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Abstract 

Influenza is an important respiratory virus in terms of morbidity and mortality, and influenza 

vaccines are the best available means of preventing infection. However, protection provided by 

influenza vaccine is not absolute and varies from year to year. While the antigenic match 

between the virus strains that circulate and those included in the vaccine is thought to impact 

annual effectiveness, other, less studied, factors may lead to year to year variability in vaccine 

effectiveness (VE) estimates.  

This dissertation examined two factors, one biological and one methodological, which could 

contribute to variability in estimates of influenza VE: waning protection of vaccine and model 

choice in household cohort studies. Waning protection was explored through examination of 

the persistence of antibodies to influenza hemagglutinin (HA) and neuraminidase (NA) in 

Chapter 2. Healthy adults participating in a randomized placebo-controlled trial of inactivated 

(IIV) and live-attenuated (LAIV) influenza vaccines provided blood specimens immediately prior 

to vaccination and at 1, 6, 12, and 18 months postvaccination spanning the 2005-2006 and 

2006-2007 influenza seasons. Rates of hemagglutination inhibition (HAI) and neuraminidase 

inhibition (NAI) titer decline in the absence of infection were estimated. 

Waning protection of vaccine was additionally examined through estimation of time-varying 

vaccine efficacy in Chapter 3. Time varying vaccine efficacy (VE(t)) was examined in healthy 

adult participants in a placebo-controlled trial of IIV and LAIV carried out during the 2007-2008 

influenza season. Symptomatic respiratory illnesses were laboratory-confirmed as influenza. 

VE(t) was estimated by fitting a smooth function based on residuals from Cox proportional 

hazards models. Subjects had blood collected immediately prior to vaccination, 30 days after 

and at season's end for testing by hemagglutination inhibition and neuraminidase inhibition 

assay.
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In Chapter 4, we compared VE estimates from a household cohort study using standard Cox 

proportional hazards (PH) models and an extended individual-based transmission hazard (TH) 

model which specifies household structure and within household transmission processes. 

Extending the model required estimating a time-varying hazard of infection from the 

community, and estimating the total hazard of infection (from the community and the 

household) for individuals over the entire influenza season; considerations not essential to 

previous studies with short (~14 days) periods of follow-up. VE estimates, overall and by age 

and infection source (community vs household-acquired), were compared across models. TH 

model simulations were additional used to assess model fit to observed data, and to predict 

numbers of infections expected under varying levels of VE. 

In terms of waning protection, antibodies to influenza HA and NA were found to persist for 

relatively long periods of time, and waning efficacy was observed only minimally among IIV 

recipients in a single influenza season. The findings support current recommendations for 

annual influenza vaccination at the earliest opportunity. In terms of model choice, we found 

that VE estimates were similar when estimated in Cox PH models and in TH models which were 

extended for use in household cohort studies as part of this dissertation. Even given these 

similarities, the ability of the TH model to accurately describe and predict transmission of 

influenza infections presents an opportunity for the continued study of additional causes of 

variability in influenza VE estimates going forward. 
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Chapter 1. 

Background and Significance 

Introduction 

Influenza is an important respiratory virus in terms of morbidity and mortality, and influenza 

vaccines are the best available means of preventing infection. However, protection provided by 

influenza vaccine is not absolute and varies from year to year. While the antigenic match 

between the virus strains that circulate and those included in the vaccine is thought to impact 

annual effectiveness, other, less studied, factors may lead to year to year variability in vaccine 

effectiveness estimates.  

Given concerns of rapid waning of vaccine induced protection, the timing of vaccination relative 

to circulation of influenza in a given year may affect overall effectiveness estimates. While 

antibody to influenza hemagglutinin is well recognized as a correlate of protection against 

influenza, the role of antibody to the neuraminidase is now being recognized as well. 

Persistence of antibodies to these two antigens following vaccination may correlate with 

protection over time. However, the association is not perfect and it is, therefore, important to 

also examine how protection varies with time. 

Because all individuals ≥6 months of age are now recommended to receive influenza vaccine 

annually, only observational studies of influenza vaccine effectiveness are appropriate in the 

United States. Most annual influenza vaccine effectiveness studies are carried out in the 

outpatient setting; however, we have also estimated vaccine effectiveness in a cohort of 

households with children. Previous vaccine effectiveness estimates in this cohort have not 

explicitly modeled how the risk of infection changes once influenza has been introduced to a 

household. Novel analytic methods which account for risk of infection from both the
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community and household are desirable to assess the robustness of previous estimates and 

improve future analyses.         

This dissertation utilized existing data from two recent studies, one randomized trial and one 

household cohort study. Duration of vaccine induced protection against influenza was assessed 

by examining the persistence of antibodies to influenza hemagglutinin and neuraminidase 

antigens over time and by estimating vaccine efficacy as a function of time in the randomized 

trial. An individual-based transmission hazard model of influenza infection from the community 

and the household was extended for use with household cohort data, applied to estimate 

influenza vaccine effectiveness, and estimates compared to those from standard Cox 

proportional hazards models. Results of these analyses may contribute to better understanding 

of the factors that influence annual influenza vaccine effectiveness estimates. 

Specific Aims and Hypotheses 

The specific aims of this dissertation are to: 

Aim 1. Estimate the rates of titer change of antibodies to influenza hemagglutin and 

neuraminidase antigens in the absence of influenza infection and determine the effects of 

vaccination, prior history of vaccination, and peak antibody titers on rates of antibody change. 

Hypothesis 1. Antibody titers will decrease over time; rates of decline will vary by vaccination 

status, prior history of vaccination, and peak antibody titers. 

Aim 2. Estimate influenza vaccine efficacy in preventing symptomatic, laboratory confirmed 

influenza as a function of time from vaccination. 

Hypothesis 2. Influenza vaccine efficacy will decrease with time following vaccination. 

Aim 3. Evaluate an individual-based transmission hazard model of influenza infection from the 

community and the household for use in household cohort studies, comparing vaccine 

effectiveness estimates from transmission hazard models to those estimated in Cox 

proportional-hazards models.  
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Hypothesis 3. Influenza vaccine effectiveness estimates from the transmission hazard model 

will differ from those of the Cox proportional hazards model. 

Background and Significance 

Influenza viruses are important causes of human respiratory illness. Infection with these viruses 

results in significant morbidity and mortality during seasonal epidemics each year. It has been 

estimated that an average of >200,000 hospitalizations and >30,000 all-cause deaths are 

associated with influenza in the United States (US) each year [1, 2]. In addition, the periodic 

emergence of novel influenza A viruses can result in a pandemic. The impact of an influenza 

pandemic is variable; it is estimated that ~10 million hospitalizations and ~2 million deaths in 

the US may be associated with a severe pandemic, while ~300,000 hospitalizations and ~12,000 

deaths were estimated to have resulted from the 2009 A (pH1N1) pandemic [3, 4]. Vaccination 

against influenza is currently the best available protection against seasonal influenza, and the 

development of new vaccines is a priority when novel influenza strains with pandemic potential 

are identified.  

In the US, all persons age 6 months or older are recommended to receive the influenza vaccine 

each year [5]. Because the virus strains that circulate and are included in the vaccine vary from 

year to year, it is desirable to estimate the effectiveness of the influenza vaccine on an annual 

basis. However, placebo-controlled trials to examine vaccine efficacy can no longer be ethically 

carried out in the US because of the near universal recommendation for influenza vaccination.  

As a result, observational studies of vaccine effectiveness (VE) have become essential. Many 

countries now have programs in place to evaluate VE in preventing medically-attended 

influenza, primarily utilizing the observational case-test negative design [6-10]. In the test-

negative design, subjects seeking medical care for an acute respiratory illness are enrolled and 

tested for influenza, those testing positive are considered cases and those testing negative are 

considered controls [11, 12]. Vaccination status is determined and compared for each group to 

estimate VE.  

While VE is routinely evaluated, less is known about the factors that determine differences in 

effectiveness year to year. Antigenic match between circulating viruses and those included in 
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the vaccine can impact VE each year with poorer match associated with lower VE [13]. 

However, this effect is not consistent as relatively high efficacy has been demonstrated against 

circulating viruses that are drifted from those included in the vaccine [14, 15]. Other factors, 

beyond antigenic match, that may impact annual VE estimates have been less studied. Given 

concerns of rapid waning of protection, the timing of vaccination relative to circulation of 

influenza may affect overall effectiveness estimates [16-18]. While antibody to the influenza 

hemagglutinin (HA) antigen is well recognized as a correlate of protection, the role of antibody 

to the neuraminidase (NA) is now being recognized as well [19, 20]. Given that the 

concentration of NA in vaccines is not standardized, or even present in some new vaccines, 

differences in annual vaccine composition and patterns of use may also affect VE estimates[21]. 

Additionally, patterns of prior vaccination and infection may impact the effectiveness of a 

vaccine [22-24].  

Persistence of antibodies to influenza hemagglutinin and neuraminidase 

The HA and NA glycoproteins are the two major surface antigens of the influenza virus. 

Influenza HA facilitates infection by binding to sialic acid on the surface of cells in respiratory 

tract and subsequently causing fusion of the viral envelope to the host cell membrane allowing 

viral entry into the cell [25]. Influenza NA facilitates viral replication and shedding by cleaving 

the sialic acid bond allowing release of virus from the cells of the respiratory tract following 

replication [25]. Titers of antibody to the HA and NA are measured in hemagglutination-

inhibition (HAI) and neuraminidase-inhibition (NAI) assays, respectively. Antibodies are 

produced against these two antigens in response to infection or vaccination. Antibody titers to 

HA been shown to be the major correlate of protection against influenza infection; antibody 

titers to NA also correlate with protection against infection as well as severity of influenza 

illness [19-21, 26-28]. 

Influenza vaccines have long been evaluated based on the antibody response they elicit, 

particularly to HA. In order to standardize evaluation of influenza vaccines, the Committee for 

Proprietary Medicinal Products (CPMP) released guidelines in 1997 for the interpretation of 

antibody response to vaccination as measured by the HAI assay [29]. Criteria defined by the 
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CPMP include “seroprotection”: the proportion achieving a postvaccination HAI titer ≥40, 

“seroconversion factor”: fold increase in geometric mean titer of the population 

postvaccination, and “seroconversion rate”: the proportion achieving a 4-fold rise in HAI titer 

from pre to postvaccination sera or achieving a postvaccination titer of 40 with a negative 

prevaccination titer. The required proportion meeting these criteria vary by age and country. In 

the US, new seasonal influenza vaccines may receive accelerated approval for licensure based 

on serologic studies demonstrating vaccine response; however, postmarket studies of clinical 

effectiveness are still required [30]. 

While antibody titers to HA increase in the weeks after influenza infection or vaccination, 

antibody titers begin to decline over time thereafter. The rate of antibody decline over time 

has, however, been the subject of some debate. From at least 1990 through the mid-2000s, the 

US Advisory Committee on Immunization Practices (ACIP) had advised that elderly adults, 

particularly the institutionalized, should not be vaccinated be vaccinated before October [31, 

32]. These recommendations were based on concern of rapidly declining antibody to HA 

following vaccination; however, little evidence of this antibody decline or waning protection 

over the course of an influenza season was ever presented. This recommendation was 

abandoned in the ACIP report released prior to the 2007-2008 influenza season [33].  

In the context of these recommendations, Skowronski et al. carried out a review of studies of 

inactivated influenza vaccine (IIV) response in persons ≥60 years of age, with assessment of 

antibody titers at baseline and at least 4 months after vaccination [34]. The studies were 

described using the serologic guidelines established for both elderly and younger adults by 

CPMP. Eight studies were included in the review that reported outcomes including 

seroprotection proportions ≥4 months after vaccination. The more strict CPMP seroprotection 

proportion guidelines for younger adults were met at >4 months in all 8 studies for A (H3N2), in 

5 of 7 studies with seasonal A (H1N1), and in 3 of 7 studies with B. Of the studies that failed the 

CPMP seroprotection proportion guidelines for A (H1N1) and B, failure occurred at 1 month 

after vaccination as well. If seroprotection was observed 1 month postvaccination, it was 

maintained up to >6 months; 1 study found a seroprotection proportion of >80% after 1 year.  
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There is substantial evidence that HAI titers persist above “seroprotective” levels for many 

months after vaccination in a high proportion of individuals, even in elderly and high risk 

populations [34, 35]. However, seroprotection is a misleading term in that a large proportion of 

infections occur among individuals with HAI titers ≥40 ; this cut point was originally chosen 

because it was thought that a titer of 40 would protect 50% percent of those exposed to 

influenza from being infected [26, 36]. It is therefore important to determine not only the 

proportion of subjects maintaining titers ≥40 after a given period of time, but also the absolute 

titer level and the rate of antibody decline. Persistence of antibody to the neuraminidase has 

been less studied, especially in recent years. Studies carried out several decades ago which 

examined persistence of antibody to NA reported mixed observations. One study reported that 

NA titers declined to undetectable levels within 5 months following infection [37]; two others 

reported persistence of detectable antibody to NA up to four years after infection [38, 39]. 

Another important factor to consider is prior vaccination history. Reduced HAI response upon 

repeated vaccination has been previously demonstrated [40-42], but no effect on VE was 

established [43, 44]. More recently, our group found reduced VE among those vaccinated in 

both the current and previous seasons compared to those vaccinated in the current season only 

[23]. This effect has subsequently been observed in several other studies [6, 7, 22, 24, 45-47]. 

These findings warrant further investigation into possible mechanisms, including potential 

effects of repeated vaccination on antibody response and persistence. 

Waning of influenza vaccine induced protection 

Accurately estimating waning protection of influenza vaccines has important policy 

implications. In the US, influenza vaccination primarily occurs in the fall months to reduce risk 

of influenza which typically peaks in the winter [48-50]. However, influenza vaccines are now 

available from some providers as early as July, and influenza activity may continue into the late 

spring [51, 52]. As a result, there can be relatively long periods of time between vaccination and 

potential exposure raising concerns for the possibility of waning vaccine efficacy over the 

course of a single season. Policy makers must balance this possibility of waning protection with 

the potential for missed vaccination opportunities prior to the influenza season.  
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Although it is clear that HAI titers decrease with time following vaccination, the relationship 

between waning antibody and protection is unclear. One recent study examined the association 

between HAI titer and protection against influenza infection, taking into account waning 

antibody levels and time varying risk of infection [53]. The rate of HAI antibody decline in the 

absence of infection among children 6-17 years following randomized receipt of IIV or placebo 

was estimated in log-linear models. Daily HAI titers were estimated from these rates for each 

subject considering postvaccination titer, age, and intervention status. Cox proportional 

hazards (PH) models were then used to estimate the effect of HAI titer over time on protection 

against influenza infection. It was estimated that the 50th percentile HAI titer corresponded to 

approximately 65% protection one month after vaccination and dropping to approximately 30% 

after nine months among children 6-8 years, and approximately 75% protection one month 

after vaccination and dropping to approximately 60% after nine months among children 9-17 

years. 

While the study described above estimated decreasing protection over time based on HAI 

titers, other immunologic factors besides antibody to HA likely play a significant role in 

providing protection from clinical influenza illness.  As previously discussed, there is evidence 

that levels of antibody to NA correlate with protection from influenza infection [19, 20]. The 

cell-mediated immune response also plays a role in providing protection from influenza 

infection [54]. Because of the complexity of the immune response following vaccination, it is of 

interest to directly estimate how VE varies with time rather than estimating effectiveness from 

immune correlates. 

There are relatively few previous direct evaluations of the duration of influenza vaccine 

effectiveness; most are recent and have been applied to data collected using the case test-

negative design. Notably, several reports from European case test-negative VE studies were 

published following the 2011-12 influenza season indicating waning influenza vaccine 

effectiveness [16-18]. These studies estimated VE in early and late season periods, and by 

periods of time since vaccination, and found reduced effectiveness in the late season and with 

increasing time from vaccination. These findings significantly renewed interest surrounding the 
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issue of decreasing protection from vaccination over the course of a single season leading to 

similar analyses of observational data from other countries [55-57]. However, estimation of VE 

over time using data from case test-negative design studies is not ideal.  

The case test-negative design presents at least three limitations for the estimation of time-

varying vaccine effectiveness. 1) Subjects are enrolled cross-sectionally over the season, and 

the timing of enrollment can be associated with both likelihood of vaccination and influenza 

infection; accurately modeling these time varying factors is complicated, making adjustment 

difficult. 2) Subjects testing negative for influenza are susceptible to misclassification of 

immune status: specifically, as the season progresses, there is increasing probability that a test-

negative subject may have been previously infected, and therefore, has some level of natural 

immunity. 3) In analyses that compare effectiveness by time since vaccination, time is often 

broken into arbitrary blocks (e.g. <3 months vs ≥3 months) for vaccinated subjects, and similar 

time periods are not easily defined for the unvaccinated group.  

Because of these issues, long term follow-up of subjects attempting to capture all influenza 

illnesses over the course of a season is desirable. Statistical methods which explicitly model 

calendar time, eliminating the need for imperfect adjustments, are also needed. Durham et al. 

have proposed one approach to estimating vaccine efficacy as a function of time using 

prospective data [58, 59]. The proposed method estimates time-varying vaccine efficacy (VE(t)) 

non-parametrically from time-to-event data by constructing smoothed curves of the hazard 

ratio over time. The first step of this method is to fit a Cox PH model to the data. Scaled 

differences between actual and expected values (Schoenfeld residuals) are then calculated at 

each event time. The residuals at each event time are then added to the vaccine coefficient (β) 

from the Cox PH model; the time-varying coefficient (β(t)) is recovered by fitting a smooth 

function (e.g. Loess or spline function) to the residual-coefficient sums over time. The time-

varying vaccine efficacy function is then calculated as VE(t) = 100*(1-exp[β(t)]). 

