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ABSTRACT

Automated Vehicles (AVs), which monitor the driving environment and conduct
some or all of the driving tasks, must be evaluated thoroughly before their release and
deployment. The challenges of AV evaluation stem from two facts. i) Crashes are
exceedingly rare events. In the U.S., one needs to drive on average 530 thousand miles to
experience a police-reported crash and nearly 100 million miles for a fatal crash. The low
exposure to safety-critical scenarios makes the Naturalistic-Field Operational Tests (N-
FOT) very time-consuming and expensive to conduct, in which prototype AVs are driven
by volunteers or test engineers on public roads. ii) AVs can “cheat” to pass predefined tests.
Traditionally, vehicle test protocols and test conditions are pre-defined and fixed. This is
not a problem when the vehicle is “dumb”, but becomes a problem when the vehicle is
intelligent and can be customized to excel in the predefined tests, and performance in other
test conditions receives less attention. An evaluation approach that represents the real world
but not as time-consuming as the N-FOT is needed to address the problems mentioned
above.

In this research, we propose an “Accelerated Evaluation” concept to accelerate the
evaluations of AV by several orders of magnitude. The interactions between the AV and
the surrounding Human-controlled Vehicles (HVs) are modeled based on the naturalistic
driving data collected by the University of Michigan Transportation Research Institute in
the Safety Pilot Model Deployment Program and the Integrated Vehicle-Based Safety
Systems Program. Probabilities of conflict, crash, and severe injury are used as the main
metrics to assess the safety of AV designs. In general, Accelerated Evaluation consists of
six steps. 1) Collect a large quantity of naturalistic driving data. 2) Extract events that have
potential multi-vehicle conflicts. 3) Model the conflict driving scenarios using stochastic
models. 4) Reduce the non-safety-critical events by skewing the probability density
functions. 5) Conduct Monte Carlo simulations with the skewed (accelerated) probability
density function, resulting in more intense interactions between the AV and HVs. 6) “Skew

back” the simulation results to calculate the performance of AVs under naturalistic driving

XXi



conditions. The proposed approach can be used in computer simulations, human-in-the-
loop tests with driving simulators, hardware-in-the-loop tests, or vehicle tests.

Four methodologies were developed in this dissertation to form the basis of the
Accelerated Evaluation concept. The first method is based on the likelihood analysis of
naturalistic driving. The test scenarios are built as a probabilistic model based on time
series driving data. The evaluation procedure is accelerated by reducing the relatively safe
events that have a high likelihood of occurring. The second method provides a
mathematical basis for the “skewing back mechanism in step 5) based on the Importance
Sampling theory, such that the statistical equivalence between the accelerated tests and
naturalistic driving tests can be rigorously proved. The third method, the “Adaptive
Accelerated Evaluation”, provides a procedure to recursively find the best way to skew the
probabilistic density functions of HVs to maximally reduce the evaluation duration.
Finally, the Accelerated Evaluation approach to analyzing the dynamic interactions
between AVs and HVs was developed based on stochastic optimization techniques.

Simulation results show that the accelerated tests can reduce the evaluation time of
crash, injury or conflict events by 300 to 100,000 times. In other words, driving for 1,000
miles can expose the AV with challenging scenarios that take 300 thousand to 100 million
miles in the real-world to encounter. This technique thus has the potential to dramatically

reduce the development and validation time of AVs.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

Automated Vehicle! (AV) technologies have the potential to significantly change
the future of ground mobility. AVs can save fuel, reduce traffic accidents, ease traffic
congestion, and provide better mobility service to the elderly, physically challenged and
vision challenged population [1].

Effort is being made to remove the legal obstacles to developing AVs. As of
December 2015, six U.S. states (Nevada, Florida, California, and Michigan, Tennessee,
North Dakoda, and Arizona) and the District of Columbia have passed laws permitting
testing of automated cars on public roads. Fourteen other states are considering similar
legislations [2], [3] as shown in Figure 1.1. In Europe, the United Kingdom permitted the
testing of autonomous cars on public roads starting January 2015 [4] and promise to update
the U.K. regulations in 2017 [5]. Some cities in Belgium, France, and Italy are planning to
operate transport systems using driverless cars [6], [7]. Gothenburg, Sweden gave the green
light to driverless cars, in their current plan 100 Volvo cars will be launched in 2017 [8].

Almost all major car companies have initiated research and development programs
for AVs. Table 1.1 shows the announced AV production plans [9], [10]. On October 14,
2015, Tesla activated the Autopilot function on Model S through an over-the-air software
update [11] enabling functions such as Adaptive Cruise Control, Lane Keeping, Auto Lane

Change, Autopark, and Automatic Emergency Steering [12].

! The term “automated” is used instead of "autonomous", because the former term is more accurate and is
more widely adopted [159].
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Table 1.1 Announced automated vehicle technologies [9], [10]
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The Society of Automotive Engineers (SAE) defined six levels of automated
driving in the SAE J3016 Standard [14] as shown in Table 1.2 (details shown in
APPENDIX A). “A key distinction is between level 2, where the human driver performs
part of the dynamic driving task, and level 3, where the automated driving system performs
the entire dynamic driving task.” [15] We are in an era when the industry is moving from
level 1 and up, possibly all the way to level 5. Since Electronic Stability Control (ESC) has
been mandatory in the U.S. since 2013, all new models of light vehicles can be said to be
at least level 1 automation already. However, some argues that ESC really should not be
treated as an AV function because it is activated intermittently and is designed for vehicle

stability rather than automated driving.

Table 1.2 SAE 6 Levels of Automation Vehicles [14]

Execution of steering| Monitoring of | Fallback performance System
g Name and acceleration/ driving of dynamic driving capability
-
deceleration environment task (driving modes)

Human driver monitors the driving environment

0 |No Automation Human Human Human n/s
Driver
1 . Human system Human Human Some modes
Assistance
Partial Some
2 . System Human Human
Automation modes

Automated driving system monitors the driving environment

Conditional Some
H
3 Automation System System uman modes
High Some
4
Automation System System System modes
Full
> Automation System System System All modes

As the level of automation increases, the AV system will become more complex,
making the evaluation of AV more challenging. Today’s high-end cars may have 100
million lines of code while the Boeing 787 only has 6.5 million [16]. It is not practical for
either the company’s internal design release team or the evaluation authorities, such as the
National Highway Traffic Safety Administration (NHTSA) [17], to check every line of the
algorithms. As a result, problems may be found after the product release, which could lead

to expensive recalls [18], [19]. It is desirable to evaluate automated driving systems early
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in the design process. This is consistent with NHTSA’s view for the development of

automated driving:

“The main topics that will need to be addressed include ... Development
of test and evaluation methods - Based on the real world scenarios (use cases)
that map to the functional description of the automated system, develop test
track tests and/or simulation approaches that can evaluate the performance of

the level 2 or level 3 systems? relative to these use cases. ’[20, p. 9]

In this research, we focus on AVs in level 3 to level 5, namely, highly to fully
Automated Vehicles. For simplicity, in the remainder of this dissertation, when we talk
about evaluating AVs, we mean evaluating levels 3-5 AVs, which monitor the environment

and conduct the driving tasks without the help from the human driver.

1.2 Naturalistic Field Operational Tests

Naturalistic Field Operational Tests (N-FOTs) [21] have been used to evaluate
AVs. In an N-FOT, data is collected from a number of equipped vehicles driven in
naturalistic conditions over an extended period of time [22]. Large-scale N-FOT projects
conducted in the U.S. are as shown in Table 1.3. The 100-Car Naturalistic Driving Study
was conducted by the Virginia Polytechnic Institute and State University (popularly known
as Virginia Tech or VT) to determine the main contributing factors of crashes. Its data had
been used to analyze driver performance, behavior, environment, driving context and other
factors that were associated with critical incidents, near crashes and crashes [23]-[27]. The
Automotive Collision Avoidance System (ACAS) project [28] tested Forward Collision
Warning (FCW) and Adaptive Cruise Control (ACC) functions of light vehicles. The Road
Departure Crash Warning (RDCW) project [29] developed and assessed a set of
technologies intended to warn drivers about lane departure and excessive speed entering a
curve. The Sweden-Michigan Naturalistic Field Operational Test (SeMiFOT) [30] is a

project that involves 13 organizations from the automotive industry, road authority, and

2 The NHTSA has a five level taxonomy of AVs as shown in APPENDIX A. The NHTSA level 2 is the
same as SAE level 2. The NHTSA level 3 includes the entire SAE level 3 and partially level 4 and 5.



academia. The test vehicles were equipped with ACC, FCW with Emergency Brake, Lane

Departure Warning, Blind Spot Information System, Electronic Stability Control, and

Impairment Warning, and were tested by 39 drivers for a total of 106,528 miles. The
Integrated Vehicle-Based Safety Systems (IVBSS) [31], [32] project developed and

evaluated an integrated system with three crash-warning functions: forward crash, lateral

drift, and lane change/merge crash warnings on both light sedans and heavy trucks. More
recently, Safety Pilot Model Deployment (SPMD) program [33]-[36] exploited the

connected vehicle technologies and tested about 2,800 equipped vehicles in Ann Arbor,

Michigan.

Mileage

Table 1.3 Major N-FOT projects in the U.S.

Name  Conductor Period [mile] Vehicle Sensor Drivers Research topic
109 primary
100 Car 2001- 100 drivers iy
Naturalistic VT 2,000,000 Camera Rear end collision
.. 2009 sedans 132 secondary
Driving Study .
drivers
ACAS um 2004- 137,000 11 sedans Camera 96 drivers Forw§rd collision
2005 Radar warning
RDCW um 29 83000 11sedans 2™ 11 drivers Lane departure
2006 Radar warning
Forward collision
warning, lane
departure warning,
10 blind spot
SeMiFOT um 2008- 106,528 sedans, Camera 39 drivers information system,
2009 Radars . L
4 trucks electronic stability
control, and
impairment
warning
sedan: 16 sedans 108 drivers for
2010- 213,309 Camera sedans .
IVBSS UM 2011  truck: :i?lfjvy Radar 18 professional [ AR TS
601,944 truck drivers
2,700 volunteer
2,800 drivers and
2012- Over34 various Camera several .
SIAAD UM 2014  million types of DSRC professional bus Ceppess e
vehicles and truck
drivers
At least Lidar Google .
Gc?ogle Google 2012- 1.3 million 50 sedans Camera technicians and FuIIY self-driven
driverless car present vehicle
and SUVs Radar  volunteers




Google, instead of testing a specific function, designed several SAE Level 4 AVs
[37] and tested them on the public road since 2012. The Google driverless car scans and
generates a 3D map of its environment using a Velodyne LIDAR (Light Detection And
Ranging) system [38] mounted on the top of the car. On March 28, 2012, Google posted a
YouTube video showing Steve Mahan, a Morgan Hill California resident who is ninety-
five percent blind. He was taken on a ride in a driverless Toyota Prius [39] as shown in
Figure 1.2. In the video, it is noted that the AV takes him from his home to a drive-through
restaurant, then to the dry cleaning shop, and finally back home [40]. Up to December
2015, the Google driverless cars have logged nearly 1.3 million miles of autonomous
driving [41].

Figure 1.2 Google driverless car took a man with vision disability [39]

Conducting an N-FOT to evaluate an AV involves non-intrusive driving conditions,
i.e., the test subjects were told to drive the way they normally did. This test approach suffers
from several limitations. An obvious problem is the time needed. Under naturalistic
conditions, the probability of exposure to critical events is very low. In the U.S., there were
5.7 million police-reported motor vehicle crashes and 30,057 fatal crashes in 2013, while
the vehicles traveled a total of 2.99 trillion miles [42]. This translates to approximately 0.53
million miles for a police-reported crash and 99 million miles for a fatal crash. The later is
almost the same as the distance from Earth to the Sun (93 million miles). Since the average
mileage driven annually by licensed drivers is 14,012 miles [42], on average one needs to

drive 38 years to experience a police-reported crash and 6,877 years for a fatal crash.



Because of this low exposure rate, the N-FOT projects require a large number of vehicles,

long test duration, and a large budget. According to Akamatsu et al. [43], an N-FOT

“cannot be conducted with less than $10,000,000”. A more efficient approach for AV

evaluation is needed.

1.3 Literature Review on Evaluation Approaches of Automated Vehicle

The field of automated vehicle has a rich history, with early demonstrations [44] in

the 1990s and continuous improvement [45] over the last decade. Meanwhile, methods for

AV evaluation have been developed and improved over time. In this section, we reviewed

existing approaches that can accelerate the evaluation procedure. We divided the

approaches into three categories: Test Matrix approach, Worst-Case Scenario evaluation,

and Monte Carlo Simulations.

1.3.1 Test Matrix evaluation

In a Test Matrix evaluation, a series of test scenarios are first defined. The vehicles

then go through each test and are assessed objectively or subjectively. An example

evaluation process is shown in Figure 1.3.

