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Abstract 

  

 Global warming has led to increasing research into environmentally-friendly 

energy sources.  One of the greatest sources of greenhouse gases is consumption of 

fossil fuels to power modern transportation.  In this context, the recent discovery of a 

soluble, stable enzyme that generates alkanes, cyanobacterial aldehyde deformylating 

oxygenase (cADO), has garnered considerable interest for its potential use in biofuel 

production. Biological alkane formation in biology is chemically challenging and the 

mechanisms of the enzymes that catalyzes alkane formation poorly understood. The 

mechanistic characterization of aldehyde decarbonylation through the use of radical clock 

substrate analogues is the subject of this dissertation. 

 A β-cyclopropyl aldehyde was used as a “radical clock” to probe the mechanism 

of cADO.  Reaction with the enzyme yielded only ring-opened product, providing evidence 

of homolytic scission of the aldehyde formyl group.  The minimum lifetime of the 

intermediate cyclopropylcarbinyl radical formed was calculated to be ≥10 ns.  The 

compound also acted as a mechanism-based inhibitor of cADO, and was found to form a 

covalent adduct after deformylation.   

The subsequent use of an α-oxiranyl aldehyde as a slow radical clock, allowed the 

lifetime of the radical formed after C-C bond homolysis to be more accurately estimated 

to be between 10 and 100 μs.  Using isotopically labeled α-oxiranyl aldehydes also 



xix 
 

revealed the stereorandom nature of electron-proton transfer reaction that constitutes the 

final step in formation of the alkane product. 

 A reaction that mimics the aldehyde decarbonylation catalyzed by the insect 

enzyme, CYP4G1, was uncovered through studies of an α-cyclopropyl aldehyde.  This 

molecule was found to undergo nonenzymatic decarbonylation in the presence of O2 and 

Fe2+
 salts.  The reaction produced CO2 as a byproduct, and exhibited retention of the 

carbonyl hydrogen in the alkane product.  The simplicity of this model system allowed 

computational simulations to be performed, which identified an energetically feasible 

mechanism to explain the experimental findings.  The simulations indicated that control 

over the electrophilicity of the carbonyl carbon was key in directing the aldehyde towards 

decarbonylation.   
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Chapter 1 

Introduction 

 

1.1 Global Carbon Cycle and Industrial Emissions 

 The constant spread of the industrialized world has resulted in motorized vehicles 

becoming commonplace, and despite its finite resource pool, an ever-increasing 

consumption of fossil fuel.  A number of issues have arisen from this, the most pressing 

of which are the eventual (and increasingly nigh) depletion of fossil fuel reserves and the 

steadily increasing release by humans of previously sequestered carbon into the 

atmosphere.  In a healthy ecosystem, atmospheric carbon in the form of CO2 is absorbed 

by photosynthetic organisms and used in the biosynthesis of sugars, proteins, fats and 

other organic molecules.  These molecules are consumed by animals and broken down 

into constituents, releasing CO2 back into the atmosphere through respiration (Figure 

1.1).  Though fluctuations in CO2 levels occur over geological timescales, the atmospheric 

concentration of CO2 remains constant in the short term. By combusting sequestered 

carbon, we release massive quantities of greenhouse gases into the atmosphere and 

overburden the standard carbon cycle, resulting in sharply increasing greenhouse gas 

concentrations (Figure 1.2), acidification of the ocean, and a global temperature increase 

of approximately 1º C in the last century alone.1  As the population continues to grow and 

industrialized life becomes a more widespread standard, our effect on the climate will 

continue to accelerate.
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Figure 1.1.  The global carbon cycle.2 
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Figure 1.2. Atmospheric CO2 over the last 1000 years.1b 
 

 In an attempt to curb our detrimental effect on the atmosphere, significant research 

into and implementation of renewable energy sources has occurred.  Solar, wind, nuclear 

and hydroelectric power all admirably serve to reduce our reliance on combustion-based 

electricity.  Transportation, however, remains massively reliant on fossil fuels.  In order to 

truly address mankind’s profound effect on atmospheric pollution, personal transportation 

needs either be drastically altered, or an efficient and renewable method for fuel 

production developed and standardized. 

  

1.2 Biofuels 

 Because the production of fossil fuels requires hundreds of millions of years to 

occur, chemical and biological alternatives to efficiently produce combustible molecules 
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from biomass (plant matter) have been of great interest in recent years.  As research in 

the field has expanded, four distinct generations of biofuels have evolved. 

 

 1.2.1 Biofuel Varieties 

 The first generation of biofuels are so-classified due to their derivation from food 

crops rich in available sugar and oil, and include both bioethanol (from the fermentation 

of available sugars) and biodiesel (from transesterification of oils extracted from said food 

crops).3  Bioethanol is currently the most heavily utilized biofuel in the world, with the 

United States alone having produced an estimated 14.3 billion gallons of bioethanol in 

2014, a figure that will only increase in coming years as governmental restrictions on 

greenhouse gas emissions tighten.4  The second generation of biofuels involve 

production of bioethanol from lignocellulose, which accounts for the majority of dry plant 

biomass.5  A significant advantage of second generation biofuels is the availability of both 

agricultural waste (stalks and leaves of corn, wheat, and other plants) and fast-growing 

plants such as grasses as feedstocks.5   

 Unlike the production of bioethanol, the third generation of biofuels come in the 

form of oils directly produced by green algae, which can be grown in areas unusable for 

agriculture and can produce significant quantities of oil.6  The most recent area of interest 

is the “next generation” of biofuels, in which long-chain hydrocarbons, rather than alcohols 

or esters, are produced to act as drop-in biofuels.7  These molecules mimic petroleum-

based fuels, are entirely compatible with the current fuel infrastructure, and can 

theoretically be produced directly from photosynthetic carbon fixation.7   
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 1.2.2 Associated Challenges 

 Multiple factors currently limit the usefulness and feasibility of biofuels.  Although 

it accounts for nearly 75% of the biofuel market, bioethanol is plagued by numerous 

flaws.3  Significant derivation from edible crops (first generation) would require a large 

allocation of agricultural effort, diminishing food production.  Production of fermentable 

sugars from lignocellulose (second generation) would be ideal, and current research 

focuses heavily on efficiently breaking down cellulose, but the inherent stability of 

cellulose remains a significant roadblock for the efficient production of bioethanol from 

non-food crops.8  Even were bioethanol easily produced, its hydrophilic nature would be 

too corrosive for the current design of internal combustion engines, and would require a 

major overhaul in engine design.  Although biodiesel is energetically dense and well-

produced by algae, it is currently not as economically viable a solution as other fuel 

alternatives, primarily due to the high operating costs associated with growth and harvest, 

as well as the cost of infrastructure development.6  The biological hydrocarbon production 

of the next generation biofuels addresses a number of issues inhibiting the usefulness of 

previous generation biofuels, but the mechanism by which these are produced remains 

an active area of study.  In order to develop this new generation, a deeper understanding 

of the enzymatic mechanisms and biosynthetic pathways involved is required.   

 

1.3 Biosynthesis of Hydrocarbons 

 The production of hydrocarbons is quite common in Nature, and can be found in 

plants, animals and a variety of microbial organisms.9  In plants, these molecules function 
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as waxy, hydrophobic exterior coatings to aid in waterproofing and defend against 

dessication.9c  Multiple species of insects and birds similarly employ hydrocarbons.  The 

waxy molecules are secreted and used to waterproof bird feathers, allowing flight and 

insulation regardless of inclement weather.9a  Insects also produce a plethora of 

hydrocarbon molecules, which function both as contact pheromones regulating social 

interactions and cuticular linings to aid in water retention and defend against 

dessication.9b, 10  Algae synthesize a large quantity of long-chain alkanes (up to 30% of 

dry mass) naturally, and store them as a reserve energy source to be utilized in lieu of 

photosynthesis.11   

 Despite the prevalence of alkanes in Nature, their synthesis is difficult and was, 

until recently, poorly understood.12  The most common source of long, aliphatic chains is 

fatty acid biosynthesis, and indeed early research showed that the abovementioned 

hydrocarbons were derived from them.13  Though other possibilities exist, such as the 

direct decarboxylation of fatty acids to produce n-1 alkenes by the enzyme OleTJE, most 

biological alkane production is accomplished via a fatty aldehyde intermediate species.  

Alkane production is catalyzed by an unusual and mechanistically intriguing class of 

metalloenzyme; aldehyde decarbonylases. 

 

1.4  Aldehyde Decarbonylases 

 The enzymes known to catalyze alkane formation reaction, loosely termed 

aldehyde decarbonylases, include phylogenetically distinct enzymes from plants and 

green/blue algae, animals, and cyanobacteria.  Production of the fatty aldehyde substrate 

in all cases is mediated by fatty acyl-CoA reductases, which employ NAD(P)H to remove 
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the CoA functional group and release the corresponding aldehydes (Figure 1.3).14  Each 

decarbonylase evolved to accomplish the removal of the carbonyl moiety from fatty-acid 

derived aldehyde substrates, yet they are distinct in structure, catalytic mechanism, and 

the nature of the carbonyl group released.  Past research has indicated that the insect 

cytochrome P450 (CYP4G1), the cyanobacterial Aldehyde Deformylating Oxygenase 

(cADO), and the plant aldehyde decarbonylase (Cer1) release the carbonyl moiety as 

CO2, HCO2
-, and CO, respectively (Figure 1.3).9c, 11, 15  Improving our understanding of 

how these enzymes evolved to catalyze this specific type of reaction is key to developing 

efficient, environmentally sound sources of combustible fuel. 

 

 

Figure 1.3.  Fatty aldehyde decarbonylation in insects (top), cyanobacteria (middle), and 
plants (bottom).  Fatty aldehydes are produced from fatty acyl-CoA esters by Acyl-CoA 
Reductases in all cases.  
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 1.4.1  Plant 

 Despite being the first aldehyde decarbonylases studied, the plant and algal 

decarbonylase enzymes continue to elude characterization.  Of interest both for biofuel 

production and agricultural GMO development, the plant aldehyde decarbonylases are 

responsible for very-long chain alkane production.  These very-long chain alkanes 

compose the waxy residue covering the surface of exposed plant organs, and are 

necessary to protect organisms from dessication in arid conditions as well as damage 

from UV radiation.15g, 16   

 Early studies of heavy particulate preparations of Pisum sativum in the Kolattukudy 

laboratory revealed isolated microsomal fractions that catalyzed the conversion of 

octadecanal (CH3(CH2)16CHO) to heptadecane (CH3(CH2)15CH3) with a specific activity 

of up to 25 nmol min-1 per mg of protein.15g  Further studies with this fraction identified 

aldehyde, rather than fatty acid, as the substrate, and the use of isotopic labels (3H and 

14C) on the C1 and C2 positions, resulted in the identification of CO as the primary 

byproduct as well as significant retention of the carbonyl hydrogen in the heptadecane 

produced.15g  Inhibition of catalysis by metal chelators indicated that a metalloenzyme 

was most likely responsible for the decarbonylation,15g and the partial purification of a 

decarbonylase from the green algae Botyrococcus braunii allowed for limited 

characterization.11  The enzyme was estimated to have a molecular mass of 66 kDa and 

was, again, membrane-bound, but was shown to have measurable decarbonylation 

activity.11   

 Due to the difficulty of purifying integral membrane proteins, the structure of the 

plant/algal aldehyde decarbonylase remains a mystery.  Recent genetic studies of 
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Arabidopsis thaliana have identified the gene coding for the enzyme, cer1, and have 

allowed for limited characterization of the protein.17  The 630-residue protein seems most 

closely related to the stearoyl-CoA desaturase/hydroxylase family of integral membrane 

non-heme iron enzymes, and contains the family’s conserved 8-His motif.17-18  This, along 

with the findings that all other all other aldehyde decarbonylases are iron-dependant 

enzymes, implies that Cer1 is an iron enzyme, despite earlier indications that the enzyme 

was Co-dependant.19   

 A more recent study performed in the Joubès Laboratory managed to reconstitute 

plant alkane biosynthesis in Saccharomyces cerevisiae, and expand on our 

understanding of the system.20   Though the importance of Cer1 in alkane biosynthesis 

was implied from genetic studies, it was previously shown to be insufficient for 

decarbonlyation in heterologous expression systems.21  In order to identify other enzymes 

necessary for alkane biosynthesis in plants, yeast 2-hybrid screens were set up and 

performed based on previous genetic analyses of A. thaliana Cer1 studies,22 and found 

Cer1 to physically interact with Cer3 (another 8-His motif-containing enzyme with high 

sequence homology to Cer1) and multiple cytochrome b5 proteins, which most commonly 

mediate electron transfer to non-heme iron enzymes.20  Activity assays in a yeast strain 

engineered to produce very-long chain fatty acids showed that while Cer1 and Cer3 were 

independently insufficient to stimulate alkane production, Cer1 and Cer3 together were 

sufficient to support nonacosane production.  The addition of Cytb5 to the system 

significantly increased nonacosane production, implicating redox chemistry as integral to 

the system.20  Mutagenesis of the conserved His-clusters in Cer1 was also carried out, 

and showed all 3 His-rich domains to be necessary for alkane formation.  The same 
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mutations were produced in the Cer3 protein, but alkane formation was not impacted.  

This indicated that the 8-His motif is key to the catalysis of the decarbonlyation reaction 

in Cer1, and provided a model for the production of hydrocarbons in plants (Figure 1.4).20  

In this model, very-long chain acyl CoAs are first reduced to aldehydes (putatively by 

Cer3), and then decarbonylated by Cer1 with the redox support of Cytb5 proteins.  Despite 

the great interest in Cer1 and its many applications, its recalcitrant nature has made 

mechanistic characterization highly problematic. 

 

 

Figure 1.4.  Basic mechanism of the Cer1/Cer3 plant aldehyde decarbonylase system.  
CER3 is implicated in NADPH-mediated reduction of Very Long Chain Acyl-CoA to 
aldehyde, while CER1 catalyzes decarbonylation with redox support from CYTB5.   
 

 1.4.2  Insect 

 Hydrocarbons serve a variety of roles in insects, including hydrophobic cuticular 

linings, chemical communication, and water retention.9a, b, 10  Such insect species as 

Musca domestica and Drosophila melanogaster have been demonstrated to 

biosynthesize a complex mixture of long-chain alkanes and alkenes to fill the 

aforementioned roles.23  Initial investigations of the biosynthetic route to the important 

female house fly sex pheromone (Z)-9-tricosene by the Blomquist laboratory were able 
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to preliminarily characterize the mechanism of aldehyde decarbonylation using M. 

domestica microsomal preparations.15b  Incubation of isotopically labelled tetracosanoic 

acid with microsomal preparations yielded stoichiometric (1:1) quantities of labelled (Z)-

9-tricosene and, unexpectedly, CO2.15b  Further studies identified NADPH and O2 as 

necessary for the production of tricosenes from the corresponding aldehyde, and 

demonstrated that whilst insect hydrocarbon production proceeded along a similar 

pathway to plant and algal systems, the mechanism by which the decarbonylation was 

accomplished was inherently different.15b, 24  Initial use of insect cytochrome P450 

reductase inhibitors in the microsomal preparations did inhibit tricosene production; 

however, it was not until later, when CYP6A1 (a specific insect P450 enzyme) antibodies 

were shown to similarly inhibit tricosene production, that the enzyme responsible for 

aldehyde decarbonylation in M. domestica was identified as a cytochrome P450.24  Initial 

mechanistic characterization of the reaction was carried out using deuterated [1-

2H]tetracosenal, demonstrating the retention of the aldehyde deuterium atom in the 

tricosene product.24  Additionally, use of the oxidants H2O2, cumene hydroperoxide, and 

iodosobenzene in lieu of O2 and NADPH effectively supported aldehyde decarbonylation, 

allowing for a mechanistic proposal in which the initial iron-peroxy species underwent 

heterolytic O-O cleavage and abstracted an electron from the substrate carbonyl group.24  

Formation of an iron-hemiacetal diradical is proceeded by radical fragmentation to yield 

an alkyl radical which then abstracts the hydrogen from the formyl radical to yield 

tricosene and CO2 (Figure 1.5).  The ability to investigate the mechanism by which insects 

catalyzed aldehyde decarbonylation was a significant step from the early plant and algal 
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studies, as was the finding that two completely separate classes of enzymes evolved to 

support aldehyde decarbonylation in plants and insects.   

 Identification of the specific P450 responsible for the reaction in insects came in 

2012, when the Cyp4g1 gene in Drosophila melanogaster was identified through genomic 

sequencing and microarray analysis to be both highly expressed and conserved through 

multiple insect species.15a  Using RNAi suppression, CYP4G1 was found to have a 

significant impact on hydrocarbon production in fly cuticles, resulting in drastic decreases 

in organism viability and survival.  Insect cytochrome P450 reductase (CPR) was similarly 

shown to be necessary for insect viability and hydrocarbon production, and heterologous 

expression of a CYP4G2-CPR fusion in Saccharomyces cerevisiae was sufficient to 

support the time- and NADPH-dependent decarbonylation of octadecanal to heptadecane 

with the concomitant release of CO2.15a  CYP4G2 is the M. domestica ortholog of D. 

melanogaster CYP4G1 previously studied.  Despite the advances made in the 

investigation of enzymatic aldehyde decarbonylation, the membrane-bound nature of 

both plant and insect proteins remained a significant roadblock to a deep, mechanistic 

understanding of biological hydrocarbon production.  A soluble form was needed. 

 

Figure 1.5. Aldehyde decarbonylation by the Insect P450, CYP4G1.  The initial high-
valent iron-oxo heme species is proposed to decarbonylate aldehydes as shown.  The 
red hydrogen atom depicts conservation of the aldehyde hydrogen in the alkane product 
as determined by labelling studies.  Figure adopted from reference 24.  
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 1.4.3 Cyanobacteria 

 Though alkane biosynthesis has been detected in a variety of microbial organisms, 

it was in cyanobacteria that the pathway and genes responsible for hydrocarbon 

production were first identified.15c  In 2010, Schirmer et al tested 11 cyanobacterial strains 

for hydrocarbon production, and identified 10 of the 11 strains as positive for alkane 

biosynthesis.  Using genomic subtraction, the conserved genes for decarbonylation and 

fatty acyl-ACP reduction were identified, revealing a pathway for the conversion of fatty 

acids into aldehydes, and the corresponding decarbonylation to alkanes.15c  While the 

purpose of hydrocarbon production in cyanobacteria was unknown, the study of it had 

begun in earnest.  Heterologous expression in Escherichia coli of the aforementioned 

genes from Synechococcus elongates was sufficient to support hydrocarbon 

biosynthesis, and revealed aldehydes as the most likely intermediate species.15c  Unlike 

the aldehyde decarbonylases studied from plants and animals, the corresponding 

cyanobacterial enzyme was soluble, allowing for a much more detailed approach to 

enzyme characterization.   

 The soluble nature of the cyanobacterial enzyme allowed for the first chance to 

examine the structure of an aldehyde decarbonylase, and the crystal structure of the 

Prochlorococcus marinus ortholog had been solved previously, though no known enzyme 

function had yet been assigned.25  Both the sequence and the crystal structure revealed 

cyanobacterial aldehyde deformylating oxygenase (cADO) to be ~29 kDa member of the 

non-heme diiron oxygenase family, which included such well-characterized enzymes as 

class I ribonucleotide reductases, methane monooxygenase (MMO), and fatty-acyl-ACP 

desaturase.26  The core of the enzyme consists of an antiparallel 4-helix bundle, within 
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which is housed the diiron active site at the terminus of a long, hydrophobic substrate 

binding channel (Figure 1.6).25  More recent structures have revealed alternative, 

nonproductive binding modes within cADO, and identified the most likely route by which 

oxygen accesses the diiron active site.27  The cADO monomer is notably smaller than 

MMO (251 kDa), lacking the subunits necessary for reduction found in its larger family 

member.26a, 28  Instead, cADO requires an external reducing system for activity, though 

the “native” system has of yet not been identified.   

 

 

Figure 1.6. Structure of cADO as determined by X-Ray crystallography.  Structure 
exhibits a 4-helix bundle surrounding the diiron active site (in orange) with octadecanal 
(purple) bound. 
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 Because it is the only soluble aldehyde decarbonylase yet identified, cADO has 

been the most fully characterized.  Decarbonylation requires the input of 4 electrons per 

turnover, and results in the redox-neutral conversion of substrate aldehydes to n-1 

alkanes and, unlike either the insect (CO2) or plant (CO), formate (HCO2-).29   The 

reduction of the diiron center of cADO can be accomplished both by biological systems, 

including spinach and cyanobacterial ferredoxin/ferredoxin reductase, and chemically 

using phenazine methosulfate (PMS) and NADH.15f, 29  Isotopic labelling has been key in 

elucidating the mechanism by which this chemically unusual conversion occurs.  Using 

18O2, Li et al demonstrated that one of the oxygen atoms in the product formate derives 

directly from molecular oxygen, suggesting the other atom is reduced to water.30  

Additionally, deuterium labelling of the aldehyde hydrogen was used to probe for retention 

of said hydrogen in the alkane product as per insect and plant studies, but instead 

demonstrated retention of the deuterium atom in formate.30  Such findings indicated that 

aldehyde decarbonylation in cyanobacteria proceeds via a mechanism widely differing 

from that in either insects or plants.   