This method has been previously applied to data from a randomized, placebo-controlled trial of 

two cholera vaccines in Bangladesh illustrating the different patterns of waning immunity 

associated with each vaccine [59]. To date, similar statistical methods have not been used to 
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examine the duration of influenza vaccine induced protection. This may be related, in part, to 

the fact that longitudinal studies of influenza vaccine efficacy and effectiveness are now rare 

given current recommendations for vaccination. 

The FluVacs study 

The FluVacs study was a placebo-controlled trial of the absolute and relative efficacies of IIV 

and live-attenuated (LAIV) influenza vaccine carried out over 4 influenza seasons from 2004-

2005 through 2007-2008 in communities surrounding multiple university campuses in 

Michigan. In study year 1, all subjects were newly recruited and randomized to receive IIV, LAIV 

or matching placebos (injection or nasal spray) in ratios of 5:5:1:1, respectively. Subjects not 

lost to follow-up received the same intervention in study year 2; subjects newly recruited in 

study year 2 were randomized to intervention at enrollment. Subjects not lost to follow-up 

continued to be followed, without revaccination, in study year 3 to examine the duration of 

vaccine induced protection. The study continued in the 2007-2008 season; all subjects were 

newly recruited and randomized to intervention reflecting a change in funding source. 

In each study year, subjects were instructed to report all acute respiratory illnesses with at least 

two respiratory or systemic symptoms during the influenza season (typically November through 

April). Ill subjects attended an illness visit at a study site where a throat swab specimen was 

collected for influenza virus identification. Illnesses were laboratory-confirmed as influenza by 

either isolation of virus in cell-culture or virus identification by real-time reverse-transcription 

polymerase chain reaction (RT-PCR) assays. Efficacy was estimated following each of the 3 study 

years in which subjects received intervention [14, 60, 61]. In the two seasons (2004-2005 and 

2007-2008) in which sample size allowed estimation of statistically significant efficacy, IIV was 

found to be more efficacious than LAIV [14, 60]. 

Blood specimens were collected from subjects for serologic studies at multiple time points each 

study year. In years when intervention was given (2004-2005, 2005-2006, and 2007-2008) 

blood was collected immediately prior to vaccination, approximately 1 month postvaccination, 

and approximately 6 months later following the influenza season. In the 2006-2007 study year, 

when subjects did not receive intervention, blood was collected prior to the influenza season 
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and approximately 6 months later following the influenza season. HAI and NAI assays were 

performed to determined antibody titer to the HA and NA antigens. These serologic data have 

previously been used to assess the use of influenza outcomes defined by ≥4 fold rise in HAI 

antibody in serum specimens bracketing the influenza season to those defined by cell culture or 

RT-PCR [62], and to evaluate HAI and NAI antibodies as correlates of protection against 

influenza infection [20, 28]. 

To accomplish Aim 1 of this dissertation, we examined the persistence of antibodies to 

influenza HA and NA in the absence of influenza infection among those subjects enrolled in 

study years 2 and 3 of the FluVacs study. The data are well suited to this aim in that they 

include a large population followed for approximately 18 months following initial receipt of 

influenza vaccine or placebo with blood specimens collected at 5 time points during follow-up. 

Data collected during the 4
th

 FluVacs study year (2007-2008) were used to estimate vaccine 

efficacy as a function of time according to Aim 2 of this dissertation. These data were selected 

because they include the most influenza outcomes of the 4 FluVacs study years maximizing the 

power to detect waning vaccine efficacy, if present. 

Household transmission models 

Household studies have been used extensively to study acute respiratory illnesses such as 

influenza [63]. Data from the classic household studies of acute respiratory illness carried out in 

past decades have been used to inform models used to evaluate influenza pandemic mitigation 

strategies [64, 65]. However, these studies were limited by their ability to determine illness 

etiology; typically, influenza infections were defined by rises in antibody titer observed 

between serum specimens bracketing the influenza season. This method is now known to miss 

influenza outcomes among those who are infected despite high antibody titers [62]. Further, 

the timing of illness onset cannot be accurately determined for infections identified by rise in 

antibody titer. This has historically limited the ability of household cohort studies to make 

inferences about certain aspects of influenza transmission in the household [66].  

The development of RT-PCR methods has allowed for more comprehensive identification of 

illness etiology as well as the ability to more accurately determine the timing of an infection 
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within a season. RT-PCR assays are the most sensitive and specific method of influenza infection 

currently available and allow for broad identification of a range of other respiratory viruses that 

may be present in a single respiratory specimen [62, 67]. This has increased the feasibility of 

laboratory-confirmed outcomes in observation studies of influenza VE [11, 12], description of 

viral seasonality and patterns of coinfections [68, 69], and increased the ability to study aspects 

of influenza transmission [66]. These advancements have again made household studies an 

attractive design for the study of acute respiratory illnesses. 

Modern household studies of influenza are generally based on one of two designs: cohort or 

case-ascertained [70]. In the case-ascertained design, index cases are identified and enrolled 

when they seek medical care for an acute respiratory illness that is laboratory-confirmed as 

influenza. Household contacts of the index case are enrolled and followed for identification of 

any resulting secondary infections. Household cohort studies, in contrast, typically enroll 

households prior to the influenza season who are then followed for occurrence of influenza 

infections. Case-ascertained studies are the more efficient design for studying transmission 

because influenza has been introduced in each household under study; however, bias may be 

introduced by selecting for index cases with more severe illness requiring medical attention [66, 

70]. Although more resource intensive, household cohort studies are able to evaluate 

interventions affecting both primary introduction from the community and secondary 

household infection, and are able to carry out evaluations requiring prospective follow-up such 

as collection of serologic specimens to determine preseason susceptibility and vaccine response 

[23, 24, 71].  

For infectious diseases, use of standard regression models to examine relationships between 

risk factors and infection probabilities can be subject to bias. Because an individual’s risk of 

infection increases as contacts are infected, the assumption of independence is violated for 

regression models [72]. This is particularly an issue when subjects are sampled in clusters or 

groups (e.g. households, schools). These biases may be corrected by use of mechanistic models 

which account for household structure and increased infection risk for susceptible contacts of 

infected individuals in the same household. 
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Estimation of risks of influenza infection from the community and the household in household 

cohort studies carried out in past decades was accomplished with mechanistic models that 

made inferences based on the final number of serologically defined infections at the end of the 

epidemic [73, 74]. Household clustering was incorporated in the structure of the model by 

specifying that the probability of household infection depends on the infection status of other 

household members. These models were extended to estimate risks of influenza infection from 

the household and the community within risk factor strata [72]. For example, the correlation of 

HAI titer with influenza infection risk was estimated using data from the Tecumseh Study of 

Respiratory Illness [75, 76].  

Given improvements in modern diagnostic assays and communications technology which allow 

more accurate determination of illness onset dates, models that consider the timing of 

infections are now necessary. Cauchemez et al. have developed an individual-based 

transmission hazard (TH) model for the analysis of household data that include timing of illness 

onset [77, 78]. This model, and similar extensions, have previously been applied to data from 

case-ascertained household studies to estimate risks of community and household infection, to 

measure the association between viral shedding and infectivity, and to assess antibody titers as 

correlates of protection [77-80]. However, this model has not been previously been applied to 

household cohort data which require different assumptions in the model structure with regards 

to community transmission. 

The Household Influenza Vaccine Effectiveness (HIVE) study 

The Household Influenza Vaccine Effectiveness (HIVE) study is a household cohort study that 

has been carried out each year since the 2010-2011 influenza season among households with 

children living in Ann Arbor, Michigan and surrounding communities. Eligible households, those 

with at least 4 persons, at least 2 of whom are children <18 years, who receive primary care 

from the University of Michigan Health System (UMHS) are invited to participate each summer. 

Interested households attend an enrollment visit at the study site where adult household 

members provide informed consent for themselves and their children, and complete an 

enrollment interview. 
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Participating households are instructed to report all acute respiratory illnesses meeting a broad 

case definition during the respiratory virus season (approximately October through April each 

year); email or phone reminders to report all such illnesses were sent to households each week. 

Ill subjects attend illness visits at the study site where they permit collection of throat and nasal 

swabs (nasal swab only among subjects <3 years) for identification of influenza virus. Specimens 

collected at illness visits are tested by RT-PCR for the identification of influenza. Information on 

illness characteristics, course, and treatment were collected at the illness visit and in 

subsequent follow-up contacts. 

The primary objective of this cohort is to estimate annual VE for comparison with estimates 

from case test-negative design studies carried out in the outpatient setting. To date, VE 

estimates from the HIVE study have generally been lower than case test-negative design studies 

carried out in the same seasons [23, 24, 71]. In addition to estimating VE, data from the HIVE 

study have also been previously used to examine household transmission of influenza [81], the 

frequency and seasonality of influenza and other respiratory viruses over three seasons [69], 

and predictors of influenza vaccine receipt [82].  

Previous assessments of VE in preventing household-acquired infections were limited in that 

they were unable to account for the increasing risk of infection as the number of close 

household contacts become infected and the continued risk of infection from the community 

even after influenza has been introduced to the household. To address these limitations it is 

necessary to explicitly model, for each individual, the risk of infection from the community as 

well as from each household contact that becomes infected over the course of the influenza 

season. 

In fulfillment of Aim 3 of this dissertation, we extended the TH model developed by Cauchemez 

et al. for use in the analysis of household cohort data [77, 78]. The extended model was applied 

to data collected during the 2010-2011 HIVE study season to estimate transmission parameters 

and calculate VE; results are compared to those obtained with Cox PH models. 
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Chapter 2. 

Persistence of Antibody to Influenza Hemagglutinin and Neuraminidase 

Background 

Influenza vaccines are the best tool currently available to reduce the risk of influenza infection 

and associated complications. These vaccines have long been evaluated based on the antibody 

response they elicit, particularly to the viral hemagglutinin (HA) [29, 30]. The HA and 

neuraminidase (NA) glycoproteins are the two major surface antigens of the influenza virus and 

facilitate infection, replication, and viral shedding [25]. Antibodies are produced against both 

antigens in response to infection or vaccination. HA antibody levels have been shown to 

correlate with protection against infection by influenza; antibodies to NA may also correlate 

with protection as well as reduced severity of illness [19, 21, 26-28].  

Antibody titers to influenza HA increase in the weeks after infection or vaccination, and 

decrease over time thereafter. Although, the rate of HA titer decline has been the subject of 

some debate. Due to concern of rapidly declining HA titers following vaccination, there were 

recommendations in the United States from 1990 through 2006 to delay vaccination in the 

elderly until just before the influenza season [31, 32]. After this recommendation was 

abandoned in 2007, a review was published suggesting that vaccine induced HA responses were 

maintained at high levels in persons ≥60 years of age for at least 4 months [33, 34].  

Another past observation concerning HA antibody was reduced seroresponse with repeated 

vaccination [40-42, 83], but with no definitive effect on vaccine effectiveness (VE) established 

[43, 44]. More recently, several observational studies have noted lower VE among those who 

Chapter 2 has been published as Petrie JG, Ohmit SE, Johnson E, Truscon R, Monto AS, Persistence of Antibodies to 

Influenza Hemaggutinin and Neuraminidase Following One or Two Years of Influenza Vaccination, The Journal of 

Infectious Diseases 2015, 212, 1914-22, and reproduced here by permission of Oxford University Press.
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were also vaccinated in the previous season [6, 7, 23, 24, 45-47], and higher VE among those 

with limited vaccination history compared to regular vaccinators [22]. Some studies have also 

demonstrated residual protection extending from vaccination in the previous season [7, 24, 47].  

In part because of the dominant role of HA antibody in protection from infection, NA antibody 

has been less studied. Previously available assays for quantification of NA antibody were also 

labor intensive and used toxic reagents making it impractical to assay large numbers of 

specimens [84]. However, recent collaborative efforts to standardize a lectin-based 

neuraminidase inhibition (NAI) assay have made quantification of NA antibody feasible [85].  

Here we estimate the rates of HA and NA antibody decline over an 18-month period following 

vaccination. Differences in rates are examined by history of vaccination in the prior season, 

vaccine type, and peak antibody titer achieved following vaccination. 

Methods 

Data and specimens 

Subjects were healthy adults 18-49 years of age and participating in the second and third years 

of a randomized placebo-controlled trial, conducted during the 2005-06 and 2006-07 influenza 

seasons, evaluating the efficacy of the inactivated (IIV) and live-attenuated (LAIV) influenza 

vaccines [61]. The study was approved by the University of Michigan Medical School 

institutional review board. Written informed consent was obtained from all participants before 

enrollment. In October and November of 2005, subjects were recruited and randomized to 

receive IIV, LAIV, or placebo. Subjects who had participated in the previous year (2004-05) of 

the trial received the same intervention to which they had previously been randomized; newly 

recruited subjects were randomized at enrollment. From November 2005 through April 2006, 

subjects were instructed to report all acute respiratory illnesses meeting a symptomatic case 

definition; ill subjects attended an illness visit with collection of a throat swab. Throat swabs 

were tested for influenza by virus isolation in cell culture and virus identification in RT-PCR 

assays. Subjects not lost to follow-up were re-enrolled prior to the 2006-07 influenza season 
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without re-vaccination and followed from November 2006 through May 2007 for acute 

respiratory illnesses with specimen collection and laboratory testing. 

Blood specimens for serologic studies were collected immediately prior to vaccination (S1: 

October-November 2005), approximately 30 days after vaccination (S2: November-December 

2005), approximately 6 months after vaccination following the 2005-06 influenza season (S3: 

April-May 2006), approximately 12 months after vaccination prior to the 2006-07 season (S4: 

October 2006), and approximately 18 months after vaccination following the 2006-07 season 

(S5: April-May 2007). 

Serologic laboratory assays 

Following the 2005-06 study year, hemagglutination-inhibition (HAI) assays were performed on 

a subset of complete specimen sets (S1-S3) collected that season, including all subjects 

reporting symptomatic illness and a random sample of those who did not report similar illness 

[86]. Following the 2006-07 study year, HAI assays were performed on all complete specimen 

sets (S4-S5) collected that season. Because of known run-to-run variability in the HAI assay, 

additional HAI assays were performed on a large subset of subjects with complete specimen 

sets from both study years (S1-S5), including subsets of those that had previously been assayed 

in both the 2005-06 and 2006-07 sets and those that had not yet been assayed. The results of 

these assays, referred to as the reference set, were used to standardize the results obtained 

from the separately assayed 2005-06 and 2006-07 sets.  

Prior to HAI testing, sera were treated overnight with receptor destroying enzyme and heat 

inactivated to prevent non-specific inhibition; sera were also adsorbed with red blood cells to 

remove non-specific agglutinins. Serial two-fold dilutions (with an initial dilution of 1:8) were 

prepared for each sera set (S1-S5) in 96-well microtiter plates followed by incubation with 

standardized concentrations (4 HA units / 25 μl) of monovalent inactivated influenza vaccine 

subunit material (Sanofi-Pasteur) representing the 2005-06 A (H3N2) and B (Yamagata) vaccine 

virus strains (A/NewYork/55/2004 [A/California/7/2004 like], B/Jiangsu/10/2003 

[B/Shanghai/361/2002 like]) [87]. Turkey red blood cells were added to wells and allowed to 

settle. HAI titers to each virus tested were calculated for each subject at each time point (S1-S5) 



17 

 

as the reciprocal (e.g. 160) of the highest dilution of sera (e.g. 1:160) that inhibited 

hemagglutination. Titers below the lower limit of detection (i.e. <8) were considered half the 

lower limit (i.e. 4); titers greater than the upper limit of detection (i.e. >4096) were considered 

twice the upper limit (i.e. 8192). 

NAI assays, also known as the enzyme-linked lectin assay (ELLA), were performed on specimens 

previously assayed in the HAI reference set [85, 88]. This assay utilized a reassortant influenza 

virus with a mismatched HA (H6 subtype), to avoid interference by HA-specific antibodies, and 

the NA antigen representing the 2005-06 A (H3N2) vaccine virus strain (kindly provided by M. 

Eichelberger, US Food and Drug Administration). Sera were heat inactivated and serial two-fold 

dilutions (with an initial dilution of 1:10) of sera sets (S1-S5) were incubated with virus and then 

added to 96-well microtiter plates coated with fetuin. Following incubation, peroxidase-labeled 

peanut agglutinin (the lectin) was added, followed by peroxidase substrate to detect enzymatic 

cleavage of fetuin by viral NA, and the reaction optical density measured with a microplate 

reader. The percent inhibition of NA enzymatic activity at each serum dilution was calculated by 

comparison with values from virus control wells (virus but no serum); end-point NAI titers were 

calculated as the reciprocal of the highest dilution with at least 50% inhibition. Titers below the 

lower limit of detection (i.e. <10) were considered half the lower limit (i.e. 5); titers greater 

than the upper limit of detection (i.e. >5120) were considered twice the upper limit (i.e. 10240). 

All HAI and NAI assays were performed in the respiratory virus research laboratory at the 

University of Michigan, School of Public Health. 

Statistical analyses 

Log base 2 (log2) transformation was applied to all HAI and NAI titers, and mean log2 titers 

calculated. The results of the HAI assays run separately for the 2005-06 and 2006-07 specimen 

sets were standardized to the results of the reference set assays. Differences in mean log2 HAI 

titer to each antigen were calculated for those tested both in the reference set and in the 2005-

06 set for S1-S3 specimens. Similarly, differences were calculated for S4-S5 specimens for those 

tested in both the reference set and in the 2006-07 set. These antigen and specimen specific 

differences were then added as a correction factor to log2 HAI titers of individuals assayed only 
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in the 2005-06 and 2006-07 sets to standardize the titer values to those of the reference set. 