___________________________________________________________________________________________
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Many programs have been launched to develop evaluation procedure using the Test
Matrix method. In the U.S., one of the earliest efforts was conducted by the CAMP (Crash
Avoidance Metrics Partnership) program [47]-[49]. Twenty-six dynamic, vehicle-level
tests were proposed to evaluate Forward Collision Warning system performance. A
surrogate target (a mock vehicle) as shown in Figure 1.4 was used. The total test time is
two to four weeks (not including initial fabrication, set-up, and surveying of test sites) [50]—
[52]. CICAS (Cooperative Intersection Collision Avoidance System) project [53] used a
scenario-based field-test approach to evaluating a comprehensive system to reduce the
number of crashes at intersections due to violations of traffic control devices [54], [55]. In
the “Development of Performance Evaluation Procedures for Active Safety Systems”
project [56], eleven scenarios were used to assess the performance of DBS (Dynamic Brake
Support) and CIB (Crash Imminent Braking) on two production vehicles sold in the U.S.

Figure 1.4 CAMP surrogate target vehicle [52] in a field test

The European Commission also conducted several projects to develop evaluation
procedure using the Test Matrix method. The HASTE (Human Machine Interface And the
Safety of Traffic in Europe) project [57] was launched by the European Commission to
develop methodologies and guidelines for the assessment of In-Vehicle Information
Systems (IVI1S). Three levels of road complexities were defined: straight roads, gentle S-
shaped roads, and discrete critical events [58]. Both simulator experiments and field trials
were used. It was found that visual distraction and cognitive distraction from the use of
IVIS have very different impacts on the primary task of driving and static performance
[57]. AIDE (Adaptive Integrated Driver-vehicle InterfacE) [59], [60] introduced a 15-
scenario test regime for an integrated in-vehicle Human Machine Interface (HMI) based



on test scenarios suggested in previous studies. TRACE (Traffic Accident Causation in
Europe) [61] adopted a case study method with scenarios based on National crash statistics
and in-depth crash data. APROSYS (Advanced Protection Systems) [62]-[64] proposed
various test scenarios for cars, heavy trucks, motorcyclists, pedestrians and pedal cyclists,
based on various sources including SAVE-U [65], COMPOSE (subproject of PReVENT
[66]) and GIDAS (German In-depth Accident Study) databases [67]. The interactlVe
(accident avoidance by active intervention for Intelligent Vehicles) project [68] applied
Hardware-in-the-loop testing, driving simulator and test track experiments to assess crash
avoidance intervention systems. ASSESS [69] (Assessment of Integrated Vehicle Safety
Systems) developed multiple test mechanisms for collision avoidance. ‘Accident data
study in support of development of Autonomous Emergency Braking (AEB) test
procedures’ project [70] developed types of evaluation scenarios: 1) stopped lead vehicle,
2) slow lead vehicle with constant speed, and 3) braking lead vehicle with constant
deceleration determined based on GIDAS, STATS 19 (2008) and OTS (2000-2009)
databases. The results of this project were used in the EURO NCAP AEB test procedure
[71].

Test Matrix scenarios can be implemented in field tests, Hardware-in-the-Loop
(HIL) test, driving simulator test and computer simulation. Field tests were used by all
certification authorities. Driving simulator and computer simulation have also been used
to reduce the cost and time. One example of evaluation using simulator is shown in

Figure 1.5.

Figure 1.5 Urban simulator environment in HASTE [58]



The choices of test scenarios in Test Matrix based evaluations are primarily based
on crash databases. A series of research on pre-crash scenarios was conducted [72]-[76].
As shown in Figure 1.6, the “44-crashes typology” was developed by General Motors. The
“pre-crash scenarios” typology was devised by United States Department of Transportation
based the NASS crash databases GES (General Estimates System) [77] and CDS
(Crashworthiness Data System) [78]. Volpe combined crash information from both
typologies and developed the 37 pre-crash scenarios that depict vehicle movements and
dynamics as well as the critical events occurring immediately prior to crashes involving at
least one other light vehicle [76]. Volpe further used the GES, NMVCCS (National Motor
Vehicle Crash Causation Survey) [79], and EDR (Event Data Recorder) [80] databases to
generate the top five scenario groups as shown in Figure 1.7. The major crash databases in
the U.S. and EU are summarized in APPENDIX B. More comprehensive reviews of crash

analysis can be found in [81].

44 Crashes Typology Pre-crash Scenario Typology
Based on : 44 crash scenarios Based on: Pre-crash variables (66 scenarios)
Data Source: 1991 GES & limited state data Data Source: GES data
Shortcomings: Limitations of state crash data Shortcomings: Does not represent 100% of
Large effort to update results police-reported accidents
\ )
1

37 Pre-Crash Scenarios
¢ 2004 GES
¢ GES updated annually
¢ Accounts for 99.4% Of light vehicle crashes (excluding other)
¢ 22 of 37 scenarios are target V2V

4

[ Priority 5 Group of Scenarios ]

* Accounts for 86.9 % of light vehicle crashes

Figure 1.6 Pre-crash scenarios defined by NHTSA [75]
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a) Car-following b) Lane change
c) Leftturn d) Crossing

e) Opposite direction

Figure 1.7 Five priority scenario groups in vehicle to vehicle crashes [75]

The main benefits of the Test Matrix method are that the defined test procedure is
repeatable, reliable and can be finished relatively quickly [82]. However, there are many
difficulties to overcome. First, all the test scenarios are fixed and predefined. Therefore,
control systems can achieve good scores in these tests, but the performance under broader
conditions may not be adequately assessed. In an analogy, “Having a standard test is akin
to holding an SAT exam for students with all problems pre-announced. Students do well in
the test, but the score may tell very little about how much they really learn” [82]. Moreover,

the Test Matrix scenarios are usually selected based on crash databases in which most of
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the crashes were caused by Human-controlled Vehicles (HVs). The test scenarios of HV
safety and their weights in the evaluation may not accurately reflect the safety-critical
scenarios for AVs. Past projects that studied Test Matrix methods are summarized in
Table 1.4.

Table 1.4 Projects studying the Test Matrix method

. . . Evaluation .
Project Institute Year Testscenario Basis
approach
26 tests to
Ford/GM/ evaluate FCW GM "44
CAMP NHTSA 1999 — Test track Crashes"
performance
HASTE HASTE ' 2005 Three levels o_f' Simulator Real wFJrId
consortium road complexities | Test track scenarios
. HMI conflict
AIDE 15 SEEEIES (e 8 scenarios in
AIDE . 2005 | fully integrated Simulator .
consortium . . previous
in-vehicle HMI
research
National
LMS, LAB, Scenarios from 1S'Ier:tu'l?;cc)lz f:zar:;ti:wc:d
TRACE INRETS, VW, 2006 crash database Computer with in-
TNO, ALLIANZ . : .
simulation depth crash
data
Pre-Crash Scenario 37 pre-crash Crash data GES (General
Typology for Crash Volpe 2007 | scenarios for light analvsis Estimates
Avoidance Research vehicles ¥ System)
Scenarios for car SAVE-U
heavy trucks ’ COMPOSE
APROSYS APROSYS 2007 | motorcyclists, Simulator PREVENT
consortium . Test track INVENT
pedestrians and .
edal cyclists project
: GIDAS data
U of Minnesota Scenarios for
CICAS PATH 2008 | intersection Test track
VTech conflict
Stopped lead
vehicle
Slow lead vehicle
with constant
ASSESS ASSESS . 2010 | speed Test track GIDAS
consortium .
Braking lead
vehicle with
constant
deceleration
interactlVe Multiple Hardware-in- | Previous
interactlVe . 2011 | scenarios for the-loop studies
consortium . .
active testing based on
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Evaluation

Project Institute Year Test scenario RENH
approach
intervention Simulator real traffic
systems Test track crashes
Accident data study in
support of STATS 19
development of Loughborough EURO NCAP AEB (2008)
2012 T k
Autonomous University 0 test procedure est trac OTS (2000-
Emergency Braking 2009)
(AEB) test procedures
Depiction of priority
lslcg:r:;avr?:slcflsrps;:tr%h 37 pre-crash Crash data GES
. 4 Volpe 2013 | scenarios for light . NMVCCS
applications based on S analysis
. . vehicle impact EDR
vehicle-to-vehicle
communications
Development of
Performance 11 scenarios to Real traffic
Evaluation Procedures | UMTRI 2013 | assess DBS and Test track .
. accidents
for Active Safety CIB
Systems

1.3.2 Worst-case scenario evaluation

The Worst-Case Scenario Evaluation (WCSE) methodology was proposed to
identify the truly challenging scenarios for any vehicles with or without active control
systems. Ma [83], [84] first applied WCSE on rollover and jackknifing of articulated
vehicles based on a dynamic game theory, in which control inputs and disturbance inputs
compete in a two-player game situation. Ungoren [85] solved the problem as a one-player
game by considering the vehicle and its control system as a combined dynamic system, and
the iterative dynamic programming method was conducted to solve the WCSE problem
numerically. Kou [86] applied the WCSE method to evaluate the Integrated Chassis
Control (ICC) system. Initial conditions suitable for searching optimal disturbance were
investigated through theoretical and practical means. In general the vehicle (with or without
control systems) is modeled mathematically and WCSE is treated as a horizon optimization
problem to solve for a trajectory (e.g. a sequence of steering inputs) that minimizes or
maximizes the cost function (e.g. rollover index) [86]. When the system is linear, the worst
bounded inputs are derived from the convolution of impulse responses [87]. For nonlinear
systems, the solution of the Hamilton-Jacobi-Bellman equations is derived by variational

calculus to solve the optimal trajectory problem [88].
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While the WCSE method can identify the weakness of a vehicle and vehicle control
systems, it did not consider the probability of the occurrence of such Worst-Case scenarios
[89], [90]. Therefore, the WCSE results do not provide sufficient information about the
risk in real driving scenarios, and may not be the fairest way to compare between or
evaluate different designs. Moreover, when the control algorithms are not available in
analytical or numerical form (e.g., only as a black box) or complex (e.g. evolving systems
[91] with millions of lines of code), the WCSE methods may have difficulties finding the

worst scenarios, or will take a very long time to do so.

1.3.3 Monte Carlo simulations

Some researchers built stochastic models based on data obtained from N-FOTs and
ran Monte Carlo simulations to evaluate AVs. Yang et al. [92] evaluated collision
avoidance systems by building an “errorable” driver model to simulate human inattention
based on Road-Departure Crash-Warning (RDCW) FOT and Intelligent Cruise Control
(ICC) FOT naturalistic driving databases. Woodrooffe et al. [93] generated 1.5 million
forward collision scenarios based on naturalistic driving conflicts and used them to
evaluate collision warning and collision mitigation braking technologies on heavy trucks.

A key benefit of this approach is that all the scenarios/models are extracted from
naturalistic driving records and thus represent real-world driving scenarios. Using
simulations instead of field tests may reduce the evaluation cost. However, if Monte Carlo
simulations are used directly, the non-safety-critical parts of naturalistic driving will
dominate and thus the simulations are not done efficiently. When hardware or human is in

the loop, this approach may not be able to accelerate the procedure.

1.3.4 Summary

Four types of existing AV evaluation approaches were reviewed in Sections 1.2 and
1.3. Their main pros/cons are summarized in Table 1.5. The N-FOT approach is time-
consuming and is the non-accelerated approach to be improved. The Test Matrix methods

identify critical scenarios based on analysis of crash data. The Worst-Case Scenario

14



evaluation identifies critical scenarios by studying the AV dynamics and control
algorithms. The Monte Carlo Simulations build stochastic test models based on naturalistic
driving databases. The Test Matrix and Worst-Case Scenario approach successfully reduce
the time required significantly compared with the N-FOT approach. However, the test
scores may not be directly related to the real world crash rate. The Monte Carlo simulations
can be used to estimate safety benefit of AVs. However, it cannot reduce the non-safety
critical events to reduce the test efforts. A new approach is needed to achieve both goals:
reflect real-world safety benefits, and accelerated.

Table 1.5 Summary of AV evaluation approaches

Method Basis Advantages Limitations

Public road Real-world . . . .
N-FOT . . Inefficient; expensive and time-consuming
testing field test

Test scenarios are fixed and predefined. The

Test Matrix Crash data Efficient, failure modes of AVs might not be reflected in
repeatable the existing crash scenarios.

Worst-Case Scenario P Worst-Case The probabilities for the Worst-Case scenarios

evaluation scenarios are not considered.

Monte Carlo N-FOT Stochastic It does not reduce the test of non-safety critical

Simulation driving data | tests events

1.4 Objective, Approaches, and Scope of the Study

The objective of this research is to develop an approach that can significantly
accelerate the evaluation procedure of AVs and accurately represents their real-world
safety benefits. Such an approach can be used by car companies to make AVs safer and
can be used to develop government certification process.

We propose the Accelerated Evaluation concept to achieve this goal. The core idea
is that by skewing the statistics of the ‘principle other vehicles’, we can reduce the
noncritical or “boring” parts of daily driving so that the test duration is reduced i.e. the
evaluation procedure is accelerated. More specifically, the Accelerated Evaluation consists

Six steps:
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1) Collect a large quantity of naturalistic driving data.

2) Extract events that have potential conflicts between an AV and surrounding HVs.

3) Model the behaviors of “other vehicles” as the major disturbance to AVs. The
randomness is modeled as random variables vector x with probabilistic distribution f(x).

