Samples were 

amplified using the Accuprime TAQ (Invitrogen) and amplicons were pooled equally by mass 

using the SequalPrepNormalization Plate Kit (Life Technologies), multiplexed, and sequencing 

with the Reagent kit V2. Sequences were processed with Mothur (Schloss et al., 2009) and 

classified using version 14 of the 16S rRNA gene taxonomy from the Ribosomal Database Project 

(Cole et al., 2009). Sequencing of 68 samples resulted in 1,178,203 paired-end reads after quality 

filtering. Sequences were sub-sampled to a depth of 12,294 sequences per sample for subsequent 

analyses. Operational taxonomic units (OTUs) were defined based on 97% sequence similarity. 

Yue and Clayton (θyc) (community structure based) and Jaccard (membership based) indices were 

calculated as β-diversity metrics. 

5.2.6 Associations between OTU transcript abundances, DO concentration, and pharmaceutical 

biotransformation rates 

 Sequencing of the cDNA samples was used to determine significant associations between 

OTU abundances, DO concentration, and individual pharmaceutical biotransformation rates. 

Mothur’s otu.association command was used with metadata files containing DO concentration and 

individual pharmaceutical rate data to identify OTUs whose activity (16S rRNA abundance) was 
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significantly associated with each set of metadata. The Spearman’s rank correlation method was 

selected for the otu.association command as it is a non-parametric measure of statistical 

dependence of two variables. The command generates a Spearman rank correlation coefficient and 

p-value for each individual OTU and the specified metadata.    

5.3 Results 

5.3.1 Pharmaceutical transformation results 

All of the compounds biotransformed to differing extents in the 6-hour batch experiments. 

A range of biotransformation rates were observed for the compounds studied, with ibuprofen and 

acetaminophen transformed most rapidly and sulfamethoxazole and trimethoprim most slowly. No 

loss of any of the compounds was observed in the no-biomass abiotic controls included in the 0.25 

mg-DO/L batch experiment (data in Appendix C). Specific biotransformation rates were 

determined by fitting the linear potion of the concentration versus time data and then normalizing 

the slope to the VSS concentration of the flask. Figure 5-1 shows the normalized rate for each of 

the compounds from the 0.5 mg-DO/L batch experiment, which were at or close to the estimated 

maximum biotransformation rates (qmax) for all of the compounds (Figure 5-2). The relative 

biodegradability of these compounds is consistent with previous studies of these compounds in 

wastewater systems (Joss et al., 2006).  

ATU-inhibited batch experimental results showed no significant difference between 

ammonia oxidizer-inhibited pharmaceutical biotransformation rates and non-inhibited rates (Mann 

Whitney U, p > 0.05). Unlike many previous studies that used ATU to understand the contribution 

of nitrifiers to pharmaceutical biotransformation (e.g. Batt et al., 2006; Tran et al., 2009), we did 

not observe a significant contribution by nitrifiers to the biotransformation of the compounds we 

studied. Notably, the batch experiments we performed were under “starved” conditions as we 
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initiated the experiments with treated effluent from a treatment plant with low effluent TN (2.98 

mg-N/L), and thus only limited ammonia-N was available from the effluent (0.36 mg-NH3-N/L) 

and decay products generated during the batch experiment. Thus, it is possible that if the 

experiments had been performed under high ammonia-N substrate conditions, we might have 

observed a greater impact of ATU on pharmaceutical biotransformation rates. There is 

considerable evidence that AOBs can biotransform pharmaceuticals under ammonium starvation 

conditions (Forrez et al., 2009; Khunjar et al., 2011; Dawas-Massalha et al., 2014). Previous 

studies have also found that competitive inhibition can occur such that high concentrations of 

ammonium repress co-metabolic biotransformations of pharmaceuticals by AOB (Fernandez-

Fontaina et al., 2012). However, even under starvation conditions, we did not observe that 

ammonia oxidizer activity significantly contributed to pharmaceutical biotransformation.  

 
Figure 5-1. Specific biotransformation rates observed for each compound in the 0.5 mg-DO/L batch 

experiment. 
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5.3.2 Oxygen half-saturation constants for pharmaceutical biotransformations 

The biotransformation rates of all of the compounds investigated were impacted by DO 

concentration (Figure 5-2). Estimates for KO2 are provided in Table C3 in Appendix C. All of the 

compounds except naproxen were better fit with an Andrews-type equation. This suggests that 

either high concentrations of DO were inhibitory to biotransformation, or that they caused a 

physiological shift in the enzyme pool of the microbial community that can be described 

mathematically by an Andrews-type equation. Biotransformation rates decreased relatively 

sharply for all of the compounds at DO concentrations below about 0.5 mg/L (dotted lines in Figure 

5-2), which is consistent with the KO2 estimates obtained. These results demonstrate that aerobic 

biotransformation processes were limited by oxygen availability, thereby reducing pharmaceutical 

biotransformation rates.  

In this study we attempted to minimize the contributions of anoxic metabolisms by using 

an effluent with low TN and low nitrate-N concentrations (2.98 mg-N/L TN and 1.6 mg-N/L as 

nitrate) as media in the batch experiments. Biotransformation rates due to anoxic metabolisms 

were not the focus of this study, and the impact of DO concentration on biotransformation rates 

presented here may be conservative as contributions due to anoxic metabolisms at low DO 

concentrations were likely nitrate-limited.  Interestingly, for 6 of the 8 compounds studied, their 

maximum biotransformation rate was observed at a DO concentration less than 1 mg/L. Therefore, 

environments that enable both aerobic and anoxic metabolisms may enhance overall 

pharmaceutical biotransformation rates. However, several studies have demonstrated slower 

biotransformation rates of trace contaminants in anoxic versus aerobic environments (Dytczak et 

al., 2008; Suarez et al., 2010). Thus, while anoxic metabolisms may contribute to 
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biotransformation, they are likely to be considerably slower than aerobic biotransformation 

processes.   

The oxygen half-saturation constants of 0.09 ± 0.3 for heterotrophs and 0.38 ± .09 for 

nitrifiers were very similar to previously published values (Grady et al., 2011). Estimated oxygen 

half-saturation constants ranged between 0.03 and 0.61 across all of the compounds studied (Figure 

5-3). Despite variation between KO2 values of the compounds, the values were almost all lower 

than the oxygen half-saturation constant for nitrifers. Ibuprofen was the only compound for which 

we observed a greater average KO2 than the nitrifier KO2, but the large error associated with the 

regression suggests it is not significantly different from the KO2 for nitrifiers. Ibuprofen was also 

the most rapidly transformed compound (Figure 5-1), so the sensitivity to DO concentration may 

have little effect on the overall removal of ibuprofen during treatment. These results show that KO2 

values can be used to predict the impact of DO concentration on biotransformation rate and the 

KO2 values for the compounds we studied were all within the range of those KO2 values that we 

already use to model the impact of DO on heterotrophs and nitrifiers.  
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Figure 5-2. Pharmaceutical biotransformation rates plotted as a function of DO concentration for each 
compound. Black and red circles represent non-inhibited and allylthiourea-inhibited values, respectively. 
Lines represent Andrews and Monod model fitted curves. ATU-inhibited trimethoprim data could not be 

fitted with either model.

ibuprofen

qmax =&12&± 3.5
Ko =&0.61&± 0.33
Ki =&9.4&± 7.8

acetaminophen

qmax =&12&± 3.9
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naproxen

qmax =&3.1&± 0.17
Ko =&0.21&± 0.049

atenolol

qmax =&1.4&± 0.073
Ko =&0.086&± 0.015
Ki =&16&± 4.7

venlafaxine

qmax =&0.71&± 0.11
Ko =&0.086&± 0.036
Ki =&3.5&± 1.4

trimethoprim

qmax =&0.12&± 0.046
Ko =&0.15&± 0.16
Ki =&30&± 88

EE2

qmax =&0.85&± 0.19
Ko =&0.20&± 0.11
Ki =&7.5&± 5.3

sulfamethoxazole

qmax =&0.35&± 0.026
Ko =&0.025&± 0.010
Ki =&24&± 15
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Figure 5-3. Oxygen half-saturation constants (KO2) for each pharmaceutical compound and heterotrophs 

and nitrifiers. Black and red circles represent non-inhibited and allylthiourea-inhibited values, 
respectively. Trimethoprim rate data for the allylthiourea-inhibited batches could not be fitted with either 

model. Green and orange diamonds represent heterotroph and nitrifier values, respectively. Error bars 
represent the standard error of the regression. 
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We observed significantly more variation among samples from different batch experiments than 

within samples from each batch experiment (θyc AMOVA, p < 0.001). Pairwise comparisons 

between each group of samples also showed significantly different active microbial communities 

(θyc AMOVA, p < 0.01). We visualized the differences in community structure using non-metric 

multidimensional scaling (NMDS) of the θyc index (Figure 5-4). The results confirmed that 

microbial communities clustered based on batch experiments. Variability in the active microbial 

communities across each batch experiment is likely due to both differences in batch DO 

concentration and when the experiment was conducted. These experiments were performed over 

19 days and variability in the full-scale WWTP microbial community contributed to the variability 

in the active microbial communities across the batch experiments. The order and date that each 

experiment was performed is provided in the legend of Figure 5-4A.  

While the microbial communities from the batch experiments were significantly different 

from one another, they did not obviously cluster based on DO concentration. DO concentration 

and pharmaceutical biotransformation rates that significantly associated (Spearman, p < 0.05) with 

either of the two NMDS axes are shown in Figure 5-4B as arrows. The 0.5 and 0.25 mg-DO/L 

batch experiments clustered separately from the rest of the batch experiments, and in the direction 

that also corresponded to increased biotransformation rates of several of the pharmaceuticals 

(venlafaxine, acetaminophen, sulfamethoxazole, and atenolol). The NMDS plot also shows that 

the 2 and 6 mg-DO/L microbial communities are shifted in the direction of increased DO 

concentration and biotransformation of trimethoprim and naproxen, the only two compounds 

whose maximum biotransformation rates occurred at DO concentrations greater than 1 mg/L. 

  



 106 

(A) 

 

(B) 

 
Figure 5-4. Non-metric multidimensional scaling biplot showing the active microbial community 

structures (θyc) from each of the batch experiments, shown in different colors (A). DO concentration and 
individual pharmaceutical biotransformation rates that significantly correlated with either of the two axis 

are shown as arrows (B). 
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5.3.4 Associations between active OTUs and biotransformation rates 

Significant associations between relative activity of individual OTUs and 

biotransformation rates were observed for each pharmaceutical (Spearman, p < 0.01). Classifying 

sequences based on phylotype (taxonomically based on genera) resulted in significant 

associations (p < 0.01) between phylotypes and biotransformation rates for all compounds except 

sulfamethoxazole. There was considerable variety across the different compounds with respect to 

the number and genera of phylotypes with significant positive associations (Table C5, Appendix 

C). Among the significant and positively associated phylotypes, no individual phylotype’s 

activity was significantly associated with all of the compounds’ biotransformation rates. The vast 

majority (47 of 52) of the significantly associated phylotypes had relative activities of less than 

3% (Figure 5-5), indicating that low abundance community members may be major contributors 

to pharmaceutical biotransformation.  

We also tested for associations between phylotypes and DO concentration and found 26 

phylotypes that had significant associations with DO concentration (Spearman, p <0.01), 9 of 

which were positively associated and 17 that were negatively associated. These phylotypes made 

up between 12 and 16% of the relative activities of their microbial community. As expected, the 

positively associated phylotypes included genera that were obligate aerobes such as Bdellovibrio 

(Simpson and Robinson, 1968; Varon and Shilo, 1980) and other aerobic organisms such as 

Hydrogenophaga (Willems et al., 1989), while the negatively associated genera included 

facultative anaerobic organisms such as Aeromonas (Seshadri et al., 2006), microaerobic 

organisms such as Arcobacter (Houf et al., 2001), and the denitrifying genera Paracoccus 

(Carlson and Ingraham, 1983). These results demonstrate that significant associations reflect 

expected shifts in the activity of known genera based on their metabolic lifestyle. In addition, the 
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compound that had the most number of shared significant associated phylotypes with DO was 

naproxen (19 shared phylotypes), which was the only compound with biotransformation rates as 

a function of DO that were best-fit with a Monod-type equation without an inhibition term. 

 

 

 Figure 5-5. Rank abundance curve of phylotypes that had significant and positive associations 
with individual compounds’ biotransformation rates (Spearman, p < 0.01). The y-axis shows the average 

relative activity of the phylotype in the 0.5 mg-DO/L batch experiment. 
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associations are phylotypes that are involved in catalyzing biotransformation reactions. Positive 

associations between biotransformation rates and phylotype activity are not unequivocally causal, 

and there are many scenarios for which non-causal associations could emerge (Johnson et al., 

2015). These associations are still valuable as bioindicators and can be used for predicting 

community functions and biotransformation rates. 

Table 5-1. Shared phylotypes that associated with biotransformation rates of pairs of compounds and 
whether the UM-PPS predicted a shared biotransformation pathway (ACE – acetaminophen; VLF – 

venlafaxine; IBF – ibuprofen; NPX – naproxen; EE2 - 17α-ethinylestradiol; TMP – trimethoprim; ATE – 
atenolol; SMX – sulfamethoxazole) 

 

Pairwise comparison 

Number of shared phylotypes 
that were significant and 
positively associated with 

biotransformation rate (p<0.01) 

UM-PPS predicted similar 
biotransformation 

pathway? 

ACE vs. VLF 11 no 
IBF vs. NPX 4 yes 
EE2 vs. VLF 3 yes 
TMP vs. IBF 3 yes 
EE2 vs. NPX 2 yes 
TMP vs. NPX 2 yes 
VLF vs. NPX 2 yes 
ATE vs. EE2 1 no 
ATE vs. TMP 1 yes 
ATE vs. IBF 1 no 
ACE vs. EE2 1 no 
EE2 vs. TMP 1 yes 
EE2 vs. IBF 1 yes 

ATE vs. ACE 0 no 
ATE vs. SMX 0 no 
ATE vs. VLF 0 yes 
ATE vs. NPX 0 yes 
ACE vs. SMX 0 no 
ACE vs. TMP 0 no 
ACE vs. IBF 0 no 
ACE vs. NPX 0 no 
EE2 vs. SMX 0 no 
SMX vs. TMP 0 no 
SMX vs. VLF 0 no 
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SMX vs. IBF 0 no 
SMX vs. NPX 0 no 
TMP vs. VLF 0 yes 
VLF vs. IBF 0 yes 

 

5.4 Discussion 

The goal of this study was to evaluate the impact of DO concentration on the physiology 

of the microbial community and the rates of pharmaceutical biotransformations. Our results reveal 

that substantial reductions in bulk liquid DO concentrations, and therefore energy savings, are 

possible without compromising pharmaceutical biotransformation. We determined oxygen half-

saturation constants for eight compounds using biomass from a full-scale wastewater treatment 

plant that can be used to model the impact of DO concentration on biotransformation rates. We 

found that for all of the compounds, a reduction in DO concentration to approximately 0.5 mg/L 

will not have a major impact on the rate of pharmaceutical biotransformation. Put in other words, 

the biotransformation rates are at or near their maximum rates at 0.5 mg-DO/L, and increasing 

aeration will not result in faster biotransformation rates. These results reflect the findings from one 

wastewater treatment plant, and should be validated by extending this investigation to other 

treatment plants. 

By focusing on a single wastewater treatment plant, we were able to hold the microbial 

community relatively constant across experiments and identify associations between microbial 

activity and pharmaceutical biotransformation. The results show that the activity of a number of 

phylotypes can be used as indicators of biotransformation rates. Linking 16S rRNA gene 

abundance and activity information to microbial community function is an active area of research. 

Techniques such as correlation-based network analysis (Ju et al., 2014) and multivariate models 

(Helbling et al., 2015) have been used to establish predictive relationships between 16S rRNA 
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gene sequences and community function. We argue that stronger and more mechanistically-

relevant associations may be captured by looking at transcript sequences, as the transcript pool is 

more reflective of the active microbial community.  

The phylotypes that significantly associated with DO concentration provide some 

validation that this approach generates metabolically-relevant phylotypes, as obligate aerobes 

positively associated with DO concentration and facultative and denitrifying genera had negative 

associations. It is challenging to validate the phylotypes that associated with pharmaceutical 

biotransformation rates, as our knowledge of the microorganisms capable of transforming many 

of the compounds is extremely limited. Notably, for EE2, a compound whose biotransformation 

has been linked with nitrification in wastewater treatment systems in several studies (Yi and 

Harper, 2007; Dytczak et al., 2008), its biotransformation rate significantly associated with a 

phylotype of the Nitrospira genera, a group of nitrite oxidizing bacteria.  In addition, Helbling et 

al. (2015) found significant and positive associations between 16S rRNA gene abundances and the 

transformation of a suite of micropollutants in full-scale wastewater treatment systems. 

Venlafaxine was the only compound in both their study and ours with significant associations with 

OTUs, and of the four significant and positively associated OTUs that they observed, we also 

observed significant and positive associations with two of them (genera Pirellula and 

Chryseobacterium). We identified 24 additional phylotypes with significant and positive 

associations with venlafaxine biotransformation. These associations, as well as the phylotypes 

identified for the other compounds, adds to the body of knowledge of phylogenetic groups that 

may be used to predict and potentially enhance specific community functions. 

Overall, the phylotypes with associations with biotransformation rates were varied and 

diverse among the eight compounds studied. There was no single phylotype that was associated 
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with all compound biotransformation rates, and the maximum number of compounds that a single 

associated phylotype was shared across was 3 compounds. These results support those found in 

Chapters 4 and 6 and a previous study (Johnson et al., 2014) that showed that biodiversity is 

positively associated with the collective rate of pharmaceutical biotransformation. Low DO 

operation may create niche environments that results in increased biodiversity (as observed in 

Chapter 4). Thus a reduction in DO concentration could result in a community with faster overall 

collective rates of pharmaceutical biotransformation by supporting a more diverse microbial 

community than a fully aerobic, high DO treatment plant.  

Long-term low DO operation may select for microorganisms with higher affinities for DO. 

Previous studies have demonstrated this affect in ammonia oxidizing populations from wastewater 

treatment systems (Park and Noguera, 2004; Arnaldos and Pagilla, 2014). Arnaldos and Pagilla 

(2014) observed that AOB had a lower oxygen half-saturation constant (higher affinity) after long-

term growth under 0.1 mg/L DO conditions (KO2 values of 0.23 versus 1.01 mg-DO/L in low 

versus high DO growth conditions). Park and Noguera (2004) did not observe significant 

differences in AOB KO2 values between communities grown under low and high DO conditions, 

but did observe significantly higher growth rates by the low-DO community at DO concentrations 

below 4.7 mg/L. Higher oxygen affinities and growth rates for organisms responsible for 

pharmaceutical biotransformation may also occur after long-term enrichment under low DO 

conditions. This could result in the potential for even greater energy savings if lower operational 

DO conditions can be imposed without compromising treatment performance. However, if there 

is a trade-off between maximal biotransformation rate and substrate affinity, as has been observed 

in pure cultures (Wirtz, 2002; Elbing et al., 2004), then long-term low DO operation could select 

for a K-strategists over r-strategists with overall slower specific pharmaceutical biotransformation 
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rates (shift from point B to A in Figure 5-6), thus detrimentally impacting removal efficiencies 

across treatment systems unless biomass concentrations are increased. If low DO operation results 

in slower decay and thus higher biomass concentrations (as observed in Chapter 4), then the impact 

of low DO on removal efficiencies may be negligible. This trade-off warrants further investigation 

as low DO treatment systems become more commonplace. 

 

Figure 5-6. Specific growth rate versus DO concentration of r- versus K-strategists according to Monod 
kinetics. Low DO treatment could theoretically select for K-strategists and poise the specific growth rate 

at point A, while high DO treatment would poise the system at point B. 

 

 In conclusion, we determined oxygen half-saturation constants that can be used to describe 

the impact of DO concentration on the biotransformation rates of several pharmaceuticals. The 

oxygen half-saturation constants were all within the range or lower than reported half-saturation 

constants for nitrifiers and heterotrophs. Wastewater models can be modified to incorporate 

pharmaceutical biotransformation and predict the impact of DO on rates by applying a switching 

function using KO2 values. We also found significant associations between the activity of specific 

phylogenetic groups and specific pharmaceutical biotransformation rates. These phylotypes can 

serve as indicator organisms to predict biotransformation rates across treatment plants and 

treatment conditions. We present evidence that bulk kinetic parameters can be linked with 
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microbial activity measurements, resulting in a biologically-relevant demonstration of community 

structure/activity and community function relationships.  
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biotransformation during wastewater treatment 
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6.1 Introduction 

Wastewater treatment plants (WWTPs) harness microbes to treat our waste, protect our 

environment from organic pollutants, nutrients, and pathogens. In addition to conventional 

pollutants, however, thousands of pharmaceuticals are excreted by humans in intact and 

metabolized forms, reaching WWTPs before being released into the environment (Kolpin et al., 

2002). The ability of the microbes in WWTPs to biotransform these chemicals, and thus reduce 

their associated risk to the environment and human health, is an area of great interest in the 

scientific community (Carballa et al., 2004; Castiglioni et al., 2005; Nakada et al., 2006; Kasprzyk-

Hordern et al., 2009). Substantial research has advanced our knowledge of pharmaceutical 

biotransformation pathways (Ellis et al., 2006) and the transformation products formed during 

treatment (Kern et al., 2010). But few studies have linked chemical transformation data with 

microbial ecology to develop predictive relationships between the characteristics of the microbial 

community and pharmaceutical biotransformation pathways and rates. A better understanding of 
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how microbial community characteristics impact pharmaceutical biotransformation could enable 

the design and operation of WWTPs to reduce pharmaceutical loading in receiving environments.  

Biodiversity is one characteristic of wastewater treatment microbial communities that may 

impact pharmaceutical biotransformation rates (Johnson et al., 2014a). WWTPs harbor extremely 

diverse microbial communities (Zhang et al., 2011). The relationship between biodiversity and 

ecosystem function has been an area of considerable debate and interest in ecology (Midgley, 

2012). With the emergence of next generation sequencing tools, microbial ecologists have begun 

to interrogate the relationship between productivity, stability, and diversity (Konopka, 2009; 

Levine et al., 2011). WWTPs have been studied extensively and serve as a model system for 

microbial ecology, informing our understanding of mixed-culture microbial assemblages 

(Pholchan et al., 2013), diversity-function relationships (Johnson et al., 2014b), and ecological 

consequences of disturbances on ecosystem function (Vuono et al., 2015).  

Mounting evidence from studies of microbial systems suggests a positive relationship 

between biodiversity and community function (Cardinale et al., 2006; Duffy, 2008; Levine et al., 

2011). However, functional redundancy, the concept that taxonomically distinct species have the 

same ecological function, challenges the idea that changes in biodiversity will directly affect 

community process rates. Processes that are carried out by a large number of taxonomically distinct 

microorganisms, or broad processes, would not necessarily be impacted by biodiversity losses 

because the process rate is not limited by the number of species that can perform it. Conversely, 

narrow processes, or processes performed by few species, would be positively correlated with 

biodiversity because the process rate is limited by the number of species able to perform the 

specialized metabolism. Many have argued that diversity based on functional genes, as opposed to 

taxonomic genes, is more directly associated with ecosystem process rates (Green et al., 2008). 
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Another source of inconsistency in biodiversity measurements is that microbial biodiversity 

measurements are typically assessed using DNA-based methods. However, supplementing DNA-

based methods with biodiversity estimates using the expressed or active fraction of genes and taxa 

may result in more positive associations between process rates and biodiversity measurements.  

Several studies have evaluated the relationship between biodiversity and community 

function in wastewater systems. While some studies have shown that WWTP communities are 

functionally redundant, others have shown that function is dependent on diversity. Franklin and 

Mills (2006) found wastewater systems to be functionally redundant when community function is 

defined as consumption of glucose, acetate, citrate, palmitic acid and amino acids. On the other 

hand, Cook et al. (2006) found that the degradation of a surfactant in industrial wastewater 

depended on community richness. The discrepancy between these two studies is likely due to how 

community function was defined: consumption of glucose, acetate, citrate, palmitic acid and amino 

acids are broad processes, whereas surfactant degradation is a narrow process in WWTP 

communities. Given the diverse chemical structures of pharmaceuticals, their biotransformation 

could be catalyzed by either broad or narrow processes. Moreover, pharmaceuticals could undergo 

multiple transformations ranging in the spectrum of broad to narrow processes. In a study of 

microbial communities from ten full-scale treatment systems, a positive association between 

taxonomic and functional biodiversity and the rates of some individual micropollutants was 

observed (Helbling et al., 2012). However, not all compound biotransformation rates exhibited a 

positive association with biodiversity, and this can be explained by the fact that those compounds 

were likely transformed by broad processes. Understanding whether pharmaceutical 

biotransformations are catalyzed by highly redundant populations, or performed by rare taxa can 
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help us identify the enzymes that catalyze their transformation and exploit opportunities for 

enhancing biotransformations during wastewater treatment. 

 In this study, we examined the relationship between pharmaceutical biotransformations in 

wastewater microbial communities and both (1) taxonomic and (2) functional diversity. We 

hypothesized that taxonomic diversity is positively associated with functional diversity in 

wastewater microbial communities (as was observed previously by Johnson et al., 2014b). 

Therefore, we expected that the rates of pharmaceutical biotransformation performed by rare taxa 

would correlate positively with taxonomic and functional diversity in WWTPs. Unlike previous 

studies on pharmaceutical degradation and activated sludge, we experimentally manipulated an 

activated sludge community to create communities representing a gradient in diversity to directly 

test the relationship between diversity and function (here, defined as pharmaceutical 

biotransformation). With this approach, because the communities were all established from the 

same original community, we could examine how the loss of specific functions and taxonomic 

groups impacted pharmaceutical biotransformation. To identify specific functions and taxonomic 

groups that were lost in the dilution gradient, we used amplicon sequencing of the 16S rRNA gene 

and 16S rRNA, as well as metagenomics and metatranscriptomics. 

