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ABSTRACT 

HOXA9 is a homeodomain-containing transcription factor that plays important 

roles in hematopoietic stem cell proliferation and is commonly deregulated in human 

acute leukemias. More than 50% of acute myeloid leukemia (AML) cases have high 

expression levels of HOXA9, almost always in association with high level expression of 

its cofactor MEIS1.  In a study of gene expression in human AMLs, high expression of 

HOXA9 was the single most predictive marker for poor prognosis.  A wide range of data 

suggests that HOXA9 and MEIS1 play a synergistic causative role in AML, though the 

molecular mechanisms leading to transformation by HOXA9 and MEIS1 remain elusive. 

Understanding HOXA9-mediated leukemogenesis first requires a better understanding 

of what confers binding specificity of HOX family proteins.  All HOX proteins bind a 

ubiquitous AT-rich DNA motif through their highly homologous homeodomains, which 

alone cannot account for their tight control of transcriptional activity.  Additional 

sequence specificity is achieved in vivo through association with other DNA-binding 

cofactors, such as MEIS1.  Another level of regulation is likely conferred by diverse sets 

of collaborators that direct HOX protein specificity, but the identity of these proteins and 

the mechanisms through which they regulate HOX binding have yet to be elucidated. 

Our lab has made considerable progress towards identifying potential 

collaborators by characterizing in vivo binding sites of Hoxa9 and Meis1 and by 

identifying proteins that interact with the Hoxa9 complex.  Our studies found that Hoxa9 
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and Meis1 bind to evolutionarily conserved sites that contain an epigenetic signature 

consistent with enhancer sequences.  De novo motif analysis of the binding regions 

showed a marked enrichment of motifs for transcription factors (TF) in the C/EBP, Ets, 

and Stat families. Subsequent mass spectrometry and co-immunoprecipitation 

experiments confirmed association of the Hoxa9 complex with C/EBPα and Stat5. 

In this study I functionally establish C/EBPα as a critical collaborator required for 

Hoxa9/Meis1-mediated leukemogenesis. I show that C/EBPα is required for the 

proliferation of Hoxa9/Meis1-transformed cells in culture, and that this decrease of 

proliferation is not accompanied by an increase in apoptosis or differentiation of cells. 

Using an in vivo murine leukemogenesis assay, I show that loss of C/EBPα greatly 

improves survival in both primary and secondary models of Hoxa9/Meis1-induced 

leukemia. In addition, the in vivo assay uncovered a strong selective pressure for 

maintaining high C/EBPα levels in Hoxa9/Meis1-transformed cells, which could be 

recapitulated in cell culture systems. Finally, I found a requirement for C/EBPα in 

HOXA9-high human acute leukemias, as cases with double mutant alleles of CEBPA do 

not have high expression of HOXA9. These results provide strong evidence for C/EBPα 

acting as a critical collaborator of HOXA9 in acute leukemia. 

 To begin to identify the mechanism through which C/EBPα collaborates with 

Hoxa9 in leukemic transformation, I performed ChIP-seq for Hoxa9 and C/EBPα in our 

transformed cell lines and RNA-seq after loss of either protein. Over 50% of Hoxa9 

genome-wide binding sites are cobound by C/EBPα, which coregulate a number of 

downstream target genes involved in the regulation of cell proliferation and 

differentiation. Specifically, I show that Hoxa9 represses expression of Cdkn2a/b in 
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concert with C/EBPα to overcome a block in G1 cell cycle progression. Together these 

results suggest a novel function for C/EBPα in maintaining the proliferation required for 

Hoxa9/Meis1-mediated leukemogenesis. 

I have also established preliminary data with the aim to further elucidate the 

mechanism for collaboration between Hoxa9 and C/EBPα in leukemogenesis. Studies 

include characterization of the physical interaction between Hoxa9 and C/EBPα, as well 

as determining the functional consequence of CEBPA mutations in leukemias with 

upregulation of Hoxa9. In addition, I aim to characterize the requirement for Cdk2na/b 

repression in Hoxa9-meditated transformation and the mechanism for this co-regulation 

by Hoxa9 and C/EBPα. Continuing work will also study the functional interaction 

between Hoxa9 and other putative collaborators, including the SWI/SNF chromatin-

remodeling enzyme Brg1, in hopes of gaining additional insight into the transcriptional 

regulatory mechanisms of HOXA9 in both normal hematopoiesis and leukemogenesis. 
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CHAPTER 1:  

INTRODUCTION 

HOX proteins are a family of homeodomain containing transcription factors that 

were first described in Drosphila for their ability to produce homeotic transformations - 

changing one section of the body into another - when misexpressed during 

development (1, 2). Since this early discovery, an entire field has been devoted to 

studying these master regulators of developmental processes and their role in disease. 

The 39 mammalian HOX proteins are highly evolutionarily conserved from the 

Drospohila HOMC ancestors, and are arranged in four paralogous clusters on separate 

chromosomes (Figure 1-1) (3, 4). These clusters are named A, B C and D, and are 

thought to have been produced through multiple duplication events during evolution (5). 

Specific HOX genes are numbered based on their position anteriorly to posteriorly, and 

paralogs of the same number share the highest degree of homology (HOXA4, HOXB4, 

HOXC4 and HOXD4). This precise spatial organization allows for tight transcriptional 

control of HOX proteins during development, which is critical for establishing the 

anterior-posterior body plan and assigning tissue fate (3). When this control is altered, 

and HOX genes are misexpressed, a variety of diseases can occur. Indeed, more than 

20 different malignancies have been found to involve dysregulation of various HOX 

genes. 

One challenge to defining the mechanisms through which HOX proteins 

contribute to disease processes is the relative lack of understanding of how HOX 
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proteins regulate gene expression. Of critical importance is determining how individual 

HOX proteins regulate distinct subsets of target genes, despite sharing highly 

homologous DNA-binding homeodomains. Recent work suggests that HOX binding 

specificity is achieved through a combination of motif affinity, interactions with cofactor 

and collaborating proteins, and context-specific chromatin accessibility (6-8). Many 

studies have established that HOX proteins can both activate and repress downstream 

gene expression, though the mechanisms for these actions are relatively unknown. 

Finally, increasing efforts are being made towards identifying the most important 

downstream targets of HOX proteins, especially in disease. While significant progress 

has been made in addressing these aspects of HOX biology, additional studies will 

provide valuable information to guide future therapies for diseases with dysregulated 

HOX gene expression. 
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Figure 1-1 - Schematic of HOX gene organization 
The 39 mammalian HOX genes are organized into four clusters, named A-D that share 
homology to the Drosophila HOM-C genes. These clusters reside on four separate 
chromosomes: 7p15 (A), 17q21 (B), 12q13 (C) and 2q31 (D). Closest homology exists 
between HOX genes of the same number across the four clusters. During embryonic 
development, HOX genes are spatially restricted in their expression with 3’ genes 
expressed in the anterior regions and 5’ genes expressed in the posterior regions. This 
distribution is represented by the coloration of the Drosophila embryo corresponding to 
the HOM-C gene expressed in that region. 

NORMAL FUNCTION OF HOX PROTEINS 

Regulation of HOX Gene Expression 

During development, HOX genes follow both a temporal and spatial pattern of 

expression, such that 3’ HOX genes are expressed earliest in the developing embryo and in 

the anterior regions, while 5’ HOX genes are expressed at later stages and more posteriorly 
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(3, 4). This pattern of expression is critical for defining the various segmental identities 

along the anterior-posterior axis as well as for determining tissue fate. The tight regulation 

of HOX gene expression is the coordinated effort of a variety of processes including the 

activity of epigenetic regulators, early developmental transcription factors, long non-coding 

RNAs, and HOX proteins themselves (9-11). Additionally, it is becoming clear that the 3D 

localization of the HOX loci within the nucleus also plays a critical role in coordinating 

expression (12, 13). 

The two master regulators of HOX gene expression belong to the trithorax and the 

polycomb families of histone methyltransferases, which activate and repress transcription 

respectively (14). The mixed lineage leukemia (MLL) methyltransferase positively regulate 

HOX gene expression by trimethylating histone 3 lysine 4 (H3K4me3) at HOX gene 

promoters (15). This activity is directly antagonized by the sequential activity of polycomb 

repressive complexes PRC1 and PRC2. The silencing process is initiated by PRC2 

trimethylating histone 3 lysine 27 (H3K27me3) which then recruits the PRC1 complex to 

promote complete silencing of the HOX locus (14). The dynamic interplay between these 

regulatory complexes is critical for the correct expression patterning of the various HOX 

genes during development, as well as in adult tissues such as the hematopoietic system. 

Studies in both Drosophila and mice have found that, similar to mutations in individual HOX 

proteins, mutations in trithorax proteins/MLL can lead to homeotic transformations (16). In 

the case of Drosophila, these transformations can be rescued by complementary mutations 

in polycomb proteins (17). In addition, loss of MLL in mouse models leads to profound 

impairment of hematopoiesis (18, 19). As such, alterations in the activity or expression of 

MLL or PRCs can lead to a variety of both developmental disorders and malignancies (20, 

21). 

Along with MLL and PRC methyltransferases, the CDX family of transcription factors 
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also play an important role in regulating HOX gene expression during embryonic 

hematopoiesis (22). CDX1, 2 and 4 are members of the unclustered ParaHox class of 

homeobox genes that, like HOX proteins, contain a DNA-binding homeodomain (23). 

Studies in various model systems show that CDX proteins activate expression of HOX 

genes primarily in the A and B clusters, though the mechanisms for this regulation are 

unknown (24-26). Knockout mice have been generated for each CDX protein, and both 

CDX1-null and CDX2-heterozygous mice display homeotic transformations (27, 28). While 

CDX4 mice are phenotypically normal, studies in zebrafish have established a requirement 

for CDX4 in maintaining HOX gene expression during embryonic hematopoiesis (29, 30). 

The HOX loci are also regulated by long non-coding RNAs (lncRNAs), which can 

also work to either activate or repress hox proteins. Both HOTTIP, a lncRNA expressed 

from the 5’ region of HOXA13 and Hoxb5b6as, which is transcribed from the Hoxb5/6 

locus, can interact with trithorax group proteins to maintain active transcription or their 

respective clusters (11, 31). Conversely, HOTAIR, HOX antisense intergenic RNA, is a 

long non-coding RNA that is transcribed from the HOXC locus that functions to maintain 

repression of the HOXD locus in humans (32). This repression is achieved by 

interaction of the 5’ end of HOTAIR with PRC2, while the 3’ end interacts with the 

histone demethylase LSD1. Like the epigenetic regulators and CDX proteins, 

misexpression of lncRNAs is observed in a variety of human malignancies and likely 

contributes to the pathogenesis of these diseases (33). Indeed, dysregulation of HOTAIR, 

and subsequently the expression of HOXD genes, is seen in a wide range of malignancies 

including breast, liver, lung, ovarian, colorectal, gastric, hepatocellular, esophageal and 

endometrial carcinomas (32, 34-42).  
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HOX Proteins In Development 

HOX proteins are most well characterized in their role of defining segmental 

identity in the developing embryo through temporal and spatial expression patterning 

known as the ‘HOX code’ (3, 43). In vertebrates, this code is essential for the correct 

patterning of the axial skeleton (44). At very early stages in embryonic development, 

identical somites become differentiated into various morphologic identities through 

expression of specific HOX genes. HOX proteins also play important roles in patterning 

of the central nervous system (45-47), as well as development of the facial bones and 

other tissues of neural crest origin (48, 49). Furthermore, they are required for 

development of various tissues such as lung and airways (50-52), the reproductive tract 

(53, 54), heart (55) and kidney (56, 57). The specification of these various tissues 

requires regulation of a precise subset of target genes that define each cell type. While 

targeting a distinct subset of genes is a trait common to many transcription factors, HOX 

proteins maintain this ability despite the striking homology between family members. 

How HOX proteins achieve this functional diversity is a topic of ongoing research, 

though a significant amount of progress has been made towards this goal. 

HOX Proteins in Adult Tissues 

Upon completion of development, most HOX genes are transcriptionally silenced, 

though certain members of the A, B and C clusters are important regulators of adult 

hematopoiesis (58, 59). In addition, HOX proteins are important for maintaining the 

germline stem cell niche, a process critical to the reproductive fitness of organisms (60). 

HOX proteins have also been found to play important roles in wound healing and tissue 

regeneration (61-65).  
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Hematopoiesis  

In the adult hematopoietic system, HOX genes in the A-C clusters are expressed 

while the HOXD cluster is silent (58, 66). Of these, HOXA cluster are the most highly 

expressed followed by B and much less from C. Expression of HOX genes follows a 

similar pattern to that in development such that anterior HOX genes (HOX1-6) are 

expressed in early uncommitted progenitors while posterior HOX genes (Hox7-13) are 

expressed in myeloid and erythroid committed CD34+ cells (Figure 1-2) (59). As cells 

become fully mature and lose CD34 positivity, HOX gene expression is silenced. 

Studies in cell lines indicate there may also be some lineage-restricted expression of 

some HOX genes. For example, while HOXA9 and HOXA10 are expressed primarily in 

myeloid cell lines, HOXC4 is restricted to those with lymphoid characteristics (67). 

Similarly, there are multiple HOXB genes expressed only in erythroid cell lines (68). On 

the other hand, some genes from HOXA-C are expressed in all three hematopoietic 

lineages. 
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Figure 1-2 - HOXA5 vs HOXA10 expression during hematopoiesis  
Schematic representation of the expression levels of HOXA5 and HOXA10 during 
normal hematopoietic differentiation, as determined from an online database of multiple 
gene expression profiles in hematopoietic cells (69) [Expression presented in log2 
scale]. HOXA5, the more anterior HOX gene, is expressed most highly in hematopoietic 
stem cells and decreases rapidly during differentiation. The more posterior gene, 
HOXA10, reaches highest expression in later stages of differentiation and maintains 
high expression in early committed progenitors.  
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The concurrent expression of multiple HOX genes in various hematopoietic 

lineages may account for the functional redundancy that has been revealed in the 

generation of knockout mouse models for various HOX proteins. Knockout mice for 

Hoxb3 and Hoxb4 exhibit a mild reduction of bone marrow cellularity and HSC number 

without a dramatically changed lineage commitment of downstream cells (70-72). Even 

compound loss of HoxB3/B4 or complete knockout of the B cluster (B1-9) has a limited 

effect on the ability of HSCs to repopulate the bone marrow (70, 73). In the case of 

Hoxb3/b4 knockout mice, an increase in expression of other Hoxb genes is observed, 

while increased levels of Hoxc seem to compensate for the lack of Hoxb1-9. These 

studies highlight the complex gene regulatory functions of HOX genes in hematopoiesis 

and suggest that cellular context can change the behavior of these transcriptional 

regulators. This flexibility allows for redundancy and protection of the hematopoietic 

compartment. On the other hand, loss of HOX genes in the A and C cluster can lead to 

lineage skewing or more dramatic phenotypes. Loss of HOXA5, a7, b6, C4 or c8 results 

in defects in erythroid lineages, although loss of A5 and b6 leads to increases in 

erythroid progenitors while the others lead to decreases (studies done in human cells 

capitalized; studies done in mice lower case) [reviewed in (74)]. 

HOXA9 is the most highly expressed HOX gene in the hematopoietic 

compartment, and as such Hoxa9-/- mice display the most dramatic hematopoietic 

phenotype (75, 76). Still, loss of Hoxa9 leads to only a mild pancytopenia and a 

reduction in spleen size and cellularity. Competitive repopulation assays uncover a 

more significant defect such that Hoxa9-/- fetal liver HSCs have reduced repopulation 
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capacity compared to normal HSCs (77). 

In addition to knockout mice, overexpression studies in both murine and human 

systems have helped to define the potential effects of various HOX genes during 

hematopoiesis. Overexpression of HOXA5, Hoxa9, HOXA10, Hoxb3, HOXB4 and 

Hoxb6 can all lead to proliferation of the HSC compartment or early progenitors (74). In 

the case of Hoxa9/10 and Hoxb3/4, overexpression can lead to myeloproliferative 

phenotypes in mice with progression to AML for Hoxa9/10. The aggressiveness of 

murine leukemias generated by overexpression of Hoxa9 is increased by coexpression 

of its cofactor, Meis1, which is almost always expressed at high levels along with 

HOXA9 in human disease (78-80). 