4) Skew the disturbance statistics to reduce the non-safety-critical portion of daily
driving by replacing f(x) with the accelerated distribution f*(x).

5) Conduct Monte Carlo tests with the skewed (accelerated) the probability density
functionf*(x), resulting in more intense interactions/crash between the AV and HVs.

6) “Skew back” the results of the accelerated tests to understand the performance

of AVs under naturalistic driving conditions using the statistics analysis.

The procedure of the Accelerated Evaluation is shown in Figure 1.8.

ﬂccelerated evaluation \

Statistical analysis

Accelerated Accelerated test Performance in
model (f " (x)) the real world
J

Simulation model (f(x))

Figure 1.8 Concept of the Accelerated Evaluation method

The scope of this study includes:

1. We focus on the interaction between AV and other Human Controlled Vehicles
(HVSs). In the early phase of AV deployment, AVs mostly encounter HVs. It is
critical for AVs to deal with HVs including their imperfectness. The AV to AV
and HV to HV interactions are beyond the scope of this study (except when
used as a benchmark).

2. The sensors and controls of the AV are assumed to work perfectly. The HVs

making unsafe maneuvers are modeled as the primary disturbance to AVs. The
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measurement and perception errors and control inaccuracy are also beyond the
scope of this study.

3. Human drivers are assumed to react to AVs in the same way as they do to other
HVs. Some automakers, like GM, work hard to hide sensors and make their
prototype AVs look ”normal” [94]. In this research, we assumed AVs look
similar to HVSs, so other vehicles do not treat AVs differently.

4. Only the first impact in a crash event will be considered. Secondary impacts
may occur but are outside of the scope of this study.

1.5 Contributions

We propose a new AV evaluation approach — The “Accelerated Evaluation”
approach. The main contributions are in the following three aspects:

e The “Accelerated Evaluation” concept is new in the field of AV testing and

evaluation.

In this approach, driver behaviors reflected in the N-FOT are modeled statistically.
The test duration is dramatically reduced because the non-safety-critical events are
compressed. For crash analysis, the test mileage can be reduced by a factor of 10,000 to
100,000. This technique thus can reduce the development and validation time for AVs

significantly.
e We developed four Accelerated Evaluation methods.

i.  Accelerated Evaluation based on the analysis of likelihood of the naturalistic
driving
This method accelerates the evaluation procedure by reducing the relatively safe
events with a high likelihood of occurring. An import observation of the safety-
critical events is that they all have a low probability of occurring [22], [26]. By
modeling the surrounding HVs with stochastic models and modifying their
statistics, the most common but “boring” parts are removed. Thus, the cost and

duration of the evaluation process can be reduced.
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Accelerated Evaluation based on Importance Sampling

By changing the statistics of the HVs, more intense interactions happen between
the AV and its surrounding vehicles. By taking the amplified results and the
modified statistic information in the Importance Sampling framework, the
evaluation metrics (e.g. the crash rate) can be calculated with the statistical
equivalence between the accelerated tests and naturalistic driving rigorously

proved.

Adaptive Accelerated Evaluation approach

The “Adaptive Accelerated Evaluation”, provides a procedure to find the best way
to skew the probabilistic density functions of HVs to maximally reduce the
evaluation duration. If the statistics changed too little or improperly, the
acceleration rate is not sufficient. To accelerate 10,000 times, the change must be
significant. We propose an iterative way to find the optimal parameters in the
accelerated tests based on the Cross Entropy method. In each iteration, the modified
statistical distributions of the HVs are updated based on the results from a small set
of tests using the previous distributions. With this approach, we can significantly
reduce the time needed to find an effective way to modify the HV distributions to

significantly accelerate the evaluation.

Accelerated Evaluation of the dynamic interactions between AVs and HVs

It is more challenging to evaluate AVs in a dynamic interaction. In a static sampling
scenario, the randomness of the driver behavior is modeled as a set of distributions
but sample only once at a particular moment. For instance, in the lane change
scenario, safety is primarily determined by the vehicle making the lane change. The
decision is made at the moment when the driver believe that it is safe to change the
lane after multiple checking of the rear mirrors. We call this type of stochastic
interactions static sampling scenarios. In a dynamic sampling scenario, such as in
the car-following situation, drivers adjust their speed constantly affected by the lead
vehicle movement, host vehicle speed, road/weather conditions and other factors.
The statistics of the HV behaviors are state-dependent and change over time. Safety
is determined by the states over a period of time, generated stochastically in a

dynamic procedure. A new approach is proposed to evaluate the dynamic
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interactions. The driving scenario is modeled as a Discrete Markov Chain. The
statistics of the HVs in each time step during the whole car-following is folded into
one joint distribution. By studying of the joint distribution using, the dynamic
interactions were examined in the Accelerated Evaluation. Stochastic optimization
approach is used to find a set of AE distributions in each step to significantly
accelerate the evaluation procedure. The Importance Sampling techniques are used

as the framework again to ensure the accuracy of the results in the accelerated tests.

e We applied the Accelerated Evaluation method on two common driving

scenarios.

Two common driving scenarios - the car-following and lane change scenarios were
analyzed using the Accelerated Evaluation approaches. The surrounding HVs were
modeled based on two large naturalistic driving databases created and maintained by the
University of Michigan Transportation Research Institute: the Safety Pilot Model
Deployment database [33]-[36], and the Integrated Vehicle-Based Safety Systems [31],
[32] project. The probabilities of conflict, crash and injury events for prototype AV models
were calculated based on the Accelerated Evaluation method. Non-accelerated (i.e.
naturalistic driving) tests were conducted to validate the proposed approaches and calculate
its acceleration efficiency.

1.6 Outline of the Dissertation

The remainder of this dissertation is organized as follows. In CHAPTER 2, an
Accelerated Evaluation approach is developed based on likelihood analysis of the
naturalistic driving. In CHAPTER 3 the Importance Sampling techniques are applied to
improve the reliability and accuracy of the Accelerated Evaluation method. In CHAPTER
4, the Adaptive Accelerated Evaluation is developed to achieve maximum accelerated
rates. In CHAPTER 5, an Accelerated Evaluation approach is developed to study the
dynamic interaction between HV and AV. Finally, conclusions and future research
directions are outlined in CHAPTER 6.
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CHAPTER 2
ACCELERATED EVALUATION BASED ON LIKELIHOOD
ANALYSIS

2.1 Introduction

The core idea of the Accelerated Evaluation method is to reduce the non-safety-
critical driving events. In this chapter, we introduce an approach that accelerates the
evaluation by reducing the events with a high likelihood of occurring but do not contribute
to the final risk calculation. The approach is demonstrated in the car-following scenario.
First, we built a three-car car-following model based on a naturalistic driving database.
Then the Accelerated Evaluation approach is applied to accelerate the evaluation. Finally,

the results are compared to the naturalistic driving safety records.

2.2 The Three-car Car-following Model

A microscopic simulation environment was built to evaluate the AV performance
interacting with HVs in car-following scenarios. As shown in Figure 2.1, three vehicles are
included in the scenario: the lead HV, the AV in the middle to be evaluated, and the trailing

HV.

Lead HV: lead human controlled vehicle
AV: automated vehicle
Trailing HV: trailing human controlled vehicle

Acceleration a; (t) Range Acceleration a(t) Range Acceleration ap(t)
Velocity v (t) Ry() = X (1) — X(1) Velocity v(t) Velocity vy (t)
iti Range rate Position Xz(¢)

Figure 2.1 The three car-following simulation scenario
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2.2.1 Stochastic lead vehicle model

In the car-following scenarios, it is critical to model the lead vehicle motion. In the
Test Matrix method, the lead vehicle motion is predefined. For example, in the EURO-
NCAP Autonomous Emergency Braking (AEB) test protocol [95], three scenarios are
defined as shown in Figure 2.2: 1) stopped lead vehicle, 2) slow lead vehicle with constant
speed, and 3) lead vehicle braking at constant deceleration. In another research, Lee [96]
selected 100 challenging lead vehicle motions from the SAVEME naturalistic database as
shown in Figure 2.3. As all the scenarios were extracted from naturalistic driving, they
represent real-world driving scenarios. However, the querying approach (Time To
Collision < 11 s) is somewhat ad hoc. It was also not clear how to assign a final
performance score based on the simulation results of these 100-case scenarios. Yang [97]
searched the whole Road Departure Crash Warning (RDCW) database [29] and used all
available lead vehicle trajectories to evaluate AVs. This approach avoids the issue of

choosing scenarios. However, the exhaustive simulation study takes a long time to finish.

15¢
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Figure 2.2 Lead vehicle speed profiles used in the EURO-NCAP AEB test
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Host-vehicle Velocity(m/s)

Time(sec)

Figure 2.3 Speed queried from the SAVEME database with Time To Collision <11's
[96]

In this research, the lead vehicle is modeled as a discrete time Markov Chain. The
lead vehicle velocity and acceleration are used as the two state variables. The acceleration
in the next time step a;(k + 1) is modeled as a random variable with distribution

dependent on the current acceleration a; (k) and velocity v, (k) , that is,

P(a,(k + D]a,(k), v.(k) = fiv(a,(k + Dla, k), v, (k). (2.1)

The data from the Integrated Vehicle-Based Safety Systems (IVBSS) database [98]
is used to fit the driver model. 108 licensed drivers were recruited to participate in the
study. Participants were in one of three age groups: 20 to 30 (younger), 40 to 50 (middle-
aged), and 60 to 70 years old (older), and are gender balanced. Each participant drove a
vehicle equipped with the integrated safety system and data acquisition system for

approximately six weeks. Figure 2.4 shows all recorded trips with 213,000 miles traveled.
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Figure 2.4 Light vehicle trips in the IVBSS database [32]

Vehicle acceleration and speed were extracted from the 1VBSS database with
sampling time Ty = 0.3 s. The data was further divided into bins defined by speed interval
of 1 mph. As shown in Figure 2.5, for each driver and speed interval, the data set
[a,(k + 1), a,(k),v, (k)] were collected with the acceleration quantized by 0.03 m/s? and
speed quantized by 1 mph. 1.5 million data points were extracted from IVBSS database.

The data sets were further aggregated for all 108 drivers to represent the diversity
of behaviors among drivers. For each speed interval, a two-dimensional (2-D) histogram is
calculated to represent the statistics of the stochastic behaviors. Figure 2.6 shows the
histogram for v, € (40,41] mph. The color represents the normalized frequency of the
[a,(k + 1),a,(k),v, (k)] set such that

> (el + 1,0, (01w, (00) = 1 22)
ar(k+1) ap (k)

where 5, (+) is the normalized frequency. It can be seen that the center of the histogram
where a; (k + 1) = a; (k) = 0 has the maximum frequency, which represents constant

speed cruising.
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Figure 2.5 Data extracted from the IVBSS database
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Figure 2.6 Histogram of the lead HV with speed between 40 mph and 41 mph

The 2-D histogram can be modeled by the Gaussian Mixture Model (GMM) [99].

The acceleration in the next step is calculated from
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fLV(aL(k + Dla,(k), UL(k))

= > wi(w0) fy ([aff&)ﬂ

=1

where w; are the mixture weights satisfying >, w; = 1, and f;(-) is the component

(2.3)
wi(v,(0), zi(mk)))

density, in the form of a 2-variate Gaussian model

fG ([aLéf(Z)l)] ‘Mi(vL(k))l Zl(vL(k))>

= ! exp {— 1 <[aL (k+1)
2w ) 2\ @) e

T
~ () 5(w) (M D —ui(vL(k))>}

where y; is the mean vector and X; is the covariance matrix. The velocity in the next time

step is calculated from

v(k+1) =v,(k)+ T - a,(k). (2.5)

The model parameters are estimated using Expectation-Maximization algorithm
[100]. The number of components for the GMM is set to four to provide an adequate degree
of freedom but not too large to run into problems in over-fitting. Figure 2.7 shows fitting
results in a three-dimensional plot. The histogram of the naturalistic driving data is
displayed in Figure 2.7 a). The fitted GMM model with the same speed intervals is plotted
on the right-hand side of Figure 2.7 b).

15 4 15
3
0
40 mph : "% 40 mph
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5 N < k+1) -
aL[f:/;]l) 6 4 =2 0 2 4 6 a"[(m/;] ) 6 4 =2 0 2 4 6
a, (k) [m/s?] a, (k) [m/s’]
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Figure 2.7 Lead HV statistics modeled by the Gaussian Mixture Model

2.2.2 Trailing vehicle model

Trailing vehicle refers to the vehicle in the same lane and is directly behind the
subject vehicle. For AVs with a forward collision avoidance system, the likelihood to
collide with a lead vehicle can be significantly reduced. Struck by the car from behind may
become the major type of crashes. To include crash from behind for a more complete
analysis, the trailing vehicle behavior is modeled.