Geometric mean titers (GMT) at each time point were calculated as 2 to the power of the mean 

log2 titer. The proportions of subjects with HAI titers ≥32 or NAI titers ≥40 were calculated at 

each time point; an HAI titer of ≥40 has historically been used as a measure of “seroprotection” 

[29, 89]. 

Subjects were characterized by age, sex, race, and participation status in the 2004-05 study 

year. Subjects were excluded from analysis if they had laboratory-confirmed influenza during 

the 2005-06 or 2006-07 season defined by RT-PCR, cell culture, or ≥4 fold HAI titer rise from 

preseason to postseason sera (S2 to S3, or S4 to S5). Participation in the 2004-05 study year 

was used as a proxy for history of influenza vaccination in that season. Those enrolled in both 

2004-05 and 2005-06 received the same intervention both years; however, history of 

vaccination in the 2004-05 season was not explicitly determined for those newly enrolled in 

2005-06.  Differences in characteristics across intervention groups were examined using χ2 

tests for categorical variables and Kruskal-Wallis tests for continuous variables. GMTs at each 

time point were compared across intervention groups and by vaccination history using 

Wilcoxon Rank-Sum tests. 

Rates of titer decline were estimated in linear mixed models with log2 titers as the dependent 

variable and time in days from the S2 (1 month postvaccination) blood draw as the 

independent variable. To account for correlation of titers within individuals over time, the 

intercept and time were modeled as random effects. Rates of titer decline were also estimated 

by intervention, by vaccination status in the 2004-05 study year, and by peak (S2) log2 titers by 

adding respective interactions with time to the models; models with a peak log2 titer (S2) by 

time interaction only considered S3-S5 log2 titers in the dependent variable and did not 

estimate an intercept. Time in days to decrease 1 log2 titer (2-fold decrease) was calculated as 

the reciprocal of the model estimated rates. All statistical analyses were carried out using SAS 

(release 9.2, SAS Institute) software; a P value <0.05 was considered to indicate statistical 

significance. 
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Results 

In the 2005-06 study year, 2058 subjects enrolled and received intervention, including 972 

(47%) who also participated and received the same intervention in 2004-05 (Figure 2-1). Of 

these 2058 subjects, 1726 continued participation in 2006-07 without re-vaccination. Among 

the 1726 subjects participating from 2005 through 2007, 1227 (71%) had HAI assays performed 

on all S1-S5 specimens. HAI results from 941 (77%) subjects were included in this analysis; 286 

were excluded because of laboratory-confirmed influenza infection. Of the 941 subjects 

included in the analysis, 536 were assayed as part of the reference set and 405 standardized to 

the reference set. NAI assays were performed on the 536 subjects in the reference set. Included 

subjects did not significantly differ by age, sex, race, or participation in the 2004-05 season from 

those not included due to loss to follow-up, not being tested, or laboratory-confirmed influenza 

infection. The characteristics of included subjects are presented in Table 2-1; subjects did not 

significantly differ across intervention groups by age, sex, race, participation in the 2004-05 

season, or proportion with standardized results.  

The proportions of subjects with HAI titers ≥32 or NAI titers ≥40 at each time point by 

intervention are presented in Table 2-2. Nearly all IIV recipients had HAI titers ≥32 to both 

influenza A (H3N2) (A/H3) and influenza B (Yamagata) (B/Y) 1 month postvaccination, and the 

proportion with HAI titers ≥32 remained at nearly 90% 18 months after vaccination. In contrast, 

79% of IIV recipients had NAI titers ≥40 to influenza A (H3N2) (A/N2) 1 month postvaccination, 

but only 48% had a titer ≥40 at the 18-month follow-up. The proportions of LAIV recipients with 

similar titers were lower than for IIV recipients; however, patterns across time were similar.  

HAI GMTs were plotted by time with estimated regression lines in the top and bottom panels of 

Figure 2-2 by intervention. Overall, estimated times to decrease 2-fold were 662 (95% 

Confidence Interval [CI]: 588-758) days for A/H3 and 606 (95% CI: 546-685) days for B/Y. Among 

IIV recipients, HAI GMTs increased from prevaccination (A/H3: 38, B/Y: 96) to 1-month follow-

up (A/H3: 337, B/Y: 611) before gradually decreasing through the 18-month follow-up (A/H3: 

138, B/Y: 256); the estimated time to decrease 2-fold was 410 (95% CI: 369 to 463) days for 

A/H3 and 424 (95% CI: 380 to 476) days for B/Y. For LAIV recipients, HAI GMTs increased 
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minimally from prevaccination (A/H3: 27, B/Y: 59) to 1-month follow-up (A/H3: 50, B/Y: 109) 

before gradually decreasing through the 18-month follow-up (A/H3: 37, B/Y: 72); the estimated 

time to decrease 2-fold was 1111 (95% CI: 840 to 1639) days for A/H3 and 820 (95% CI: 667 to 

1075) days for B/Y. HAI GMTs for placebo recipients gradually decreased from pre-intervention 

(A/H3: 38, B/Y: 68) through 18-month follow-up (A/H3: 31, B/Y: 55); the estimated time to 

decrease 2-fold was 4545 (95% CI: 1389 to 3584) days for A/H3 and 1887 (95% CI: 990 to 

25000) days for B/Y. 

NAI GMTs were plotted by time with estimated regression lines in the middle panel of Figure 2-

2 by intervention. Overall, the estimated time to decrease 2-fold was 621 (95% CI: 556-704) 

days. Among IIV recipients, NAI GMT increased from 17 prevaccination to 69 at the 1-month 

follow-up before decreasing to 24 at the 18-month follow-up; the estimated time to decrease 

2-fold was 366 (95% CI: 334 to 403) days. For LAIV recipients, NAI GMT minimally increased 

from 13 prevaccination to 20 at the 1-month follow-up before decreasing to 15 at the 18-

month follow-up; the estimated time to decrease 2-fold was 1190 (95% CI: 901 to 1786) days. 

No significant decrease in NAI GMT among placebo recipients was observed from pre-

intervention (A/N2: 19) through 18-month follow-up (A/N2: 18). 

HAI GMTs to A/H3 and B/Y and NAI GMTs to A/N2 were plotted by time with estimated 

regression lines stratified by 2004-05 vaccination status in Figures 2-3, 2-4, and 2-5, 

respectively, for IIV and LAIV recipients. Those who received IIV in both 2004-05 and 2005-06 

had significantly higher (P<0.001) prevaccination HAI GMTs in 2005-06 (A/H3: 59, B/Y: 226) 

than those not previously vaccinated (A/H3: 27, B/Y: 48). However, the GMT fold-rise following 

2005-06 vaccination was significantly lower (P<0.001) for those previously vaccinated (A/H3: 

4.2, B/Y: 2.1) compared to those not (A/H3: 16.0, B/Y: 15.7). HAI GMTs of previously vaccinated 

IIV recipients remained significantly lower (P<0.001) than those not previously vaccinated at all 

4 time points following 2005-06 vaccination. Prevaccination HAI GMTs in 2005-06 of LAIV 

recipients vaccinated in both 2004-05 and 2005-06 were not significantly different (A/H3: 25, 

B/Y: 57) than those not previously vaccinated (A/H3: 29, B/Y: 60). However, HAI GMTs of 
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previously vaccinated LAIV recipients were significantly lower (P<0.001) than those not 

previously vaccinated at all 4 time points following 2005-06 vaccination.  

Among IIV recipients, prevaccination NAI GMT was 28 for those previously vaccinated and 16 

for those not (P<0.001). However, the GMT fold-rise following 2005-06 vaccination was 

significantly lower (P<0.001) for those previously vaccinated (A/N2: 2.6) compared to those not 

(A/N2: 6.4). NAI GMTs to A/N2 following 2005-06 vaccination were similar (P>.05) for 

previously vaccinated IIV recipients and those not previously vaccinated at all 4 time points. 

Similarly among LAIV recipients, prevaccination NAI GMT was 20 for those previously 

vaccinated and 14 for those not (P=0.33). However, in contrast to patterns seen in IIV 

recipients, GMT fold-rises following 2005-06 vaccination were similar for those previously 

vaccinated and those not (P=0.96). NAI GMTs following 2005-06 vaccination remained higher 

for previously vaccinated LAIV recipients at all 4 time points, though only significantly higher 1 

month postvaccination (P=0.04). HAI GMTs to both A/H3 and B/Y and NAI GMTs to A/N2 did 

not significantly differ by previous participation at any point among placebo recipients (data not 

shown). 

The estimated times to decrease HAI and NAI titers by 2-fold stratified by peak postvaccination 

titer are presented in Table 2-3. For both HAI and NAI, the rate of decline was faster with higher 

peak titers. For example, subjects with peak HAI titers of 4096 to A/H3 were estimated to have 

a 2-fold reduction in titer after 374 (95% CI: 310 to 469) days, while a similar 2-fold reduction 

among subjects with peak titer of 64 was estimated to take over 4 years (1485 [95% CI: 1104 to 

2269] days).   

Discussion 

Minimal reductions in HAI titer over an 18 month period among participants in a randomized 

clinical trial were observed here. Previous studies have reported HAI titers persisting above 

“seroprotective” levels (HAI titer ≥40) for many months after vaccination in a high proportion of 

individuals, including elderly and high risk populations [34, 35]. However, the term 

seroprotection can be misleading as infections occur among individuals with HAI titers ≥40, 

though risk of infection decreases as titers increase [28]. This cut point was originally chosen 
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because there was evidence that an HAI titer of 40 would protect 50% of those exposed to 

influenza from being infected [26, 36]. One recent study has suggested that an HAI titer of 40 

may be associated with <50% protection [79]. In addition, laboratory to laboratory variation in 

the HAI assay makes it difficult to standardize interpretation of any given titer. It is, therefore, 

important to determine not only the proportion of subjects maintaining titers ≥40 over time, 

but also the absolute titer level and the rate of decline as we have done. 

NAI titer was also observed to decrease relatively slowly over the 18-month period. Past studies 

examining persistence of antibody to NA reported mixed observations. One study reported that 

NA antibodies declined to undetectable levels within 5 months following infection [37]; two 

others reported persistence of detectable NA antibody up to four years after infection [38, 39]. 

Evidence for the contribution of NA antibody to protection from influenza, independent of the 

effect of HA antibody, has been suggested by patterns of infection during the 1968 pandemic, 

and more recently using multivariable regression [19, 20, 90]. Given the longevity of NAI titers 

observed here, improving vaccine-induced response to NA might increase the practical duration 

of protection when HA drifts and NA does not.  

IIV recipients achieved much higher postvaccination HAI and NAI titers, but experienced faster 

titer decline than LAIV or placebo recipients. However, titers of IIV recipients remained 

significantly higher than LAIV or placebo recipients after 18 months. At least part of the 

difference in rates of decline between IIV and LAIV recipients was explained by the higher 

average postvaccination titers among IIV recipients and faster rates of decline among those 

starting at higher titers. Further investigations into modifiers of the rate of titer decline are 

important for informing models of the effects of serum antibodies on protection from infection 

and influenza transmission dynamics. 

Lower postvaccination HAI titers were observed among those vaccinated with IIV or LAIV in 

both 2004-05 and 2005-06 compared to those vaccinated only in 2005-06. This is consistent 

with reports of reduced seroresponse and lower VE among those vaccinated in consecutive 

seasons [6, 7, 22-24, 40-42, 45-47, 83]. Despite the difference in initial response, there were no 

differences in rates of decline. Previous studies have reported slightly more rapid rates of 
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decline and differences by previous antigenic experience [83, 91]. In this study, participation in 

the 2004-05 study year was used as a proxy for history of influenza vaccination in that season. 

Although 2004-05 vaccination status was not explicitly determined for those newly recruited in 

2005-06, the actual proportion vaccinated in 2004-05 is likely to be low given the similarity of 

titers in the placebo group by 2004-05 participation status.  

Rates of antibody decline were presented as days to decrease 2-fold, with some estimates 

exceeding the study period. While these estimates are useful for comparing the magnitude of 

rates across groups (e.g. intervention, peak titer), caution should be used in predicting titers 

beyond the period of observation (583 days). Subjects participating in this study were healthy 

adults aged 18-49 years. In contrast, those most at risk of severe outcomes of influenza 

infection are young children, older adults, and those with high-risk health conditions [33]. The 

persistence of HAI and NAI antibodies may differ in these groups. Prior studies of older and 

immunocompromised adults have suggested subjects initially achieving seroprotective HAI 

titers maintain these titers for extended periods [34, 35]. However, little is known regarding NA 

antibody persistence in these groups. Identification of characteristics that predict individual 

variation in antibody persistence is also of interest. 

Although antibody titers may remain at high levels over multiple seasons, antigenic drift of 

circulating influenza viruses may necessitate annual vaccination [13]. Evidence presented here 

and elsewhere suggests that HAI response to vaccine may be impaired with repeated 

vaccination [40-42, 83]. Despite this, those vaccinated in two consecutive seasons had higher 

titers than placebo recipients, even 18 months after vaccination. These findings indicate that 

given currently available vaccines, annual vaccination remains the best strategy for reducing 

risk of influenza infection and associated complications. The importance of NAI antibody, 

previously shown as an independent correlate of protection, is also supported by the duration 

of elevated titers. These results point to the need for vaccines that stimulate a greater breadth 

of immunity to achieve better and longer lasting protective efficacy.
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Table 2-1. Characteristics of Subjects Included in Analysis Set by Intervention. 

 Intervention   

 IIV  

(N=431) 

LAIV  

(N=381) 

Placebo  

(N=129) P-value 

Total  

(N=941) 

Percentage of participants 45.8 40.5 13.7  100 

Mean age - yr. ± st. dev. 25.9 ± 9.1 25.1 ± 8.6 26.1 ± 9.6 0.47
a
 25.6 ± 8.9 

Age category - N (%)      

   18-19 yr. 128 (29.7) 121 (31.8) 45 (34.9) 0.37
b
 294 (31.2) 

   20-24 yr. 166 (38.5) 154 (40.4) 44 (34.1)  364 (38.7) 

   25-34 yr. 51 (11.8) 40 (10.5) 9 (7.0)  100 (10.6) 

   35-48 yr. 86 (20.0) 66 (17.3) 31 (24.0)  183 (19.5) 

Sex - N (%)      

   Female 271 (62.9) 243 (63.8) 77 (59.7) 0.71
b
 591 (62.8) 

   Male 160 (37.1) 138 (36.2) 52 (40.3)  350 (37.2) 

Race - N (%)      

   White 374 (86.8) 333 (87.4) 115 (89.1) 0.78
b
 822 (87.4) 

   Nonwhite 57 (13.2) 48 (12.6) 14 (10.9)  119 (12.6) 

Participated in 2004-05 - N (%)
c
      

   Yes 194 (45.0) 185 (48.6) 63 (48.8) 0.54
b
 442 (47.0) 

   No 237 (55.0) 196 (51.4) 66 (51.2)  499 (53.0) 

Standardized Results - N (%)      

   Yes 187 (43.4) 173 (45.4) 45 (34.9) 0.11
b
 405 (43.0) 

   No 244 (56.6) 208 (54.6) 84 (65.1)  536 (57.0) 
a
 Kruskal-Wallis test 

b
 Chi-square test 

c
 Participation in the 2004-05 study year is used as a proxy for 2004-05 vaccination status. 

Those enrolled in both 2004-05 and 2005-06 received the same intervention both years; 

however, history of vaccination in the 2004-05 season was not explicitly determined for those 

newly enrolled in 2005-06. 
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Table 2-2. The Proportions of Subjects with Hemagglutination Inhibition (HAI) Titers ≥32 or 

Neuraminidase Inhibition (NAI) Titers ≥40 at Prevaccination, and 1, 6, 12, and 18 Month 

Postvaccination Time Points by Intervention
a
. 

 Months Following Vaccination 

Intervention and Antigen 0 1 6 12 18 

IIV      

   Influenza A (H3N2) HAI 55.9% 97.0% 92.8% 89.3% 89.1% 

   Influenza A (H3N2) NAI 37.7% 79.1% 59.8% 57.0% 48.0% 

   Influenza B HAI 77.8% 99.8% 98.4% 97.2% 95.6% 

LAIV      

   Influenza A (H3N2) HAI 44.9% 68.0% 61.7% 62.7% 59.3% 

   Influenza A (H3N2) NAI 29.8% 40.4% 39.4% 38.5% 32.2% 

   Influenza B HAI 68.8% 92.1% 89.8% 84.0% 81.9% 

Placebo      

   Influenza A (H3N2) HAI 48.1% 44.2% 44.2% 49.6% 45.7% 

   Influenza A (H3N2) NAI 32.1% 36.9% 29.8% 32.1% 28.6% 

   Influenza B HAI 67.4% 72.9% 69.8% 69.8% 67.4% 
a
IIV: inactivated influenza vaccine; LAIV: live attenuated influenza vaccine; Placebo 
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Table 2-3. Estimates of 18 Month Post-Intervention Hemagglutination Inhibition (HAI) and Neuraminidase 

Inhibition (NAI) Titers and Times to Decrease Titer by 2-fold, Stratified by Peak Post-Intervention Titer
a
. 