 Kinetic analysis of cADO revealed the enzyme to be unusually slow, with a 

maximum reported steady-state turnover rate of 1 min-1.31  Based on the observed 

products, electron requirements, structural similarities to other well-characterized non-

heme diiron oxygenase enzymes, a basic mechanism has been proposed for cADO 

(Figure 1.7).  Initial reduction of the resting diferric enzyme to the active diferrous form is 

accomplished with an external reducing system.15f, 29  Aldehyde substrate access to the 

active site and oxygen binding by the diferrous center then occurs, and an intermediate 

peroxy-hemiacetal is formed.  Support for this structure was provided by the Bollinger 
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group using U.V.-Vis and Mössbauer spectroscopy, and it was shown to be quite stable, 

with a t1/2 of ~400s.32   Addition of reduced PMS resulted in the rapid decay of this species 

and production of n-1 alkane and formate to a diferric enzyme unique, by Mössbauer 

spectroscopy, from both the peroxy intermediate and the initial diferric enzyme, likely 

indicating the product-bound state.32  Solvent isotope effect studies by Waugh et al 

indicated that the most likely source of the proton donor for the alkyl species resulting 

from homolytic C-C bond cleavage was an iron-bound water molecule.33   Product release 

and reduction back to the diferrous form begins the catalytic cycle anew.   

 

Figure 1.7.  Proposed mechanism of aldehyde decarbonylation by cADO. 

 

 Despite the characterization accomplished thus far, numerous questions remain.  

Though many causes have been proposed, the sluggish nature of the enzyme continues 

to elude understanding.  In order to efficiently produce hydrocarbon-based biofuels, the 
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catalysis of decarbonylation must be well-understood and methods by which activity can 

be maximized developed.  Of particular interest is the nature of the reaction –whether it 

occurs via a radical or charged intermediate- and the rate constants of individual steps.  

Though initial EPR studies indicated the presence of a radical intermediate, a more recent 

study invoked a heterolytic C-C bond cleavage to produce formate and an alkyl 

carbanion.15f  In order to address this disparity, and investigate rate constants within the 

reaction, we turned to the numerous insights provided by radical clock mechanistic 

probes. 

 

1.5 Mechanistic Probes 

 1.5.1 Radical Clocks 

 Radical chemistry is a highly pertinent area of study, as multiple reactions, both 

biological and not, proceed via radical intermediate species.  Radical kinetics are 

important both in planning chemical syntheses and investigating enzyme catalysis, and 

the corresponding rate constant can be measured using a variety of methods.  Direct 

measurements of radical rate constants typically involve UV-visible spectroscopy and 

pulse irradiation methods, while indirect measurements are accomplished by product 

analysis of competition reactions using more simple chromatographic or spectroscopic 

techniques.34  Due to the short lifespans and low concentrations of radicals in most 

reactions, the indirect method of radical rate constant measurement is most commonly 

used in mechanistic enzymology, wherein the ratio of the standard enzyme-catalyzed 

reaction product to the intramolecular reaction of the substrate analogue (often in the form 

of bond rearrangements) is measured, and thence is derived the rate constant of the 
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radical step in the reaction.34  Radical clock reactions are unimolecular, and include such 

conversions as cyclizations,35 ring openings,36 and radical migrations.36  Alkyl radical 

clocks have been widely studied, and alkyl radical clocks with rate constants ranging from 

300 s-1 to 5x1011 s-1 have been developed to probe a wide range of enzyme reactions.36-

37  The use of carbon radical clocks to indirectly measure the rate constant of the radical 

step in a given reaction generally requires the use of a small library of designed substrates 

over a range of rate constants, and the design of such substrates depends on a variety 

of criteria.  In particular, the radical clock must be able to access the active site and initiate 

reaction, contain a functional probe in the vicinity of the (suspected) formed radical, and 

exist long enough to compete with the standard reaction catalyzed. 

 

1.6 Aims of This Work 

 While the membrane-bound nature of the insect and plant aldehyde 

decarbonylases rendered them recalcitrant to detailed characterization, the discovery of 

the soluble cyanobacterial aldehyde deformylating oxygenase stimulated a wave of 

studies attempting to characterize it and better understand biological decarbonylation 

reactions.  Such studies identified the necessity of molecular oxygen and reducing 

equivalents to catalyze the redox-neutral deformylation of aldehyde substrates with an 

upper rate limit of 1 min-1,29, 31 showed the incorporation of molecular oxygen in product 

formate,15e and identified the intermediate peroxyhemiacetal species as highly stable (t1/2 

~400s).32  The source of alkyl protonation was identified as an iron-bound water molecule 

by SIE studies,33 and a radical species implicated in the mechanism.15f  Despite this, 

multiple facets of catalysis remain unexplored, including concrete identification of the 
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nature of the C-C bond scission (whether a radical or a carbocation is produced), rate 

constants of the associated steps in the reaction, and how other, structurally dissimilar 

enzymes, such as CYP4G1, catalyze related decarbonylation reactions.  A deeper 

understanding of the methods by which enzymes catalyze decarbonylation is needed ere 

these systems can be applied to address our growing need for fossil fuel alternatives. 

 The research documented herein focuses on addressing these issues and 

providing valuable insight into biological aldehyde decarbonylation.  Chapter 2 describes 

the use of a β-cyclopropyl aldehyde substrate analogue to investigate the nature and 

associated rate constant of the C-C bond scission.  Despite acting as an unexpected 

mechanistic inhibitor, homolytic C-C bond scission was identified and a minimum rate 

constant for quenching of the alkyl radical generated.  The mechanism by which cADO 

was inactivated by β-cyclopropyl was also identified, and a substrate-binding channel 

phenylalanine identified as the site of covalent modification of the enzyme.  In chapter 3, 

we developed an α-oxiranyl-aldehyde substrate analogue to more accurately measure 

the rate constant for C-C bond scission, as well as study the stereochemistry of the 

reaction.  We thus determined that the rate constant for the proton + electron transfer 

step was 104-105 s-1, and that proton transfer was stereorandom.  The final chapter 

describes an α-cyclopropyl substrate analogue that acts as a nonenzymatic model of 

CYP4G1 activity.  High resolution mass spectrometry was used to identify CO2 as the 

carbonyl product, and deuterium labeling showed that the aldehyde proton was retained 

in the alkane product.  Mechanistic simulations identified an energetically plausible 

mechanism, aiding in our understanding of the otherwise difficult to study mechanism by 

which a P450 enzyme catalyzes aldehyde decarbonylation.  Taken together, this work 
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significantly advances our understanding of enzyme-mediated aldehyde decarbonylation, 

and will help to inform and direct future studies on industrialization of aldehyde 

decarbonylation as a source of biofuel production. 
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Chapter 2 

Probing the Mechanism of Cyanobacterial Aldehyde Decarbonylase Using a 

Cyclopropyl Aldehyde 

 

 The work described in this chapter was performed in collaboration with Dr. Debasis 

Das, who analyzed the formate byproduct and assisted in LC-MS and Proteomics work, 

and Dr. Bishwajit Paul, who synthesized the substrate and its derivatives.  Additionally, 

MALDI-TOF analysis was carried out by Dr. Benjamin C. Buer, and MS analysis was 

performed by Dr. V. Basrur.  It has been published in the Journal of the American 

Chemical Society 2013, 135 (14), 5234-5237.  

 

2.1 Introduction 

 The biosynthesis of long-chain aliphatic hydrocarbons is widely distributed in 

Nature, occurring in plants,1 animals2 and microbes,3 and is typified by the production of 

alkanes with an odd number of carbon atoms.4 These are derived from fatty acid 

biosynthesis in a two-step pathway in which fatty-acyl-CoA reductase reduces long-chain 

fatty-acyl-CoA esters to the corresponding fatty aldehydes.5 In the second step, aldehyde 

decarbonylase (AD) removes the formyl (HCO) group from fatty aldehydes to yield the 

long-chain aliphatic hydrocarbons.6 Recently, these biosynthetic processes have 

garnered increasing interest because of the potential for such pathways to be harnessed 

for the production of biofuels.7
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 The reaction catalyzed by aldehyde decarbonylase is unusual because it 

represents a rare biological case in which a completely unfunctionalized product is 

formed.8 Recently, it has become apparent that there are three different classes of 

aldehyde decarbonylases. In insects, the enzyme is a membrane-associated cytochrome 

P450 system and the aldehyde carbon is converted to CO2.2b, 9 In plants and algae, the 

enzyme is also membrane bound and is most likely iron dependent; however, in this case 

the aldehyde carbon is converted to CO.
5a, 6, 10 The most recently discovered 

cyanobacterial aldehyde deformylating oxygenase3a (cADO) is a soluble protein, whose 

crystal structure11 reveals it to share the same non-heme di-iron metal site as enzymes 

such as methane monoxygenase, class I ribonucleotide reductase and ferritin.12 

 Dr. Debasis Das recently demonstrated that in the cADO-catalyzed reaction the 

aldehyde carbon is converted to formate. Isotope-labeling studies established that the 

aldehyde C-H bond remains intact during the reaction and that the proton in the newly 

formed methyl group of the alkane derives from solvent (or a solvent-exchangeable group 

on the enzyme);13 findings that were independently arrived at by Warui et al. 14 

 Other di-iron enzymes that are structurally related to cADO utilize molecular 

oxygen, and although the substrate is not formally oxidized in the decarbonylation 

reaction, support for the involvement of molecular oxygen derives from labeling 

experiments in which 18O from 18O2 was found to be incorporated into formate.15 This 

implies that, in addition to the two electrons needed to reduce the diferric enzyme to the 

oxygen-reactive diferrous state, two further electrons, (supplied by the external reducing 

system) are required for the reaction, so that overall O2 is fully reduced to water (Figure 

2.1).  
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Figure 2.1. A) Reaction Catalyzed by cADO B) Proposed Mechanism for cADO 

 

 A central mechanistic question, which remains to be answered for all classes of 

aldehyde decarbonylase, is how the bond between aldehyde carbon (C1) and the -

carbon (C2) is cleaved. One plausible mechanism15a is shown in Figure 2.1 B. This 

involves initial formation of a reactive iron-peroxo species that attacks the aldehyde 

carbon. A 1-electron reduction leads to the formation of a hemiacetal radical followed by 

scission of the C1-C2 bond. A subsequent proton-coupled electron transfer step reduces 

the alkyl radical to the alkane. Tentative evidence that the reaction may involve radicals 

comes from spin-trapping experiments performed on cADO incubated with substrates in 
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the absence of a reducing system.13 Therefore, to gain insights into the C1-C2 bond 

scission step I have investigated the reaction of cADO with a substrate that incorporates 

a strategically placed cyclopropyl group that can act as a “radical clock”.  

 Cyclopropylcarbinyl radicals, formed when radicals are generated adjacent to the 

cyclopropyl ring, undergo rapid and very well characterized ring-opening reactions.16 

Cyclopropyl compounds have been extensively employed to investigate the mechanisms 

of cytochrome P450 enzymes16-17 and non-heme iron enzymes including methane 

monooxygenase,18 isopenicillin N synthase19 and, most recently, HppE that catalyzes 

epoxide formation in the biosynthesis of fosfomycin.20 Depending upon the lifetime of the 

postulated alkyl radical intermediate, one would expect to observe either retention of the 

cyclopropyl ring in the product, if either the radical is very short lived or the reaction is 

concerted, or ring-opening if the radical intermediate is relatively long-lived. 

 

2.2 Materials and Methods 

 2.2.1 Materials 

 Octadecanal, pentadecanal, tetradecane, heptadecane, 1-octadecene, phenazine 

methosulfate (PMS), ferrous ammonium sulfate and NADH were obtained from Acros 

Organics. Potassium chloride, HEPES were from Fisher chemicals. D2O (99.9%) and 

DMSO-d6 (99.9%) were from Cambridge Isotope Laboratories, Inc. Desalting of protein 

samples was accomplished using Zeba Spin Desalting Columns (2 mL) from Thermo 

Scientific, and sequence grade trypsin and Glu-C were purchased from Promega (USA) 

for MALDI-TOF and LTQ mass analysis.  All other reagents were of the purest grade 

commercially available and used without further purification. 
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 2.2.2 Synthesis of 2-(2-tetradecylcyclopropyl)acetaldehyde (6) 

 As a potential radical clock substrate, we synthesized the cyclopropyl analog of 

octadecanal, 2-(2-tetradecylcyclopropyl)-acetaldehyde 6, in which the cyclopropyl group 

is positioned -to the carbonyl group, as outlined in Figure 2.2 and detailed more 

thoroughly in Appendix A. Briefly, a Wittig reaction between pentadecanal, 1, and 3-

hydroxypropyl-triphenylphosphonium bromide was employed to form octadec-3-ene-1-ol, 

2, as the (E) stereoisomer.21 After protection of the alcohol as its TBDMS silyl ether, the 

double bond was converted to a cyclopropyl group using diethylzinc and diiodomethane, 

to give the trans stereoisomer, 4, as major product.22 Finally, deprotection of TBDMS 

group by TBAF, followed by oxidation of the alcohol with TEMPO yielded the cyclopropyl 

aldehyde, 6.23 

 

Figure 2.2. Synthesis of Cyclopropyl aldehyde 6. 

 2.2.3 Enzyme Assays 

 Assays were performed in 100 mM HEPES buffer, pH 7.2, containing 100 mM KCl 

and 10% glycerol. Aldehydes substrates were made up to a stock solution in DMSO. A 
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typical assay contained 10 µM cADO, 20 µM ferrous ammonium sulfate, 400 µM aldehyde 

substrate, 100 µM phenazine methosulfate (PMS) and 1 mM NADH in a total volume of 

500 µL. Assays were shaken for 1 hr at 37 ºC at 200 rpm. Reactions were quenched by 

addition of 500 µL ethyl acetate and vortexed well to extract hydrocarbon products and 

un-reacted substrate. The ethyl acetate layer was separated and 8 µL sample of the ethyl 

acetate layer was injected into GC-MS for analysis. Enzymatic production 1-octadecene 

was quantified using a calibration plot of 1-octadecene.  

 Gas chromatography analysis was performed using a Shimadzu QP2010S GC-

MS instrument equipped a quadrupole mass detector. A DB-5 column (Restek, 30m x 

0.25 mm x 0.25 µm) was used for elution. The flow rate of the helium carrier gas was kept 

constant at 1 mL/min and the inlet temperature was maintained at 200 °C. The interface 

temperature was maintained at 250 °C. Injections were made in splitless mode. Oven 

temperature was held initially at 70 °C for 2 min and then gradually increased to 300 °C 

at 20 °C/min and finally maintained at 300 °C for 5 min. Data analysis was performed by 

GC-MS PostRun analysis software. 

 2.2.4 Formate Assays 

 The detection of formate as a co-product in cADO assay was confirmed by 

derivatizing the products of the enzyme reaction with 2-nitrophenylhydrazine (2-NPH) 

followed by reverse phase HPLC.  400 µl of the products of the enzyme reaction was 

mixed with 40 µl of 120 mM 2-NPH solution (aqueous solution in 0.25 M HCl) and 40 µl 

of EDC working solution (300 mM EDC in 1:1 pyridine:HCl). After vortexing for ~30 s, the 

reaction mixtures were incubated at 60 °C for 30 min. The samples were then centrifuged 

to remove precipitated protein and insoluble reaction products. 400 µl of the clear 
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supernatant was subjected to chromatography on a Nucleosil C18 RP HPLC column (250 

mm x 4 mm, 5 µM, 120 Å). The column was equilibrated in 50 % water, (acidified with 

0.05% AcOH) and 50 % methanol (acidified with 0.05% AcOH) and compounds were 

eluted with a gradient of 30% methanol to 90% methanol over 45 min at 0.7 mL/min.  

 2.2.5 LC-ESI-MS Analysis 

 Covalent modifications on cADO were analyzed by LC-MS using an Agilent 6520 

LC - accurate-mass Q-TOF MS system. After incubation with either cyclopropyl substrate 

6 or with octadecanal, the protein was recovered, desalted and reconstituted with 0.1% 

formic acid. 5 µl of the sample was injected into a Poroshell 300SB-C8 column 

equilibrated with 0.1% formic acid and 5% acetonitrile. Proteins were eluted for 5 min with 

95% water: 5% acetonitrile followed by an increase in gradient to 100% acetonitrile over 

7 min at a constant flow rate of 0.5 ml/min. Eluting proteins were detected at 280 nm; 

cADO eluted with a retention time of 8.6-9.5 min. Mass data were obtained using intact 

protein mode and analyzed using Agilent MassHunter Qualitative Analysis software. The 

raw data was deconvoluted with respect to maximum entropy.  

 2.2.6 MALDI-TOF Analysis 

 To determine the location of the covalent modification, samples of the inactivated 

and unmodified enzyme were subjected to proteolytic digestion with either trypsin or Glu-

C and studied by MALDI-TOF (Micromass TofSpec2E). α-cyano-4-hydroxycinnamic acid 

was used as a matrix. The instrument was calibrated using an external reference of five 

standard peptide of known mass. Proteins were denatured with 8 M urea and reduced 

with 10 mM DTT prior to alkylation of cysteine residues using 50 mM iodoacetamide. The 

resulting alkylated protein was diluted to reduce the urea concentration to 1.5 M and 
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treated with sequencing grade modified trypsin (Promega) and Glu-C separately 

overnight at 37 °C. The proteolytic fragments were analyzed by MALDI-TOF mass 

spectrometry and the spectra of the modified and unmodified enzyme digests compared.  

 2.2.7 LC-Tandem Mass Analysis 

 Tandem mass analysis was performed by ion-trap mass spectrometer (LTQ-XL, 

ThermoFisher).  Proteins were digested as described before for MALDI-TOF analysis. 

The samples were further acidified with trifluoroacetic acid and peptides were purified 

using SepPak C18 cartridge (Waters). The resulting sample was injected into a C18 

reverse phase column (Aquasil) equilibrated with 5% acetonitrile/1% acetic acid and 

peptides eluted with a linear gradient of increasing acetonitrile from 5 % to 60% over 40 

min at a flow rate of 300 nl/min. The eluting peptides were directly introduced into ion-

trap mass spectrometer (LTQ-XL) equipped with a nano-spray source. A full MS scan 

(m/z 400-2000) was acquired and the most abundant 6 ions were studied by MS/MS 

mode (relative collision energy ~ 35%). Raw files were searched against an E. coli 

database appended with the Np cADO sequence and a decoy database using X!Tandem 

(www.thegpm.org). The modification of phenylalanine, tyrosine, histidine, or glutamic 

acid, by a mass increment of 250.4 Da, together with methionine oxidation (+ 16 Da) and 

carbamidomethylation of cysteine (+ 57 Da) were considered as variables. The mass 

tolerance limit was set at 1 Da for precursor peptides and 0.5 Da for fragmented peptides. 

Results were further analyzed by Trans-Proteomic Pipeline (TPP) analysis, including 

PeptideProphet and ProteinProphet. 
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 2.2.8 Preparation of di-Deuterated 6 

 6 (final concentration 10 mM) was dissolved in 90% DMSO-d6, 10% in D2O, 

buffered with 10 mM HEPES at pD 8.4. The solution was shaken for 12 h at 37 °C after 

which time GC-MS analysis revealed that the α-protons were greater than 95 % 

exchanged (Figure 2.3). The stock solution was stored frozen at -80 °C for further use in 

deuterium incorporation assays.  

 H O 

H 

 H D D 

 Di-deuterated 6   

 
Figure 2.3. A section of mass spectrum of di-deuterated cyclopropyl substrate 6 showing 
molecular ion peak of m/z 282.3.  
 

2.3 Results and Discussion 

 2.3.1 Reaction of Cyclopropyl Analog with cADO Yields 1-Octadecene and 

Formate 

 We investigated the reaction of 6 with cADO from Nostoc punctiformes, which was 

recombinantly over-expressed in E. coli and purified as previously described.24 Assays 

were performed at 37 C and typically contained 400 M 6, 10 M cADO, 1 mM NADH 

and 100 M phenazine methosulfate (PMS) in 100 mM HEPES buffer, 100 mM KCl, 10 

11 
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% glycerol, pH 7.2 and 4 % DMSO to improve substrate solubility. The reaction products 

were extracted with ethyl acetate and analyzed by GC-MS.13, 24 The chromatograph 

revealed a new peak at 9.84 min, which co-chromatographed with an authentic standard 

of 1-octadecene and was characterized by a molecular ion of m/z = 252.3, confirming its 

identity (Figures 2.4 and 2.5).  