Car-following behaviors have been intensively studied and modeled for computer
simulations. In [101]-[107], car-following behaviors were modeled based on the
assumption that drivers react to the range R, (t) (the distance between the front end of the
host vehicle and the rear end of the lead vehicle) and/or its derivative — the range rate Ry (t)
as shown in Figure 2.1. Table 2.1 summarizes many of the well-known car-following
models. A linear model was first suggested by Pipe [101] in 1953, in which the acceleration
of the host vehicle a;(t) was controlled by the delayed range rate R,(t — ) with a
constant feedback gain, where 7 is the reaction time. Gazis, Herman, and Rothery [102]
then modified the model with a nonlinear control gain as a function of R (t) and the speed
of the host vehicle v (t), often referred as the GHR model. Over the years, many efforts
have been devoted to finding the best parameters of the GHR model but without conclusive
results [105]-[107]. Tyler [103] derived the car-following model based on the optimal
control approach in 1964. The range and range-rate errors were optimized over a quadratic
cost function. Gipps developed a car-following model [108] based on a kinematic analysis

that always guarantee crash-free even the lead vehicle brake at its maximum deceleration.
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Table 2.1 Deterministic car-following model

Research Para-

or Model meters Equation
Pipe (1953) Linear C,tr ar(t +17) =C-Rp(t)
Gazis et al. . C-vr(®™ .
Nonlinear C,tr,m,l ar(t+17) =——R(t
(1961) T rlt 4o =5 o Fr®
Exponenti
Newell al A Ly - ; i
1961)  convergen o T vr(e+7r) = vfST (L = exp{=Ar(Rr(®) = Romin) /085
min
ce
Linear
Tyler . Cy, C,, . .
(1;64) optimal Tr 1T;liisire ar(t + TT) =CiRr(t) + G, [R(t) - T’zliusswe vT(t)]
control Pohw

vr(t + t7)
( ’ "
Gipps | or® +25a, <1 - ”5—”) 0025 + 21O
TO TO
(1981) Crash free ay, by, _ min
Peid UL(t)z
bytr + |bits — by [2(R7(t) — Rypin) — v ()7 — s

Most of the driver models focus on normal driving behaviors. Good fitting results
and crash-free simulations are generally considered as model performance metrics [97, p.
13]. However, the majority of crashes occur due to human errors [109], [110]. Therefore,
it is important to understand driver errors that lead to unsafe situations. Error-free models
are useful to study the average traffic flow or human behaviors but are not very helpful to
evaluate safety systems. An ‘errorable’ driver model that can simulate the mistakes of
human drivers was developed by Yang and Peng (the “Michigan” model) [111], which was
used to evaluate longitudinal collision warning systems [92]. Tang et al. [112], Przybyla et
al. [113] and Bi et al. [114] built other longitudinal or lateral errorable models based on
this concept.

In general, errorable driver models consist of three components as shown in Figure
2.8: deterministic driving principles, stochastic driving behaviors, and error mechanisms.
The deterministic driving principles establish the basic relationship between the control
stimulus variables (range and range rate) and the response of the driver (acceleration). A

stochastic driver behavior block is added to describe driver imperfection and variations.
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Finally, errorable mechanisms based on statistical and psychophysical knowledge of

human behavior are included as the third component of the model.
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|
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NATIONAL HIGHWAY TRAFFIC

SAFETY ADMINISTRATION

Driving data Study of human Traffic accidents
unsafe behaviors statistics

Figure 2.8 Concept of the errorable driver model

In this research, we use the Michigan errorable driver model (referred as the
Michigan model below) to simulate the trailing vehicle in the car-following scenarios. In
the Michigan model, a modified Tyler’s model was used as the deterministic driving
principle. The desired time headway and the variance longitudinal acceleration were
modeled as stochastic variables to simulate the randomness in human driving behaviors.
The variation of the desired time headway is used to model the different driving styles
among drivers, and the change in one driver over a long time. Given the desired range, the
imperfection of human control is captured by the variation of the acceleration. Three error-
inducing mechanisms were modeled: perceptual limitation, distraction, and time delay. The
perceptual limitation of human drivers is modeled by quantizing the range-rate
measurement. Two types of distractions were considered in the Michigan model: “mind-
off-the-road” and “eyes-off-the-road” that are likely caused by secondary tasks, such as
answering a cell phone or talking to passengers. During “mind-off-the-road” distraction,
drivers are assumed to keep eyes on the road while doing the secondary tasks. The

secondary tasks increase the mental load and degrades the driving performance. If a human
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driver fully devotes him/herself to a secondary task, very often he/she will move the eyes
to this task and stop updating the driving information. This situation is defined as “eyes-
off-the-road”. The mind-off-the-road, the eyes-off-the-road, and time delay were modeled
as stochastic behaviors.

The Michigan model was compared to Pipes model, Gazis model and Tyler model
and showed better accuracy and robustness in [111]. As shown in Figure 2.9, the Michigan
model shows a smaller error compared with other three models. It also shows good

consistency between the training set and the evaluation set.

Driver Models Comparison

2
The Michigan model Tyler Pipes Gazls
1.5} (Yang and Peng)
I b
@ 0.5}
s b
)
Bl [0 P
2
Qo
L2
2 -0.5p
] s
8 Training Set
-1.5F Evaluating Set
-2

Figure 2.9 Comparison results of the trailing HV model [111]

The overall structure of the Michigan model is shown in Figure 2.10. The model
parameters were fitted to data extracted from the RDCW naturalistic driving database [29].
Figure 2.11 shows an example result from the Michigan model. The trailing HV followed
the lead HV well both at high and low speed while the driver stayed focus. However, the
trailing driver got distracted at about 45 s while the lead vehicle started to decelerate
abruptly. The trailing HV failed to respond to the deceleration and collide into the lead

vehicle.
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Figure 2.10 Structure of the Michigan errorable car-following model (based on [111])
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Figure 2.11 One crash example of the Michigan model

2.3 Accelerated Evaluation based on Likelihood Analysis

The driver models developed in the previous section emulates driving behaviors in
the naturalistic driving. An accelerated model is needed to accelerate the evaluation
procedure An important observation of the safety-critical events is that they have a low
probability of occurring [22], [26].

We propose the Accelerate Evaluation approach based on likelihood analysis. The
core idea of this method is that by reducing the safe events that have a high likelihood of
occurring, the overall exposure rate for critical scenarios is increased and the evaluation of
AV is accelerated. In the following, this idea is demonstrated in the three-car car-following

scenarios.
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There is randomness in both lead HV and trailing HV models. We can change the
statistics in both models to amplify the interactions between the HVs and the AV. As
maintaining a proper range with the lead HV is the responsibility of the AV, only the
statistics of lead HV is modified for simplicity. It can be seen from Figure 2.6 and Figure
2.7 that the center area of the histogram has a much high probability. To emphasize the tail

part of the distribution, the histogram is plotted in logarithmic scale in Figure 2.12.
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Figure 2.12 Empirical distribution of the naturalistic driving in logarithmic scale for data
at vehicle speed between 40 mph and 41 mph

The corresponding GMM maodel is plotted on a logarithmic scale in Figure 2.13.
The center of the histogram represents cruising with little speed variation. The exterior of

the distribution embodies rarer events with low probability of occurring.
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Figure 2.13 GMM fitted lead vehicle model in the logarithmic scale for data with vehicle
speed between 40 mph and 41 mph
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To reduce the most frequent driving scenarios, we remove 99.5 % of the high
probability density data. Figure 2.14 shows the procedure to generate the accelerated
distribution. The percentage of eliminated events can be adjusted based on time/budget

constraints.
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Figure 2.14 Procedure to generate accelerated transition matrix

Figure 2.15 shows the accelerated and normal lead vehicle velocity profiles
generated by the Accelerated Evaluation method. It can be seen that the lead vehicle
velocity has more frequent and harsher actions than in the normal (non-accelerated)

conditions.
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Figure 2.15 A comparison of the velocity profiles of the lead human controlled vehicle in
accelerated and non-accelerated (naturalistic) tests

33



2.4 Simulation Analysis

In this section, simulations are conducted to demonstrate the Accelerated
Evaluation approach. The accelerated lead HV model in Figure 2.14 and the Michigan
model in Figure 2.10 are applied to construct the three-car car-following scenario in Figure
2.1. Two AVs are designed based on production vehicles, which are evaluated by the
results in the accelerated tests with two metrics: the crash rate and relative speed, in both
frontal crashes and rear crashes. Finally, the accelerated rate is approximated by comparing
the crash rate for HV in the accelerated tests and in real world, followed by the discussion

of the benefits and limitations of the proposed method.

2.4.1 Automated vehicle models

Two AVs were designed to demonstrate the proposed Accelerated Evaluation
method. Both AVs are equipped with ACC (Adaptive Cruise Control) [115] and AEB
(Autonomous Emergency Braking). As shown in Figure 2.16, the AVs are controlled by
the ACC algorithm when the situation is perceived to be safe. The AEB algorithms become
active when a threat is detected. If the AEB fails to prevent the crash, the simulation
terminates. Otherwise, the control is returned back to the ACC. Both the AVs use the same
ACC algorithms but different AEB designs. The AEB models used in this dissertation are
based on the work in [116] which extracted the control algorithms from two production
vehicles: Volvo V60 and Infiniti M37S. We name the two AV designs as Design A and
Design B.

RLI RL
— |71Tc, = TTC,m ACC a,
v
— |TTC, <TTCus  «=AEB O O

Longitudinal Vehic!e
controller dynamics

Figure 2.16 Layout of the AV control model
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The ACC is approximated by a discrete Proportional-Integral (PI) controller [115]

to achieve a desired time headwayt¢5'¢. Define the time headway error as

thw=tuw — thee (2.6)

where tyy is the current time headway, defined as

tuw = Ry /v. 2.7)
Use tE7T as the controller input, the P1 controller can be designed as
t
aq(t) = Kyt () + K; f thr (7)) de (2.8)
0

where a, is the desired acceleration commanded by ACC controller; gains K, and K; are
the proportional and integration gains calculated using Matlab Control Toolbox® with the
following two requirements: 1) Loop bandwidth = 10 rad/s; 2) Phase margin = 60 degree.
The ACC control is saturated at +5 m/s?,

The AEB model was extracted from a 2011 Volvo V60, based on a test conducted
by ADAC (Allgemeiner Deutscher Automobil-Club e.V.) [116]. The test results were
analyzed to reconstruct the AEB algorithms by Gorman [117] using together the test track
data, owner’s manuals, information from European New Car Assessment Program (Euro
NCAP), and videos during vehicle operation.

The AEB algorithm becomes active when a risk is detected, and in Gorman’s
reconstruction [117] it was assumed that the risk is only based on a threshold value of

“Time-To-Collision”, defined as

R
TTCL = —R_L < TTCAEB (29)
L
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where TTCy5 is the threshold to activate AEB system as a function of vehicle speed.
Figure 2.17 shows the relationship between TTC,5 and vehicle speed. The Lower Speed
Thresholds of Operation (LSTO) were estimated in [117] obtained from the owner’s
manuals and validated by data and statements in the ADAC test report [116], representing
by the left vertical lines in Figure 2.17. The AEB will not activate if the speed of the AV
is below the LSTO. In this research, we evaluate the AV within the operational range of
the AEB. The lower threshold of the speed for the lead HV, AV and trailing HV are set to
be 5 m/s.

)
i
oF 051 s Design A
',: —— Design B
0 1 1 1 1 1 1
0 5 10 15 20 25 30

velocity [m/s]

Figure 2.17 AEB triggering threshold dependent on the vehicle speed

Once triggered, AEB aims to achieve a target deceleration aAEB. The build-up of
deceleration is subject to a rate limit rAEB as shown in Figure 2.18. The desired aAEB of
Design B is -10 m/s. However, in reality, the maximum deceleration may not reach this
level due to tire/road conditions. The existence of Anti-lock Braking Systems (ABS) also
prevents the longitudinal tire force from reaching its peak value to avoid tires locked-up
and losing control of the vehicle. In this research, we set the maximum deceleration to be
-8 m/s2.

N’; 0
E Design A
= Design B
£ 5
@ rAEB{Design B)
L]
©
8 \ aAEB(Design B)
@ _10 . :
0 0.5 1 1.5 2

time [s]

Figure 2.18 Acceleration profiles of the AEB designs
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A first order lag with a time constant 4, is used to model the transfer function from
the commanded acceleration to the actual acceleration for simplicity. The roads are
assumed to be flat and straight with good adhesion. The effects of tire dynamics, chassis,
and braking systems are not considered in this research.

The wvehicle and control models presented in the section may not be good
representations of the actual systems in the production vehicles. The simulation results thus
should not be interpreted as rigorous evaluation results for the two production vehicles. If
more accurate simulations are desired, the proposed accelerated evaluation process can be
used in junction with more accurate simulation models such as CarSim® [118] and more

detailed control algorithms.

2.4.2 Evaluation metrics

Two evaluation metrics were used: crash rate and relative velocity Av at crash.

A crash happens when R, (t) < 0. The crash rate of N simulations is defined as

N
r.(N) = %Z d, (2.10)
n=1

where n is the index of simulation tests, N is the total number of crashes. d,, is the distance

travelled in test n, defined as

terash
d, = f v (t)dt (2.11)
t

=0

where v™ (t) represents the velocity of AV at time ¢ in the nt" test and ¢4, is the time
when the crash happens.