6.2 Materials and methods 

6.2.1 Experimental design and diversity manipulation 

A gradient in microbial diversity in an activated sludge community was established using 

a dilution-to-extinction approach (Szabó et al., 2007; Peter et al., 2010; Philippot et al., 2013; Ylla 

et al., 2013). In this approach, each dilution results in a less diverse subset of the original 

community by theoretically removing the least abundant species from the previous culture. An 8 
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L grab sample of activated sludge mixed liquor was collected from the aeration basin of the Ann 

Arbor WWTP, a facility that performs nitrification and biological phosphorus removal. Before 

serial dilution, disaggregation of macroflocs in the sample was achieved by blending 

approximately 500 mL of mixed liquor in an industrial Waring Commercial Blender (Model 

516L31) at maximum speed for 10 minutes.  

After blending, stepwise dilutions (1:10) were performed by transferring 100 mL into 900 

mL of sterile semi-synthetic sewage media (SSM) to achieve dilution conditions from 10-1 to 10-

7. The SSM was comprised of filtered (0.22 µm Stericup, Millipore, Darmstadt, Germany) and 

autoclaved primary effluent collected from the Ann Arbor WWTP (detailed in Appendix D). COD 

and ammonia-N concentrations were determined in the filtered and sterilized primary effluent, and 

then supplemented with carbon (a mixture of peptone, meat extract, humic acid) and ammonia 

chloride to achieve a final concentration of 1,850 mg/L as COD and 30 mg-N/L as ammonia. 

Humics were added such that they made up approximately 10% of the total carbon (Huang et al., 

2010), and the remainder of the supplemental carbon was equal parts peptone and meat extract as 

COD. Micronutrients were also supplemented in proportion to the COD (Grady et al., 2011).  After 

serial dilution, triplicate flasks of 200 mL of the 10-2, 10-4, and 10-7 dilutions were allowed to 

regrow overnight in an incubator-shaker at 20°C. After the 24-hour regrowth period, the biomass 

was pelleted via centrifugation and resuspended in 250 mL of fresh SSM. 

6.2.2 Pharmaceutical biotransformation batch experiments 

Experiments were initiated by transferring the re-suspended dilution cultures into 500 mL 

bottles with a mixture of pharmaceuticals pre-dried on the bottom of each bottle (a methanol stock 

containing a mixture of the compounds was added to each bottle and allowed to evaporate until 

dry) to achieve a target initial concentration of 10 µg/L of each compound. The compounds 
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selected for investigation in this study included: atenolol, 17α-ethinylestradiol (EE2),  

trimethoprim, venlafaxine, carbamazepine, glyburide, and erythromycin, and additional 

information about each compound is provided in Table D3 in Appendix D. Compounds were 

selected to represent a variety of possible initial biotransformation pathways determined using 

University of Minnesota’s Pathway Prediction System (Ellis et al., 2006), which predicts aerobic 

biodegradation pathways based on chemical structure. For each compound, we counted the number 

of unique “likely” and “neutral” biotransformation pathways so that for each additional compound 

included in the study, additional initial biotransformation pathways were being represented (see 

Appendix D for compound selection approach).  

At each dilution level (10-2, 10-4, 10-7) triplicate batch reactors were prepared. A control 

batch reactor was also prepared with a mixture of the biomass from each dilution level inactivated 

with sodium azide (0.2 % w/v). Every 24 hours, an additional 2 mL of 100 g/L sodium azide stock 

solution was added to the control batch reactor. Beginning and endpoint 20-mL samples were 

collected from each batch reactor corresponding to time points of 30 minutes and 4 days after 

initiation, respectively, for pharmaceutical quantification. After collection, samples were spiked 

with deuterated analogs of the target compounds, filtered through a 0.3 µm glass fiber filter 

(Sterlitech, Kent, WA), and stored at 4°C until analysis (less than 24h after collection). Samples 

were collected at time points of approximately 30 min, 4h, 8h, 12h, 24h, and 48h and filtered 

through 0.3 µm glass fiber filter (Sterlitech) to determine dissolved organic carbon concentrations 

(TOC Analyzer, Shimadzu, Kyoto, Japan). Total and volatile suspended solids concentrations were 

determined according to Standard Methods (2005) at the beginning and end of the experiment (96 

hours) for each batch reactor. The average volatile suspended solids concentration between the 
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beginning and endpoint was used to normalize all carbon oxidation and pharmaceutical 

transformation rate data.  

Pharmaceutical concentrations were determined in each sample via on-line pre-

concentration followed by high performance liquid chromatography and high resolution mass 

spectrometry (details are provided in Appendix D). Background concentrations of pharmaceuticals 

were considered negligible as compared to the spiked concentrations. Quantification was 

performed using a matrix-matched calibration curve. Pharmaceutical biotransformation rates and 

percent loss were calculated for each compound. Rates were calculated using the beginning (30 

minute) and end point (4 day) concentrations, without consideration of the shape of the 

concentration versus time curve.  

6.2.3 DNA and RNA sample collection, library preparation, and sequencing 

Duplicate 15 mL samples from each batch reactor were collected for DNA analysis from 

each of the triplicate dilution cultures between 4h20min and 5h40min after initiating the batch 

experiments. The biomass was pelleted via centrifugation at 6,200 x g, supernatant discarded, and 

the pellet was stored at -80°C until DNA extraction. Duplicate 15 mL samples were collected for 

RNA analysis from each of the triplicate dilution cultures between 5h30min and 7h50min after 

initiating the batch experiments. The biomass was pelleted via centrifugation (4°C, 5min), 

supernatant discarded, and the pellet was re-suspended in 2 mL of RNALater (Qiagen, Valencia, 

CA) and stored at -80°C until RNA extraction. RNA samples were collected in this timeframe to 

get a representative sample of microbial activity at a time when there were residual organic carbon 

and pharmaceutical concentrations. 
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DNA and RNA extraction were performed with three bead beading steps followed by 

automated extraction using a Maxwell 16 automated nucleic acid extractor (Promega, Madison, 

WI) using the DNA blood and simplyRNA tissue kits, respectively. Extractions were conducted 

according to the manufacturer’s instructions except 10 µL of DNase 1 (increased from 5 µL) was 

used to remove contaminating DNA during RNA extractions. Total DNA and RNA concentration 

in each sample were fluorometrically quantified with the Quantifluor DNA and RNA sample kits 

(Promega, Madison, WI). Reverse transcription to generate single-stranded complementary DNA 

(cDNA) from RNA extracts was performed using the SuperScript VILO cDNA Synthesis Kit 

according to manufacturer’s instruction (Life Technologies, Grand Island, NY). Amplicon 

sequencing of the 16S rRNA gene and cDNA were performed on Illumina MiSeq (Illumina Inc., 

San Diego, CA) using universal primers for bacteria and archaea targeting the V4 region of the 

16S rRNA gene (Kozich et al., 2013).  

DNA samples were prepared for shotgun metagenomic sequencing at the University of 

Michigan DNA Sequencing Core. DNA was fragmented to 400 bp using standard Covaris 

sonication (Covaris, Woburn, MA).  Fragmented DNA was then prepared as a standard Illumina 

library using Kapa reagents (Kapa Biosystems, Wilmington MA) on an Apollo instrument 

(WafterGen Bio-systems, Fremont, CA), where the fragments were end-repaired, A-tailed, and 

adapter-ligated. The samples were then PCR amplified and pooled. The high diversity samples 

(10-2) were sequenced on a single lane of a HiSeq Flow Cell (version 3, Illumina) and the medium 

(10-4) and low (10-7) diversity samples were sequenced on a second lane, with the medium diversity 

samples being weighted 2x the low diversity samples. The weighted pooling was chosen in order 

to achieve greater sequencing depth on the more diverse samples. Final libraries were checked for 

quality and quantity by TapeStation (Agilent, Santa Clara, CA) and qPCR using Kapa’s library 
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quantification kit for Illumina Sequencing platforms (catalog #KK4835) (Kapa Biosystems).  They 

were clustered on the cBot (Illumina) and sequenced on a 100-cycle paired end run on a HiSeq 

2500 in High Output mode using version 3 reagents according to manufacturer’s protocols 

(Illumina).  

RNA samples were prepared for shotgun metatranscriptomic sequencing by first enriching 

the mRNA from the total RNA extracts using the MICROBExpress Bacterial mRNA Enrichment 

Kit (Invitrogen, Carlsbad, CA) based on previous studies that reported that subtractive 

hybridization kits using rRNA specific probes are the most effective available kits for enriching 

mRNA from total rRNA from environmental samples (He et al., 2010; Mettel et al., 2010). 

Individual libraries were prepared for each sample as for the DNA samples and the samples were 

multiplexed using sample-specific adaptors on a single lane of a HiSeq Flow Cell (Illumina, Inc.). 

No sample-based weighting was employed for the metatranscriptomic sequencing.  

6.2.4 Sequencing analysis and biodiversity measurements 

 Amplicon sequencing reads were analyzed using Mothur (version 1.33.3) (Schloss et al., 

2009) and classified using the 16S rRNA gene taxonomy from the Ribosomal Database Project 

(Cole et al., 2009). Differences in sequencing depth were corrected for by subsampling to the 

lowest number of sequences per sample for all samples (19,681 for DNA, and 29,428 for cDNA). 

Sequences were binned into operational taxonomic units (OTUs) based on sequence similarity of 

greater or equal to 97%. Taxonomic biodiversity measurements were calculated based on OTUs. 

 Raw shotgun sequencing reads were dereplicated (100% identity over 100% of the length) 

and trimmed using Sickle (Joshi and Fass, 2011). Adaptors were removed using Scythe version 

0.993b (https://github.com/Geo-omics/scripts/tree/master/DerepTools). Trimming removed 8-

19% of the data. Whole genome de novo assembly was performed by pooling all reads from the 
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dilution cultures and using IDBA-UD (Peng et al., 2012) with the following parameters: mink 52, 

maxk 93, step 8. Assembled data was submitted to the DOE JGI-IMG/MER annotation pipeline 

(Taxon Object ID 3300005080). KEGG KO annotations from the IMG analysis were screened to 

retain those above a threshold of an e-value less than 10-5, bit score greater than 50, and percent 

identity greater than 60%. 

 Paired-end transcriptomic reads were mapped to assembled contigs using the Burrows-

Wheeler Aligner (BWA version 0.7.10; Li and Durbin, 2009).  Each replicate was mapped to the 

pooled assembly separately. Paired forward and reverse read alignments were generated in the 

SAM format using BWASAMPE algorithm. The mapped read counts were extracted using 

SAMtools (Li et al., 2009). HTSeq count was used to obtain the raw counts per gene for each 

sample, which was used for all subsequent analyses (Anders et al., 2014). Functional diversity 

metrics were calculating after subsampling to the lowest number of sequences per sample 

(1,233,846 and 624,845 for the metagenomic and metatranscriptomic reads, respectively) to 

correct for differences in sequencing depth. 

6.2.5 Statistical analyses 

 Statistical analysis were performed in the R environment using the stats (R Development 

Core team, 2013) and vegan (Oksanen et al., 2007) packages. Non-parametric statistical methods 

were used for pairwise tests and associations between biotransformation rates and biodiversity 

measurements as they do not assume any underlying form for the distribution of the data. Mann-

Whitney U test was used to perform pairwise tests of biotransformation rates and pairwise tests of 

taxonomic and functional diversity measurements between the different dilution conditions. 

Spearman rank correlation was used to test associations between biodiversity and pharmaceutical 

biotransformation rates. 
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 Metatranscriptomic mapped reads were analyzed using the Bioconductor DESeq2 package 

based on the negative binomial model (Love et al., 2014). For differential expression analysis, raw 

counts were normalized using relative library sizes, and significant differential expression was 

tested using the likelihood ratio test. The association between the normalized expression of each 

gene and biotransformation rate of each pharmaceutical was tested using the two-sided Spearman’s 

rank correlation.  

6.3 Results 

6.3.1 Dilution resulted in communities with a gradient of taxonomic and functional diversity 

With increased dilution, the richness of the activated sludge microbial community 

decreased. Rarefaction curves of unique OTUs versus sequences sampled show distinct clustering 

of the dilution cultures, with samples from the most diverse culture (10-2) having the greatest 

number of unique OTUs, followed by the medium-diversity culture (10-4), and the low-diversity 

culture (10-7) that plateaued with the lowest number of unique OTUs (Figure 6-1). Differences in 

taxonomic richness and diversity between the dilution cultures are supported by various 

biodiversity measurements based on the 16S rRNA gene sequence data (Table 6-1). DNA-based 

functional richness, the number of unique annotated functions, was not significantly different 

between the 10-2 and 10-4 dilution batches (Mann-Whitney U, p = 0.19). It was significantly 

different between the most diluted batch (10-7) and the other conditions (Mann-Whitney U, p < 

0.05 for both). The loss of taxa was not proportional to the loss of functional genes across the 

dilution cultures, as there was a significant difference in taxonomic richness but not functional 

richness between the 10-2 and 10-4 conditions, indicative of some functional redundancy within the 

community.  
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The Shannon taxonomic diversity measurements based on DNA and RNA were 

significantly different between the conditions (Mann-Whitney U, p < 0.05). The Shannon 

taxonomic index accounts for the relative abundances of the functional genes, and places less 

weight on the least-abundant functions. With this index, greater evenness in a community 

corresponds to a higher Shannon diversity index. The Shannon indices show that 10-2 community 

was more even than the 10-4 and 10-7 communities, and this was also supported by the Shannon 

evenness indices (data not shown). These results indicate that the dilution approach creates a 

gradient in diversity by not only reducing the total number of unique OTUs and functions, but also 

by reducing the evenness of the microbial community. Conversely, the RNA-based functional 

diversity indices showed that the Shannon functional index did not decrease with increased 

dilution. In other words, dilution resulted in a community that remained relatively even with 

respect to expressed functional genes, despite being less even with respect to active taxa, again 

supporting the notion that there was functional redundancy in the communities. 

 
  



 131 

Table 6-1. Biodiversity indices based on 16S rRNA gene, 16S rRNA, metagenomic, and 
metatranscriptomic sequencing of biomass from the dilution cultures. 

 
Biodiversity index Dilution condition 

 10-2 10-4 10-7 
DNA    

Taxonomic richness (unique OTUs) 311 ± 63 123  ± 7 51 ± 21 

Chao1 extrapolated taxonomic richness 358 ± 68 136  ± 4 64 ± 23 

Shannon taxonomic diversity 2.67  ± 0.19 2.02  ± 0.06 1.37 ± 0.06 

Functional richness (unique functional genes) 4686  ± 48 4643  ± 21 4219 ± 229 
Chao1 extrapolated functional richness 4863  ± 49 4809  ± 46 4328 ± 199 

Shannon functional diversity 7.66  ± 0.01 7.63  ± 0.00 7.57 ± 0.01 
RNA    

Taxonomic richness (unique OTUs) 512 ± 10 190 ± 22 109 ± 36 

Chao1 extrapolated taxonomic richness 983 ± 62 354 ± 32 208 ± 84 

Shannon taxonomic diversity 2.71 ± 0.04 1.95 ± 0.04 1.62 ± 0.12 

Functional richness (unique functional genes) 4013 ± 26 3916 ± 15 3501 ± 113 
Chao1 extrapolated functional richness 4300 ± 16 4214 ± 49 3695 ± 130 

Shannon functional diversity 6.57 ± 0.06 6.63 ± 0.11 6.60 ± 0.03 
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Figure 6-1. Rarefaction plots for the dilution cultures based on 16S rRNA gene and 16S rRNA 

sequencing (taxonomic) and whole genome and metagenome sequencing (functional). The dilution 
conditions are shown in black (10-2), blue (10-4) and green (10-7). 

 

6.3.2 Taxonomic and functional diversity positively associated with one another 

 In order to understand if greater unique taxa corresponded to increased functional-traits in 

the wastewater microbial communities, we first tested whether taxonomic richness was positively 

associated with functional richness. We found that for both the DNA- and RNA-based annotations, 

that there was a significant positive association between taxonomic and functional richness (Figure 

6-2). The shape of the data in Figure 6-2 suggests that the number of unique functions does not 

increase linearly with the number of unique OTUs. This is consistent with the idea that the most 
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diverse communities are also the most functionally redundant and that the unique OTUs contain 

many of the same functional genes.  

 

 
Figure 6-2. Observed functional richness versus taxonomic richness. DNA-based annotations are shown 
in filled markers and RNA-based annotations in open markers. 10-2, 10-4, and 10-7 samples are represented 
by black, blue, and green markers, respectively. Reported p-values are based on the two-sided Spearman 

rank correlation test and indicate significant positive association between taxonomic and functional 
richness for both DNA and RNA-based annotations. 

 

6.3.3 Carbon oxidation and pharmaceutical transformations 

 Carbon utilization, a process that is widespread across all forms of life, is a function that 

we expected to be functionally redundant across all of the dilution conditions. Thus we 

hypothesized that there would not be a significant difference between carbon oxidation rate or 

extent between the dilution conditions. To test this, dissolved organic carbon was measured in 

samples across the experiment to determine carbon oxidation rates (Figure D1, Appendix D). We 

found no significant difference between normalized carbon oxidation rates (normalized by VSS 

concentration) between the dilution conditions (Mann Whitney U, p > 0.19). Further, we found no 

significant association between carbon oxidation rate and taxonomic or functional richness 
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(Spearman, p > 0.8). Dissolved organic carbon remained constant throughout the batch experiment 

in the control flask, indicating that the sodium azide-supplemented control served to sufficiently 

inactivate carbon oxidation activity throughout the experiment.  

Pharmaceutical biotransformation rates were determined for 8 compounds. Average 

percent loss normalized by volatile suspended solids concentration, a surrogate for specific 

biotransformation activity, is shown in Figure 6-3 for each compound and each dilution condition. 

Significant differences between the degree of biotransformation and the dilution condition were 

observed for 6 of the 8 compounds, with greater extents of biotransformation observed in the most 

diverse culture (Mann-Whitney U, p < 0.05). Two compounds did not follow the same pattern as 

the rest: for glyburide, no significant differences in extent or rate of biotransformation between the 

dilution cultures were observed as very limited loss of the parent compound occurred across the 

experiment; and for erythromycin, the greatest loss was observed in the 10-4 condition. Atenolol 

and venlafaxine were the only compounds for which the stepwise dilution resulted in a 

corresponding stepwise reduction in biotransformation rate. For all of the other compounds there 

was only a significant difference in biotransformation rate between two of the dilutions conditions. 

One possible explanation is that the loss in taxonomic diversity that occurred during dilution 

resulted in a loss of the specific OTUs involved in the biotransformation of that compound. Once 

those responsible community members were lost, additional dilution did not significantly affect 

the observed biotransformation rate. 
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Figure 6-3. Average pharmaceutical loss (disappearance of the parent compound) normalized to volatile 
suspended solids concentration for each dilution condition (black: 10-2; blue: 10-4; green: 10-7). The same 

letter above the bars indicate treatments without significant differences (Mann-Whitney U, p > 0.05) 
between biotransformation rates. 

 

6.3.4 Significant associations between functional richness and pharmaceutical 

biotransformation rate were observed 

 We directly tested for associations between individual pharmaceutical biotransformation 

rates and biodiversity measurements. We also assessed associations between the collective rates 

of pharmaceutical biotransformation and biodiversity by scaling each compound’s normalized rate 

(mean of 0, standard deviation of 1) and taking the average of the scaled rates to generate a 

collective average rate for each condition (Zavaleta et al., 2010; Johnson et al., 2014a). We 

calculated richness using DNA- and RNA- based taxonomic and functional data, allowing 

comparisons between associations using DNA versus RNA and taxonomic versus functional 

richness. We observed a strong positive correlation between richness and several individual 

pharmaceutical biotransformation rates (Figure D2, Appendix D). The Spearman correlation p-
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values resulting from these associations are shown in Figure 6-4. Atenolol, trimethoprim, 

venlafaxine, carbamazepine, and the collective compound rates were significantly associated with 

both a taxonomic and functional richness measurement. Notably, associations with functional 

richness were always stronger with RNA- than DNA-based richness measurements. This indicates 

that expressed genes are better predictors of pharmaceutical biotransformation and supports the 

notion that metagenomic datasets may mask significant associations with process rates as they 

include non-expressed traits. Differences in the strength of associations between rates and DNA- 

versus RNA-based taxonomic richness measurements were less pronounced than for functional 

richness. This can be explained in part by the experimental conditions, which were fed batch 

reactors and the biomass samples were collected when the microbial community was actively 

growing. If the communities were in an exponential growth phase, it is not surprising that the 

associations between biotransformation rates and DNA and RNA-based taxonomic richness were 

similar (Varricchio and Monier, 1971; Pérez-Osorio et al., 2010).  
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 Figure 6-4. Spearman correlation p-values for associations between richness and pharmaceutical 
biotransformation rates. Biodiversity measurements were calculated based on taxonomic (blue bars) and 

functional (orange bars) sequencing data using both the DNA (solid bars) and RNA (patterned bars). 
Dashed line signifies p = 0.05. 

 
 We compared associations of pharmaceutical biotransformation rates with richness 

calculated using all expressed genes to associations calculated with only metabolism-related genes, 

as we expected those genes were likely responsible for differences in biotransformation rates. For 

most compounds and for the collective pharmaceutical biotransformation rates, a stronger 

association was determined with richness accounting for all genes as opposed to only metabolic 

genes (Figure D3, Appendix D). This may be because by only focusing on known metabolic genes, 

we are potentially substantially underestimating the functional richness of the communities.   
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6.3.5 Differential expression of functional genes suggests potential enzymes associated with 

biodegradation 

 

 Figure 6-5. The relationship between the mean expression across all of the samples, and the log change 
in expression between the 10-2 and 10-7 cultures. Each gene is shown in grey. Statistically significant 

(likelihood ratio padj < 0.05) differentially expressed genes are shown in red.  

 
After establishing that there were significant positive associations between biodiversity and 

pharmaceutical biotransformation rates, we asked which functions were differentially expressed 

across the dilution cultures, and specifically which functions were lost? Of the 710,402 functions 

analyzed, 45,840 were found to be differentially expressed between the three dilution conditions 

(padj < 0.05), and 15,290 of those were found to be good hits to the KEGG Orthology database. 

The majority of the significant differentially expressed functions were lost with dilution from the 

10-2 to the 10-7 cultures (negative log fold change, Figure 6-5). Thus, a loss of biodiversity 

corresponded to a loss of expression of these functions. For the compounds that were transformed 

to different extents across the three dilution conditions, the genes that had a lower level of 
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expression in the least diverse culture (10-7) could be responsible for pharmaceutical 

biotransformation.  

 

 

Figure 6-6. Relative expression of significantly differentially expressed genes (likelihood ratio, padj < 
0.05) that were also significantly associated with EE2 biotransformation (Spearman, p < 0.05). The 

vertical bar on the left shows monooxygenase genes and hydroxylase genes. Expression value is relative 
to the average expression of that gene in all conditions. Genes with the same name are unique sequences 

that were annotated with the same KEGG Orthology.  

 
We sought to establish whether genes that might have been involved in pharmaceutical 

biotransformation were lost across the dilution conditions. We conducted a two-sided Spearman’s 

rank correlation test between the normalized expression of each gene and each compound’s 

biotransformation rate to identify genes whose expression pattern was significantly associated with 

biotransformation rate. We then narrowed the list of genes by focusing on classes of metabolic 

genes that were predicted, according to the University of Minnesota’s Pathway Prediction System 

(Ellis et al., 2006), to be involved in the compound’s biotransformation. We focused on the 
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compounds that were transformed to a different extent with increased dilution (atenolol, EE2, 

trimethoprim, venlafaxine, and carbamazepine) and further narrowed the list of genes relevant to 

those compounds by selecting genes only if they were lost with increased dilution. The genes 

identified for each compound are provided in Appendix D. To illustrate the analysis with one 

compound, Figure 6-6 shows the genes that were significantly associated with EE2 

biotransformation, predicted to be involved in EE2 transformation, and lost between the 10-2 and 

the 10-7 conditions. As expected, there were many monooxygenase and hydroxylase genes lost 

between the 10-2 and the 10-7 cultures that were positively associated with the rate of EE2 

transformation. One specific gene that was lost was ammonia monooxygenase, which encodes for 

an enzyme that has previously been associated with catalyzing EE2 transformation in both pure 

(Khunjar et al., 2011) and mixed communities (Tran et al., 2009). We found the subunit C of the 

ammonia monooxygenase gene, which had 99% identity to ammonia monooxygenase of 

Nitrosomonas sp. Is79A3 over 270 amino acids, was both significantly differentially expressed 

across the dilution conditions (likelihood ratio, padj = 0.0003) and significantly associated with EE2 

biotransformation (Spearman, p = 0.038). An OTU was also identified in the 16S rRNA data that 

was 99% similar over 253 nucleotides to Nitrosomonas sp. Is79A3. Additionally, the activity of 

this OTU decreased across the dilution conditions, and its relative activity significantly correlated 

with ammonia monooxygenase expression (Spearman, p = 0.017). This demonstrates that 

statistical tests yielded genes encoding enzymes that may be mechanistically involved in 

pharmaceutical biotransformation. We further reasoned that this approach using statistical 

associations and knowledge of likely biochemical pathways could yield candidate genes linked to 

biotransformation for all of the compounds investigated. Candidate gene lists for each compound 

with KEGG Orthology numbers and descriptions, and heatmaps are provided in Appendix D.  
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6.4 Discussion 

 Our results provide further evidence that there is a strong positive association between 

taxonomic and functional diversity in wastewater microbial communities (Helbling et al., 2012). 