 

Figure 2.4. Gas chromatographs of 1-octadecene formed from 6 by Np cADO (in red), 
an authentic standard 1-octadecene (in blue) and an authentic standard of 1-methyl-2-
tetradecylcyclopropane, formed non-enzymatically (in green). Retention times of 1-
octadecene and 1-methyl-2-tetradecylcyclopropane products are at 9.84 min and 10 min, 
respectively.  
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A  

 

B  

 

Figure 2.5. Electron Impact mass spectral analysis of authentic standard 1-octadecene 
(A) and enzymatically obtained 1-octadecene (B). Molecular ion peak of m/z = 252 is 
characteristic of 1-octadecene.  
 

 The formation of 1-octadecene was strictly dependent on the presence of PMS, 

NADH and molecular oxygen. Prolonged incubation of the assay mixture under rigorously 

anaerobic conditions (pO2 < 0.5 ppm) gave no reaction products (Figure 2.6). This 

observation supports a radical mechanism for C-C bond scission, in which the 

cyclopropylcarbinyl radical rearranges to the octadecenyl radical, leading to the formation 

of 1-octadecene as the product, as shown in Figure 2.7. The rate constant for ring opening 

of cyclopropylcarbinyl radicals is known; k = 8.6 x 107 s−1 at 298 K.25 This implies that the 

radical generated at the -carbon of 6 has lifetime ≥ 10 ns. The hydrazide derivative of 

formate was eluted at ~28 min and detected at 230 nm (Figure 2.8). The presence of 

formate in the derivatized assay samples was confirmed by comparison with the retention 

time of an authentic standard. Analysis of this peak by UV-visible and mass spectrometry 

further confirmed the identity of the compound as the 2-NPH derivative of formate. 
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Figure 2.6. Overlaid chromatographs showing the formation of 1-octadecene and the 
non-enzymatically formed cyclopropyl alkane product in the presence of cADO, O2 and 
PMS/NADH  (red trace). In the absence of O2 (blue trace) or in the absence of reducing 
system PMS/NADH (black trace), neither 1-octadecene nor the cyclopropyl alkane 
product is observed.  
 

 

 

Figure 2.7. Reaction of Cyclopropyl Substrate 6 with Np cADO. 
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Figure 2.8. Overlaid HPLC traces of 2-NPH derivatives of authentic formate (in blue), Np 

cADO reaction product with cyclopropyl compound 6 (red) and Np cADO reaction product 

with octadecanal (black) at 230 nm. 2-NPH-formate derivative elutes at retention time of 

~ 28 min. Fractions were collected and studied by ESI-MS (negative mode). Identity of 

each formate derivative was confirmed by obtained mass of m/z = 180.1.  

 

 
 Interestingly, a minor peak at 10.0 min with m/z = 252.3 was also evident that co-

chromatographed with an authentic standard of 1-methyl-2-tetradecylcyclopropane, the 

non-rearranged product from the decarbonylation of 6 (Figure 2.4). However, this 

compound was also present in similar amounts in control experiments in which the 

enzyme was omitted and thus must arise from non-enzymatic decarbonylation of the 

cyclopropyl aldehyde (Figure 2.9). The non-enzymatic reaction requires the presence of 

NADH, PMS and O2: no non-rearranged product was observed if any of these reagents 

were omitted (Figure 2.6). Nor was the non-rearranged product formed if a “biological” 

reducing system comprising NADPH, ferredoxin, and ferredoxin reductase was 

substituted for NADH and PMS. The mechanism for this unusual side reaction remains 

unclear.  
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Figure 2.9. Formation of 1-methyl-2-tetradecylcyclopropane (retention time = 10.05 
min) from 6 is independent of cADO. The formation of octadecene increases linearly with 
enzyme concentration (blue and green traces); in the absence of cADO no octadecene 
is formed (red trace), whereas the amount of 1-methyl-2-tetradecylcyclopropane formed 
is constant.   
  

 2.3.2 Cyclopropyl Analog Inhibits cADO 

 Despite varying the concentrations of reagents and the length of assay, no more 

than about one equivalent of 1-octadecene was observed in the reaction of 6 with cADO 

(Figure 2.10). This observation suggested that 6 may partition between turn-over and 

acting as an irreversible inhibitor of the enzyme. Inactivation of cADO was confirmed by 

incubating cAD with 6 (400 M) in assay buffer containing PMS, NADH and O2 for 1 hour. 

The activity of the enzyme was then assayed using octadecanal (400 M) as the 

substrate. Essentially no activity remained, as shown in Figure 2.11 (I). In contrast, if the 

alternate substrate, pentadecanal (400 M), was substituted for 6 a significant amount of 

enzyme activity remained after 1 hour when the enzyme was assayed with octadecanal 

(Figure 2.11 (II)).  The formation of 1-octadecene appeared to be described by first order 

Time (Min) 
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kinetics.  The partitioning of substrate between turnover and enzyme inactivation is 

described by the equation below: 

𝑃𝑡

𝐸
=

𝑘𝑐𝑎𝑡

𝑘𝑖𝑛
(1 − 𝑒−𝑘𝑖𝑛𝑡)  (1) 

In which Pt is the concentration of product at time t; E is enzyme concentration and kin is 

the rate constant for inactivation.  Fitting the data Equation 1, kcat ≈  kin = 0.088 ± 0.011 

min-1; for comparison kcat = ~ 0.4 min-1 with octadecanal as the substrate.13  

 

Figure 2.10. Time course for formation 1-octadecene by cADO.  
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Figure 2.11. Inactivation of cADO by 6. (I) Reaction of cADO with 6 for 1 h followed by 
addition of octadecanal results in negligible heptadecane being formed; (II) as a control, 
reaction of cADO with pentadecanal for 1 h followed by addition of octadecanal 
demonstrates that significant enzyme activity remains. 
 
 
 2.3.3 Mechanistic Inhibition of cADO Through Formation of a Covalent 

Adduct 

 To gain further insight into the mechanism of inactivation, we analyzed the 

inactivated cADO by LC-ES-MS. The mass of the cADO prior to reaction with 6 was 

determined as 28911 ± 0.5 Da (Figure 2.12), in excellent agreement with the calculated 

molecular weight.  Reaction of cADO with octadecanal resulted in no change in Mr (Figure 

2.13A). However, reaction of cADO with 6 resulted in between 60 - 80 % of the recovered 

enzyme eluting from the column as a species characterized by a slightly longer retention 

time and a molecular weight of 29162 ± 0.5 Da (Figure 2.13B). The increase in molecular 

weight of 251 ± 0.5 Da is consistent with the formation of a covalent adduct between 
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decarbonylated 6 and cADO. Covalent modification of cADO by 6 provides a plausible 

mechanism for inactivation.  

 

 

 
Figure 2.12. Reverse phase liquid chromatogram and mass spectral analysis of Np 
cADO. A. Total ion chromatogram (TIC) B. Deconvoluted mass spectrum of as isolated 
Np cADO. Highlighted region of A was extracted for mass spectral analysis. Np cADO 
elutes as a single peak with retention time 8.6 to 9.2 min. Mass of Np cADO is 28911 ± 
0.5 Da.  
 

 Reaction of cADO with octadecanal resulted in no change in Mr (Figure 2.13A). 

However, reaction of cADO with 6 resulted in between 60 - 80 % of the recovered enzyme 
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eluting from the column as a species characterized by a slightly longer retention time and 

a molecular weight of 29162 ± 0.5 Da (Figure 2.13B). The increase in molecular weight 

of 251 ± 0.5 Da is consistent with the formation of a covalent adduct between 

decarbonylated 6 and cADO. Covalent modification of cADO by 6 provides a plausible 

mechanism for inactivation.  

 

 

Figure 2.13.  LC-MS of cADO. A: No modification occurs after reaction of cADO with 
octadecanal (blue); Mr of cADO = 28911 Da; B: reaction of cADO with 6 results in 
covalently modified protein (red), Mr = 29162 Da.  
 

 2.3.4 Determining the Site of the Covalent Modification 

 To determine the location of the covalent modification, samples of the inactivated 

and unmodified enzyme were subjected to proteolytic digestion with either trypsin or Glu-

C. The proteolytic fragments were analyzed by MALDI-TOF mass spectrometry and the 

spectra of the modified and unmodified enzyme digests compared (Figures 2.14 and 
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2.15). Analysis of the spectra identified two peptides, one Glu-C-derived, the other 

trypsin-derived, which were absent from the spectra of the covalently modified enzyme. 

Significantly, the peptides overlapped in sequence and encompass a 20-residue 

segment, CFAIAAYNIYIPVADDFARK, that forms part of the hydrophobic substrate-

binding channel of cADO.  

A.  

1.17e5 

  

1.06e5 

  

  

Figure 2.14. MALDI spectrum of GluC digests of Np cADO (A) and 6 treated Np cADO 
(B). Red arrow on spectrum A shows the peak of interest with mass 2661.5 Da that 
represents carbamidomethylated CFAIAAYNIYIPVADDFARKIT peptide fragment that is 
absent in spectrum B. 
  

 

 

 

  



45 
 

A.  

 
  

  

Figure 2.15. MALDI spectrum of trypsin digests of Np cADO (A) and 6 treated Np cADO 
(B). Red arrow on spectrum A shows the peak of interest with mass 3684.6 Da that 
represents VVTCLLIQSLIIECFAIAAYNIYIPVADDFARK peptide fragment that is absent 
in spectrum B.  
 

 Unfortunately, we were unable to detect the alkylated peptides directly by MALDI-

TOF mass spectrometry. However, it is commonly observed that hydrophobic peptides 

are under-represented or absent in “bottom up” proteomic analyses of proteins.26 This 

may be attributed to loss of hydrophobic peptides during sample preparation steps prior 

to MS analysis; there is also the potential for the modification to interfere with the 

proteolytic digestion of the peptide, and/or adversely affect its ability to ionize in the mass 

spectrometer. 

B. 
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 The proteolytic digests of covalently modified cADO were subjected to more 

extensive analysis using ES-MS-MS. Samples were analyzed using an ion-trap mass 

spectrometer (LTQ-XL, ThermoFisher) equipped with a nano-spray ion source; the 

resulting mass spectra were analyzed using Trans-Proteomic Pipeline (TPP) software 

including PeptideProphet and ProteinProphet.27 This analysis succeeded in identifying 

one covalently modified peptide, present in low-abundance, in the tryptic digest. The 

secondary ion mass spectrum of this peptide displayed a fragmentation pattern that was 

consistent with F107 being modified by an additional mass of 251 ± 0.5 Da (Figure 2.16). 

F107 forms part of the hydrophobic substrate channel of cADO (Figure 2.17) and would 

be within ~ 5 Å of the putative alkyl radical formed by the opening of the cyclopropyl ring 

of 6. These results suggest that the reaction of the product alkyl radical with the 

phenylalanine ring results in the covalent attachment of the alkyl fragment to the protein, 

thereby inactivating the enzyme (Figure 2.18, pathway II). 

 

A  

IECFAIAAYNIYIPVADDFAR, MH+ 2933.2853, m/z 978.4333  
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B  

b+  b2+  #  AA  #  y+  y2+  y3+  

114.0913  57.5496  1  I  21          

493.6068  247.3073  2  E  20  2820.2007  1410.6043  940.7388 

653.7456  327.3767  3  C  19  2440.6852  1220.8465  814.2336 

1051.3222  526.1650  4  F  18  2280.5464  1140.7771  760.8540 

1122.3594  561.6836  5  A  17  1882.9698  941.9888  628.3285 

1235.4434  618.2256  6  I  16  1811.9327  906.4702  604.6494 

1306.4805  653.7442  7  A  15  1698.8486  849.9282  566.9547 

1377.5176  689.2627  8  A  14  1627.8115  814.4097  543.2757 

1540.5810  770.7944  9  Y  13  1556.7744  778.8911  519.5967 

1654.6239  827.8159  10  N  12  1393.7110  697.3594  465.2422 

1767.7080  884.3579  11  I  11  1279.6681  640.3380  427.2279 

1930.7713  965.8896  12  Y  10  1166.5841  583.7959  389.5332 

2043.8554  1022.4316  13  I  9  1003.5207  502.2643  335.1788 

2140.9081  1070.9580  14  P  8  890.4367  445.7222  297.4841 

2239.9765  1120.4922  15  V  7  793.3839  397.1959  265.1332 

2311.0137  1156.0107  16  A  6  694.3155  347.6617  232.1104 

2426.0406  1213.5242  17  D  5  623.2784  312.1431  208.4313 

2541.0675  1271.0377  18  D  4  508.2514  254.6296  170.0890 

2688.1360  1344.5719  19  F  3  393.2245  197.1162  131.7467 

2759.1731  1380.0904  20  A  2  246.1561  123.5819  82.7239 

      21  R  1  175.1190  88.0634  59.0449 

  

Figure 2.16. Linear trap quadrupole (LTQ) mass spectral analysis of trypsin digests of 
Np cADO after reaction with 6. A. Mass spectrum of the peptide fragment 
IECFAIAAYNIYIPVADDFAR. B. Peptide ions with different charges. Presence of b5++ 
and y19+++ ions is consistent with F107 residue of Np cAD modified with the hydrocarbon 
chain.  
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Figure 2.17. Crystal structure of cADO from Prochlorococcus marinus MIT9313 (PDB ID 
2OC5A) showing di-iron active site and co-crystalized long chain fatty acid. The 
phenylalanine residue as shown in green most likely undergoes covalent modification 
after incubation of cADO with cyclopropyl aldehyde 6.  
 

 

Figure 2.18. Alternate pathways for reaction of 6 with cADO.  Pathway I details formation 
of soluble 1-octadecene.  Pathway II shows inactivation of cADO by covalent modification, 
while pathway III shows a possible explanation for inactive enzyme lacking a covalent 
modification. 
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2.3.5 Proposed Mechanism of Inactivation 

 Although 6 completely inactivated cADO, a significant fraction of the protein 

escaped covalent modification by 6 (Figure 2.13B), suggesting that another inactivation 

mechanism might be operating.  Further insights into the mechanism of inactivation came 

from deuterium labeling experiments. We previously determined that for the 

decarbonylation of octadecanal, the proton in heptadecane is derived from the solvent.13 

However, the rearrangement of the cyclopropylcarbinyl radical derived from 6 would place 

the presumed radical intermediate at C-4, rather than at C-1, of the product (Figure 2.18). 

We were therefore interested to know whether the new hydrogen in 1-octadecene was 

derived from the solvent or some other source. To avoid complications arising from 

exchange of aldehyde proton during the deuterium labeling experiment, we prepared 6 in 

which the -carbon was di-deuterated.  When di-deuterated 6 was reacted with cADO in 

deuterated buffer the predominant molecular ion for 1-octadecene had m/z = 255.3 

(Figure 2.19), corresponding to tri-deuterated 1-octadecene. This is consistent with the 

proton coming from the solvent or a solvent-exchangeable group on the enzyme.  
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                                                                m/z   

Figure 2.19. A section of mass spectrum of enzymatically obtained product from 
dideuterated 6 in deuterated buffer, showing a more intense tri-deuterated 1-octadecene 
molecular ion peak of m/z 255.3 and a less intense peak of di-deuterated 1-octadecene 
of molecular ion peak of m/z 254.3. The peak of m/z = 254.3 was derived from 
nonexchangeable protons presumably from the side chains of the protein.  
 

 However, a less abundant but still significant peak at m/z = 254.3 was also 

observed, corresponding to di-deuterated 1-octadecene (Figure 2.19). This suggests that 

some protons may derive from a non-exchangeable position on the protein. (Some 

protium may also come from the 1 – 2 % of protium remaining in the buffer, but it seems 

unlikely that this would account for all the di-deuterated product). Abstraction of hydrogen 

from a non-acidic side-chain by the alkyl radical derived from 6 would certainly be 

energetically feasible. Such oxidative damage might plausibly result in inactivation of the 

enzyme. This may provide an alternative pathway for the inactivation of cADO by 6 that 

does not involve in the formation of a covalent adduct between the protein and substrate 

(Figure 2.18, pathway III). 

 

2.4 Conclusions 

 In conclusion, these experiments provide support for a radical mechanism for C-C 

bond scission in the unusual decarbonylation reaction catalyzed by cADO. In order to 
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investigate the nature of the C1-C2 bond scission catalyzed by cADO, a radical clock 

substrate analogue containing a β-cyclopropyl functionality was synthesized and reacted 

with the enzyme.  Incubation of the substrate with cADO resulted in the formation of 1-

octadecene as the sole enzyme-mediated product.  Based on the well-documented 

lifetimes for the ring-opening of cyclopropylcarbinyl radicals, the reaction of cADO with 6 

supports the formation of a relatively long-lived radical, i.e. one with a lifetime greater than 

10 ns, on the -carbon during the reaction.  Unexpectedly, the reaction seemed to be 

limited to a single turnover. 

 Investigation of the reaction using sequential incubation with the cyclopropyl 

substrate or a pentadecanal control, followed by octadecanal, revealed the inhibitory 

nature of 6.  Further studies elucidated that the complete loss of enzymatic activity was 

accompanied by the covalent modification of 60-80% of the enzyme by a ~251 Da adduct, 

corresponding to decarbonylated 6.  In order to identify the site of modification, cADO 

(purified and modified) was digested with trypsin and Glu-C and analyzed by MALDI-TOF.  

The loss of a peptide fragment in the modified enzyme samples was noted, corresponding 

to a portion of the 4-helix bundle forming the hydrophobic substrate binding channel of 

cADO. 

 In an attempt to narrow down the specific residue modified by the cyclopropyl 

substrate, the aforementioned digests were submitted for proteomics analysis by tandem 

mass spectrometry.  This work identified Phe107 as the likely site of modification by 

decarbonylated 6.  To further understand the mechanism of cADO inactivation by 6, di-

deuterated substrate was prepared and reacted in deuterated buffer.  The primary product 

thereof was tri-deuterated alkane, though some di-deuterated product remained.  This 
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indicated that while most product resulted from abstraction of a deuterium from solvent or 

a solvent-exchangeable sidechain, some product resulted from abstraction of hydrogrens 

from non-exchangeable sites in the enzyme, likely leading to the mechanism of 

inactivation proposed in Figure 2.18.  The opening of the cyclopropyl ring results in the 

migration of the radical initially generated at C-1 of the product to C-4. The shift in the 

position of the radical appears to cause the reaction to partition between completing the 

catalytic cycle, i.e. producing 1-octadecene as product, and reacting with the protein to 

inactivate cADO.   
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Chapter 3 

Mechanistic Insights from Reaction of α-Oxiranyl-Aldehydes with Cyanobacterial 

Aldehyde Deformylating Oxygenase 

 

The work described in this chapter was performed in collaboration with Dr. 

Debasis Das, who performed kinetic analyses of substrate reactivities, and Dr. Bishwajit 

Paul, who synthesized the substrate analogues and corresponding product standards.  

It has been published in the American Chemical Society Chemical Biology, 2013, 9, 

570-577.  

 

3.1 Introduction 

 Following my work with the cyclopropyl species, a study by the Bollinger 

Laboratory utilized stopped-flow U.V.-visible spectroscopy and rapid quench Mossbauer 

spectroscopy to provide evidence in support of the formation of a FeIII/FeIII peroxide or 

peroxy-semialdehyde species in cADO.1  This species was relatively stable, t½ ~ 400 s 

at 5 ºC, but once additional electrons in the form of reduced O-methoxy-phenazine 

methosulfate were added it rapidly decayed. The proposed catalytic mechanism for 

cADO was altered to fit these findings, and proceeds according to the mechanism 

shown in Figure 3.1B.2,3  Evidence for a radical mechanism for C – C bond scission was 

provided through my studies of cADO with the β-substituted cyclopropyl aldehyde 

radical clock as described in chapter 2.  Ring-opening of the cyclopropyl ring was 
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observed, consistent with homolytic cleavage of the formyl group.4 Though a lower limit 

for the formed radical was derived, a more accurate measurement of the lifetime of the 

radical formed as a result of homolytic cleavage was needed to flesh out the catalytic 

mechanism of cADO.  Also of note are recent experimental observations of oxidative 

products arising from the reaction of cADO with medium-chain aldehydes, which led to 

a conflicting mechanistic proposal involving heterolytic C-C bond scission (Figure 3.1C).  