As each test runs under the same stochastic condition, based on the Law of Large
Numbers, the sampling average will converge to the expected value when the sample size
approaches infinity, i.e.,

.(n) » us:=E() for n - oo (2.12)
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Moreover, the Central limit theorem implies that, when n is large, r.(n) follows the normal
distribution V" (u,, 02) approximately.

The simulations continue until the relative error r,..;(n) < b,.- with a confidence
level larger than (1 — a) * 100% (both b,,- and «a are small positive number to be

selected), i.e.

P(ryei(n) < by ) =21 —a. (2.13)

The relative error is defined as

Trel(n) = ) ~ e (2.14)
He
which can be approximated by
) = (2.15)
where 6C2n is the variance of {r.(1),7.(2), ...,7.(n)}. z, is defined as
Zg =P 11— a/2) (2.16)

where @~ is the quantile function of the standard normal distribution @(0,1).

2.4.1 Simulation results

Each simulation test will start with the same initial values and end when a crash
occurs. The average crash rate is calculated after each test. Keep running the car-following
tests until the relative error r.,; < 10 % with 97 % confident level (a« = 0.03). The

simulation parameters are listed in Table 2.2.
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Table 2.2 Parameters the car-following simulation

Var. Unit Value Var. Unit Value
a, m/s? 0 Tgesire S 2

a, m/s? 0 T, s 0.3
arg m/s? 0 v m/s 20
aMax m/s? 8 VLo m/s 20
aMin m/s? -8 Ur, m/s 20
aMax m/s? 8 pMax m/s 40
aMn m/s? -8 pMin m/s 5
alax m/s? 8 pMax m/s 40
ayn m/s? -8 pMin m/s 5

g m/s? 9.81 vHax m/s 40
R, m TS * vy yMin m/s 5
Rz, m T,_‘}ﬁf;re * v,

The estimated crash rates are shown in Figure 2.19. The frontal crash and the rear
crash are defined as the collisions of the AV with the lead HV and trailing HV respectively.
Design B, equipped with a more aggressive algorithm, traveled a longer distance to
encounter a frontal crash than Design A. Both designs showed similar rear crash rates.
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Figure 2.19 Estimated crash rate
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The rear crash happens because the trailing HV fails to maintain a safe distance or
gets distracted when the AV decelerates. Theoretically, Design B should have a higher rear
crash rate since it is equipped with an AEB generating higher decelerations. The reason
that the rear crash rates are similar is that the majority of crashes are caused by inattention
of the trailing HVs when AV is controlled by ACC. As shown in Figure 2.20, among all
the rear crashes, only 2.5 % happens with AEB being activated for Design A and 4.0 % for
Design B. Although Design B brakes harder and has (4 % - 2.5 %)/2.5%x%100% = 60 %
more rear crashes with AEB on than Design A, because non-AEB-related crashes dominate,
the overall rear crash rates of the two designs are similar.

AV is controlled by AEB (2.5%) AV is controlled by AEB (4%)

AV is controlled by ACC (97.5%) AV is controlled by ACC (96%)
a) Design A b) Design B

Figure 2.20 Status of AV controller when rear crashes happen
The relative velocity Av is defined as
Av = |Ry (terasn)| (2.17)
The histograms of relative velocities are shown in Figure 2.21 with means and +o error

bars. It is shown that Design B has lower Av than Design A on average in frontal crashes.

Both AVs have similar Av in rear crashes.
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Figure 2.21 Estimation of relative velocity during crash

2.4.2 Benefits and limitations of the proposed method

The benefit of the proposed approach is that it provides a method to generate
accelerated test scenarios that have a much higher crash rate based on the analysis of real-
world driving statistics. To illustrate the effect of the acceleration, an HV-HV car-
following scenario was simulated and compared with the real world crash rate. As shown
in Figure 2.22, the two-car model was built by using the lead HV and trailing HV models
in the previous sections. With the same accelerated setting, the crash rate between the two
was found to be 6.98 miles/crash. In 2013, the average crash rate for the police-reported
rear end crash is 0.817 million miles/crash in the U.S. [42, p. 70]. Considering
approximately half of the accidents are not reported to the police [42, p. 5], the crash rate
was estimated to have increased by roughly 0.817e6/2/6.98=5.85e4 times in the accelerated

test.

Lead human controlled vehicle Trailing human controlled vehicle
(Accelerated Markov Model) (Errorable car-following model)

Figure 2.22 Simulation layout for human controlled vehicles
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Although this method significantly accelerated the evaluation procedure, it does not
provide a direct relationship between crash rate in the accelerated tests and crash rate in the
real world. Therefore, this method provides a relative ‘score’ between AVs but may not
accurately estimate the absolute value of the crash rate. In the next chapters, we will
generalize the method by establishing a rigorous connection between the accelerated test

results and real world performance.

2.5 Summary

A procedure to accelerate the evaluation of AVs using naturalistic driving data was
developed in this Chapter. The general idea is to reduce the frequent events that are not
safety critical in the daily driving so that a higher level of exposure to critical scenarios is
achieved. This method can accelerate the evaluation procedure and the acceleration rate
can be controlled by changing the probability density function that is eliminated. Two AVs
equipped with ACC and AEB were designed based on production vehicles to demonstrate
the accelerated evaluation approach. The simulation results showed that the overall

evaluation time was reduced by a factor of 5.85e4.
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CHAPTER 3
ACCELERATED EVALUATION BASED ON IMPORTANCE
SAMPLING TECHNIQUES

3.1 Introduction

In this chapter, we introduce a new accelerated evaluation method to calculate the
real-world benefits from the accelerated test results with a rigorous mathematical basis.
The fundamental efficiency limitations of Monte Carlo simulations are first analyzed. A
statistical framework of the Accelerated Evaluation is then established based on the
Importance Sampling techniques. Frontal collision due to unsafe cut-ins is used as the

target crash scenario to demonstrate the proposed approach.

3.2 Importance Sampling Techniques

3.2.1 Limitations of the Monte Carlo approach

Monte Carlo simulations [119] aim to generate unbiased statistical samples for a
stochastic process. To analyze the Monte Carlo method, let us start by introducing some
mathematical notations. Let Q be the sample space for all possible events, and € c Q be
the rare events of interest, i.e., the occurrence of a crash. Let x be a random vector

describing the motions of surrounding HVs. The indicator function of the event £ is

defined as
(1, ifxeé€
le(x) = {O, otherwise (3.1)
Our task is to estimate the probability of £ happening, i.e.
y = P(&) = E(I(x)). (3.2)
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The Monte Carlo approach generates independent and identically distributed samples

X1, X2, ..., Xp Of x, and then calculate the sample average

1 n
=g ) Jex) (33)

We state some statistical properties of Monte Carlo method. First, under mild conditions,
the Strong Law of Large Numbers [119] holds, i.e.

P(lim 7, =y)=1. (3.4)

n—oo

Moreover, the Central Limit Theorem [119] states that, when n is large, y, follows

approximately the normal distribution V' (E(#,,), 6%($;,) ) with mean

1 n
E(#,) = E <;ZO I&'(xi)> =y (3.5)

and variance

1v 1% 1—
02(7,) = Var(7,) = Var (;Z Ig<x,->> = n—z Var (Is(x) = % (3.6)

The accuracy of the estimation is represented by the relative half-width. With the
Confidence Level at 100(1 — a) %, the relative half-width of 7, is defined as

Ly
[, =— 3.7
” 3.7)
where [, is the half-width given by
lg = 240 (V) (3.8)
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and z,, is the quartile of standard normal distribution with significance level « defined as
Zg =011 —-a/2) (3.9)

where ®~1 is the quantile function of the standard normal distribution @(0,1). The target

of estimation accuracy is to ensure [,. is smaller than a constant £, it can be shown that
la _20n) 7« YA=V)_ 1Y _p (3.10)
14 14 14 n yn

n>2.-_1% (3.11)

which implies

The reason that the Monte Carlo approach is slow is because it takes many samples
to build a confidence interval that has a satisfactory half-width. As shown in Eqg. (3.11),

when € israre, i.e.y — 0, the required test number n goes to infinity.

3.2.2 Importance Sampling techniques

The Importance Sampling (1S) theory provides technigues aiming to reduce the
required test numbers in Eq. (3.11) that are effective in handling rare events with general
overviews in [120]-[123]. IS has been successfully applied to evaluate critical events in
reliability [124], finance [125], insurance [126], earthquake [127], and telecommunication
networks [128]. The mathematical foundation and the implementation of this technique
have been mostly studied from the viewpoint of these domains. The research in this
dissertation first applies this technique to AV evaluation.
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Figure 3.1 Procedure of the Accelerated Evaluation method based on Importance
Sampling techniques

We describe the IS techniques as follows. Let f(x) be the original joint density
function of the random vector x. The core idea of IS is to replace f(x) with a new density
f*(x) (named as the AE distribution) that has a higher likelihood for the rare events to
happen. Using a different distribution leads to biased samples, and the advantage of IS is
to provide a mechanism to compensate for this bias. The IS techniques are very suitable
for Accelerated Evaluation, in which probabilistic distributions of HVs are modified to
enhance the interactions between AV and HVs. IS provides a mathematical basis to
guarantee the statistical equivalence of the accelerated tests and naturalistic driving. The
Accelerated Evaluation procedure is described in Figure 3.1.

We define the likelihood ratio L (mathematically named as the Radon-Nikodym
derivative [129]) as

f(x)
fr(x)

L(x) = (3.12)

The probability of £ satisfies
P(E) = Ef(Ie¢(x))

= [ s
(3.13)

- [ reLwIr @ax

= Ep+(Ie(x)L(x)).
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One required condition for Eqg. (3.13) to hold is that f*(x) must be absolutely continuous

with respect to f(x) within &, i.e.
Vxe&f"x)=0 = f(x)=0 (3.14)
which guarantees the existence of L in Eq. (3.13). The IS sample is Ic(x;)L(x;) where x;

is generated under f*(x), which is an unbiased estimator for y. The overall IS estimator

for n tests is then

1 n
P == T () (315)
i=0

Note that although a continuous distribution function is used in this paper, similar
approaches can be applied to discrete distributions as well.

Now consider the relative half-width constructed by the 1S

Za \/Ef*( 72) — E2.(7)

| o _ 200 _
Ty oy T yVn
Z, Jmf*(lf(x) L2 (x)) —y? (3.16)
- e
_ Z_a\/IEf* (Ig(xz) 12 (x)) ey
Vn Y

The required minimum test number is then

2 [Ep ( I2(x) L2
nz;—"; f(g(:z) (x))—1. (3.17)
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When f*(x) is properly chosen, [Eg (Ig(x) L? (x)) can be close to y2, resulting in a

smaller number of tests (i.e., the evaluation is accelerated).

3.3 Evaluation of AV in Lane Change Scenario using Importance Sampling

The lane change (cut-in) scenario is used as an example to show the benefits of the
proposed Accelerated Evaluation method. Lane change, defined as a vehicle moving from
one lane to another in the same direction of travel [27], can cause a frontal collision crash
for the following vehicle when the time gap is too short. Successful completion of a lane
change requires attention to the vehicles in both the original lane and the adjacent lane
[130]. In the US, there are between 240,000 and 610,000 reported lane-change crashes,
resulting in 60,000 injuries annually [27]. However, few protocols have been published
regarding the evaluation of AV functions (e.g., AEB systems) under lane change scenarios.
Therefore, we aim to develop such an evaluation procedure based on the Accelerated

Evaluation approach in this research.

3.3.1 Extraction of lane changes events from the naturalistic driving

database

Human drivers’ lane change behaviors have been analyzed and modeled for more
than half a century. Early studies based on controlled experiments usually have short test
horizons and limited control settings [131]. More recently, researchers started to use large
scale N-FOT databases to model the lane change behaviors. Lee et al. [131] examined
steering, turn signal and brake pedal usage, eye glance patterns, and safety envelope of 500
lane changes. The 100-Car Naturalistic Driving Study analyzed lane change events leading
to rear-end crashes and near-crashes [27]. Zhao et al. [132] analyzed the safety critical
variables in mandatory and discretionary lane changes for heavy trucks [31]. Most of these
studies are based on hundreds of lane changes. To build a more accurate model, we use the
data collected in the Safety Pilot Model Deployment (SPMD) project [34], which contains
more than 400,000 lane changes.

In this research, we developed a lane change statistical model and demonstrated its

usage for accelerated evaluation of a frontal collision avoidance algorithm. The data used
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is from the SPMD database. The SPMD program aims to demonstrate connected vehicle
technologies in a real-world environment. It recorded naturalistic driving of 2,842 equipped
vehicles in Ann Arbor, Michigan for more than two years. As of April 2015, 34.9 million
miles were logged, making SPMD one of the largest public N-FOT databases ever.

As shown in Figure 3.2, a lane change was detected and recorded by an SPMD
vehicle when the Lane Change Vehicle (LCV) crosses the lane markers. In the SPMD
program, 98 sedans are equipped with a data acquisition system and MobilEye® [133],
which provides: a) relative position to the lane change vehicle (range), and b) lane tracking
measures pertaining to the lane delineation both from the painted boundary lines and road
edge characteristics. The error of range measurement is around 10 % at 90 m and 5 % at
45 m [134].