ROLE OF HOX PROTEINS IN DISEASE 

HOX Genes in Acute Leukemias 

The most broadly studied diseases with dysregulation of HOX proteins are acute 

leukemias [reviewed in (74, 81, 82)]. In most cases, HOX proteins are expressed at high 

levels in acute leukemias, which is associated with an intermediate to unfavorable 

prognosis in patients (83). In one study, the HOX protein HOXA9 was found to be the 

single strongest predictor of poor prognosis in a cohort of acute myeloid leukemias (84). 

A variety of upstream genetic alterations can lead to dysregulation of HOX genes, 

including MLL-translocations, NUP98-fusions, NPM1 mutations, CDX dysregulation and 

MOZ-fusions. 

MLL-Fusion Proteins 

The MLL histone-methyltransferase is a critical regulator of hematopoiesis, and 
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fusion of the N-terminus of MLL with a variety of partners is seen in a subset of human 

acute leukemias. About 10% of acute leukemias involve chromosomal translocations at 

the 11q23 locus, and these cases present with aggressive disease and poor prognosis 

(85). There have been over 60 different fusion partners of MLL identified, though 90% of 

these translocations involve one of nine partners: AF1p, AF4, AF6, AF7, AF10, AF17, 

ENL, ELL, and SEPT7 (86). In addition, a partial tandem duplication event can occur 

within the N-terminus of MLL, which is observed in about 10% of cytogenically normal 

AML (87). MLL fusion proteins constitutively upregulate HOX gene expression, which in 

the case of HOXA9 is both required and sufficient for maintaining leukemic 

transformation (88).  The upregulation of HOX genes is directly linked to promoter 

trimethylation by MLL-fusion proteins, however there has also been documentation of 

DNA hypomethylation at HOX promoters in MLL-fusion leukemias (89).  

NUP98-Fusion Proteins 

NUP98 is a member of the nucleoporin family of proteins that complex to form 

multisubunit channels in the nuclear membranes. These nuclear pore complexes 

(NPCs) were first described for their role in facilitating transfer of metabolites and 

molecules between the cytoplasm and nucleus (90). Recent work has found that NPCs 

also play a critical role in defining the chromatin landscape in the nucleus and facilitating 

gene transcription from euchromatic regions of the genome (91). Nucleoporins are 

involved in chromosomal translocations that can lead to acute leukemias, most 

commonly involving NUP98 [reviewed in (92)]. The most potent NUP98 oncogenes are 

those fused to homeobox partners, of which there are eight (93). These fusions in turn 

lead to general upregulation of HOX genes, which contributes to leukemogenesis (94). 
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In addition, fusions with NSD1 and JARID1A upregulate HOXA and HOXB proteins in 

AML and AMKL (95, 96). It is noteworthy that, aside from increases in HOX genes, 

these leukemias have an expression signature distinct from that of MLL-rearranged 

leukemias (96).  

NPM1c 

One of the most common genetic abnormalities in adult AML is mutation in the 

chaperone protein Nucleophosmin1 (97). While under normal conditions NPM1 resides 

primarily in the nucleus, mutations seen in AML result in cytoplasmic localization of 

NPM1 (98). Though the mechanisms of action are currently unknown, cytoplasmic 

NPM1 upregulates HOX gene expression including leukemogenic HOXA9, HOXA10 

and MEIS1 (99). Studies in mice have also established that NPM1c can collaborate with 

Flt3, Csf2 and Rasgrp1 in vivo to produce leukemias with long latency (100).  

Other mechanisms of HOX gene dysregulation 

There are many other upstream genetic alterations that lead to HOX gene 

dysregulation in acute leukemia. MOZ fusion proteins can directly upregulate HOXA9/10 

and MEIS1 by colocalizing at promoters with the histone acetyltransferase, BRPF1 

(101). Chromosomal translocations generating the CALM-AF10 fusion protein lead to 

HOX upregulation in T-ALL (94). Deletions or decreased expression of polycomb 

protein EZH2, which plays a key role in the normal regulation of Hox proteins, can lead 

to leukemia with upregulation of HOXA9 (102). Due to their normal function in HOX 

regulation, overexpression of Cdx proteins, in collaboration with Meis1, leads to 

leukemias with high levels of Hox expression (103, 104). Also, transformation by MN1 

requires HOXA9 and MEIS1, though MN1 alone cannot activate expression of these 
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targets, suggesting that HOXA9 and MEIS1 must be expressed in the cell of origin 

(105). Similarly, Hoxa9 collaborates with E2A-PBX1 to repress B-cell genes and 

activate Flt3 in murine B cell leukemia (106).  

Other Hematopoietic Diseases 

HOX proteins are also dysregulated in other hematopoietic diseases. In chronic 

lymphoid leukemia (CLL) and mantle cell lymphoma (MCL), HOX genes are repressed 

by chromatin and DNA hypermethylation (107, 108). In MCL, this repression is the 

result of increased EZH2 expression, which leads to chromatin methylation and 

subsequent recruitment of DNA methylation machinery leading to a stable repression of 

key HOX targets (107). Finally, HOXA genes along with HOXB7 are expressed at high 

levels in multiple myeloma (109). 

HOX Genes in Other Malignancies  

In addition to leukemias, there are a variety of other malignancies that have 

dysregulated HOX gene expression. These include prostate, breast, ovarian, 

pancreatic, colon, and gastric cancers as well as thyroid, bladder, hepatocellular 

carcinoma and some neurologic tumors (56, 110-119).  Due to their central role in 

development, HOX genes are also dysregulated in non-neoplastic and developmental 

disorders. Mutations in HOXD13 lead to synpolydactyly, resulting in both the fusion of 

digits and supernumerary digits (120, 121). Furthermore, alterations in HOXA1 can lead 

to congenital heart defects, and misexpression of distal HOX genes like HOX10 and 

HOX11 can lead to caudal duplication syndrome (122, 123).  

Prostate, Breast and Ovarian Cancers 

A considerable amount of work has been done studying the dysregulation of 
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HOX genes in prostate and breast cancers. In prostate cancer, expression of a number 

of different HOX genes is increased and use of the HOX-PBX blocking drug HXR9 has 

been shown to be effective for slowing tumor growth (124). On the other hand, 

expression of HOX cofactors in the MEIS and PBX families are decreased, suggesting 

that they may act as tumor suppressors in prostate cancers (125). Similarly in breast 

cancer, HOX genes can have either increased or decreased expression. Many HOX 

genes are hypermethylated and silenced in breast cancer (126). On the other hand, 

HOXA7 has been shown to upregulate ER expression and stimulate proliferation (127), 

while Hoxb13 downregulates ER expression leading to tamoxifen resistance and 

increased proliferation by activating mTOR via Stat3 (128). HOXD3 is also expressed at 

high levels in some hormone receptor negative breast cancer and is an unfavorable 

prognostic marker (129). Finally, in ovarian cancer there have been reports of 

decreased Hoxd10 expression through upregulation of microRNA mir-10b (39, 130). 

Cancers of the Gastrointestinal System 

HOX genes are involved in cancers throughout the gastrointestinal tract.  There 

are many reports of dysregulated histone and DNA methylation across the HOX gene 

loci in oral squamous cell carcinoma (131-133). Increased HOXD3 expression is 

observed in some hormone receptor negative breast cancer and is an unfavorable 

prognostic marker (134). In Barrett’s esophagus, a precancerous disease that can 

progress to esophageal cancer, there is increased expression of HOXB5-7 (135). 

HOXA13, HOXC6 and PBX3 are all expressed at high levels in gastric cancer, 

correlating with more aggressive phenotypes and shorter overall survival (136-138). On 

the other hand, there are reports of HOX gene silencing in gastric cancer as a result of 
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promoter hypermethylation (139). HOXA13 has also been shown to be upregulated in 

hepatocellular carcinoma (112), while HOXA4 and HOXD10 are upregulated in colon 

cancer (140). Finally, HOX genes are known to be dysregulated in pancreatic cancer 

and other MEN1 tumors (141, 142). 

 

It is clear from the wide variety of diseases with dysregulated HOX expression 

that understanding the general mechanisms of downstream transcriptional regulation by 

HOX proteins will shed light on disease mechanisms and provide novel pathways for 

therapeutic design.  While the dysregulation of HOX genes can be achieved through 

multiple mechanisms, and both loss and gain of HOX function can lead to disease, 

defining the common and unique characteristics of HOX protein function will 

undoubtedly shed light on general principles of HOX biology that can be applied to a 

range of diseases with misregulated HOX expression. 

MECHANISMS OF HOX-REGULATED GENE TRANSCRIPTION 

HOX genes carry out their highly specialized function of developing the body plan 

by being extraordinarily spatially restricted in their expression, but also by regulating a 

distinct subset of target genes in tissue-specific manners. It is becoming clear that these 

functions are most likely achieved through association at promoter distal, lineage 

specific cis-regulatory elements (8, 143).  Understanding how HOX proteins can target 

these sites to allow for precise control of downstream gene expression is challenging. 

 All HOX proteins share a highly homologous DNA binding homeodomain, which alone 

cannot account for the distinct subpopulations of target genes. Additional sequence 

specificity is achieved through association with other DNA-binding cofactors, the most 
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well characterized being members of the three amino acid loop extension (TALE) family. 

It is true, however, that these factors alone cannot explain the differences in the binding 

pattern of HOX genes, and indeed some HOX binding is independent of both MEIS and 

PBX proteins. A final level of regulation is likely conferred by diverse sets of collaborator 

proteins that direct HOX protein specificity through DNA dependent and independent 

interactions. These lineage specific collaborator proteins may function to establish areas 

of chromatin accessibility in a given cell type and recruit and stabilize Hox proteins to 

various loci. Furthermore, the downstream activity of HOX protein binding to activate or 

repress target gene expression may be modulated by the association of various 

cofactors and collaborators. Below we will discuss what is known about DNA binding 

properties of HOX proteins and known binding partners that confer specificity to HOX 

proteins, with a focus on recent advances in the field.  

Factors contributing to HOX DNA-binding 

Homeodomains  

The homeobox family of transcription factors is defined by the presence of a DNA 

binding homeodomain, which is highly homologous within the 39 mammalian HOX 

proteins and similarly conserved across species. Early studies have found that this 60-

amino acid region makes direct contact with DNA via 4 critical amino acids - aa47, 50, 

51, and 54 - within the third alpha helix of the homeodomain (144). Interestingly, nearly 

all homeodomains contain the same residues in these critical positions (145).  Even so, 

studies have found that the small differences in homeodomains themselves can confer 

unique properties to HOX proteins (146). For example, swapping the homeodomains of 

Hoxa1 and Hoxa9 conferred leukemogenic properties to Hoxa1 while abolishing those 
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of Hoxa9 (147). This phenomenon required the presence of the N-terminal region and 

Pbx interaction motif, though these regions were interchangeable between Hoxa1 and 

Hoxa9. Differences in the homeodomain regions of Hoxd10 and Hoxd11 are also critical 

for separating their function during motor neuron fate identity (148). In addition, a region 

very close to the homeodomain of HoxD proteins, which may be regulated by 

phosphorylation, has been found to be required for the rib-repressing function of the 

HoxD proteins (149). Finally, work in Drosophila has characterized specific protein 

motifs in the homeodomains of Scr, Abd-A and Ubx that account for different DNA 

binding abilities of these three Hox proteins (150). Interestingly, the contributions of the 

homeodomain to specific phenotypes may also be the result of interaction with different 

collaborator proteins, as this region has been found to mediate protein-protein 

interactions in addition to DNA-binding. Indeed Cdx1 and Foxo1a can interact with 

homeodomain regions of Hox proteins, and the work in this thesis also suggests that 

C/EBPα interacts with the homeodomain region of Hoxa9 (151, 152).  

Motif Affinity 

Comprehensive studies using both bacterial 1 hybrid approach in Drosophila and 

protein-binding microarray approaches in murine cells established that all HOX 

homeodomains bind highly similar AT-rich DNA motifs (Figure 1-3) (153-155). While 

differences exist between the in vitro and in vivo results, this likely reflects the 

importance of cofactor and collaborator proteins in directing motif-binding preferences. 

In Drosophila, this TAATNA motif occurs over 100,000 times throughout the genome, 

and thus cannot explain the distinct subsets of target genes for each HOX protein (154). 

Therefore, cells must employ a variety of mechanisms to help direct HOX proteins to the 
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appropriate regulatory regions. Some target genes are in fact regulated by all or multiple 

HOX proteins, allowing for flexibility in binding site affinity for these targets.  In other 

cases, posterior HOX proteins show a competitive advantage in cofactor-dependant 

DNA binding at shared loci, a property called posterior prevalence (156). Conversely, 

gene regulation specific to a single HOX protein likely results from the combination of 

motif affinity of that particular homeodomain, as well as the chromatin accessibility 

landscape and subset of expressed cofactors and collaborators in the cellular context in 

which that HOX protein is expressed (157, 158). Work has successfully characterized 

cognate binding motifs of HOX proteins complexed with PBX cofactors (159). An 

interesting example of the contribution of the motif itself can be seen in snakes where 

single nucleotide polymorphisms in a Hox/Pax enhancer changes the affinity of Hox10 

vs Hox6 in this region, leading to the continuation of ribs in the thoracic region (160). 
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Figure 1-3 - Summary of HOX protein DNA motif recognition 
Summary of HOX protein binding site preferences as established by both in vitro and 
cell based (in vivo) studies. In vitro study performed by yeast 1-hybrid approach (left 
column) and in vivo study generated from literature review of cell based studies of HOX 
binding motifs. All HOX proteins bind similar “AT”-rich DNA motifs.  Original figure and 
experimental detail in (154).  
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Chromatin Accessibility 

There have been recent advances in both HOX biology and general transcription 

factor biology that suggest that targeting of TFs to specific loci is significantly affected 

by the chromatin accessibility throughout the genome. In the case of HOX proteins, 

ChIP of Drosophila Hox proteins Utx and Hth across various stages of development 

indicates that binding profiles are strongly influenced by chromatin accessibility (157, 

158). In the hematopoietic system, early factors like PU.1 and C/EBPα establish areas 

of relaxed chromatin that allow for signaling-dependent recruitment of TFs (161). This is 

likely mediated by SWI/SNF chromatin remodelers, which are known to interact with the 

CEBP proteins (162). The binding profiles of HOX proteins in various tissues are 

probably similarly influenced by the genomic landscape set up by other lineage-specific 

transcription factors, allowing for a distinct subset of targets to be activated in a given 

cell type despite the conserved DNA-binding homeodomain and ubiquitous TAATNA 

motif. 

HOX protein interacting partners 

Cofactors 

It is well established that Hox proteins bind to DNA and regulate downstream 

gene expression along with a small subset of cofactor proteins (163). The best 

characterized cofactors are members of the Three-amino-acid-loop-extension, or TALE 

family of proteins (164). Mouse TALE proteins include Pbx1-4, Meis1-3 and Prep1-2. In 

addition, Hox proteins can homo and heterodimerize to aid in diversity and specificity of 

binding (165). Whether Hox proteins bind along with Meis or Prep proteins subdivides 

clusters of binding sites (166). These cofactors may play a role in directly targeting Hox 
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proteins to specific loci, as opposed to binding in a pre-formed complex and conferring 

site specificity. Recent work shows that TALE factors bind first at some promoters and 

promote the deposition of poised chromatin marks, whereby subsequent binding of 

HOX proteins results in transcriptional activation (167). Additional studies have 

established that while Hox proteins often bind along with TALE cofactors, these 

interactions are not required at some loci (168). In fact, there is new evidence of 

antagonism between TALE proteins and HOX proteins at specific genomic regions 

(169). In the setting of leukemia, however, the critical targets seem to be those co-

regulated by HOXA9 and MEIS1, as cofactor MEIS1 is almost always expressed at high 

levels along with HOXA9 and is required for producing an aggressive leukemia in mice 

(78-80). 