These results are consistent with a previous study on wastewater treatment plant microbial 

communities (Johnson et al., 2014a), and several other studies on microbial communities in other 

environments, which showed that communities with more taxa are likely to have more functional 

traits (Gilbert et al., 2010; Bryant et al., 2012). However, there are several other studies involving 

aquatic and soil microbial communities that observed inconsistent associations between taxonomic 

and functional richness (Fierer et al., 2012; Yergeau et al., 2012). This could be due in part to 

functional redundancy. We also observed this phenomenon as the shape of the association between 

taxonomic and functional genes was not linear; the number of functional genes did not increase at 

the same rate as the number of OTUs. This pattern indicated that there was a great deal of 

redundancy in the most diverse communities with respect to functional genes. Despite the 

functional redundancy, we observed that the functions responsible for the biotransformation of 

several compounds (atenolol, EE2, trimethoprim, and carbamazepine) were relatively rare because 

even with less than a 2.5% loss of expressed functional genes observed between the 10-2 and 10-4 

dilution cultures, we found a significant reduction in the biotransformation rates. 

For all of the compounds with significant associations with expressed functional genes 

(atenolol, trimethoprim, carbamazepine, venlafaxine, and collective; Figure 6-4), we also saw 

significant associations with RNA-based taxonomic richness. This indicates that for the purpose 

of understanding the relationship between biodiversity and function, amplicon sequencing of the 

16S rRNA was a sufficient measure of biodiversity to test associations with process rates.  This 

may not hold true in highly functionally redundant microbial communities, where expressed 
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taxonomic and functional diversity are not strongly associated with one another (e.g. a lake 

microbial community as observed by Ylla et al. (2013)). Using 16S rRNA to test relationships with 

biodiversity is advantageous because amplicon sequencing is more affordable, less 

computationally intensive because it generates a fraction of the data, easier to analyze, and has 

more developed reference databases compared with functional genes. But only by performing 

omics sequencing is it possible to test associations with specific genes and generate candidate gene 

lists that can be used to discover mechanistic links with biotransformation. 

 Despite not finding significant associations between biodiversity and pharmaceutical 

biotransformation rate for all the compounds studied, we were able to use statistical associations 

and biochemical knowledge about transformation pathways to identify candidate genes that could 

mediate transformation. For EE2, the biotransformation rate was significantly different between 

the 10-2 and the 10-4 dilution conditions (Figure 6-3), but there was not a significant association 

between taxonomic or functional richness and biotransformation rates (Figure 6-4). For this 

compound, we suspect that specific taxa and functional genes were lost between the 10-2 and the 

10-4 conditions that were responsible for EE2 biotransformation, and thus additional dilution and 

reductions in diversity resulted in no further impact on EE2 biotransformation. We were able to 

identify Nitrosomonas sp. monooxygenase genes whose expression patterns co-varied 

significantly with EE2 biotransformation rates (Spearman, p < 0.05; Figure 6-6), and thus 

corroborate this hypothesis. We therefore can conclude that EE2 biotransformation is a narrow 

process catalyzed by rare taxa expressing rare functions in the wastewater microbial community. 

Other compounds, such as erythromycin showed no significant associations with biodiversity and 

biotransformation rate. Biotransformation of erythromycin is therefore a broad process catalyzed 

by more abundant taxa  or widespread functions in the wastewater microbial community.  
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 We used gene expression to identify candidate metabolisms involved in biotransformation, 

but there were many challenges associated with this approach. Namely the number of significant 

associations that are generated with this approach yielded many candidate metabolisms and 

enzymes that are likely not directly involved in biotransformation. While statistical methods and 

knowledge of the metabolisms and compounds can be used to reduce the number of candidate 

genes, the list of candidate genes was nevertheless vast. Candidate genes require more controlled 

experiments in order to validate their direct (or indirect) involvement in biotransformation. 

Furthermore, because a loss of expression does not directly correlate with enzymatic activity 

(Maier et al., 2009; Vogel and Marcotte, 2012), candidate genes may not represent the proteins 

that were active in the experiment. Nevertheless, all of the compounds that had significant 

associations with richness had stronger associations with transcriptomic richness than genomic 

richness. Therefore, despite the limitations associated with this approach, transcriptomic data can 

be more powerful for generating predictive associations between enzymes and pharmaceutical 

biotransformation than genomic data.  

 One additional limitation of our omics data analysis was that the annotations were database 

dependent as we only included genes that could be annotated with the KEGG Orthology gene 

database. Only 33% of our significantly differentially expressed genes were annotated using this 

database. In reducing our data to those functions that have been annotated, we made the data 

analysis more manageable but also potentially underestimated functional diversity and richness. It 

also precluded our ability to identify novel functions that might be associated with pharmaceutical 

biotransformation.  

In conclusion, we observed significant positive associations between biodiversity of 

wastewater treatment plant microbial communities and the rates of some individual 
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pharmaceuticals as well as the collective pharmaceutical biotransformation rates. By linking gene 

expression with individual pharmaceutical biotransformation rates, we identified metabolic genes 

that potentially encode for enzymes that were responsible catalyzing biotransformation. Further 

experimentation is needed to conclusively link those functions to biotransformation reactions. As 

models are developed to link microbial sequencing data to process rates in wastewater treatment, 

the associated genes may also be useful as biomarkers for predicting pharmaceutical 

biotransformation rates. The strong positive association between biodiversity and the collective 

rate of pharmaceutical biotransformation has implications for the design and operation of WWTPs 

to increase pharmaceutical removal. Specifically, creating niche environments that support the 

growth of diverse microbial communities could result in better overall performance with respect 

to pharmaceutical removal. Understanding the factors that drive microbial biodiversity in WWTPs 

such as redox environment, influent composition, solids residence time, and reactor configuration, 

and their impact on pharmaceutical biotransformation rates is needed to harness the benefits of 

biodiversity for wastewater treatment. 
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Chapter 7.  

Conclusions and Engineering Significance 

 

7.1 Overview 

 This dissertation evaluated the impact of DO concentration on pharmaceutical 

biotransformation during wastewater treatment. The objectives of this research align with a 

broader goal of advancing the sustainability of wastewater treatment systems, and navigating 

potential tradeoffs between energy use and water quality. This work began by demonstrating with 

bench-scale reactors that redox environment impacts the degree of pharmaceutical loss during 

treatment (Chapter 3). To better understand the mechanisms responsible for the observed 

differences between fully aerobic and low DO treatment, Chapters 4 – 6 focused on elucidating 

both direct and indirect impacts of DO concentration on pharmaceutical biotransformation rates. 

Bench-scale nitrifying bioreactors were used to demonstrate that DO concentration impacts 

microbial physiology and microbial community structure, and both of those in turn impact 

pharmaceutical biotransformation rates (Chapter 4). Chapter 5 focused on physiological impacts 

of DO concentration on pharmaceutical biotransformation, and Chapter 6 focused on the impact 

of biodiversity, one aspect of microbial community structure, on pharmaceutical 

biotransformation. Throughout this research, methods from analytical chemistry, microbial 

ecology, and process engineering were integrated to understand relationships between microbial 
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community characteristics and kinetics of microbial metabolism. The cumulative results of this 

dissertation show that it is possible to operate at lower bulk liquid DO concentrations (0.5 - 1 

mg/L) without compromising pharmaceutical biotransformation. An outcome of this research is 

the opportunity to reduce the energy footprint of treatment. Major findings and their engineering 

significance are discussed in more detail below. 

7.2 Main findings and significance 

7.2.1 Direct impacts of DO concentration on pharmaceutical biotransformation rates 

 DO can act as a limiting substrate and slow the rate of microbial metabolism, thereby 

reducing the rate of pharmaceutical biotransformations. Affinity constants, such as the oxygen half 

saturation constants (KO2), are used to model the effect of substrate limitation on process rates.  

Oxygen half saturation constants for heterotrophs and nitrifiers are commonly used in wastewater 

treatment plant models such as the Activated Sludge Model (Henze, 2000). Incorporating 

pharmaceutical fate into existing activated sludge models is an active area of research (Plósz et al., 

2012; Clouzot et al., 2013) and the utility of these models is a function of the kinetic parameters 

that they employ. To our knowledge, no previous studies have published oxygen half saturation 

constants to describe pharmaceutical biotransformation rates. The values presented in Chapter 5 

were all within the range or lower than the values used for heterotrophs and nitrifiers, suggesting 

that DO concentration will not disproportionally impact pharmaceutical biotransformation rates 

and operating at a high DO concentration will not result in greater overall pharmaceutical removal. 

 While pharmaceuticals are not currently regulated pollutants in the U.S., their presence in 

wastewater effluents has garnered public attention (Dean, 2007; Israel, 2010), and even stalled 

water reuse projects (Macmillan, 2012). Utilities and consulting firms performed monitoring 

studies in response to concerns over the wide proliferation of pharmaceuticals and other trace 
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organic compounds in wastewater effluents (e.g. U.S. EPA, 2009). As utilities aim to minimize 

the discharge of these compounds into the environment or consider water reuse schemes, the ability 

to use modeling to inform pharmaceutical fate during wastewater treatment will become 

increasingly powerful. Time and resource intensive monitoring studies could be supplemented 

with modeling approaches to evaluate and optimize treatment scenarios and minimize impacts on 

receiving waters. Integrated wastewater process models and ecotoxicity models are also 

increasingly being used to inform regulatory decisions (Clouzot et al., 2013). With validated 

models that predict pharmaceutical fate, regulators will be better suited to develop policies and 

guidelines to control pharmaceutical emissions and support technologies that reduce 

environmental impacts (Stadler et al., 2012). The results of Chapter 5 have the opportunity to be 

incorporated into existing pharmaceutical fate models and in particular to inform utilities that are 

using or considering low DO treatment processes. 

We also identified specific phylogenetic groups that significantly associated with 

individual pharmaceutical biotransformation rates. Engineering wastewater treatment processes to 

enhance biotransformation of specific or groups of pharmaceuticals requires knowledge about 

which organisms are involved or strongly correlated with their removal, and how treatment process 

environments influence their abundance and activity. Genomic methods have advanced our 

understanding of the microorganisms responsible for carbon, nitrogen, and phosphorus 

transformations and led to improved process designs (e.g. Martin et al., 2006; Yu et al., 2010; 

Smith et al., 2015). The use of these methods to advance pharmaceutical biotransformation during 

treatment is, in comparison, in its infancy.  The results of this dissertation add to the existing (and 

currently limited) body of knowledge of specific phylogenetic groups that are strongly associated 

with pharmaceutical removal and how DO concentration impacts their activity. 



 153 

7.2.2 Indirect impacts of DO on pharmaceutical biotransformation rates  

 Long-term DO concentration shapes the microbial community, thereby impacting 

pharmaceutical biotransformation rates. In Chapter 4 we found that long-term low DO conditions 

resulted in a greater biomass concentration than fully aerobic conditions, likely due to reduced 

biomass decay. Greater overall biomass in the low DO reactor resulted in net biotransformation 

rates comparable to those under non-limiting DO conditions, despite lower specific activity with 

respect to ammonia oxidation and pharmaceutical biotransformation rates. In addition, we found 

that the low DO reactor supported the growth of a more diverse microbial community. We further 

showed that microbial diversity was strongly correlated with the collective rate of pharmaceutical 

biotransformation in Chapter 6.  

These results have important implications for the design and operation of WWTPs. First, 

the results support those of other studies (Bellucci et al., 2011; Jimenez et al., 2011; Liu and Wang, 

2013) that show that stable and complete nitrification is possible at a DO concentration less than 

0.5 mg/L, suggesting substantial energy savings are possible by reducing aeration. While energy 

savings are possible, reduced aeration may also mean a loss of capacity for many nitrifying 

WWTPs.  Operating at a DO concentration close to the nitrifier oxygen half saturation constant 

will result in reduced specific growth rates, and thus require an increase in SRT to achieve the 

same effluent quality. If SRT must increase to enable reductions in aeration, then capacity is lost 

in terms of aeration tank and clarifier volume. WWTPs at or near their design capacity are thus 

unlikely to adopt low DO treatment strategies, while smaller WWTPs with large SRT safety factors 

are better suited to implement reduced aeration at the expense of a loss of capacity. 

Another impact of long-term low DO treatment is that it could select for high-oxygen 

affinity organisms at the expense of lower substrate utilization rates if there is a biochemical 
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tradeoff between substrate affinity and maximum substrate utilization rate (Gudelj et al., 2007). If 

this occurs, then biomass concentrations will have to be greater to achieve the same level of 

treatment. In addition, reduced decay in low DO conditions could also result in biomass with lower 

specific activity if low DO inhibits the hydrolysis of cell debris as opposed to the endogenous 

decay rate (Liu and Wang, 2015). Increasing biomass concentrations will result in greater sludge 

handling requirements. Therefore, increased sludge production and its associated energy inputs 

and costs need to be balanced against energy savings from aeration.  

 Our findings also show that limiting DO can be a driver of microbial biodiversity, and thus 

result in a greater collective rate of pharmaceutical biotransformation. Additional research is 

needed to understand what the main drivers of microbial biodiversity are in wastewater treatment 

systems. In addition to redox conditions, many other factors may influence the biodiversity of a 

treatment system such as SRT, influent substrate composition and concentration, temperature, and 

reactor configuration. The relative importance of DO as a driver of biodiversity is not known. The 

results of this research align with previous research that shows biodiversity is linked to enhanced 

productivity, resilience, and resistance to disturbances (Cardinale et al., 2006, 2012; Allison and 

Martiny, 2008). Identifying specific taxa and enzymes that are responsible for contaminant 

transformations is one outcome of this research, but the importance of supporting a diverse 

microbial community must not be overlooked. Lessons learned from bioremediation efforts 

continue to ring true; for example, an understanding of the whole microbial community is essential, 

not just the microorganisms responsible for contaminant transformations, as the community can 

affect the behavior of an individual microorganisms through synergistic and competitive 

interactions. An outcome of this research is to link the design and operation of WWTPs with the 

microbial communities they support to enhance treatment performance.  
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7.3 Future research 

The studies presented in this dissertation could enable engineers to responsibly implement 

energy-saving strategies that employ reduced aeration and predict its consequences on 

pharmaceutical biotransformation during treatment. Additional research on aeration strategies and 

control systems is needed to optimize the benefits of biodiversity while avoiding conditions that 

reduce biotransformation rates due to oxygen limitation. Cycling between low and high DO 

environments is one possible strategy for both enhancing pharmaceutical biotransformation by 

supporting a diverse microbial community while also providing non oxygen-limiting conditions to 

enable maximum biotransformation rates. With advances in dissolved oxygen probes and aeration 

feedback control systems, these strategies will become more feasible for WWTPs to implement. 

Additional research is needed to understand how low DO treatment impacts 

biotransformation pathways and the resulting transformation products. A better understanding of 

the stability and ecotoxicity of transformation products formed in low DO environments and how 

they differ from high DO systems is needed to ensure that energy saving strategies that exacerbate 

effluent ecotoxicity are not implemented.  Future research should focus on comparing the toxicity 

of effluents from WWTPs employing different aeration strategies, identifying specific 

transformation products of environmental concern, and designing treatment strategies that result 

in mineralization or benign and environmentally stable products.  

Wastewater treatment systems are model systems for microbial ecology, and this research 

has potential to spark further research on the ecology of wastewater microbial communities, such 

as the biochemical tradeoff between substrate affinity and maximum substrate utilization rate as a 

driver of diversification, and the relationship between functional redundancy and process stability. 

Ultimately, a deeper understanding of the microorganisms that are central to the success of 
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wastewater treatment will empower engineers to design more sustainable and resilient treatment 

systems.  
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Appendix A. 

Supplementary Information for Chapter 3 

 
Effect of Redox Conditions on Pharmaceutical Loss during Biological 

Wastewater Treatment using Sequencing Batch Reactors 
 

A1. Reactor influent preparation 

Primary effluent collected from the local wastewater treatment plant was supplemented with 

acetate, glycerol, and yeast extract (equal parts as COD) and ammonium chloride to reach a soluble 

COD (sCOD) concentration of 250 mg/L and 25 mg-NH4-N/L. Micronutrients were added in 

proportion to the sCOD supplement according to Grady et al. (2011) (Table A1). 

Table A1. Micronutrient solution used to supplement influent feed, 5 mL added per 100 mg-COD/L 
supplemented. 

 

Mineral Salt Concentration in micronutrient stock (g/L) 

MgSO4*7H2O 1.8 
MnSO4*H2O 0.054 

ZnCl2 0.018 
CuCl2*2H2O 0.006 
CoCl2*6H2O 0.0002 

Na2MoO4*2H2O 0.0003 
CaCl2 0.72 

FeCl2*4H2O 0.187 
K2HPO4*3H2O 3.4 
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A2. LC/MS/MS analysis of pharmaceuticals 

Table A2. Multiple reaction monitoring (MRM) parameters with retention times for each target 
compound (CE = collision energy) 

 

Compound Name 
Retention 

Time 
(min) 

Precursor 
Ion 

(m/z) 

Primary 
Product 
Ion (m/z) 

Secondary 
Product 
Ion (m/z) 

Fragmentor 
(V) 

CE 
(eV) 

Atenolol 2.2 267 145.1 74 155 27/23 
d7-Atenolol 2.2 274.3 145.1 79.1 157 26/22 

Trimethoprim 6.5 291.2 230.1 123 155 23/27 
d9-Trimethoprim 6.3 300.2 234.2 123.1 160 26/26 
Desvenlafaxine 9.4 264.4 246.2 58.1 74 7/19 

d6-Desvenlafaxine 9.4 270.4 252.3 58.1 99 10/18 
Sulfamethoxazole 10.8 254.1 108 92 64 23/23 

d4-Sulfamethoxazole 10.8 258.1 111.9 96.3 107 26/30 
Phenytoin 12.6 253.1 182.1 104 104 15/39 

d10-Phenytoin 12.6 263.2 192.1 109.1 32 18/38 
 

Gradient used for compound separation: The mobile phase A was water+0.3% formic acid and 

B was acetonitrile. The gradient profile used was as follows: 90% A was held for 1.5 min, ramped 

to 95% of B over 10.5 min, held at 95% B for 2 minutes, and finally returned to 100% of A over 

1 min. 

Instrument detection limits: A series of standard solutions with concentrations of 0.1, 0.5, 1, 5 

and 10 ppb were prepared and run on LC/MS/MS using the method we developed. Peaks were 

checked to see if they were well defined based on the shape, retention time, ratio of qualifier and 

quantifier. A range of instrument detection limit for each compound was determined based on the 

lowest detectable concentration and highest non-detectable concentration (Table A2).  

Method detection limit: Because there are always native forms of pharmaceuticals in the real 

wastewater samples, the method detection limits for pharmaceuticals cannot be measured directly. 

In fact, the method detection limits were explored based on the assumption that the deuterated 

form of compounds has the same value as the native form. The signal of deuterated 
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pharmaceuticals from 7 blank samples (influent and effluent matrix without spiking deuterated 

pharmaceuticals) were measured, and the mean value (yblank ) was calculated. Samples with 

concentrations of deuterated compounds about 1 to 5 times higher than the estimated instrument 

detection limits were prepared, and signal from 7 replicates (ysample) were measured. The standard 

deviation (3) of the 7 measurements was computed.  

The minimum detectable signal, ydl, is defined as:  ydl = yblank + 3s  

The corrected signal, ysample-yblank, is proportional to sample concentration:  

                             ysample-yblank = m × [sample concentration]  

With ysample, yblank measured and sample concentration known, m7can be calculated. 

Detection limit:   Minimum detectable concentration  = 89
,  

Then we convert the minimum detectable concentration into the original concentration before SPE 

to get the method detection limit (Table A3).  

Table A3. Method detection limit using 100 mL for solid phase extraction (LOD = limit of detection) 
 

Compounds 

Estimated 
Instrument LOD 
for Native Form 

Compounds 
(ppb) 

Method LOD for 
Primary Samples 

(ppt) 

Method LOD for 
Samples from 

Reactor A (ppt) 

Method LOD for 
Samples from 

Reactor C (ppt) 

d7-Atenolol 0.5~1 62.2 36.0 26.6 
d9-Trimethoprim 0.1~0.5 46.9 24.5 21.5 

d6-Desvenlafaxine <0.1 6.7 6.8 9.3 
d4-Sulfamethoxazole ~0.1 48.5 80.5 22.0 

d10-Phenytoin 0.5~1 25.4 43.3 38.0 
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A3. Cross-cycle profile of atenolol in anoxic/aerobic reactor (A) 

 

Figure A1. Cross-cycle concentrations of atenolol in the anoxic/aerobic SBR (reactor A) collected on 
three separate dates (day 287, 331, and 349 of operation shown as diamonds, squares, and triangles, 

respectively). Open symbols are calculated theoretical values based on influent concentration*(2/3) + 
previous cycle effluent concentration*(1/3). Dashed line indicates where aeration began during the 

reaction cycle. 

 

Table A4. Percent loss across reaction cycle for atenolol and sulfamethoxazole where percent loss is 
calculated as ((concentration at cycle time=0) – (concentration at cycle time=8hr))/( concentration at 

cycle time=0)*100% based on cross-cycle sampling 
 

 Anoxic/Aerobic (A) 
(n=3) 

Aerobic (B) 
(n=2) 

Microaerobic (C) 
(n=3) 

Microaerobic (D) 
(n=3) 

Atenolol 66 ± 25 85 ± 22 53 ± 8 52 ± 1 
Sulfamethoxazole 24 ± 10 29 ± 26 39 ± 31 45 ± 14 
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A4. Conjugated forms of sulfamethoxazole and desvenlafaxine 

 
Figure A2. Cross-cycle concentrations of sulfamethoxazole (SMX), acetyl-sulfamethoxazole (acetyl-
SMX), and sulfamethoxazole-glucuronide (SMX-gluc) in select samples from the anoxic/aerobic SBR 

(reactor A; top) and the microaerobic SBR (reactor C; bottom). Open symbols are calculated theoretical 
values based on influent concentration*(2/3) + previous cycle effluent concentration*(1/3) and asterisks 

signify values that were below the detection limit. Table A5. Average system removal (%) of venlafaxine-
family compounds (DVF = desvenlafaxine; DVF-glu = desvenlafaxine-glucuronide; VLF = venlafaxine) 
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Table A5. Average system removal (%) of venlafaxine-family compounds (DVF = desvenlafaxine; DVF-
glu = desvenlafaxine-glucuronide; VLF = venlafaxine) 

 
 Anoxic/Aerobic (A) Aerobic (B) Microaerobic (C) Microaerobic (D) 

DVF -20 ± 17 -16 ± 15 -26 ± 12 -18 ± 14 
DVG* >99 >99 >99 >99 
VLF 1.2 ± 20 8.5 ± 12 1.2 ± 23 6.0 ± 10 

DVF+DVG+VLF -5.3 ± 16 0.1 ± 12 -8.4 ± 14 -1.1 ± 10 
*No standard deviation reported for DVG because of concentrations were below detection for majority of reactor 
effluent samples. 
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Appendix B. 

Supplementary Information for Chapter 4 

 
Impact of microbial physiology and microbial community structure on 

pharmaceutical fate driven by dissolved oxygen concentration in nitrifying 
bioreactors 

 

Parent reactor influent media recipe 

Table B1. Parent reactor influent media 
 

Compound Concentration (mg/L) 
(NH4)HCO3 1110 

MgSO4*7H2O 6.6 
MgCl2*6H2O 5.0 
CaCl2*2H2O 6.0 

K2HPO4 (dibasic) 16 
Na2MoO4*2H2O 0.010 

MnSO4*H2O 0.045 
CoCl2*7H2O 0.00040 

ZnCl2 0.060 
CuCl2*2H2O 0.17 
Chelated iron 0.44 

H3BO3 0.013 
 

Nitrate-N method 

Nitrate samples were stored in plastic centrifuge tubes at 4°C until analysis, which was 

performed within 1 week of sampling. Nitrate concentrations were determined via duplicate 
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injections using a DX-100 Ion Chromatograph (Dionex; Sunnyvale, California) with RFIC IonPac 

AG16 guard column, an IonPac AS14 analytical column, and eluent containing 3.5 mM Na2CO3 

and 1.0 mM NaHCO3.  

qPCR standard curve generation 

qPCR standards were prepared by collecting three 50 mL samples from both parent reactors 

over two weeks of stable operation, extracting DNA from the biomass samples, and subsequently 

combining the DNA extracts at equal concentrations to generate a community DNA pool. PCR 

was used to amplify the amoA gene in the pooled DNA sample using the primers amoA-1F (5’-

GGGGTTTCTACTGGTGGT-3’) and amoA-2R (5’-CCCCTCKGSAAAGCCTTCTTC-3’) 

(Rotthauwe et al., 1997). Each 20 µL reaction volume consisted of 10 µL of 2x Phusion Flash 

High-Fidelity PCR Master Mix (Thermo Fisher Scientific, Waltham, MA), 0.2 µL each of 50 µM 

forward and reverse primer (final concentration of 50 µM), 0.12 µL of 50 mg/mL bovine serum 

albumin (final concentration of 0.3 mg/mL), 7.48 µL of nuclease-free water, and 2 uL of a mixture 

of the DNA extracts and nuclease free water that resulted in a final DNA concentration of 

approximately 2 ng per reaction. Thermocycling conditions were as follows: 5 minutes at 95°C, 

followed by 35 cycles of 45 seconds at 95°C, 45 seconds at 55°C, and 45 seconds at 72°C, and a 

final extension of 5 minutes at 72°C. The PCR products (amplified amoA gene) was visualized by 

1.5% agarose gel electrophoresis and resulted in a single band at the expected amplicon size (491 

bp). The band was excised from the gel using a sterile scalpel and the PCR products were purified 

using the QIAquick Gel Extraction Kit (Qiagen, Valencia, CA). The DNA concentration of the 

purified amplicon pool was determined via Quantifluor dsDNA and fluorospectrometry. Serial 

dilutions of the purified amplicon pool were used as qPCR standards ranging from 108 to 102 

copies. 
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LC/HRMS analysis of pharmaceuticals 

Table B2. Target compounds with accurate mass and retention times used for quantification 
 

Compound Formula Accurate mass (m/z) Retention time (min) ESI mode 
Trimethoprim C14H18N4O3 291.14516 6.67 positive 

d9-trimethoprim C14H9D9N4O3 300.20165 6.62 positive 
Sulfamethoxazole C10H11N3O3S 254.05938 7.23 positive 

d4-sulfamethoxazole C10H7D4N3O3S 258.08449 7.22 positive 
EE2 C20H24O2 279.17434 10.96 positive 

d4-EE2 C20H20D4O2 283.19944 10.95 positive 
Atenolol C14H22N2O3 267.17031 4.92 positive 

d7-atenolol C14H15D7N2O3 274.21425 4.88 positive 
Venlafaxine C17H27NO2 278.21145 8.97 positive 

d6-venlafaxine C17H21D6NO2 284.24911 8.94 positive 
Caffeine C8H10N4O2 195.08765 6.83 positive 

d9-Caffeine C8HD9N4O2 204.14414 6.80 positive 
Carbamazepine C15H12N2O 237.10223 9.59 positive 

d8-Carbamazepine C15H4D8N2O 245.15245 9.54 positive 
Glyburide C23H28ClN3O5S 494.15109 11.23 positive 

d11-Glyburide C23H17D11ClN3O5S 505.22014 11.20 positive 
Acetaminophen C8H9NO2 152.07060 5.25 positive 

d3-Acetaminophen C8H6D3NO2 155.08943 5.22 positive 
Acetyl-sulfamethoxazole C12H13N3O4S 296.06995 8.11 positive 

Ibuprofen C13H18O2 205.12231 11.61 negative 
d3-ibuprofen C13H15D3O2 208.14241 11.60 negative 

Naproxen C14H14O3 229.08592 10.64 negative 
d3-Naproxen C14H11D3O3 232.10475 10.62 negative 

 

Gradient used for compound separation 

The mobile phase A was water + 0.1% formic acid and B was methanol + 0.1 % formic 

acid. The flow rate was 0.175 mL/min and the gradient profile used was as follows: 90% A was 

held for 3 min, ramped to 90% of B over 8 min, held at 90% B for 1 minutes, flow rate increased 

to 0.25 mL/min over 0.2 minutes and held at 0.25 ml/min for 1.8 minutes, and finally returned to 

90% of A and 0.175 mL/min over 0.2 min. 
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Allylthiourea inhibited batches  

 Duplicate batch reactors were supplemented with 10 mg/L of allylthiourea (ATU) to inhibit 

ammonia oxidation. Complete ammonia oxidation inhibition was confirmed by measuring the 

concentration of ammonia, nitrite, and nitrate-N across the batch experiments (Figures B1-a and 

B1-b). Ammonia concentrations did not change significantly across the batch experiments and no 

production of nitrite or nitrate was observed, indicating ATU halted ammonia oxidation. 

a. 