Range
Acceleration ay(t) R, (t) = Dy(t) — D(t) Acceleration a(t)
Velocity v (t) Range rate Velocity v(t)
Position D (t) Position D(t)

. d
Ry(6) = Ry (6)

Figure 3.2 Lane change scenarios that may cause frontal crashes

The following criteria were applied to ensure consistency of the used dataset:
o v(tyc) € (2m/s, 40 m/s)
o v (tyc) € (2m/s, 40 m/s)
e R, (tic) € (0.1 m,75m)
where t; is the time when the center line of the LCV crosses the lane markers; v, and v
are the velocities of the LCV and the SPMD vehicle; R, is the range defined as the distance
between the rear edge of the LCV and the front edge of the SPMD vehicle. 403,581 lane

changes were detected in total. Figure 3.3 shows the locations of the identified lane changes.
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Figure 3.3 Recorded lane change events in the SPMD database

3.3.2 Lane changes model

A lane change can be divided into three phases: the decision to initiate a lane change,
gap (range) acceptance, and lane change execution [131]. In this research, we focus on the
effects of gap acceptance which is used in safety assessments to indicate safe lane change
distance or time headway [135]. The gap acceptance is mainly captured by three
variables: v, (t;¢), R.(t.c) and Time To Collision (TTC) of AVs, defined as

R,

TTC, = —— 3.18
=% (318)

where R, is the derivative of R;. In the following, unless mentioned specifically,v;, R,
and TTC,, are the variables at t; .

The distribution of v, denoted as f,, (x) is shown in Figure 3.4. The division of
highways and local roads is embodied in the bimodal shape of the histogram. v, is assumed
to remain constant during the lane change. Only the events with a negative range rate are
used to build the lane change model. Out of 403,581 lane change events, 173,692 are with

negative range rates.
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Figure 3.4 Distribution of vehicle speed of the cut-in vehicle in the lane change scenario

To capture the influence of vehicle speed n range and TTC, we divided lane change
events into low, medium and high speed conditions. Figure 3.5 shows the empirical
distributions of the range reciprocal (denoted as R;1) in different speed intervals. It is

shown that v, has little influence on the distribution of R;'* .

140 F
S g -]
S 120 F - | e 51015 M/s
5 m— 15 t0 25 m/s
:;100 -ll 25 to 35 m/s
2 gof"
3
> 60f \\
% sorl B
o]
o 20 b
o k""‘\
O - L 1 —— n - - — ; 1
0.02 0.04 0.06 0.08 0.1 0.12

Range™ [m™]

Figure 3.5 Distributions of the reciprocal of the range at the lane change moment

Figure 3.6 illustrates the fitting of R; ! using a Pareto distribution defined as

-1-1/k_—1
1 X — Up-1 Ry,
fRZ1 (x|kRL—1, Oprty Hp;it ) = O'_<1 + kRZ1 —L> (3.19)

Rzl O-Rzl
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where the shape parameter kg1, the scale parameter Opyts and the threshold parameter

Hg-1 are all positive. The Matlab® function “gpfit” is used in the fitting based on

Expectation-Maximization approach [100].
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Figure 3.6 Distribution of the reciprocal of range fitted with the Pareto distribution

The empirical distributions of TTC; ! in different speed intervals are shown in

Figure 3.7. As the vehicle speed increases, the mean of TTC; ! decreases. TTC;* can be

approximated by an exponential distribution

L oA (3.20)

frrep (x|/1TTCL_1) =

ATTCL_l

where the scaling factor A;.-1varies with the speed of the LCV.
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Figure 3.7 Distributions of the reciprocal of the Time To Collision at the lane change

moment
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The dependence of A 1.1 on vehicle speed is shown in Figure 3.8. As the vehicle

speed increases, A ;-1 decreases. The blue circles represent A .- at the center point of

each v, interval. We use linear interpolation and extrapolation to create smooth A 7r.-1

for all vehicle speeds.
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Figure 3.8 Interpolation/extrapolation of the parameters of Time To Collision at different

velocities

The effect of range on TTC is limited, as can be seen in Figure 3.9. This indicates

that R, and TTC, can be modeled independently given the same v, .
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Figure 3.9 Distribution of Time To Collision in different range intervals

R, can then be calculated from Eq. (3.21).
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TTC;?
R, = — R_i (3.21)
L

Finally, the velocity of the host vehicle v can be calculated from

v=v, —R,. (3.22)

In summary, the lane change events are generated in the following order: a)

generate v, based on the empirical distributions f,, (x) shown in Figure 3.4; b) generate
Rt using fRZ1 (X|kRzl,O'RZ1,ﬂRZI) shown in Figure 3.6; c) generate TTC; ! using

fTTCL-l (x|v,) shown in Figure 3.8; and finally d) calculate v using Egs. (3.21) and (3.22).

3.3.3 Accelerated Evaluation of AV in the lane change scenario

The lane change scenario is modeled as a slower lane changing vehicle cut-in in

front of an AV as shown in Figure 3.2. The events of interest are defined as
& ={min(R,()) < R¢ltyc < t <ty + Tic} (3.23)

where T, represents duration of the lane change test; R¢ is the critical range. Eq. (3.23)
means that if the minimum range is smaller than R¢ anytime during the lane change event,

this lane change belongs to the € set.

Figure 3.10 Lane change scenario for AV evaluation
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The random vector x consists of three random variables [v,, TTC; !, R;]. v, is
generated using the empirical distributions f,, (x) shown in Figure 3.4. The IS approach
considers the modified probability density functions of TTC;* and R;! denoted by

f;TCL_l(x) and f;L_l(x). Because the independence of R, and TTC;,, shown in Figure 3.9,

f(xX)=P(R;'=m, TTC[* =n,v, =1)
=P(R;! =m)P(TTC;! = n|v, = DP(v, = 1) (3.24)
= fRZl(m)fTTC[l(nle = l)va(l)-

Similarly, the AE distribution

£ G = [mn]) = s () g (nlvy = Dfy, (O (3.25)

The likelihood ratio is then calculated from

fx) ey (M)f prepr(nlvy, = 1)

L = TG = = D = G = e e = 0 829
From Eqg. (3.13), the probability of £ can be estimated as
P(E) = Ef(Ie(x)) = Ep+(Ie(x)L(x)) =~ Ef+ (I (x)L(x)) (3.27)

where Ef*(-) denotes the empirical average.

3.4 Simulation Analysis

The estimation of the benefits of AV in crash and injury events are used to

demonstrate the effectiveness of the proposed Accelerated Evaluation approach.
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3.4.1 Analysis of crash events

A crash event occurs when the range becomes negative within T, after the lane
change such that

€. ={min(R, (1)) < O|t,c <t < tyc+ Tych (3.28)

To accelerate the evaluation procedure, frr-: is modified to be

X
1 A 10 1
f;TCL_l(x) =~ o Arrc;1=Orrcrt (3.29)

TTCr — HTTCL_l

and f -1 is modified as

1
_1_—
X — Up-1 K,—1-0,_
<1 + (ot — Opz1) —— L ) RTURL (3.30)

Op-1
RL

froa(0) =

O-Rzl
where O77c-1 = 0.8 and 6,1 = 0.3. Here the parameters are tuned manually. In the next

chapter, we will introduce an adaptive method to calculate the optimal parameters of the
AE distribution.

The Design B developed in Section 2.4.1 is used as the AV model. Both accelerated
and the non-accelerated simulations (crude Monte Carlo approach) were conducted to
demonstrate the performance and validity of the proposed approach. Figure 3.11 shows
that estimated crash rate in accelerated and naturalistic driving conditions. The statistical
features from the Accelerated Evaluation simulations converge to the results under
naturalistic driving conditions, which demonstrates that the Accelerated Evaluation

approach is statistically unbiased.
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Figure 3.11 Estimation of crash rate in the lane change scenario

The convergence is reached when the relative half-width [, (defined in Section
3.2.1) is below g = 0.2 with 80% confidence. Figure 3.12 shows that the accelerated tests
achieve this confidence level after N,.. = 1.14e5 simulations, while the naturalistic

simulations take Ny, = 6.13e6 simulations to converge.

Test number (Naturalistic condition)  x10°

0 2 4 6 8 10
0.6 l T T Il T
Nnature
05HY% = == == Naturalistic
0.4 1 Accelerated

Relative half-width

0 0.5 1 1.5 2
Test number (Accelerated evaluation)  x10°

Figure 3.12 Convergence of crash rate estimation in the lane change scenario
In the SPMD database, during 1,325,964 miles naturalistic driving, 173,592 lane

changes with negative range rates were found. The frequency of negative range rate lane

change is estimated to be
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1,325,964

= =7, ' ) 3.31
Tic 173592 7.64 [mile/lane change] (3.31)

The driving distance needed in naturalistic test is thus
Dnature = Tic * Nnature = 4.71€7 miles. (3.32)

The test distance in the Accelerated Evaluation is

Dace = Ynace [1E47C ;) (1) dt = 7.48e3 miles (3.33)

n=1 Ji=t;

where v™(t) represents the velocity of AV at time t in the n,, test and the termination
time

T.c = min{min(t|R,(t) < 0),T.c}. (3.34)

The accelerated rate is defined as

D nature

Tace = = 6.30e3 (3.35)
Dgcc
which is achieved by the application of IS as well as using the modeling of lane change
scenarios.
It is noted that the N, vary with different choices of confidence level (1 — a) and
the threshold of the relative half-width . Substituting Eg. (3.9) to Eq. (3.17), we have

v1(1-9

ﬁZ

N, (3.36)

N, is proportional to the square of the function ®~1(1 — a/2) and the inverse of the
square of B. Figure 3.13 shows a numerical example of the influence of the confidence

level on N, and relative error r;..; (defined in Eq. (2.14), where the expectation of the
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crash rate y, is approximated by the crash rate calculating from all 2e5™ accelerated test)
with 8 = 0.2. It can be seen that as the confidence level increases N, increases almost
linearly yet r,.,; decreases slowly after 1 — a > 80%. In a real world evaluation, @ and 8
can be chosen based on time/budget constraints. In this dissertation, we choose 1 — a =
80% and = 0.2.

5
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= == == Relative error
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1 | - - L. - pem == =
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0

Test number at convergence (Nacc)

Figure 3.13 Influence of the confidence level on the relative error and test number at
convergence

3.4.2 Analysis of injury events

Injury rate is another important indicator of the performance of AVs. Here we focus
on injuries with the Maximum Abbreviated Injury Score [136] equal or larger than 2
(MAIS2+) , representing moderate-to-fatal injuries. The probability of injury is related to

the relative velocity at the crash time t,,4p

Av = —R; (tergsn) > 0. (3.37)

The probability of moderate-to-fatal injuries for the AV passengers is estimated by
a nonlinear model
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1
Pinj(Av) =31 + e—(Bo+B14v+B2) crash (338)

0 no crash

which was proposed by Kusano and Gabler [137], and is shown in Figure 3.14 with

parameters B, = —6.068 , f; = 0.1, and B, = —0.6234. Av is in the unit of [km/h]. The

injury rate E (Pin,— (Av)) is estimated as

NG.CC

E (Pinj (AV)) =Ep (Pinj (AU)) ~ %Z Py (Av(x,))L(xy) (3.39)
i=0

where x,, represents the random variables ([v,, TTC; %, R; 1]) in the n™ simulation.

D 1 1 1
0 20 40 60 80 100
Av [km/h]

Figure 3.14 Moderate-to-fatal injury model for forward collisions

Figure 3.15 shows that estimated injury rate in the accelerated test converges to the

result under naturalistic driving conditions, demonstrating that the Accelerated Evaluation
approach is unbiased in the injury index evaluation.
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Figure 3.15 Estimation of injury rate in the lane change scenario

The convergence is reached when the relative half-width L. (defined in Eq. (3.7))
is below g = 0.2 with 80% confidence. Figure 3.16 shows that the accelerated tests
achieve this confidence level after N,.. = 7.41e4 simulations, while the naturalistic

simulations take Ny, 4. = 6.12€6 simulations to converge.
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Figure 3.16 Convergence of injury rate estimation in the lane change scenario

The accelerated rates of crash and injury events are summarized in Table 3.1. The
accelerated rates of injuries are higher than that of crashes. This is because injuries occur
with lower probabilities than crashes. In general, the IS techniques provide larger

accelerated rate when target events are rarer.
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Table 3.1 Accelerated rates of crash and injury events

Dnature Dacc 7"(J.CC
mile mile -
Crash 4.71e7 7.48e3 6.30e3
Injury 4.70e7 4.85e3 9.70e3
3.5 Summary

In this chapter, we propose an approach to accelerating the evaluation of AVs based
on Importance Sampling technologies. Lane change scenarios with the human-controlled
vehicles making unsafe cut-ins were used to demonstrate the approach. Lane changes
models are modeled based on over 400,000 lane changes events collected by the University
of Michigan Safety Pilot Model Deployment Program. The acceleration is achieved by
using skewed statistics of collected human driver behaviors, which generate risky test
scenarios. By using Importance Sampling, the statistical information is preserved so that
the safety benefits of AVs in non-accelerated cases can be accurately calculated. The
occurrence of crashes and injuries of a modeled automated vehicle are calculated to
demonstrate the approach.
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CHAPTER 4
ADAPTIVE ACCELERATED EVALUATION

4.1 Introduction

In the previous chapter, statistics of the cut-in HV f(x) is replaced by a somewhat
arbitrarily selected AE distribution f*(x) to accelerate the evaluation. When the AV
design changes or the evaluation metrics are modified, f*(-) may need to be reselected to
maintain a high rate of acceleration. In this chapter, instead of tuning f*(x) manually, we
develop an Adaptive Accelerated Evaluation (AAE) approach to searching for the optimal
£*(x). As shown in Figure 4.1, a family of 9-parameterized distributions fy(x) is first
defined. Through a recursive optimization procedure, the optimal parameter of ¥ is
numerically obtained in a recursive way. As a result, the Accelerated Evaluation tests
adjusts themselves to be “adaptive” to the new test requirement.