In order to address these disparities and more accurately measure the aforementioned 

radical lifetime, an alternative functionality was explored.  
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Figure 3.1. A. Deformylation reaction catalyzed by cADO. B. Proposed mechanism of 
cADO involving homolytic cleavage of the C1-C2 bond of aldehyde by di-iron peroxo 
species. C. A recently proposed mechanism for deformylation involving heterolytic 
cleavage of the C1-C2 bond.  

 

The substrate-binding site of cADO comprises a narrow hydrophobic channel that 

terminates at the metal center.5  The scope for substrate modification is, therefore, limited 

by steric constraints. However, examination of the structure, as well as the work with β-

cyclopropyl additions accomplished in Chapter 2, suggested that aldehydes containing 3-

membered rings adjacent to the aldehyde carbon could be accommodated with minimal 
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perturbation of the structure.  We therefore synthesized analogs of dodecanal and 

octadecanal trans-3-nonyloxirane-2-carbaldehyde, 1, and trans-3-pentadecanyloxirane-

2-carbaldehyde, 2 bearing an oxirane ring adjacent to the aldehyde carbon (Figure 3.2).  

We reasoned that introducing the oxiranyl functionality at the site of C-C bond scission 

should provide insights into the mechanism of deformylation by altering the stability of 

intermediates.  The oxiranyl radical has a significantly slower rate of radical ring opening 

than the cyclopropylcarbinyl species, and the introduction of the 3-membered oxirane ring 

adjacent to the aldehyde carbon would allow the stereochemistry of proton transfer to be 

investigated.  

 

 

Figure 3.2. Structures of trans-3-nonyloxirane-2-carbaldehyde, 1, and trans-3-
pentadecanyloxirane-2-carbaldehyde, 2 used in these studies. 

 

3.2 Materials and Methods 

 3.2.1 Materials 

 Anhydrous solvents such as dichloromethane, n-hexane, ethyl acetate and diethyl 

ether were used without further distillation. Bases such as DIBAL-H, DBU were used 

directly from reagent grade bottle. Reactions were monitored by thin-layer chromatography 

(TLC) with visualization by potassium permanganate (KMnO4) stains and 2,4-dinitrophenyl 

hydrazine (DNP) stains. All glass-wares were oven-dried before use. Column 
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chromatography was performed with silica-gel mesh size 100-200 m (Fisher Scientific, 

USA). The removal of solvent and other volatile impurities were done under reduced 

pressure using rotatory evaporator in a water bath of < 37 C. NMR spectra were measured 

in CDCl3 at ambient temperature unless otherwise noted. Hexadecane, undecanal, decane 

were obtained from Sigma-Aldrich. Trans-2-dodecenol, hexadecanal, heptadecanal was 

obtained from TCI America. Phenazine methosulfate (PMS), ferrous ammonium sulfate 

from Sigma Aldrich. NADH, 2-Nitrophenylhydrazine, EDC were obtained from Acros 

Organics. Potassium chloride, HEPES were from Fisher chemicals. D2O (99.9%) and 

DMSO-d6 (99.9%) were from Cambridge Isotope Laboratories, Inc. All other reagents 

were of the purest grade commercially available and used without further purification.   

3.2.2 Synthesis of α-Oxiranyl Aldehydes 

 The synthesis of trans-3-nonyloxirane-2-carbaldehyde, ((E)-2,3-epoxydodecanal), 

1, was accomplished by standard methods starting from commercially available (E)-

dodec-2-en-1-ol. Trans-3-pentadecanyloxirane-2-carbaldehyde, ((E)-2,3-

epoxyoctadecanal) 2 (Figure 3.2), was accomplished by standard methods utilizing the 

Horner-Wittig reaction of hexadecanal with ethyl-2-(diethoxylphosphoryl) acetate to 

obtain the corresponding α-unsaturated carboxylic acid ethyl ester that was subsequently 

elaborated to 1 and 2.4,6  Authentic standards of nonyloxirane and pentadecanyloxirane 

were synthesized by epoxidation of 1-undecene and 1-pentadecene using 

metachloroperbenzoic acid.6  Full details of the synthetic procedures may be found in 

Appendix B. 
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3.2.3 Enzyme Assays 

The purification of recombinant N. punctiformes cADO from E. coli was performed 

as described previously.4  Assays were performed in 100 mM HEPES buffer, pH 7.2, 

containing 100 mM KCl and 10% glycerol under microaerobic conditions and employing 

phenazine methosulfate (PMS) and NADH as the auxiliary reducing system as described 

previously.4 Aldehydes substrates were made up as a 10 mM stock solution in DMSO. A 

typical assay contained 10 µM cADO, 20 µM ferrous ammonium sulfate, 300 µM aldehyde 

substrate, 100 µM phenazine methosulfate (PMS) and 2 mM NADH in a total volume of 

500 µL. Assays were shaken at 37 °C at 200 rpm. Reactions were quenched by addition 

of 500 μL ethyl acetate and vigorous vortexing, followed by centrifugation at 14000 rpm 

for 30 min to separate the organic phase. The ethyl acetate layer was collected and 8 μL 

of sample subjected to GC-MS analysis as described previously.  

3.2.4 Formate Determination 

Formate was determined to be the co-product of reaction of 1 and 2 with cADO by reaction 

with 2-Nitrophenylhydrazine, as described previously.7,4  

3.2.5 Deuterium Incorporation Assays 

 To investigate deuterium incorporation into alkane products, assays were 

performed in 100 mM HEPES buffer containing 100 mM KCl in 99.9% D2O, pD 7.2. 

Substrates were made up as 10 mM stock solutions in 99.9% DMSO-d6.  cADO was 

added as a concentrated stock solution in non-deuterated buffer such that the final H2O 

concentration did not exceed 2%.  The enzyme was incubated in the buffer for 1 h prior 
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to initiating the reaction by addition of substrate. Assays were shaken at 37 °C for 2 h at 

200 rpm. Products were extracted and analyzed as described in previous enzyme assays. 

3.2.6 Preparation of NMR Samples for Stereospecificity Analysis 

Assays were performed as described above except that phosphate buffer was 

substituted for HEPES buffer which otherwise interfered with the NMR spectra.  Assays 

were carried out either in 10 mM potassium phosphate, pH 7.2, containing 50 mM KCl in 

H2O or 10 mM potassium phosphate, pD 7.2, containing 50 mM KCl in D2O (99.9%). 

Aldehyde solutions were made up as a stock solution in DMSO or DMSO-d6 for the 

respective experiments. A typical assay contained 40 μM Np cADO, 80 μM ferrous 

ammonium sulfate, 100 μM PMS, 2 mM NADH and 400 μM substrate in a total volume of 

500 μL. For assays performed in deuterated buffer, the final H2O concentration was ~5% 

after adding all the assay components.  Ten identical 500 μL reactions were set up in 

each buffer and shaken at 37 °C at 200 rpm for 2 h. The reaction mixtures were 

sequentially extracted with a total volume of 1 mL CDCl3 (99.9%). The CDCl3 layers were 

washed with D2O, dried over sodium sulfate and filtered before analysis by 1H NMR.  

 

3.3 Results and Discussion 

3.3.1 Reaction of 1 and 2 with cADO 

Initially Dr. Debasis Das and I examined the activity of 1 under both air-saturated 

and micro-aerobic conditions and compared its activity with that of dodecanal. Typical 

assays contained 10 μM cADO, 300 μM substrate, and an auxiliary reducing system 



 

63 
 

comprising NADH, 2 mM, as the reductant and PMS, 100 μM, the electron mediator, as 

described previously.  Under fully aerobic conditions very little activity was observed with 

either 1 or dodecanal, most likely because the non-enzymatic reaction of O2 with reduced 

PMS depleted the reducing system before significant turn-over could occur.  All 

subsequent experiments were therefore performed micro-aerobically, as described 

previously.  Under micro-aerobic conditions cADO catalyzed the conversion 1 to 2-

nonyloxirane and dodecanal to undecane at approximately similar rates (apparent kcat = 

0.016 ± 0.001 min-1 and 0.01 ± 0.001 min-1 respectively).  In both cases the reaction was 

linear for several hours during which time about 3 turnovers occurred (Figure 3.3).  

Formate was formed as the co-product, as expected (Figure 3.4). 

 

Figure 3.3. Comparison of the rates of deformylation of 1 (■) and dodecanal (●) by cADO.  
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Figure 3.4. Overlaid HPLC traces of formate NPH-derivative from 50 µM standard 

formate (in red) and the formate-NPH obtained from the formate produced from 2 by Np 

cADO (in black). 

 

The sluggish nature of the cADO reaction has been noted previously in 

investigations by various laboratories.8,7,9  A recent study examined the relative rates of 

reaction of aliphatic aldehydes with chain lengths ranging from 18 to 4 carbons.10  

Interestingly, it was found that the enzyme is more active with either long-chain (C18 – 

C14) or short-chain (C9 – C5) aldehydes whereas medium chain aldehydes, including 

dodecanal, were turned over considerably more slowly.  Therefore, we were curious 

whether faster rates of turn-over could be obtained by increasing the chain length of the 

alkyl-oxiranyl-carbaldehyde.  We examined the activity of 2 with cADO and compared it 

with the “fast” substrate octadecanal.  We found that 2 was converted to 2-
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pentadecanyloxirane and formate about twice as fast, apparent kcat = 0.029 ± 0.001 min-

1 as 1 was converted to 2-nonyloxirane, although octadecanal was found to turn over ~ 

7-fold faster than dodecanal, in agreement with previous measurements.11,10   

We were curious whether the slow turnover of 1 and 2 might be due to these 

compounds inactivating the enzyme, as we previously observed mechanism-based 

inactivation, resulting in covalent modification of the enzyme, in the reaction of cADO with 

a β-substituted cyclopropyl aldehyde designed to function as a radical clock.4  However, 

LC-ESI-MS analysis of the enzyme after reaction with the oxiranyl aldehydes established 

that neither 1 nor 2 covalently modified the enzyme (Figure 3.5).  Moreover, the time 

course of the reaction does not show evidence for time-dependent inhibition of the 

enzyme. The slow reactions of 1 and 2 with cADO therefore appear to be intrinsic to their 

chemical functionality.  

 

 

Figure 3.5. Deconvoluted mass spectrum of compound 2 treated Np cADO.  The 
calculated Mr = 28910.6 is identical to that of the recombinant enzyme as isolated from 
E. coli. 
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3.3.2 Stereochemistry of proton transfer 

Previous studies have established that the proton in the product alkane derives 

from the solvent in the cADO-catalyzed reaction;8,7 this is in contrast to the 

decarbonylation reactions catalyzed by the insect and plant enzymes in which the 

aldehyde hydrogen is transferred to the alkane.12,13 However, the stereochemistry of this 

step has not been determined for any of these enzymes.  I took advantage of the oxirane 

ring generated by the reaction of 1 with cADO to examine the stereochemistry of proton 

transfer.  Reactions were stepped up containing 40 μM cADO, 400 μM 1, 2 mM NADH 

and 100 μM PMS in 10 mM potassium phosphate buffer, pH/pD 7.2 in either H2O or D2O.  

After 2 h incubation at 37 °C the products of the reaction, together with unreacted 

substrate, were extracted with CDCl3, dried and their 1H NMR spectra recorded. 

 The oxirane protons (Figure 3.6A) are clearly separated from other resonances 

and comprise a broad multiple due to Ha, δ = 2.89 ppm, (J1 = 3.22, J2 = 5.83 Hz) and 

overlapping doublet-of-doublets due to Hb, δ = 2.73 ppm, (J1 = 3.90, J2 = 5.08 Hz) and a 

doublet-of-doublets due to Hc, δ = 2.45 ppm, (J1 = 2.75 Hz; J2 = 5.07 Hz).  For the reaction 

performed in H2O, integration of Ha, Hb and Hc reveals, as expected, equal intensities for 

all 3 protons (Figure 3.6B).  For the reaction performed in D2O, however both Hb and Hc 

are equally reduced in intensity to 0.63 relative to Ha (Figure 3.6C), indicating that the 

deuteron can be transferred with equal probability to either face of the oxirane ring.  It is 

evident that the intensities of Hb and Hc are not reduced to the theoretical value of 0.50.  

We attribute this to residual protons in the D2O buffer, which are estimated to comprise ~ 

5 % of the solvent.  Proton incorporation is most likely enhanced by a solvent kinetic 

isotope effect.   
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Figure 3.6.  Stereochemistry of proton addition to 2-nonyloxirane.  1H-NMR spectra of 

the oxirane ring protons Ha, Hb and Hc are shown. A: an authentic standard of racemic 2-

nonyloxirane (for clarity the structure of the (R)-enantiomer is drawn); B: products of the 

reaction of 1 with cADO in H2O; C: products of the reaction of 1 with cADO in D2O.  In 

each case integrations are relative to Ha. 

 

 This observation provides evidence for the existence of an intermediate species, 

most likely the 3-nonyloxiran-2-yl radical that is able to undergo rapid rotation about the 
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C – C bond to the alkyl group before delivery of the solvent-derived proton.  Oxiranyl 

radicals are known to be pyramidal at the carbon center,14  indicating little or no 

delocalization of the radical onto the oxygen, and undergo rapid inter-conversion between 

cis- and trans- forms.  For un-substituted oxiranyl radicals the rate of inter-conversion is 

especially fast, ~107 s-1 at –110 ºC.15  Thus, the observed stereochemical scrambling of 

deuterium indicates that inter-conversion between cis- and trans- radicals occurs much 

faster than proton delivery to form the product.  

 

3.3.3 Evidence for Rearrangement of Oxiranyl Radical Intermediates 

During the course of our investigations we consistently noticed small amounts of 

decane (Figure 3.7A) and hexadecane (Figure 3.7B) in the products of the reaction of 1 

and 2 respectively with cADO.  Further investigations established that the appearance of 

these products was linearly dependent on enzyme concentration, and that they were 

formed in direct proportion to the major 2-alkyloxirane products (Figure 3.7B inset).  

Furthermore, the appearance of these n-2 alkanes was dependent on the presence of all 

the components in the assay, including the substrates (Figure 3.8 and 3.9).  These 

observations suggested that they were derived from reaction of the oxiranyl-aldehydes 

with the enzyme.  The reaction products were confirmed by GCMS using authentic 

standards, as shown in Figure 3.13 and 3.14. 
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Figure 3.7.  Formation of n-2 alkanes from 1 and 2 by cADO.  A: GC-MS chromatograph 
of the products of reaction of 1 with cADO.  B:  GC-MS traces of the products of reaction 
of 2 with cADO; in this case small amounts of enzymatically-derived heptadecanal are 
resolved in the chromatograph. Inset: comparison of the rates of formation of 2-
pentadecyloxirane (●) and hexadecane (■) from 2. Peaks identified by * and ** are 
contaminants. 



 

70 
 

 

Figure 3.8. Overlaid chromatographs of conversion of 1 to 2-nonyloxirane by Np cADO 

and the control experiments where Np cADO or PMS were omitted. 

 

 

Figure 3.9. Overlaid chromatographs of conversion of 2 to 2-pentadecyloxirane by Np 

cADO and the control experiments where Np cADO or PMS were omitted. 
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Oxirane rings can be rearranged to carbonyl compounds by Lewis acid catalysts.16  

We therefore considered the possibility that the diferric form of cADO might catalyze the 

rearrangement of 2-nonyloxirane and 2-pentadecanyloxirane to undecanal and 

heptadecanal, respectively, which would then undergo deformylation to decane and 

hexadecane.  However, no alkanes were formed when either 2-nonyloxirane or 2-

pentadecanyloxirane (Figure 3.10) were incubated with the diferric enzyme alone.  

Neither was rearrangement of these compounds observed when they were incubated 

with the enzyme with the other components of the assay for prolonged periods.     

 

Figure 3.10. Overlaid chromatographs of Np cADO assay with 2-pentadecyloxirane and 

Np cADO assay with compound 2. 

 

 These observations suggest that the n-2 alkanes most likely arise through 

partitioning of an intermediate formed in the deformylation of 1 and 2 by cADO between 

two reaction pathways.  To explain the formation of the n-2 alkanes we considered a 
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variant of the deformylation mechanism in which after homolytic cleavage of the Cα-CO 

bond to form the 3-alkyloxiran-2-yl radical and formate, ring-opening of this radical occurs 

to generate the Cα radical of the n-1 aldehyde.  Quenching of this radical would thus 

generate the n-1 aldehyde that could subsequently undergo deformylation (Figure 3.11).  

Ring-opening reactions of alkyloxiranyl radicals are well documented in the literature.15,17  

 

Figure 3.11. Mechanism for the conversion of oxiranyl aldehydes to Cn-1 oxiranes and Cn-

2 alkanes involving a branched pathway that arises through the slow rearrangement of an 
oxiranyl radical intermediate.  

 

This mechanism predicts that n-1 aldehydes should be formed as intermediates.  

Close examination of the gas chromatograph for the reaction of 2 with cADO revealed the 

presence of a minor peak at 10.46 min that eluted just before 2-pentadecanyloxirane 

(Figure 3.7B).  The intensity of the peak increased with time during the course of the 



 

73 
 

reaction (Figure 3.12) and was dependent upon all the components of the assay being 

present.  The mass spectrum of the compound matched that of heptadecanal and the 

peak co-eluted with an authentic standard of heptadecanal (Figure 3.13).  It was similarly 

possible to detect the formation of undecanal in the reaction products formed through the 

reaction with cADO with 1, although in this case it was necessary to modify the 

chromatography conditions to separate undecanal from 2-nonyloxirane (Figure 3.14).   

 

Figure 3.12. A time course of accumulation of heptadecanal in the reaction of Np cADO 

with 2. 
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Figure 3.13. Overlaid chromatographs of reaction of 2 with Np cADO with standard 

samples of heptadecanal, hexadecane and compound 2-pentadecyloxirane. 
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Figure 3.14. Overlaid chromatographs of Np cADO assays with compound 1 and 

standard undecanal. To separate undecanal from 2-nonyloxirane, the oven temperature 

was held initially at 70 °C for 2 min and then gradually increased to 120 °C at 20 °C/min 

and finally increased to 160 °C at 5 °C/min. This allowed the peak that originally eluted at 

6.79 min be resolved into two separate peaks and eluting at 7.80 min and 7.87 min. The 

peak at 7.80 min overlaid well with an authentic standard undecanal. 

 

A further prediction of the mechanism is that the alkanes derived from 1 or 2 should 

incorporate two protons from the solvent during the course of the reaction.  To evaluate 

this prediction, the reaction of 2 in D2O was investigated.  cADO was reacted with 2 for 2 

h under the usual conditions in assay buffer in which the D2O content was ~ 97 %.  The 

products of the reaction were extracted and analyzed by GC-MS.  The molecular ion for 

hexadecane was clearly visible and shifted by 2 mass units to m/z = 228.2 from the 



 

76 
 

expected value of m/z = 226.2 for unlabeled material (Figure 3.15).  A smaller peak at 

m/z = 227.2 corresponding to mono-deuterated heptadecane was also present, which 

may be explained by incomplete deuteration of the solvent combined with a solvent 

isotope effect.   

 

Figure 3.15.  GC-MS analysis of hexadecane (m/z = 226.2) produced from reaction of 2 
with cADO. A: in H2O buffer; B: in D2O buffer. The molecular ion for hexadecane 
produced in D2O buffer is shifted by 2 mass units to m/z = 228.2. 
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3.4 Conclusions 

To investigate the electron-requiring steps following initial formation of the metal 

peroxide species we synthesized and examined the reaction of cADO with an aldehyde 

bearing a strategically placed cyclopropyl group that could act as a radical clock, as 

described in Chapter 2.4  This substrate partitioned between two pathways when reacted 

with cADO.  In the productive pathway, ring-opening of the cyclopropyl group occurred to 

give 1-octadecene, providing support for a radical mechanism for C-C bond cleavage. 

Whereas in a non-productive reaction, alkylation of the protein occurred after 

deformylation, resulting in inactivation of the enzyme.   