 

b. 

 

Figure B1. Concentration profiles of ammonia-, nitrite-, and nitrate-N in batch reactors supplemented 
with 10 mg/L ATU using biomass from the low DO (a) and high DO (b) parent reactors. Markers 

represent the average concentration of the duplicate batch reactors and error bars represent the 
concentration range.  
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Abiotic reactions with sodium azide under high DO conditions 

 Abiotic reactions with the pharmaceuticals were investigated by performing batch 

experiments without biomass, using media with and without sodium azide present (0.1 % w/v). 

We observed losses of EE2 and acetaminophen in the presence of sodium azide, indicating abiotic 

reactions occurred between sodium azide and those compounds (Figures B2-a and B2-b). Thus, 

losses in the azide-inactivated flasks should not be considered true controls.  

a. 

 

b. 
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c. 

 

d. 

 

Figure B2. Concentration profiles of EE2 (a), acetaminophen (b), atenolol (c), and sulfamethoxazole (d) 
in abiotic batch experiments performed with media and sodium azide. Blue markers represent low DO 
batch conditions (DO = 0.2 – 0.3 mg/L) and green markers represent high DO batch conditions (fully 

aerated, DO > 4 mg/L) 

 

Low DO parent reactor batch experiments 

Concentration profiles for batch experiments using the low DO parent reactor biomass are 

presented in Figure B3.  
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a. 

 

b. 
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c. 

 

d. 
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e. 

 

Figure B3. Concentration profiles of ibuprofen (a), sulfamethoxazole (b), EE2 (c), acetaminophen (d), 
and atenolol (e) in batch experiments performed with low DO parent biomass.  

  

0

200

400

600

800

1000

1200

0 1 2 3

at
en

ol
ol
,co

nc
.,(
ng

/L
)

time,(days)

low-DO

low-DO

high-DO

high-DO

high-DOPcontrol

high-DOPATU

high-DOPATU



 175 

High DO parent batch experiments 

Concentration profiles for batch experiments using the high DO parent reactor biomass are 

presented in Figure B4.  

a. 

 

b. 
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c. 

 

d. 

 

  

0

200

400

600

800

1000

1200

0 1 2 3

EE
2,
co
nc
.,(
ng

/L
)

time,(days)

low-DO

low-DO

high-DO

high-DO

high-DOPcontrol

high-DOPATU

high-DOPATU

0

200

400

600

800

1000

1200

0 1 2 3

ac
et
am

in
op

he
n,c

on
c.
,(n

g/
L)

time,(days)

low-DO

low-DO

high-DO

high-DO

high-DOPcontrol

high-DOPATU

high-DOPATU



 177 

e. 

 

Figure B4. Concentration profiles of ibuprofen (a), sulfamethoxazole (b), EE2 (c), acetaminophen (d), 
and atenolol (e) in batch experiments performed with high DO parent biomass.  

Biotransformation rate constants 

Table B3. Observed kinetic biotransformation rate constants for ibuprofen, EE2, sulfamethoxazole, 
acetaminophen, and atenolol. No biotransformation rate is reported for EE2 for low DO batch conditions 

because no significant biotransformation occurred. 
 

 kobs [day-1] 

 Ibuprofen EE2 Sulfamethoxazole Acetaminophen Atenolol 

Low DO parent & 
low DO batch 

1.0 E00 ± 
2.1E-02 N.A. 1.2E-01 ±  

5.1E-02 
1.2E-01 ±  
6.9E-02 

1.7E-01 ± 
6.1E-03 

Low DO parent & 
high DO batch 

6.4 E00 ± 
2.6E-01 

1.2 E00 ± 
2.8E-02 

1.9E-01 ±  
9.0E-03 

1.4 E00 ±  
4.3E-01 

1.1E-01 ± 
1.0E-02 

High DO parent & 
low DO batch 

3.6E-01 ± 
1.5E-01 N.A. 5.6E-02 ±  

1.6E-03 
1.7E-01 ±  
9.4E-02 

7.3E-02 ± 
9.0E-03 

High DO parent & 
high DO batch 

2.9 E00 ± 
8.3E-03 

3.7E-01 ± 
4.0E-02 

8.6E-02 ± 
 8.3E-03 

5.9E-01 ±  
1.3E-02 

2.3E-02 ± 
3.7E-03 
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Ammonia and nitrite oxidizer populations in low and high DO parent reactors 

 Ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) were identified 

in the parent reactors by performing a BLASTN of each OTU’s representative sequence (outputted 

from Mothur) against a custom database of full length 16S sequences of AOB and NOB 

downloaded from NCBI (Table B4). 

Table B4. Ammonia oxidizing bacterial (AOB) and nitrite oxidizing bacteria (NOB) identified in the low 
and high DO parent reactors. Percent identity is the percent of the queried sequence that was identical to 

the database sequence listed in the left column. 
 

    Relative abundance (%) 

  Percent identity (%)  
Low DO 

parent 
High DO 

parent 
Ammonia oxidizing bacteria    
Nitrosomonas sp. JL21 99.2 4.311 8.695 
Nitrosomonas sp. ls79A3 98.0 1.930 3.121 
Nitrosomonas ureae strain Nm10 97.2 0.012 0.433 
Nitrosomonas europaea 98.0 0.428 0.000 
Nitrosomonas oligotropha strain Nm10 99.6 0.004 0.000 
Nitrosococcus mobilis Nc2 99.2 0.089 0.000 

    
Nitrite oxidizing bacteria    
Nitrospira defluvii 100.0 6.066 6.697 
Nitrobacter winogradskyi 100.0 0.016 1.500 
Nitrospira moscoviensis 98.4 0.759 0.206 

 

 

Literature cited 

Rotthauwe, J. H.; Witzel, K. P.; Liesack, W. The Ammonia Monooxygenase Structural Gene 
amoA as a Functional Marker: Molecular Fine-Scale Analysis of Natural Ammonia-Oxidizing 
Populations. Appl. Env. Microbiol. 1997, 63 (12), 4704–4712. 
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Appendix C. 

Supplementary Information for Chapter 5 

 
Impact of dissolved oxygen on pharmaceutical biotransformation rates and 

microbial activity in wastewater treatment 
 

Pharmaceutical quantification via liquid chromatography and high resolution mass 

spectrometry 

Pharmaceuticals were quantified via on-line pre-concentration followed by high 

performance liquid chromatography (HPLC) and high resolution mass spectrometry (HRMS). 

Matrix-matched external calibration curves containing a mixture of the target compounds and 

deuterated analogs were used for quantification. On-line pre-concentration of the compounds of 

interest was performed using the Equan™ (Thermo Fisher Scientific, Grand Island, New York) 

system (system details are provided in Fayad et al., 2013). The on-line pre-concentration was 

performed using a Hypersil Gold aQ trapping column (20 x 2.1 mm, 12 µM particle size; Thermo 

Fisher Scientific) and chromatographic separation was done with an Accucore aQ column (50 x 

2.1 mm, 2.6 µm particle size; Thermo Fisher Scientific). A 500 µL sample was injected onto the 

trapping column. A mobile phase containing water with 0.1% formic acid and methanol with 0.1% 

formic acid was applied via gradient flow to elute all compounds with minimal overlap. The mobile 

phase A was water + 0.1% formic acid and B was methanol + 0.1 % formic acid. The flow rate 

was 0.175 mL/min and the gradient profile used was as follows: 90% A was held for 3 min, ramped 
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to 90% of B over 8 min, held at 90% B for 1 minutes, flow rate increased to 0.25 mL/min over 0.2 

minutes and held at 0.25 ml/min for 1.8 minutes, and finally returned to 90% of A and 0.175 

mL/min over 0.2 min. Total run time for one sample was 16 minutes at a flow rate of 1 mL/min 

on the trapping column and 0.175 – 0.250 mL/min on the analytical column. 

Ionization was achieved by positive electron spray ionization (ESI) for the following 

compounds: atenolol, 17α-ethinylestradiol (EE2), sulfamethoxazole, trimethoprim, venlafaxine, 

and acetaminophen; negative ESI was used for: ibuprofen and naproxen. The following source 

parameters were used: capillary temperature of 250 °C, auxillary gas heater temperature of 275 

°C, a spray voltage of 3.5 kV, sheath gas flow rate of 30 arbitrary units, auxillary gas flow rate of 

20 arbitrary units, and sweep gas flow rate of 1 arbitrary unit. A full scan ranging from 150 to 750 

m/z was performed at a resolution of 70,000 and target automatic gain control (AGC) of 1 x 10-6. 

All data were collected and processed using the Thermo TraceFinder Software Version 3.2 

(Thermo Fisher Scientific). 
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Table C1. Target compounds with accurate mass and retention times used for quantification 
 

Compound Formula Accurate mass 
(m/z) 

Retention time 
(min) ESI mode 

Trimethoprim C14H18N4O3 291.14516 6.67 positive 
d9-trimethoprim C14H9D9N4O3 300.20165 6.62 positive 

Sulfamethoxazole C10H11N3O3S 254.05938 7.23 positive 
d4-sulfamethoxazole C10H7D4N3O3S 258.08449 7.22 positive 

EE2 C20H24O2 279.17434 10.96 positive 
d4-EE2 C20H20D4O2 283.19944 10.95 positive 
Atenolol C14H22N2O3 267.17031 4.92 positive 

d7-atenolol C14H15D7N2O3 274.21425 4.88 positive 
Venlafaxine C17H27NO2 278.21145 8.97 positive 

d6-venlafaxine C17H21D6NO2 284.24911 8.94 positive 
Acetaminophen C8H9NO2 152.07060 5.25 positive 

d3-Acetaminophen C8H6D3NO2 155.08943 5.22 positive 
Ibuprofen C13H18O2 205.12231 11.61 negative 

d3-ibuprofen C13H15D3O2 208.14241 11.60 negative 
Naproxen C14H14O3 229.08592 10.64 negative 

d3-Naproxen C14H11D3O3 232.10475 10.62 negative 

 

Allylthiourea inhibited batches 

 Triplicate batch reactors were supplemented with 10 mg/L of allylthiourea (ATU) to inhibit 

ammonia oxidation. A preliminary experiment was performed to assess whether 10 mg/L was 

sufficient to inhibit ammonia oxidation. The experiment involved four batch reactors: one 

supplemented with 0.4% w/v sodium azide, one with 10 mg/L ATU, and two uninhibited batch 

reactors. The effluent used to re-suspend the biomass in these experiments was filtered final 

effluent from the Ann Arbor wastewater treatment plant, the experiment was run for 24 hours, and 

the DO was maintained at approximately 1.0 mg/L. Ammonia oxidation inhibition was confirmed 

by measuring the concentration of ammonia-N across the batch experiments. In the azide and 

ATU-inhibited batch reactors, ammonia-N concentrations increased due to and ammonia release 

from decay over the 24 hours, and that ammonia was not oxidized due to inhibition (Figure C1). 
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In the uninhibited batches, the 24-hour ammonia-N concentrations were significantly less than the 

inhibited batches as nitrification was not inhibited, demonstrating that the nitrifiers were active 

and oxidized the ammonia released due to decay over the 24 hour experiment.  Ammonia-, nitrite-

, and nitrate-N concentrations were also measured across the 6 hour pharmaceutical 

biotransformation batch experiments to ensure ATU resulted in ammonia oxidation inhibition.  

Similar to the preliminary test experiment, ammonia-N concentrations increased during the 6-hour 

experiment due to release from decay in the azide and ATU-inhibited batches, while they remained 

low in the uninhibited batches due to active nitrification (Figure C2 shows 2 mg-DO/L batch 

experiment results). Nitrate-N concentrations at the beginning and end of the 6-hour batch 

experiments also showed an increase in nitrate-N in the uninhibited batch reactors and no change 

in nitrate-N in the inhibited reactors, confirming that there was active nitrification occurring in the 

uninhibited batch reactors and no nitrification in the azide and ATU inhibited reactors (Figure C2). 

 

 

Figure C1. Initial and final concentrations of ammonia-N in batch reactors from preliminary batch 
experiment.  
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a. 

 

b. 
 

 

Figure C2. Initial and final concentrations of of ammonia-N (a) and nitrate-N (b) from the 2.0 mg-DO/L 
batch experiment. 

 

Sodium azide concentration determination 

 We determined the sodium azide concentration to use for the controls by performing 
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performed as described in the Chapter 5, section 5.2.4 and the maximum oxygen uptake rate (OUR) 

was determined for heterotrophs using several different concentrations of sodium azide: 0, 0.05, 
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sodium azide for 10 minutes prior to substrate addition. Figure C3 shows sodium azide 

concentration used versus the maximum OUR. We selected 0.4% w/v as the concentration to use 

in batch experiments as the max OUR has plateaued at that concentration. 

 

Figure C3. Sodium azide concentration used in respirometry versus maximum oxygen uptake rate. Based 
on this data, we selected a sodium azide concentration of 0.4 % w/v to use in the batch experiments for 

the controls. 

 

Pharmaceutical biotransformation data 

 Raw pharmaceutical data is show in Table C2. Concentrations are shown in ng/L. The 

lowest standard used for quantification was 50 ng/L, and concentrations below 50 ng/L are below 

the limit of detection. No-biomass abiotic controls were performed in the 0.25 mg-DO/L batch 

experiments (designated Abiotic_1 and Abiotic_2).  
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Table C2. Pharmaceutical concentrations in biotransformation batch experiments performed at different 
DO concentrations (6.0, 2.0, 0.5, 0.25, 0.15, and 0.05 mg/L). The first row of each table section is the 

sampling time in hours. Concentration units are ng/L.  
 

Ibuprofen 
6.0 mg-DO/L 0 0.5 1.5 3 6 
Rep_1 8534 563 26 7 21 
Rep_2 8615 466 37 16 0 
Rep_3 8483 487 12 21 0 
ATU_1 7480 547 50 12 0 
ATU_2 7430 431 10 16 0 
ATU_3 7523 427 0 13 0 
Azide_1 11625 11478 11403 10894 11405 
Azide_2 11468 11231 11189 11108 11264 

      
2.0 mg-DO/L 0 0.5 1.5 3 6 
Rep_1 8342 590 76 68 58 
Rep_2 8403 582 87 85 42 
Rep_3 8112 533 86 66 50 
ATU_1 7131 555 67 85 36 
ATU_2 7398 436 64 50 43 
ATU_3 7335 459 83 36 34 
Azide_1 11630 10953 10868 11283 10768 
Azide_2 11545 11205 11023 11213 11073 

      
0.5 mg-DO/L 0 0.5 1.5 3 6 
Rep_1 10804 4166 124 55 30 
Rep_2 10685 5239 127 47 30 
Rep_3 10947 4076 68 80 14 
ATU_1 11127 4141 176 34 8 
ATU_2 11091 4115 125 24 41 
ATU_3 10937 4802 89 39 25 
Azide_1 12097 11675 11611 11512 11773 
Azide_2 11898 11847 11794 11837 11273 

      
0.25 mg-DO/L 0 0.5 1.5 3 6 
ATU_1 10949 9203 2785 825 389 
ATU_2 12115 10599 4381 833 741 
Rep_1 11278 9719 600 578 389 
Rep_2 10897 9496 3852 879 743 
Azide_1 11606 11425 11198 11303 11768 



 186 

Azide_2 11588 11467 11097 10900 11145 
Abiotic_1 11541 11902 11721 11920 11765 
Abiotic_2 11816 11882 11659 11934 12025 

      
0.15 mg-DO/L 0 0.5 1.5 3 6 
Rep_1 12417 10087 749 100 54 
Rep_2 11946 11191 6291 530 76 
Rep_3 12219 10607 1747 144 82 
ATU_1 11999 10317 701 119 30 
ATU_2 12110 9908 731 67 37 
ATU_3 12000 11360 5534 411 56 
Azide_1 12379 12240 12264 12041 12322 
Azide_2 12629 12259 12526 12025 11811 

      
0.05 mg-DO/L 0 0.5 1.5 3 6 
Rep_1 12026 11843 12162 11935 11647 
Rep_2 12011 12345 12177 12129 12026 
Rep_3 11910 11987 12084 12003 11713 
ATU_1 11913 11998 11709 11828 12017 
ATU_2 12108 11944 12419 11764 11907 
ATU_3 11821 11721 11966 11975 12041 
Azide_1 12626 12845 12613 12180 12364 
Azide_2 12176 11780 12789 12595 12654 

 
 

Acetaminophen 
6.0 mg-DO/L 0 0.5 1.5 3 6 
Rep_1 3454 0 0 0 0 
Rep_2 4434 0 0 0 0 
Rep_3 4365 0 0 0 0 
ATU_1 3781 48 0 38 0 
ATU_2 3819 0 0 26 0 
ATU_3 4129 0 0 50 0 
Azide_1 9056 6880 3430 626 21 
Azide_2 9288 6820 2979 726 16 

      
2.0 mg-DO/L 0 0.5 1.5 3 6 
Rep_1 4086 0 0 0 0 
Rep_2 4390 0 0 0 0 
Rep_3 4204 0 0 0 0 
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ATU_1 3575 0 0 0 0 
ATU_2 3886 0 0 0 0 
ATU_3 4050 0 0 0 0 
Azide_1 9436 6847 3118 591 105 
Azide_2 9292 6521 3387 557 68 

      
0.5 mg-DO/L 0 0.5 1.5 3 6 
Rep_1 5897 109 0 0 0 
Rep_2 5608 36 0 0 0 
Rep_3 5815 34 0 0 0 
ATU_1 6849 219 0 0 0 
ATU_2 6996 268 0 0 0 
ATU_3 6498 196 0 0 0 
Azide_1 9766 8036 5485 2943 922 
Azide_2 10069 8629 5618 3155 906 

      
0.25 mg-DO/L 0 0.5 1.5 3 6 
ATU_1 7297 100 0 0 0 
ATU_2 8499 890 29 119 105 
Rep_1 7137 211 0 0 141 
Rep_2 7102 0 0 0 258 
Azide_1 9794 6933 2570 1087 0 
Azide_2 10374 6715 2286 813 159 
Abiotic_1 10430 10414 10242 10431 10281 
Abiotic_2 10432 10650 10407 10445 10342 

      
0.15 mg-DO/L 0 0.5 1.5 3 6 
Rep_1 8162 678 13 0 0 
Rep_2 7964 861 0 0 0 
Rep_3 7627 597 0 0 0 
ATU_1 7913 1146 0 7 0 
ATU_2 8124 881 0 22 0 
ATU_3 7843 1286 0 0 0 
Azide_1 10173 8431 5059 1879 145 
Azide_2 10241 8430 5240 2006 6 

      
0.05 mg-DO/L 0 0.5 1.5 3 6 
Rep_1 7817 4795 1976 405 100 
Rep_2 7587 4732 2077 645 78 
Rep_3 7301 4373 1960 470 0 
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ATU_1 7695 4653 2014 533 0 
ATU_2 7657 4891 2057 548 0 
ATU_3 7417 4647 2060 651 98 
Azide_1 9932 8017 4895 1834 263 
Azide_2 9911 8017 4876 1996 129 

 
 

Naproxen 
6.0 mg-DO/L 0 0.5 1.5 3 6 
Rep_1 10752 7225 1746 75 61 
Rep_2 10794 7174 1683 62 26 

Rep_3 10580 7385 1792 68 0 
ATU_1 9956 7087 1793 91 20 
ATU_2 10310 7078 1879 72 26 
ATU_3 10278 7026 1766 74 8 
Azide_1 10743 11265 10678 10815 10965 
Azide_2 10834 10883 10914 10803 11048 

      
2.0 mg-DO/L 0 0.5 1.5 3 6 
Rep_1 11333 8565 2527 146 20 
Rep_2 11020 8343 2693 118 66 
Rep_3 10557 8534 2529 151 18 
ATU_1 10322 8050 2547 171 16 
ATU_2 10826 8107 2457 88 96 
ATU_3 10706 8035 2549 103 43 
Azide_1 11131 11125 11136 11142 10614 
Azide_2 10731 11207 11270 11251 10755 

      
0.5 mg-DO/L 0 0.5 1.5 3 6 
Rep_1 11064 9350 4450 483 40 
Rep_2 10994 9312 5082 811 85 
Rep_3 11086 9434 4493 595 26 
ATU_1 10961 8950 4600 679 46 
ATU_2 10732 9114 4690 585 16 
ATU_3 10552 9371 4950 718 44 
Azide_1 11120 10867 10998 11013 10789 
Azide_2 11002 10958 10931 10872 11096 

      
0.25 mg-DO/L 0 0.5 1.5 3 6 
ATU_1 10309 9847 7497 1318 0 
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ATU_2 11215 11027 8384 3095 0 
Rep_1 11079 10830 4296 189 0 
Rep_2 10848 10542 7932 2846 0 
Azide_1 10963 10972 10844 11120 11405 
Azide_2 11056 11137 10805 11059 11271 
Abiotic_1 11147 10986 10997 10782 11131 
Abiotic_2 11053 11442 11179 11244 11018 

      
0.15 mg-DO/L 0 0.5 1.5 3 6 
Rep_1 11104 10582 6820 1498 75 
Rep_2 11414 10787 8892 4557 254 
Rep_3 11540 10992 7637 3380 128 
ATU_1 10897 10646 6791 1556 33 
ATU_2 11160 10611 7078 1523 83 
ATU_3 11173 11130 8808 5174 141 
Azide_1 11393 11487 11209 11604 11972 
Azide_2 11346 11526 11057 11359 11681 

      
0.05 mg-DO/L 0 0.5 1.5 3 6 
Rep_1 11338 11512 11049 11161 10910 
Rep_2 11166 11006 11383 11620 10987 
Rep_3 11350 11020 11273 11348 11057 
ATU_1 11309 11264 11077 11129 10772 
ATU_2 11196 11012 11099 10701 11021 
ATU_3 10953 11288 11331 11277 11151 
Azide_1 11142 11276 11737 11211 11203 
Azide_2 11302 11128 10814 11299 11558 

 
 

Atenolol 
6.0 mg-DO/L 0 0.5 1.5 3 6 
Rep_1 9681 8851 5966 2794 354 
Rep_2 10313 8724 6032 2830 330 
Rep_3 9723 8699 6019 2815 348 
ATU_1 9373 8492 6066 2989 386 
ATU_2 9490 8714 6186 3129 441 
ATU_3 9714 8527 6209 3050 468 
Azide_1 10271 10158 9607 8928 7922 
Azide_2 10403 10031 9748 8918 7986 
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2.0 mg-DO/L 0 0.5 1.5 3 6 
Rep_1 9815 8687 5782 2653 275 
Rep_2 9752 8645 5897 2717 299 
Rep_3 9615 8842 5762 2519 279 
ATU_1 9334 8330 5858 2787 396 
ATU_2 9772 8475 5825 3223 328 
ATU_3 9909 8682 5952 2849 346 
Azide_1 10465 10106 9633 9114 7876 
Azide_2 10390 10183 9648 9116 8021 