This chapter begins with an introduction to the theoretical optimal AE distribution.
The AAE algorithm is then developed based on the Cross Entropy method. Finally, conflict,
crash, and injury events in the lane change scenario are analyzed to demonstrate the AAE

method.

ﬂccelerated evaluation \

Accelerated statistics

v

Simulation ‘r Performance in
’L the real world

Accelerated

model f(x)

Simulation model f(x)

Figure 4.1 Procedure of the Adaptive Accelerated Evaluation
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4.2 The Adaptive Accelerated Evaluation

4.2.1 The zero-variance distribution

We first point out an important observation: for any distribution, there is a
theoretically optimal distribution

@, Ig(X) = 1

0, I(x)=0

foo (X) = (4.1)

With £, (x), any sampled x leads to a rare event so that the indicator function I¢(x)
constantly equals to one. This distribution is optimal in the sense that any sample generated
from it has zero variance, and hence the required test number to construct confidence level
to any precision is 1; thus it is also known as the zero-variance AE distribution [122].

The likelihood ratio for f,;, (x) is calculated as

f(x)
L,,(x) = = 4.2
The probability of the rare events is calculated by
N n
1 1
Pa= Y L)L) == ¥ =. (43)
i=0 i=0

Thus 7, equals to y for all n. Unfortunately, this distribution cannot be implemented
because it requires the knowledge of y, which is exactly what we want to estimate.
However, it provides a benchmark of good AE distributions. In other word, a good AE

distribution should be close to the zero-variance distribution as much as possible.
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4.2.2 The Cross Entropy method

The goal of the AAE is to find an AE distribution that is close to the theoretically
optimal AE distribution f,;,(x). The Cross Entropy Method [138]-[140] is used to
recursively approach the optimal parameter 9*.

Let fo(x) be a family of distributions that are modified from the original HV
distributions f(x) by some mapping functions and a control parameter vector 9. The
difference between fy(x) and £, (x) is represented by the Kullback—Leibler (KL)

divergence

fav (X)
fo ()

fiw (o0, 0 (%) = flo Ifzv( x)dx. (4.4)

When f3(x) = £, (%), fxr (fo(x), f7,(x)) = 0. The idea of Cross Entropy is to find an

AE distribution that has the minimum KL divergence with f;;, (x), i.e.
9" = argmin fi, (fo (%), (). (4.5)
Substituting Eq. (4.4) into Eq. (4.5), we have

frv (%)
fo ()

= argmin j {log[£ ()] f(x) — log|fo (2)] f,(x) }dx.

9 = argmﬂin]log lfz,,( )dx

(4.6)

Note the first term inside the integration is independent of 9, Eq. (4.6) can be simplified to

9" = argmax f log[fs(X)] £ (x)dx. (4.7

Substituting Eq. (4.1) into Eq. (4.7), we have
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9" = arg mgle log[ﬁ,(x)]%lg(x)dx. (4.8)

Since P(€) is a constant, it can be taken out of the optimal equation.
9" = arg mgle log[fs (X)] f () I (x)dx (4.9

Here we apply the IS techniques to increase the sampling efficiency by using the

distribution £y, (x) in the previous iteration. Let

. f(x)
Ly. == .
9, (%) 7o (4.10)
From Eq. (4.8), 9;,, can be derived as
81 = argmax [ 1oglfo (0] Lo, Je (0o, (D)%
(4.11)

~ argmaxEy, [log (fo(x)) Lo, (0)1e()]

where Ic(x) are test results in the i** iteration using f,,i(x), and Efﬂ,[-] denotes the
l

empirical average.

4.3 Adaptive Accelerated Evaluation in the Lane Change Scenario

There are many possible choices for the family of AE distribution fy(x). Here we
develop fy(x) based on a popular class named the Exponential Change of Measure (ECM).
We use the lane change model developed in the previous chapter to demonstrate the AAE
approach in which x = [v,, TTC; !, R;"] following distributions f;,, (x), f rrepr () and
fRzl(X). Same as the process described in CHAPTER 3, we will modify fTTCL-l(x) and
f Rzl(x) in the accelerated model and use Importance Sampling to estimate the safety

performance in real world driving.
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Recall that TTC}  ~exp (/1 et (vL)>, ie.

1 X
forre-1(x) = exp (— > 4.12
e A TTC; ! A TTC; ! ( )

The ECM considers the family

fTTC[l (x) = exp (19 rreptX — ¥ (19?%-1» frrepr (%) (4.13)

parametrized by 19??"6”[1 < 1/Aqg¢r , where W(ﬁ”;‘;’gzl) is the logarithmic moment

generation function of TTC;?, i.e.,

4 (ﬁECM ) =logE (exp (ﬁECM 1 TTCL_l))

TTCL* TTCy
+ 00
= logjO exp (ﬁ??ﬂgilx) frrepr()dx (4.14)
e 1 x
= logj exp (9EM_ x exp <— )dx
0 ( e )/1TTCL‘1 At

Calculate the integration, we have

-1 1 T
ECM ) _ ECM
'4 (19 TTCL_l) = log T ATTc‘lﬁECM lexp <— < — 19TTCL_1> x)l
L

TTC ! ATTCL_1 0
=lo — 0—1 4.15
s 1-2 TTC[lﬁ??Agil ( ) ( )
1
= log

_ ECM -
1 ATTClTlﬁTTCljl

Substituting Eq. (4.15) into Eq. (4.13), we have the ECM function of fTTcL—l(X')
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f rrept (%)

9ECM 1 1 1 ( 1 >
= exp _1x —log exp| — X

_exp (ﬁ?glcwilx) 1 exp (_ 1 x>
1 /1TTCL—1 /1TTCL—1

1 — Appe1950

TTC], TTCLl

1 1
= - 19ECM—1> exp <— < — 19ECM—1> X)
(’1 TTC ! T A TTC; ! T

(4.16)

9ECM_ have the same scale as

9EM | ~ 1/Agrcpr and Appepr > 0. To make .-

where -
/'ITTCL-l, we apply a nonlinear mapping by letting
O rrept
01 = - (4.17)

TTC; Y — _ 2
v TTcL‘lf1 TTC; ! A TTC[ !

With 9 7pe-1 < Appc-1. Substitute Eq. (4.17) into (4.16), we have

- 1
frnei: (x|19 TTCL_l) B <)L rregt — 9 TTCL_1> P <_ Arpepr =9 TTCL_1>. (4.18)

Nominally R;* follows a Pareto distribution, i.e.

fry1(x) = Pareto (x|kRL-1, O prts Hppt ) (4.19)

The ECM cannot be applied to a Pareto distribution directly. Therefore, we first construct

an exponential distribution

fro(x) = exp <— ! x) (4.20)

Py Py
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with A gzt which makes Eq. (4.20) to have the smallest least square error to Eq. (4.19).
Then we apply ECM to Eq. (4.20) with parameter ﬂii_”f and nonlinear mapping
0 g1

12
19 RZlA Rzl A RZ1

(4.21)

ECM __
95 =

to Eq. (4.20). We have

f g (219 50 < ! ) exp ( - ) (4.22)
-1 4 ) =|— _—_—_— i
RL RL ARZI - 19 RZ1 ARZI - 19 Rl_,l

With 9 -1 < Ag-1.

Now we have the two family of distributions f ;-1 and f -1 ready. We will
apply the Cross Entropy method to calculate the optimal parameter O rrept and 9 Ry
iteratively.

Let9; = [99,, 9%

005, C[l] be the parameters to be optimized used in the i" iteration.

The joint distribution of the lane change event is

Fo(O) = Fppr (RTU9 1) Frreer (TTCT O e ) o, (0)- - (4.28)

Substituting Eq. (4.23) into Eq. (4.11), we have

B4r = argmax Bz, [log (f 2 (RI119)) Lo, (0)e () +
(4.24)
10g (f rre; (TTCEH9)) Lo, Oe(@) + i, ) Lo, (D)1 ()],

Because f,, (1)Ly,(x)I¢, (x) is not a function of 9, it can be eliminated from the

optimization.
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9,1 = arg max Ef"i [log (fRzl (RL—1|~,9 RL—1)> Ly, (x0)Ic(x) +
(4.25)

log (fTTC[l ( TTC; M9 TTCL‘l)) Zai(x)ls(x)]-

It is shown from (4.25) that 9 Ry and O prept Can be solved separately. The parameters

used in the (i + 1)* can be calculated from
(i+1) _ o z -1 4
0 -1 =arg 313" Ez,, [log (f Ry ( R R;1)> Lai(x)lg(x)] (4.26)
and

o), = arg max By, [1og(Frrepr (TTCT 19 gre1) ) Lo )] @.27)

-1
TTC]

The empirical average can be estimated by N samples of x. Thus Eq. (4.26) can be further

derived as

N
1
oD argmaxﬁz 8(F r (REM9 2rc;) ) Lo, Gl () (4.28)
n:

where i denotes the i" iteration. x,, denotes the n*" sample of [v,, TTC; %, R;1]. The
constant 1/N can be taken out of the arg max function. By substituting Eq. (4.22) into
(4.28), we have

19(1+1)
o
—argmaxz og exp — o || Lo, (xn)Ie(x
Ry A= R[Y /Uz;1 - 19RL‘1 " " (4.29)
El
= arg max l— log R71 T 19RZ1) - #l Ly, (x)Ig(xp).
RL n=1 Rzl Rzl
Let
N REI
99 1 = Z <— log (A RpT T 19R;1) - m) Ly, (xp)le(xy).  (4.30)
n=1
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To find the 19R21 that maximizes function 9o, in Eq. (4.29), we set the first order

-1
L

derivative of gy _, 1o be zero.
L

d,gﬁ -1 N R—l

N P e LA IED AES
ddy R21 — /1Rzl -9 Rzl (/1 Rzl —9 RZl)Z t
. (4.31)
= 2 Z Ryt Vgt — RL_l) Zﬂi(xn)lé‘(xn) =0
(/1 RLl - n=1

Because ¥ -1 < Ap-1, We have

N

(Arpr = 0 pp2 = RiY) Lo, (o)l () = 0. (4.32)

n=1

In each iteration N should be picked large enough to have ¥N_, I (x,,) > 0, which means
at least one event of interest (e.g. crash) happens in one iteration. Because Z,gi(xn) > 0.

We have

Z'-,i (xn)lg (xn) > 0. (433)

M=

n=1

¥ gy can be solved from Eq. (4.32).

B Zn 1( —1 - RL )Lﬂi(xn)ls(xn) (4.34)

0 -1 =
Re anl Lﬂi(xn)ls (xn)

Taking 9 Ry in Eq. (4.31), we have

Y= 1( - Ry )Lﬂi(xn)lé‘(xn)
Zn—l Lo, (xn) I (x5)

Y= 1( 11— Ry )Lﬂi(xn)lé‘(xn)-
Y1 Lo, (xn)Ie (%)

dgﬁRzl >0 whendp-1 <

rrp (4.35)

L< 0 whend Ry >
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S0 1 in Eq. (4.34) is the global maxima. The optimal parameter in the next iteration

D g1 can be derived analytically

Ny (Arp = RDY) Lo, (el (i)
_1 _—

19(i+1) _
RL Zg=1Lﬁl(xn)I£(xn)

(4.36)

where n is the index for each simulation. Similarly, apply Eq. (4.16) to Eq. (4.11). The

optimal parameter 9 Ryt Can be obtained from

90D - _ ?,=1(/1TTCL_1 - TTcL_l)Zﬂi(xn)IS(xn)

TTCY T >y Z,,i(xn)lg(xn)

(4.37)

195;2511) and ’9(71;2-1 can then be used in the (i + 1)*" iteration.

4.4 Simulation Analysis

In the previous chapter, the crash and injury rates are calculated using a manually
tuned AE distribution, which successfully accelerates the evaluation by four orders of
magnitude. In this section, we will show that the same AE distribution cannot be used as a
universally good candidate to calculate other rare event metrics. We will first use this AE
distribution to calculate the “conflict rate” and show that, with an improper AE distribution,
the “accelerated” tests may converge slowly and become less efficient even than the Monte
Carlo method. Second, we will demonstrate the ability of the AAE method to avoid the
“bad” AE distribution issue. By applying the new AE distribution generated by the AAE
method, it is shown that once again “close-to-optimal” distributions can be found, and the

evaluation can be accelerated significantly.