In a comprehensive review of cis-regulatory elements directly regulated by HOX 

proteins, three interesting generalizations were uncovered about the contribution of 

different cofactors (154). First, the majority of sites cobound by HOX and PBX proteins 

were activating, suggesting that complexes containing HOX/PBX may be primarily 

transcriptional activators. Second, anterior HOX proteins (1-5) were more likely to bind 

along with a PBX cofactor than members in the posterior group (6-13). Third, sites that 

did not cobind with a PBX protein tended to have more than one HOX binding site, 

suggesting that HOX proteins may homo or heterodimerize at these sites. 

Collaborating Proteins 

In a seminal review, Richard Mann proposed that context-specific collaborator 

proteins may provide a final level of specificity to HOX complexes to allow for their 

context-specific actions in controlling downstream gene expression (154). These tissue 
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specific interactors would bind along with HOX proteins and TALE cofactors to establish 

areas of chromatin accessibility, provide stability in DNA binding and help modulate the 

downstream activity of HOX complexes (170). Recent studies have focused on 

identifying potential collaborator proteins in a variety of systems. In Drosophila, a 

technique called bimolecular fluorescence complementation has been used to identify 

partners (170-172). Yeast two hybrid approaches have also looked at binding partners 

for Hoxa1 and Hoxa9 ((173) and unpublished). In addition, our group has identified 

interactors of Hoxa9 in transformed myeloblastic cell lines using co-immunoprecipitation 

followed by mass-spectrometry (174). With these various approaches, some themes in 

collaborator proteins are surfacing. Many seem to be lineage specific factors known for 

general priming of enhancer regions of the genome. Still others are involved in signal 

transduction. It is important to highlight that although there may be great diversity in 

HOX complexes to allow for the distinct functions in various contexts, HOX proteins are 

central and essential to correct functioning. Loss of a single HOX protein can lead to 

dramatic changes at the level of the organism, highlighting the fact that the HOX 

proteins themselves are the master regulators of these transcriptional complexes. 

Enzymes/Machinery  

HOX proteins and HOX complexes most likely control downstream gene 

expression through the recruitment of histone modifying machinery. Both Hoxa9 and 

Meis1 have been shown to recruit the histone acetyltransferase p300/CBP to mediate 

activation of downstream targets (175, 176). Both activation and repression domains in 

Hoxa10 (and other Hox10 proteins) have been defined that facilitate interaction with 

CBP and the histone deacetylase HDAC2 respectively (177, 178). Recent work also 
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established that Hoxa9 interacts with the histone methyltransferase G9a, and that this 

interaction is required for aggressive disease in mouse models of leukemia (179). HOX 

proteins can interact with other enzymes and machinery leading to their own 

modification and alterations in cellular processes. Both HOXB7 and HOXA7 can bind to 

PARP-1, leading to their subsequent ADP-ribosylation and a decrease in transcriptional 

activity (180). Other HOX proteins can also be ribosylated in this manner, but without 

affecting their ability to interact with DNA. 

TRANSCRIPTIONAL TARGETS OF HOX PROTEINS 

Of equal importance as understanding the mechanisms through which HOX 

proteins achieve target specificity is determining the critical downstream targets of HOX 

proteins and the mechanisms through which HOX proteins regulate the downstream 

transcriptional activity. Many efforts have been made using both genome-wide 

approaches and site-specific experiments for identifying these important targets in 

development and disease. Continued work in this area will allow for a deeper 

understanding of HOX biology and help to guide therapy for diseases in which HOX 

proteins play a central role.  

General Discussion of HOX Target Regulation 

Transcriptional regulation of target genes downstream of HOX proteins during 

development can follow two different patterns. In some cases, HOX proteins first 

activate transcription factors and members of signalling cascades, which mediate 

additional downstream gene expression required for tissue specification. In other cases, 

HOX proteins directly modulate the expression of master regulators of tissue specificity. 
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The difference in these two modes of regulation is most likely due to the transcriptional 

landscape in the cell type where each HOX protein is expressed, thus governing their 

activity. Indeed, in a thorough study of the downstream targets of Ultrabithorax (Ubx) 

during different stages of Drosophila haltere development, authors showed that the 

majority of Ubx targets were specific to the stage in which Ubx was activated and only 

about 10% were common between all three stages studied (181). In addition, the study 

found that the majority of expression changes induced by Ubx expression were small 

(less than 4-fold) suggesting that HOX proteins induce subtle changes in transcriptional 

networks and may act to set the stage for larger expression changes upon binding of 

additional activators and repressors. There are certainly cases of the classic recruitment 

of general transcriptional machinery by Hox complexes to modulate downstream gene 

expression (182). Interestingly, there are reports that suggest HOX proteins may 

regulate expression through competitive binding to block other TF complexes at shared 

cis-regulatory regions (183). 

Specific Targets 

While many target genes of HOX proteins have been inferred using microarray 

analysis of different tissue types, recent advances in genome-wide sequencing 

techniques have allowed for identification of direct targets of HOX proteins.  ChIP-seq of 

Hoxa2 during embryonic development in mice identified many Wnt target genes (184). 

Our group performed ChIP-seq in a mouse myeloblastic cell line transformed by 

Hoxa9/Meis1 and identified multiple proleukemic targets, including Erg, Flt3, Lmo2 and 

Myb, that are directly regulated by Hoxa9 (185). Regulation of Lmo2 has also been 

observed during development of the limb bud. Importantly, knockdown of Lmo2 impairs 
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growth of leukemic cells and high levels of LMO2 predict poor prognosis in patients 

(186). Additional specific targets of HOX genes have been studied in the context of 

leukemia. HOXA9 activates BCL2 expression, which is required for transformation by 

HOXA9, NUP98-HOXA9 and MLL. Furthermore, loss of Bcl2 leads to improved survival 

in mouse model of Hoxa9/Meis1 leukemia (187). MLL-ELL upregulates Fgf2 expression 

in a Hoxa9/a10 dependent fashion, leading to increased proliferation and cytokine 

hypersensitivity (101, 188). Other work has identified a positive feedback loop between 

Hoxa10 and Cdx4-Fgf2-β-catenin (189, 190). Hoxa9 can regulate Ink4a expression to 

overcome oncogene-induced senescence during transformation by AML1-ETO in Bmi1-

/- cells (191). Finally, Hoxa10 upregulates expression of the E3 ubiquitin ligase Triad1 

leading to a decrease in colony forming activity of myeloid cells, thereby preventing 

hyperproliferation and cellular exhaustion during transformation (192). 

Some additional targets of HOX proteins have been identified during 

development processes. Hoxa1 and Hoxa9 regulate Rac1 activity by directly 

upregulating Vav2 expression (193). Hoxa/b/c5 have redundant roles in repressing Shh 

expression in developing forelimb, mediated by binding at an enhancer and interaction 

with promyelocytic leukemia zinc finger (194). Lastly, Hoxa2 binds at the promoter of 

Meox1 to activate its transcription during development of the second branchial arch 

(195). 

Non-transcriptional roles of HOX Proteins 

In addition to acting as classical transcription factors regulating downstream gene 

expression, HOX proteins may also have non-transcriptional functions that are critical 

for their role in malignancy (196). For example, Hoxa2 can indirectly stabilize p53 by 
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binding to p53’s E3 ubiquitin ligase, RCHY1, leading to the degradation of RCHY1 

(197). In addition, Hoxb4 and Hoxa9 can act as E3 ligases for Geminin, leading to its 

degradation, which contributes to Hoxa9-mediated transformation (198, 199). 

Conflicting reports, however, also find that Hoxa9-Geminin binding can sequester 

Hoxa9 thereby inhibiting its transcriptional activity (200). Hoxa7 and Hoxa14 can bind to 

the initiation factor eIF4E in liver cancer, potentially affecting the nuclear transport of 

eIF4E-dependent transcripts like c-myc, fgf2, vegf, ornithine decarboxylase and cyclin-

D1 (201). Finally, the yeast-two-hybrid screen of Hoxa1 interactors identified many 

putative binding partners involved in signal transduction, cell adhesion and vesicular 

trafficking, pointing to additional non-transcriptional roles for this and other HOX 

proteins (173).  

RECENT ADVANCES 

As we continue to learn more about the vast number of maliganancies and 

diseases that involve dysregulation of HOX genes, the need for a deeper understanding 

of the mechanisms through which HOX proteins exert their function is becoming critical. 

Understanding the mechanisms of action of HOXA9 needs to be at the forefront of 

these efforts, as increased expression of HOXA9 is seen in over 50% of acute myeloid 

leukemias and these cases usually carry a poor prognosis (Figure 1-4) (79, 84). Our 

group has made considerable progress towards understanding HOXA9-mediated 

leukemogenesis through the identification of the genome-wide binding sites of Hoxa9 

and Meis1 in transformed myeloblastic cells, as well as the identification of a number of 

potential collaborators that are members of the myeloid Hoxa9 complex (174). ChIP-seq 

experiments using murine bone marrow transduced with Hoxa9 and Meis1 identified 
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825 genomic regions that bind Hoxa9, Meis1 or both, and these regions showed a high 

degree of evolutionary conservation.  Over 90% of the binding sites are located in distal 

intergenic regions (>10kb from transcriptional start sites) or gene introns, while less than 

3% are located within 3kb of promoter regions (Figure 1-5a).  De novo motif analysis of 

Hoxa9/Meis1 (H/M) binding sites uncovered a striking enrichment for lineage-specific 

transcription factor motifs in the ETS and C/EBP families near the H/M peaks, and to a 

lesser extent, STAT and RUNX (Figure 1-5b), suggesting that these proteins might 

coassociate with Hoxa9/Meis1 at distal regulatory elements. 

 

Figure 1-4 - HOXA9 expression in AMLs compared to healthy controls 
In a cohort of 344 human acute leukemias, 50.87% (n=175) have HOXA9 expression 
levels two standard deviations higher than healthy controls (n=11)  [mean=9.6, 
SD=0.23, mean+2SD=10.06]. Plot of individual patient sample HOXA9 expression 
levels with solid line mean of healthy controls, dotted line ±2SD. Data reanalyzed from 
(202). 
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Figure 1-5 - ChIPseq for Hoxa9 and Meis1 in murine myeloblastic cell line 
Hoxa9 and Meis1 genome-wide binding sites were determined in replicate ChIP-seq 
experiments for each protein in murine cells transformed by Hoxa9 and Meis1. (A) 
Distribution of genomic localization of Hoxa9/Meis1 binding sites. (B) De novo motif 
analysis of Hoxa9/Meis1 binding sites and corresponding enrichment statistics. 

To complement the ChIP-seq data, our group also performed a parallel co-

immunoprecipitation and mass spectrometry screen to identify leukemia-specific 

collaborators of Hoxa9 and Meis1. The transcription factors C/EBPα and Stat5b were 

both identified in this binding partner screen, along with the chromatin-remodeling 

enzyme Brg1 and multiple other members of the SWI/SNF complex (Figure 1-6a). 

These interactions were confirmed by western blot, as well as in overexpression studies 

in 293 cells (Figure 1-6b and data not shown). Interestingly, each of these putative 

collaborators are known to be mutated or otherwise dysregulated in leukemia, providing 

further basis for studying their functional interplay with HOXA9 (203-205).  In the work 

presented in this thesis, I used both loss and gain of function approaches to determine 

the role of C/EBPα in Hoxa9/Meis1-mediated leukemogenesis. I also began preliminary 

characterization of importance of the SWI/SNF complex and chromatin remodeling in 

transcriptional regulation by Hoxa9. My work presents significant advances in our 

understanding of HOX biology in leukemic transformation by establishing a requirement 
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for a lineage determining transcription factor as well as implicating a role for chromatin 

remodeling at Hoxa9 target sites. The data presented in this thesis will serve as a 

foundation for future studies that will continue to increase our understanding of Hoxa9-

mediated transcriptional regulation in normal hematopoiesis and leukemia. 

 

Figure 1-6 - Stat5b and C/EBPα are members of the myeloid Hoxa9/Meis1 complex 
Identification of putative collaborator proteins using co-immunoprecipitation of Hoxa9 or 
Meis1 followed by mass spectrometry. (A) Mass spectrometric identification of Stat5b 
and C/EBPα in replicate immunoprecipitations with Hoxa9/Meis1 (labeled Hoxa9-
1/Hoxa9-2 or Meis1-1/Meis1-2). (B) Coimmunoprecipitations of Stat5b and C/EBPα with 
Hoxa9/Meis1 in cells transformed with HA-Hoxa9/FLAG-Meis1 (HM2) or untagged 
Hoxa9/Meis1 (HM1) as controls. Abbreviations as follows: IP, Immunoprecipitation; ID, 
identification; Pw, predicitive value; Specs, spectrums; Peps, peptides. 
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CHAPTER 2:  

C/EBPA IS AN ESSENTIAL COLLABORATOR IN HOXA9/MEIS1-MEDIATED 

LEUKEMOGENESIS 

INTRODUCTION 

HOXA9 is member of the highly conserved HOX protein family of transcription 

factors, which play key roles in both development and hematopoiesis (3, 81). HOXA9 is 

most highly expressed in long-term hematopoietic stem cells (LT-HSCs) and early 

progenitors, where it promotes cellular proliferation and is subsequently down-regulated 

during differentiation (82). More than 50% of acute myeloid leukemia (AML) cases show 

up-regulation of HOXA9, which correlates strongly with poor prognosis (84, 206). In 

most cases, up-regulation of HOXA9 is accompanied by up-regulation of its cofactor 

MEIS1, which co-localizes with Hoxa9 at enhancers (79, 185). While HOXA9 alone is 

sufficient for transformation of hematopoietic stem cells in culture, the addition of MEIS1 

increases transformation efficiency and results in rapidly fatal leukemias in transplanted 

animals (78).  

A variety of upstream genetic alterations, including MLL translocations, NPM1 

mutations, and CDX2 over expression, lead to HOXA9 up-regulation in AML, however 

the mechanisms through which high levels of HOXA9 contribute to leukemic 

transformation are not known (207-209). It has been suggested that lineage-specific 

‘collaborator’ proteins bind at relevant loci along with HOXA9 and its cofactors, PBX and 
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MEIS proteins, to confer both site-specificity and transcriptional activity of the HOXA9 

complex (154). Recently, our group identified a number of potential Hoxa9 collaborators 

by characterizing the genome-wide binding sites of Hoxa9 and Meis1 in a murine 

myeloblastic cell line and by identifying proteins that interact with the Hoxa9 complex 

(185). One of these putative collaborators is C/EBPα, which coimmunoprecipitates with 

Hoxa9. In addition, C/EBP recognition motifs are enriched at Hoxa9 binding sites.  

C/EBPα is a basic-leucine-zipper transcription factor that plays a critical role in 

lineage commitment during hematopoietic differentiation (210). While Cebpa-/- mice 

show complete loss of the granulocytic compartment, recent work shows that loss of 

C/EBPα in adult hematopoietic stem cells (HSCs) leads to both an increase in the 

number of functional HSCs and an increase in their proliferative and repopulating 

capacity (211, 212). Conversely, CEBPA overexpression can promote 

transdifferentiation of a variety of fibroblastic cells to the myeloid lineage and can induce 

monocytic differentiation in MLL-fusion protein-mediated leukemias (213, 214).   

While C/EBPα binds directly to target gene promoters, increasing evidence 

suggests that it also regulates gene expression through binding at promoter distal 

regulatory elements. For example, C/EBPα has been reported to colocalize with Pu.1, 

another critical regulator of hematopoiesis, at myeloid-specific enhancers where it acts 

to establish areas of chromatin accessibility and facilitate the recruitment of signal-

dependent transcription factors (161). The ability of C/EBPα to act as a pioneer 

transcription factor at enhancers suggests that it may play a similar role in HOXA9-

driven leukemogenesis.  