      
0.5 mg-DO/L 0 0.5 1.5 3 6 
Rep_1 9888 8645 5851 2828 435 
Rep_2 9904 8750 6020 3142 555 
Rep_3 9919 8700 5798 2806 435 
ATU_1 9419 8435 5980 3113 574 
ATU_2 9685 8593 5988 3103 527 
ATU_3 9625 8674 6271 3242 552 
Azide_1 10312 10136 9683 8715 7501 
Azide_2 10250 10070 9493 8653 7393 

      
0.25 mg-DO/L 0 0.5 1.5 3 6 
ATU_1 8983 7738 5477 2701 167 
ATU_2 10235 8348 6100 3285 240 
Rep_1 10241 8337 5072 2153 125 
Rep_2 9934 8462 5558 2862 321 
Azide_1 10141 9668 8526 7325 5823 
Azide_2 10100 9556 8500 7377 5802 
Abiotic_1 10201 10227 10189 10332 10291 
Abiotic_2 10371 10403 10382 10415 10423 

      
0.15 mg-DO/L 0 0.5 1.5 3 6 
Rep_1 10088 9371 7130 3975 953 
Rep_2 10165 9337 7598 4459 1305 
Rep_3 10281 9417 7532 4357 1193 
ATU_1 9911 9279 7121 4181 1056 
ATU_2 10064 9327 7290 4246 994 
ATU_3 10180 9427 7570 4894 1432 
Azide_1 10812 10620 10277 9441 7855 
Azide_2 10869 10626 10312 9455 7921 
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0.05 mg-DO/L 0 0.5 1.5 3 6 
Rep_1 10135 9242 8247 6872 4606 
Rep_2 10089 9435 8343 6960 4857 
Rep_3 9973 9316 8283 6850 4693 
ATU_1 9949 9253 8320 6916 5065 
ATU_2 9944 9454 8550 7195 5057 
ATU_3 9961 9298 8482 7120 5136 
Azide_1 10733 10544 10221 9566 8176 
Azide_2 10585 10451 10187 9457 8240 

 
 

EE2 
6.0 mg-DO/L 0 0.5 1.5 3 6 
Rep_1 7700 7264 6139 4612 2779 
Rep_2 9052 7179 6121 4614 2716 
Rep_3 7702 7120 5982 4682 2826 
ATU_1 7641 7273 6052 4796 3108 
ATU_2 7312 7269 6065 4817 3033 
ATU_3 7867 6888 6156 4673 3113 
Azide_1 7413 7321 7383 6963 6891 
Azide_2 7580 7189 7301 7416 7150 

      
2.0 mg-DO/L 0 0.5 1.5 3 6 
Rep_1 7720 6929 5746 4604 2693 
Rep_2 7491 6797 5926 4517 2575 
Rep_3 7456 7319 5815 4215 2456 
ATU_1 7414 6691 5843 4257 2610 
ATU_2 7878 6624 5629 4568 2719 
ATU_3 8103 7000 5759 4375 2501 
Azide_1 7890 7220 6776 6297 5137 
Azide_2 7853 7483 7004 6574 5554 

      
0.5 mg-DO/L 0 0.5 1.5 3 6 
Rep_1 8040 7309 5705 4389 2398 
Rep_2 8146 7331 5952 4588 2488 
Rep_3 8111 7385 5749 4147 2147 
ATU_1 7831 6932 6007 4361 2436 
ATU_2 7819 7225 5958 4454 2488 
ATU_3 7680 7217 6156 4466 2436 
Azide_1 7886 7777 7341 5982 3729 



 192 

Azide_2 7844 7690 6937 5822 3957 
      

0.25 mg-DO/L 0 0.5 1.5 3 6 
ATU_1 7047 6789 6533 6806 3656 
ATU_2 9256 7267 7389 7473 4503 
Rep_1 9379 7442 6525 6244 3895 
Rep_2 8309 8386 6855 7217 5299 
Azide_1 7671 7605 7325 8399 7717 
Azide_2 8289 7764 7552 8323 7747 
Abiotic_1 10120 10207 10292 10363 10305 
Abiotic_2 10466 10430 10341 10315 10546 

      
0.15 mg-DO/L 0 0.5 1.5 3 6 
Rep_1 8002 7689 6891 5634 3744 
Rep_2 8083 7763 7973 6256 4515 
Rep_3 8340 7928 8168 5848 4199 
ATU_1 8356 7776 6909 5600 3735 
ATU_2 8146 7631 7053 5901 3822 
ATU_3 8353 7840 7379 6552 4876 
Azide_1 8143 7541 7538 6781 5009 
Azide_2 8105 7611 7290 6711 5240 

      
0.05 mg-DO/L 0 0.5 1.5 3 6 
Rep_1 8125 7986 7951 7846 7747 
Rep_2 8036 7909 7897 8018 7980 
Rep_3 8067 7782 8123 8164 7998 
ATU_1 8401 8186 8044 7604 7935 
ATU_2 7943 7897 7861 7884 7960 
ATU_3 8216 7787 8093 7854 8282 
Azide_1 8086 8034 7728 7279 6602 
Azide_2 7586 7665 7692 7317 6671 

 
 

Venlafaxine 
6.0 mg-DO/L 0 0.5 1.5 3 6 
Rep_1 10110 9772 8636 7772 7473 
Rep_2 10371 9534 8807 8224 7875 
Rep_3 10145 9584 8617 8117 8156 
ATU_1 9911 9453 8717 8083 8157 
ATU_2 9928 9561 8714 8178 7916 
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ATU_3 10033 9555 8866 8203 8318 
Azide_1 10208 10273 10195 10011 10451 
Azide_2 10220 10076 10025 9763 9939 

      
2.0 mg-DO/L 0 0.5 1.5 3 6 
Rep_1 10319 9935 8869 8155 8153 
Rep_2 10511 9785 8813 8111 8003 
Rep_3 10294 9822 8617 7814 7886 
ATU_1 10388 9742 9064 8240 8292 
ATU_2 10302 9800 9024 8559 8674 
ATU_3 10464 9925 9085 8509 8502 
Azide_1 10600 10567 10586 10736 10797 
Azide_2 10524 10453 10520 10667 10794 

      
0.5 mg-DO/L 0 0.5 1.5 3 6 
Rep_1 10233 9312 8135 7503 8032 
Rep_2 10230 9384 8218 7535 7736 
Rep_3 10267 9268 7958 7115 7513 
ATU_1 9969 9117 8236 7396 7531 
ATU_2 10103 9282 8338 7646 7629 
ATU_3 9944 9466 8427 7582 7728 
Azide_1 10492 10434 10484 10476 10527 
Azide_2 10316 10305 10289 10289 10326 

      
0.25 mg-DO/L 0 0.5 1.5 3 6 
ATU_1 9403 9065 8873 8619 8645 
ATU_2 10173 9656 9483 9078 9214 
Rep_1 10305 9614 8964 8668 8831 
Rep_2 10098 9734 9175 9157 9287 
Azide_1 10146 10281 10217 10387 10608 
Azide_2 10044 10220 10375 10589 10540 
Abiotic_1 10228 10278 10274 10225 10282 
Abiotic_2 10275 10401 10408 10409 10521 

      
0.15 mg-DO/L 0 0.5 1.5 3 6 
Rep_1 10440 9922 8648 7767 7617 
Rep_2 10627 9895 8895 7862 7429 
Rep_3 10623 10048 8801 7954 7388 
ATU_1 10396 9894 8809 8052 7884 
ATU_2 10509 9986 9075 8291 8209 
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ATU_3 10565 10185 9273 8586 8490 
Azide_1 10796 10739 10886 10903 10915 
Azide_2 10727 10625 10773 10763 10890 

      
0.05 mg-DO/L 0 0.5 1.5 3 6 
Rep_1 10435 9971 9497 9399 9564 
Rep_2 10364 10084 9567 9412 9529 
Rep_3 10317 9957 9628 9472 9511 
ATU_1 10351 9977 9651 9271 9476 
ATU_2 10295 10118 9755 9377 9578 
ATU_3 10296 9937 9752 9466 9788 
Azide_1 10671 10708 10704 10769 10791 
Azide_2 10523 10487 10498 10461 10600 

 
 

Sulfamethoxazole 
6.0 mg-DO/L 0 0.5 1.5 3 6 
Rep_1 11154 10850 10307 9395 7818 
Rep_2 11252 10777 10201 9028 6962 
Rep_3 11087 10772 10222 8980 6702 
ATU_1 10670 10485 9935 9008 7297 
ATU_2 10870 10655 10192 9266 7256 
ATU_3 10911 10638 10170 9183 7872 
Azide_1 11161 11016 10714 10263 10197 
Azide_2 11144 10926 10258 9521 10103 

      
2.0 mg-DO/L 0 0.5 1.5 3 6 
Rep_1 11202 10991 10462 9458 7810 
Rep_2 11227 11019 10465 9521 7907 
Rep_3 11087 11019 10505 9490 7984 
ATU_1 10789 10611 10288 9506 8095 
ATU_2 11096 10880 10361 9385 7691 
ATU_3 11154 10889 10486 9649 8141 
Azide_1 11175 10997 10792 10398 9943 
Azide_2 11131 11086 10732 10419 10035 

      
0.5 mg-DO/L 0 0.5 1.5 3 6 
Rep_1 10997 10526 9919 8967 7363 
Rep_2 11001 10596 9877 9051 7396 
Rep_3 11042 10662 10104 9285 7678 
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ATU_1 10564 10245 9788 9118 7673 
ATU_2 10789 10450 10032 9380 7900 
ATU_3 10763 10500 10032 9287 7720 
Azide_1 10981 10845 10628 10341 10006 
Azide_2 10833 10880 10642 10373 9988 

      
0.25 mg-DO/L 0 0.5 1.5 3 6 
ATU_1 10572 10079 9486 8642 6850 
ATU_2 11228 10495 9443 8380 6410 
Rep_1 11243 10558 9673 8538 6654 
Rep_2 11221 10560 9500 8184 6000 
Azide_1 11047 10869 10462 10266 9748 
Azide_2 10974 10789 10418 10186 9610 
Abiotic_1 11060 11104 11083 11269 11272 
Abiotic_2 11169 11230 11330 11286 11388 

      
0.15 mg-DO/L 0 0.5 1.5 3 6 
Rep_1 11311 10991 10461 9409 7862 
Rep_2 11344 10938 10373 9398 7976 
Rep_3 11449 11075 10552 9529 8095 
ATU_1 10945 10730 10277 9514 8109 
ATU_2 11235 10916 10425 9572 8011 
ATU_3 11291 11040 10282 9349 7759 
Azide_1 11354 11219 11102 10769 10313 
Azide_2 11366 11311 11050 10755 10377 

      
0.05 mg-DO/L 0 0.5 1.5 3 6 
Rep_1 11359 11053 10793 10130 8637 
Rep_2 11243 11140 10833 10266 9157 
Rep_3 11247 11036 10882 10023 8874 
ATU_1 11109 10885 10796 10179 9088 
ATU_2 11166 11066 10942 10267 9173 
ATU_3 11039 10926 10878 10343 9395 
Azide_1 11336 11264 11053 10767 10149 
Azide_2 11130 11079 10928 10538 10102 

 
 

Trimethoprim 
6.0 mg-DO/L 0 0.5 1.5 3 6 
Rep_1 10516 10205 10116 9738 9333 
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Rep_2 10539 10243 9911 9694 9324 
Rep_3 9774 9953 9934 9375 9171 
ATU_1 10846 9753 9659 9134 9082 
ATU_2 9969 10013 9550 9548 9338 
ATU_3 10005 9823 9569 9104 9145 
Azide_1 11415 10720 10865 10315 10194 
Azide_2 10870 10581 10641 10415 10384 

      
2.0 mg-DO/L 0 0.5 1.5 3 6 
Rep_1 11048 10136 10025 9827 9635 
Rep_2 10272 9935 9997 9787 9596 
Rep_3 10051 10171 9937 9712 9471 
ATU_1 9932 9586 9578 9371 9202 
ATU_2 9993 9740 9750 9613 9675 
ATU_3 9995 9859 9674 9656 9518 
Azide_1 10995 10488 10600 10593 10512 
Azide_2 10597 10551 10678 10726 10618 

      
0.5 mg-DO/L 0 0.5 1.5 3 6 
Rep_1 9925 9725 9648 9528 9371 
Rep_2 9809 9666 9625 9445 9179 
Rep_3 10288 9705 9568 9492 9183 
ATU_1 10217 9081 9248 9001 8820 
ATU_2 9402 9253 9387 9347 9245 
ATU_3 9305 9277 9360 9399 9223 
Azide_1 10805 10283 10423 10419 10345 
Azide_2 10062 10174 10475 10378 10250 

      
0.25 mg-DO/L 0 0.5 1.5 3 6 
ATU_1 9478 9483 9580 9504 9356 
ATU_2 10365 9645 9536 9756 9825 
Rep_1 10954 10408 9762 10029 9677 
Rep_2 10319 10439 9622 9982 9760 
Azide_1 10611 10776 10629 10629 10400 
Azide_2 10618 10577 10432 10597 10507 
Abiotic_1 10854 10414 10254 10536 10602 
Abiotic_2 10617 10547 10560 10707 10796 

      
0.15 mg-DO/L 0 0.5 1.5 3 6 
Rep_1 9982 9782 9979 9855 9629 
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Rep_2 9942 10476 9923 9790 9526 
Rep_3 10520 9899 10217 9532 9420 
ATU_1 9860 9613 9497 9501 9546 
ATU_2 9873 9983 9877 9823 9768 
ATU_3 10025 9943 9837 9809 9887 
Azide_1 10528 10600 10740 10659 10611 
Azide_2 11127 10585 10700 10656 10621 

      
0.05 mg-DO/L 0 0.5 1.5 3 6 
Rep_1 10536 9986 10105 10236 9961 
Rep_2 9940 10272 9920 10042 10030 
Rep_3 10561 9834 9877 10040 9954 
ATU_1 10938 9839 9650 9757 9873 
ATU_2 10492 10345 10071 10010 9955 
ATU_3 10177 9668 10052 9948 9958 
Azide_1 10988 11043 10608 10532 10435 
Azide_2 10876 10265 10523 10312 10293 
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Fitting parameters for Monod and Andrews type model fits to experimental data 

 Curve fitting was performed in R using non-linear least squares regression to find 

parameter values. Parameters and a summary of the fitting data is provided in Table C3. The units 

of KO and KI are mg-DO/L and the units of umax are ng-pharmaceutical/mg-biomass/hour. 

Table C3. Kinetic parameters from curve fitting Monod or Andrews equations to experimental data using 
non-linear least squares regression analysis. KO and KI units are mg-DO/L and the units of umax are ng-

pharmaceutical/mg-biomass/hour. 
 

Significance codes:  0 ‘***’     0.001 ‘**’     0.01 ‘*’     0.05 ‘.’     0.1     ‘ ’ 1 
      

Formula: rate_ibuprofen ~ umax * (S/(Ko + S + (S^2/Ki))) 

 Estimate Std. error t value Pr(>|t|) 
umax 12.1669 3.4576 3.519 0.00423 ** 

Ko 0.6082 0.3317 1.834 0.0916 . 
Ki 9.3801 7.7864 1.205 0.25155  

      
Residual standard error: 1.23 on 12 degrees of freedom 
      
Number of iterations to convergence: 18    
Achieved convergence tolerance: 8.27e-06   

      

Formula: rate_ibuprofen_ATU ~ umax * (S/(Ko + S + (S^2/Ki))) 
 Estimate Std. error t value Pr(>|t|) 

umax 11.2524 3.6179 3.11 0.00902 ** 
Ko 0.515 0.3291 1.565 0.14363  
Ki 9.2935 8.919 1.042 0.31796  

      
Residual standard error: 1.428 on 12 degrees of freedom 
      
Number of iterations to convergence: 28    
Achieved convergence tolerance: 7.79e-06   

      

Formula: rate_acetaminophen ~ umax * (S/(Ko + S + (S^2/Ki))) 
 Estimate Std. error t value Pr(>|t|) 

umax 12.13052 3.85814 3.144 0.00847 ** 
Ko 0.10907 0.07542 1.446 0.17375  
Ki 1.23421 0.79372 1.555 0.14592  
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Residual standard error: 1.604 on 12 degrees of freedom 
      
Number of iterations to convergence: 17    
Achieved convergence tolerance: 8.606e-06   

      

Formula: rate_acetaminophen_ATU ~ umax * (S/(Ko + S + (S^2/Ki))) 
 Estimate Std. error t value Pr(>|t|) 

umax 14.2684 4.8085 2.967 0.0118 * 
Ko 0.1591 0.1017 1.565 0.1436  
Ki 0.9828 0.5981 1.643 0.1263  

      
Residual standard error: 1.396 on 12 degrees of freedom 
      
Number of iterations to convergence: 12    
Achieved convergence tolerance: 8.456e-06   

      

Formula: rate_naproxen ~ umax * S/(Ko + S)  
 Estimate Std. error t value Pr(>|t|) 

umax 3.12156 0.16815 18.564 9.70E-11 *** 
Ko 0.20655 0.04865 4.245 0.000955 *** 

      
Residual standard error: 0.3392 on 13 degrees of freedom 
      
Number of iterations to convergence: 8    
Achieved convergence tolerance: 6.461e-06   

      

Formula: rate_naproxen_ATU ~ umax * S/(Ko + S)  
 Estimate Std. error t value Pr(>|t|) 

umax 3.0785 0.16874 18.244 1.21E-10 *** 
Ko 0.2197 0.05207 4.219 0.001 ** 

      
Residual standard error: 0.3351 on 13 degrees of freedom 
      
Number of iterations to convergence: 7    
Achieved convergence tolerance: 7.282e-06   

      

Formula: rate_atenolol ~ umax * (S/(Ko + S + (S^2/Ki)))  
 Estimate Std. error t value Pr(>|t|) 

umax 1.42071 0.07344 19.346 2.05E-10 *** 
Ko 0.08622 0.01479 5.828 8.11E-05 *** 



 200 

Ki 16.23281 4.66895 3.477 0.00457 ** 
      
Residual standard error: 0.08108 on 12 degrees of freedom 
      
Number of iterations to convergence: 7    
Achieved convergence tolerance: 9.224e-07   

      

Formula: rate_atenolol_ATU ~ umax * (S/(Ko + S + (S^2/Ki))) 
 Estimate Std. error t value Pr(>|t|) 

umax 1.34143 0.06574 20.405 1.10E-10 *** 
Ko 0.09489 0.01525 6.224 4.43E-05 *** 
Ki 20.67147 6.55295 3.155 0.0083 ** 

      
Residual standard error: 0.07216 on 12 degrees of freedom 
      
Number of iterations to convergence: 7    
Achieved convergence tolerance: 1.399e-06   

      

Formula: rate_EE2 ~ umax * (S/(Ko + S + (S^2/Ki)))  
 Estimate Std. error t value Pr(>|t|) 

umax 0.8466 0.1937 4.372 0.00091 *** 
Ko 0.2031 0.1133 1.794 0.09811 . 
Ki 7.4858 5.3295 1.405 0.1855  

      
Residual standard error: 0.1221 on 12 degrees of freedom 
      
Number of iterations to convergence: 21    
Achieved convergence tolerance: 8.456e-06   

      

Formula: rate_EE2_ATU ~ umax * (S/(Ko + S + (S^2/Ki))) 
 Estimate Std. error t value Pr(>|t|) 

umax 0.9023 0.1705 5.294 0.00019 *** 
Ko 0.249 0.1052 2.367 0.03561 * 
Ki 5.7065 2.8688 1.989 0.06997 . 

      
Residual standard error: 0.08754 on 12 degrees of freedom 
      
Number of iterations to convergence: 13    
Achieved convergence tolerance: 7.105e-06   
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Formula: rate_venlafaxine ~ umax * (S/(Ko + S + (S^2/Ki))) 
 Estimate Std. error t value Pr(>|t|) 

umax 0.711 0.10748 6.615 2.48E-05 *** 
Ko 0.08628 0.0364 2.37 0.0354 * 
Ki 3.50043 1.43173 2.445 0.0309 * 

      
Residual standard error: 0.08092 on 12 degrees of freedom 
      
Number of iterations to convergence: 10    
Achieved convergence tolerance: 4.328e-06   

      

Formula: rate_venlafaxine_ATU ~ umax * (S/(Ko + S + (S^2/Ki))) 
 Estimate Std. error t value Pr(>|t|) 

umax 0.56184 0.06923 8.115 3.25E-06 *** 
Ko 0.08117 0.02969 2.734 0.0181 * 
Ki 4.70827 1.75082 2.689 0.0197 * 

      
Residual standard error: 0.05922 on 12 degrees of freedom 
      
Number of iterations to convergence: 9    
Achieved convergence tolerance: 7.463e-06   

      

Formula: rate_sulfamethoxazole ~ umax * (S/(Ko + S + (S^2/Ki))) 
 Estimate Std. error t value Pr(>|t|) 

umax 0.3537 0.02624 13.478 1.31E-08 *** 
Ko 0.02524 0.01004 2.513 0.0272 * 
Ki 24.15272 15.24334 1.584 0.1391  

      
Residual standard error: 0.04242 on 12 degrees of freedom 
      
Number of iterations to convergence: 9    
Achieved convergence tolerance: 4.376e-06   
      

Formula: rate_sulfamethoxazole_ATU ~ umax * (S/(Ko + S + (S^2/Ki))) 
 Estimate Std. error t value Pr(>|t|) 

umax 0.2958 0.02732 10.827 1.51E-07 *** 
Ko 0.03034 0.01406 2.158 0.0519 . 
Ki 42.65404 51.47901 0.829 0.4235  

      



 202 

Residual standard error: 0.04432 on 12 degrees of freedom 
      
Number of iterations to convergence: 10    
Achieved convergence tolerance: 6.436e-06   

      

Formula: rate_trimethoprim ~ umax * (S/(Ko + S + (S^2/Ki))) 
 Estimate Std. error t value Pr(>|t|) 

umax 0.12305 0.04612 2.668 0.0205 * 
Ko 0.14465 0.16093 0.899 0.3864  
Ki 29.58847 87.96993 0.336 0.7424  

      
Residual standard error: 0.04409 on 12 degrees of freedom 
      
Number of iterations to convergence: 6    
Achieved convergence tolerance: 1.095e-06   

 

 

 



 203 

Phylotypes that had significant associations (Spearman, p < 0.01) with DO concentration 

 Associations between phylotypes (OTUs grouped by genus) and DO concentration were tested using Mothur’s otu.association 

command using the metadata option, which performs a Spearman’s rank correlation test between the transcript abundance of each 

phylotype and the DO concentration of the batch experiment. Positive and negative associations are provided in Table C4.  

Table C4. Phylotypes with significant associations (Spearman, p < 0.01) with DO concentration.  
 

Positively associated with DO concentration 

OTU Kingdom Phylum Class Order Family Genus 

Otu028 Bacteria Bacteroidetes Sphingobacteriia Sphingobacteriales unclassified unclassified 
Otu029 Bacteria Planctomycetes Planctomycetia Planctomycetales Planctomycetaceae Planctomyces 
Otu033 Bacteria Chloroflexi Caldilineae Caldilineales Caldilineaceae unclassified 
Otu035 Bacteria Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae unclassified 
Otu048 Bacteria Proteobacteria Deltaproteobacteria Bdellovibrionales Bdellovibrionaceae Bdellovibrio 
Otu086 Bacteria Bacteroidetes Bacteroidetes_incertae_sedis Ohtaekwangia unclassified unclassified 
Otu089 Bacteria Bacteroidetes Sphingobacteriia Sphingobacteriales Chitinophagaceae Terrimonas 
Otu174 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Hydrogenophaga 
Otu190 Bacteria Proteobacteria Alphaproteobacteria Caulobacterales Caulobacteraceae unclassified 

       
Negatively associated with DO concentration 

OTU Kingdom Phylum Class Order Family Genus 

Otu009 Bacteria Actinobacteria Actinobacteria Actinomycetales unclassified unclassified 
Otu016 Bacteria Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae unclassified 
Otu017 Bacteria Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Byssovorax 
Otu020 Bacteria Proteobacteria Deltaproteobacteria unclassified unclassified unclassified 
Otu022 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae unclassified 
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Otu024 Bacteria Actinobacteria Actinobacteria unclassified unclassified unclassified 
Otu032 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae unclassified 
Otu043 Bacteria Proteobacteria Epsilonproteobacteria Campylobacterales Campylobacteraceae Arcobacter 
Otu052 Bacteria Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Paracoccus 
Otu066 Bacteria Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus 
Otu091 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Ruminococcus2 
Otu105 Bacteria Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Chryseobacterium 
Otu108 Bacteria Nitrospirae Nitrospira Nitrospirales Nitrospiraceae Nitrospira 
Otu109 Bacteria Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus 
Otu118 Bacteria Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Cloacibacterium 
Otu150 Bacteria Proteobacteria Gammaproteobacteria Aeromonadales Aeromonadaceae Aeromonas 
Otu196 Bacteria Bacteroidetes Cytophagia Cytophagales unclassified unclassified 

 

Phylotypes that had positive and significant associations (Spearman, p < 0.01) with pharmaceutical biotransformation rates 

 Positive associations between phylotypes and biotransformation rates for each compound were identified using Mothur’s 

otu.association command using the metadata option and Spearman’s rank correlation method (Table E5). The number and relative 

activity of the significantly associated phylotypes differed between the compounds, as no single significantly associated phylotype was 

shared among more than 3 compounds (Figure C4). 
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Table C5. Phylotypes with significant associations (Spearman, p < 0.01) with biotransformation rates for each compound.  
 