The previously studied radical clock generated a cyclopropylcarbinyl radical, useful 

for measuring the lifetimes of radical intermediates when they are of similar duration to 

the well-characterized ring-opening reactions so that product partitioning ratios can be 

measured.  Because only the ring-opened product was observed, all that could be inferred 

was that the lifetime of the intermediate radical species was significantly in excess of 10 

ns.4  However, oxiranyl radicals, although not as extensively studied, also undergo ring-

opening rearrangements, but at much slower rates that allow them to be used as slow 

radical clocks.  The rate constant for rearrangement of the 3-methyloxiran-3-yl radical to 

the corresponding acetonyl radical has been measured as 3.1 x 104 s-1 at 25 ºC.18 The 

rate constant for the rearrangement of the 3-methyloxiran-2-yl radical to the 

corresponding propanal-derived radical, which serves as a better reference for the 

reaction of oxiranyl aldehydes with cADO, has not been measured directly but is 

estimated to occur about an order of magnitude more slowly.15 From the observed 

partitioning ratios between alkyloxirane and n-2 alkane, the products derived from the 
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reaction of 1 and 2 with cADO, we estimate that the rate constant for proton-coupled 

electron transfer in the final step of the reaction is ~ 104 s-1 at 25 ºC and is unlikely to be 

faster than 105 s-1, using the rate constant for rearrangement of the 3-methyloxiran-3-yl 

radical as an upper limit,.   

 Recently, an interesting observation has been made that cADO catalyzes the 

oxidation of alkanes derived from deformylation of C9 and C10 aldehydes to the 

corresponding n-1 alcohols and aldehydes, albeit extremely slowly.3  However, the 

enzyme was unable to oxidize alkanes or alcohols in the absence of aldehydes.  To 

accommodate these findings, a mechanism was proposed in which the deformylation step 

occurred by heterolytic mechanism to generate a reactive Fe-superoxide species, akin to 

that generated in P450 reactions, that was responsible for the subsequent oxidative 

chemistry.  Oxiranes can be rearranged to aldehydes by strong, hindered bases19,20 and 

so, in principle, a mechanism involving heterolytic C – C bond cleavage and the formation 

of an oxiranyl carbanion could be operating.  However, this is less likely for the following 

reasons. 

 The heterolytic mechanism predicts that it should be possible to form up to 1 

equivalent of product under the assay conditions resulting from the initial reaction of the 

apo-enzyme, Fe(II) and O2.  However, no evidence was found for any turnover unless 

PMS and NADH were included.7,4 The reaction of cADO with a cyclopropyl aldehyde 

radical clock substrate, discussed above and in chapter 2, provides strong support for a 

radical mechanism.  It was suggested that ring opening could be a secondary reaction 

arising from reaction of the cyclopropylalkane product with the Fe-superoxide species to 

generate a cyclopropylcarbinyl radical in a P450-like manner.3  But the products from 
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such a reaction should bear a hydroxyl group; in practice the product was found to be 

(unoxidized) octadecene.  Lastly, spectroscopic evidence has recently been published 

supporting the formation of a diferric peroxide or preoxyhemiacetal intermediate in the 

reaction of cADO, as mentioned above.1  This species was stable until the addition of the 

reductant necessary to initiate homolytic bond cleavage; in contrast a heterolytic 

mechanism would imply that it could undergo spontaneous conversion to the putative Fe-

superoxide species.   
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Chapter 4 

An unusual iron-dependent oxidative aldehyde deformylation reaction mimicking 

the reaction catalyzed by insect aldehyde decarbonylase 

 

The work described in this chapter was accomplished in collaboration with Dr. 

Bishwajit Paul, Dr. Debasis Das, Mr. Andrew Vitek and Professor Paul Zimmerman.  

Experiments pertaining to protonation stereospecificity were performed by Dr. Bishwajit 

Paul, and computational modeling was performed by Mr. Andrew Vitek and Professor 

Paul Zimmerman.  This chapter is based on a manuscript currently under consideration 

for publication in Chemical Science. 

 

4.1 Introduction      

 The mechanisms of both P4501 and non-heme iron oxygenases2 have been 

extensively studied.  A hallmark of these enzymes is the wide variety of oxidative 

transformations that they catalyze, including hydroxylations,3 decarbonylations,4 

demethylations,5 and epoxidations,6 amongst others.  How enzymes discriminate 

between the different reaction pathways available to the reactive high-valent iron-oxo 

species that are initially generated at the active site continues to challenge our 

understanding of their mechanisms.  For the aldehyde decarbonylase enzymes, this 

discrimination involves directing the reactive iron-oxygen species towards C-C bond 
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cleavage to effect removal of the aldehyde carbon rather than simply effecting C-H bond 

cleavage that would result in oxidation of the aldehyde to a carboxylic acid.7  Despite its 

identity as a cytochrome P450 enzyme, the insect aldehyde decarbonylase (CYP4G1) 

remains poorly understood.   

 Studies of metal complexes that mimic the active sites of enzymes have played an 

important role in elucidating the mechanisms of both non-heme7k, 8 and P4509 iron 

oxygenases; for example, in probing the ability of different iron-oxo intermediates7k, 8b, c, 

10 and different spin-states8a, 8d to catalyze nucleophilic deformylations and electrophilic 

oxidations of aldehydes (and other substrates).  Here we describe an unanticipated 

reaction involving the oxidative deformylation of an α-cyclopropyl aldehyde to produce 

CO2 and a cyclopropyl alkane that is catalyzed by aqueous Fe2+ ions in the presence of 

oxygen or by Fe3+ in the presence of H2O2.  The reaction mimics the oxidative 

deformylation catalyzed by the insect p450 aldehyde decarbonylase.11  The presence of 

the cyclopropyl group is essential for the deformylation as simple n-aldehydes only 

undergo oxidation to carboxylic acids under these conditions.  An atomistic reaction 

mechanism determined by computational reaction discovery tools shows that C-C bond-

breaking is favored in α-cyclopropyl compared to alkyl aldehydes, providing a plausible 

explanation for the observed reactivity.   

The studies detailed in chapters 2 and 3 utilized α-oxiranyl- and β-cyclopropyl-

substituted long-chain aldehydes to probe the mechanism of cADO.7e, 7i  These sterically 

undemanding substrate modifications provided valuable insight into the mechanism of 

deformylation, pointing to a radical mechanism for C–C bond cleavage.7i  Therefore, I was 

motivated to synthesize the α-cyclopropyl-substituted dodecanal derivative (1) to further 
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probe the enzyme mechanism.  I reasoned that introducing a cyclopropyl- group at the 

site of C–C bond scission would significantly destabilize any radical intermediate 

potentially generated on C2, so that 1 might function either as an inhibitor or a very slow 

substrate.   

 

4.2 Materials and Methods  

4.2.1 Materials   

Ferrous ammonium sulfate was purchased from Sigma-Aldrich.  NADH and ferric 

chloride were from Acros Organics.  D2O (99.9%) and DMSO-d6 (99.9%) were obtained 

from Cambridge Isotope Laboratories, Inc.  Hydrogen peroxide (30% in water) and ferrous 

chloride were from Fischer Scientific. 

4.2.2 Synthesis of cyclopropyl aldehydes   

The synthesis of trans-2-nonylcyclopropane-1-carbaldehyde (α-cyclopropyl 

dodecanal, 1) was accomplished by standard methods starting from commercially 

available (E)-dodec-2-en-1-ol, in which the cyclopropyl group is positioned - to the 

carbonyl group (See Appendix C). Briefly, the alcohol group on (E)-dodec-2-en-1-ol was 

protected as TBDMS silyl ether followed by the conversion of the double bond to a 

cyclopropyl group using diethylzinc and diiodomethane to yield the trans-stereoisomer. 

Finally, the deprotection of TBDMS group by methanolic hydrochloric acid, followed by 

the TEMPO oxidation of the alcohol yielded the desired trans-2-nonylcyclopropane-1-

carbaldehyde (1). 
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4.2.3 Assays  

Enzymatic assays were performed as described previously.7i  For nonenzymatic 

assays, concentrated stocks of aldehydes (1, dodecanal, α-oxiranyl dodecanal) in DMSO 

(10 mM) and iron (II) ammonium sulfate in H2O (10 mM) were prepared in a glove box.  

Standard assays consisted of 100 μM ferrous ammonium sulfate and 300 - 500 μM 1 in 

10 mM sodium acetate buffer (pH 5.0) at a total volume of 500 μL.  Vials were removed 

from the glove box and exposed to air briefly before capping and incubating at 37 °C and 

200 rpm for 10 min (at which point reaction completion was apparent).  Assays were 

quenched with the addition of 50 mM EDTA and organics extracted in ethyl acetate.  To 

study the pH dependence of the reaction, assays were conducted in aqueous buffer over 

the pH range 4 – 10 (10 mM Na acetate pH 4 - 6, 10 mM HEPES pH 6 - 8, 1 mM CHES 

pH 8 - 10) that contained 100 µM Fe2+ and 500 µM 1 at 37 C with shaking at 200 rpm for 

15 min.  The products of the reaction were then extracted, derivatized and analyzed by 

GCMS. 

Carboxylic acid quantification was accomplished using the standard diazomethane 

derivatization protocol.12  The organic extract from the standard assay mentioned above 

was treated with a few drops of diazomethane solution and the esterified product 

analyzed by GCMS. 

4.2.4 Solvent Proton Incorporation 

 Assays were prepared as described above in either H2O or D2O (99%).  Aldehyde 

solutions were made up as a stock solution in d6-DMSO to facilitate subsequent 1H-NMR 

analyses. A typical assay contained 1 mM ferrous ammonium sulfate and 500 μM d3-1 



 

87 
 

(Compound 1A) in a total volume of 4 mL. For assays performed in D2O, the final H2O 

concentration was <~1% after adding all the assay components.  Five identical 4 mL 

reactions were set up in each assay condition and shaken at 37 °C at 200 rpm for 15 min. 

The reaction mixtures were sequentially extracted with a total volume of 1.2 mL CDCl3 

(99.9%). The CDCl3 layers were dried over sodium sulfate and filtered before analysis by 

1H NMR. Spectra were acquired at 700 MHz (Varian) at 22 °C. 

4.2.5 HRMS analysis of C1 products 

 Compound 1 (13C-labelled at the carbonyl-carbon (1B) or unlabeled) and 

Fe(NH3)6SO4 were dissolved in air-saturated H2O to 500 μM and 1 mM, respectively in a 

final volume of 2 mL.  Samples were incubated in sealed 5 mL round bottom flasks 

equipped with HRMS adapters and incubated at 37 °C and 200 rpm for 30 min 

(completion).  The headspace was analyzed by a VG 70-250-S magnetic sector mass 

spectrometer and total ion counts collected.   

4.2.6 Computational methods 

 All quantum chemical calculations were performed by Mr. Andrew Vitek and 

Professor Paul Zimmerman through density functional theory (DFT) using the Q-Chem 

4.3 ab initio quantum chemistry package. Gas-phase geometry optimizations were carried 

out with the unrestricted Perdew-Burke-Ernzerhof (PBE) density functional13 and double-

zeta, polarized 6-31G* basis set.14 Frequency calculations were performed on all 

structures to confirm that optimizations led to stable minima or transition states. PBE with 

the triple-zeta, polarized cc-pVTZ basis set was used to calculate single point energies 

with the SMD solvation model15 using H2O as the implicit solvent. Thermodynamic 
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corrections were applied to the solvated energies using the PBE/6-31G* level of theory 

and a temperature of 300 K.  Research discovery tools developed by the Zimmerman 

group were used to determine the deformylation mechanism that results in CO2 and n-1 

alkane formation. This strategy proceeds as follows: 1) a graph-based structure generator 

hypothesizes potential intermediates that are plausibly one elementary step away from 

starting reactants,16 2) the growing string method determines the exact transition state 

and minimum energy reaction path for each proposed elementary step,17 and 3) steps 1-

2 are repeated for thermodynamically and kinetically feasibly intermediates until 

complete, low-barrier pathways for product formation are found. These methods allow for 

efficient exploration of the relevant chemical space and discovery of plausible reaction 

paths with little or no knowledge of the elementary steps involved.18  

 

4.3 Results and Discussion 

 4.3.1 Reaction of α-cyclopropyl-aldehyde with iron and oxygen   

Compound 1 was synthesized by standard methods, as described in Experimental 

Procedures.  Initial studies on the reaction of 1 with cADO suggested that the compound 

might undergo deformylation, as indicated by the appearance of a peak at 5.9 min that 

co-eluted with an authentic standard of 1,2-cyclopropyl-undecane (2) (Figure 4.1).  

However, subsequent control experiments established that the deformylation reaction did 

not depend on cADO, and, in fact, required only aqueous Fe2+ and O2 to occur.  The 

auxiliary reducing system, which is necessary for cADO activity, was found to inhibit the 

non-enzymatic reaction. 
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Figure 4.1.  Reaction of 1 with Fe2+ and O2 results in deformylation and oxidation.  A, 
Scheme depicting reaction of 1 with Fe2+ and O2.  B, GCMS trace demonstrating 
conversion of 500 μM 1 to 1,2-cyclopropyl undecane (2) by 500 μM Fe2+.  C, Dependence 
of the formation of 2 on [Fe2+] from 500 μM 1.   

 

 The deformylation of 1 occurred in competition with the more conventional 

oxidation of the aldehyde group to the corresponding 2,3-cyclopropy-dodecanoic acid (3).  

In H2O, the ratio of alkane, 2, to carboxylic acid, 3, formed was ~1:5 (Figure 4.2).  The pH 

dependence of the reaction was investigated over the pH range 4 – 10.  The formation of 

2 and 3 was favored by slightly acid acidic conditions, although the pH-dependencies of 

the reactions were not identical. The formation of 2 exhibited a simple pH-dependence 

with an apparent pKa of 7.2, whereas the formation of 3 exhibited more complex pH-

dependent behavior with an apparent titration point at pH 8.4 (Figure 4.3).  
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Figure 4.2. Fe2+ Dependence of 1 turnover to both alkane (black) and carboxylic acid 
(blue) products.  Assays contained 500 μM 1 and were run to apparent completion. 

 

Figure 4.3.  pH Dependence of reaction of 500 μM 1 with 100 μM Fe2+ and O2.  A, 
Formation of 2 as a function of pH.  B, Formation of 3 as a function of pH.  Assays run to 
completion.  

 

Control experiments using dodecanal, dodecenal and α-oxiranyl dodecanal failed 

to detect any n-1 alkane products under the same conditions. Instead these aldehydes, 
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as expected, were exclusively oxidized to dodecanoic acid, dodecenoic acid and 2,3-

oxiranyl dodecanoic acid, respectively (Figure 4.4).  These results pointed to the unusual 

role of the cyclopropyl group in directing the oxidative chemistry of 1 towards 

deformylation.   

Further investigation of the stoichiometry with which 2 and 3 were formed with 

respect to the amount of Fe2+ in the reaction revealed that the formation of 2 was linearly 

dependent on the concentration of Fe2+ supplied, with an approximate slope of 2 (Figure 

4.1).  In contrast, several equivalents of carboxylic acid, 3, were formed per Fe2+ ion, an 

observation that is in accord with the well-documented ability of transition metal ions to 

catalyze the oxidation of aldehydes to carboxylic acids.19  This observation suggested 

that Fe2+ might be acting to reduce O2 to hydrogen peroxide and that the deformylation 

of 1 may occur through a metal peroxide intermediate.  To test this, assays were 

conducted under anaerobic conditions in which 300 μM of 1 was reacted with 100 μM of 

Fe3+ and 1 – 10 mM hydrogen peroxide.  Under these conditions 1 was converted to 2 

and 3 in approximately the same ratios as observed with Fe2+ and O2.  This observation 

indicates that an iron-bound peroxide species is likely the oxidant in the reaction.  

Although Fe3+ and hydrogen peroxide were shown to function in the reaction, 

experimentally it proved easier to conduct further studies using Fe2+ and O2 as the 

oxidant. 
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Figure 4.4.  Deformylation Dependence on Substrate Identity.  A, Substrate peaks of 
dodecanal (Brown), dodecenal (Pink) and 2,3-oxiranyl dodecanal (Blue) were visible at 
7.2 minutes, 7.6 minutes and 7.8 minutes, respectively. Alkane formation was exclusive 
to α-cyclopropyl (Black), with substrate (1) at 8.1 minutes and product (2) at 5.9 minutes.  
B, Diazomethane derivatized samples. Substrate peaks remained visible, but significant 
formation of dodecanoic acid (Brown, 7.9 minutes), dodecenoic acid (Pink, 8.2 minutes), 
and 2,3-oxiranyl dodecanoic acid (Blue, 8.4 and 8.7 minutes) is present. The α-
cyclopropyl species is again in black, with the associated carboxylic acid (3) at 8.6 
minutes.  Assays contained 100 μM Fe2+ and 500 μM substrate, and were run to 
completion. 

 

4.3.2 Fate of the aldehyde carbon  

To determine the fate of the carbonyl carbon, 1 was synthesized with the carbonyl 

carbon 13C-labeled and reacted with Fe2+ and O2 in water containing 10% D2O.  The 
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products of reaction were then analyzed in situ by 13C NMR.  The only 13C-labeled 

material evident from the spectrum was the carboxylic acid arising by oxidation of the 

aldehyde.  Therefore it seemed likely that the aldehyde carbon was converted to CO2 in 

the reaction.  To examine this possibility, the reaction was conducted in sealed flasks and 

the headspace analyzed by HRMS.  The reaction of unlabeled 1 resulted in a 2.5-fold 

increase in CO2 above background, whereas reaction of 1B resulted in the appearance 

of the expected 13CO2 peak at m/z = 45 (Figure 4.5).  Interestingly the production of CO2 

as a byproduct mimics the poorly-understood insect p450 enzyme (CYP4G1) that 

catalyzes the oxidative decarbonylation of fatty aldehydes.11a, 20 

.  

Figure 4.5. Normalized total ion counts of m/z = 44 and m/z = 45 Da peaks in gas phase 
above reactions.  A: 0 μM 1, 1000 μ M Fe2+; B: 500 μM unlabeled 1 and 1000 μM Fe2+AS; 
C: 500 μM Compound 1B and 1000 μM Fe2+.  Peaks were normalized to atmospheric N2 
ion counts. 
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4.3.3 Fate of the aldehyde proton  

Experiments on the insect p450 enzyme indicated that the aldehyde hydrogen was 

retained in the n-1 alkane.11a, 20  To determine the fate of the aldehyde hydrogen in the 

reaction of 1 Dr. Bishwajit Paul initially synthesized 1 with the aldehyde proton deuterium-

labeled. However, reaction of deuterium-labeled 1 with Fe2+ and O2 resulted in the 

compound being converted almost entirely to the carboxylic acid, 3, with negligible 

formation of 2.  This indicated that a significant kinetic isotope effect was operating against 

the formation of 2, thereby favoring the alternate reaction pathway leading to the 

formation of 3.  The unfavorable isotopic branching made it unfeasible to examine the 

deuterium content of 2 by NMR or MS.  Dr. Paul therefore adapted his approach by 

synthesizing Compound 1A (1 labeled with 3 deuterium atoms, one at the α-carbon and 

two on the cyclopropyl methylene carbon). This allowed him to test, instead, whether 

protium was transferred from the aldehyde carbon.   

Compound 1A was reacted with Fe2+ and O2 in either H2O or D2O and the product, 

2, recovered and analyzed by 1H-NMR.  The spectra, shown in Figure 4.6, were identical 

whether the reaction was carried out in H2O or D2O, indicating that the proton in the 

product was transferred from the aldehyde rather than the solvent.  Moreover, protonation 

appeared to be equally favored on either the trans or cis face of the cyclopropyl ring.  This 

suggests a mechanism in which C – C bond scission precedes hydrogen transfer. 
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Figure 4.6. Aldehyde proton is retained in the alkane product stereo-randomly.  A: 
General reaction scheme; B: Di-deuterated 1-nonylcyclopropane standard (Compound 
2A); C: Compound 1A reacted in H2O; D: Compound 1A reacted in D2O.  The protium 
content at Ht and Hc does not depend on the isotopic composition of the solvent.  

 

4.3.4 Computational search of potential reaction pathways  

To gain further insight into the atomistic details of this very unusual reaction, and 

in particular the role of the cyclopropyl substituent in directing 1 towards deformylation, 

we turned to computational simulations.  Reaction discovery methods25,26, 17  developed 
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by the Zimmerman group were used to search for potential pathways leading to the 

observed reaction products for 1.  These methods allow for exploration and evaluation of 

chemically reasonable elementary steps and produce active reaction paths by identifying 

the most kinetically and thermodynamically feasible elementary steps.  Based on the 

experimental observations above, the fully hydrated Fe3+-OOH species was used as the 

starting point for computational studies.  To simplify the calculations methylcyclopropyl-

carbaldehyde was used to approximate 1. The metal-peroxide was modeled in the 

protonated form as the deformylation reaction proceeds only at acidic pH values.  

Figure 4.7 depicts the decarbonylation mechanism for the model α-cyclopropyl 

aldehyde with high (FeIII hextet) and low spin (FeIII quartet) iron complexes. The starting 

structures for high and low spin complexes are stabilized by two hydrogen-bonds between 

the water ligands of the iron-aquo species and the carbonyl of the aldehyde substrate. 