To test this hypothesis, I used models allowing for conditional deletion of Cebpa 
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in Hoxa9-transformed cells. I found that C/EBPα is critical for maintaining cellular 

proliferation in vitro and is a significant contributor to the severity of Hoxa9-mediated 

leukemia in vivo. Using genome-wide analysis, I found that C/EBPα co-localizes with 

Hoxa9 at promoter distal enhancers resulting in both target gene activation and 

repression. Finally, I identified the cyclin-dependent kinase inhibitors Cdkn2a/b as 

critical targets of the Hoxa9/C/EBPα complex, whose repression likely contributes to the 

aberrant proliferation required for Hoxa9-mediated leukemogenesis. 

MATERIALS AND METHODS 

Animals. All animal experiments were performed as approved by the University of 

Michigan Committee on Use and Care of Animals and Unit for Laboratory Animal 

Medicine. Cebpaf/f mice ((211, 212); kindly provided by Dr. Daniel Tenen, Harvard 

University) or C57BL/6 WT mice (JAX #000664) were crossed with B6;129-

Gt(ROSA)26Sortm1(cre/ERT)Nat (JAX #004847) to obtain Cebpaf/f;CreERT+/- and 

WT;CreERT+/- strains. 

 

Antibodies. For western blot, anti-C/EBPα (CST 2295S) and anti-βactin (Sigma A2228) 

were used. For ChIP, anti-HA (Abcam ab9110), anti-C/EBPα (SCBT sc-61X), anti-

H3K4me1 (Abcam ab8895), anti-H3K27me3 (Millipore 07-449) and IgG (SCBT sc-2027) 

were used. For flow cytometry, APC-anti-cKit (Biolegend 105812), APC-anti-CD11b 

(eBioscience 47-0112-80), APC-anti-Gr1 (Biolegend 108412), APC-anti-AnnexinV 

(eBioscience 88-8007-74) and DAPI (Sigma) were used. 

 

Cell Lines. Bone marrow from 6-10 week old Cebpaf/f;CreERT+/-, WT;CreERT+/-, or WT 
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mice was harvested 5 days after treatment with 5-flurouracil (150mg/kg) and Lin-cKit+ 

cells were isolated using the EasyStep Mouse hematopoietic progenitor cell enrichment 

kit (Stem Cell Tech). Cells were maintained in Iscove’s modified Dulbecco’s medium 

(IMDM) supplemented with 15% fetal bovine serum, 10ng/mL IL3 and 100ng/mL SCF. 

One day after harvest, cells were retrovirally transduced on two consecutive days with 

MIGR1-HA-Hoxa9 or MIGR1-HA-Hoxa9-ER, and MIGR1-Flag-Meis1 retrovirus 

expressing murine proteins (plasmids previously described in (185)). Retroviral 

supernatant was generated by transfecting PlatE packaging cells with the appropriate 

plasmids using Fugene 6 (Promega). Stable cell lines were established by gradually 

withdrawing SCF from the cells over the course of 10 days.  100% GFP positivity was 

subsequently verified using flow cytometry and co-expression of Hoxa9 and Meis1 was 

confirmed by western blot. Cell lines transduced with MIGR1-HA-Hoxa9-ER/MIGR1-

Flag-Meis1 (HerM) were cultured in continuous 100nM 4-hydroxytamoxifen (4-OHT) to 

maintain transformation.  

 

Cellular Assays. For loss of C/EBPα studies, C/EBPα HM or WT HM cells were treated 

continuously with 5nM 4OHT (Sigma H7904) or EtOH. For the 4OHT withdrawal 

experiment, after one week continuous culture in EtOH or 5nM 4OHT, C/EBPα HM cells 

were washed once with culture medium, and continued in cultured with EtOH only. For 

loss of Hoxa9 studies, HerM cells were washed three times with culture media and then 

maintained in either EtOH or 100nM 4OHT. Cellular proliferation was assessed by 

trypan blue dye exclusion and cell counting. Cellular morphology was assessed using 

cytospin and Wright-Geimsa staining. Whole cell lysates were collected by directly 
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lysing washed cells in SDS loading buffer + beta-mercaptoethanol. Protein levels were 

visualized using SDS-polyacrylamide gel electrophoresis and western blotting on PVDF 

membranes. RNA was collected and purified using the Qiagen RNeasy kit with on-

column DNase treatment. cDNA was generated using Superscript II RT and target gene 

expression was determined relative to β-actin using Invitrogen Taqman primer-probe 

sets (Cdkn2a [Mm00494449_m1]; Cdkn2b [Mm00483241_m1]; Cebpa 

[Mm00514283_s1]; Bactin [Mm00607939_s1]). 

 

Flow cytometry. For surface marker expression, cells were washed and resuspended 

in recommended media (2% FBS in PBS) and then incubated for 30 mins on ice with 

0.2ug of the appropriate antibody. For apoptosis assay, cells were washed and 

resuspened in binding buffer, and subsequently incubated at room temperature for 

15mins with 0.6ug APC-anti-AnnexinV and DAPI.  For cell cycle analysis, cells were 

washed, resuspended in ice cold DPBS and added dropwise to cold 70% EtOH. Cells 

were stored for at least 24hrs at -20°C.  After storage, cells were washed with cold 

DPBS, rehydrated for 30mins on ice in DPBS, and subsequently treated with RNase A 

(Qiagen 19101) and DAPI at room temp for 20mins. All samples collected on a Becton 

Dickinson LSR II. Data collected from at least 20,000 events from biologic replicate 

experiments were analyzed using FloJo. 

 

BM Transplantation. For primary leukemia assays, freshly transduced C/EBPα HM 

and WT HM cells (described above) were injected by tail vein in cohorts of lethally 

irradiated (900 rads) ~8 week old female C57BL/6 mice (1.5x10^5 cells per mouse). 
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Mice were maintained on antibiotics for two weeks post irradiation. At two weeks, mice 

were treated with biweekly intraperitoneal injections of OHT (Sigma T5648; 200mg/kg) 

or corn oil until sacrifice. For secondary leukemia assays, spleen cells harvested from 

primary leukemic mice in the C/EBPα HM corn oil treated cohort were injected by tail 

vein in cohorts of sublethally irradiated (600 rads) ~8 week old female C57BL/6 mice 

(1.5x10^5 cells per mouse). After 5 days, mice were treated for 5 consecutive days with 

intraperitoneal injections of OHT (200 mg/kg) or corn oil and continued on twice weekly 

injections until sacrifice. Mice were sacrificed after becoming moribund. Liver, spleen, 

and bone was harvested from control and leukemic mice at time of sacrifice for paraffin 

embedding and H&E staining. Bone marrow was flushed for collecting RNA, WCL and 

cytospin samples. Survival curves plotted in Prism and statistical significance evaluated 

by log rank test. 

 

Chromatin Immunoprecipitation (ChIP). 30x10^6 cells were fixed for 15 mins at room 

temperature with 1% paraformaldehyde in IMDM, washed 2 times with cold PBS and 

snap frozen on dry ice. Cells were then lysed in 1.5mL of SDS lysis buffer (1% SDS; 

10mM EDTA; 50 mM Tris-HCL pH 8), sheared 2X through a 27G needle, and sonicated 

to achieve DNA fragmentation distribution below 500bp. Samples were centrifuged for 

20 mins at maximum speed to remove debris, and supernatant was collected and 

diluted 1:10 with dilution buffer (0.01% SDS; 1% TritonX-100; 1.2mM EDTA; 16.7mM 

Tris-HCL pH 7.5; 167mM NaCl). 1.5mL of diluted chromatin was incubated with 2.5ug of 

appropriate antibody overnight at 4°C with rotation. Immunoprecipitation (IP) was then 

preformed by adding 30uL of BSA blocked protein G Dynabeads (Invitrogen) to each 
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sample for 1 hour at 4°C with rotation. IPs were washed for 5 mins in low salt (150mM), 

high salt (500mM), and LiCl buffers (0.25M), and twice with TE buffer.  Captured 

chromatin was eluted by incubating beads in 250uL elution buffer (1% SDS, 100mM 

NaHCO3) for 30mins at 42°C. Crosslinking was reversed by the addition of NaCl (final 

50uM) and overnight incubation at 65°C. Chromatin was then RNase A treated and 

purified using Qiagen PCR purification kit. Binding was quantified relative to input by 

qPCR (7500 PCR System, Applied Biosystems) using SYBR green fluorescent labeling 

and primers designed using the IDT primer quest program (Table S1).  

 

ChIP-seq and RNA-seq. For ChIP-seq analysis, 10 ng of ChIPed DNA was processed 

for library generation using the ChIP-seq Library Preparation Kit (Illumina) following the 

manufacturer’s protocol. For RNA sequencing, RNA was extracted using Qiagen 

RNeasy kit with on column DNase treatment described by the manufacturer’s protocol. 

Biologic replicate cDNA libraries were generated using the TruSeq RNA sample prep kit 

(Illumina).  For both ChIPseq and RNAseq, sequencing was performed on an Illumina™ 

HiSeq2000 at the University of Michigan DNA sequencing core and raw RNA-seq data 

were processed using the Illumina software pipeline.  

 

Peak Calling. Data analysis performed by Jingya Wang. Sequenced reads were pre-

processed to remove contamination of adaptor sequences and then aligned to mouse 

reference genome (mm9) using BWA (version 0.6.2). Model-based Analysis for ChIP-

Seq (MACS) was used for peak calling with the parameters as below (default values are 

used if not specified): format=BED -g mm --nomodel --shiftsize 75 -w –S. Peak tracks 
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were displayed in USCS genome browser. Distribution of peaks in the promoter (-1kb to 

+100bp of TSS), exon, intron, and intergenic regions etc, was estimated using HOMER 

(161). Peaks are annotated to their nearest gene using CisGenome. Peak overlap was 

calculated with the criteria that there is at least 1 basepair overlap between tested 

peaks. The significance of peak overlap was calculated using hypergeometric test with 

the background (total number of tests) set to 159,029, as an estimation of total 

transcription factor binding sites obtained from K526 leukemia cells (215). Pathway 

analysis was performed using the GREAT web tool based on binomial test p-value 

<0.05. Venn Diagram was made using R program.  

 

Differential Gene Analysis. Data analysis performed by Jingya Wang. Sequenced 

reads were aligned to mouse reference genome (mm9) using Bowtie and Tophat 

(version 2.0.3). The program Cuffdiff was used for differential gene expression analysis. 
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RESULTS  

C/EBPα is required for Hoxa9/Meis1-mediated transformation 

We previously identified the lineage-specific transcription factor, C/EBPα, as a 

member of the myeloid Hoxa9-complex (185). To determine if C/EBPα is required for 

transformation by Hoxa9 and Meis1, we generated cell lines that allow for conditional 

deletion of Cebpa by retrovirally transducing bone marrow from Cebpaf/f;CreERT+/- mice 

with Hoxa9/Meis1-GFP (Figure 2-1a). We also generated control cell lines from 

WT;CreERT+/- mice to control for the effects of tamoxifen treatment and Cre-mediated 

toxicity. Continuous treatment of the Hoxa9/Meis1-transformed Cebpaf/f;CreERT+/- cells 

(C/EBPα HM) with 4-hydroxytamoxifen (4OHT) leads to near complete loss of C/EBPα 

over the course of 8 days (Figure 2-1b). Loss of C/EBPα leads to a dramatic decrease 

in cellular proliferation, while Cre induction in Hoxa9/Meis1-transformed WT;CreERT+/- 

cells (WT HM) has no effect (Figure 2-1c, upper panels). The decrease in cellular 

proliferation is similar to the effect seen after loss of Hoxa9 through use of a Hoxa9-

ER/Meis1 conditional cell line (HerM). It is also unlikely due to a non-specific effect of 

loss of a general transcription factor, as cre-mediated excision of Pu.1 in cells 

transformed by Hoxa9/Meis1 did not lead to a significant decrease in proliferation 

(Figure 2-1c, lower panel). 
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Figure 2-1 - Growth inhibition after loss of C/EBPα mimicks loss of Hoxa9 
(A) Schematic of cell line generation and Cebpa targeted allele. (B) C/EBPα HM and 
WT HM cells were treated for an 8-day time course with 5nM 4OHT or EtOH and protein 
levels in the C/EBPα HM cells was assessed using western blot. (C) Cellular 
proliferation of C/EBPα HM, WT HM, Hoxa9-ER/Meis1 (HerM) and Pu.1f/f;CreERT+/-

/Hoxa9/Meis1 transformed cells (Pu.1 HM) was determined by cell counting; data 
represent mean ±SD of two independent experiments. 

Our previously published work using the Hoxa9-ER/Meis1 conditional cell line 

established that loss of Hoxa9 leads to a reduction in cellular proliferation, which is 

accompanied by differentiation of the cells into macrophages and induction of apoptosis 

(Figure 2-2a,b) (185). While loss of C/EBPα also leads to a decrease in cellular 
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proliferation, we did not observe the morphologic featues of full differentiation of these 

cells into macrophages or neutrophils or induction of apoptosis. Loss of C/EBPα leads 

to the accumulation of cytoplasmic vacuoles at day 8 (Figure 2-2a), however no further 

differentiation occurs after treating the cells for 15 days. No changes in cellular 

morphology were observed in the WT HM cells under the same treatment conditions. 

We also characterized changes in cell surface marker expression in these cell lines. 

Loss of C/EBPα leads to an increase in the immature cell surface marker, c-Kit, and a 

decrease in the myeloid surface markers CD11b and Gr1 (Figure 2-2b). This phenotype 

persists across a 15-day time course, while no changes were seen in the WT HM 

control cells. These results are consistent with the known importance of C/EBPα in 

promoting myeloid differentiation, whereby cells lacking C/EBPα cannot initiate the full 

myeloid differentiation program (210). Conversely, loss of Hoxa9 leads to a 

downregulation of c-Kit and an upregulation of CD11b and Gr1, indicating an induction 

of a differentiation program in these cells. 
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Figure 2-2 Cellular phenotype after loss of Hoxa9 or C/ebpa 
(A) Cell morphology of HerM, C/EBPα HM and WT HM was assessed after 8 days in 
indicated conditions. (B) Surface expression of c-Kit, CD11b, and Gr1 at day 4 and 6 in 
HerM, C/EBPα HM and WT HM cells. Blue line indicates resting condition and red line 
indicates loss of Hoxa9 or Cebpa (or 4OHT treatment for WT HM). Images 
representative of at least two independent experiments. 

Finally, we tested whether loss of C/EBPα leads to induction of apoptosis by flow 

cytometry. No significant increase of apoptosis was seen after loss of C/EBPα 

compared to loss of Hoxa9 in HerM cells (Figure 2-3). Induction of Cre in the WT HM 

cells also had no effect. Thus, loss of C/EBPα in Hoxa9/Meis1-transformed cells leads 

to a decrease in cellular proliferation in the absence of differentiation or apoptosis. 
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Figure 2-3 - Apoptosis of cells after loss of Hoxa9 or Cebpa 
Annexin V and DAPI staining for apoptotic cells at day 6 of indicated treatment.  Flow 
cytometry plots representative of at least two independent experiments. 

Loss of C/EBPα impairs Hoxa9-mediated leukemogenesis 

Given the importance of C/EBPα in maintaining rapid proliferation of 

Hoxa9/Meis1-transformed cells, we next examined if C/EBPα is required for 

Hoxa9/Meis1-leukemogenesis in vivo. We transplanted freshly transduced C/EBPα HM 

or WT HM cells into lethally-irradiated C57B6 mice (with the help of Hongzhi Miao). 

After two weeks, the mice were treated with bi-weekly injections of tamoxifen (119) to 

induce deletion of Cebpa in the transplanted cells. Loss of Cebpa significantly improved 

survival of the C/EBPα HM transplanted mice [n=10(veh), 12(119); p<0.0001], while 

there was no survival difference seen in the vehicle or OHT-treated WT HM cohort 

[n=10(veh), 14(119); p=0.4324] (Figure 2-4a). Vehicle-treated mice from the C/EBPα 
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HM cohort, as well as all mice in the WT HM groups, developed myeloblastic leukemias 

in an average of 40 days showing extensive liver, spleen and peripheral blood infiltration 

(Figure 2-4b). Conversely, C/EBPα HM mice treated with OHT developed leukemia in 

an average of 60 days, also with infiltration of the liver and spleen in late stages. This 

delay in leukemia is even more impressive given that Cebpa-/- bone marrow is reported 

to have enhanced repopulating activity and faster proliferation than WT cells (211). 