All Subjects N (%) 

Model Estimated 18  

Month Titer
b
 (95% CI

d
) 

Days to 2-fold Titer Decrease
b,c

 

(95% CI
d
) 

Influenza A (H3N2) 
   

Peak HAI Titer
a
 

   
4 15 (1.6) 5 (4 to 6) ∞ 

8 55 (5.8) 9 (7 to 10) ∞ 

16 86 (9.1) 14 (13 to 16) 173623 (3188 to ∞) 

32 128 (13.6) 24 (22 to 26) 2945 (1672 to 12345) 

64 147 (15.6) 40 (37 to 43) 1485 (1104 to 2269) 

128 153 (16.3) 67 (62 to 72) 993 (803 to 1300) 

256 110 (11.7) 112 (103 to 122) 746 (620 to 936) 

512 120 (12.8) 187 (169 to 207) 597 (499 to 742) 

1024 67 (7.1) 312 (275 to 354) 498 (416 to 619) 

2048 36 (3.8) 521 (448 to 607) 427 (356 to 533) 

4096 24 (2.6) 871 (728 to 1042) 374 (310 to 469) 

Peak NAI Titer
a
 

   
5 63 (11.8) 5 (4 to 6) ∞ 

10 61 (11.4) 8 (7 to 8) ∞ 

20 104 (19.4) 12 (11 to 13) 2508 (1557 to 6445) 

40 101 (18.8) 18 (16 to 19) 1135 (886 to 1578) 

80 61 (11.4) 27 (25 to 29) 734 (603 to 935) 

160 80 (14.9) 41 (37 to 46) 542 (452 to 677) 

320 35 (6.5) 63 (55 to 72) 430 (359 to 534) 

640 19 (3.5) 96 (82 to 114) 356 (297 to 443) 

1280 12 (2.2) 147 (121 to 180) 304 (254 to 379) 

Influenza B Yamagata 
   

Peak HAI Titer
a
 

   
4 15 (1.6) 6 (5 to 8) ∞ 

8 20 (2.1) 10 (9 to 12) ∞ 

16 31 (3.3) 17 (15 to 20) ∞ 

32 92 (9.8) 29 (26 to 33) 96097 (3253 to ∞) 

64 121 (12.9) 49 (45 to 53) 2455 (1523 to 6337) 

128 158 (16.8) 81 (76 to 88) 1244 (971 to 1728) 

256 159 (16.9) 136 (126 to 146) 833 (698 to 1032) 

512 135 (14.3) 227 (209 to 247) 626 (536 to 751) 

1024 104 (11.1) 379 (343 to 420) 501 (432 to 598) 

2048 53 (5.6) 634 (558 to 719) 418 (360 to 499) 

4096 53 (5.6) 1058 (908 to 1234) 359 (308 to 429) 
a
 Titer at 1-month postvaccination follow-up. 

 b 
Rates of antibody change were estimated in linear mixed models with log2 titers as the dependent variable, time 

in days from the 1 month postvaccination blood draw as the independent variable, and an interaction term 

between the peak log2 titer and time. Because peak log2 titer was included in the model as a covariate, a separate 

intercept was not estimated and only post-1-month log2 titers were included in the dependent variable. To 

account for correlation of titers within individuals over time, time was modeled as a random effect. 
c
 Time in days to decrease 2-fold (1 log2 titer) was calculated as the reciprocal of the model estimated rates. 

d
 95% Confidence Interval (95% CI)
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Figure 2-1. Subjects Included and Excluded from Analyses of Hemagglutination Inhibition (HAI) and Neuraminidase Inhibition (NAI) 

Antibody Persistence. 

2005-2006 Study Year

N=2058

2006-2007 Study Year

N=1726

Lost to Follow-up

N=332

HAI Assays Performed on All 

2005-2006 and 2006-2007 Sera 

N=1227

Subjects Included in Analysis

N=941

Excluded Subjects with 

Laboratory-Confirmed Influenza 

N=286

Available HAI Assay Results

N=941

Available NAI Assay Results

N=536
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Figure 2-2. Geometric Mean (GMT) Hemagglutination Inhibition (HAI) and Neuraminidase 

Inhibition (NAI) Titers at Prevaccination, and 1, 6, 12, and 18 Month Postvaccination Time 

Points, by Intervention
a
, with Estimated Regression Lines

b
. 
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a
IIV: inactivated influenza vaccine; LAIV: live attenuated influenza vaccine; Placebo 

b
Rates of antibody change were estimated in linear mixed models with log2 titers as the 

dependent variable and time in days from the 1 month postvaccination blood draw as the 

independent variable. To account for correlation of titers within individuals over time, the 

intercept and time were modeled as random effects. 
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Figure 2-3. Geometric Mean (GMT) Hemagglutination Inhibition (HAI) Titers to Influenza A 

(H3N2) at Prevaccination, and 1, 6, 12, and 18 Month Postvaccination Time Points, by 

Intervention
a
 and 2-Year Vaccination Status

b
, with Estimated Regression Lines

c
. 
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a
IIV: inactivated influenza vaccine; LAIV: live attenuated influenza vaccine; 

b
 Participation in the 2004-05 study year was used as a proxy for history of influenza vaccination 

in that season. Those enrolled in both 2004-05 and 2005-06 received the same intervention 

both years; however, history of vaccination in the 2004-05 season was not explicitly determined 

for those newly enrolled in 2005-06. 
c
Rates of antibody change were estimated in linear mixed models with log2 titers as the 

dependent variable and time in days from the 1 month postvaccination blood draw as the 

independent variable. To account for correlation of titers within individuals over time, the 

intercept and time were modeled as random effects. 



32 

 

Figure 2-4. Geometric Mean (GMT) Hemagglutination Inhibition (HAI) Titers to Influenza B 

(Yamagata) at Prevaccination, and 1, 6, 12, and 18 Month Postvaccination Time Points, by 

Intervention
a
 and 2-Year Vaccination Status

b
, with Estimated Regression Lines

c
. 
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a
IIV: inactivated influenza vaccine; LAIV: live attenuated influenza vaccine; 

b
 Participation in the 2004-05 study year was used as a proxy for history of influenza vaccination 

in that season. Those enrolled in both 2004-05 and 2005-06 received the same intervention 

both years; however, history of vaccination in the 2004-05 season was not explicitly determined 

for those newly enrolled in 2005-06. 
c
Rates of antibody change were estimated in linear mixed models with log2 titers as the 

dependent variable and time in days from the 1 month postvaccination blood draw as the 

independent variable. To account for correlation of titers within individuals over time, the 

intercept and time were modeled as random effects. 
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Figure 2-5. Geometric Mean (GMT) Neuraminidase Inhibition (NAI) Titers to Influenza A (H3N2) 

at Prevaccination, and 1, 6, 12, and 18 Month Postvaccination Time Points, by Intervention
a
 and 

2-Year Vaccination Status
b
, with Estimated Regression Lines

c
. 
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a
IIV: inactivated influenza vaccine; LAIV: live attenuated influenza vaccine; 

b
 Participation in the 2004-05 study year was used as a proxy for history of influenza vaccination 

in that season. Those enrolled in both 2004-05 and 2005-06 received the same intervention 

both years; however, history of vaccination in the 2004-05 season was not explicitly determined 

for those newly enrolled in 2005-06. 
c
Rates of antibody change were estimated in linear mixed models with log2 titers as the 

dependent variable and time in days from the 1 month postvaccination blood draw as the 

independent variable. To account for correlation of titers within individuals over time, the 

intercept and time were modeled as random effects. 
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Chapter 3. 

Influenza Vaccine Efficacy as a Function of Time 

Background 

In the United States (US), influenza vaccination primarily occurs in the fall months to reduce risk 

of influenza which typically peaks in the winter [48-50]. However, influenza vaccines are now 

available from some providers as early as July, and influenza activity may continue into the late 

spring [51, 52]. As a result, there can be relatively long periods of time between vaccination and 

potential exposure raising concerns for the possibility of waning vaccine efficacy over the 

course of a single season. Because of this concern, the Advisory Committee for Immunization 

Practices (ACIP) had previously recommended that elderly individuals delay vaccination until 

just prior to the influenza season [32, 34]. This recommendation was abandoned in 2007; 

currently all individuals 6 months of age and older are recommended to be vaccinated at the 

earliest opportunity [92]. 

Concerns of waning protection from influenza vaccination were raised again following 

publication of reports from European studies of influenza vaccine effectiveness during the 

2011-2012 influenza season [16-18]. These studies estimated vaccine effectiveness in early and 

late season periods, and by periods of time since vaccination, and found reduced effectiveness 

in the late season and with increasing time from vaccination. Among vaccinated participants in 

a US study of influenza vaccine effectiveness during the 2007-2008 season, influenza positive 

cases had longer times from vaccination to illness onset than influenza negative controls 

suggesting waning vaccine protection [55]. In analyses of 3 clinical trials carried out in children 

Chapter 3 has been published as Petrie JG, Ohmit SE, Truscon R, Johnson E, Braun TM, Levine MZ, Eichelberger MC, 

Monto AS, Modest Waning of Influenza Vaccine Efficacy and Antibody Titers during the 2007-2008 Influenza 

Season, The Journal of Infectious Diseases 2016, and reproduced here by permission of Oxford University Press.
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comparing the relative efficacies of inactivated (IIV) and live-attenuated (LAIV) influenza 

vaccines, waning IIV efficacy was suggested by increasing relative LAIV efficacy over time [93]. 

We analyzed data from a placebo-controlled trial estimating the absolute and relative efficacies 

of IIV and LAIV to examine waning vaccine efficacy using a statistical approach previously 

applied to estimate time-varying efficacy of cholera vaccine [58, 59]. Analyses of time-varying 

efficacy were supported by estimating the rate of change, over the course of the influenza 

season, of antibody titers measured by the hemagglutination inhibition (HAI) assay and the 

recently standardized neuraminidase inhibition (NAI) assay.  Antibody titer to the 

hemagglutinin (HA) antigen has long served as a laboratory immune correlate of protection, 

and antibody titer to the neuraminidase (NA) antigen has recently been shown to 

independently correlate with protection [19, 20, 26, 28]. Therefore, persistence of antibody 

against both of these antigens likely contributes to the duration of vaccine induced protection. 

Methods 

Study design 

Healthy adult subjects 18-49 years of age were enrolled in the trial prior to the 2007-2008 

influenza season. Description of study methods and efficacy results has been previously 

published [60]. The study was approved by the institutional review board at the University of 

Michigan Medical School. Written informed consent was obtained from all participants before 

enrollment. Subjects were recruited, enrolled, and randomized to receive IIV, LAIV, or placebo 

in October and November of 2007. From November 2007 through April 2008, subjects were 

instructed to report all acute respiratory illnesses meeting a symptomatic case definition. Ill 

subjects attended an illness visit with collection of a throat swab. Blood specimens for serologic 

studies were collected immediately prior to vaccination, approximately 30-days 

postvaccination, and at the end of the influenza season (approximately 5-6 months after 

vaccination). 
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Laboratory assays 

Throat swabs collected at illness visits were tested for influenza virus identification in real-time, 

reverse-transcription polymerase chain reaction (RT-PCR) assays and by virus isolation in cell-

culture. Primers and probes used in the RT-PCR assay were developed by the Influenza Division 

at the Centers for Disease Control and Prevention (CDC) for universal detection of influenza A 

and B viruses, and subtyping of influenza A viruses. A subset of influenza A viruses isolated in 

cell culture were submitted to the CDC Influenza Division for antigenic characterization. 

As previously described, serum specimens from all subjects with laboratory-confirmed influenza 

and a random sample of the remaining subjects who provided all 3 blood specimens were 

tested by hemagglutination inhibition (HAI) and neuraminidase inhibition (NAI) assays to 

determine antibody titers to influenza HA and NA, respectively [20, 28, 60]. HAI assays were 

performed on sera that were treated with receptor destroying enzyme and heat inactivated. 

Standardized concentrations (4 HA units per 25 μL) of monovalent inactivated vaccine subunit 

material (Sanofi-Pasteur) representing the 2007-2008 A (H3N2) vaccine virus strain 

(A/Wisconsin/67/05) were used as the HAI target. NAI assays were performed using, as the 

target, a reassortant virus representing the A (H3N2) vaccine virus strain with a mismatched HA 

(H6 subtype) to avoid interference by HA-specific antibodies [88]. HAI titers at each time point 

were calculated as the reciprocal (e.g. 64) of the highest serum dilution (e.g. 1:64) that inhibited 

hemagglutination; similarly, NAI titers were calculated as the reciprocal of the highest serum 

dilution that inhibited at least 50% neuraminidase activity. HAI and NAI titers below the lower 

limit of detection (i.e. HAI: <8; NAI: <10) were denoted as half that value (i.e. HAI: 4; NAI: 5); 

titers greater than the upper limit of detection (i.e. HAI: 4096; NAI: 5120) were denoted as 

twice that value (i.e. HAI: 8192; NAI: 10,240). 

The NAI assay was performed in the CDC Influenza Division research laboratory; all other 

laboratory assays were performed in the respiratory virus research laboratory at the University 

of Michigan School of Public Health. 
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Statistical analyses 

For efficacy analyses, subjects were considered to have had symptomatic influenza if they 

reported an illness with at least one respiratory symptom (cough or nasal congestion) and at 

least one constitutional symptom (fever/feverishness, chills, or body aches) that was 

laboratory-confirmed as influenza by RT-PCR identification or isolation in cell culture.  

Absolute efficacies of IIV and LAIV relative to placebo in preventing symptomatic influenza were 

estimated in Cox proportional hazards models and calculated as 100*(1 - hazard ratio). The 

time varying coefficient for each vaccine (β(t)) was estimated by fitting a smooth Loess function 

to scaled Schoenfeld residuals summed with the coefficient (β) estimated in Cox proportional 

hazards models. Time varying efficacy (VE(t)) was calculated as 100*(1-eβ(t)). The test for linear 

trend (i.e. proportional hazards) in the scaled Schoenfeld residuals was used to test for the 

presence of waning [59]. The average VE(t) estimated by the Loess function was calculated as 

the integral of the function divided by the number of days between the first and last observed 

cases of symptomatic influenza; 95% confidence intervals (CI) around this estimate were 

calculated using bootstrap methods with 1000 resamples. 

Analysis of serologic data was limited to those subjects without evidence of laboratory-

confirmed, symptomatic influenza. Log base 2 (log2) transformation was applied to all HAI and 

NAI titers. Geometric mean titers (GMT) were calculated as 2mean log2 titer, and plotted at pre 

and postvaccination and postseason time points. Rates of titer decline between the 1 month 

postvaccination blood draw and postseason blood draw were estimated by intervention. These 

rates were estimated in linear generalized estimating equations (GEE) models with log2 titers as 

the dependent variable and time in days from 1 month postvaccination blood draw as the 

independent variable. Model results were used to predict intervention specific mean log2 titers 

at multiple time points throughout the influenza season and titer fold differences for IIV and 

LAIV recipients relative to placebo recipients were calculated.  

All statistical analyses were carried out using R (version 3.1.0) software; a P value <0.05 or a 

lower bound of a 95% confidence interval >0 was considered to indicate statistical significance. 
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Results 

As previously reported, 1952 participants were enrolled and received intervention; 814 

received IIV, 813 received LAIV, and 325 received placebo (Table 3-1) [60]. The mean age of 

subjects was 23 years, 61% were women, and 86% were white; demographic characteristics of 

subjects did not vary by intervention [60]. Influenza, primarily type A (H3N2), circulated for 16 

weeks from early January through mid-April 2008 (Figure 3-1). Laboratory-confirmed, 

symptomatic influenza was identified in 119 subjects including 106 with influenza A (H3N2), 2 

with influenza A (H1N1), and 11 with influenza B; cumulative incidence was 28 (3.4%) for IIV 

recipients, 56 (6.9%) for LAIV recipients and 35 (10.8%) for placebo recipients. Most influenza 

cases (99 [83%]) occurred in the 7 weeks of peak influenza activity prior to February 17th, 2008 

as visually indicated in Figure 3-1; the remaining cases (20 [17%]) followed at lower levels in the 

remaining 9 weeks of the season. Among IIV recipients, 8 (n=29%) influenza cases occurred in 

the last 9 weeks of the season following peak influenza activity, a higher proportion than 

among LAIV (7 [13%], P=0.07) or Placebo (5 [n=14%], P=0.16) recipients. 

Overall efficacy against all influenza types, estimated in Cox proportional hazards models, was 

70% (95% CI: 50% - 82%) for IIV and 38% (95% CI: 5% - 59%) for LAIV, and similar to previously 

published estimates based on relative risks [60]. VE(t) and associated 95% CIs were plotted 

separately for IIV and LAIV and presented in Figure 3-2. For IIV, VE(t) gradually decreased across 

the season before becoming unstable (rapid decrease in VE(t) and widening confidence 

intervals) with sparse observations at the end of the season. The test for proportional hazards 

indicated statistically significant waning of IIV efficacy (P=0.03). Despite this observed waning, 

IIV remained significantly efficacious well past the peak of influenza season and for 12 of the 16 

total weeks of circulation. In contrast, VE(t) for LAIV was lower overall with broader confidence 

intervals compared with IIV. Estimates of VE(t) for LAIV were also more unstable than for IIV as 

indicated by rapidly decreasing efficacy over the earliest part of the season followed by rapidly 

increasing efficacy over the later part of the season. The test for proportional hazards did not 

detect statistically significant waning of LAIV efficacy (P=0.37). LAIV remained significantly 

efficacious through peak influenza activity, but for only 7 of the 16 total weeks of circulation. 
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Efficacy estimates calculated as the average of VE(t) functions were higher but less precise than 

those estimated in the Cox proportional hazards models (IIV: 86% [95% CI: 59% to 95%]; LAIV: 

61% [3% to 86%]). 