The starting structure for the low spin complex lies 6.1 kcal/mol above the high spin 

complex. The decarbonylation is initiated by insertion of the aldehyde into the peroxy 

group of the starting iron complex with barriers of 14.3 and 20.9 kcal/mol above the 

starting structures (high and low spin, respectively). Insertion is followed by rotation about 

the C-O bond of the inserted aldehyde, which primes the acidic proton of the inserted 

substrate for abstraction by an iron hydroxide species. These rotations have moderate 

barriers of 9.1 and 5.8 kcal/mol for high and low spin complexes, respectively. Rotation 

about the C-O bond is followed by homolytic cleavage of the O-O bond with barriers of 

5.4 and 2.6 kcal/mol for the high and low spin states, respectively. This intermediate is 

stabilized by two hydrogen-bonding interactions – one between the hydroxyl proton of the 

aldehyde fragments and the iron-oxo radical group and another between the radical 
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oxygen of the aldehyde fragment and a neighboring water ligand. The last step of the 

decarbonylation is the C-C bond scission between the alkyl and carbonyl groups of the 

aldehyde substrate. In this step, the cyclopropyl and carbonyl C-C bond is broken. The 

cyclopropyl group abstracts the carbonyl hydrogen atom to form a stable alkane. The iron-

oxo group abstracts the hydroxyl proton of the carbonyl group to form CO2 and the 

resulting iron-hydroxide complex. This last step has a barrier of 10.6 and 3.4 kcal/mol for 

high and low spin complexes, respectively. 

 

Figure 4.7. Decarbonylation mechanism for α-cyclopropyl.  Energy barriers based on a 
high (black) and low (red) spin iron complex are depicted. 

 

 Despite little intuition about how the mechanism might proceed, the computational 

reaction search identified a plausible mechanism for deformylation, shown in Figure 4.8. 

This mechanistic pathway represents the most kinetically and thermodynamically feasible 
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pathway that was located for deformylation starting from Fe3+-OOH and 1, identified from 

among over 3,000 elementary reaction steps that were screened. Pathways leading to 

carboxylic acid products that are initiated by direct H-abstraction by Fe3+-OO- are also 

possible, and have been described in the literature.19 While we herein focus on the novel 

deformylation pathway, competing pathways leading to carboxylic acid formation should 

be understood as feasible and operating simultaneously.    

 

 

Figure 4.8. Decarbonylation and oxidation mechanisms for 1 predicted by 
computational reaction pathway discovery.  
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 The computationally predicted mechanism involves the aldehyde first binding to 

the Fe3+-OOH complex through hydrogen bonds between the peroxy- and H2O ligands 

(A, in Figure 4.8). The reaction is initiated by nucleophilic attack of the aldehyde substrate 

by the metal-bound peroxide to form the metal-peroxyhemiacetal, B in Figure 4.8.  

Formation of the metal-peroxyhemiacetal is followed by a rotation about the C-O bond 

(B, in Figure 4.8) to position either the proton on the acetal oxygen (C, in Figure 4.8) or 

the carbonyl hydrogen (i, in Figure 4.8) close to the Fe–O peroxide bond.  Next, homolytic 

fission of the weak O-O bond generates the high valent iron-oxo species and the acetal 

radical, C-D.  This step is predicted to be accompanied by a change in the spin state of 

iron from a high spin hextet to a low spin quartet.  Deformylation is initiated by abstraction 

of the acetal O-H hydrogen by the high valent iron-oxo species (D in Figure 4.8), with the 

resulting acetal di-radical fragmenting to generate a formyl radical and a reactive 

cyclopropyl radical (E-F in Figure 4.8) that immediately abstracts the formyl-hydrogen to 

generate CO2 and 2 (F-G in Figure 4.8).  Importantly, this step retains the aldehyde H in 

the cyclopropyl ring.  Interestingly, rotation about the C-O bond in B can also bring the 

aldehyde carbon in close proximity to the Fe–O peroxide bond (i in Figure 4.8).  In this 

configuration homolysis of the peroxide O-O bond leads to C-H abstraction and 

consequent oxidation of the aldehyde to the carboxylic acid, 3 (ii and iii in Figure 4.8).  

Along the paths shown in Figure 4.8, the rate-limiting step for deformylation of 1 is 

computed to be the initial formation of the iron-peroxyhemiacetal with a barrier of 8.1 

kcal/mol. Whereas this does not agree with the experimental finding that C-H scission is 

rate-limiting, as indicated by a large deuterium isotope effect, the difference in the 
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calculated energy barriers for C-H bond-cleavage and iron-peroxyhemiacetal formation 

(6.7 and 8.1 kcal/mol) are within the expected error of the DFT method.  

While steps A – C are well precedented,7e, 21 steps D to G are quite unusual.  These 

steps, however, are supported by the deuterium-labelling results described above and, 

significantly, were identified independently of the experimental results; i.e. the reaction 

search was not constrained by the requirement that aldehyde hydrogen be retained in the 

product alkane. 

The reaction pathway searches found an exactly analogous deformylation 

pathway that appeared to be feasible for n-propanal.  While the level of theory employed 

(PBE/SMD) is expected provide only semi-quantitative barriers along the reaction path, 

the n-propanal pathway was found to have barriers that were 2.2 kcal/mol (AB) and 1.6 

kcal/mol (CE) higher in energy than the cyclopropyl-forming pathway. The higher 

barriers indicate that deformylation is slower for the non-cyclopropyl substrate, where 

carboxylic acid formation will be more competitive. Further studies were also undertaken 

to calculate the potential energy surface for the individual steps in the hypothesized 

mechanism using various density functionals (Figure 4.9).  These studies supported the 

feasibility of the pathways identified in the reaction search, but did not lead to qualitatively 

different results.   
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Figure 4.9. Comparison of α-cyclopropyl aldehyde and n-aldehyde reaction pathways. 

The deformylation reaction we identified for 1 represents a highly unusual mode of 

oxidation for an aldehyde because in this case the aldehyde carbon is completely oxidized 

to CO2 while the α-carbon is reduced by transfer of the aldehyde hydrogen.  The reaction 

mimics that catalyzed by insect P450 aldehyde decarbonylase, CYP4G1, and it is 

somewhat surprising that a very simple oxidizing system – either aqueous Fe2+ and O2, 

or Fe3+ and hydrogen peroxide – is able to recapitulate the reaction of a rather complex 

enzyme.11a, 20  This is the first non-enzymatic example of this type of oxidative 

deformylation of an aldehyde to generate CO2 and an alkane.   

An obvious question is how does appending a simple cyclopropyl ring adjacent to 

the aldehyde carbon alter the oxidation pathway?  The oxidation of aldehydes to 

carboxylic acids in the presence of oxygen and transition metal complexes19 (and metallo-

enzymes7a) is by far the more common pathway and, indeed predominates in the reaction 
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of 1.  These reactions have been extensively studied and shown to proceed by various 

mechanisms involving reactive oxygen species.19b, 22  The key step in the reaction is 

abstraction of the aldehyde hydrogen atom by a reactive oxygen species, e.g. metal-

peroxo or metal-oxo, or a transition metal, to generate an acyl radical, followed by 

formation of the corresponding peroxyacid and subsequent auto-oxidation (Figure 

4.10).19, 22  For the observed deformylation of 1 to occur, this reaction pathway must 

somehow be suppressed. 

Figure 4.10. Auto-oxidation of aldehydes by molecular oxygen.  Radical abstraction of 
aldehyde hydrogen results in carbonyl radical species, which can then interact with 
molecular oxygen to form a peroxyacid.  This can then react with further aldehydes to 
give multiple equivalents of carboxylic acid.19a 

 

A less commonly encountered mode of aldehyde reaction is oxidative 

decarbonylation to release of the aldehyde carbon as formate.  A well-studied example is 

the deformylation of cyclohexane carbaldehyde by metal peroxides that has been shown 

to proceed by an eliminative mechanism that results in the formation of cyclohexene and 

formate.23 Enzymatic reactions that liberate formate include the P450-dependent 

deformylation of cyclohexane carbaldehyde catalyzed by CYP2B4 and the aromatization 

reaction of androst-4-ene-3,17-dione to estrone catalyzed by aromatase.24    Under 

reductive conditions this deformylation pathway can lead to the formation of alkanes, 

rather than alkenes.  This was recently demonstrated for an iron(III)peroxo complex that 

under reducing conditions effectively deformylated phenylpropionaldehyde to yield 
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formate and ethylbenzene.7k This reaction mimics that of cyanobacterial aldehyde 

deformylating oxygenase (cADO), in which the intermediate alkyl radical, formed after 

release of the aldehyde carbon as formate, is reduced to form the alkane product.4, 7a, 7e, 

7i  

4.4. Conclusions 

These studies on an α-cyclopropyl-aldehyde originally designed as a mechanistic 

probe of the reaction catalyzed by cADO have uncovered a novel mode of a non-

enzymatic deformylation that occurs in the presence of Fe2+ and O2.  Computational 

reaction pathway searches identified a plausible mechanistic pathway that is in accord 

with isotope-labeling studies.  The discussion above suggests how the cyclopropyl group 

may fine-tune the energetics of the reaction to favor deformylation over oxidation.  It may 

be possible to incorporate more sophisticated stereo-electronic control into the design of 

either the substrate aldehyde or iron complex to bias the reaction further in favor of 

deformylation.  I propose that the cyclopropyl group may influence the reaction pathway 

in two ways.  First, the well-established electron-withdrawing nature of the cyclopropyl 

group25 would make the aldehyde more electrophilic, thereby facilitating the formation of 

the initial metal-peroxyhemiacetal complex, B in Figure 4.8.  DFT calculations support 

this notion and indicate that the transition state for metal-peroxyacetal formation is about 

2 kcal*mol-1 lower for 1 than for dodecanal (Figure 4.9).  Metal-peroxyhemiacetal 

formation is not required for carboxylic acid formation, as this can proceed through direct 

abstraction of the aldehyde hydrogen by the metal-peroxide complex.19b, 26 

Second, the positioning of the cyclopropyl group does not allow a radical α-

elimination mechanism to operate that would result in the formation of formate and an 
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alkene, as is seen for the oxidative deformylation of cyclohexane carbaldehyde.7e  

Moreover, formation of the postulated cyclopropyl radical is energetically very 

unfavorable; therefore the formyl radical formed in step C is likely insufficiently reactive 

undergo C–C bond cleavage to release formate as occurs in the reaction of cyclohexane 

carbaldehyde. 23  Instead, hydrogen abstraction from the acetal oxygen by the high-valent 

iron-oxo species is presumed to provide the energetic driving force for the reaction.  The 

acetal di-radical species thus formed would be expected to break down rapidly to give 

formyl and cyclopropyl radicals, at which point the cyclopropyl radical would be perfectly 

positioned to abstract the formyl hydrogen.  This would result in the energetically 

favorable formation of CO2 and transfer of the aldehyde hydrogen to the cyclopropyl 

group.  

The arguments advanced suggest how the cyclopropyl group may fine-tune the 

energetics of the reaction to favor deformylation over oxidation.  In the context of 

understanding enzymatic deformylation reactions, which was the initial impetus for these 

studies, it is noted that an enzyme could affect more precise stereo-electronic control of 

the reaction pathway.  First, the electrophilicity of the aldehyde could be increased by 

various mechanisms such as general or Lewis acid catalysis.  Second, by controlling the 

orientation of the substrate with respect to the iron center, hydrogen atom abstraction by 

the reactive iron-oxo species could be directed towards the acetal O-H bond and away 

from the aldehyde C-H bond and C-H bonds on the α-carbon.  These studies provide 

further insight into how enzymes may control reactive iron-oxo species to catalyze the 

diverse range of iron-dependent oxidative transformations observed in biology. 
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Chapter 5 

Conclusions and Future Directions 

 

5.1 Conclusions 

 The discovery of the soluble, stable cyanobacterial aldehyde decarbonylase 

(cADO) that was amenable to heterologous expression and purification was met with 

keen interest by the scientific community.  At last, in vitro characterization of an enzyme 

responsible for hydrocarbon biosynthesis could be accomplished, greatly advancing 

understanding of biofuel production and aiding the push for renewable energy.  Early 

studies demonstrated cADO to be a small (29kDa) 4-helix bundle protein in the di-iron 

oxygenase family of enzymes, including methane monooxygenase, ferritin and class 1 

ribonucleotide reductase.1  cADO utilizes molecular oxygen, aldehydes of varying chain 

length and 4 electrons from an external reducing system to catalyze a redox-neutral 

deformylation, producing formate and n-1 alkanes.1c, 2  Further mechanistic 

characterizations have spectroscopically identified a stable peroxy-hemiacetal as a key 

intermediate in the mechanism of catalysis.3  In our laboratory, Dr. Matthew Waugh 

identified an iron-bound water as the source of the proton electron transfer that quenches 

the alkyl species and determined the solvent isotope effect associated with this step.4  

Multiple crystal structures of cADO have been solved, identifying multiple modes of 

substrate binding, possible candidates for mutagenic studies, and modes of active site 

access for water.5  Despite such advances, much remained to be understood about just 
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how the decarbonylation of aldehydes was accomplished in Nature.  In particular, the 

nature and stereospecificity of the C-C bond scission step remained undetermined, and 

little mechanistic characterization of the other aldehyde decarbonylase enzymes had yet 

been accomplished. 

 

 5.1.1 cADO Effects the Homolytic Scission of the Cα-CO Bond 

 Though the products of the cADO-catalyzed deformylation of aldehydes were 

known, whether the key C-C bond scission proceeded via homolysis or heterolysis had 

yet to be determined.  Early EPR work indicated the presence of a radical intermediate in 

the reaction via trapping,6 but a conflicting study suggested heterolysis to account for the 

side reaction of cADO therein studied.  Through the use of a β-cyclopropyl aldehyde 

radical clock, we demonstrated that deformylation proceeded through C-C bond 

homolysis, as evidenced by the sole production of soluble octadecene through radical 

ring opening.  Because no enzyme-based non-rearranged product was detected, the 

lifetime of the formed cyclopropylcarbinyl radical was calculated to be ≥10 ns.7 

 In order to address this, further studies utilizing an α-oxiranyl aldehyde radical 

clock were performed.  Because the oxiranyl group better stabilizes radicals than 

cyclopropyl functionalities, this substrate allowed us to more accurately probe the lifetime 

of the species resulting from C-C bond hemolysis.  By measuring the partitioning between 

non-rearranged and rearranged products of cADO-catalyzed deformylation, we were able 

to determine that lifetime of the formed alkyl radical is between 10-100μs.8   
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 5.1.2 Stabilization of the Alkyl Radical in the Active Site is Necessary for 

Enzyme Stability 

 Despite yielding useful information as to the nature of C-C bond scission by cADO, 

the β-cyclopropyl aldehyde species acted as a mechanism-based inhibitor of the enzyme.  

No more than 1 turnover was ever observed with the substrate, with the enzyme incapable 

of further catalysis thereafter.  In order to understand this unusual behavior, we subjected 

cADO to MS analysis before and after inactivation by the β-cyclopropyl substrate.  

Between 60-80% of inactive enzyme was found to contain a 251 Da covalent modification 

corresponding to the deformylated substrate.  Further analysis identified a phenylalanine 

residue in the hydrophobic binding pocket as the site of covalent modification, relatively 

far removed from the diiron active site.7  The remainder of the enzyme sample, despite 

showing no evidence of covalent modification, was similarly inactive.   

 We reasoned that the radical opening of the cyclopropyl ring, which moved the 

alkyl radical from C1 to C4 of the molecule, interacted with cADO in one of 3 ways.  The 

radical could either be A) quenched by a solvent-exchangeable amino acid side chain, 

resulting in soluble 1-octadecene and active enzyme; B) covalently modify cADO and 

thereby inactivate it; or C) radically abstract a hydrogen from a non-exchangeable group 

in cADO, resulting in soluble product and an enzyme radical which could cross-link and 

inhibit catalysis.  Thus it was determined that confinement of formed radical species to 

the diiron active site of cADO is necessary to maintain active enzyme.  Exposure of the 

substrate binding pocket, even only a few Ångstroms removed from the diiron center, 

compromises the stability of cADO. 
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 5.1.3 Radical Quenching by Electron Proton Transfer is Stereorandom 

 In addition to elucidating the rate constant for electron proton transfer, the α-

oxiranyl aldehyde species allowed us to probe the stereospecificity of the very same step.  

Through isotopic labeling and NMR analysis, it was determined that the proton could be 

added to either face of the oxirane ring with equal probability.  This indicated that the 

oxiranyl radical formed after homolysis was free to rotate within the active site during 

reaction.8  From this, we could conclude that enzymatic hydrocarbon production from 

aldehydes is not strongly dependent on tight, static substrate orientation within the active 

site in cyanobacteria.  Proton electron transfer was equally favoured on both sides of the 

oxiranyl species after C-C bond homolysis.  

 

 5.1.4 Aldehyde Decarbonylation by CYP4G1 Depends on Stereo-Electronic 

Control of the Substrate 

 Building on the mechanistic details gleaned from our previous substrates, we 

synthesized an α-cyclopropyl aldehyde radical clock to investigate the stereochemistry of 

electron proton addition after bond homolysis without the multiple rearrangements seen 

in the oxiranyl substrate.  To our surprise, decarbonylation of the substrate was 

nonenzymatic and required only Fe2+ and O2.  Through isotopic labelling, we determined 

that this decarbonylation produced CO2 and exhibited retention of the aldehyde hydrogen 

in the n-1 alkane.  Unlike cADO, this nonenzymatic system mimicked what little was 

known of the insect cytochrome P450 decarbonylase, CYP4G1.9  Testing of the related 

α-oxiranyl and alkyl species showed that the decarbonylation was unique to the α-

cyclopropyl moiety. 
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 In order to glean some understanding of how the group in the cyclopropyl position 

rendered aldehydes amenable to such a novel decarbonylation, we utilized a 

computational approach through collaboration with Prof. Paul Zimmerman and Mr. 

Andrew Vitek.  Mechanistic simulations provided an energetically feasible mechanism for 

the reaction (and so a reasonable understanding of CYP4G1 catalysis), and partitioning 

between oxidation and decarbonylation correlated to the electronic properties of the 

carbonyl carbon.  While the electron-donating nature of the oxiranyl species and the 

neutral nature of the alkyl species allowed only for oxidation, the electron-withdrawing 

nature of the cyclopropyl group resulted in a more electrophilic aldehyde group, resulting 

in partial decarbonylation.  Thus we were able to conclude that CYP4G1 likely exerts 

stereo-electronic control over the substrate aldehydes to increase the electrophilicity of 

the carbonyl carbon, thus diverting from standard P450 chemistry and catalyzing the 

observed oxidative decarbonylation. 

  

5.2 Future Directions 

 As recent studies continue to expand our understanding of the manner in which 

enzymes might catalyze decarbonylation, and thus produce biofuels, we must turn our 

eyes towards industrial applications.  Due to its inherently sluggish, and heretofore 

insufficiently understood nature, cADO is unlikely to be of great importance in the 

development of large-scale microbial alkane production.  As such, I would not continue 

the study of cADO for its industrial applications, but instead purely to further 

understanding of enzyme-catalyzed decarbonylation of aldehydes.  The many insights 

into biochemical aldehyde decarbonylation gleaned from its study, however, will be of 
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great use in protein and pathway engineering in years to come.  For industrial application, 

I would instead continue to characterize enzymes implicated in hydrocarbon production, 

and look for much higher basal activity rates, such as that found with the P450 

decarboxylase, OleTJE. 

  

 5.2.1 Further Characterization of cADO 

 Although significant work by our laboratory and others focusing on cADO has 

established a strong, well-supported mechanism to explain aldehyde decarbonylation by 

cADO, much remains in question about this most unusual enzyme.  Two questions in 

particular need be answered before further work can implement aldehyde 

decarbonylation in a system for maximized hydrocarbon production; first, why is overall 

turnover by cADO so sluggish, when the individually studied steps are so rapid, and 

second, how does cADO direct transition metal chemistry towards decarbonylation rather 

than the more common hydroxylation reactions based in iron chemistry?   

 To address the first question, we need to look more closely at cADO 

conformational dynamics and how substrate interacts with the enzyme.  Long chain fatty 

aldehydes have poor solubilities, and necessitate the use of DMSO in our systems.  

Genetic studies and pull-down assays could be utilized to search for biological substrate 

delivery systems, which could help to increase the measured rate of cADO in vivo.   Early 

NMR studies of cADO were inconclusive, but did indicate that cADO is a highly dynamic 

protein based on significant line broadening in all conditions tested.  Substrate analogues 

designed for increased solubility could increase the frequency with which cADO interacts 
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with, and binds, substrate molecules and further investigate the source of the sluggish 

nature of aldehyde decarbonylation by this enzyme. 