 

Figure 2-4 – Loss of C/EBPα improves survival in Hoxa9/Meis1 in vivo 
leukemogenesis 
(A) Survival curves for mice transplanted with C/EBPα HM [n=10(veh), 12(119); 
P<0.0001 by log rank], or WT HM cells [n=10(veh), 14(119); P=0.4324 by log rank]. 
Treatment period with OHT (blue) or vehicle (red) indicated by arrow below graphs. (B) 
Tissue histology of liver and bone, and bone marrow cytospins for C/EBPα HM vehicle 
and OHT-treated mice that died prior to 40 days (left, middle; “early”) and an OHT-
treated mouse that died at 60 days post transplantation (right; “late”) (scale bars = 
50μm). 

Examination of C/EBPα levels in the bone marrow at time of death indicates that 

there is strong selective pressure for maintaining high levels of C/EBPα in Hoxa9/Meis1 
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transformed leukemias. A C/EBPα HM OHT-treated mouse that died early showed 

complete loss of Cebpa expression, with a lower blast count and a more mature 

phenotype than a C/EBPα HM vehicle-treated mouse that died on the same day (day 

35; “early”) (Figure 2-5a,b). However, C/EBPα HM OHT-treated mice that died later (day 

60; “late’”) showed recovery of Cebpa expression and a phenotype similar to vehicle-

treated mice, likely through outgrowth of clones that had escaped Cre-mediated deletion 

(Fig 2-5a,b). This selective pressure for the presence of C/EBPα was also seen in cell 

culture, as cells eventually regain C/EBPα expression in the absence of 4OHT 

treatment despite genomic deletion of Cebpa and loss of protein levels after one week 

of 4OHT treatment (Figure 2-5c). 

 

Figure 2-5 - Strong selective pressure for expression of C/EBPa  
(A,B) RT-PCR expression of Cebpa and western blot analysis of C/EBPα protein levels 
corresponding to samples shown in (Figure 2-4b) (mean ±SD). (B) C/EBPα protein 
levels in cells treated with 4OHT for 6 days and subsequently maintained in the 
absence of 4OHT for an additional 10 days. Rightmost lane (16E) corresponds to cells 
treated continuously with EtOH for 16 days.  

We also examined the role of C/EBPα in secondary Hoxa9/Meis1-induced 

leukemias. Spleen cells harvested from a C/EBPα HM vehicle treated primary leukemia 

mouse were injected into the tail vein of sublethally-irradiated C57/B6 mice to establish 

secondary leukemias, and then mice were treated with OHT to induce Cebpa excision. 
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Loss of C/EBPα led to prolonged survival of the mice with secondary leukemia 

[n=9(veh), 7(119); p<0.0001] (Figure 2-6a). OHT-treated mice that were sacrificed as 

controls alongside leukemic vehicle-treated mice showed significantly reduced C/EBPα 

levels and tissue infiltration compared to the vehicle-treated mice, confirming the 

efficacy of the OHT treatment (Figure 2-6b,c). Conversely, OHT-treated mice that 

eventually succumbed to leukemia regained high C/EBPα levels and showed liver 

infiltration similar to vehicle-treated mice, again displaying strong selective pressure for 

Cebpa reexpression (Figure 2-6b). Taken together, these results show that C/EBPα is 

required for Hoxa9/Meis1-mediated leukemogenesis.  

 

Figure 2-6 - Requirement for C/EBPa in Hoxa9/Meis1 secondary leukemia 
(A) Survival curve of mice transplanted with primary leukemic spleen cells from a 
C/EBPα HM vehicle treated mouse [n=9(veh), 7(119); P<0.0001 by log rank]. Treatment 
period with OHT (blue) or vehicle (red) indicated by arrow below graphs. (B) C/EBPα 
protein levels in vehicle treated leukemic mice (left) compared to OHT treated mice 
preleukemic controls (142) and leukemic OHT treated mice (100). (C) Liver histology of 
leukemic vehicle and preleukemic OHT treated mice at 20 days (scale bars = 50μm). 

Given these findings, it is noteworthy that analysis of gene expression in 344 

human leukemias revealed that leukemias with high levels of HOXA9 retain at least one 

wild-type copy of CEBPA while cases with biallelic mutations of CEBPA are associated 

with much lower levels of HOXA9 (Figure 2-7) (data reanalyzed from (202) with Dr. 

Maria Figueroa). These data provide further support for the critical importance of 
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CEBPA for HOXA9-mediated transformation in human leukemias. 

 

Figure 2-7 - HOXA9 expression in human leukemias with mutated CEBPA 
HOXA9 expression level in a cohort of AML patients subdivided by CEBPA mutation 
status [n=344; ****, P<0.0005; **, P<0.005]. Data analyzed with Dr. Maria Figueroa. 

C/EBPα co-localizes with Hoxa9 at promoter distal enhancers 

We sought to establish a molecular mechanism for the functional interplay 

between Hoxa9 and C/EBPα in leukemogenesis. Given that Hoxa9 and C/EBPα 

physically interact and that the C/EBP motif is enriched at Hoxa9 binding sites (185), we 

next determined if C/EBPα co-binds with Hoxa9 on a genome-wide level.  We 

performed ChIP-seq for Hoxa9 and C/EBPα in a mouse myeloblastic cell line 

transformed with HA-Hoxa9-ER and Flag-Meis1 (statistical analysis done by Jingya 

Wang) (216). Since there are currently no antibodies against Hoxa9 suitable for ChIP-

seq, we used an HA antibody to immunoprecipitate HA-Hoxa9-ER. We identified 6535 

peaks that are bound by Hoxa9 and 26,187 that are bound by C/EBPα, the majority of 

which occur at promoter distal regions (Figure 2-8a). Notably, a remarkable proportion 
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(54%) of Hoxa9 binding sites are co-bound by C/EBPα (p<0.001) (Figure 2-8b). C/EBPα 

does not appear to be absolutely required for Hoxa9 binding, however, as cases of 

Hoxa9 binding sites with very low levels of C/EBPα can be found, even in the vicinity of 

strong co-bound peaks (Figure 2-8c).  To validate our ChIP-seq results, multiple sites of 

each class of Hoxa9-bound enhancer were confirmed using ChIP-qPCR (Figure 2-9).  

 

 

Figure 2-8 – Hoxa9 and Cebpa colocalize at distal regulatory regions 
(A) Peak number and distribution of Hoxa9 (HA) and C/EBPα ChIPseq in a 
Hoxa9/Meis1-transformed cell line (other category contains 5’/3’ UTR and exons). (B) 
Peak overlap between Hoxa9 and C/EBPα ChIPseq. (C) Representative Hoxa9/C/EBPα 
co-bound loci. Bars indicate location of qPCR primer pairs. Data analyzed by Jingya 
Wang. 
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Figure 2-9 - Validation of ChIPseq data with ChIP-qPCR 
Independent ChIP-qPCR validation of ChIPseq data for Hoxa9 (HA) and C/EBPα 
binding at Hoxa9/C/EBPα co-bound sites, Hoxa9 Only, and Non-binding Controls; bars 
indicate mean ±SD of at least two independent experiments. 

Finally, we examined the biological pathways enriched for putative targets of 

Hoxa9/C/EBPα co-bound enhancers. Sites co-bound by Hoxa9 and C/EBPα showed 

dramatic enrichment for genes critical for hematopoietic pathways including the 

regulation of myeloid differentiation, regulation of the inflammatory response and 

regulation of cytokine production (Figure 2-10). Collectively, these results suggest that 

C/EBPα functionally interacts with Hoxa9 at enhancers to facilitate Hoxa9/Meis1-

mediated transformation. 
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Figure 2-10 – GREAT Pathway analysis of Hoxa9/C/EBPα cobound regions 
Pathway analysis of regions co-bound by Hoxa9 and C/EBPα (dark blue) or regions 
bound only by Hoxa9 (light blue). Analysis was performed using the Genomic Regions 
Enrichment of Annotations tool (GREAT) against the biological pathways database. X-
axis indicates p-value (-10*log). 

C/EBPα and Hoxa9 co-regulate expression of Cdkn2a/b 

Given the requirement for C/EBPα in Hoxa9/Meis1-mediated leukemic 

transformation and the co-localization of C/EBPα with Hoxa9 at enhancers in 

transformed cells, we next sought to identify target genes potentially important for 

leukemogenesis. Using the C/EBPα HM and HerM cells, we performed RNAseq at 

72hrs after loss of C/EBPα or Hoxa9. We identified 31 genes that were co-activated 

more than 1.5-fold by Hoxa9 and C/EBPα, including Adam17, Igf2r, Il2ra, and Cpe 

(Figure 2-11). In addition, 45 genes were co-repressed more than 1.5-fold, including 

Gata2, Gfi1b, Prkca, and Cdkn2b. Interestingly, a number of genes were 
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antagonistically regulated by the two proteins, including the known C/EBPα target Sox4, 

suggesting a competitive mechanism between C/EBPα and Hoxa9 at some targets 

(Figure 3-7).  

 

Figure 2-11 - Genes coregulated by Hoxa9 and C/EBPa 
Lists of genes that are coactivated and corepressed more than 1.5 fold by Hoxa9 and 
C/EBPa as determined by overlap of RNAseq 72 hours after loss of Hoxa9 or C/EBPa. 
Boxes highlighted in red indicate genes associated with the ‘regulation of cellular 
proliferation’ GO term. 

Two genes that were significantly repressed by both Hoxa9 and C/EBP were 

Cdkn2a/b (INK4a/b). Cdkn2a/b are critical regulators of HSC self-renewal, apoptosis 

and oncogene-induced senescence whose expression leads to a block in cell cycle at 

the G1 phase (217). In addition, Cdkn2a/b are commonly deleted in acute lymphoid 

leukemias (218-220). Our ChIP-seq studies identified a Hoxa9/C/EBPα co-bound site in 
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an intergenic region approximately 50kb downstream of the Cdkn2a/b locus (Figure 2-

12a). Loss of either C/EBPα or Hoxa9 binding at this locus (Figure 2-12b,c) results in a 

corresponding increase in Cdkn2a/b expression (Figure 2-12d,e). In addition, loss of 

either C/EBPα or Hoxa9 leads to only a slight reduction in the binding of the other 

protein, suggesting that the co-binding of both proteins is necessary for repression of 

the Cdkn2a/b locus (Fig 4b,c).  

 

Figure 2-12 - Cdkn2/b locus corepressed by putative Hoxa9/C/EBPa cobound 
regulatory region 
(A) ChIPseq tracks for Hoxa9 (HA), C/EBPα, H3K4me1 and H3K27me3 at the 
Hoxa9/C/EBPα binding site 50kb downstream of the Cdkn2a/b locus. Bars indicate 
location of qPCR primer set. (B,C) ChIP-qPCR for C/EBPα and Hoxa9 binding at the 
HC binding site after 3 days loss of C/EBPα (B) or Hoxa9 (C). (D, E) RT-PCR 
expression of Cdkn2a and Cdkn2b over a 4-day timecourse after loss of C/EBPα (D) or 
loss of Hoxa9 (E). All data expressed as mean ±SD of at least two independent 
experiments. 
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Cell cycle analysis performed on C/EBPα HM and HerM cells showed that both 

loss of C/EBPα and loss of Hoxa9 in Hoxa9/Meis1-transformed cells leads to G1 cell 

cycle block (Figure 2-13a,b). These data suggest that together, C/EBPα and Hoxa9 

repress the Cdkn2a/b locus to overcome the G1 cell cycle block that would otherwise 

occur in the presence of either protein. 

 

Figure 2-13 - Loss of Hoxa9 or C/EBPa leads to a G1 cell cycle block 
(A) Cell cycle analysis at day 6 after loss of Hoxa9 (Left) C/EBPα (Middle) or in EtOH or 
4OHT treated WT HM cells (Right) [Blue = control; Red = loss of Hoxa9 or C/EBPα]. (B) 
Quantification of cell cycle profiles analyzed using FloJo.  All data expressed as mean 
±SD of at least two independent experiments. 

DISCUSSION 

While a variety of upstream genetic alterations in AML are known to work through 

increased expression of HOXA9, the downstream mechanisms through which high 

levels of HOXA9 mediates transformation are yet to be fully elucidated.  In this study, 

we identify C/EBPα as a critical collaborator protein of Hoxa9 in myeloid leukemia. Our 

work shows that C/EBPα is required for the rapid proliferation of Hoxa9/Meis1-

transformed cells in culture and for aggressive disease in primary and secondary 

murine models of Hoxa9/Meis1-induced leukemia. It is noteworthy in this context that 

human AMLs with high HOXA9 expression almost always retain one wild-type copy of 

CEBPA. Taken together with the observation that null mutations of CEBPA are almost 
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never seen in AML, our data suggest that some residual function of C/EBPα is required 

for transformation (204). While these findings are surprising given that high levels of 

C/EBPα have been shown to promote myeloid differentiation (214), it is most likely that 

a moderate level of C/EBPα is required for HOXA9-mediated AML.  

It is noteworthy that the requirement for CEBPA in AML may be specific to 

leukemias with high levels of HOXA9. Recent work shows that C/EBPα is required for 

the initiation of leukemias transformed by MLL-ENL, a fusion protein that directly up 

regulates HOXA9 expression (74, 221). Conversely, C/EBPα was shown to be 

dispensable for E2A-HLF-mediated transformation, which has undetectable levels of 

HOXA9 (221). This same study also found that C/EBPα is not required for the 

maintenance of MLL-ENL-induced leukemias.  Taken together with our finding that 

C/EBPα is required for the maintenance of Hoxa9-mediated transformation, these data 

suggest that MLL-ENL activates alternative pathways to compensate for changes in 

Hoxa9 target gene regulation after loss of C/EBPα.  Further characterization of the 

downstream gene expression changes after loss of C/EBPα in MLL-rearranged 

leukemias and other HOXA9-high leukemias, especially in comparison to leukemias 

with low expression of HOXA9, will help elucidate these alternative pathways. 

Given that our work implicates a requirement for wild-type CEBPA in the 

development of leukemia with high level of HOXA9, it is also interesting to speculate 

how mutations of CEBPA in AML may functionally interact with HOXA9.  About 10% of 

AMLs carry mutations in CEBPA, two-thirds of which are biallelic mutations, where one 

allele carries a mutation in the C-terminal DNA-binding domain and the other allele 

carries an N-terminal mutation that leads to transcription of the short p30 isoform (140, 
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204, 222). These mutations affect not only the binding and localization of CEBPA, but 

also the recruitment of co-activator and co-repressor complexes to CEBPA-bound loci 

(204, 223). In these cases, expression of HOXA9 is very low, suggesting oncogene 

incompatibility between high expression of HOXA9 and biallelic mutations of CEBPA.  In 

addition, the genetic signature of CEBPA mutant leukemias is distinct from that of MLL-

AF9 translocated and other CEBPA WT leukemias (224). Conversely, our work shows 

that single mutant cases of CEBPA do occur in the presence of high levels of HOXA9, 

potentially affecting target gene regulation.  Further study on the effect of various 

mutant forms of CEBPA on regulation of HOXA9 target genes could provide valuable 

insight into mechanisms of transformation in these cases. 

In addition to uncovering an unexpected requirement of C/EBPα in Hoxa9-

mediated leukemogenesis, our work also implicates C/EBPα in the control of 

senescence. Recent work has shown that Hoxa9 inhibits Cdkn2a expression in Bmi1-/- 

MLL-AF9 cells allowing for escape of the oncogene-induced senescence that is seen in 

other Bmi1-/- transformed cells (191). While Hoxa9 was found to suppress Cdkn2a 

expression through direct binding at the promoter, the authors suggest that other non-

Hox factors may be involved for achieving full repression of this locus. Our work 

identifies C/EBPα as an additional factor aiding in Hoxa9 repression of the entire 

Cdkn2a/b locus, potentially through looping to the downstream Hoxa9/C/EBPα co-

bound site to the promoters (Fig 2-14). The silencing of both CDKN2a/b through 

deletion or promoter methylation is known to play critical roles in AML (218-220). Our 

work, together with work from the So lab and others (191, 225), suggests that high 

levels of HOXA9, in concert with CEBPA, results in polycomb protein-mediated 
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repression of the CDKN2A/B locus, thereby employing a fundamental mechanism of 

leukemogenesis.  