Ibuprofen 

OTU Kingdom Phylum Class Order Family Genus 

Otu009 Bacteria Actinobacteria Actinobacteria Actinomycetales unclassified unclassified 
Otu016 Bacteria Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae unclassified 
Otu043 Bacteria Proteobacteria Epsilonproteobacteria Campylobacterales Campylobacteraceae Arcobacter 
Otu109 Bacteria Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus 
Otu151 Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Enhydrobacter 
Otu205 Bacteria Actinobacteria Actinobacteria Actinomycetales Intrasporangiaceae Phycicoccus 

       
Acetaminophen 

OTU Kingdom Phylum Class Order Family Genus 

Otu001 Bacteria unclassified unclassified unclassified unclassified unclassified 
Otu011 Bacteria Proteobacteria Deltaproteobacteria Myxococcales Nannocystaceae unclassified 
Otu014 Bacteria Proteobacteria Alphaproteobacteria unclassified unclassified unclassified 
Otu026 Bacteria Actinobacteria Actinobacteria Actinomycetales Mycobacteriaceae Mycobacterium 
Otu029 Bacteria Planctomycetes Planctomycetia Planctomycetales Planctomycetaceae Planctomyces 
Otu080 Bacteria Bacteroidetes Sphingobacteriia Sphingobacteriales Chitinophagaceae Ferruginibacter 
Otu131 Bacteria Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatimonas 
Otu137 Bacteria Acidobacteria Acidobacteria_Gp10 Gp10 unclassified unclassified 
Otu142 Bacteria Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae Pseudoxanthomonas 
Otu152 Bacteria Proteobacteria Alphaproteobacteria Caulobacterales Hyphomonadaceae Hyphomonas 
Otu158 Bacteria Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae Dokdonella 
Otu200 Bacteria Acidobacteria Acidobacteria_Gp4 unclassified unclassified unclassified 

Otu204 Bacteria 
candidate_division_WPS-

2 unclassified unclassified unclassified unclassified 
Otu271 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Alcaligenaceae Azohydromonas 
Otu382 Archaea Euryarchaeota Thermoplasmata Methanomassiliicoccales Methanomassiliicoccaceae Methanomassiliicoccus 
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Otu449 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae Massilia 
       

Naproxen 

OTU Kingdom Phylum Class Order Family Genus 

Otu009 Bacteria Actinobacteria Actinobacteria Actinomycetales unclassified unclassified 
Otu016 Bacteria Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae unclassified 
Otu017 Bacteria Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Byssovorax 
Otu022 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae unclassified 
Otu024 Bacteria Actinobacteria Actinobacteria unclassified unclassified unclassified 
Otu043 Bacteria Proteobacteria Epsilonproteobacteria Campylobacterales Campylobacteraceae Arcobacter 
Otu052 Bacteria Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Paracoccus 
Otu066 Bacteria Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus 
Otu105 Bacteria Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Chryseobacterium 
Otu108 Bacteria Nitrospirae Nitrospira Nitrospirales Nitrospiraceae Nitrospira 
Otu109 Bacteria Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus 
Otu118 Bacteria Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Cloacibacterium 
Otu150 Bacteria Proteobacteria Gammaproteobacteria Aeromonadales Aeromonadaceae Aeromonas 
Otu172 Archaea Euryarchaeota Methanomicrobia Methanosarcinales Methanosarcinaceae Methanosarcina 

       
Atenolol 

OTU Kingdom Phylum Class Order Family Genus 

Otu068 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Phyllobacteriaceae unclassified 
Otu205 Bacteria Actinobacteria Actinobacteria Actinomycetales Intrasporangiaceae Phycicoccus 
Otu241 Bacteria Fusobacteria Fusobacteriia Fusobacteriales Leptotrichiaceae unclassified 

       
EE2 

OTU Kingdom Phylum Class Order Family Genus 

Otu014 Bacteria Proteobacteria Alphaproteobacteria unclassified unclassified unclassified 
Otu091 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Ruminococcus2 
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Otu105 Bacteria Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Chryseobacterium 
Otu108 Bacteria Nitrospirae Nitrospira Nitrospirales Nitrospiraceae Nitrospira 
Otu193 Bacteria Deinococcus-Thermus Deinococci Deinococcales Deinococcaceae unclassified 
Otu205 Bacteria Actinobacteria Actinobacteria Actinomycetales Intrasporangiaceae Phycicoccus 

       
Venlafaxine 

OTU Kingdom Phylum Class Order Family Genus 

Otu011 Bacteria Proteobacteria Deltaproteobacteria Myxococcales Nannocystaceae unclassified 
Otu014 Bacteria Proteobacteria Alphaproteobacteria unclassified unclassified unclassified 
Otu026 Bacteria Actinobacteria Actinobacteria Actinomycetales Mycobacteriaceae Mycobacterium 
Otu037 Bacteria Proteobacteria Betaproteobacteria Rhodocyclales Rhodocyclaceae Zoogloea 
Otu044 Bacteria Planctomycetes Planctomycetia Planctomycetales Planctomycetaceae Zavarzinella 
Otu058 Bacteria Actinobacteria Actinobacteria Actinomycetales Intrasporangiaceae Tetrasphaera 
Otu063 Bacteria Bacteroidetes Sphingobacteriia Sphingobacteriales Saprospiraceae Haliscomenobacter 
Otu074 Bacteria Planctomycetes Planctomycetia Planctomycetales Planctomycetaceae Gemmata 
Otu076 Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Alkanindiges 
Otu080 Bacteria Bacteroidetes Sphingobacteriia Sphingobacteriales Chitinophagaceae Ferruginibacter 
Otu097 Bacteria Planctomycetes Planctomycetia Planctomycetales Planctomycetaceae Pirellula 
Otu105 Bacteria Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Chryseobacterium 
Otu108 Bacteria Nitrospirae Nitrospira Nitrospirales Nitrospiraceae Nitrospira 
Otu131 Bacteria Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatimonas 
Otu137 Bacteria Acidobacteria Acidobacteria_Gp10 Gp10 unclassified unclassified 
Otu152 Bacteria Proteobacteria Alphaproteobacteria Caulobacterales Hyphomonadaceae Hyphomonas 
Otu153 Bacteria Proteobacteria Alphaproteobacteria Rickettsiales Rickettsiaceae Rickettsia 
Otu158 Bacteria Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae Dokdonella 
Otu198 Bacteria Bacteroidetes Cytophagia Cytophagales Cytophagaceae unclassified 

Otu204 Bacteria 
candidate_division_WPS-

2 unclassified unclassified unclassified unclassified 
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Otu209 Bacteria Planctomycetes Planctomycetia Candidatus_Brocadiales Candidatus_Brocadiaceae unclassified 
Otu240 Bacteria Proteobacteria Gammaproteobacteria Alteromonadales Alteromonadaceae Haliea 
Otu271 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Alcaligenaceae Azohydromonas 
Otu285 Bacteria Deinococcus-Thermus Deinococci Deinococcales Deinococcaceae Deinobacterium 
Otu449 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae Massilia 
Otu492 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Burkholderiaceae Chitinimonas 

       
Trimethoprim 

OTU Kingdom Phylum Class Order Family Genus 

Otu016 Bacteria Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae unclassified 
Otu030 Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae unclassified 
Otu109 Bacteria Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus 
Otu185 Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae unclassified 
Otu196 Bacteria Bacteroidetes Cytophagia Cytophagales unclassified unclassified 
Otu205 Bacteria Actinobacteria Actinobacteria Actinomycetales Intrasporangiaceae Phycicoccus 
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Figure C4. Relative activity of significant and positively associated (Spearman, p < 0.01) phylotypes for each compound. 
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Appendix D. 

Supplementary Information for Chapter 6 

 
Elucidating the impact of microbial community diversity on pharmaceutical 

biotransformation during wastewater treatment 
 

Semi-synthetic sewage media preparation  

1.! Freshly collected primary effluent was filtered through through glass fiber filters with a 

pore size of 0.7 µm (Whatman GF/F, Item #0987472, Fisher Scientific, Pittsburgh, 

Pennsylvania) 

2.! Primary was then floc-filtered by adding 1 mL per 100 mL of primary of 100 g/L zinc 

sulfate and adjusting the pH to ~10.4 using 10 M sodium hydroxide while mixing 

vigorously (by placing the primary on a stir plate). After pH adjustment, mixing was 

halted and the flocs were allowed to settle for 3 minutes 

3.! The supernatant was pulled off and filtered again through a 0.2 µm filter (Stericup, 

Millipore, Darmstadt, Germany)  

4.! The filtered primary was autoclaved for 45 minutes at 121 °C.  

5.! After cooling, the autoclaved media was supplemented with sterile stock solutions of 

humic acid, meat extract and peptone, and ammonium-chloride to achieve a final 

concentration of 2,000 mg-COD/L and 30 mg-N/L as ammonia. Micronutrients were also 

supplemented assuming a yield of 0.5 g COD/g COD (Grady et al., 2011) to achieve the 

final concentrations provided in Table D1. 

6.! The media was pH adjusted to 7.5 using concentrated hydrochloric acid. 
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Table D1. Final concentrations of micronutrients in semi-synthetic sewage media 
 

Nutrient Concentration (mg/L) 
Ca 8.2 
Fe 1.65 
Co 0.00033 
N 71.75 
P 14.35 

Mg 5.77 
Mn 0.08 
Mo 0.0033 
K 8.25 
S 4.95 

Zn 0.16 
Cu 0.02 

Borate 0.01 
 

Compound selection approach 

The primary goal of pharmaceutical compound selection was evaluate compounds that 

would undergo a variety of different biochemical transformation pathways, to accomplish this we 

used the University of Minnesota’s Pathway Prediction system(Ellis et al., 2006) (UMPPS). Using 

reactions found in the literature or the University of Minnesota’s Biocatalysis/Biodegradation and 

Database, UMPPS predicts aerobic biodegradation pathways based on chemical structure and 

assigns these pathways to rules, these rules are then characterized as “very likely”, “likely,” or 

“neutral,” by two or more biodegradation experts. We evaluated the biodegradation pathways of 

22 compounds using this database accessed in May, 2014. For each compound we accounted for 

the “very likely”, “likely”, and “neutral” rules for the initial biotransformation step. From these 22 

compounds, the list was narrowed to contain compounds which could be measured in our matrix 

with existing methods but that still encompassed a broad range of unique rules. The final list of 

compounds along with the rules associated with the compounds is given in Table D2.  
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Table D2. Predicted biotransformation pathways for selected compounds. Unique pathways are indicated 
in bold. 

 
Compound Biotransformation pathways Likelihood 

Atenolol 

Primary Amide → Carboxylate Likely 
primary Amine → Aldehyde or Ketone 
secondary Amine → Amine + Aldehyde or Ketone 
tertiary Amine →secondary Amine →Aldehyde or Ketone 
Methylammonium derivative → Trimethylamine + Aldehyde or Ketone 

Likely 

secondary Alcohol → Ketone 
secondary Alcohol →Ester Neutral 

dialiphatic Ether →Alcohol + Aldehyde 
aromatic-aliphatic Ether →Phenol derivative + Aldehyde Neutral 

EE2 

1-Hydroxy-2-unsubstituted aromatic → 1,2-Dihydroxyaromatic 
4-Hydroxypyridine derivative → 3,4-Dihydroxypyridine derivative Likely 

tertiary Aliphatic → tertiary Alcohol Neutral 
secondary Aliphatic →secondary Alcohol Neutral 

Trimethoprim 
dialiphatic Ether →Alcohol + Aldehyde 
aromatic-aliphatic Ether →Phenol derivative + Aldehyde Neutral 

secondary Aliphatic → secondary Alcohol Neutral 

Venlafaxine 

primary Amine → Aldehyde or Ketone 
secondary Amine → Amine + Aldehyde or Ketone 
tertiary Amine →secondary Amine →Aldehyde or Ketone 
Methylammonium derivative → Trimethylamine + Aldehyde or Ketone 

Likely 

dialiphatic Ether →Alcohol + Aldehyde 
aromatic-aliphatic Ether →Phenol derivative + Aldehyde Neutral 

tertiary Aliphatic → tertiary Alcohol Neutral 

Carbamazepine 
N-substituted Urea derivative →Carbamate + primary Amine 
N,N-disubstituted Urea derivative →N-substituted Carbamate + primary 
Amine 

Neutral 

Glyburide 

dialiphatic Ether →Alcohol + Aldehyde 
aromatic-aliphatic Ether →Phenol derivative + Aldehyde Neutral 

secondary Amide → Carboxylate + primary Amine 
Lactam → Aminecarboxylate Neutral 

N-substituted Urea derivative → Carbamate + primary Amine 
N,N-disubstituted Urea derivative → N-substituted Carbamate + primary 
Amine 

Neutral 

Sulfamate → Amine 
Sulfonamide → Amine + Sulfonate Neutral 

N-substituted Amide → Amide + Aldehyde or Ketone 
N, N-disubstituted Amide → N-substituted Amide + Aldehyde or Ketone 
N-substituted Urea derivative → Urea derivative + Aldehyde or Ketone 
N,N-disubstituted Urea derivative → N-substituted Urea derivative + 
Aldehyde or Ketone 

Neutral 

Erythromycin 

Ester →Alcohol + Carboxylate 
Lactone → Hydroxycarboxylate Likely 

secondary Alcohol → Ketone 
secondary Alcohol → Ester Neutral 
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Pharmaceutical quantification via liquid chromatography and high resolution mass 

spectrometry 

Pharmaceuticals were quantified via on-line pre-concentration followed by high 

performance liquid chromatography (HPLC) and high resolution mass spectrometry (HRMS). 

Matrix-matched external calibration curves containing a mixture of the target compounds and 

deuterated analogs were used for quantification. On-line pre-concentration of the compounds of 

interest was performed using the Equan™ (Thermo Fisher Scientific, Grand Island, New York) 

system (system details are provided in Fayad et al., 2013). The on-line pre-concentration was 

performed using a Hypersil Gold aQ trapping column (20 x 2.1 mm, 12 µM particle size; Thermo 

Fisher Scientific) and chromatographic separation was done with an Accucore aQ column (50 x 

2.1 mm, 2.6 µm particle size; Thermo Fisher Scientific). A 500 µL sample was injected onto the 

trapping column. A mobile phase containing water with 0.1% formic acid and methanol with 0.1% 

formic acid was applied via gradient flow to elute all compounds with minimal overlap. The mobile 

phase A was water + 0.1% formic acid and B was methanol + 0.1 % formic acid. The flow rate 

was 0.175 mL/min and the gradient profile used was as follows: 90% A was held for 3 min, ramped 

to 90% of B over 8 min, held at 90% B for 1 minutes, flow rate increased to 0.25 mL/min over 0.2 

minutes and held at 0.25 ml/min for 1.8 minutes, and finally returned to 90% of A and 0.175 

mL/min over 0.2 min. Total run time for one sample was 16 minutes at a flow rate of 1 mL/min 

on the trapping column and 0.175 – 0.250 mL/min on the analytical column. 

Ionization of the compounds was achieved by positive electron spray ionization (ESI). The 

following source parameters were used: capillary temperature of 250 °C, auxillary gas heater 

temperature of 275 °C, a spray voltage of 3.5 kV, sheath gas flow rate of 30 arbitrary units, 
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auxillary gas flow rate of 20 arbitrary units, and sweep gas flow rate of 1 arbitrary unit. A full scan 

ranging from 150 to 750 m/z was performed at a resolution of 70,000 and target automatic gain 

control (AGC) of 1 x 10-6. All data were collected and processed using the Thermo TraceFinder 

Software Version 3.2 (Thermo Fisher Scientific). 

Table D3. Target compounds with accurate mass and retention times used for quantification. 
 

Compound Formula Accurate mass 
(m/z) 

Retention 
time (min) Therapeutic use 

Trimethoprim C14H18N4O3 291.14516 6.67 Antibiotic 
d9-trimethoprim C14H9D9N4O3 300.20165 6.62  

EE2 C20H24O2 279.17434 10.96 Synthetic estrogen 
d4-EE2 C20H20D4O2 283.19944 10.95  
Atenolol C14H22N2O3 267.17031 4.92 Beta-blocker 

d7-atenolol C14H15D7N2O3 274.21425 4.88  

Carbamazepine C15H12N2O 237.10223 9.59 Anticonvulsant 

d8-Carbamazepine C15H4D8N2O 245.15245 9.54  
Glyburide C23H28ClN3O5S 494.15109 11.23 Antidiabetic 

d11-Glyburide C23H17D11ClN3O5S 505.22014 11.20  

Acetaminophen C8H9NO2 152.07060 5.25 Analgesic and 
antipyretic 

d3-Acetaminophen C8H6D3NO2 155.08943 5.22  
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Dissolved organic carbon oxidation in batch experiments 

 

Figure D1. Dissolved organic carbon profiles for each batch reactor over the first 2 days of the 
experiment. Samples from the 10-2 condition are shown in black, 10-4 in blue, and 10-7 in green. 

 

Pharmaceutical biotransformation data 

 Initial and final concentrations of the pharmaceuticals, calculated biotransformation rates, 

and normalized biotransformation rates are shown in Table D4. Biotransformation rates for each 

compound in each condition were scaled such that the average of the rates were 0 and the standard 

deviation was equal to 1. The collective biotransformation rate was calculated by averaging the 

scaled biotransformation rates (Zavaleta et al., 2010; Johnson et al., 2014). Scaled rates were used 

for testing associations with biodiversity indices using Spearman’s rank correlation test. 
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Table D4. Initial and final pharmaceutical concentrations in each batch reactor, biotransformation rates, 
and rates normalized by volatile suspended solids (VSS) concentration. 

 
 Concentration (µg/L) Rate rate/VSS 
 initial final (µg/L/d) (1/d) 

atenolol     
10^-2 A 9.96 0.00 2.47 1.10E-05 
10^-2 B 9.64 0.00 2.40 1.04E-05 
10^-2 C 9.44 0.00 2.35 1.14E-05 
10^-4 A 9.29 5.39 0.98 6.01E-06 
10^-4 B 9.60 5.23 1.09 8.28E-06 
10^-4 C 9.19 4.07 1.28 8.59E-06 
10^-7 A 9.42 8.04 0.34 2.11E-06 
10^-7 B 9.87 7.53 0.59 2.74E-06 
10^-7 C 9.37 8.92 0.11 5.02E-07 
Control 9.80 9.26 0.13 1.09E-06 

EE2     
10^-2 A 8.26 4.08 1.04 4.62E-06 
10^-2 B 8.03 3.65 1.09 4.71E-06 
10^-2 C 8.08 4.32 0.94 4.53E-06 
10^-4 A 7.36 7.02 0.08 5.21E-07 
10^-4 B 7.36 7.20 0.04 2.99E-07 
10^-4 C 7.99 6.92 0.27 1.79E-06 
10^-7 A 8.16 7.28 0.22 1.35E-06 
10^-7 B 8.12 6.87 0.31 1.47E-06 
10^-7 C 7.40 8.15 -0.19 -8.27E-07 
Control 8.03 9.62 -0.40 -3.21E-06 

trimethoprim    
10^-2 A 8.66 8.21 0.11 4.97E-07 
10^-2 B 9.28 8.31 0.24 1.04E-06 
10^-2 C 9.37 8.40 0.24 1.17E-06 
10^-4 A 8.84 8.99 -0.04 -2.25E-07 
10^-4 B 9.00 8.87 0.03 2.44E-07 
10^-4 C 8.31 9.05 -0.19 -1.25E-06 
10^-7 A 9.67 9.53 0.03 2.13E-07 
10^-7 B 8.64 9.78 -0.29 -1.34E-06 
10^-7 C 9.64 9.98 -0.08 -3.71E-07 
Control 8.80 9.18 -0.10 -7.66E-07 

venlafaxine    
10^-2 A 9.33 8.17 0.29 1.28E-06 
10^-2 B 9.11 8.38 0.18 7.89E-07 
10^-2 C 9.62 8.68 0.23 1.13E-06 
10^-4 A 9.20 8.87 0.08 5.06E-07 



 

 

218 

10^-4 B 9.13 8.75 0.09 7.18E-07 
10^-4 C 9.48 9.02 0.12 7.75E-07 
10^-7 A 9.19 8.99 0.05 3.21E-07 
10^-7 B 9.09 8.67 0.11 4.92E-07 
10^-7 C 9.27 9.04 0.06 2.48E-07 
Control 9.18 10.13 -0.24 -1.92E-06 

carbamazepine    
10^-2 A 10.11 9.59 0.13 5.67E-07 
10^-2 B 11.22 8.52 0.67 2.90E-06 
10^-2 C 10.49 8.19 0.57 2.76E-06 
10^-4 A 10.32 11.66 -0.33 -2.06E-06 
10^-4 B 11.71 11.83 -0.03 -2.31E-07 
10^-4 C 11.56 14.98 -0.85 -5.74E-06 
10^-7 A 11.70 15.66 -0.99 -6.08E-06 
10^-7 B 12.73 16.22 -0.88 -4.09E-06 
10^-7 C 13.15 18.93 -1.45 -6.36E-06 
Control 11.55 13.02 -0.37 -2.98E-06 

glyburide     
10^-2 A 9.51 9.64 -0.03 -1.37E-07 
10^-2 B 8.99 9.36 -0.09 -4.02E-07 
10^-2 C 9.61 9.42 0.05 2.30E-07 
10^-4 A 9.41 9.25 0.04 2.48E-07 
10^-4 B 9.59 9.33 0.07 4.95E-07 
10^-4 C 9.13 9.74 -0.15 -1.03E-06 
10^-7 A 9.60 9.71 -0.03 -1.78E-07 
10^-7 B 9.66 9.77 -0.03 -1.33E-07 
10^-7 C 9.70 10.57 -0.22 -9.64E-07 
Control 9.80 9.99 -0.05 -3.83E-07 

Erythromycin    
10^-2 A 9.52 3.97 1.38 6.13E-06 
10^-2 B 9.10 4.34 1.18 5.12E-06 
10^-2 C 9.74 3.97 1.43 6.95E-06 
10^-4 B 9.36 2.43 1.73 1.31E-05 
10^-4 C 9.62 4.19 1.36 9.11E-06 
10^-7 A 10.12 6.18 0.98 6.04E-06 
10^-7 B 9.46 5.05 1.11 5.17E-06 
10^-7 C 9.18 5.17 1.01 4.40E-06 
Control 9.83 9.09 0.19 1.51E-06 
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Pharmaceutical biotransformation rates versus RNA-based functional richness  

 
 a. 

 

 b. 

 

  

!2.0E+00

!1.5E+00

!1.0E+00

!5.0E!01

0.0E+00

5.0E!01

1.0E+00

1.5E+00

3,200 3,400 3,600 3,800 4,000

sc
al
ed

-an
d-
no

rm
al
ize

d-
bi
ot
ra
ns
fo
rm

at
io
n-
ra
te

RNA!based-functional-richness-(unique-annotations)

atenolol
rho-=-0.88
p-=-0.0031

!2.0E+00

!1.5E+00

!1.0E+00

!5.0E!01

0.0E+00

5.0E!01

1.0E+00

1.5E+00

3,200 3,400 3,600 3,800 4,000

sc
al
ed

-an
d-
no

rm
al
ize

d-
bi
ot
ra
ns
fo
rm

at
io
n-
ra
te

RNA!based-functional-richness-(unique-annotations)

EE2
rho-=-0.57
p-=-0.12



 

 

220 

c. 

 

d. 
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e. 

 

 f. 

 

  

  

!1.5E+00

!1.0E+00

!5.0E!01

0.0E+00

5.0E!01

1.0E+00

1.5E+00

3,200 3,400 3,600 3,800 4,000

sc
al
ed

-an
d-
no

rm
al
ize

d-
bi
ot
ra
ns
fo
rm

at
io
n-
ra
te

RNA!based-functional-richness-(unique-annotations)

carbamazepine
rho-=-0.9
p-=-0.0020

!2.0E+00

!1.5E+00

!1.0E+00

!5.0E!01

0.0E+00

5.0E!01

1.0E+00

1.5E+00

3,200 3,400 3,600 3,800 4,000

sc
al
ed

-an
d-
no

rm
al
ize

d-
bi
ot
ra
ns
fo
rm

at
io
n-
ra
te

RNA!based-functional-richness-(unique-annotations)

glyburide
rho-=-0.28
p-=-0.46



 

 

222 

g. 

 

 h. 

 

Figure D2. RNA-based functional richness versus scaled, normalized biotransformation rates for each 
compound: atenolol (a), EE2 (b), trimethoprim (c), venlafaxine (d), carbamazepine (e), glyburide (f), 

erythromycin (g), and collective (h). Samples from the 10-2 condition are shown in black, 10-4 in blue, and 
10-7 in green. Spearman’s rank correlation test rho and p-values are shown for associations are shown for 

scale biotransformation rate and RNA-based functional richness. 
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Associations between biotransformation rates and richness based on all genes versus only 

metabolism genes 

 
Figure D3. Spearman correlation p-values for associations between pharmaceutical biotransformation 
rates and functional richness based on expressed metabolism genes (solid bar) and all expressed genes 

(patterned bar). Dashed line signifies p = 0.05. 

 

Candidate gene lists and heat maps for each compound 

We conducted a two-sided Spearman’s rank correlation test between the normalized 

expression of each gene and each compound’s biotransformation rate to identify genes whose 

expression pattern was significant associated with biotransformation rates. We then narrowed the 

list of genes by focusing on classes of metabolic genes that were predicted, according to the 

University of Minnesota’s Pathway Prediction System (UM-PPS; Ellis et al., 2006), to be involved 

in the compounds biotransformation. We focused on the compounds that were transformed to 
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different extents with increased dilution (atenolol, EE2, trimethoprim, venlafaxine, and 

carbamazepine) and further narrowed the list of genes relevant to those compounds by selecting 

genes only if they were lost with increased dilution. Figures D4-6 show the genes that were 

significantly associated with biotransformation of atenolol, trimethoprim, and venlafaxine, 

predicted to be involved in transformation of those compounds, and lost between the 10-2 and the 

10-7 conditions. No genes were significantly associated with carbamazepine biotransformation and 

predicted by UM-PPS to be involved in its transformation. A complete list of candidate genes for 

each compound is provided in Table D5.  