 While initial interest in cADO stemmed primarily from its potential as a biofuel 

production system, the unusual nature of the chemistry catalyzed thereby has maintained 

interest in the enzyme despite its poor activity.  The majority of enzyme catalysis using 

transition metal ligands centers around oxidation reactions, and the structurally similar 

methane monooxygnease (MMO) directly oxidizes methane to produce methanol in a 

very well-characterized reaction.  Unlike this and other iron-based enzymes, cADO 

catalyzes the redox-neutral deformylation of aldehyde substrates.  In order to understand 

this, Dr. Matthew Waugh began work on electrochemical characterization of the diiron 

site in cADO, but initial studies were inconclusive.  By studying the reduction potential of 

the iron site in cADO in comparison to that in similar proteins with different catalyses, we 

might better understand how to direct oxidative chemistry towards hydrocarbon 

production.  Further characterization by Electron Paramagnetic Resonance and 

Mössbauer spectroscopy could additionally aide in our understanding of decarbonylation. 

 

 5.2.2 Protein Engineering 

 With the ever-accelerating advancement of computing technology, great strides 

have been made in the field of bioinformatics and, in particular, in protein structure and 

function prediction.  It is now feasible to accurately predicting protein structure and 

function based purely on primary amino acid sequence, as well as utilizing such 

knowledge in de novo enzyme design and synthesis.  The CASP protein structure and 

function prediction competition has done much to accelerate the development of software 
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aimed towards structural and functional predictions based entirely on peptide sequence, 

and our understanding of this field grows with each passing year.  Utilizing the knowledge 

of biochemical decarbonylation gained from X-ray structures of cADO and related 

enzymes lacking the same function, spectroscopic studies of decarbonylases and the 

work described in this thesis, the goal of designing a stable enzyme for decarbonylation 

lacking the inherent issues associated with known aldehyde decarbonylases might at last 

be realized.  Work by the Bollinger laboratory, as well as recent electrochemical data 

obtained by Dr. Matthew Waugh, has amply demonstrated that the chemical steps 

accomplished by cADO are quite fast, while the overall activity exhibited by the enzyme 

is surprisingly slow.  I believe that the primary inhibitor of cADO activity is the unwieldy, 

hydrophobic nature of the currently-studied substrate and its likely tendency to prefer the 

substrate binding channel of cADO to the aqeous environment to which it is ideally 

released.  By working to design a protein optimized for substrate binding/product release, 

electron flow, and radical decarbonylation, we might at last produce an enzyme of great 

use in industrial-scale hydrocarbon biosynthesis. 

 

 5.2.3 Substrate Analogue Studies of OleTJE 

 First discovered in 2011 by the Schirmer Laboratory, OleTJE catalyzes the direct 

decarboxylation of fatty acids to yield 1-alkene products.10  Though technically a 

peroxygenase in the P450 family, a recent work demonstrated that, through fusion with a 

reductase domain, decarboxylation could be driven by NADPH alone.11  This makes 

OleTJE a highly attractive target for biological hydrocarbon production.  Such a system 

would remove the necessity of engineering a cell line for reduction of fatty acids to their 
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corresponding fatty aldehydes, greatly reducing the metabolic burden placed upon the 

cell.  In addition, the apparent activity of the enzyme is much higher than that of previously 

studied decarbonylases.  While the basic characterization of the enzyme has already 

been largely accomplished, the mechanism by which its heme-based decarboxylation is 

carried out has yet to be explored. 
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Appendices 

 

Appendix A 

Syntheses for Chapter 2 

 Synthesis of 2-(2-tetradecylcyclopropyl)acetaldehyde (6) 

 Synthesis of the β-cyclopropyl octadecanal substrate was carried out by Dr. 

Bishwajit Paul as Described in Figure A.1.  Synthesis of individual species is described 

below. 

TBDMSCl 
OH 

imidazole 
 1 O 2 3 

H 
1M 

TBAFTEMPO/BAIB 
OH 

 H H 5 
Figure A.1. Synthesis of 2-(2-tetradecylcyclopropyl)acetaldehyde (6) 

 

Synthesis of Pentadecanal (1)  

Oxidation of 1-pentadecanol to pentadecanal (1) was performed using 

TEMPO/BAIB strategy according to a literature procedure.1 To a solution of 1-

pentadecanol (1 g, 4.4 mmol) were added (2,2,6,6-Tetramethylpiperidin-1yl)oxyl 

(TEMPO, 68.6 mg, 0.44 mmol) and bis(acetoxy)iodobenzene (BAIB, 1.7 g, 5.3 

mmol) in dichloromethane at room temperature. The reaction was stirred at room 
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temperature for 3 hours. The solvent was removed under reduced pressureusing 

a rotatory evaporator and the crude mixture was applied to a silica-gel column 

equilibrated in n-hexane.   The column was developed by slowly increasing the 

polarity of the solvent using a gradient of 0 to 1 % ethylacetate in hexane to 

obtain 1 (850 mg, 85%).  The compound was pure as judged by NMR (Figure 

A.2). 1H NMR (400 MHz, CDCl3) δ 9.84 (t, J = 6.8 Hz, 1H), 2.47 (t, J = 6.8 Hz, 

2H), 1.40 (t, J = 7.2 Hz, 22H), 1.38-1.32 (m, 22H), 0.94 (t, J = 6.8 Hz, 3H). 13C 

NMR (100 MHz, CDCl3), δ 202.92, 43.89, 31.89,  

29.65, 29.63, 29.62, 29.61, 29.55, 29.40, 29.35, 29.33, 29.14, 22.66, 22.06, 14.09.  
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Figure A.2. 1H and 13C NMR spectrum of compound 1 in CDCl3.  
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 Synthesis of trans-octadec-3-en-1-ol (2) 

 The Wittig reaction of 1 with 3hydroxypropyl-triphenylphosphosonium 

bromide was performed according to a literature procedure.2 To a suspension of 

3-hydroxypropyl-triphenylphosphosonium bromide (2 g, 4.98 mmol) in 

tetrahydrofuran (THF), 1.5 equivalents (3.7 ml) of phenyllithium (1.2 M dissolved 

THF) was added dropwise under nitrogen at room temperature. The reaction 

was stirred at room temperature for 30 min. The reaction mixture was cooled to -

78 °C in a dry ice/acetone mixture bath for 15 min, followed by dropwise addition 

of pentadecanal (563 mg, 2.5 mmol) (1) (dissolved in minimum volume of THF). 

After the addition was complete, the reaction mixture was warmed to -30 °C, 

followed by addition of 0.5 equivalent of phenyl lithium (1.2 ml) to obtain 

predominantly the trans-product.  The reaction was allowed to warm to room 

temperature with stirring over 30 min. Finally, the reaction was cooled to -78 °C 

and quenched by addition of 1.8 ml 6M hydrochloric acid and 5 ml of water. After 

warming to room temperature the aqueous phase was extracted with diethyl 

ether (3 x 20 ml), washed with brine, dried over sodium sulphate and 

concentrated under reduced pressure by rotatory evaporator. The crude mixture 

was subjected to silica gel column chromatography in n-hexane/EtoAc mixture in 

which the gradient of the solvent was gradually increased from neat n-hexane to 

4 % EtoAc/nhexane to obtain 2 (460 mg, 68 %) as a predominant trans isomer. 

The compound was pure as judged by NMR (Figure A.3) and TLC.  Its identity 

was confirmed by high resolution electron-impact MS (m/z): calculated 

268.2766; observed 268.2761. 1H NMR  
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(400 MHz, CDCl3) δ 5.54-5.48 (m, 1H), 5.42-5.37 (m, 1H), 3.60 (t, J = 6.3 Hz, 2H), 2.24  

(q, J = 6.5 Hz, 2H), 1.99 (q, J = 7.0 Hz, 2H), 1.32-1.26 (m, 23H), 0.86 (t, J = 6.8 Hz, 3H); 

13C NMR (100 MHz, CDCl )  134.42, 125.49, 61.99, 35.96, 32.66, 31.90, 29.68, 29.67, 3 

δ 29.63, 29.61, 29.55, 29.60, 29.49, 29.44, 29.34, 29.18, 22.67, 14.10.  
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Figure A.3. 1H and 13C-NMR spectrum of compound 2 in CDCl3 
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 Synthesis of trans-tert-butyldimethyl(octadec-3-en-1-yloxy)silane (3) 

 The alcohol functional group in 2 was protected by tert-Butyl-dimethylsilyl group 

(TBDMS) using a literature procedure.3 To a solution of 2 (100 mg, 0.37 mmol) in 

anhydrous dicholoromethane (DCM) at 0 °C were added imidazole (40 mg, 0.59 mmol), 

and catalytic amount of DMAP. TBDMS chloride (66 mg, 0.44 mmol) was added to the 

reaction mixture resulting in the formation of white suspension. The reaction mixture 

was gradually warmed to room temperature and stirred overnight. The reaction mixture 

was diluted with DCM (50 ml) and washed with water (2 X 5 ml). The organic layer was 

separated, dried over anhydrous sodium sulphate and concentrated on a rotatory 

evaporator. The crude mixture was purified by silica-gel chromatography using 1 % 

ethylacetate/n-hexane as the eluting solvent to yield 3 (120 mg, 85%).  The compound 

was pure as judged by NMR (Figure A.4) and TLC. 1H NMR (400 MHz, CDCl3) δ 

5.525.46 (m, 1H), 5.42-5.35 (m, 1H), 3.62 (t, J = 7.0 Hz, 2H), 2.22 (q, J = 6.8 Hz, 2H), 

2.11 (q, J = 6.8 Hz, 2H), 1.32-1.26 (m, 22H), 0.95-0.85 (m, 12H), 0.07 (s, 6H); 13C NMR 

(100 MHz, CDCl3) δ 132.65, 131.91, 126.27, 125.43, 63.39, 63.06, 33.86, 32.72, 31.96, 

31.15, 29.74, 29.73, 29.72, 29.70, 29.39, 25.97, 25.95, 22.72, 18.99, 18.37, 14.13, -

5.25, -5.26.  
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Figure A.4. 1H and 13C-NMR spectrum of compound 3 in CDCl3.  
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 Synthesis of tert-butyldimethyl(2-(2-tetradecylcyclopropyl)ethoxy)silane (4)  

 3 was converted to 4 based on literature procedures.4,5 To a solution of 3 (120 

mg, 0.31 mmol) in anhydrous dichloromethane at -10 °C were added diethyl zinc (70 µl, 

0.7 mmol) and diiodomethane (100 µl, 1.2 mmol). The reaction mixture was warmed to 

room temperature and stirred for 48 hours. Upon completion of the reaction as judged 

by TLC, the crude mixture was concentrated on a rotatory evaporator. 4 was purified by 

silica-gel column chromatography using 1% ethylacetate/n-hexane as the eluting 

solvent and was obtained as predominant the trans-stereoisomer (40 mg, 30 %). The 

compound was > 90% pure as judged by NMR (Figure A.) and TLC. 1H NMR (400 MHz, 

CDCl3) δ 3.673.58 (m, 2H), 2.15-2.11 (m, 2H), 1.36-1.25 (m, 22H), 0.90-0.85 (m, 12H), 

0.43-0.37 (m, 1H), 0.19-0.13 (m, 2H), 0.06-0.03 (m, 6H); 13C NMR (100 MHz, CDCl3) δ 

63.35, 37.69, 34.25, 31.95, 30.32, 29.73, 29.69, 29.65, 29.60, 29.55, 29.50 29.40, 

29.22, 26.03, 25.99, 25.97, 22.72, 18.51, 18.38, 15.29, 14.15, 11.45, -5.26.  
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 Figure A.5. 1H and 13C NMR spectrum of compound 4 in CDCl3.  
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 Synthesis of (2-tetradecylcyclopropyl)ethanol (5)  

 1 ml of 1.0 M TBAF in THF was added to a solution of 4 (120 mg, 0.304 mmol) in 

anhydrous THF at room temperature. The reaction mixture was stirred for 3 h under 

nitrogen. The reaction mixture was diluted with 50 ml dichloromethane and washed with 

water (2 x 5 ml) and brine (2 x 2 ml). The organic layer was dried over sodium sulphate 

and concentrated by rotatory evaporation to afford the crude product as yellow oil that 

was further subjected to silica-gel chromatography using 1% ethylacetate/n-hexane as 

the eluting solvent and yielded 5 as a white solid (70 mg, 85%). The compound was > 

85% pure as judged by NMR (Figure A.6) and TLC. 1H NMR (400 MHz, CDCl3) δ 3.73-

3.68 (m, 2H), 2.15-2.11 (m, 2H), 1.491.47 (m, 2H), 1.45-1.36 (m, 22H), 0.90 (t, J = 6.8 

Hz, 3H), 0.47-0.42 (m, 2H), 0.24-0.21 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 63.52, 

63.18, 62.00, 37.22, 35.98, 34.18, 32.69, 31.93, 31.74, 30.09, 29.71, 29.67, 29.64, 

29.54, 29.52, 29.47, 29.41, 29.38, 29.22, 28.86, 26.11, 25.65, 22.70, 18.38, 18.38, 

15.16, 15.11, 14.13, 12.12, 11.33, 10.57.  
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Figure A.6. 1H and 13C NMR spectrum of compound 5 in CDCl3  
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 Synthesis of 2-(2-tetradecylcyclopropyl)acetaldehyde (6)  

 To a solution of 5 (100 mg, 0.34 mmol) in dichloromethane at room temperature 

were added TEMPO (5 mg, 0.034 mol) and BAIB (120 g, 0.37 mmol). The reaction was 

stirred at room temperature for 3 hours under nitrogen. After completion, the crude 

reaction mixture was concentrated using a rotatory evaporator and subjected to silica-

gel column chromatography in nhexane/ethylacetate in which the gradient of the solvent 

was gradually increased from neat n-hexane to 0.5 % ethylacetate/n-hexane to obtain 6 

(60 mg, 65%). The compound was pure as judged by NMR (Figure A.7) and TLC.  The 

identity of the compound was confirmed by high resolution electron-impact MS (m/z): 

calculated 280.2760; observed 280.2766. GC-MS analysis of 6 indicated that the 

compound was a mixture of ~ 70:30 trans- to cis-stereoisomers. 1H NMR (400 MHz, 

CDCl3) of 6 (major stereoisomer) δ 9.76 (t, J = 7 Hz, 1H), 2.30-2.26 (m, 2H), 1.39-1.24 

(m, 22H), 0.86 (t, J = 6.8 Hz, 3H), 0.700.66 (m, 1H), 0.55-0.50 (m, 1H), 0.41-0.30 (m, 

2H); 13C NMR (100 MHz, CDCl3) δ 202.52, 48.20, 47.30, 43.22, 33.87, 32.69, 31.89, 

29.80, 29.67, 29.65, 29.63, 29.53, 29.45, 29.39, 29.33, 29.13, 28.95, 22.66, 18.54, 

15.04, 14.09, 11.70, 11.51, 10.74, 8.95.  
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Figure A.7. 1H and 13C-NMR of cyclopropyl compound 6. 
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Appendix B 

Syntheses for Chapter 3 

 Synthesis and characterization of 3-nonyloxirane-2-carbaldehyde (1): 

The synthesis of 3-nonyloxirane-2-carbaldehyde (1) was carried out in two steps as 

outlined in Figure B.1 below by Dr. Bishwajit Paul. 

 

 

Figure B.1. Synthesis of 3-nonyloxirane-2-carbaldehyde (1) 

 

 Synthesis of (3-nonyloxiran-2-yl)methanol (II)   

 The oxidation of (E)-dodec-2-en-1-ol (I) to (3-nonyloxiran-2-yl)methanol (II) was 

performed using standard perbenzoic acid strategy.1 To a solution of (E)-dodec-2-en-1-

ol (I, 200 mg, 1.1 mmol) were added metachloroperbenzoic acid (mCPBA, 200 mg, 1.16 

mmol) and in dichloromethane at ice-cold condition. The reaction was stirred at room 

temperature for overnight. The solvent was removed under reduced pressure using a 

rotatory evaporator and the crude mixture was subjected to a silica-gel column 

equilibrated in n-hexane. The column was eluted by slowly increasing the polarity of the 

solvent using a gradient of 0 to 1 % ether in hexane to obtain II (190 mg, 85%).  The 

compound was pure as judged by NMR (Figure B.2). 1H NMR (400 MHz, CDCl3)  3.82-

3.79 (dd, 1H), 3.52-3.48 (dd, 1H), 2.87-2.83 (m, 2H), 1.49-1.46 (m, 2H), 1.36-1.34 (m, 
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2H), 1.24-1.19 (m, 12H), 0.82-0.78 (t, 3H) 13C NMR(400 MHz, CDCl3),  61.81, 58.71, 

56.08, 53.37, 31.80, 31.50, 29.46, 29.43, 29.39, 29.33, 29.22, 29.14, 25.86, 22.58, 22.56, 

13.99. 

 

 

Figure B.2. 1H and 13C-NMR spectra of compound II. 
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 Synthesis of 3-nonyloxiran-2-carbaldehyde (1)  

 To a solution of II (150 mg, 0.75 mmol) in dichloromethane at room temperature 

were added TEMPO (10 mg, 0.064 mol) and BAIB (250 mg, 0.77 mmol).2 The reaction 

was stirred at room temperature for 6 hours under nitrogen. After completion, the crude 

reaction mixture was concentrated using a rotatory evaporator and subjected to silica-gel 

column chromatography in n-hexane/ethylacetate in which the gradient of the solvent was 

gradually increased from neat n-hexane to 0.5 % ethylacetate/n-hexane to obtain 1 (50 

mg, 35 %). The compound was pure as judged by NMR (Figure B.3) and TLC.  The 

identity of the compound was confirmed by high resolution electron-impact MS (m/z): 

calculated 198.1620; observed 198.1617. GC-MS analysis of 1 indicated that the 

compound was a mixture of ~ 98:2 trans- to cis-stereoisomers. 1H NMR (400 MHz, 

CDCl3), 8.97-8.95 (d, 1H), 3.20-3.16 (m, 1H), 3.09-3.07 (m, H), 1.65-1.56 (m, 2H), 1.47-

1.40 (m, 2H), 1.39-1.22 (m, 12H), 0.85-0.81 (t, 3H), 13C NMR (100 MHz, CDCl3)  198.4, 

59.09, 56.71, 31.79, 31.15, 29.38, 29.37, 29.34, 29.20, 29.16, 28.08, 25.71, 22.60, 14.03 
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Figure B.3. 1H and 13C NMR spectra of compound 1. 

 

 Synthesis and characterization of 2-nonyloxirane (IV): 

 The synthesis of 2-nonyloxirane (IV) was carried out in one-step using standard 

perbenzoic acid strategy1 as outlined in Figure B.4 below.   
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Figure B.4. Synthesis of 2-nonyloxirane (IV)  

 

 Synthesis of 2-nonyloxirane (IV)  

 To a solution of undec-1-ene (III, 154mg, 1 mmol) were added 

metachloroperbenzoic acid (mCPBA, 189 mg, 1.1 mmol) and in dichloromethane at ice-

cold condition. The reaction was stirred at room temperature for overnight. The solvent 

was removed under reduced pressure using a rotatory evaporator and the crude mixture 

was applied to a silica-gel column equilibrated in n-hexane. The column was developed 

by slowly increasing the polarity of the solvent using a gradient of 0 to 1 % ether in hexane 

to obtain IV (60 mg, 35%).  The compound was pure as judged by NMR (Figure B.4). 1H 

NMR (400 MHz, CDCl3)  2.91-2.85 (m, 1H), 2.75-2.73 (t, 1H), 2.46-2.43 (dd, 1H), 1.55-

1.50 (m, 2H), 1.48-1.43 (m, 2H), 1.35-1.27 (m, 12H), 0.89-0.86 (t, 3H). 13C NMR (100 

MHz, CDCl3),  52.29, 47.10, 32.50, 31.88, 29.56, 29.51, 29.45, 29.30, 25.98, 22.67, 

14.09. 
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Figure B.5. 1H and 13C NMR spectra of 2-nonyloxirane (IV) 

 

 

 Synthesis and characterization of 3-pentadecyloxirane-2-carbaldehyde (2): 

 The synthesis of 3-pentadecyloxirane-2-carbaldehyde (2) was carried out in three 

steps as outlined in Figure B.6 below.  The synthesis of compounds V, VI, VII and 2, and 

the corresponding product standard, are detailed below.  
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Figure B.6. Synthesis of 3-pentadecyloxirane-2-carbaldehyde (2) 

 

 Synthesis of (E)-Octadec-2-en-1-ol (VI)  

 The Horner-Wittig reaction of hexadecanal (V) with ethyl-2-(diethoxylphosphoryl) 

acetate was performed according to a literature procedure.1 To a solution of 1,8-

diazabicyclo[5.4.0]undec-7-ene (DBU) (470 mg, 3.08 mmol) in tetrahydrofuran (THF), 2-

(diethoxylphosphoryl) acetate (734 mg, 3.28mmol) was added dropwise at 0 °C. The 

mixture was warmed to room temperature and stirred for 1 hr. The solution was then 

cooled to -78 °C in a dry ice/acetone mixture bath for 15 min, followed by dropwise 

addition of hexadecanal (503 mg, 2.1 mmol) (V) (dissolved in minimum volume of THF). 