Efficacy against influenza A (H3N2) only was similar to estimates for all influenza (IIV: 73% [95% 

CI: 52% - 84%]; LAIV: 30% [95% CI: -9% - 55%]). VE(t) against influenza A (H3N2) and associated 

95% CIs were plotted separately in Figure 3-3 for IIV and LAIV. For IIV, efficacy against influenza 

A (H3N2) gradually decreased over the course of the season with statistically significant waning 

noted (P=0.04). The plot of LAIV VE(t) was again unstable with wide confidence intervals; 

however, against influenza A (H3N2), efficacy rapidly decreased during the earliest part of the 

season, leveled off near the peak of influenza circulation, then rapidly decreased again in the 

late season. Despite the nearly constant decreasing trajectory of LAIV VE(t) against influenza A 

(H3N2) the test for proportional hazards did not meet statistical significance (P=0.16), reflecting 

the imprecision of the estimate. Insufficient numbers of cases were available for separate 

influenza A (H1N1) or influenza B specific estimates of VE(t). 

Results from testing in HAI and NAI assays were available for 497 of 1952 (25%) subjects, 

including 103 influenza A (H3N2) cases and a random sample of subjects without laboratory-

confirmed influenza [20]. Analysis of HAI and NAI titers over time was limited to the 394 

subjects with test results and without evidence of laboratory-confirmed influenza (21% of all 

such subjects). HAI and NAI GMTs to influenza A (H3N2) at prevaccination, 30 days 

postvaccination, and postseason time points were plotted and presented in Figure 3-4; 

estimated regression lines between the postvaccination and postseason time points compared 

values for IIV and LAIV recipients to placebo recipients.   

In those without evidence of influenza infection, HAI and NAI titers significantly decreased over 

the influenza season among IIV recipients (HAI: P<0.001; NAI: P<0.001) but not LAIV recipients 

(HAI: P=0.99; NAI: P=0.79). Among IIV recipients without laboratory-confirmed influenza, HAI 

GMT decreased 1.9 (95% CI: 1.4-2.8) fold and NAI GMT decreased 1.4 (95% CI: 1.2-1.7) fold 

from 30 days postvaccination to postseason. HAI titers were 7.8 (95% CI: 4.8-12.8) fold higher 

on average 30 days postvaccination for IIV recipients compared to placebo recipients (Table 3-
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2).  However, HAI titers were only 3.7 (95% CI: 2.2-6.2) fold higher for IIV recipients by the 

postseason blood draw approximately 6 months later. For NAI GMTs, IIV recipients were 2.4 

(95% CI: 1.9-3.1) fold higher than placebo recipients 30 days postvaccination, and 1.8 (95% CI: 

1.4-2.3) fold higher at the postseason blood draw. HAI and NAI titers were similar for LAIV and 

placebo recipients at each time point.   

Sensitivity analyses were performed to estimate VE(t) for IIV and LAIV during periods restricted 

to the 6, 8, and 10 weeks of peak influenza circulation. In general, the plots of IIV VE(t) 

restricted to peak periods of influenza circulation displayed similar trajectories as the plot using 

all data (Figure 3-5). In contrast to the primary analysis, statistically significant waning was not 

detected in any of the of the IIV sensitivity analyses restricted to peak periods potentially 

reflecting reduced sample size. Plots of LAIV VE(t) restricted to peak periods of influenza 

circulation also displayed similar trajectories as the overall plot of LAIV VE(t) (Figure 3-6); 

statistically significant waning was not detected in any LAIV analysis. 

Discussion 

While waning of IIV efficacy was detected in analyses considering all influenza and influenza A 

(H3N2) specifically, the vaccine maintained a high level of protection for the majority of the 

influenza season in subjects vaccinated approximately 3 months prior to peak influenza activity. 

Serologic data were generally in agreement with the time-varying efficacy results with 

significant waning of HAI and NAI titers observed among IIV recipients. Consistent with results 

of previous studies, HAI and NAI titers decreased relatively slowly in IIV recipients [34, 94]. This 

slow decline in GMT was evident in the fold differences between the HAI titers of IIV and 

placebo recipients which decreased from 7.8 fold 30 days postvaccination to 3.7 fold 

approximately 6 months later. 

LAIV estimates of time-varying efficacy had wider confidence intervals and were much less 

stable than those for IIV. This is somewhat counterintuitive given that there were more 

laboratory-confirmed influenza outcomes among LAIV recipients compared with IIV recipients. 

However, because efficacy was examined as a function of time, the distribution of influenza 

cases across the season influenced findings. Influenza cases among LAIV recipients were more 
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tightly clustered during the first 7 weeks of the influenza season compared with those among 

IIV recipients. LAIV cases occurred in only 4 of the last 9 weeks of the season (13% of all LAIV 

cases); comparatively, IIV cases occurred in 6 of the last 9 weeks of the season (29% of all IIV 

cases). LAIV efficacy was also lower overall compared to IIV, further reducing the power to 

detect any potential waning of efficacy. For these reasons it was difficult to draw substantial 

conclusions about LAIV efficacy over time from the plots of time-varying efficacy. We did 

observe that HAI and NAI GMTs did not decrease over the course of the influenza season 

among LAIV recipients; however, postvaccination titer increases were minor and allowed little 

room for measurable decreases. 

Because influenza vaccination has been recommended for all persons ≥6 months since the 

2010-2011 influenza season, only observational study designs are now appropriate for 

estimating influenza vaccine effectiveness in US populations [95]. Observational studies are 

currently carried out on an annual basis in the US, Europe, Canada, and elsewhere to evaluate 

influenza vaccine effectiveness [6, 9, 96, 97]. The most common study design is the case-test 

negative approach [11, 12]. Subjects with acute respiratory illnesses are enrolled when they 

present for medical care and diagnostic specimens are collected. Vaccine effectiveness is 

estimated by comparing the influenza vaccination status of subjects who test positive for 

influenza (cases) with those who test negative.  

There are relatively few previous evaluations of the duration of influenza vaccine effectiveness; 

most are recent and have been applied to data collected using the case-test negative design. 

These studies have examined vaccine effectiveness in early and late influenza season periods 

and/or by increasing time from vaccination, with most finding trends suggestive of waning 

vaccine effectiveness [18, 56, 57, 98, 99] and few finding statistically significant results [16, 17, 

55]. The design of these studies presents at least three limitations for the estimation of time-

varying vaccine effectiveness. 1) Subjects are enrolled cross-sectionally over the season, and 

the timing of enrollment can be associated with both likelihood of vaccination and influenza 

infection; accurately modeling these time varying factors is complicated, making adjustment 

difficult. 2) Subjects testing negative for influenza are susceptible to misclassification of 
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immune status: specifically, as the season progresses, there is increasing probability that a test-

negative subject may have been previously infected, and therefore, has some level of natural 

immunity. 3) In analyses that compare effectiveness by time since vaccination, time is often 

broken into arbitrary blocks (e.g. <3 months vs ≥3 months) for vaccinated subjects, and similar 

time periods are not easily defined for the unvaccinated group. Here, randomization to vaccine 

or placebo, prospective follow-up to identify cases of influenza, and explicit modeling of 

calendar time largely eliminates these limitations. 

While the current study, a randomized placebo-controlled trial, would be considered a stronger 

design, it does have limitations. If viruses circulating later in the season were more antigenically 

drifted from the vaccine virus than those that circulated early in the season, efficacy would be 

expected to decrease over the season. However, the influenza A (H3N2) isolates that were 

antigenically and genetically characterized were considered to be similar to vaccine strains [60, 

100]. If influenza infections were unreported or undetected, this study could have also been 

subject to potential misclassification of immune status. Other individual and population level 

factors (e.g. subgroup specific differences in efficacy and timing of infection) could also explain 

the observed results in the absence of true waning efficacy [58, 59]. However, the consistency 

of the serologic and efficacy results presented here strengthen the conclusion that IIV 

recipients experienced slow but significant waning of protection over time. 

The statistical methods for estimation of time-varying efficacy used here were previously 

applied to analyses of the efficacy of cholera vaccine [58, 59]. In contrast to cholera, influenza 

circulation is generally limited to a well-defined winter season in temperate regions and 

vaccination is required on an annual basis. As a result, the relatively short time period defined 

by an influenza season limits power to estimate time-varying vaccine efficacy. This is 

particularly evident in the unstable estimates (e.g. decline in IIV VE(t), and increase in LAIV VE(t) 

at the end of the season) and wide confidence intervals around the efficacy estimates in the 

shoulders of the season. Analysis of a single influenza season also limits the generalizability of 

the results of this study. The viruses that circulate and that are included in the vaccine, along 

with timing of vaccination and influenza circulation, can vary from year to year and potentially 
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affect duration of protection. Duration of vaccine induced protection may also differ for young 

children, the elderly, and those with comorbid conditions compared to the healthy younger 

adults studied here. 

Although IIV efficacy decreased over time, waning of protection was slow and the vaccine was 

significantly efficacious for the majority of the influenza season. LAIV was also efficacious 

(though relative efficacy was significantly lower compared to IIV [60]) with little evidence to 

suggest waning. Previous studies have also shown that antibodies to influenza HA and NA can 

persist for long periods [94], and have detected residual protection one year following 

vaccination [7, 24]. The incremental benefits in overall efficacy that could be achieved by 

delaying vaccination would come at the cost of missed vaccination opportunities and increased 

risk of early season infection prior to vaccination. Therefore, the degree of waning efficacy 

observed here would not suggest an overall benefit to delaying vaccination, and supports 

current recommendations for receipt of influenza vaccine at the earliest opportunity each 

season.
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Table 3-1. Characteristics of Subjects Receiving Inactivated Influenza Vaccine (IIV), Live-attenuated Influenza 

Vaccine (LAIV), or Placebo. 

 IIV LAIV Placebo P-value Total 

Age in years - mean ± st.dev. 23.2 ± 7.4 23.5 ± 7.7 22.9 ± 6.7 0.48
a
 23.3 ± 7.4 

Age category - N (%)    0.72
b
  

   18-19 years 289 (35.5) 283 (34.8) 114 (35.1)  686 (35.1) 

   20-24 years 355 (43.6) 340 (41.8) 140 (43.1)  835 (42.8) 

   25-34 years 90 (11.1) 99 (12.2) 44 (13.5)  233 (11.9) 

   35-49 years 80 (9.8) 91 (11.2) 27 (8.3)  198 (10.1) 

Sex - N (%)    0.42
b
  

   Female 494 (60.7) 519 (63.8) 201 (61.8)  1214 (62.2) 

   Male 320 (39.3) 294 (36.2) 124 (38.2)  738 (37.8) 

Race - N (%)    0.18
b
  

   White 697 (85.6) 682 (83.9) 264 (81.2)  1643 (84.2) 

   Nonwhite 117 (14.4) 131 (16.1) 61 (18.8)  309 (15.8) 

Total 814 (41.7) 813 (41.6) 325 (16.7)  1952 (100) 
a
 Kruskal-Wallis 

b
 Chi-square
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Table 3-2. Fold Differences in Hemagglutination Inhibition (HAI) and Neuraminidase Inhibition 

(NAI) Titers Comparing Inactivated (IIV) and Live-attenuated Influenza Vaccine (LAIV) Recipients 

to Placebo Recipients at 30 Days Postvaccination and End of Season Time Points. 

 HAI NAI 

Intervention 

30 days Post-

Vaccination End of Season 

30 days Post-

Vaccination End of Season 

IIV 7.8 (4.8-12.8) 3.7 (2.2-6.2) 2.4 (1.9-3.1) 1.8 (1.4-2.3) 

LAIV 1.1 (0.6-1.7) 1.0 (0.6-1.6) 1.3 (1.0-1.8) 1.4 (1.0-2.0) 
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Figure 3-1. Weekly Incidence of Influenza and Total Weekly Influenza Cases by Intervention during the 2007-2008 Influenza Season. 

 



49 

 

Figure 3-2. Efficacies of Inactivated and Live-attenuated Influenza Vaccines in Preventing All Influenza as a Function of Time. 
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Figure 3-3. Efficacies of Inactivated (IIV) and Live-attenuated Influenza Vaccines in Preventing Influenza A (H3N2) as a Function of 

Time. 

 



51 

 

Figure 3-4. Mean Log2 Hemagluttination Inhibition (HAI) and Neuraminidase Inhibition (NAI) 

Titers at Prevaccination, 30 Days Postvaccination, and End of Season Time Points Comparing 

Inactivated (IIV) and Live-attenuated Influenza Vaccine Recipients to Placebo Recipients. 
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Figure 3-5. Efficacy of Inactivated Influenza Vaccine (IIV) in Preventing All Influenza as a 

Function of Time using All Data, and Restricted to the Peak 6 Weeks, Peak 8 Weeks, and Peak 

10 Weeks of Influenza Circulation. 
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Figure 3-6. Efficacy of Live-attenuated Influenza Vaccine (LAIV) in Preventing All Influenza as a 

Function of Time using All Data, and Restricted to the Peak 6 Weeks, Peak 8 Weeks, and Peak 

10 Weeks of Influenza Circulation. 
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Chapter 4. 

Individual Based Transmission Hazard Model for Estimation of Influenza Vaccine Effectiveness 

in Household Cohort Studies 

Background 

Household studies have been used extensively to study acute respiratory illnesses such as 

influenza [63]. Data from the classic household studies of acute respiratory illness carried out in 

past decades have been used to inform models used to evaluate influenza pandemic mitigation 

strategies [64, 65]. However, these studies were limited by their ability to determine illness 

etiology; typically, influenza infections were defined by rises in antibody titer observed 

between serum specimens bracketing the influenza season. The development of real-time 

reverse transcription polymerase chain reaction (RT-PCR) methods has allowed for more 

comprehensive identification of illness etiology as well as the ability to more accurately 

determine the timing of an infection within a season. These advancements have again made 

household studies an attractive design for the study of acute respiratory illnesses. 

Modern household studies of influenza are generally based on one of two designs: cohort or 

case-ascertained [70]. In the case-ascertained design, index cases are identified and enrolled 

when they seek medical care for an acute respiratory illness that is laboratory-confirmed as 

influenza. Household contacts of the index case are enrolled and followed for identification of 

any resulting secondary infections. Household cohort studies, by contrast, typically enroll 

households prior to the influenza season who are then followed for occurrence of influenza 

infections. Case-ascertained studies are the more efficient design for studying transmission 

because influenza has been introduced in each household under study; however, bias may be 

introduced by selecting for index cases with more severe illness requiring medical attention [66, 

70]. Although more resource intensive, household cohort studies are able to evaluate
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interventions affecting both primary introduction from the community and secondary 

household infection, and are able to carry out evaluations requiring prospective follow-up such 

as collection of serologic specimens to determine preseason susceptibility and vaccine response 

[23, 24, 71].  

Since 2010, we have maintained a cohort of households with children for the study of influenza 

vaccine effectiveness (VE), and transmission of influenza and other respiratory viruses. Annual 

estimates of influenza vaccine effectiveness in preventing community and household-acquired 

influenza infections have been assessed in this cohort previously [23, 24, 71]. However, 

previous assessments of VE in preventing household-acquired infections were limited in that 

they were unable to account for increased risk of infection attributable to the presence of co-

index cases, continued risk of infection from the community, and secondary infection of 

household contacts who in turn expose those remaining susceptible. To address these 

limitations it is necessary to explicitly model, for each individual, the risk of infection from the 

community as well as from each household contact that becomes infected. 

Previous models have estimated risks of influenza infection from the community and the 

household using the final number of serologically defined infections at the end of the epidemic 

[73, 74]. However, these models ignore the potentially important information in timing of 

infections (e.g. if two infections within a household are very widely spaced in time, it may be 

more likely that they were both community-acquired rather than from within the household). 

Modern communications allow study subjects to rapidly report illnesses, and current laboratory 

methods allow rapid and accurate diagnosis of infections. Given these data and modern 

computational resources, it is now possible to build models that consider not only the number, 

but also the timing of infections.  Cauchemez et al. have developed an individual-based 

transmission hazard (TH) model for the analysis of household data that includes timing of illness 

onset [77, 78]. This model, and similar extensions, have previously been applied only to data 

from case-ascertained household studies in order to estimate risks of community and 

household infection, measure the association between viral shedding and infectivity, and assess 

antibody titers as correlates of protection [77-80]. However, this class of models has not been 
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previously been applied to household cohort data, which require different assumptions in the 

model structure particularly with regards to community transmission. 

Here we evaluate a new TH model for use in cohort studies, based on the model of Cauchemez 

et al. [77-79], and compare vaccine effectiveness estimated in TH models to those estimated in 

Cox Proportional Hazards (PH) models using data collected during the 2010-2011 influenza 

season. We also demonstrate the predictive value of the model by simulating community and 

household-acquired infections under varying levels of hypothetical VE. 

Methods 

Study subjects and data 

As previously described [23], households of at least 4 persons, at least 2 of whom were children 

<18 years, who receive primary care from a University of Michigan Health System provider 

were invited to participate via direct mail prior to the 2010-2011 influenza season. Interested 

households attended an enrollment visit where adults provided informed consent for 

participation for themselves and their children (children ages 7-17 years also provided oral 

assent) and completed an enrollment interview. Influenza vaccination was documented in 

health system electronic medical records (EMR) and the Michigan Care Improvement Registry 

(MCIR). The presence of comorbid conditions that increase the risk for severe outcomes of 

influenza were also documented by EMR [95]. The study was approved by the institutional 

review board at the University of Michigan Medical School. 