 

Figure D4. Relative expression of significantly differentially expressed genes (likelihood ratio, padj < 
0.05) that were also significantly associated with atenolol biotransformation (Spearman, p < 0.05). The 

vertical bar on the left shows amidase genes (red), transaminase genes (turquoise), oxidase genes (purple), 
hydrolase genes (green), dehydrogenase genes (gold), aminotransferase genes (navy), and 

monooxygenase genes (grey). Expression value is relative to the average expression of that gene in all 
conditions. 
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Figure D5. Relative expression of significantly differentially expressed genes (likelihood ratio, padj < 
0.05) that were also significantly associated with trimethoprim biotransformation (Spearman, p < 0.05). 

The vertical bar on the left shows transaminase genes (turquoise), oxidase genes (purple), hydrolase genes 
(green), dehydrogenase genes (gold), aminotransferase genes (navy), and monooxygenase genes (grey). 

Expression value is relative to the average expression of that gene in all conditions. 
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Figure D6. Relative expression of significantly differentially expressed genes (likelihood ratio, padj < 
0.05) that were also significantly associated with venlafaxine biotransformation (Spearman, p < 0.05). 

The vertical bar on the left shows transaminase genes (turquoise), oxidase genes (purple), hydrolase genes 
(green), dehydrogenase genes (gold), aminotransferase genes (navy), and monooxygenase genes (grey). 

Expression value is relative to the average expression of that gene in all conditions. 
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We also analyzed the genes that were associated with the collective transformation of atenolol, 

EE2, trimethoprim, venlafaxine, and carbamazepine. The results are shown in Figure D7.  

 

Figure D7. Relative expression of significantly differentially expressed genes (likelihood ratio, padj < 
0.05) that were also significantly associated with the collective biotransformation of atenolol, EE2, 

trimethoprim, venlafaxine and carbamazepine (Spearman, p < 0.05). The vertical bar on the left shows 
amidase genes (red), transaminase genes (turquoise), oxidase genes (purple), hydrolase genes (green), 

dehydrogenase genes (gold), aminotransferase genes (navy), and monooxygenase genes (grey). 
Expression value is relative to the average expression of that gene in all conditions. 

 

We conducted a two-sided Spearman’s rank correlation test between the normalized 

expression of each gene and erythromycin. Again, we then narrowed the list of genes by focusing 

on classes of metabolic genes that were predicted, according to the UM-PPS, to be involved in the 

compounds biotransformation. Because erythromycin did not have increased transformation rates 

with increased dilution, we did narrow the list of genes to those lost with dilution. The significantly 
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associated genes are shown in Figure D8. A complete list of candidate genes is provided in Table 

D5. 

 

Figure D8. Relative expression of significantly differentially expressed genes (likelihood ratio, padj < 
0.05) that were also significantly associated with erythromycin biotransformation (Spearman, p < 0.05). 

The vertical bar on the left shows esterase genes (black), a lactonase gene (white), hydrolase genes 
(green) and monooxygenase genes (grey). Expression value is relative to the average expression of that 

gene in all conditions. 
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Table D5. Candidate gene lists for each compound. 
 

EE2 
KEGG 

Orthology 
Number Description 

K00500 phenylalanine-4-hydroxylase [EC:1.14.16.1] 

K10946 ammonia monooxygenase subunit C [EC:1.13.12.-] 

K00459 nitronate monooxygenase [EC:1.13.12.16] 

K06134 ubiquinone biosynthesis monooxygenase Coq7 [EC:1.14.13.-] 

K00499 choline monooxygenase [EC:1.14.15.7] 
 

Erythromycin 
KEGG 

Orthology 
Number Description 

K01126 glycerophosphoryl diester phosphodiesterase [EC:3.1.4.46] 

K10804 acyl-CoA thioesterase I [EC:3.1.2.- 3.1.1.5] 

K10805 acyl-CoA thioesterase II [EC:3.1.2.-] 

K01119 2',3'-cyclic-nucleotide 2'-phosphodiesterase [EC:3.1.4.16] 

K01066 esterase / lipase [EC:3.1.1.-] 

K07404 6-phosphogluconolactonase [EC:3.1.1.31] 

K01491 
methylenetetrahydrofolate dehydrogenase (NADP+) / methenyltetrahydrofolate cyclohydrolase [EC:1.5.1.5 
3.5.4.9] 

K01497 GTP cyclohydrolase II [EC:3.5.4.25] 

K01495 GTP cyclohydrolase I [EC:3.5.4.16] 

K00602 phosphoribosylaminoimidazolecarboxamide formyltransferase / IMP cyclohydrolase [EC:2.1.2.3 3.5.4.10] 

K01070 S-formylglutathione hydrolase [EC:3.1.2.12] 

K01442 choloylglycine hydrolase [EC:3.5.1.24] 

K03336 3D-(3,5/4)-trihydroxycyclohexane-1,2-dione hydrolase [EC:3.7.1.-] 

K01139 guanosine-3',5'-bis(diphosphate) 3'-pyrophosphohydrolase [EC:3.1.7.2] 

K11755 phosphoribosyl-ATP pyrophosphohydrolase / phosphoribosyl-AMP cyclohydrolase [EC:3.6.1.31 3.5.4.19] 

K10216 2-hydroxymuconate-semialdehyde hydrolase [EC:3.7.1.9] 

K07127 5-hydroxyisourate hydrolase [EC:3.5.2.17] 

K06193 phosphonoacetate hydrolase [EC:3.11.1.2] 

K01069 hydroxyacylglutathione hydrolase [EC:3.1.2.6] 

K01451 hippurate hydrolase [EC:3.5.1.32] 

K00466 tryptophan 2-monooxygenase [EC:1.13.12.3] 

K03379 cyclohexanone monooxygenase [EC:1.14.13.22] 

K00459 nitronate monooxygenase [EC:1.13.12.16] 

K06134 ubiquinone biosynthesis monooxygenase Coq7 [EC:1.14.13.-] 
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Venlafaxine 
KEGG 

Orthology 
Number Description 

K00836 diaminobutyrate-2-oxoglutarate transaminase [EC:2.6.1.76] 

K00832 aromatic-amino-acid transaminase [EC:2.6.1.57] 

K14260 alanine-synthesizing transaminase [EC:2.6.1.66 2.6.1.2] 

K00822 beta-alanine--pyruvate transaminase [EC:2.6.1.18] 

K09471 gamma-glutamylputrescine oxidase [EC:1.4.3.-] 

K00425 cytochrome d ubiquinol oxidase subunit I [EC:1.10.3.-];cytochrome bd-I oxidase subunit I [EC:1.10.3.-] 

K00426 cytochrome d ubiquinol oxidase subunit II [EC:1.10.3.-];cytochrome bd-I oxidase subunit II [EC:1.10.3.-] 

K02495 oxygen-independent coproporphyrinogen III oxidase [EC:1.3.99.22] 

K00406 cb-type cytochrome c oxidase subunit III [EC:1.9.3.1];cytochrome c oxidase cb-type subunit III 

K00405 cb-type cytochrome c oxidase subunit II [EC:1.9.3.1];cytochrome c oxidase cb-type subunit II 

K00404 cb-type cytochrome c oxidase subunit I [EC:1.9.3.1];cytochrome c oxidase cb-type subunit I [EC:1.9.3.1] 

K02274 cytochrome c oxidase subunit I [EC:1.9.3.1] 

K02275 cytochrome c oxidase subunit II [EC:1.9.3.1] 

K13020 UDP-D-GlcNAcA oxidase [EC:1.1.1.-] 

K03782 catalase/peroxidase [EC:1.11.1.6 1.11.1.7] 

K00274 monoamine oxidase [EC:1.4.3.4] 

K00275 pyridoxamine 5'-phosphate oxidase [EC:1.4.3.5] 

K02298 cytochrome o ubiquinol oxidase subunit I [EC:1.10.3.-] 

K02299 cytochrome o ubiquinol oxidase subunit III [EC:1.10.3.-] 

K02297 cytochrome o ubiquinol oxidase subunit II [EC:1.10.3.-] 

K02300 cytochrome o ubiquinol oxidase operon protein cyoD 

K00432 glutathione peroxidase [EC:1.11.1.9] 

K00228 coproporphyrinogen III oxidase [EC:1.3.3.3] 

K03153 glycine oxidase [EC:1.4.3.19] 

K01491 
methylenetetrahydrofolate dehydrogenase (NADP+) / methenyltetrahydrofolate cyclohydrolase [EC:1.5.1.5 
3.5.4.9] 

K01495 GTP cyclohydrolase I [EC:3.5.4.16] 

K00602 phosphoribosylaminoimidazolecarboxamide formyltransferase / IMP cyclohydrolase [EC:2.1.2.3 3.5.4.10] 

K01442 choloylglycine hydrolase [EC:3.5.1.24] 

K03336 3D-(3,5/4)-trihydroxycyclohexane-1,2-dione hydrolase [EC:3.7.1.-] 

K01139 guanosine-3',5'-bis(diphosphate) 3'-pyrophosphohydrolase [EC:3.1.7.2] 

K01484 succinylarginine dihydrolase [EC:3.5.3.23] 

K11755 phosphoribosyl-ATP pyrophosphohydrolase / phosphoribosyl-AMP cyclohydrolase [EC:3.6.1.31 3.5.4.19] 

K10216 2-hydroxymuconate-semialdehyde hydrolase [EC:3.7.1.9] 

K01069 hydroxyacylglutathione hydrolase [EC:3.1.2.6] 

K01067 acetyl-CoA hydrolase [EC:3.1.2.1] 

K01436 aminoacylase [EC:3.5.1.14];amidohydrolase [EC:3.5.1.-] 
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K01825 
3-hydroxyacyl-CoA dehydrogenase / enoyl-CoA hydratase / 3-hydroxybutyryl-CoA epimerase / enoyl-CoA 
isomerase [EC:1.1.1.35 4.2.1.17 5.1.2.3 5.3.3.8] 

K00340 NADH-quinone oxidoreductase subunit K [EC:1.6.5.3];NADH dehydrogenase I subunit K [EC:1.6.5.3] 

K00341 NADH dehydrogenase I subunit L [EC:1.6.5.3];NADH-quinone oxidoreductase subunit L [EC:1.6.5.3] 

K00343 NADH dehydrogenase I subunit N [EC:1.6.5.3];NADH-quinone oxidoreductase subunit N [EC:1.6.5.3] 

K00027 malate dehydrogenase (oxaloacetate-decarboxylating) [EC:1.1.1.38] 

K02472 UDP-N-acetyl-D-mannosaminuronic acid dehydrogenase [EC:1.1.1.-] 

K02474 UDP-N-acetyl-D-galactosamine dehydrogenase [EC:1.1.1.-] 

K00121 S-(hydroxymethyl)glutathione dehydrogenase / alcohol dehydrogenase [EC:1.1.1.284 1.1.1.1] 

K00658 2-oxoglutarate dehydrogenase E2 component (dihydrolipoamide succinyltransferase) [EC:2.3.1.61] 

K09472 gamma-glutamyl-gamma-aminobutyraldehyde dehydrogenase [EC:1.2.1.-] 

K00018 glycerate dehydrogenase [EC:1.1.1.29] 

K00019 3-hydroxybutyrate dehydrogenase [EC:1.1.1.30] 

K00117 quinoprotein glucose dehydrogenase [EC:1.1.5.2] 

K00116 malate dehydrogenase (quinone) [EC:1.1.5.4] 

K00111 glycerol-3-phosphate dehydrogenase [EC:1.1.5.3] 

K13378 NADH dehydrogenase I subunit C/D [EC:1.6.5.3];NADH-quinone oxidoreductase subunit C/D [EC:1.6.5.3] 

K04118 pimeloyl-CoA dehydrogenase [EC:1.3.1.62] 

K00135 succinate-semialdehyde dehydrogenase (NADP+) [EC:1.2.1.16] 

K00134 glyceraldehyde 3-phosphate dehydrogenase [EC:1.2.1.12] 

K00133 aspartate-semialdehyde dehydrogenase [EC:1.2.1.11] 

K00130 betaine-aldehyde dehydrogenase [EC:1.2.1.8] 

K13821 proline dehydrogenase / delta 1-pyrroline-5-carboxylate dehydrogenase [EC:1.5.99.8 1.5.1.12] 

K00097 4-hydroxythreonine-4-phosphate dehydrogenase [EC:1.1.1.262] 

K00140 
malonate-semialdehyde dehydrogenase (acetylating) / methylmalonate-semialdehyde dehydrogenase [EC:1.2.1.18 
1.2.1.27];methylmalonate-semialdehyde dehydrogenase [EC:1.2.1.27] 

K00147 glutamate-5-semialdehyde dehydrogenase [EC:1.2.1.41] 

K00239 succinate dehydrogenase flavoprotein subunit [EC:1.3.99.1] 

K00031 isocitrate dehydrogenase [EC:1.1.1.42] 

K00259 alanine dehydrogenase [EC:1.4.1.1] 

K00252 glutaryl-CoA dehydrogenase [EC:1.3.99.7] 

K00253 isovaleryl-CoA dehydrogenase [EC:1.3.99.10] 

K00254 dihydroorotate dehydrogenase [EC:1.3.5.2] 

K00255 long-chain-acyl-CoA dehydrogenase [EC:1.3.99.13] 

K01782 
3-hydroxyacyl-CoA dehydrogenase / enoyl-CoA hydratase / 3-hydroxybutyryl-CoA epimerase [EC:1.1.1.35 
4.2.1.17 5.1.2.3] 

K00342 NADH-quinone oxidoreductase subunit M [EC:1.6.5.3];NADH dehydrogenase I subunit M [EC:1.6.5.3] 

K12524 
bifunctional aspartokinase/homoserine dehydrogenase 1 [EC:2.7.2.4 1.1.1.3];bifunctional aspartokinase / 
homoserine dehydrogenase 1 [EC:2.7.2.4 1.1.1.3] 

K00010 myo-inositol 2-dehydrogenase [EC:1.1.1.18] 

K00012 UDPglucose 6-dehydrogenase [EC:1.1.1.22] 

K00013 histidinol dehydrogenase [EC:1.1.1.23] 

K00014 shikimate dehydrogenase [EC:1.1.1.25];shikimate 5-dehydrogenase [EC:1.1.1.25] 
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K00016 L-lactate dehydrogenase [EC:1.1.1.27] 

K00156 pyruvate dehydrogenase (quinone) [EC:1.2.5.1];pyruvate dehydrogenase (cytochrome) [EC:1.2.2.2] 

K00074 3-hydroxybutyryl-CoA dehydrogenase [EC:1.1.1.157] 

K00075 UDP-N-acetylmuramate dehydrogenase [EC:1.1.1.158] 

K00294 1-pyrroline-5-carboxylate dehydrogenase [EC:1.5.1.12] 

K14519 NADP-dependent aldehyde dehydrogenase [EC:1.2.1.4] 

K00058 D-3-phosphoglycerate dehydrogenase [EC:1.1.1.95] 

K00055 aryl-alcohol dehydrogenase [EC:1.1.1.90] 

K00057 glycerol-3-phosphate dehydrogenase (NAD(P)+) [EC:1.1.1.94] 

K02302 
uroporphyrin-III C-methyltransferase / precorrin-2 dehydrogenase / sirohydrochlorin ferrochelatase [EC:2.1.1.107 
1.3.1.76 4.99.1.4] 

K00052 3-isopropylmalate dehydrogenase [EC:1.1.1.85] 

K08685 quinohemoprotein amine dehydrogenase [EC:1.4.98.1];amine dehydrogenase [EC:1.4.99.3] 

K00331 NADH dehydrogenase I subunit B [EC:1.6.5.3];NADH-quinone oxidoreductase subunit B [EC:1.6.5.3] 

K00330 NADH-quinone oxidoreductase subunit A [EC:1.6.5.3];NADH dehydrogenase I subunit A [EC:1.6.5.3] 

K00333 NADH dehydrogenase I subunit D [EC:1.6.5.3];NADH-quinone oxidoreductase subunit D [EC:1.6.5.3] 

K00332 NADH-quinone oxidoreductase subunit C [EC:1.6.5.3];NADH dehydrogenase I subunit C [EC:1.6.5.3] 

K00335 NADH dehydrogenase I subunit F [EC:1.6.5.3];NADH-quinone oxidoreductase subunit F [EC:1.6.5.3] 

K00334 NADH-quinone oxidoreductase subunit E [EC:1.6.5.3];NADH dehydrogenase I subunit E [EC:1.6.5.3] 

K00337 NADH dehydrogenase I subunit H [EC:1.6.5.3];NADH-quinone oxidoreductase subunit H [EC:1.6.5.3] 

K00336 NADH-quinone oxidoreductase subunit G [EC:1.6.5.3];NADH dehydrogenase I subunit G [EC:1.6.5.3] 

K00339 NADH dehydrogenase I subunit J [EC:1.6.5.3];NADH-quinone oxidoreductase subunit J [EC:1.6.5.3] 

K00338 NADH-quinone oxidoreductase subunit I [EC:1.6.5.3];NADH dehydrogenase I subunit I [EC:1.6.5.3] 

K13953 alcohol dehydrogenase, propanol-preferring [EC:1.1.1.1] 

K13954 alcohol dehydrogenase [EC:1.1.1.1] 

K00318 proline dehydrogenase [EC:1.5.99.8] 

K00102 D-lactate dehydrogenase (cytochrome) [EC:1.1.2.4] 

K06445 acyl-CoA dehydrogenase [EC:1.3.99.-] 

K06447 succinylglutamic semialdehyde dehydrogenase [EC:1.2.1.71] 

K00128 aldehyde dehydrogenase (NAD+) [EC:1.2.1.3] 

K00123 formate dehydrogenase, alpha subunit [EC:1.2.1.2] 

K00124 formate dehydrogenase, beta subunit [EC:1.2.1.2] 

K00127 formate dehydrogenase, gamma subunit [EC:1.2.1.2] 

K05358 quinate dehydrogenase (quinone) [EC:1.1.5.8];quinate dehydrogenase (pyrroloquinoline-quinone) [EC:1.1.99.25] 

K00146 phenylacetaldehyde dehydrogenase [EC:1.2.1.39] 

K00627 pyruvate dehydrogenase E2 component (dihydrolipoamide acetyltransferase) [EC:2.3.1.12] 

K00088 IMP dehydrogenase [EC:1.1.1.205] 

K00164 2-oxoglutarate dehydrogenase E1 component [EC:1.2.4.2] 

K00166 2-oxoisovalerate dehydrogenase E1 component, alpha subunit [EC:1.2.4.4] 

K00161 pyruvate dehydrogenase E1 component subunit alpha [EC:1.2.4.1] 

K00162 pyruvate dehydrogenase E1 component subunit beta [EC:1.2.4.1] 
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K00163 pyruvate dehydrogenase E1 component [EC:1.2.4.1] 

K07516 3-hydroxyacyl-CoA dehydrogenase [EC:1.1.1.35] 

K00029 malate dehydrogenase (oxaloacetate-decarboxylating)(NADP+) [EC:1.1.1.40] 

K00024 malate dehydrogenase [EC:1.1.1.37] 

K00020 3-hydroxyisobutyrate dehydrogenase [EC:1.1.1.31] 

K00249 acyl-CoA dehydrogenase [EC:1.3.99.3] 

K00241 
succinate dehydrogenase cytochrome b556 subunit;succinate dehydrogenase cytochrome b-556 subunit 
[EC:1.3.99.1];succinate dehydrogenase cytochrome b-556 subunit 

K00240 
succinate dehydrogenase iron-sulfur protein [EC:1.3.99.1];succinate dehydrogenase iron-sulfur subunit 
[EC:1.3.99.1] 

K00242 
succinate dehydrogenase hydrophobic membrane anchor protein [EC:1.3.99.1];succinate dehydrogenase 
hydrophobic membrane anchor protein;succinate dehydrogenase membrane anchor subunit 

K00005 glycerol dehydrogenase [EC:1.1.1.6] 

K00003 homoserine dehydrogenase [EC:1.1.1.3] 

K00001 alcohol dehydrogenase [EC:1.1.1.1] 

K00263 leucine dehydrogenase [EC:1.4.1.9] 

K00262 glutamate dehydrogenase (NADP+) [EC:1.4.1.4] 

K00261 glutamate dehydrogenase (NAD(P)+) [EC:1.4.1.3] 

K00285 D-amino-acid dehydrogenase [EC:1.4.99.1] 

K00281 glycine dehydrogenase [EC:1.4.4.2] 

K00382 dihydrolipoamide dehydrogenase [EC:1.8.1.4] 

K12254 4-guanidinobutyraldehyde dehydrogenase / NAD-dependent aldehyde dehydrogenase [EC:1.2.1.54 1.2.1.-] 

K00831 phosphoserine aminotransferase [EC:2.6.1.52] 

K00812 aspartate aminotransferase [EC:2.6.1.1] 

K00817 histidinol-phosphate aminotransferase [EC:2.6.1.9] 

K00818 acetylornithine aminotransferase [EC:2.6.1.11] 

K14267 N-succinyldiaminopimelate aminotransferase [EC:2.6.1.17] 

K14268 5-aminovalerate aminotransferase [EC:2.6.1.48] 

K00826 branched-chain amino acid aminotransferase [EC:2.6.1.42] 

K00821 acetylornithine/N-succinyldiaminopimelate aminotransferase [EC:2.6.1.11 2.6.1.17] 

K00820 glucosamine--fructose-6-phosphate aminotransferase (isomerizing) [EC:2.6.1.16] 

K00823 4-aminobutyrate aminotransferase [EC:2.6.1.19] 

K12256 putrescine aminotransferase [EC:2.6.1.-] 

K00466 tryptophan 2-monooxygenase [EC:1.13.12.3] 

K10946 ammonia monooxygenase subunit C [EC:1.13.12.-] 

K03379 cyclohexanone monooxygenase [EC:1.14.13.22] 

K03863 vanillate monooxygenase [EC:1.14.13.82] 

K00459 nitronate monooxygenase [EC:1.13.12.16] 

K06134 ubiquinone biosynthesis monooxygenase Coq7 [EC:1.14.13.-] 

K00499 choline monooxygenase [EC:1.14.15.7] 
 

Trimethoprim 
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KEGG 
Orthology 
Number Description 

K00836 diaminobutyrate-2-oxoglutarate transaminase [EC:2.6.1.76] 

K00822 beta-alanine--pyruvate transaminase [EC:2.6.1.18] 

K09471 gamma-glutamylputrescine oxidase [EC:1.4.3.-] 

K00425 cytochrome d ubiquinol oxidase subunit I [EC:1.10.3.-];cytochrome bd-I oxidase subunit I [EC:1.10.3.-] 

K00426 cytochrome d ubiquinol oxidase subunit II [EC:1.10.3.-];cytochrome bd-I oxidase subunit II [EC:1.10.3.-] 

K02495 oxygen-independent coproporphyrinogen III oxidase [EC:1.3.99.22] 

K00406 cb-type cytochrome c oxidase subunit III [EC:1.9.3.1];cytochrome c oxidase cb-type subunit III 

K00405 cb-type cytochrome c oxidase subunit II [EC:1.9.3.1];cytochrome c oxidase cb-type subunit II 

K00404 cb-type cytochrome c oxidase subunit I [EC:1.9.3.1];cytochrome c oxidase cb-type subunit I [EC:1.9.3.1] 

K02274 cytochrome c oxidase subunit I [EC:1.9.3.1] 

K02275 cytochrome c oxidase subunit II [EC:1.9.3.1] 

K03782 catalase/peroxidase [EC:1.11.1.6 1.11.1.7] 

K02298 cytochrome o ubiquinol oxidase subunit I [EC:1.10.3.-] 

K02299 cytochrome o ubiquinol oxidase subunit III [EC:1.10.3.-] 

K02297 cytochrome o ubiquinol oxidase subunit II [EC:1.10.3.-] 

K02300 cytochrome o ubiquinol oxidase operon protein cyoD 

K00432 glutathione peroxidase [EC:1.11.1.9] 

K00228 coproporphyrinogen III oxidase [EC:1.3.3.3] 

K01491 
methylenetetrahydrofolate dehydrogenase (NADP+) / methenyltetrahydrofolate cyclohydrolase [EC:1.5.1.5 
3.5.4.9] 

K00602 phosphoribosylaminoimidazolecarboxamide formyltransferase / IMP cyclohydrolase [EC:2.1.2.3 3.5.4.10] 

K01442 choloylglycine hydrolase [EC:3.5.1.24] 

K03336 3D-(3,5/4)-trihydroxycyclohexane-1,2-dione hydrolase [EC:3.7.1.-] 

K01139 guanosine-3',5'-bis(diphosphate) 3'-pyrophosphohydrolase [EC:3.1.7.2] 

K01484 succinylarginine dihydrolase [EC:3.5.3.23] 

K10216 2-hydroxymuconate-semialdehyde hydrolase [EC:3.7.1.9] 

K01067 acetyl-CoA hydrolase [EC:3.1.2.1] 

K01825 
3-hydroxyacyl-CoA dehydrogenase / enoyl-CoA hydratase / 3-hydroxybutyryl-CoA epimerase / enoyl-CoA 
isomerase [EC:1.1.1.35 4.2.1.17 5.1.2.3 5.3.3.8] 

K00340 NADH-quinone oxidoreductase subunit K [EC:1.6.5.3];NADH dehydrogenase I subunit K [EC:1.6.5.3] 

K00341 NADH dehydrogenase I subunit L [EC:1.6.5.3];NADH-quinone oxidoreductase subunit L [EC:1.6.5.3] 

K00343 NADH dehydrogenase I subunit N [EC:1.6.5.3];NADH-quinone oxidoreductase subunit N [EC:1.6.5.3] 

K00027 malate dehydrogenase (oxaloacetate-decarboxylating) [EC:1.1.1.38] 

K02474 UDP-N-acetyl-D-galactosamine dehydrogenase [EC:1.1.1.-] 

K00121 S-(hydroxymethyl)glutathione dehydrogenase / alcohol dehydrogenase [EC:1.1.1.284 1.1.1.1] 

K00658 2-oxoglutarate dehydrogenase E2 component (dihydrolipoamide succinyltransferase) [EC:2.3.1.61] 