The mixture was warmed to room temperature and stirred for overnight. The resulting 

mixture was diluted with diethyl ether, washed with water and then dried over sodium 

sulphate. After evaporation of the solvent, pure ethyl-2-octadec-2-enoate was obtained 

as judged by TLC (450 mg, 75% yield). The next step of the reaction was carried out 

without further characterization.  

 To a solution of ethyl-2-octadec-2-enoate (450 mg, 1.45 mmol), in diethyl ether at 

0 °C, DIBAL-H (515 mg, 3.62 mmol) was added dropwise. The solution was warmed to 
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room temperature and stirred for 1 hr. The resulting mixture was cooled to 0 °C and 

quenched with MeOH and warmed to room temperature. The solution was washed with 

dichloromethane for several times, washed with brine and dried over sodium sulphate 

and concentrated under reduced pressure by rotatory evaporator. The crude mixture was 

subjected to silica gel column chromatography in n-hexane/diethyl ether mixture in which 

the gradient of the solvent was gradually increased from neat n-hexane to 30% Ether/n-

hexane to obtain VI (270 mg, 68 %) as a predominant trans isomer. The compound was 

pure as judged by NMR (Figure B.7) 1H NMR (400 MHz, CDCl3)  5.66-5.63 (m, 2H), 

4.07-4.06 (q, 2H), 2.04-2.01 (m, 2H), 1.37-1.24 (m, 26H), 0.86-0.84 (t, 3H); 13C NMR (100 

MHz, CDCl3)  133.60, 128.73, 63.84, 32.19, 31.90, 29.67, 29.63, 29.59, 29.48, 29.34, 

29.17, 29.11, 22.67, 14.10. 
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Figure B.7. 1H and 13C NMR spectra of (E)-Octadec-2-en-1-ol (VI) 

 

 Synthesis of (3-pentadecyloxiran-2-yl)methanol (VII) 

 The oxidation of (E)-Octadec-2-ene-1-ol (VI) to (3-pentadecyloxiran-2-yl)methanol 

(VII) was performed using standard perbenzoic acid strategy.1 To a solution of (E)-

octadec-2-en-1-ol (VI, 200 mg, 0.75 mmol) were added metachloroperbenzoic acid 
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(mCPBA, 150 mg, 0.87 mmol) and in dichloromethane at ice-cold condition.  After 30 min, 

the reaction was warmed to room temperature allowed to stir for overnight. The solvent 

was removed under reduced pressure using a rotatory evaporator and the crude mixture 

was applied to a silica-gel column equilibrated in n-hexane. The column was developed 

by slowly increasing the polarity of the solvent using a gradient of 0 to 1 % ether in hexane 

to obtain VII (200 mg, 90%).  The compound was pure as judged by NMR (Figure B.8). 

1H NMR (400 MHz, CDCl3)  3.92-3.88 (m, 1H), 3.63-3.59 (m, 1H), 2.96-2.89 (m, 2H), 

1.54-1.53 (m, 3H), 1.45-1.39 (m, 2H), 1.37-1.24 (m, 21H), 0.86-0.84 (t, 3H) 13C NMR (100 

MHz, CDCl3),  61.64, 58.34, 55.96, 31.90, 31.53, 29.67, 29.63, 29.61, 29.52, 29.50, 

29.37, 29.34, 25.92, 22.67, 14.10. 
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Figure B.8. 1H and 13C-NMR spectra of (3-pentadecyloxiran-2-yl)methanol (VII) 

 

 Synthesis of 3-pentadecyloxiran-2-carbaldehyde (2) 

 To a solution of VII (100 mg, 0.354 mmol) in dichloromethane at room temperature 

were added TEMPO (6 mg, 0.038 mol) and BAIB (120 g, 0.37 mmol).2 The reaction was 
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stirred at room temperature for 3 hours under nitrogen. After completion, the crude 

reaction mixture was concentrated using a rotatory evaporator and subjected to silica-gel 

column chromatography in n-hexane/ether in which the gradient of the solvent was 

gradually increased from neat n-hexane to 0.5 % ether/n-hexane to obtain 2 (40 mg, 

40%). The compound was pure as judged by NMR (Figure B.9) and TLC. The identity of 

the compound was confirmed by high resolution electron-impact MS (m/z): calculated 

282.2559; observed 282.2561. GC-MS analysis of 2 indicated that the compound was a 

mixture of ~ 90:10 trans- to cis-stereoisomers. 1H NMR (400 MHz, CDCl3) of 2 (major 

stereoisomer)  9.01-8.99 (d, 1H), 3.23-3.19 (m, 1H), 3.13-3.10 (m, 1H), 1.66-1.62 (m, 

2H), 1.46-1.44 (m, 2H), 1.34-1.24 (m, 24H) 0.88-0.86 (t, 3H),13C NMR (100 MHz, CDCl3) 

198.49, 59.15, 56.78, 31.90, 31.18, 29.67, 29.66, 29.64, 29.63, 29.61, 29.57, 29.46, 

29.40, 29.33, 29.20, 25.75, 22.67, 14.10. 
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Figure B.9. 1H and 13C-NMR spectra of 3-pentadecyloxiran-2-carbaldehyde (2) 

 

 Synthesis and characterization of 2-pentadecyloxirane (IX) 

 The synthesis of 2-pentadecyloxirane (IX) was carried out in a one-step reaction 

using standard perbenzoic acid strategy1 as outlined in Figure B.10. 
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Figure B.10. Synthesis of 2-pentadecyloxirane (IX) 

 

 Synthesis of 2-pentadecyloxirane (IX) 

 The oxidation of heptadec-1-ene (VIII) to 2-pentadecyloxirane (IX) was performed 

using standard perbenzoic acid strategy.1 To a solution of -heptadec-1-ene (120 mg, 0.5 

mmol) were added metachloroperbenzoic acid (mCPBA, 100 mg, 0.58 mmol) and in 

dichloromethane at ice-cold condition. The reaction was stirred at room temperature for 

overnight. The solvent was removed under reduced pressure using a rotatory evaporator 

and the crude mixture was applied to a silica-gel column equilibrated in n-hexane. The 

column was developed by slowly increasing the polarity of the solvent using a gradient of 

0 to 1 % ether in hexane to obtain IX (100 mg, 75%).  The compound was pure as judged 

by NMR (Figure B.11). 1H NMR (400 MHz, CDCl3)  2.91-2.89 (m, 1H), 2.76-2.73 (t, 1H), 

2.47-2.45 (m, 1H) 1.53-1.50 (m, 2H), 1.47-1.41 (m, 2H), 1.33-1.25 (m, 24H), 0.89-0.86 (t, 

3H). 13C NMR (100 MHz, CDCl3), 52.42, 47.15,32.49, 31.92, 29.69, 29.66, 29.63, 29.55, 

29.45, 29.36, 25.97, 22.69, 14.13. 
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Figure B.11. 1H and 13C-NMR spectra of 2-pentadecyloxirane (IX) 

 

  



 

150 
 

References 

1. Barrett, A.G.M.; Head, J.; Smith M. L.; Stock, N.S.; White, A.J.P. and Williams, 

D.J. J. Org. Chem. 1999, 64, 6005. 

2. Paul, B.; Das, D.; Ellington, B.; Marsh, E. N. G. J. Am. Chem. Soc. 2013, 135, 

5234. 

 

  



 

151 
 

Appendix C 

Syntheses for Chapter 4 

Synthesis of 3-nonylcyclopropane-2-carbaldehyde  

 The synthesis of 3-nonylcyclopropane-2-carbaldehyde (1, 1A, 1B) and 3-

nonylcyclopropane (2, 2A) (compounds shown in Figure C.1) is summarized in Figure 

C.2 and Figure C.3 below, and was performed by Dr. Bishwajit Paul. 

 

Figure C.1.  Chemical structures of synthesized substrate and product standard, as well 
as isotopic labels thereof. 
 

 

Figure C.2. Synthetic scheme of compound 1 
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Figure C.3. Synthetic Scheme of compound 2 

 

 Synthesis of (E)-tert-butyl(dodec-2-en-1-yloxy)dimethylsilane (II)  

 The alcohol functional group in I was protected by tert-Butyl-dimethylsilyl group 

(TBDMS).1 To a solution of I (500 mg, 2.7 mmol) in anhydrous dicholoromethane (DCM) 

at 0 C were added imidazole (125 mg, 1.84 mmol), and catalytic amount of DMAP. 

TBDMS chloride (500 mg, 3.3 mmol) was added to the reaction mixture resulting in the 

formation of white suspension. The reaction mixture was gradually warmed to room 

temperature and stirred overnight. The reaction mixture was diluted with DCM (50 ml) and 

washed with water (2 X 5 ml). The organic layer was separated, dried over anhydrous 

sodium sulphate and concentrated on a rotatory evaporator. The crude mixture was 

purified by silica-gel chromatography using 1 % ethylacetate/n-hexane as the eluting 

solvent to yield II (700 mg, 86%).  The compound was pure as judged by NMR (Figure 

C.4) and TLC.  1H NMR (500 MHz, Chloroform-d) δ 5.65–5.54 (m, 2H), 4.16–4.12 (m, 

2H), 2.07-2.03 (m, 2H), 1.45-1.20 (m, 12H), 0.97-0.83 (m, 15H), 0.08 (s, 6H).  13C NMR 

(126 MHz, Chloroform-d) δ 131.57, 129.05, 64.11, 32.21, 31.92, 29.61, 29.53, 29.35, 

29.22, 25.99, 22.69, 18.43, 14.12, -5.10. 
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Figure C.4. 1H and 13C-NMR of Compound II 
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 Synthesis of tert-butyldimethyl((2-noncyclopropyl)methoxy)silane (III) 

 II was converted to III based on literature procedures.2 To a solution of II (100 mg, 

0.33 mmol) in anhydrous dichloromethane at 0 C were added diethyl zinc (80 l, 0.78 

mmol) and diiodomethane (100 l, 1.24 mmol). The reaction mixture was warmed to 40 

C and stirred for overnight. Upon completion of the reaction as judged by TLC, the crude 

mixture was concentrated on a rotatory evaporator. III was purified by silica-gel column 

chromatography using 1% ethylacetate/n-hexane as the eluting solvent and was obtained 

as predominant the trans-stereoisomer (62 mg, 60 %). The compound III was > 90% pure 

as judged by NMR (Figure C.5) and TLC.  1H NMR (401 MHz, Chloroform-d) δ 3.53-3.40 

(m, 2H), 1.39-1.16 (m, 16H), 0.91-0.77 (m, 15H), 0.78-0.68 (m, 1H), 0.59-0.49 (m, 1H), 

0.36-0.28 (m, 1H), 0.26-0.19 (m, 1H), 0.05 (d, J = 2.1 Hz, 6H).  13C NMR (101 MHz, 

Chloroform-d) δ 67.06, 34.63, 33.75, 31.91, 31.58, 29.70, 29.62, 29.59, 29.52, 29.49, 

29.42, 29.36, 29.33, 29.28, 29.13, 25.95, 25.24, 22.67, 22.64, 21.01, 18.36, 16.95, 14.07, 

9.78, -5.16, -5.19. 
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Figure C.5. 1H and 13C-NMR of Compound III 
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 Synthesis of (2-nonylcyclopropyl)methanol (IV) 

 1 ml of 3N methanolic hydrochloric acid was added to a solution of III (100 mg, 

0.32 mmol) in dichloromethane at 0C for 4 hours. The reaction mixture was diluted with 

50 ml dichloromethane and washed with water (2 x 5 ml) and brine (2 x 2 ml). The 

organic layer was dried over sodium sulphate and concentrated by rotatory evaporation 

to afford the crude product as yellow oil that was further subjected to silica-gel 

chromatography using 10% ethylacetate/n-hexane as the eluting solvent and yielded IV 

as yellow liquid (50 mg, 80%). The compound IV was pure as judged by NMR (Figure 

C.6) and TLC. 1H NMR (400 MHz, Chloroform-d) δ 3.52-3.25 (m, 2H), 1.47-1.09 (m, 

16H), 0.92-0.71 (m, 4H), 0.62-0.47 (m, 1H), 0.39-0.25 (m, 2H).  13C NMR (100 MHz, 

Chloroform-d) δ 67.21, 33.56, 31.87, 29.64, 29.58, 29.41, 29.31, 22.65, 21.16, 17.17, 

14.08, 9.89. 
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Figure C.6. 1H and 13C-NMR of Compound IV 
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 Synthesis of 2-nonylcyclopropane-1-carbaldehyde (1) 

 To a solution of IV (50 mg, 0.25 mmol) in dichloromethane at room temperature 

were added TEMPO (4 mg, 0.2 mmol) and BAIB (75 mg, 0.23 mmol).3 The reaction was 

stirred at room temperature for 3 hours under nitrogen. After completion, the crude 

reaction mixture was concentrated using a rotatory evaporator and subjected to silica-gel 

column chromatography in n-hexane/diethylether in which the gradient of the solvent was 

gradually increased from neat n-hexane to 5% diethylether/n-hexane to obtain 1 (30 mg, 

40%). The compound was pure as judged by NMR (Figure C.7) and TLC.  The identity of 

the compound was confirmed by high resolution electron-impact MS (m/z): calculated 

197.1905; observed 197.1907.  1H NMR (500 MHz, Chloroform-d) δ 9.00 (d, J = 5.6 Hz, 

1H), 1.66-1.60 (m, 1H), 1.51-1.45 (m, 1H), 1.42 – 1.23 (m, 18H), 0.91 – 0.87 (m, 5H).  13C 

NMR (101 MHz, Chloroform-d) δ 201.02, 32.60, 31.84, 30.50, 29.51, 29.26, 29.22, 29.05, 

22.68, 22.63, 14.85, 14.06. 
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Figure C.7. 1H and 13C-NMR of Compound 1 
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Figure C.8. 1H and 13C-NMR of Compound 1A 
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Figure C.9. 1H and 13C-NMR of Compound 1B 
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 Synthesis of nonylcyclopropane (2) 

 1-undecene was converted to 2 based on literature procedures.2 To a solution of 

1-undecene (200 l , 1 mmol) in anhydrous dichloromethane at -20 °C were added diethyl 

zinc (150 l, 1.5 mmol) and diiodomethane (200 l, 2.5 mmol). The reaction mixture was 

warmed to room temperature and stirred for 48 hours. The crude mixture was 

concentrated on a rotatory evaporator. 2 was purified by silica-gel column 

chromatography using 1% ethylacetate/n-hexane as the eluting solvent (200 l , 60%). 

The compound was < 60% pure as judged by NMR (Figure C.10) and TLC and contains 

unreacted 1-undecene. 

  



 

163 
 

 

 

 

Figure C.10. 1H and 13C-NMR of Compound 2 
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 Synthesis of nonylcyclopropane-d2 (2A) 

 1-undecene was converted to 2A based on literature procedures.2 To a solution of 

1-undecene (200 l , 1 mmol) in anhydrous dichloromethane at -20 °C were added diethyl 

zinc (150 l, 1.5 mmol) and diiodomethane-d2 (200 l, 2.4 mmol). The reaction mixture 

was warmed to room temperature and stirred for 48 hours. The crude mixture was 

concentrated on a rotatory evaporator. 2A was purified by silica-gel column 

chromatography using 1% ethylacetate/n-hexane as the eluting solvent (200 l, 40%). 

The compound was < 50% pure as judged by NMR (Figure C.11) and TLC and contains 

unreacted 1-undecene.  
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Figure C.11. 1H and 13C-NMR of Compound 2A 
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Appendix D 

VIPERIN  

 Introduction 

 Only recently discovered, VIPERIN (Virus Inhibitory Protein; Endoplasmic 

Reticulum associated, INterferon inducible) is a highly conserved protein throughout 

such diverse species as rodents, primates and fish.1  Induced by both type I and II 

Interferons, VIPERIN has been shown to inhibit infection and replication of multiple 

viruses, including Dengue Fever, HIV, and Influenza.1-2  The 42 kDa membrane-bound 

protein is composed of an n-terminal leucine-zipper domain with an amphipathic helix, a 

radical SAM domain and a c-terminal domain, each of which has been implicated in its 

various modes of viral inhibition (Figure D.1).3  Despite the highly interesting nature of 

this protein, much remains unknown about its mechanism of action.  Understanding of 

this broad-spectrum antiviral action could greatly advance our ability to treat viral 

infection. 

 

Figure D.1. VIPERIN Structure and domains.3 
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 One proposed mechanism of action, discovered by Wang et al in 2007, involves 

disruption of cell membrane lipid rafts, inhibiting the release of budding viral capsids.1   

In addition, interaction of Farnesyl Pyrophosphate Synthase (FPPS) and VIPERIN was 

discovered through pull-down assays.  VIPERIN expression reduced the activity of 

FPPS in vivo, and overexpression of FPPS effectively reversed the VIPERIN-mediated 

inhibition of Influenza replication and release.1  Although the evidence for VIPERIN’s 

mechanism of viral inhibition being linked to FPPS is quite strong, little mechanistic 

understanding of its function has yet been obtained.  To this end, I worked alongside Dr. 

Gabriel Roman and others to elucidate the mechanistic underpinnings of VIPERIN-

mediated FPPS interaction and inhibition. 

 

 Anti-Flag Pull-Down Assays 

 Although previous studies indicated that FPPS was pulled down by Interferon-

induced VIPERIN expression, I set out to confirm the interaction of FPPS and VIPERIN 

using transient overexpression in HEK293T Cells.  HEK293T cells were grown to 30% 

confluency in 10cm dishes, then either grown without transfection (control) or 

transfected using Fugene (don’t remember number) Transfection Reagent as per 

standard protocol with hFPPS, VIPERIN, or both hFPPS and VIPERIN (coexpression).  

Cells were grown 48h, then harvested and frozen at -80C.  Upon thawing in 500μL D-

PBS with 0.1% TRITON-X, cells were lysed on ice by manual sonication at a power 

level of 4 with 3 sets of 3 2s pulses.  Lysate was cooled 5m on ice between each set of 

pulses.   
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 Lysate was centrifuged 10m at 12,000xg to clarify and remove precipitates 

(samples taken before and after clarification for Western Analysis).  Clarified lysate was 

loaded onto 100μL packed, equilibrated (D-PBS + 0.1% TRITON-X) ANTI-FLAG® M2 

Affinity Gel from Sigma-Aldrich or 50 μL packed, equilibrated Ni-NTA Resin.  

Resin+lysate was incubated with gentle mixing for 2h at 4C, then flowthrough removed 

(sample saved for Western Analysis) and resin washed 3x with 5CV D-PBS + 0.1% 

TRITON-X, and 2x further with 5CV D-PBS (sample saved from final wash for Western 

Analysis).  Proteins were eluted using five 1CV solutions of 100μg/mL FLAG peptide in 

D-PBS (for Anti-Flag Resin) or 500 μM Imidazole (for His-Tag), run on SDS-PAGE and 

visualized by Western Blot Analysis. 

 Though no strong evidence for the VIPERIN-FPPS pull-down was obtained 

through the course of my studies, a consistent and significant decrease in FPPS 

expression levels in the presence of VIPERIN expression was noted (Figure D.2).  

Though we were unsuccessful in duplicating the pull-down of VIPERIN by hFPPS, the 

presence of an effect on FPPS was quite interesting.  Control experiments were run to 

verify that the effect was due to VIPERIN, rather than just due to overloading of 

transcription machinery in the coexpression by overexpressing GAPDH and FPPS in a 

control, and only VIPERIN coexpression was seen to result in lowered FPPS 

concentrations. 
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Figure D.2. VIPERIN expression results in decreased FPPS levels.  Gels shown are 
duplicates; circled is FPPS by Western Gel Analysis.  Lanes as follows; A, HEK293T 
Control; B, hFPPS; C, VIPERIN; D, hFPPS+VIPERIN Coexpression. 
 

 Currently, efforts are underway to further understand the mechanism by which 

VIPERIN actively decreases hFPPS levels in the cell, as well as the mechanism by 

which VIPERIN inhibits hFPPS activity.   
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