Respiratory illness surveillance and laboratory testing 

Surveillance for detection of acute respiratory illnesses was carried out from October 2010 

through April 2011. Subjects were instructed at enrollment and via weekly email reminders to 

report all acute respiratory illnesses with ≥2 of the following symptoms: cough, fever or 

feverishness, nasal congestion, chills, headache, body aches, and/or sore throat. Subjects with 

eligible illnesses were asked to attend an illness visit at the study site at the University of 

Michigan School of Public Health within 7 days from illness onset for collection of a throat 

swab, or a nasal swab for children <7 years, for identification of influenza virus.  
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Respiratory specimens collected from ill subjects were tested by RT-PCR in the investigators’ 

Respiratory Virus Laboratory at the University of Michigan School of Public Health. RT-PCR 

assays were performed using the testing protocol as well as primers and probes developed and 

provided by the Influenza Division of the Centers for Disease Control and Prevention. Primers 

and probes were designed for the universal detection of influenza A and B viruses, influenza A 

(pH1N1) and H3N2 subtypes, and influenza B Yamagata and Victoria lineages. Both influenza A 

subtypes as well as influenza B viruses were identified, but analyses were limited to influenza A 

(H3N2) infections, the predominant virus identified during the 2010-2011 influenza season.  

Individual-based transmission hazard model 

The TH model described below extends the work of Cauchemez et al. and Tsang et al. to 

examine influenza vaccine effectiveness in a prospectively followed cohort of households. The 

TH model computes the hazard for infection from the community for all individuals across the 

entire observed influenza season, and, separately, the hazard for infection from the each 

infected household contact for a 14 day period following the illness onset of the infected 

contact (Figure 4-1). Similar to Cox PH models, the effects of subject characteristics on these 

hazards can be evaluated by the inclusion of covariates. Previous analyses have identified age 

and presence of high risk health conditions as confounders of influenza vaccine effectiveness 

and these are adjusted for here [23]. For each individual, j, in the cohort we observe the 

following data: yj, an indicator of RT-PCR confirmed influenza A (H3N2) infection; tj, the time at 

which follow-up ends (the day of illness onset for those infected, and the end of the influenza 

season for those not infected); aj, subject age; hrj, an indicator of the presence of high risk 

conditions; vj,(t), subject vaccination status at time t.  

We model the hazard of infection at time t from the community for each cohort member, j, as 

��,
(�) = �
(�) ∗ �
 ∗ exp{�� ∗ ��� + �� ∗ ���+�� ∗ ��� + �� ∗ ���(�)}  (4.1) 

Equation 4.1 is comprised of three factors.  Pc(t) is a time-varying proxy for the baseline hazard 

of influenza infection from the community defined by weekly counts of influenza cases 

reported to the Michigan Department of Health and Human Services Disease Surveillance 
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System [101] standardized to the peak week of activity. The second factor, ψc , is a scaling 

parameter for the baseline community hazard. The last factor is a linear combination of four 

patient characteristics, with X1j and X2j indicating age groups of 9 to 17 years (9≥ aj <18) and 

≥18 years (aj ≥18), respectively, X3j indicates presence of EMR documented high risk condition 

(hrj =1), and X4j(t) is an indicator of documented vaccination (vj,(t) =1). Vaccination status was 

allowed to vary by time with subjects considered to be vaccinated 14 days after the date of 

documented vaccination. In contrast to previous TH models that modeled time in days during 

the relatively short period of household follow-up once an index case had been ascertained, 

here, t represents the time in days across the entire period of influenza activity observed in the 

cohort.  

We then assume that the serial interval (time in days between symptom onset of prior and 

subsequent influenza cases) in those households where influenza has been introduced, follows 

a Weibull distribution 

(()) = exp *− ,-
./

0
1 − 	exp *−,-2�. /

0
1  (4.2) 

as has been done in previous models [77-80]. In Equation 4.2, τ is the household exposure time 

in days from the day of illness onset of the infected household contact through 14 days post 

illness onset, and α and γ are shape parameters for the Weibull distribution.  

We model the daily hazard of infection for each household contact, j, from each infected 

individual, i, in the household as 

�6→�()) = �88 ∗ (()) ∗ exp{�� ∗ ��� + �� ∗ ���+�� ∗ ��� + �� ∗ ���(�)}  (4.3) 

where λhh is a constant parameter representing the baseline household hazard of infection. 

The overall daily hazard of infection for each individual, j, is simply the sum of their hazards 

from the community and from each infected member of their household, i. 

��(�) = 	 ��,
	�
 + ∑ �6→�	)
6   (4.4) 
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Parameter estimation 

We let θ denote the set of parameters {α, γ, ψc, λhh, β1, β2, β3, β4}; all elements in θ were 

estimated in a Bayesian framework using Markov Chain Monte Chain (MCMC) methods. 

The contribution of the likelihood function from each infected individual is the probability that 

they were infected on their day of illness onset, tjo, multiplied by the probability that they 

escaped infection each day prior to their illness onset.  

�DE� = 1, �� = ��FG = (1 − exp{−��(�6F)}) ∗ exp{− ∑ ��(H)IJKL�
MN� }  (4.5) 

The contribution to the likelihood function for each individual not infected during the study 

period is the probability that they escaped infection each day of the influenza season.  

�DE� = 0, �� = �PQM + 1G = exp{− ∑ ��(H)IRST
MN� }  (4.6) 

The overall log-likelihood function combining the likelihood functions for both infected and 

uninfected individuals is 

U = ∑ logD1 − exp	{−��	�6F
}G −�:YJN� ∑ ∑ ��	H

IJ
MN��   (4.7) 

In Equations 4.5, 4.6, and 4.7 tj represents the end of the period risk: the day of illness onset for 

those infected, and the end of the influenza season for those who were not infected. 

Non-informative prior distributions were used for each parameter. Additionally, as has been 

done in previous studies to assure model convergence, we constrained the Weibull shape 

parameters such that the corresponding serial interval function would result in ≥80% of 

household secondary infections occurring within 14 days of the onset of illness in the index case 

[79]. 

The estimated posterior distribution of the parameters, θ, given the observed data is 

proportional to the likelihood of the data multiplied by the prior distributions of the parameters  

�DZ[E� , �� , \� , ℎ �̂ , _�G ∝ �DE� , �� , \� , ℎ �̂ , _�[ZG ∗ �(Z)  (4.8) 
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Parameters were updated at each iteration using a Metropolis-Hastings algorithm [102, 103]. 

The MCMC algorithm was run for 15,000 iterations with a burn in of 5,000 iterations. 

Convergence was visually assessed. 

TH model outcomes and simulation 

Parameter estimates were applied to Equation 4-1, and daily risks of infection from the 

community calculated as 1 − exp{−��,
(�)}.  For each individual, a random value, u, was drawn 

from a uniform distribution; individuals were considered infected from the community if 

b < 1 − exp{−��,
(�)}. For each community-acquired infection, the daily risk of household-

acquired infection among household contacts was calculated by applying parameter estimates 

to Equation 4-3 and calculating daily risk as 1 − exp	{−�6→�	)
}. Household-acquired infections 

were then simulated by drawing from a random uniform distribution in a similar manner as for 

community-acquired infections. Additional daily household risk was calculated and infections 

simulated for the contacts of each subsequent household case allowing for chains of 

transmission with a maximum length of 4 (primary, secondary, tertiary, and quaternary cases). 

These simulations were run for 1000 iterations. Median numbers of infections and 95% 

confidence intervals (CI) were calculated from the distribution of simulation results. 

TH model comparison 

Overall vaccine effectiveness estimates were produced using the full model described above 

with age and presence of high risk health conditions considered as confounders; however, the 

value of reduced models for prediction was explored. Four alternative models were considered 

including 1) constant community hazard of transmission, 2) no effect of subject age on 

susceptibility, 3) no effect of high risk health conditions on susceptibility, and 4) no effect of 

vaccination on susceptibility. Model fit was evaluated by the deviance information criterion 

(DIC) [104] and a simulation-based chi-square test comparing the number of community-

acquired and household-acquired influenza A (H3N2) infections observed in the data and 

predicted by each model [78, 79].        
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Statistical analyses 

Associations between subject characteristics (e.g. age category, sex, race/ethnicity, high risk 

health status) and vaccination status and influenza A (H3N2) infection status were assessed by 

chi-square test.  

The effectiveness of influenza vaccination at least 14 days prior to illness onset in preventing 

laboratory-confirmed influenza A (H3N2) was estimated in TH models, as described above, as 

well as in Cox PH models. Both Cox PH and TH models allowed vaccination status to vary by 

time (subjects considered vaccinated 14 days following documented vaccine receipt), and were 

adjusted for age category and presence of ≥1 EMR documented high risk health condition. 

Robust variances were calculated for Cox PH model parameter estimates using sandwich 

estimators to account for correlation by household [105]. Vaccine effectiveness was calculated 

as 100*(1-hazard ratio) for each model. Age group and infection source (community or 

household) specific VE was estimated in both Cox PH and TH models. Age-group specific VE was 

estimated by including age group by vaccination interaction terms in each model.  

For Cox PH analyses, community and household-acquired infections were defined by their 

sequence of occurrence within the household (timing definition). Community-acquired 

influenza (household index cases) were defined as those subjects with the earliest date of 

symptom onset of an acute respiratory illness laboratory-confirmed as influenza in the 

household; subjects were considered co-index if >1 had illness onset on this first date of 

household introduction. Household-acquired influenza (secondary) cases are those with 

laboratory-confirmed influenza A (H3N2) with symptom onset ≤7 following the onset of a 

household index case with influenza A (H3N2). Cox PH models estimating VE against 

community-acquired influenza A (H3N2) included all subjects; subjects with household-acquired 

influenza A (H3N2) were censored at the time of symptom onset. Cox PH models estimating VE 

against household-acquired influenza included only those household contacts of influenza A 

(H3N2) index cases with time starting from the date of symptom onset of the index case. 

For TH models, all subjects are at risk of infection from the community for the duration of the 

influenza season (even after influenza has been introduced to the household) or until the date 
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of influenza A (H3N2) illness onset if they are infected. Subjects are also at risk of household-

acquired infection from each influenza A (H3N2) infected household contact for a 14 day period 

following that contact’s date of illness onset. These two hazards are simultaneously estimated; 

specific VE estimates against community-acquired and household-acquired influenza A (H3N2) 

are estimated by specifying separate parameters in each respective hazard function. 

TH model analyses were carried out using R (version 3.1.0) software; all other analysis were 

carried out using SAS (release 9.2, SAS Institute) software. A p-value <0.05, or 95% CI not 

including the null, was considered to indicate statistical significance. 

Results 

As previously reported, 1441 individuals in 328 households were enrolled in the study and were 

followed for identification of acute respiratory illnesses [23]. The average household size was 

4.4 and ranged from 4 to 9 individuals. Among these participants, 53% were children <18 years, 

11% had a medical record documented high risk condition, and 60% had medical record 

documented receipt of influenza vaccination for the 2010-2011 influenza season (Table 4-1). 

Children <9 years, those with high risk conditions, and female participants were more likely to 

be vaccinated.  

Overall, 130 acute respiratory illnesses were identified from January through April 2011, 

including 59 influenza A (H3N2), 44 type B,  26 A (pH1N1), and 1 type B/ A (pH1N1) co-infection. 

For simplicity, analyses here are limited to influenza A (H3N2). One individual was laboratory-

confirmed as influenza A (H3N2) positive in 2 separate acute respiratory illnesses with reported 

onset of symptoms 32 days apart; only their first influenza positive illness is considered here. Of 

the 58 influenza A (H3N2) infections, 41 were considered to be community-acquired by timing 

definition. Among these, there were 7 co-index cases (>1 case on first date of influenza 

introduction to a household); influenza A (H3N2) was introduced to 36 households including 1 

household with 2 separate introductions 39 days apart. Among the 111 household contacts of 

those with community-acquired influenza A (H3N2), 17 cases of household-acquired influenza 

were identified by timing definition.      
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Overall, the median numbers of influenza A (H3N2) cases predicted by the TH model were 

similar to those observed in the data indicating good model fit (Table 4-2). Numbers of 

predicted and observed cases were also similar by age group, high risk status, and vaccination 

status.  Infection risks were highest among children <9 years and similar by high risk and 

vaccination status. Observed and predicted numbers of community acquired and household 

acquired influenza cases were similar. Risk of infection from the household once influenza is 

introduced (15%) was approximately 5 times higher than risk of infection from the community 

(3%). Model simulations suggested that approximately 1/5 of household infections were the 

result of secondary cases infecting other susceptible household contacts (tertiary cases). Longer 

chains of transmission (i.e. quaternary cases) did not significantly contribute to the number of 

household acquired infections predicted by the TH model.  

The serial interval distribution estimated by the TH model is shown in Figure 4-3 with the 

observed distribution of serial intervals for household-acquired influenza A (H3N2) cases. The 

mean serial interval for influenza A (H3N2) estimated by the TH model (2.1, 95% CI: 1.5 to 3.1) 

was similar to the mean serial interval calculated from the data (2.5, 95% CI: 1.8 to 3.3). 

Vaccine effectiveness 

Vaccine effectiveness estimates derived from Cox PH models and TH models were generally 

similar overall, by age, and against community and household acquired influenza (Table 4-3). 

Overall VE against A (H3N2) was not significant in either model (Cox PH: 20%, 95% CI: -57 to 59; 

TH: 27%, 95% CI: -23 to 58). VE point estimates were highest for children <9 years in both 

models (Cox PH: 40%, 95% CI: -49 to 76; TH: 52%, 95% CI: 7 to 75), and statistically significant in 

the TH model. In both models, VE point estimates were higher against household-acquired 

influenza (Cox PH: 50%, 95% CI: -41 to 82; TH: 45%, 95% CI: -57 to 80) than against community-

acquired influenza (Cox PH: 26%, 95% CI: -65 to 57; TH: 18%, 95% CI: -53 to 56).  

Model comparison 

Because comparison of models for VE estimation was the primary goal of this analysis, age and 

presence of high risk health conditions were included in the model as confounders. However, a 

secondary goal is to make predictions based on TH model simulations, and a model with fewer 
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parameters might be more efficient while still making accurate predictions. For this reason, we 

compared the fit of the full model to alternative models with 1) constant community hazard of 

transmission, 2) no effect of subject age on susceptibility, 3) no effect of high risk health 

conditions on susceptibility, and 4) no effect of vaccination on susceptibility. All four alternative 

models predicted similar final numbers of community-acquired and household-acquired 

influenza A (H3N2) infections which did not significantly differ from the number of observed 

infections (Table 4-4). However, as expected, the alternative model with a constant community 

hazard of transmission failed to accurately predict the timing of infections (Figure 4-4). The 

alternative model with constant community hazard of infection and the alternative model 

which did not consider age resulted in the largest reductions in model fit as measured by DIC. 

Model predictions 

To demonstrate the value of the TH model for prediction, we ran simulations of the expected 

number of influenza A (H3N2) infections over time examining the impact of varying VE. 

Epidemic curves generated by these simulations are plotted in Figure 4-5. The overall number 

of infections decreases as VE increases, though the general shape of each epidemic curve is 

similar. As expected, the median number of predicted infections among the vaccinated 

decreased from 32 (95% CI: 19 to 47) to 18 (95% CI: 10 to 28) to 7 (95% CI: 2 to 13) when VE 

was increased by 2- and 3-fold (55% and 82%), respectively. Predicted infections among the 

unvaccinated were similar in the original model (29, 95% CI: 17 to 44), with VE increased by 2-

fold (28, 95% CI: 16 to 43), and with VE increased 3-fold (28, 95% CI: 15 to 41). Increasing VE by 

2-fold reduced the number of community-acquired infections by 23% (95% CI: 21% to 26%) and 

household-acquired infections by 28% (95% CI: 23% to 44%); similarly, increasing VE by 3-fold 

reduced community-acquired and household-acquired infections by 42% (95% CI: 39% to 48%) 

and 50% (95% CI: 40% to 67%), respectively.  

Discussion 

For infectious diseases, use of standard statistical regression models to examine relationships 

between risk factors and infection probabilities can potentially result in biased effect estimates. 

For example, an individual’s risk of infection increases as their close contacts become infected, 
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violating the assumption of independence for regression models. This is particularly an issue 

when subjects are sampled in clusters or groups (e.g. households, schools). Additionally, 

occurrences such as co-index cases introducing illness to a household on the same date and 

second introductions of influenza to a single household are difficult to handle with standard 

models, and have been dealt with by exclusion previously [23, 24, 71, 81]. To examine the 

extent of these potential biases, we compared VE estimates from Cox PH models to those from 

a TH model that specifies household contact structures and transmission in a cohort of 

households with children.  

VE estimates were similar for both Cox PH and TH models overall, and followed similar patterns 

by age and against community-acquired and household-acquired influenza. These findings 

indicate that previous published VE estimates were robust to model choice [23]. However, 

occurrences which would be expected to favor the TH model: co-index cases, second 

introductions of influenza to a single household, and a high proportion of household-acquired 

infections relative to community-acquired infections were not observed in great numbers in the 

influenza season studied here. In more severe influenza seasons, these situations may be 

expected to be more common. In such seasons, or those where infections are more tightly 

clustered in households, differences in model estimates could be larger.  

Previously published estimates of VE in preventing community-acquired and household-

acquired influenza of any type from the 2010-2011 year in this study suggested that influenza 

vaccination was less effective in preventing household-acquired infections [23]. Here, when 

analyses were limited to VE against the influenza A (H3N2) subtype, vaccination appeared more 

effective in preventing household-acquired infections; though, confidence intervals were wide 

and overlapped. This apparent discrepancy is most likely due to chance given the relatively 

small numbers of household-acquired influenza. This is supported by the fact that differences in 

VE against community and household-acquired influenza have not been observed in 

subsequent HIVE study years [24, 71].  