K09472 gamma-glutamyl-gamma-aminobutyraldehyde dehydrogenase [EC:1.2.1.-] 

K00018 glycerate dehydrogenase [EC:1.1.1.29] 

K00019 3-hydroxybutyrate dehydrogenase [EC:1.1.1.30] 

K00117 quinoprotein glucose dehydrogenase [EC:1.1.5.2] 
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K00116 malate dehydrogenase (quinone) [EC:1.1.5.4] 

K00111 glycerol-3-phosphate dehydrogenase [EC:1.1.5.3] 

K13378 NADH dehydrogenase I subunit C/D [EC:1.6.5.3];NADH-quinone oxidoreductase subunit C/D [EC:1.6.5.3] 

K04118 pimeloyl-CoA dehydrogenase [EC:1.3.1.62] 

K00135 succinate-semialdehyde dehydrogenase (NADP+) [EC:1.2.1.16] 

K00134 glyceraldehyde 3-phosphate dehydrogenase [EC:1.2.1.12] 

K00133 aspartate-semialdehyde dehydrogenase [EC:1.2.1.11] 

K00130 betaine-aldehyde dehydrogenase [EC:1.2.1.8] 

K13821 proline dehydrogenase / delta 1-pyrroline-5-carboxylate dehydrogenase [EC:1.5.99.8 1.5.1.12] 

K00097 4-hydroxythreonine-4-phosphate dehydrogenase [EC:1.1.1.262] 

K00140 
malonate-semialdehyde dehydrogenase (acetylating) / methylmalonate-semialdehyde dehydrogenase [EC:1.2.1.18 
1.2.1.27];methylmalonate-semialdehyde dehydrogenase [EC:1.2.1.27] 

K00147 glutamate-5-semialdehyde dehydrogenase [EC:1.2.1.41] 

K00239 succinate dehydrogenase flavoprotein subunit [EC:1.3.99.1] 

K00031 isocitrate dehydrogenase [EC:1.1.1.42] 

K00259 alanine dehydrogenase [EC:1.4.1.1] 

K00252 glutaryl-CoA dehydrogenase [EC:1.3.99.7] 

K00253 isovaleryl-CoA dehydrogenase [EC:1.3.99.10] 

K00342 NADH-quinone oxidoreductase subunit M [EC:1.6.5.3];NADH dehydrogenase I subunit M [EC:1.6.5.3] 

K12524 
bifunctional aspartokinase/homoserine dehydrogenase 1 [EC:2.7.2.4 1.1.1.3];bifunctional aspartokinase / 
homoserine dehydrogenase 1 [EC:2.7.2.4 1.1.1.3] 

K00010 myo-inositol 2-dehydrogenase [EC:1.1.1.18] 

K00013 histidinol dehydrogenase [EC:1.1.1.23] 

K00014 shikimate dehydrogenase [EC:1.1.1.25];shikimate 5-dehydrogenase [EC:1.1.1.25] 

K00156 pyruvate dehydrogenase (quinone) [EC:1.2.5.1];pyruvate dehydrogenase (cytochrome) [EC:1.2.2.2] 

K00074 3-hydroxybutyryl-CoA dehydrogenase [EC:1.1.1.157] 

K00294 1-pyrroline-5-carboxylate dehydrogenase [EC:1.5.1.12] 

K14519 NADP-dependent aldehyde dehydrogenase [EC:1.2.1.4] 

K00058 D-3-phosphoglycerate dehydrogenase [EC:1.1.1.95] 

K00057 glycerol-3-phosphate dehydrogenase (NAD(P)+) [EC:1.1.1.94] 

K00052 3-isopropylmalate dehydrogenase [EC:1.1.1.85] 

K08685 quinohemoprotein amine dehydrogenase [EC:1.4.98.1];amine dehydrogenase [EC:1.4.99.3] 

K00331 NADH dehydrogenase I subunit B [EC:1.6.5.3];NADH-quinone oxidoreductase subunit B [EC:1.6.5.3] 

K00330 NADH-quinone oxidoreductase subunit A [EC:1.6.5.3];NADH dehydrogenase I subunit A [EC:1.6.5.3] 

K00333 NADH dehydrogenase I subunit D [EC:1.6.5.3];NADH-quinone oxidoreductase subunit D [EC:1.6.5.3] 

K00332 NADH-quinone oxidoreductase subunit C [EC:1.6.5.3];NADH dehydrogenase I subunit C [EC:1.6.5.3] 

K00335 NADH dehydrogenase I subunit F [EC:1.6.5.3];NADH-quinone oxidoreductase subunit F [EC:1.6.5.3] 

K00334 NADH-quinone oxidoreductase subunit E [EC:1.6.5.3];NADH dehydrogenase I subunit E [EC:1.6.5.3] 

K00337 NADH dehydrogenase I subunit H [EC:1.6.5.3];NADH-quinone oxidoreductase subunit H [EC:1.6.5.3] 

K00336 NADH-quinone oxidoreductase subunit G [EC:1.6.5.3];NADH dehydrogenase I subunit G [EC:1.6.5.3] 

K00339 NADH dehydrogenase I subunit J [EC:1.6.5.3];NADH-quinone oxidoreductase subunit J [EC:1.6.5.3] 



 

 

236 

K00338 NADH-quinone oxidoreductase subunit I [EC:1.6.5.3];NADH dehydrogenase I subunit I [EC:1.6.5.3] 

K13953 alcohol dehydrogenase, propanol-preferring [EC:1.1.1.1] 

K13954 alcohol dehydrogenase [EC:1.1.1.1] 

K00318 proline dehydrogenase [EC:1.5.99.8] 

K06445 acyl-CoA dehydrogenase [EC:1.3.99.-] 

K06447 succinylglutamic semialdehyde dehydrogenase [EC:1.2.1.71] 

K00128 aldehyde dehydrogenase (NAD+) [EC:1.2.1.3] 

K00123 formate dehydrogenase, alpha subunit [EC:1.2.1.2] 

K00124 formate dehydrogenase, beta subunit [EC:1.2.1.2] 

K00127 formate dehydrogenase, gamma subunit [EC:1.2.1.2] 

K05358 quinate dehydrogenase (quinone) [EC:1.1.5.8];quinate dehydrogenase (pyrroloquinoline-quinone) [EC:1.1.99.25] 

K00146 phenylacetaldehyde dehydrogenase [EC:1.2.1.39] 

K00627 pyruvate dehydrogenase E2 component (dihydrolipoamide acetyltransferase) [EC:2.3.1.12] 

K00088 IMP dehydrogenase [EC:1.1.1.205] 

K00164 2-oxoglutarate dehydrogenase E1 component [EC:1.2.4.2] 

K00166 2-oxoisovalerate dehydrogenase E1 component, alpha subunit [EC:1.2.4.4] 

K00161 pyruvate dehydrogenase E1 component subunit alpha [EC:1.2.4.1] 

K00163 pyruvate dehydrogenase E1 component [EC:1.2.4.1] 

K07516 3-hydroxyacyl-CoA dehydrogenase [EC:1.1.1.35] 

K00029 malate dehydrogenase (oxaloacetate-decarboxylating)(NADP+) [EC:1.1.1.40] 

K00024 malate dehydrogenase [EC:1.1.1.37] 

K00020 3-hydroxyisobutyrate dehydrogenase [EC:1.1.1.31] 

K00249 acyl-CoA dehydrogenase [EC:1.3.99.3] 

K00241 
succinate dehydrogenase cytochrome b556 subunit;succinate dehydrogenase cytochrome b-556 subunit 
[EC:1.3.99.1];succinate dehydrogenase cytochrome b-556 subunit 

K00240 
succinate dehydrogenase iron-sulfur protein [EC:1.3.99.1];succinate dehydrogenase iron-sulfur subunit 
[EC:1.3.99.1] 

K00263 leucine dehydrogenase [EC:1.4.1.9] 

K00262 glutamate dehydrogenase (NADP+) [EC:1.4.1.4] 

K00261 glutamate dehydrogenase (NAD(P)+) [EC:1.4.1.3] 

K00285 D-amino-acid dehydrogenase [EC:1.4.99.1] 

K00281 glycine dehydrogenase [EC:1.4.4.2] 

K00382 dihydrolipoamide dehydrogenase [EC:1.8.1.4] 

K12254 4-guanidinobutyraldehyde dehydrogenase / NAD-dependent aldehyde dehydrogenase [EC:1.2.1.54 1.2.1.-] 

K00831 phosphoserine aminotransferase [EC:2.6.1.52] 

K00817 histidinol-phosphate aminotransferase [EC:2.6.1.9] 

K00826 branched-chain amino acid aminotransferase [EC:2.6.1.42] 

K00821 acetylornithine/N-succinyldiaminopimelate aminotransferase [EC:2.6.1.11 2.6.1.17] 

K00820 glucosamine--fructose-6-phosphate aminotransferase (isomerizing) [EC:2.6.1.16] 

K00823 4-aminobutyrate aminotransferase [EC:2.6.1.19] 

K12256 putrescine aminotransferase [EC:2.6.1.-] 
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K00466 tryptophan 2-monooxygenase [EC:1.13.12.3] 

K10946 ammonia monooxygenase subunit C [EC:1.13.12.-] 

K00459 nitronate monooxygenase [EC:1.13.12.16] 

K06134 ubiquinone biosynthesis monooxygenase Coq7 [EC:1.14.13.-] 

K00499 choline monooxygenase [EC:1.14.15.7] 
 

Atenolol 
KEGG 

Orthology 
Number Description 

K01426 amidase [EC:3.5.1.4] 

K01434 penicillin amidase [EC:3.5.1.11] 

K12251 N-carbamoylputrescine amidase [EC:3.5.1.53] 

K00836 diaminobutyrate-2-oxoglutarate transaminase [EC:2.6.1.76] 

K00832 aromatic-amino-acid transaminase [EC:2.6.1.57] 

K14260 alanine-synthesizing transaminase [EC:2.6.1.66 2.6.1.2] 

K00822 beta-alanine--pyruvate transaminase [EC:2.6.1.18] 

K09471 gamma-glutamylputrescine oxidase [EC:1.4.3.-] 

K00425 cytochrome d ubiquinol oxidase subunit I [EC:1.10.3.-];cytochrome bd-I oxidase subunit I [EC:1.10.3.-] 

K00426 cytochrome d ubiquinol oxidase subunit II [EC:1.10.3.-];cytochrome bd-I oxidase subunit II [EC:1.10.3.-] 

K02495 oxygen-independent coproporphyrinogen III oxidase [EC:1.3.99.22] 

K00406 cb-type cytochrome c oxidase subunit III [EC:1.9.3.1];cytochrome c oxidase cb-type subunit III 

K00405 cb-type cytochrome c oxidase subunit II [EC:1.9.3.1];cytochrome c oxidase cb-type subunit II 

K00404 cb-type cytochrome c oxidase subunit I [EC:1.9.3.1];cytochrome c oxidase cb-type subunit I [EC:1.9.3.1] 

K02274 cytochrome c oxidase subunit I [EC:1.9.3.1] 

K02275 cytochrome c oxidase subunit II [EC:1.9.3.1] 

K13020 UDP-D-GlcNAcA oxidase [EC:1.1.1.-] 

K03782 catalase/peroxidase [EC:1.11.1.6 1.11.1.7] 

K00274 monoamine oxidase [EC:1.4.3.4] 

K00275 pyridoxamine 5'-phosphate oxidase [EC:1.4.3.5] 

K00276 primary-amine oxidase [EC:1.4.3.21] 

K02298 cytochrome o ubiquinol oxidase subunit I [EC:1.10.3.-] 

K02299 cytochrome o ubiquinol oxidase subunit III [EC:1.10.3.-] 

K02297 cytochrome o ubiquinol oxidase subunit II [EC:1.10.3.-] 

K02300 cytochrome o ubiquinol oxidase operon protein cyoD 

K00432 glutathione peroxidase [EC:1.11.1.9] 

K00228 coproporphyrinogen III oxidase [EC:1.3.3.3] 

K01491 
methylenetetrahydrofolate dehydrogenase (NADP+) / methenyltetrahydrofolate cyclohydrolase [EC:1.5.1.5 
3.5.4.9] 

K01495 GTP cyclohydrolase I [EC:3.5.4.16] 

K00602 phosphoribosylaminoimidazolecarboxamide formyltransferase / IMP cyclohydrolase [EC:2.1.2.3 3.5.4.10] 

K01442 choloylglycine hydrolase [EC:3.5.1.24] 
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K03336 3D-(3,5/4)-trihydroxycyclohexane-1,2-dione hydrolase [EC:3.7.1.-] 

K01139 guanosine-3',5'-bis(diphosphate) 3'-pyrophosphohydrolase [EC:3.1.7.2] 

K01484 succinylarginine dihydrolase [EC:3.5.3.23] 

K11755 phosphoribosyl-ATP pyrophosphohydrolase / phosphoribosyl-AMP cyclohydrolase [EC:3.6.1.31 3.5.4.19] 

K10216 2-hydroxymuconate-semialdehyde hydrolase [EC:3.7.1.9] 

K01067 acetyl-CoA hydrolase [EC:3.1.2.1] 

K01436 aminoacylase [EC:3.5.1.14];amidohydrolase [EC:3.5.1.-] 

K01825 
3-hydroxyacyl-CoA dehydrogenase / enoyl-CoA hydratase / 3-hydroxybutyryl-CoA epimerase / enoyl-CoA 
isomerase [EC:1.1.1.35 4.2.1.17 5.1.2.3 5.3.3.8] 

K00340 NADH-quinone oxidoreductase subunit K [EC:1.6.5.3];NADH dehydrogenase I subunit K [EC:1.6.5.3] 

K00341 NADH dehydrogenase I subunit L [EC:1.6.5.3];NADH-quinone oxidoreductase subunit L [EC:1.6.5.3] 

K00343 NADH dehydrogenase I subunit N [EC:1.6.5.3];NADH-quinone oxidoreductase subunit N [EC:1.6.5.3] 

K00027 malate dehydrogenase (oxaloacetate-decarboxylating) [EC:1.1.1.38] 

K02472 UDP-N-acetyl-D-mannosaminuronic acid dehydrogenase [EC:1.1.1.-] 

K02474 UDP-N-acetyl-D-galactosamine dehydrogenase [EC:1.1.1.-] 

K00121 S-(hydroxymethyl)glutathione dehydrogenase / alcohol dehydrogenase [EC:1.1.1.284 1.1.1.1] 

K00658 2-oxoglutarate dehydrogenase E2 component (dihydrolipoamide succinyltransferase) [EC:2.3.1.61] 

K09472 gamma-glutamyl-gamma-aminobutyraldehyde dehydrogenase [EC:1.2.1.-] 

K00018 glycerate dehydrogenase [EC:1.1.1.29] 

K00019 3-hydroxybutyrate dehydrogenase [EC:1.1.1.30] 

K00117 quinoprotein glucose dehydrogenase [EC:1.1.5.2] 

K00116 malate dehydrogenase (quinone) [EC:1.1.5.4] 

K00111 glycerol-3-phosphate dehydrogenase [EC:1.1.5.3] 

K13378 NADH dehydrogenase I subunit C/D [EC:1.6.5.3];NADH-quinone oxidoreductase subunit C/D [EC:1.6.5.3] 

K04118 pimeloyl-CoA dehydrogenase [EC:1.3.1.62] 

K00135 succinate-semialdehyde dehydrogenase (NADP+) [EC:1.2.1.16] 

K00134 glyceraldehyde 3-phosphate dehydrogenase [EC:1.2.1.12] 

K00133 aspartate-semialdehyde dehydrogenase [EC:1.2.1.11] 

K00130 betaine-aldehyde dehydrogenase [EC:1.2.1.8] 

K13821 proline dehydrogenase / delta 1-pyrroline-5-carboxylate dehydrogenase [EC:1.5.99.8 1.5.1.12] 

K00090 gluconate 2-dehydrogenase [EC:1.1.1.215] 

K00097 4-hydroxythreonine-4-phosphate dehydrogenase [EC:1.1.1.262] 

K03885 NADH dehydrogenase [EC:1.6.99.3] 

K00140 
malonate-semialdehyde dehydrogenase (acetylating) / methylmalonate-semialdehyde dehydrogenase [EC:1.2.1.18 
1.2.1.27];methylmalonate-semialdehyde dehydrogenase [EC:1.2.1.27] 

K00147 glutamate-5-semialdehyde dehydrogenase [EC:1.2.1.41] 

K00239 succinate dehydrogenase flavoprotein subunit [EC:1.3.99.1] 

K00031 isocitrate dehydrogenase [EC:1.1.1.42] 

K00259 alanine dehydrogenase [EC:1.4.1.1] 

K00252 glutaryl-CoA dehydrogenase [EC:1.3.99.7] 

K00253 isovaleryl-CoA dehydrogenase [EC:1.3.99.10] 
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K00254 dihydroorotate dehydrogenase [EC:1.3.5.2] 

K00255 long-chain-acyl-CoA dehydrogenase [EC:1.3.99.13] 

K01782 
3-hydroxyacyl-CoA dehydrogenase / enoyl-CoA hydratase / 3-hydroxybutyryl-CoA epimerase [EC:1.1.1.35 
4.2.1.17 5.1.2.3] 

K00342 NADH-quinone oxidoreductase subunit M [EC:1.6.5.3];NADH dehydrogenase I subunit M [EC:1.6.5.3] 

K12524 
bifunctional aspartokinase/homoserine dehydrogenase 1 [EC:2.7.2.4 1.1.1.3];bifunctional aspartokinase / 
homoserine dehydrogenase 1 [EC:2.7.2.4 1.1.1.3] 

K00010 myo-inositol 2-dehydrogenase [EC:1.1.1.18] 

K00012 UDPglucose 6-dehydrogenase [EC:1.1.1.22] 

K00013 histidinol dehydrogenase [EC:1.1.1.23] 

K00014 shikimate dehydrogenase [EC:1.1.1.25];shikimate 5-dehydrogenase [EC:1.1.1.25] 

K00016 L-lactate dehydrogenase [EC:1.1.1.27] 

K00156 pyruvate dehydrogenase (quinone) [EC:1.2.5.1];pyruvate dehydrogenase (cytochrome) [EC:1.2.2.2] 

K00074 3-hydroxybutyryl-CoA dehydrogenase [EC:1.1.1.157] 

K00075 UDP-N-acetylmuramate dehydrogenase [EC:1.1.1.158] 

K00294 1-pyrroline-5-carboxylate dehydrogenase [EC:1.5.1.12] 

K14519 NADP-dependent aldehyde dehydrogenase [EC:1.2.1.4] 

K00058 D-3-phosphoglycerate dehydrogenase [EC:1.1.1.95] 

K00055 aryl-alcohol dehydrogenase [EC:1.1.1.90] 

K00057 glycerol-3-phosphate dehydrogenase (NAD(P)+) [EC:1.1.1.94] 

K02302 
uroporphyrin-III C-methyltransferase / precorrin-2 dehydrogenase / sirohydrochlorin ferrochelatase [EC:2.1.1.107 
1.3.1.76 4.99.1.4] 

K00052 3-isopropylmalate dehydrogenase [EC:1.1.1.85] 

K08685 quinohemoprotein amine dehydrogenase [EC:1.4.98.1];amine dehydrogenase [EC:1.4.99.3] 

K00331 NADH dehydrogenase I subunit B [EC:1.6.5.3];NADH-quinone oxidoreductase subunit B [EC:1.6.5.3] 

K00330 NADH-quinone oxidoreductase subunit A [EC:1.6.5.3];NADH dehydrogenase I subunit A [EC:1.6.5.3] 

K00333 NADH dehydrogenase I subunit D [EC:1.6.5.3];NADH-quinone oxidoreductase subunit D [EC:1.6.5.3] 

K00332 NADH-quinone oxidoreductase subunit C [EC:1.6.5.3];NADH dehydrogenase I subunit C [EC:1.6.5.3] 

K00335 NADH dehydrogenase I subunit F [EC:1.6.5.3];NADH-quinone oxidoreductase subunit F [EC:1.6.5.3] 

K00334 NADH-quinone oxidoreductase subunit E [EC:1.6.5.3];NADH dehydrogenase I subunit E [EC:1.6.5.3] 

K00337 NADH dehydrogenase I subunit H [EC:1.6.5.3];NADH-quinone oxidoreductase subunit H [EC:1.6.5.3] 

K00336 NADH-quinone oxidoreductase subunit G [EC:1.6.5.3];NADH dehydrogenase I subunit G [EC:1.6.5.3] 

K00339 NADH dehydrogenase I subunit J [EC:1.6.5.3];NADH-quinone oxidoreductase subunit J [EC:1.6.5.3] 

K00338 NADH-quinone oxidoreductase subunit I [EC:1.6.5.3];NADH dehydrogenase I subunit I [EC:1.6.5.3] 

K13953 alcohol dehydrogenase, propanol-preferring [EC:1.1.1.1] 

K13954 alcohol dehydrogenase [EC:1.1.1.1] 

K00318 proline dehydrogenase [EC:1.5.99.8] 

K00102 D-lactate dehydrogenase (cytochrome) [EC:1.1.2.4] 

K06445 acyl-CoA dehydrogenase [EC:1.3.99.-] 

K06447 succinylglutamic semialdehyde dehydrogenase [EC:1.2.1.71] 

K00128 aldehyde dehydrogenase (NAD+) [EC:1.2.1.3] 

K00123 formate dehydrogenase, alpha subunit [EC:1.2.1.2] 
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K00124 formate dehydrogenase, beta subunit [EC:1.2.1.2] 

K00127 formate dehydrogenase, gamma subunit [EC:1.2.1.2] 

K05358 quinate dehydrogenase (quinone) [EC:1.1.5.8];quinate dehydrogenase (pyrroloquinoline-quinone) [EC:1.1.99.25] 

K00146 phenylacetaldehyde dehydrogenase [EC:1.2.1.39] 

K00627 pyruvate dehydrogenase E2 component (dihydrolipoamide acetyltransferase) [EC:2.3.1.12] 

K00088 IMP dehydrogenase [EC:1.1.1.205] 

K00164 2-oxoglutarate dehydrogenase E1 component [EC:1.2.4.2] 

K00166 2-oxoisovalerate dehydrogenase E1 component, alpha subunit [EC:1.2.4.4] 

K00161 pyruvate dehydrogenase E1 component subunit alpha [EC:1.2.4.1] 

K00162 pyruvate dehydrogenase E1 component subunit beta [EC:1.2.4.1] 

K00163 pyruvate dehydrogenase E1 component [EC:1.2.4.1] 

K07516 3-hydroxyacyl-CoA dehydrogenase [EC:1.1.1.35] 

K00029 malate dehydrogenase (oxaloacetate-decarboxylating)(NADP+) [EC:1.1.1.40] 

K00024 malate dehydrogenase [EC:1.1.1.37] 

K00020 3-hydroxyisobutyrate dehydrogenase [EC:1.1.1.31] 

K00249 acyl-CoA dehydrogenase [EC:1.3.99.3] 

K00241 
succinate dehydrogenase cytochrome b556 subunit;succinate dehydrogenase cytochrome b-556 subunit 
[EC:1.3.99.1];succinate dehydrogenase cytochrome b-556 subunit 

K00240 
succinate dehydrogenase iron-sulfur protein [EC:1.3.99.1];succinate dehydrogenase iron-sulfur subunit 
[EC:1.3.99.1] 

K00242 
succinate dehydrogenase hydrophobic membrane anchor protein [EC:1.3.99.1];succinate dehydrogenase 
hydrophobic membrane anchor protein;succinate dehydrogenase membrane anchor subunit 

K00005 glycerol dehydrogenase [EC:1.1.1.6] 

K00003 homoserine dehydrogenase [EC:1.1.1.3] 

K00001 alcohol dehydrogenase [EC:1.1.1.1] 

K00263 leucine dehydrogenase [EC:1.4.1.9] 

K00262 glutamate dehydrogenase (NADP+) [EC:1.4.1.4] 

K00261 glutamate dehydrogenase (NAD(P)+) [EC:1.4.1.3] 

K00285 D-amino-acid dehydrogenase [EC:1.4.99.1] 

K00281 glycine dehydrogenase [EC:1.4.4.2] 

K00382 dihydrolipoamide dehydrogenase [EC:1.8.1.4] 

K12254 4-guanidinobutyraldehyde dehydrogenase / NAD-dependent aldehyde dehydrogenase [EC:1.2.1.54 1.2.1.-] 

K00831 phosphoserine aminotransferase [EC:2.6.1.52] 

K00812 aspartate aminotransferase [EC:2.6.1.1] 

K00817 histidinol-phosphate aminotransferase [EC:2.6.1.9] 

K00818 acetylornithine aminotransferase [EC:2.6.1.11] 

K14268 5-aminovalerate aminotransferase [EC:2.6.1.48] 

K00826 branched-chain amino acid aminotransferase [EC:2.6.1.42] 

K00821 acetylornithine/N-succinyldiaminopimelate aminotransferase [EC:2.6.1.11 2.6.1.17] 

K00820 glucosamine--fructose-6-phosphate aminotransferase (isomerizing) [EC:2.6.1.16] 

K00823 4-aminobutyrate aminotransferase [EC:2.6.1.19] 

K00840 succinylornithine aminotransferase [EC:2.6.1.81] 
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K12256 putrescine aminotransferase [EC:2.6.1.-] 

K00466 tryptophan 2-monooxygenase [EC:1.13.12.3] 

K10946 ammonia monooxygenase subunit C [EC:1.13.12.-] 

K03379 cyclohexanone monooxygenase [EC:1.14.13.22] 

K03863 vanillate monooxygenase [EC:1.14.13.82] 

K00459 nitronate monooxygenase [EC:1.13.12.16] 

K06134 ubiquinone biosynthesis monooxygenase Coq7 [EC:1.14.13.-] 

K00499 choline monooxygenase [EC:1.14.15.7] 
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