 

Figure 2-14 - Model for Cdkn2a/b regulation by Hoxa9 and C/EBPα 
Schematic of Hoxa9 and C/EBPα co-repression of Cdkn2a/b locus. Repression of 
Cdkn2a/b may be mediated through long range interactions between the 
Hoxa9/C/EBPα co-bound cis-regulatory element 50kb downstream of the Cdkn2a/b 
locus. Recruitment of histone deacetylase 1 (HDAC1) and polycomb proteins (Suz12) 
likely contributes to this repression. 

Finally, while C/EBPα is required for Hoxa9-mediated leukemogenesis at 

essential co-regulated targets such as Cdkn2a/b, we also suggest that high levels of 

Hoxa9 may antagonize C/EBPα at genes associated with myeloid differentiation. 

Consistent with this idea, we find that Hoxa9 and C/EBPα have antagonistic effects on 

Sox4, which is reported to be a direct target of C/EBPα and whose repression is 

required for normal hematopoietic differentiation (224). Additional study of 

antagonistically regulated HOXA9/ CEBPA target genes may provide further insight into 

the mechanisms through which high levels of HOXA9 expression leads to 

transformation in acute myeloid leukemia. 
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CHAPTER 3:  

OTHER RESULTS AND FUTURE DIRECTIONS 

TARGETING THE HOXA9-C/EBPA INTERACTION 

We first identified C/EBPα as a potential collaborator of Hoxa9 due to both the 

enrichment of CEBP motifs at Hoxa9 binding sites and the co-immunoprecipitation of 

C/EBPα along with Hoxa9 and Meis1 from a myeloblastic cell line. The work presented 

in this thesis establishes that C/EBPα is required for transformation mediated by Hoxa9 

and Meis1, and shows co-association of C/EBPα at over 50% of genome-wide Hoxa9 

binding sites. Given the functional requirement for Cebpa and the potential for this 

requirement to be mediated through physical contacts between Hoxa9 and C/EBPα, 

characterization of the interaction of Hoxa9 and C/EBPα will provide valuable 

information for future studies. 

Mapping the physical interaction between C/EBPα and Hoxa9 

In our preliminary studies, we confirmed the co-immunoprecipitation of C/EBPα in 

the myeloid Hoxa9/Meis1-complex using coIP followed by western blot analysis (174). 

To determine if this interaction was direct, we purified MBP-tagged Hoxa9, Mocr-tagged 

Meis1 and Mocr-tagged C/EBPα from bacteria and performed in vitro binding assays 

with these proteins (in collaboration with Joel Bronstein). As expected, MBP-Hoxa9 and 

Mocr-Meis1 specifically interact in vitro, while there was no non-specific binding seen to 
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the MBP tag alone (Figure 3-1). MBP-Hoxa9 was also able to interact with Mocr-

C/EBPα, suggesting a direct physical interaction between these two proteins. Studies 

using co-immunoprecipitation from myeloid cells with extended nuclease digestion 

provide further support of a physical interaction between C/EBPα and Hoxa9 in the 

absence of DNA.  

 

Figure 3-1 - Hoxa9 binds directly with C/EBPα  
Recombinant His-tagged MBP and His-tagged MBP fused to Hoxa9 (MBP-Hoxa9) were 
expressed in E. coli, purified by Ni-NTA Agarose and captured by Amylose Resin. His-
tagged Mocr, His-tagged Mocr fused to Meis1 (Mocr-Meis1) and His-tagged Mocr fused 
to C/EBPa (Mocr-C/EBPa) were similarly expressed and purified and added in 
combination with either MBP or MBP-Hoxa9. Input and eluted proteins were visualized 
by coomassie stain and western blot following SDS-PAGE. Meis1 and C/EBPa directly 
interact with Hoxa9 as indicated by western blotting. (In collaboration with Joel 
Bronstein). 

 To more definitively test for a direct interaction between Hoxa9 and C/EBPα, 

future studies can be performed using surface Plasmon resonance. Surface Plasmon 

Resonance (SPR) technology has the ability to determine the specificity, affinity, and 

kinetics of protein-protein interactions (226). A bait protein is immobilized on a gold-

coated glass surface while a potential interactor protein can be flowed over this surface. 
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Binding results in reversible changes to the surface resonance or absorbance in real 

time. Direct physical interactions result in very specific resonance profiles, which are 

easy to distinguish from non-specific binding. This method is especially versatile 

because after immobilizing your protein of interest, a variety of mutant proteins can be 

tested to fully characterize the physical interaction domain. 

We have conducted preliminary mapping of the Hoxa9-C/EBPα interaction using 

co-IP experiments with transiently transfected mutant proteins in 293 cells. Both the full-

length and short isoform of C/EBPα preferentially interact with the C-terminal region of 

Hoxa9, but not the N-terminal region that is known to be required for transformation 

(Figure 3-2). This C-terminal region contains the homeodomain, which has been shown 

to mediate protein-protein interactions with Hox proteins in other model systems (151, 

152). We tested the interaction between the two C/EBPα isoforms and both a 

homeodomain-deficient mutant of Hoxa9 and the homeodomain alone. Interestingly, 

C/EBPα p42 interacts more strongly with the homeodomain deletion mutant than with 

the homeodomain alone. Taken together with the experiments with the C-terminal 

region, these results suggest that the interaction between Hoxa9 and C/EBPα p42 may 

be mediated through aa186-205, with some contribution of residues in the 

homeodomain itself. Conversely, the interaction between Hoxa9 and C/EBPα p30 

seems to occur most strongly with the homeodomain alone and to a lesser extent with 

residues outside the homeodomain. Since both p42 and p30 share the same C-terminal 

region, it is possible that residues in the N-terminal portion of p42 stabilize an interaction 

with Hoxa9 via residues outside of the homeodomain, while residues in the C-terminus 

of C/EBPα make contact with the homeodomain itself. Additional mutant forms of both 
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C/EBPα and Hoxa9 could potentially narrow these interacting regions. 

 

Figure 3-2 - Domain mapping of HOXA9-C/EBPα interaction 
(A) Schematic of streptavidin binding protein (SBP)-tagged HOXA9 expression 
contructs used in biotin immunoprecipitation assays. (B) FLAG-SBP-HOXA9 N-terminal 
domain (NTD, aa1-66) or C-terminal domain (CTD, aa186-264) were expressed in 293 
cells with C/EBPα p42 or p30 isoforms and immunoprecipitation was performed. 
Western blot was performed for C/EBPα or FLAG. (C) Experiments were repeated with 
FLAG-SBP constructs expressing full length HOXA9, a homeodomain deletion (ΔHD) or 
the HOXA9 homeodomain only (HD). Abbreviations: MIM, Meis1 interaction motif; PID, 
Pbx interaction domain. 



 

 60 

Potential avenues for disrupting the HOXA9-C/EBPα interaction 

One of the goals for determining the interaction region between Hoxa9 and 

C/EBPα would be to develop a small molecule inhibitor to disrupt this interaction in cells. 

This inhibitor could be used to further assess the specific requirement for the Hoxa9- 

C/EBPα physical interaction in leukemogenesis. In addition, small molecules could be 

modified to become novel therapeutic strategies for leukemias with high levels of 

Hoxa9. Developing a small molecule that disrupts a specific protein-protein interaction is 

a multistep process that can be pursued through a variety of approaches (227). A 

general requirement for screening potential small molecules is a highly sensitive assay 

to measure the binding between your two proteins of interest. A potential strategy for 

testing the interaction between Hoxa9 and C/EBPα is fluorescence resonance energy 

transfer assays (228). Directed drug design could also be investigated if the interaction 

domain between Hoxa9 and C/EBPα can be more specifically defined. Identifying a 

small peptide that can block the Hoxa9-C/EBPα interaction can be guided by mutational 

studies and potential peptides can be screened using SPR assays (226). This putative 

peptide could then serve as a backbone for developing peptidomimetic molecules.  

FUNCTIONAL CONSEQUENCES OF CEBPA MUTATIONS ON HOXA9-MEDIATED 

TRANSFORMATION 

While the work presented in this thesis demonstrates a requirement for wild-type 

CEBPA in the development of leukemia with high HOXA9 expression, analysis of 

human leukemias shows that high HOXA9 expression can occur in leukemia with single 

mutations in CEBPA (Figure 2-7). Mutations in CEBPA fall into two categories: N-

terminal mutations that lead to transcription of only the short p30 isoform or C-terminal 
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mutations in the DNA-binding domain (204). These mutations affect not only the binding 

and localization of C/EBPα, but also the recruitment of co-activator and co-repressor 

complexes to C/EBPα-bound loci (223). Though two thirds of leukemias with mutations 

in CEBPA carry biallelic mutations, it is interesting to speculate how single mutations of 

CEBPA may functionally interact with HOXA9 in AML (229-231). Understanding how 

mutant forms of C/EBPα affect the binding and activity of HOXA9 will not only give 

insight into potential mechanisms of transformation in CEBPA single mutant leukemia, 

but may also help further characterize the mechanism for requirement of wild-type 

CEBPA. 

Functional interplay between Hoxa9 and C/EBPα isoforms 

Under normal conditions, the CEBPA transcript yields two isoforms: a full-length 

p42 isoform and a shorter p30 isoform that is transcribed from an alternative start 

codon. Both isoforms are important for hematopoietic differentiation, but they behave 

differently with regards to localization throughout the genome and the proteins they 

interact with (232, 233). Both the p42 and p30 isoforms are detectable by western blot 

in Hoxa9/Meis1 transformed cells (Figure 2-1b), though the full-length p42 is expressed 

at much higher levels. CEBPA is a single exon gene, and the two isoforms are 

expressed as the result of two alternative start codons. The loxP targeting in our 

C/EBPα HM cells result in complete excision of this single exon, therefore leading to the 

loss of both p42 and p30 expression (212).  

Since Hoxa9 can interact with both p42 and p30, we first wanted to test the effect 

of expressing each isoform with Hoxa9. We generated cell lines that allow for 

conditional expression of the C/EBPα isoforms by transducing cells with Hoxa9 and 
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C/EBPα (p42 or p30)-ER or an empty vector control. Hoxa9 is a weak oncogene in the 

absence of co-expressed Meis1, allowing for easier detection of phenotypic differences 

upon induction of C/EBPα. Co-expression of either p42 or p30 leads to a decrease in 

number and size of colonies transformed by Hoxa9 (Figure 3-3a,b). In liquid culture, 

induction of p42 or p30 in cells previously transformed by Hoxa9 leads to a reduction in 

proliferation and differentiation along the myeloid lineage (Figure 3-3c and data not 

shown). These results are consistent with the critical role that C/EBPα plays in driving 

myeloid differentiation. Indeed, forced expression of CEBPA can promote 

transdifferentiation of fibroblasts and MLL-transformed cell lines into macrophages (213, 

214).  
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Figure 3-3 - Overexpression of C/EBPα inhibits transformation by Hoxa9 
(A) Coexpression of full length C/EBPα during initiation of transformation by Hoxa9 
leads to decrease in colony formation size and number. (B) Quantiation of colony 
number in the third round of replating after expressing Hoxa9 with an empty vector, p42-
ER or p30-ER isoforms of C/EBPα. (C) Expression of p42 and p30 lead to decrease in 
proliferation of cells previously transformed by Hoxa9 in a concentration dependent 
manner.  
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The inhibition of Hoxa9-mediated transformation by both p42 and p30 highlights 

the importance of the balance of C/EBPα-HOXA9 levels in leukemia. Indeed, inhibition 

of growth in liquid culture seems to have some concentration dependency. At low levels 

of tamoxifen, there may even be a synergy between C/EBPα p42 and Hoxa9. Further 

characterization of this phenotype using additional concentrations of tamoxifen will be 

worthwhile. Future studies using our C/EBPα HM cells to investigate the expression of 

p42 or p30 on a Cebpa null background will also be valuable for more definitively 

characterizing the phenotype associated with each isoform. 

Since C/EBPα is present at over 50% of Hoxa9-binding sites, we next wanted to 

determine if p42, p30 or both can co-associate with Hoxa9 at these cis-regulatory 

regions. The antibody used in the ChIPseq studies recognizes the C-terminus of 

C/EBPα, which is shared between both the p42 and p30 isoforms. N-terminal antibodies 

exist that are specific to p42, though no p30-specific antibody can be generated due to 

the homology of the C-terminal region. We performed ChIP-qPCR experiments using 

two different C/EBPα N-terminal antibodies at a variety of loci in our Hoxa9/Meis1 

transformed cells (Figure 3-4). While the N-terminal antibodies both produced lower 

enrichment than the C-terminal antibody, the ratio of binding between the various peaks 

is consistent for all three C/EBPα antibodies. The lower enrichment is most likely due to 

differences in antibody affinity. We can definitively conclude that the p42 isoform of 

C/EBPα is co-bound with Hoxa9 at the sites tested. While we cannot exclude the 

possibility that p30 is also present at these sites, this would require the p42/p30 ratio of 

binding at all sites to be the same. If one site had a preference of binding to p30 vs p42, 

the relative levels of binding at various loci would be different using the C-terminal or N-
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terminal antibodies. Therefore, it is more likely that only the p42 isoform is present at 

these sites. It is possible that the p30 isoform co-binds with Hoxa9 at a different subset 

of loci, which could provide different activity of the Hoxa9-complex at these sites. Cell 

lines with conditional expression of p42 or p30 on a Cebpa-null background would be a 

good system for assessing the coassociation of these three proteins at the genomic 

level. 

 

Figure 3-4 - C/EBPα p42 is present at Hoxa9 binding sites 
ChIP for C/EBPα C-terminus (specific to p42 only) and N-terminus (common between 
p42 and p30) show that p42 is present at Hoxa9 binding sites. Similar ratios of C/EBPα 
association at various binding sites with C-term and N-terminal antibodies suggests that 
either only p42 is present at these sites, or the ratio between p42 and p30 is the same 
at all sites. ChIP studies with ER-tagged proteins could aid in further answering this 
question. 
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While significant progress has been made in studying CEBPA mutant leukemia, 

many unanswered questions remain. Characterizing the functional interaction between 

Hoxa9 and C/EBPα p42/p30 may provide valuable insight into the pathogenesis of 

leukemias with mutant forms of CEBPA. These studies may also help to elucidate 

fundamental mechanisms of function in normal hematopoiesis and leukemia.  

REQUIREMENT FOR C/EBPΑ IN OTHER HOXA9-HIGH OR LOW LEUKEMIAS 

A variety of upstream genetic changes lead to high level Hoxa9 expression in 

leukemia. In our studies we used transformation by Hoxa9 and its cofactor Meis1 as a 

model for leukemias with high levels of Hoxa9 regardless of the mechanisms leading to this 

overexpression. To better understand the requirement of C/EBPα in leukemias with high 

levels of HOXA9 it will be important to test this requirement with a variety of oncogenes that 

transform with high HOXA9. Recent publications indicate that C/EBPα is required in the 

initiation of MLL-ENL transformation, but not in the maintenance of these leukemias (234). 

Our results show that C/EBPα is required for both the initiation and maintenance of 

Hoxa9/Meis1-mediated transformation, suggesting that MLL-ENL activates compensatory 

mechanisms that allow for maintenance of transformation in the absence of C/EBPα. 

Testing additional oncogenes for this initiation vs. maintenance phenotype will be valuable 

in understanding the role of C/EBPα in human disease and also may uncover differences 

between transforming mechanisms between various oncogenes that upregulate 

Hoxa9/Meis1. 

The recent work also suggested that C/EBPα may not be required for transformation 

of cells by E2A-HLF, an oncogene that transforms without high levels of Hoxa9/Meis1 (234). 