Although VE estimates from both Cox PH and TH models were similar, there are several 

advantages associated with the TH model. One such advantage is the ability to estimate the 
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serial interval distribution of time between symptom onsets of household-acquired infections 

accounting for continued community infection risk and chains of household transmission [106]. 

Accurately determining the serial interval is important for informing the timing of interventions 

aimed at disrupting household transmission. Though estimates were similar (2.1 vs 2.5 days) 

and confidence intervals broadly overlapped, the slightly shorter serial interval estimated by 

the TH model is consistent with consideration of the small, but extant, number of tertiary cases 

expected in the study population. The 2.1 day serial interval estimated for influenza A (H3N2) 

here is similar to the previously reported estimates of the influenza A (H3N2) serial interval 

[107]. 

Another advantage of the TH model is its utility for predictive purposes which we demonstrated 

by simulating infections under varying VE. As expected, the number of predicted infections 

decreased as VE was increased. This simple demonstrative simulation did not observe any 

evidence for indirect effects of vaccination; no reduction in the number of infections was 

predicted among the unvaccinated. Future simulation analyses may vary VE as well vaccination 

coverage within the households to potentially identify situations when indirect vaccine effects 

would be observed. These simulations also did not account for any effects of increased VE on 

reducing the overall size of the outbreak in the community. This could be achieved in future 

analyses by estimating the hazard of infection from the community with an SIR model which 

considers vaccination in the broader community. This would, however, likely increase model 

complexity such that run times on standard desk top computers would not be practical. Any 

analyses designed to make inferences must balance model complexity with robustness of 

predictions.  

The original TH model of Cauchemez et al. assumed that the hazard of influenza infection from 

the community was constant [77, 78]. This assumption could be argued to be valid for case-

ascertained studies where the period of follow-up for each household is sufficiently short, 

generally ≤2 weeks, such that risk of infection from the community would not significantly vary 

during the period of follow-up.  Tsang et al. extended the model to include a time-varying proxy 

for the hazard of infection from the community; however, it was unclear whether this improved 
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model fit in the case-ascertained study setting. In this household cohort study with follow-up 

over the entire influenza season and surveillance data for both households where influenza was 

and was not introduced, building similar proxy for time-varying community hazard was 

essential. Exclusion of this proxy resulted in worse model fit, and an inability to accurately 

predict the timing of influenza infections in the cohort (Figure 4-4).  

The TH model is structured such that it can estimate transmission parameters for only a single 

influenza type/subtype at one time. Therefore, when multiple influenza types and subtypes 

circulate it may be difficult to estimate an overall estimate of VE against all influenza using the 

TH model. This was the case in the 2010-2011 season studied here when co-circulation of 

influenza A (H3N2), A (pH1N1), B viruses was observed and analyses were limited to influenza A 

(H3N2). Type and subtype specific analyses are of interest given past analyses that have shown 

dissimilar VE by influenza type and subtype [6, 7, 108]. These differences by type and stubtype 

reduce the value and interpretability of a pooled VE estimate. Still, statistical power is reduced 

by limiting to type and subtype specific analysis. This issue, the size of the household cohort 

being limited by cost and resources, and recent low VE against influenza A (H3N2) portend non-

significant VE estimates in most seasons [6, 7, 109].  

Although household cohort studies lack the efficiency of case-ascertained studies, often 

resulting in sample size and power issues as noted, the design offers many advantages. These 

advantages include the opportunities to follow households for multiple years to explore effects 

of previous vaccination and infection, to collect blood specimens at multiple time points for 

studies of antibody response to vaccination and infection, and to evaluate interventions 

affecting both primary introduction from the community and secondary household infection. 

Since 2010 the HIVE study has been collecting these types of prospective data as well as other 

information relevant to community and household exposures such as day care, school, and 

work attendance and providing care to ill household members. The TH model is now another 

option in the toolbox for analysis of such data further increasing the value of the study. 
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Figure 4-1. Individual Based Transmission Hazard Model Diagram. 
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1
 The hazard of influenza infection from the community is modeled for each individual household member for each day, t, of the influenza 

season. This hazard varies by time proportionally to data reported to the Michigan Department of Health and Human Services Disease 

Surveillance System [101]. Individual 3 from household C is infected from the community.  

2
 The hazard of infection within the household is modeled for each individual in the household who is exposed to each infected household 

contact for each day, τ, of a 14 day period beginning on the date of illness onset of the infected contact. The hazard of infection within the 

household is proportional to a Weibull distribution representing the serial interval. Individual 1 from household C is infected by their infected 

household contact, individual 3. The hazard of infection from individual 1 is then modeled for the remaining susceptible individuals in household 

C for an additional 14 day period. No additional infections are observed. All individuals, unless infected, remain at risk of infection from the 

community during these 14-day household exposure periods. 
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Table 4-1. Participant Characteristics by Documented Influenza Vaccination Status and Influenza A (H3N2) Case Status. Household 

Influenza Vaccine Effectiveness (HIVE) Study 2010-2011. 

 

 

 

 

 

 

 

 

 

 

 

 
a
Denominator for percentages is all subjects (N=1441) 

b
At least 1 dose of 2010-2011 influenza vaccine documented in the electronic medical record or state registry; vaccination must have occurred 

≥14 days prior to illness onset for influenza A (H3N2) infected subjects. 
c
Denominator for percentages is total subjects in the given subjec characteristic row. 

*Chi-square P<0.05 

**Chi-square P<0.001 

Subject Characteristics All Subjects
a
 

Documented Influenza 

Vaccination
b,c

 

Influenza A (H3N2) 

Positive Cases
c
 

Age category    

   <9 yrs 468 (32.5) 322 (68.8)** 32 (6.8)** 

      9-17 yrs 371 (25.8) 224 (60.4) 8 (2.2) 

   ≥18 yrs 602 (41.8) 318 (52.8) 18 (3.0) 

Race category    

   White 1097 (76.1) 660 (60.2) 46 (4.2) 

   Asian 120 (8.3) 81 (67.5) 4 (3.3) 

   Black 83 (5.8) 40 (48.2) 2 (2.4) 

   Other/unknown 141 (9.8) 83 (58.9) 6 (4.3) 

Sex    

   Female 728 (50.5) 458 (62.9)* 25 (3.4) 

   Male 713 (49.5) 406 (56.9) 33 (4.6) 

Documented high-risk health condition    

   Any 162 (11.2) 122 (75.3)** 6 (3.7) 

   None 1279 (88.8) 742 (58.0) 52 (4.1) 

Documented influenza vaccination    

   Yes 864 (60.0) - 33 (3.8) 

   No 577 (40.0) - 25 (4.3) 

Total 1441 (100) 864 (60.0) 58 (4.0) 
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Figure 4-2. Total Weekly Influenza Infections Reported to the Michigan Department of Health 

and Human Services Disease Surveillance System (A), Total Weekly Observed and Individual 

Based Transmission Hazard Model Predicted Influenza A (H3N2) Infections in the Study 

Population (B), and Cumulative Weekly Observed and Predicted Influenza A (H3N2) Infections in 

the Study Population (C). Household Influenza Vaccine Effectiveness (HIVE) Study 2010-2011. 
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Table 4-2. Observed and Individual Based Transmission Hazard (TH) Model Predicted Influenza A (H3N2) Infections by Infection 

Source, Age, Presence of High Risk Health Condition, and Influenza Vaccination Status. Household Influenza Vaccine Effectiveness 

(HIVE) Study 2010-2011. 

 Observed Data TH Model Predictions  

Participant Characteristics Cases/Total % Positive 

Median Cases  

(95% CI) 

% Positive  

(95% CI) P-value
a
 

Community-acquired 41 / 1441 2.8 43 (31 to 55) 3.0 (2.2 to 3.8) 0.70 

Household-acquired 17 / 111 15.3 18 (9 to 30) 13.2 (6.6 to 20.5)  

   Secondary N/O  15 (7 to 24)   

   Tertiary N/O  3 (0 to 9)   

   Quaternary N/O  0 (0 to 0)   

Age category      

   <9 yrs 32 / 468 6.8 36 (22 to 50) 7.7 (4.7 to 10.7) 0.80 

      9-17 yrs 8 / 371 2.2 8 (3 to 14) 2.2 (0.8 to 3.8)  

   ≥18 yrs 18 / 602 3.0 18 (9 to 27) 3.0 (1.5 to 4.5)  

Documented high-risk health condition      

   Any 6 / 162 3.7 5 (1 to 11) 3.1 (0.6 to 6.8) 0.49 

   None 52 / 1279 4.1 56 (38 to 76) 4.4 (3.0 to 5.9)  

Documented influenza vaccination
b
      

   Yes 33 / 864 3.8 32 (19 to 48) 3.7 (2.2 to 5.6) 0.45 

   No 25 / 577 4.3 29 (16 to 44) 5.0 (2.8 to 7.6)  

Total 58 / 1441 4.0 62 (42 to 82) 4.3 (2.9 to 5.7)  
a
Simulation-based chi-square test.

  

b
At least 1 dose of 2010-2011 influenza vaccine documented in the electronic medical record or state registry; vaccination must have occurred 

≥14 days prior to illness onset for influenza A (H3N2) infected subjects. 
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Table 4-3. Comparison of Vaccine Effectiveness (VE) against Influenza A (H3N2) Estimated from Cox Proportional Hazards and 

Individual Based Transmission Hazard Models. Household Influenza Vaccine Effectiveness (HIVE) Study 2010-2011. 

  Cox Proportional 

Hazards Model 

Individual Based 

Transmission Hazard Model 

 Influenza A (H3N2)  

Positive No. / Total No. (%) Adjusted
a
 VE % (95% CI) Adjusted

a
 VE % (95% CI) 

Overall A (H3N2)    

   All Ages 58 / 1441 (4.0) 20.2 (-56.6 to 59.4) 27.3 (-23.03 to 57.8) 

   <9 32 / 468 (6.8) 39.9 (-49.1 to 75.8) 51.5 (7.2 to 75.2) 

   9-17 8 / 371 (2.2) -10.5 (-345.9 to 72.6) -30.1 (-617.7 to 70.9) 

   ≥18 18 / 602 (3.0) -13.2 (-187.5 to 55.4) -24.7 (-247.5 to 52.7) 

Community A (H3N2) 41 / 1441 (2.8) 26 (-65 to 57) 18.2 (-52.5 to 55.8) 

Household A (H3N2) 17 / 111 (15.3) 49.5 (-41.3 to 82.0) 44.8 (-56.5 to 80.2) 

Abbreviation: CI, confidence interval 
a
Models adjusted for age category (<9, 9-17, ≥18) and presence of ≥1 electronic medical record documented high-risk health condition.
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Figure 4-3. Observed and Expected Serial Interval Distribution for Household-Acquired Influenza 

A (H3N2). Household Influenza Vaccine Effectiveness (HIVE) Study 2010-2011. 
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Table 4-4. Comparison of Model Fit for Various Individual Based Transmission Hazard Model Specifications. Household Influenza 

Vaccine Effectiveness (HIVE) Study 2010-2011. 

 

Observed Data Full Model
a
 

Alternative 

Model 1
b
 

Alternative 

Model 2
c
 

Alternative 

Model 3
d
 

Alternative 

Model 4
e
 

Infection Order Cases 

Median Cases 

(95% CI) 

Median Cases 

(95% CI) 

Median Cases 

(95% CI) 

Median Cases 

(95% CI) 

Median Cases 

(95% CI) 

Primary 41  43 (31 to 55) 43 (30 to 56) 43 (30 to 57) 43 (32 to 58) 43 (31 to 57) 

Secondary 17  15 (7 to 24) 15 (8 to 24) 14 (7 to 23) 15 (8 to 25) 14 (7 to 24) 

Tertiary N/O 3 (0 to 9) 4 (0 to 9) 3 (0 to 8) 3 (0 to 8) 3 (0 to 8) 

Quaternary N/O 0 (0 to 0) 0 (0 to 0) 0 (0 to 0) 0 (0 to 0) 0 (0 to 0) 

P-value
f
 - 0.70 0.58 0.76 0.70 0.76 

DIC - 451.64 455.50 456.71 450.91 450.93 

Abbreviations:  CI, confidence interval; DIC, deviance information criterion; N/O, not observed 
a
Full model includes covariate terms for age category (<9, 9-17, ≥18), presence of ≥1 electronic medical record documented high-risk health 

condition, and time-varying vaccination status. 
b
Alternative model 1 is identical to the full model, but with a constant hazard of infection from the community. 

c
Alternative model 2 is identical to the full model, but excludes age category covariates. 

d
Alternative model 3 is identical to the full model, but excludes the high-risk health condition covariate. 

e
Alternative model 4 is identical to the full model, but excludes the vaccination status covariate. 

f
Simulation-based chi-square test.
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Figure 4-4. Weekly Influenza A (H3N2) Infection Counts Observed and Expected Under Various 

Model Specifications. Household Influenza Vaccine Effectiveness (HIVE) Study 2010-2011. 

 

a
Full model includes covariate terms for age category (<9, 9-17, ≥18), presence of ≥1 electronic medical 

record documented high-risk health condition, and time-varying vaccination status. 
b
Alternative model 1 is identical to the full model, but with a constant hazard of infection from the 

community. 
c
Alternative model 2 is identical to the full model, but excludes age category covariates. 

d
Alternative model 3 is identical to the full model, but excludes the high-risk health condition covariate. 

e
Alternative model 4 is identical to the full model, but excludes the vaccination status covariate. 
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Figure 4-5. Weekly Influenza A (H3N2) Infection Counts Observed and Expected with Varying 

Vaccine Effectiveness. Household Influenza Vaccine Effectiveness (HIVE) Study 2010-2011. 
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Chapter 5. 

Conclusions 

Summary of Findings 

Overall, this dissertation examined two factors which could contribute to variability in 

estimates of influenza vaccine effectiveness (VE), waning protection of vaccine and model 

choice in household cohort studies. Waning protection was explored through examination of 

the persistence of antibodies to influenza hemagglutinin (HA) and neuraminidase (NA) in 

Chapter 2, and through estimation of time-varying vaccine efficacy in Chapter 3. In Chapter 4, 

we compared VE estimates from a household cohort study using standard Cox Proportional 

Hazards (PH) models and an extended individual-based transmission hazard (TH) model which 

specifies household structure and within household transmission processes. The results of 

these studies are summarized below highlighting their significance, implications, and the 

strengths and weaknesses of the data and analytic methods used to obtain them. 

Aim 1 

Antibodies to influenza HA and NA have been shown to correlate with protection against 

infection [19, 20, 28]. These antibodies increase in the weeks following infection or vaccination, 

and decrease over time thereafter. The rate of antibody decline has, however, been the subject 

of some debate [34]. This rate of decline is important for vaccination policy; if antibody rapidly 

declines over the course of a single influenza season, delaying the timing of vaccination until 

just prior to the start of the season may be necessary. 

The first analysis of this dissertation examined the persistence of antibodies to influenza HA and 

NA antigens over an 18-month period in the absence of infection. As hypothesized, both HAI 

and NAI titers decreased over the follow-up period; however, the rate of decline was slower 

than expected. For all antigenic targets, estimated rates indicated that an overall 2-fold
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decrease in antibody titer would take >600 days. Though some previous studies reported faster 

antibody decline [83, 91], this is consistent with other studies reporting hemagglutination-

inhibition (HAI) assay titers persisting above “seroprotective” levels (HAI titer ≥40) for many 

months postvaccination in high proportions of elderly individuals and immunocompromised 

adults [34, 35]. Rates of antibody decline were fastest for inactivated influenza vaccine (IIV) 

recipients; though, at least part of the difference in rates of decline was explained by the higher 

average postvaccination titers among IIV recipients and faster rates of decline among those 

starting at higher titers. 

Taking advantage of the recently standardized neuraminidase-inhibition (NAI) assay [85], we 

were the first in many decades to examine the persistence of antibody to influenza NA. We 

found that antibody to the NA also decreased slowly over the period of follow-up. This finding, 

taken together with recent recognition of the importance of antibody to the NA in preventing 

infection [19, 20], suggests that more attention should be given to this antigen when 

developing new influenza vaccines. Vaccines which elicit greater antibody response to NA could 

potentially provide broader protection in seasons when there is antigenic drift of viral HA but 

not NA. Historical evidence for this is provided by patterns of infection seen during the 1968 

pandemic with virus featuring a novel HA and NA closely related to previously circulating 

viruses [90].  

When stratifying by receipt of in the prior season, we observed that those in the IIV group who 

had been previously vaccinated had significantly higher prevaccination HAI titers compared 

with those who had not. However, response to vaccination was much lower among those 

previously vaccinated resulting in similar postvaccination HAI titers. This is similar to previous 

studies which have observed impaired HAI antibody response [40-42, 83]. This is also consistent 

with recent reports of reduced VE among those vaccinated in consecutive seasons [22]. Despite 

the observed impairment of antibody response, rates of antibody decline were similar for those 

previously vaccinated and those not. 

Although results presented here suggest that antibody titers may remain at high levels over 

multiple seasons, these findings do not contradict current recommendations for annual 
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vaccination [5]. This is because antigenic drift of circulating influenza viruses occurs at a more 

rapid pace which often necessitates annual reformulation of influenza vaccines [13]. These 

findings do, however, suggest that development of influenza vaccines which induce broader 

immunity would have be more beneficial than those with longer duration of immunity. HAI 

response to vaccine appears to be impaired with repeated vaccination. Despite this, we 

observed that those vaccinated with IIV in two consecutive seasons had higher titers than 

placebo recipients, even after 18 months. These findings again indicate that given currently 

available vaccines, annual vaccination remains the best strategy for reducing risk of influenza 

infection and associated complications.  

Aim 2 

Although the results presented in Chapter 2 suggest that HAI and NAI antibody titers persist for 

relatively long periods, the association between these antibodies and protection is not perfect. 

For example, infections are observed even among those with high antibody titers [20, 28]. It is, 

therefore, necessary to examine waning in terms of actual protection in addition to persistence 

of antibody correlates. The second analysis of this dissertation estimated influenza vaccine 

efficacy as a function of time to explore waning protection against influenza infection during 

the 2010-2011 season. 

We observed statistically significant waning of IIV efficacy over the course of the influenza 

season. However, this waning was slow and IIV remained significantly efficacious for the 

majority of the influenza season. Overall efficacy against all influenza types, without 

consideration of waning, was 70% (95% CI: 50% - 82%) for IIV. Results of analysis of HAI and NAI 

antibody titers were consistent with these efficacy results. While geometric mean HAI and NAI 

antibody titers were higher for IIV recipients than placebo recipients over the entire influenza 

season, significant waning of antibody titers over the 6 month follow-up period was only 

observed among the IIV group. This resulted in relative antibody titer differences between IIV 

and placebo recipients decreasing from an average 7.8 (95% CI: 4.8-12.8) fold advantage for IIV 

recipients 30 days postvaccination to a 3.7 (95% CI: 2.2-6.2) fold advantage by the end of the 

influenza season approximately 6 months later. 
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In contrast to the findings for IIV, there was no evidence of waning protection of live-

attenuated influenza vaccine (LAIV). However, several factors made interpretation of the 

results of the LAIV analysis difficult. First, overall efficacy, not considering waning, was low for 

LAIV (38%, 95% CI: 5% to 59%). With less margin to decrease, any LAIV waning would be small 

in magnitude and thus difficult to measure. Second, despite more influenza outcomes among 

LAIV recipients compared with IIV recipients, LAIV estimates of time-varying efficacy had wider 

confidence intervals and were much less stable than those for IIV. Because efficacy was 

examined as a function of time, the distribution of influenza cases across the season influenced 

findings, and cases among LAIV recipients were more tightly clustered during the early 

influenza season compared with those among IIV recipients. There was also no serologic 

evidence for waning LAIV protection; however, postvaccination titer increases among LAIV 

recipients were minor and allowed little room for measurable decreases. 

These results are in contrast to some recent observational studies which reported dramatic 

waning of protection during the 2011-2012 and 2012-2013 influenza seasons [16-18, 55-57, 98, 

99]. However, the design of these observational studies included cross-sectional enrollment of 

cases testing positive for influenza and controls testing negative for influenza as they present 

for medical care of acute respiratory illnesses over the course of the influenza season. As a 

result, accurately modeling the relationship between the timing of enrollment, time-varying risk 

of influenza infection, and time-varying probability of influenza vaccination is necessary but 

difficult, and bias may be introduced by enrollment of test-negative controls late in the season 

who have been previously infected and thus no longer susceptible. Here, randomization to 

vaccine or placebo, prospective follow-up to identify cases of influenza, and explicit modeling of 

calendar time largely eliminates these limitations. 

Current recommendations state that individuals should be vaccinated at the earliest 

opportunity each influenza season [5]. However, this was not always the case as clinicians were 

encouraged to delay vaccination among the elderly over concerns of rapidly waning immunity 

[34], and results of the aforementioned observational studies have certainly renewed this 

debate [16-18, 55-57, 98, 99]. Delaying vaccination, regardless of the presence of waning, 
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results in missed vaccination opportunities, while vaccinating months prior to the peak of the 

influenza season could result in reduced protection if rapid waning occurs. It is, therefore, of 

significant policy importance to accurately determine if the phenomenon of rapid waning of 

influenza vaccine induced protection regularly occurs over the course of a single season. Rapid 

waning of neither serum antibody titers nor influenza vaccine efficacy were observed in Aims 1 

and 2 of this dissertation supporting continuation of current recommendations for vaccination 

at the earliest opportunity. 

Aim 3 

Modern household studies of respiratory viruses typically utilize case-ascertained or cohort 

study designs. Cauchemez et al. have previously developed a TH model for analysis of case-

ascertained study data which specifies hazards of infection from both the community and the 

household. In Chapter 4 of this dissertation, the TH model was extended for the analysis of 

household cohort data. VE estimates from this model were compared to those from Cox PH 

models. Predictive capabilities were also demonstrated with TH model simulations. 

Despite specifying household structure and within household transmission in the model 

structure, VE estimates from TH models were similar to those from Cox PH models. This 

suggests that previous published VE estimates, which did not account for household structure 

and transmission, were robust to model choice [23]. However, in influenza seasons when a 

higher proportion of infections occur within the household, differences in model estimates 

could be expected to be larger. Therefore, model comparisons carried out across multiple 

influenza seasons are necessary to truly assess whether any benefit of less biased VE estimates 

can be attributed to the TH model. 

The serial interval for household-acquired influenza A (H3N2) infections estimated by the TH 

model was also similar to the mean serial interval calculated from the data. However, the 

estimate from the TH model was slightly shorter, consistent with the presence of a small 

number of longer chains of household transmission (tertiary and quaternary cases). In fact, TH 

model simulations suggested that approximately 3 of the 17 observed household-acquired 

infections were the result of tertiary infections; quaternary cases were not predicted to 
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significantly contribute to observed household transmission. Without these model simulations, 

it would not typically be possible to differentiate secondary household-acquired from these 

longer chains of transmission or additional infections from the community.  

We further explored the value of using TH model simulations for predictive purposes by 

simulating expected numbers of infections under varying VE. As expected, the number of 

predicted infections decreased as VE was increased. These simulations suggested that the 

reductions in infections would occur only among those vaccinated assuming vaccination 

coverage and community hazard of infection consistent with those truly observed i.e. no 

indirect effects of vaccination were predicted. However, these simulations were designed to be 

demonstrative, and future analyses may additionally vary vaccination coverage and consider 

effects of increased VE on reducing the overall size of the outbreak in the community to identify 

conditions under which indirect protection might be expected.  

The extension of the TH model to the household cohort study design allows for broad 

applications in data analysis and simulation-based prediction going forward. Since 2010 the 

Household Influenza Vaccine Effectiveness (HIVE) study has been collecting prospective data on 

households, many followed longitudinally over multiple years. These data permit analysis of the 

effects of previous vaccination and infection on subsequent risk, correlation of serum 

antibodies with protection, and quantification of the increased risk associated with behaviors 

such as attending daycare or providing care for an ill household member. The availability of the 

TH model will improve the ability to carry out these analyses, some of which may help inform 

ways in which interventions can be targeted to interrupt influenza transmission.  

Strengths and Limitations 

The laboratory data used in the analysis described in Chapter 2 were obtained from a random 

sample of subjects participating in a double-blind, placebo-controlled randomized trial. This 

significantly reduces the possibility of bias or confounding affecting the results of this analysis. 

However, the subjects included in this analysis are limited to those not lost to follow-up and 

those who did not have an influenza outcome. Losses to follow-up and influenza infections 

likely do not occur at random increasing the possibility of confounding. Fortunately, there are 
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few likely factors which both affect HAI antibody titers and are associated with time from 

vaccination. Antibody persistence was examined over an 18 month period which is longer than 

most previous studies. This period is also of sufficient duration to inform policy decisions, as the 

longest foreseeable interval between vaccination and exposure to influenza for an ordinary 

season would be approximately 10 months (August to May).  

Antibody persistence was examined among healthy adults aged 18 to 49 years. In contrast, the 

groups most at risk of severe outcomes of influenza infection are young children, older adults, 

and those with high risk health conditions [5]. The generalizability of the results may, therefore, 

be limited if the persistence of HAI antibody differs in these groups. However, prior studies of 

the proportion of older adults and immunocompromised adults have suggested subjects 

initially achieving seroprotective antibody titers remain above these cut offs for extended 

periods [34, 35].  

When examining antibody response to vaccination and antibody participation by previous 

vaccination, we used participation in the 2004-2005 study year was used as a proxy for history 

of influenza vaccination in that season. Those enrolled in both 2004-2005 and 2005-2006 

received the same intervention both years; however, history of vaccination in the 2004-2005 

season was not explicitly determined for those newly enrolled in 2005-2006. It is therefore 

possible that the 2004-2005 vaccination status of a portion of those newly recruited in 2005-

2006 was misclassified. However, the actual proportion vaccinated in 2004-05 is likely to be low 

given the similarity of titers in the placebo group by 2004-05 participation status. 

The data used in analyses reported in Chapter 3 of this dissertation were well suited to the 

examination of VE as a function of time. As was also the case for Aim 1, the potential for bias 

and confounding is minimized by the placebo-controlled trial design. Influenza outcomes were 

identified with prospective follow-up of subjects through the entire period of influenza 

circulation. This reduces the possibility of misclassification of immune status resulting from 

unvaccinated subjects being protected later in the season due to previous, unobserved 

infection. Given the nearly universal recommendation for influenza vaccination in the US, 
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similar quality clinical trial data are unlikely to be available in the future making the findings of 

this analysis particularly valuable. 

While the randomized placebo-controlled trial would be considered a strong design, it does 

have limitations. If viruses circulating later in the season were more antigenically drifted from 

the vaccine virus than those that circulated early in the season, efficacy would be expected to 

decrease over the season. However, the influenza A (H3N2) isolates that were antigenically and 

genetically characterized were considered to be similar to vaccine strains [60, 100]. If influenza 

infections were unreported or undetected, this study could have also been subject to potential 

misclassification of immune status. Other individual and population level factors (e.g. subgroup 

specific differences in efficacy and timing of infection) could also explain the observed results in 

the absence of true waning efficacy [58, 59]. However, the consistency of the serologic and 

efficacy results presented here strengthen the conclusion that IIV recipients experienced slow 

but significant waning of protection over time. 

The method of analysis, originally developed by Durham et al., has several benefits [58, 59]. The 

model utilizes prospective data in models which account for time to estimate a continuous VE 

function over the entire influenza season. This is an improvement over methods that estimate 

VE during two or more arbitrarily chosen periods of time following vaccination with attempted 

adjustment for time-varying relationships between study enrollment, influenza infection risk, 

and probability of vaccination. This method allows for a statistical test for the presence of 

waning VE equivalent to the test for proportional hazards. However, this statistic tests for 

presence of linear trend in residuals over time, and may not detect non-linear patterns of 

waning. 

The statistical methods for estimation of time-varying efficacy used here were previously 

applied to analyses of the efficacy of cholera vaccine [58, 59]. In contrast to cholera, influenza 

circulation is generally limited to a well-defined winter season in temperate regions and 

vaccination is required on an annual basis. As a result, the relatively short time period defined 

by an influenza season limits power to estimate time-varying vaccine efficacy. This is 

particularly evident in the unstable estimates and wide confidence intervals around the efficacy 



86 

 

estimates in the shoulders of the season. Analysis of a single influenza season also limits the 

generalizability of the results of this study. The viruses that circulate and that are included in 

the vaccine, along with timing of vaccination and influenza circulation, can vary from year to 

year and potentially affect duration of protection. Duration of vaccine induced protection may 

also differ for young children, the elderly, and those with comorbid conditions compared to the 

healthy younger adults studied here. 

We extended the TH model, originally developed for use in case-ascertained studies, for use in 

household cohort studies for the first time in Chapter 4 of this dissertation. This required 

estimating a time-varying hazard of infection from the community, and estimating the total 

hazard of infection (from the community and the household) for individuals over the entire 

influenza season rather than a short (~14 days) follow-up period as in case-ascertained studies. 

The availability of this model will allow for improved utilization of household cohort data for 

analyses that seek to quantify transmission or account for household structure and 

transmission. 

The household cohort design utilized in the study reported in Chapter 4 has several advantages 

over previous case-ascertained studies which have made use of the TH model. First, some 

previous studies identified secondary household cases of influenza by clinical symptoms only 

[77, 78]. Here, RT-PCR confirmation of influenza increased specificity, reducing bias associated 

with misclassified outcomes. Second, by design, case-ascertained studies enroll households 

following identification of an index case identified when they seek care for an influenza illness 

[66, 70]. Because they are seeking medical care, these index cases may represent more severe 

cases of influenza which could potentially bias transmission parameter estimates. Additionally, 

the fact that influenza is introduced to every household under study limits the ability of case-

ascertained studies to make inferences about factors associated with initial introduction of 

influenza from the community. Here, follow-up of a cohort of households, including those in 

which influenza is never introduced, with identification of illnesses of any severity allowed for 

estimates of transmission parameters and risks of infection from the community that were 

presumably more accurate.  
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Although there are many advantages associated with the household cohort design, the major 

limitation compared to case-ascertained studies is that there are typically fewer secondary 

influenza cases identified, limiting power. This was evident in wide confidence intervals around 

expected numbers of infections predicted by the TH model, and around VE estimates. Sample 

size issues likely also contribute to the observation of higher VE point estimates in preventing 

household-acquired influenza A (H3N2) than against similar community-acquired viruses when 

previous analyses of the same data found higher VE against community-acquired influenza of all 

types/subtypes [23]. These sample size and power issues are exacerbated by the fact that 

influenza type and subtype specific analyses are required when using the TH model. 

In addition to its advantages in data analysis, the TH model can be used to predict the effects of 

hypothetical interventions. We demonstrated this ability by simulating infections under varying 

levels of VE. Future simulation studies would likely require additional assumptions which could 

increase model complexity. This increased model complexity could increase run times on 

standard desk top computers to the point at which they would not be practical. Therefore, 

future simulation studies could investigate ways to streamline model code, make use of high 

powered computing resources, and find balance between model complexity with robustness of 

predictions.  

Future Work 

This dissertation provides the starting point for continuing research of the factors which affect 

the degree of protection afforded by influenza vaccines.  

While clinical trials of influenza vaccine efficacy, such as utilized in chapters 2 and 3 of this 

dissertation, are no longer able to be carried out, prospective data collected as part of the HIVE 

study are available for continued analysis of the duration of vaccine induced protection. This 

ongoing household cohort study has been carried out since the 2010-2011 influenza season, 

with serum specimens collected from a subset of participants age 13 and older beginning in the 

2011-2012 season. Methods to study the persistence of antibodies to influenza HA and NA and 

estimate VE as a function of time developed in this dissertation could be applied to this rich 

data source. Many participants have been followed for multiple years allowing for a longer 
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period of time to examine antibody dynamics in terms of waning as well as boosting following 

infection and vaccination. Variation in these dynamics by vaccination and infection history as 

well as by influenza virus type and subtype across seasons is of interest.  

Though the HIVE study allows for study of antibody dynamics in a population younger than 

studied in this dissertation, blood collection is currently limited to adults and older children 

(≥13 years). Collection of specimens for serologic studies from younger children who are 

followed for multiple years has been proposed and would provide an opportunity to examine 

the development and persistence of antibodies produced in response to influenza infection and 

vaccination and how these antibodies correlate with protection. Previous studies have also 

suggested that early childhood influenza infections can influence patterns of antibody response 

to subsequent vaccination and infection exposures [110, 111].  

In this dissertation we extended the TH model for use in household cohort data and found 

comparable performance to Cox PH models in estimating VE in the 2010-2011 influenza season. 

Benefits of the TH model in terms of less biased VE estimates compared to Cox PH models are 

expected to be greatest in more severe seasons when household transmission of influenza, 

multiple introductions of influenza from the community to a single household, and the 

presence of multiple co-index cases may be expected to occur in greater numbers. This will be 

confirmed by continued model comparisons across multiple seasons of varying severity.  

Beyond estimation of VE, extension of the TH model presents an opportunity for a number of 

additional analyses of existing and future data collected as part of the HIVE study to explore 

factors associated with variation in VE and influenza transmission. Because probabilities of 

transmission between each infected and exposed household model are specified within the 

model, estimation of characteristics of infected subjects associated with infectivity and 

characteristics of those exposed associated with susceptibility are more easily studied. For 

example, day care attendance or working outside of the home could increase susceptibility to 

infection from the community, while providing care to an ill household contact could increase 

susceptibility to household-acquired infections. Subject age and antibody titer could potentially 

predict both infectivity and susceptibility. These factors and others will be examined to assess 
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their impact on VE and influenza transmission, and whether their inclusion improves model fit 

for predictive purposes. 

The benefits of the TH model extend beyond those associated with analysis of collected data. 

Because the model mechanistically describes the hazard of infection from the community and 

household it can also be used to simulate data under a variety of hypothetical scenarios. These 

simulated data can be used to predict what infection patterns and VE under these differing 

scenarios. Similarly, data from classic household studies have been used to inform transmission 

models used to develop influenza pandemic response strategies [64, 65]. Flexibility of the 

model could be increased by estimating the daily probability of infection from the community 

using an SIR model rather than proxy data from the community; however, this would come at 

the cost of increased model complexity and implementation times. 

Conclusions 

This dissertation examined two factors which could contribute to variability in estimates of 

influenza VE, waning protection of vaccine and model choice in household cohort studies. In 

terms of waning protection, antibodies to influenza HA and NA were found to persist for 

relatively long periods of time, and waning efficacy was observed only minimally among IIV 

recipients in a single influenza season. The findings support current recommendations for 

annual influenza vaccination at the earliest opportunity. In terms of model choice, we found 

that VE estimates were similar when estimated in Cox PH models and in TH models which were 

extended for use in household cohort studies as part of this dissertation. Even given these 

similarities, the ability of the TH model to accurately describe and predict transmission of 

influenza infections presents an opportunity for the continued study of additional causes of 

variability in influenza VE estimates going forward. 
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