It should be noted that while E2A-HLF has the ability to transform cells in culture in the 
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absence of C/EBPα, proliferation of these cells was compromised. In addition, the 

requirement for C/EBPα in the maintainence of these leukemias was not tested. While we 

found that the expression of HOXA9 in one cohort of human leukemias varied depending on 

the mutational status of CEBPA, the expression of CEBPA was independent of levels of 

HOXA9 expression and of MLL mutational status (Figure 3-5a,b) (data reanalyzed from 

(202)). Looking at expression of CEBPA in the entire cohort as a function of the FAB status 

shows that a majority of leukemias express CEBPA to some extent (Figure 3-5c). This 

brings up the possibility that CEBPA may play a role in leukemias without high levels of 

HOXA9 as well. To determine HOXA9-independent roles of C/EBPα in leukemia, more in 

depth study of E2A-HLF transformed cells, as well as a panel of other oncogenes with low 

HOXA9 including PML-RARA of the M3 subtype will be required. The conditional deletion 

system for CEBPA is a great model for studying the specificity of this requirement of 

C/EBPα in leukemia. Phenotypes can be characterized using liquid proliferation assays, 

colony formation assays, and in vivo leukemogenesis assays.  
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Figure 3-5 - Expression of CEBPA and HOXA9 in human leukemias 
(A) CEBPA expression in Hoxa9 low, intermediate and high groups as determined by 
the mean ±2SD. (B) CEBPA expression level with respect to MLL translocation status 
(negative or positive). (C) CEBPA and HOXA9 expression with respect to FAB status. 
Data reanalyzed from (202) with Dr. Maria Figueroa. 
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HOXA9 AND C/EBPA IN NORMAL HEMATOPOIESIS 

Oncogenic transformation can result from three categories of alterations: loss of 

function, gain of function or misexpression, where a protein retains its normal function but is 

expressed when it should not be. In the case of HOXA9 activity in acute myeloid leukemia, 

it is not known whether this is a case of gain of function or misexpression. In other words, 

does HOXA9 gain new transcriptional targets during leukemic transformation as a result of 

a change in the transcription factor mileu in malignant cells, or does HOXA9 regulate the 

same genes in the same way during normal and malignant transformation and it is simply 

the lack of downregulation of HOXA9 that contributes to transformation? Investigating these 

questions can provide valuable information with regards to the role of HOXA9 in normal 

hematopoiesis, as well as guiding potential therapeutics. One challenge in targeted cancer 

therapy is the effect drugs may have on the normal function of the targeted protein. If 

leukemia-specific functions of HOXA9 can be identified, these can be specifically targeted 

for therapeutics. 

It is possible that the physical and functional interaction with C/EBPα is an example 

of a gain of function of HOXA9 in leukemia. We determined that C/EBPα colocalizes at 

50% of Hoxa9 binding sites in transformed cells, however it is unknown whether this 

colocalization also occurs in normal hematopoiesis. ChIPseq studies of HOX proteins and 

other hematopoietic transcription factors demonstrate that the binding profiles and 

transcriptional targets of a specific transcription factor can change dramatically depending 

on the differentiation state of a cell. Since antibodies for ChIP for endogenous HOXA9 are 

currently unavailable, it is difficult to study the localization of HOXA9 throughout normal 

hematopoietic differentiation. Continuing efforts to generate a ChIP-grade antibody for 
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HOXA9 would be extremely useful for studying the normal function of HOXA9 as well as for 

studying human leukemias with high expression of HOXA9. Alternatively, a knockin mouse 

could be generated to allow for expression of an epitope-tagged Hoxa9 from the 

endogenous locus, however generation of transgenic mice is challenging and requires 

significant investment of time and resources. 

There are reasons to believe that the interaction between Hoxa9 and C/EBPα may 

also exist in normal hematopoiesis. While HOXA9 is most highly expressed in 

hematopoietic progenitors and C/EBPα is expressed during myeloid commitment, both 

proteins are co-expressed in long-term multipotent progenitors, common myeloid 

progenitors/pre-granulocytic myeloid progenitors and granulocytic myeloid progenitors (and 

to a lesser extent pro-B cells) (Figure 3-6). Our studies suggest that a balance of levels of 

C/EBPα is critical to maintaining a permissive environment for Hoxa9-mediated 

transformation. The balance of C/EBPα levels has also been established to be critical to 

lineage fate choices during hematopoietic differentiation (210). It is possible that in addition 

to directing the differentiation of cells, early expression of C/EBPα in LMPP contributes to 

the activity of HOXA9 in normal hematopoiesis. Since HOXA9 is primarily responsible for 

maintaining proliferation and C/EBPα drives differentiation, it is also possible that there are 

antagonistic targets of HOXA9 and C/EBPα where the increasing C/EBPα out-competes 

HOXA9 to promote decrease in proliferation and differentiation.   
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Figure 3-6 - Expression of Hoxa9 and Cebpa during hematopoietic differentiation 
Expression levels of Hoxa9 and Cebpa during normal hematopoietic differentiation, as 
determined from an online database of multiple gene expression profiles in 
hematopoietic cells (69) [Expression presented in log2 scale]. Schematic representation 
of Hoxa9 and Cebpa expression, where large font and bold typeface indicate higher 
expression levels. Image modified from (235). 
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ANTAGONISM OF HOXA9 AND C/EBPA 

We performed RNA-seq in cells 72 hrs after loss of either C/EBPα or Hoxa9, and 

looked for co-regulated targets between the two proteins. While some genes were 

significantly co-activated or co-repressed by Hoxa9 and C/EBPα (Figure 2-11) the 

majority of targets were antagonistically regulated (Figure 3-7). These gene targets 

include proleukemic targets such as Flt3, CD34 and Sox4 that are activated by Hoxa9 

and repressed by C/EBPα. In addition, genes involved in myeloid differentiation such as 

CD14, Csf1 and Itgam (CD11b) are activated by C/EBPα and repressed by Hoxa9. 

These results are consistent with our phenotypic characterization of cells after loss of 

Hoxa9 or C/EBPα, as cells differentiate and upregulate CD14 and CD11b after loss of 

Hoxa9 but decrease expression of CD14 and CD11b after loss of C/EBPα. In many 

ways, antagonism between Hoxa9 and C/EBPα is expected, as the two proteins play 

fundamentally different roles in hematopoietic development. It is reasonable to believe 

that Hoxa9 and C/EBPα may compete for binding at some targets, and changes in their 

expression level as differentiation progresses leads to skewing of cell programming 

from self-renewal to differentiation. Conversely, the collaboration between Hoxa9 and 

C/EBPα uncovers a novel role for C/EBPα in promoting leukemogenic transformation. 

This cooperation suggests that the balance of C/EBPα levels is critical for maintaining 

transformation by Hoxa9/Meis1.  
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Figure 3-7 - Genes antagonistically regulated by Hoxa9 and C/EBPα 
Lists of genes that are antagoniscally regulated more than 1.5 fold by Hoxa9 and 
C/EBPα as determined by overlap of RNAseq 72 hours after loss of Hoxa9 or C/EBPα.  
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INVESTIGATION OF OTHER POTENTIAL HOXA9 COLLABORATORS 

SWI/SNF complex member, Brg1 

 In our original study identifying potential collaborator proteins of Hoxa9, a number 

of additional factors were identified using co-immunoprecipitation followed by mass 

spectrometry. Of particular interest, multiple members of the SWI/SNF chromatin-

remodeling complex were identified as potential members of the myeloid Hoxa9/Meis1 

complex. The SWI/SNF complex is a multi-subunit protein complex that regulates 

chromatin organization by modulating nucleosomal positioning in an ATP-dependent 

manner. The SWI/SNF complex was first identified in S. cerevisiae as five genes 

important for the induction of transcriptional programs during mating and sucrose 

fermentation (236). Further studies established that these proteins physically interact 

and immunoprecipitate in a single complex that functions to modulate chromatin 

structure (237). Members of the SWI/SNF complex are highly evolutionarily conserved 

in eukaryotes. Owing to the large number of homologues of SWI/SNF, there are a large 

number of mammalian SWI/SNF complexes with various compositions of different 

subunit combinations (238). While the composition of mammalian SWI/SNF complexes 

is tissue specific and multiple complexes can be formed in a single cell type, a core 

complex exists containing BAF155, BAF170, INI1 and a catalytic subunit of either BRG1 

or BRM. BRG1 and BRM are highly homologous ATPases that are mutually exclusive 

and regulate distinct subsets of target genes (239). It has also been established that 

Brm-containing complexes are more common in cells that are not proliferating while 

Brg1-containing complexes are found in cells that require replication (239). 

Using co-immunoprecipitation followed by mass spectrometry, we identified Brg1 
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as a potential member of the myeloid Hoxa9/Meis1 complex. Brg1 was identified with 

high predictive scores in immunoprecipitations with both Hoxa9 and Meis1, along with 

additional SWI/SNF complex members Baf57, Baf170, Baf155, Baf250a and Baf60a/b 

(Figure 3-8). The interaction between Brg1 and Hoxa9 was subsequently confirmed by 

co-expressing various mutant forms of Hoxa9 in 293 cells which immunoprecipitated 

along with endogenous Brg1. BRG1 has been shown to play important roles in 

malignant transformation, both as a tumor suppressor through the regulation of Rb 

mediated cell cycle arrest and as an oncogene by suppressing p53 activity (240, 241). 

Most importantly, in a loss of function shRNA screen targeting known chromatin 

regulators, Brg1/Smarca4 was identified as being required for the maintenance of MLL-

AF9-induced leukemic transformation (242). 

 

Figure 3-8 - Brg1 physically interacts with Hoxa9 in mouse myeloblastic cells 
Co-immunoprecipitation mass spectrometry experiments in cells transformed with 
Hoxa9/Meis1 identified multiple SWI/SNF family members as potentially interacting with 
Hoxa9. Co-immunoprecipitation in 293 cells followed by western blot confirmed the 
interaction between Hoxa9 and SWI/SNF catalytic subunit Brg1. 

To test the requirement for Brg1 in Hoxa9/Meis1-mediated transformation, we 
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generated cell lines that allow for conditional deletion of Brg1 using an inducible shRNA 

(in collaboration with Surya Nagaraja and Laura Wu). These cells constitutively express 

the Tetracycline repressor protein (TetR), which mediates silencing of the cotransfected 

shRNA constructs. In the presence of doxycycline, the TetR dissociates from the DNA 

allowing for transcription of the shRNA. Using this system, we transduced cells with 

Hoxa9, Meis1 and shRNAs targeting Brg1 or Renilla (as a control) (242). We also 

generated a control cell line using E2A-HLF, an oncogene that leads to myeloid 

transformation in the absence of detectable Hoxa9 or Meis1 expression levels. 

Consistent with results in MLL-AF9 transformed cells, loss of Brg1 dramatically reduces 

the proliferative capacity of cells transformed with Hoxa9/Meis1 and results in 

differentiation of the cells along the myeloid lineage (Figure 3-9a-c). Loss of Brg1 also 

leads to a decrease in proliferation in the E2A-HLF transformed cells, though to a lesser 

extent than in the Hoxa9/Meis1 transformed cells. These results suggest that Brg1 and 

the SWI/SNF chromatin-remodeling complex may play a more general role in 

maintaining the transcriptional program required for leukemic transformation. Future 

work employing this inducible model system to study the requirement for Brg1 in 

leukemias initiated by other oncogenes, including those with high and low Hoxa9/Meis1 

expression, will help to define general and context specific mechanism for Brg1 in 

transformation. While recent publications suggest that Brg1 may play a role upstream of 

Hoxa9 in MLL-AF9 transformed cells by maintaining high expression levels of Hoxa9, 

our results suggest that Brg1 has additional roles downstream of Hoxa9/Meis1 

expression (244). These data provide further support for Brg1 and the SWI/SNF 

complex acting as collaborating members of the myeloid Hoxa9/Meis1 complex. 
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Figure 3-9 - Loss of Brg1 leads to growth inhibition and differentiation of 
transformed cell lines 
(A) Knockdown of Brg1 in Hoxa9/Meis1 and E2A-HLF transformed cells leads to a 
decrease in cellular proliferation, while induction of shRenilla control lead to no change 
in proliferation. (B) Protein levels assessed by western blot show efficient knockdown fo 
Brg1 after 4 days treatment with doxycycline (DOX).  (C) Gross morphologic changes in 
Hoxa9/Meis1 transformed cells consistent with differentiation along the myeloid lineage. 
(in collaboration with Surya Nagaraja and Laura Wu). 
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 SWI/SNF complexes bind to DNA in a sequence-independent manner, partially 

mediated by the bromodomain region in the Brg1 or Brm subunit, which binds to 

acetylated histones (237). Transcription factors that interact with various SWI/SNF 

complexes add targeting specificity for nucleosomal remodeling. In addition, the activity 

of the SWI/SNF complex to relax or condense chromatin can subsequently make 

certain genomic regions more or less accessible for the binding of additional 

transcription factors. To investigate the functional relationship between Brg1 and Hoxa9 

at the genomic level, we performed ChIP-qPCR for Hoxa9 and Brg1 in our model cell 

lines. Brg1 co-binds along with Hoxa9 at a number of cis-regulatory sites identified in 

our Hoxa9 ChIPseq experiments. Interestingly, Hoxa9 binding at these sites is stable 

72hrs after the loss of Brg1 (Figure 3-10). These data suggest that Brg1 may not be 

playing a role in maintaining chromatin accessibility for Hoxa9 at these particular loci. It 

should be noted, however, that the reduced proliferative capacity of Hoxa9/Meis1 

transformed cells after loss of Brg1 has a long latency, where significant changes in cell 

number are seen starting around 6 days. It is possible that while Brg1 is required for 

establishing the areas of chromatin accessibility for Hoxa9 binding, it does not play a 

role in maintaining this architecture. Thus, changes in nucleosomal positioning at these 

sites may require additional time or cell divisions. Examining the binding stability of 

Hoxa9 after extended periods of loss of Brg1 would be a first step in clarifying this 

result. Similarly, establishing the requirement of Hoxa9 for Brg1 binding at co-bound loci 

using the Hoxa9-ER/Meis1 tamoxifen-inducible cells can determine if Hoxa9 is playing a 

role in stabilizing or targeting Brg1 to specific regions of the genome. 
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Figure 3-10 - Hoxa9 binding is stable in the absence of Brg1 
ChIP performed in Hoxa9/Meis1 transformed cells at 72 hours after loss of Brg1 (+dox) 
shows that Brg1 is not required for the immediate stability of Hoxa9 at cis-regulatory 
elements. (in collaboration with Surya Nagaraja and Laura Wu). 

 While studying the functional interaction between Hoxa9 and Brg1 at a subset of 

binding sites can give clues to a potential mechanism for the requirement of Brg1 in 

Hoxa9/Meis1-mediated transformation, employing genome-wide approaches can likely 

provide more valuable insights. Establishing the co-dependancy of Brg1 and Hoxa9 

binding on the genome-wide scale using our two inducible systems will help to define a 

mechanism for the requirement of Brg1 in Hoxa9/Meis1 transformation. It is possible 

that Brg1 establishes areas of chromatin accessibility to allow for Hoxa9 binding, but it 

is also equally likely that Hoxa9 (along with other collaborating factors) recruits Brg1 to 

specific loci, thereby directing the chromatin landscape in those regions. Investigating 

the genome-wide chromatin architecture using DNase-hypersensitivity assays after loss 

of either Brg1 or Hoxa9 will help distinguish between these two possibilities (243).  

Since the vast majority of Hoxa9 binding sites occur in promoter-distal regions, it 

is highly likely that looping to facilitate enhancer-promoter interactions is critical to 
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Hoxa9’s role as a transcriptional regulator. Multiple studies have confirmed a 

requirement for SWI/SNF in chromatin looping, including the recent work in MLL-AF9 

cells that shows Brg1 is required for maintaining enhancer-promoter proximity at the 

Myc superenhancer (244). Brg1 may be required for maintaining enhancer-promoter 

looping required for Hoxa9-dependent gene regulation from distal genomic regions. 

While comprehensive “5C” methods exist for providing full-scale characterization of 

genome-wide looping interactions, more targeted 4C and 3C approaches can be used 

to characterize Hoxa9-dependant looping and the requirement for Brg1 in those 

interactions (245).  

Given the requirement for Brg1 for the proliferation of Hoxa9/Meis1-transformed 

cells in vitro and for the aggressiveness of MLL-AF9 transformed cells in vivo, further 

characterization of the mechanism for this requirement is critical. Interestingly, 4 out of 

the 6 other SWI/SNF subunits that were found to be required in MLL-AF9 transformation 

(BAF60b, BAF250a, BAF60a and BAF155) were also identified in our co-

immunoprecipitation studies with Hoxa9/Meis1, providing strong evidence for a specific 

role for the SWI/SNF complex through physical interaction with the Hoxa9/Meis1 

complex (244). Understanding this functional interaction will shed light on mechanisms 

of Hoxa9-dependent gene regulation. 

 

ASSESSING DIRECT TARGETS OF HOXA9 

Cdkn2a/b 

Of equal interest to characterizing the mechanisms through which Hoxa9 

regulates gene expression is the identification of the critical downstream targets that 
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mediate leukemic transformation. In studying the functional interaction between C/EBPα 

and Hoxa9, we observed that loss of either C/EBPα or Hoxa9 leads to a decrease in 

proliferation and a block in cell cycle progression at the G1/S transition. We also 

identified the cell cycle regulators, Cdkn2a(p16/INK4a) and Cdkn2b(p15/INK4b), as 

targets of repression by Hoxa9 and C/EBPα. Both Cdkn2a and Cdkn2b regulate the G1 

to S-phase transition through direct inhibition of cyclin dependent kinases 4 and 6 

(Cdk4/6), thereby preventing the phosphorylation of retinoblastoma family members 

required for cell cycle progression (246). An additional cell cycle regulator, ARF, is also 

expressed from an alternative start codon in the Cdkn2a locus, and while these two 

proteins share exons 2 and 3 they are expressed from two different open reading 

frames and share no sequence homology. ARF acts as a cell cycle inhibitor through the 

Mdm2/p53 pathway, and expression of Cdkn2a and Arf are tightly co-regulated (247). 

Cdkn2a/Arf/Cdkn2b all act as tumor suppressors in a wide variety of malignancies, 

where their expression is decreased through both epigenetic silencing and deletions 

(217, 248). Mouse models with deletions of each show increased incidence of 

spontaneous cancers, many occurring in the hematopoietic compartment, with the most 

dramatic phenotypes seen in mice with deletion of all three proteins (249-252). Indeed, 

both Cdkn2a/b are silenced in hematopoietic neoplasms through DNA 

hypermethylation, which in the case of Cdkn2b can be observed in 70-80% of patients 

with AML and is associated with poor prognosis (218, 253, 254). 

Work is currently ongoing to test the requirement of Cdkn2a/b repression for 

transformation by Hoxa9/Meis1 as well as for mediating the block in cell cycle 

progression after loss of C/EBPα or Hoxa9. Preliminary results suggest that 
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overexpression of CDKN2A or CDKN2B decreased the transforming ability of 

Hoxa9/Meis1 as evidenced by decrease in colony number and size in the first and 

second round of plating. Similarly, overexpression of CDKN2A/2B in cells transformed 

by Hoxa9/Meis1 leads to a decrease in proliferation in liquid culture. Studies are 

ongoing to characterize the cell cycle dynamics in these systems. We are also 

attempting to rescue the cell cycle block after loss of Hoxa9 or C/EBPα using shRNAs 

targeting Cdkn2a or Cdkn2b. Given that Cdkn2b can compensate for loss of Cdkn2a 

and vice versa, it may be required to target both genes simultaneously to achieve 

maximum efficiency (252). Still, it is likely that repression of Cdkn2a/b is one of many of 

the important actions of Hoxa9 and C/EBPα for leukemic transformation, so only a 

partial rescue may be observed.  

Previous work performed in a fibroblast model of oncogene-induced senescence 

has implicated HOXA9 in the direct repression of CDKN2A through promoter binding 

and recruitment of polycomb protein SUZ12 and histone deacetylase HDAC1 (225). 

While we did not observe a Hoxa9 binding site at the promoter of either Cdkn2a/b in our 

ChIPseq study or by ChIP-qPCR, we did identify a Hoxa9/C/EBPα cobound region 50kb 

downstream of the Cdkn2a/Arf/Cdkn2b locus (Figure 2-12a). Interestingly, this binding 

site shows local enrichment of H3K4me1 and depletion of H3K27me3 in a region 

otherwise broadly modified by H3K27me3. It is possible that Hoxa9 and C/EBPα 

mediate the repression of Cdkn2a/b through recruitment of polycomb and histone-

deacetylases to the promoters via chromatin looping interactions. Indeed, C/EBPα has 

been shown to interact with HDAC1 in liver cells, and HDAC1 was identified in our 

original coIP/MS screen as interacting with Hoxa9 (174, 255). Initial steps towards 
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testing this mechanism would include performing coimmunoprecipitation to determine if 

HDAC1 complexes with Hoxa9 and C/EBPα in Hoxa9/Meis1 transformed cells. 

Additionally, ChIPqPCR for HDAC1 and SUZ12 at both the Cdkn2a/b promoters and the 

downstream Hoxa9/C/EBPα cobound site in both the presence and absence of Hoxa9 

or C/EBPα would potentially show a requirement for Hoxa9 and C/EBPα in recruiting 

polycomb to these promoters. Preliminary attempts in ChIP for HDAC1 and SUZ12 did 

not show binding at either locus, though positive and negative control regions for both 

proteins are needed to determine if the immunoprecipitation was successful. 

Alternatively, characterizing the change in H3K4me3 and H3K27ace, the histone 

modifications regulated by HDAC1 and SUZ12, can act as a surrogate readout. These 

studies are currently ongoing and will help shed light on potential mechanism of 

Hoxa9/C/EBPα mediated repression of Cdkn2a/b.  

There is additional evidence that Hoxa9 and C/EBPα may regulate Cdkn2a/b 

repression by long-range chromatin interactions. First, the reports of HOXA9 binding to 

the promoter of CDKN2A both in vitro and in cells establishes that this interaction is 

possible but potentially not strong enough to show direct binding using our ChIP 

methods (225). Furthermore, the SWI/SNF complex is well established to be involved in 

chromatin looping, and multiple SWI/SNF complex members interact with Hoxa9 

including Brg1, which we show is required for Hoxa9-mediated transformation (256). 

C/EBPα also interacts with Brg1, suggesting the three proteins may form a complex that 

helps mediate repression of this locus (162). Using our Hoxa9/Meis1-transformed cells 

that allow for conditional deletion of Brg1, we can test the requirement for Brg1 in 

Cdkn2a/b repression, as well as in the changes to epigenetic modifications in this 
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region. Chromatin conformation capture technology can also be used to test either 

direct interaction between the Hoxa9/C/EBPα binding site and the Cdkn2a/b promoters 

or in a high-throughput manner to determine all of the long-range interactions that occur 

with this binding site.  

It is possible that the repression of Cdkn2a/b by Hoxa9 and C/EBPα does not 

occur via promoter interactions, but instead through the regulation of a long non-coding 

RNA. Recent studies implicate lncRNA ANRIL in the polycomb-mediated repression of 

the INK4A/B locus in humans (257, 258). ANRIL is transcribed antisense through the 

Cdkn2b locus, extending over 120kb downstream. The Hoxa9/C/EBPα cobound region 

lies within the mouse homolog of the ANRIL transcript, potentially regulating its 

transcription or activity. Preliminary studies testing the expression of this lncRNA after 

loss of Hoxa9 or C/EBPα could be performed. If changes in expression level are 

observed, exogenous overexpression of ANRIL or targeting with an shRNA can further 

characterize the requirement of this transcript for Hoxa9-mediated transformation. 

While our work conclusively shows an induction of Cdkn2a/b expression after 

loss of either Hoxa9 or C/EBPα (Fig2-12d,e), more definitive studies are required to 

establish the requirement of the co-bound cis-regulatory region for Cdkn2a/b 

repression. Recent advances in genome editing technology allows for more efficient 

targeting of specific loci. A technique called CRISPR (clustered regulatory interspaced 

short palindromic repeats) uses complementary RNA sequences to target an 

endonuclease to specific loci, which creates double strand DNA breaks (259-261). 

Genomic editing can be accomplished by coexpressing a complementary 

oligonucleotide that will be used in homologous repair of the double-strand break. For 
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the purposes of our studies, this complementary oligo could contain mutated or deleted 

HOX or CEBP motifs to disrupt binding. Alternatively, the oligo could have inserted loxP 

sequences flanking the Hoxa9/C/EBPα cobound region to allow for cre-mediated 

deletion of this binding site. Correctly targeted cells could be used directly in cell based 

assays, or could subsequently be used for generating a targeted mouse model. As a 

third approach, CRISPR could be used to disrupt Hoxa9/C/EBPα binding by targeting a 

catalytically inactive endonuclease with a library of RNAs complementary to the co-

bound site, which will remain bound without inducing any genomic breaks and 

potentially block the Hoxa9/C/EBPα association. 
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CHAPTER 4:  

CONCLUSIONS 

With the continuing discovery of diseases that involve the dysregulation of HOX 

genes, it is increasingly more important to understand the mechanisms through which 

HOX proteins achieve transformation to help guide future therapies. A large number of 

studies have employed microarray technology to establish transcriptional targets of 

HOX proteins, but relatively little progress has been made determining which targets are 

critical for disease processes and how HOX proteins regulate these targets. In this 

thesis, we focused our studies on HOXA9, whose expression is upregulated in over 

50% of AML and correlates strongly with poor prognosis. By combining genome-wide 

analysis of Hoxa9 binding sites in murine cell lines transformed by Hoxa9/Meis1 and 

identification of proteins that co-immunoprecipitate with the myeloid Hoxa9 complex, our 

group identified a number of factors that could potentially collaborate with Hoxa9 during 

leukemic transformation. Of particular interest were the lineage specific transcription 

factor, C/EBPα, as well as the SWI/SNF catalytic subunit, Brg1. Using cell based 

assays, genome-wide approaches, and in vivo studies, I made significant progress in 

characterizing the functional interaction between these factors and Hoxa9. 

 In Chapter 2, I show that C/EBPα is required for leukemic transformation 

mediated by Hoxa9/Meis1. I first generated cell lines that allow for conditional loss of 

Hoxa9 or C/EBPα and characterized the phenotypes of these cells. Loss of either 
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Hoxa9 or C/EBPα leads to a decrease of proliferation of cells in liquid culture, which is 

accompanied by a block in cell cycle at the G1/S phase.  Interestingly, cells additionally 

undergo myeloid differentiation and apoptosis in the absence of Hoxa9 but not after loss 

of C/EBPα, likely reflecting the important role that C/EBPα plays in promoting these 

processes. Given the requirement for C/EBPα for Hoxa9/Meis1-transformation in 

culture, I next tested the requirement of C/EBPα for in vivo leukemogenesis. Loss of 

C/EBPα leads to a significant improvement in survival in both primary and secondary 

Hoxa9/Meis1 leukemias in mice. Additionally, I observed a strong selective pressure for 

maintaining high C/EBPα levels in cell culture and in the murine leukemias.  

To elucidate the molecular mechanism behind the requirement of C/EBPα in 

Hoxa9-medated leukemogenesis, I performed ChIPseq for C/EBPα and Hoxa9 in our 

transformed cells. C/EBPα co-associates at over 50% of Hoxa9 binding sites, and 

genes downstream of C/EBPα/Hoxa9 co-bound sites are involved in the regulation of 

critical hematopoietic processes. I also performed RNAseq using our conditional cell 

lines to identify targets co-regulated by C/EBPα and Hoxa9. Though relatively small 

number of genes were found to be significantly coactivated or corepressed by C/EBPα 

and Hoxa9, multiple targets involved in the regulation of cell cycle were among these 

targets. Of particular interest were the cyclin dependent kinase inhibitors Cdkn2a and 

Cdkn2b. I identified a strong Hoxa9/C/EBPα co-bound site 50kb downstream of the 

Cdkn2a/b locus that could potentially allow for direct regulation of their expression. 

Studies characterizing the mechanism for Hoxa9/ C/EBPα repression of Cdkn2a/b as 

well as the requirement of this repression for leukemogenesis are ongoing. 

Consistent with the differing phenotypes of our cell lines after loss of Hoxa9 or 
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C/EBPα, a large number of genes were antagonistically regulated by these two 

transcription factors. Many of these genes are involved in pathways regulating myeloid 

differentiation while others associated with cellular proliferation. These targets may 

represent genes normally antagonistically regulated by Hoxa9 and C/EBPα during 

hematopoietic differentiation. Indeed, Hoxa9 is most highly expressed in early 

progenitors while C/EBPα is expressed in cells committed to the myeloid lineage. It is 

reasonable to believe that Hoxa9 and C/EBPα may compete for binding at some 

targets, and changes in their expression level as differentiation progresses leads to 

skewing of cell programming from self-renewal to differentiation. Further 

characterization of this antagonism will likely provide valuable insight into the function of 

Hoxa9 in both normal and malignant hematopoiesis. In addition, this antagonism 

suggests that the balance of C/EBPα levels is critical for maintaining transformation by 

Hoxa9/Meis1. Indeed, both loss of C/EBPα and its overexpression leads to a decrease 

in proliferation of Hoxa9-transformed cells, suggesting moderate levels of C/EBPα 

provide an environment that promotes transformation without driving myeloid 

differentiation (Figure 4-1). Study of the requirement for C/EBPα in other Hoxa9-high 

and Hoxa9-low models of leukemia will help establish if this is a more general property 

of lineage-determining transcription factors in leukemia, or if this is specific to the 

Hoxa9- C/EBPα functional interaction. 
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Figure 4-1 - Levels of C/EBPα critical for maintaining transformation 
Moderate levels of C/EBPα are required for transformation by Hoxa9/Meis1. Loss of 
C/EBPα leads to cell cycle arrest while overexpression of C/EBPα leads to induction of 
myeloid differentiation. 

I also made preliminary progress in establishing a role for the SWI/SNF complex, 

specifically the catalytic subunit Brg1, in Hoxa9-mediated leukemogenesis. Using a cell 

line allowing for conditional expression of shRNAs targeting Brg1, I found that loss of 

Brg1 leads to both a decrease in proliferation and induction of differentiation of cells 

transformed by Hoxa9/Meis1. Given the increasing evidence that both chromatin 

accessibility and long-range chromatin interactions are critical for transcriptional 

regulatory abilities of distal enhancers, we hope to use this model system to continue to 

study the importance of the SWI/SNF complex in Hoxa9-mediated transformation.  

There are still many interesting avenues to explore with regards to other proteins 

that potentially collaborate with Hoxa9. My studies suggest that Hoxa9 targeting and 

downstream gene regulation depends on both lineage specific transcription factors and 

chromatin remodeling machinery (Figure 4-2). I can also speculate that the activity of 
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Hoxa9 transcriptional regulatory complexes may be modulated by upstream signal 

transduction pathways, including those acting through Stat5. Work is ongoing in 

attempts to characterize the functional interaction between Hoxa9 and Stat5 in leukemic 

transformation. It is also interesting to hypothesize about the lineage specificity of 

Hoxa9-complexes and transcriptional targets. Indeed, Hoxa9 is upregulated in a subset 

of acute lymphoblastic leukemias as well as in other malignancies including prostate, 

ovarian and breast cancer. Many of the approaches used in this thesis could be applied 

to studying Hoxa9 in other model systems as a way to increase our understanding of 

Hoxa9-mediated transformation in general. I hope that the work presented in this thesis 

will serve as a solid foundation for future studies that will continue to increase our 

understanding of HOX biology in disease, and ultimately lead to improved therapeutic 

strategies and patient outcomes.  

 

Figure 4-2 - Model for HOX targeting and activity 
The work presented in this thesis the combined action of lineage specific transcription 
factors, chromatin remodeling machinery, chromatin modifying enzymes and upstream 
signal transduction pathways in mediating transcriptional regulation by Hoxa9 in 
leukemia. 
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