4.4.1 Evaluation with the non-optimized AE distributions

A conflict event happens when an AV appears in the proximity zone of the LCV

between time t; - and t; . + T;c. As shown in Figure 4.2, the proximity zone is the area
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from 4 feet in front of the bumper of the LCV to 30 feet behind the rear bumper of the LCV
[131, p. ix]. This area generally includes the blind spot and the area beside and behind the
vehicle in which another vehicle is likely to travel. In our lane change model, the LCV
always cut-in in front of the AV. So only the 30 feet proximity zone behind the LCV is
used. Mathematically, the conflict event can be defined as

E= {mln(RL(t)) < RgltLC <t< tLC + TLC} (438)

where Rg = 30 feet.

4 feet 30 feet

Proximity zone

Figure 4.2 Definition of the conflict event

The AE distributions in Egs. (3.29) and (3.30) are used. The Design B developed
in Section 2.4.1 is used to as the AV model. Figure 4.3 shows that estimated conflict rate
in accelerated and naturalistic driving conditions. It can be seen that although the

Accelerated Evaluation is unbiased, it converges even slower than the non-accelerated test.
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Figure 4.3 Estimation of the conflict rate in the lane change scenario (improper AE
distribution)
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Figure 4.4 Convergence of conflict rate estimation in the lane change scenario (improper
AE distribution)

Figure 4.4 shows the convergence with 8 = 0.2 and 80% confidence. The
naturalistic simulations take N4t = 5.90e3 simulations to converge. However, the
accelerated test cannot converge even after 1e5 simulations, which shows that the

“accelerated test” is even less efficient than the Monte Carlo method. When estimating the
conflict rate by using 7,, = % *ole(x)L(x,) from Eq. (3.15), the ideal case is that the

indication function I (x;,) is one and the likelihood ratio L(x;,) is closed to the expectation
of the conflict rate y. By using the AE distributions tuned for crash analysis, conflicts were

generated at a higher frequency. However, because the AE distributions are tuned too much,
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many times the likelihood ratio was much smaller than y and the sampling became less
consistent. Therefore, more simulations are needed to make the estimation converge. This
example shows that when the evaluation metric changes, e.g. from crash rate to conflict
rate, the AE distribution needs to be re-selected. Without a proper AE distribution,

convergence can be slower than the Monte Carlo simulation method.

4.4.2 Evaluation with the Adaptive Accelerated Evaluation

4.4.2.1 Estimation of the conflict rate

The AAE approach is used to obtain near-optimal distribution to estimate conflict
rate. 100 lane changes were simulated in each iteration to calculate the optimal parameters
U rrcyr and J g-1. The values in the tenth iteration were used to calculate the conflict rate

in the lane change scenario. As shown in Figure 4.5, three sets of 9 ;c-1 and ¥ -1 are

obtained with low, medium and high velocities. It is shown in Figure 4.5 that values of

¥ gy converge to about -0.12, whereas values of 9 .r..-1 fluctuate around zero. The reason
U rrc;1 does not change as much as J -1 is because the conflict events are defined based

on R;, thus changing the parameter of R, plays a more important role in evaluating conflict

events.
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Figure 4.5 Searching for optimal parameters for conflict events with AAE
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The estimation and convergence of conflict rate are shown in Figure 4.6 and
Figure 4.7. It is shown that with the new distribution calculated by the AAE approach, the
evaluation becomes much more efficient with N,.. = 364 while N, ;e = 5.90e3.
Applying Egs. (3.32), (3.33) and (3.35), we can calculate that D, 4ty = 4.53€4 miles,

Dyee = 16.4 miles, and r,.. = 2.77e3 respectively.

Test number (Naturalistic condition) <104
0 1 2 3 4 5

o
o
=

= == == Naturalistic
Accelerated

conflict rate [conflict/lane change]

0 100 200 300 400 500
Test number (Accelerated evaluation)

Figure 4.6 Estimation of the conflict rate in the lane change scenario (with AE
distribution calculated by AAE)
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Relative half-width
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Test number (Accelerated evaluation)

Figure 4.7 Convergence of conflict rate estimation in the lane change scenario (with AE
distribution calculated by AAE)
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4.4.2.2 Estimation of the crash rate and injury rate

The AAE approach was also applied to estimate the crash rate to examine its
robustness. In each searching iteration, 500 lane changes were conducted. As shown in

Figure 4.8 three different values of ¥ ;.1 were obtained from the iterative search for
different velocity intervals, where as 9 -1 converges to values close to zero. It can be

explained that in the crash analysis, the safety critical function (AEB) on AV is mainly

affected by TTC. Therefore 9 ;.1 has a larger impact than ) -+ on the occurrence of the

crash.

‘1.5-‘ v - ~
-y -~ ’~s ‘~~

-
5to15m/s A
15t0 25 m/s
2510 35 m/s

Ve (dashed) Ve (solid)
4
N

lteration number

Figure 4.8 Searching for optimal parameters for crash events with AAE

Both accelerated and naturalistic tests were conducted until the crash rate
converged with 80 % confidence level and g = 0.2. Figure 4.9 shows that the estimation
of the crash rate calculated by the accelerated tests converges to the naturalistic driving
estimation, which shows that the Accelerated Evaluation is unbiased. Figure 4.10 shows
that accelerated tests achieved the confidence level g after N,.. = 5.77e4 simulations,
while the naturalistic (crude Monte Carlo) method takes N,,;¢e = 6.13€6 simulations.
Applying Egs. (3.32), (3.33) and (3.35), we can calculate that D,, ;¢ = 4.71e7 miles,

Dyce = 4.02e3 miles, and .. = 1.17e4 respectively.
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Figure 4.9 Estimation of the crash rate in the lane change scenario (with AE distribution
calculated by AAE)
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Figure 4.10 Convergence of crash rate estimation in the lane change scenario (with AE
distribution calculated by AAE)

When crashes happen, passengers may get injured. We also estimate the rate
moderate-to-fatal injuries of the AV passengers. The estimated injury rate can be calculated
from Eq. (3.39). Both accelerated and naturalistic tests were conducted until the injury rate
converged with 80 % confidence level and § = 0.2. Figure 4.11 shows that estimated
injury rate in the accelerated test converges to the result under naturalistic driving
conditions.

Figure 4.12 shows that accelerated tests achieved the confidence level g after

Ngee = 3.63e4 simulations, while the naturalistic (crude Monte Carlo) method took
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Nparure = 6.12€6 simulations. Applying Egs. (3.32), (3.33) and (3.35), we can calculate
that D, g¢ure = 4.70€7 miles, D, = 2.53e3 miles, and r,.. = 1.86e4 respectively.
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Figure 4.11 Estimation of the injury rate in the lane change scenario (with AE
distribution calculated by AAE)
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Figure 4.12 Convergence of injury rate estimation in the lane change scenario (with AE
distribution calculated by AAE)

Table 5.3 summarizes the performance of Adaptive Accelerated Evaluation
approach in estimating the three metrics of the AV. It is shown that in the crash and injury
cases, the proposed method successfully accelerates the evaluation by four orders of
magnitude, while in the conflict case, the AE method achieves over three thousand times

of acceleration in test mileage.
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Table 4.1 Summary of performance of the Adaptive Accelerated Evaluation approach in
estimating the crash rate, injury rate, and the conflict rate in the lane change scenario

Dnature Dgcc Tacc
mile mile -
Conflict 4.53e4 16.4 2.77e3
Crash 4.71e7 4.02e3 1.17¢4
Injury 4.70e7 2.53e3 1.86e4
4.5 Summary

In this Chapter, the Adaptive Accelerated Evaluation approach is proposed to

search for the optimal AE distributions in an iterative way. The Cross Entropy approach is

used to calculate the local optimal in each iteration. A comparison of the accelerated

efficiencies using distributions using non-optimized AE distributions and the distribution

calculated by AAE is shown to demonstrate the effectiveness of the proposed method in

the lane change conflict scenario. Three metrics of AV: conflict rate, crash rate, and injury

rate, were calculated using the AAE method to demonstrate its performance. Results

showed that the AAE method accelerated the evaluation mileage by roughly 3,000 to 18,

000 times.
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CHAPTER 5
ACCELERATED EVALUATION WITH DYNAMIC INTERACTIONS
IN THE CAR-FOLLOWING SCENARIO

5.1 Introduction

In CHAPTER 3 and CHAPTER 4, the lane change HV was simulated using static
sampling, in which the randomness is modeled as a set of distributions but sampled only
once at the lane change moment. In some other cases, the statistics of the HV behaviors are
state-dependent and sampled constantly. We call this type of stochastic process as dynamic
sampling. One example is the car-following scenario, where the drivers adjust their speed
stochastically according to the maneuvers of the lead vehicles. To evaluate an AV in these
types of scenarios and interactions between the AV and HVs, in this chapter, we will
develop a new Accelerated Evaluation approach by considering the correlations between
each sample. Three types of events, the crash, injury and conflict, are analyzed to

demonstrate this approach.

5.2 Model of Dynamic Interactions in Car-following Scenario

5.2.1 Extraction of naturalistic car-following events

The SPMD database introduced in Section 3.3.1 was used to model the lead HV in
the car-following scenario. As shown in Table 5.1, the advantage of the SPMD database is
that it has six times longer mileage than the 1VBSS database [31], [32], [98], which is
beneficial to model rare events.

As shown in Figure 5.1, the range and range rate were measured by Mobileye
equipped on the SPMD vehicles. To ensure consistency of the used dataset, we apply the
following criteria when extracting car-following events:

e R, (t) € (0.1 m,90 m)
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e Longitude € (—88.2°, —82.0°)

e Latitude € (41.0°, 44.5°)

¢ No cut-in vehicles between HV and SPMD vehicles

¢ No lane changes of HV and SPMD vehicles

e Duration of car-following> 50 s
where v, and v are the velocities of the lead HV and the SPMD vehicle; R, is the range,
defined as the distance between the rear edge of the HV and the front edge of the SPMD

vehicle.

Table 5.1 Comparison of between the IVBSS database and the SPMD database

IVBSS SPMD
Integrated Vehicle- Safety Pilot Model
Name Based Safety Deployment
Systems (IVBSS)
Time 2010-2011 2012-2015
Mileage 213,309 1,300,000
Test vehicles 108 94
Sensor Radar Mobileye®
Longitudinal i 10 % error at 90 m
sensor accuracy 5 % error at 45 m
Acceleration a; (t) Range Acceleration a(t)
Velocity v, (t) R, () =X, () —X(® Velocity v(t)
Position X; (t) Range rate Position X (%)

Lead human controlled SPMD vehicle
vehicle (HV)

Figure 5.1 Car-following scenarios that may cause frontal crashes

163,332 car-following events were detected in the SPMD database. Figure 5.2
shows the locations of the identified car-following scenarios.
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Figure 5.2 Recorded car-following events in the SPMD database

5.2.2 Lead human controlled vehicle

The randomness of human behaviors is modeled by a stochastic model. The vehicle
acceleration in the next time step is calculated based on current step acceleration and
velocity as shown in Eqg. (5.1).

a,(k+1) = hy+ hya, (k) + hyv (k) + uy,

(5.1)
=[1,a,(k),v,(K)]h + up
where the driver model parameter vector h = [hy, hy, h,]" and u, ~N (0, 62).
The lead HV velocity can be calculated from
v, (k) = R (k) + v(k) (5.2)
where range rate defined as
Ry (k) = vy (k) — v(k) (5.3)

is measured by the MobilEye® sensors equipped on the SPMD vehicles.
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The lead HV acceleration a;, is estimated by taking the derivative of v, with
Forward Euler Approximation [141]. A moving average filter with windows size 16 is used

to smooth the estimated a;. The velocity and acceleration in an example car-following
event are shown in Figure 5.3.
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Figure 5.3 Estimation of the lead vehicle acceleration

The driver model parameter vector h is estimated based on the Least Square
Method. Define the acceleration vector of the lead vehicle

agns)(i:j) — [agns)(i)’ agns)(i + 1), . aEnS) (])] (5-4)

withng = 1,2, ..., N; and j > i, where aE"S)(i) represents the ith step acceleration of the

HV in the n,th car-following sequence. Define the observer vector

T
Y = [ail)(Z: end), agz) (2:end), ..., aENS) (2: end)] (5.5)
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where end represents the index of the final element in the acceleration vector. N is the
total number of car-following sequences in the SPMD database. Define the input vector of

each car-following scenario as

1 a™(1) v (1)
(ns) (ns)
X = |1 aL”-(Z) an-(Z) _ (5.6)

1 aEnS) (end — 1) vL(nS)(end -1

Define the input vector of N, car-following events as

T
Xnh= [x(l),x,(f), ...,x}(lNS)] . (5.7)

The Matlab® function “robustfit” is used to fit k with input vector y;, and observer vector
vy, based on “bisquare” approach [142], which is less influenced by the outlier than the
normal least-squares fit [143], [144]. The standard deviation of u,, is estimated by fitting
the estimation deviation (a,(k + 1) — [1, a;(k), v, (k)] h) with a normal distribution.

5.2.3 Automated vehicle model

In the previous chapter, the AV was designed as a combination of ACC and AEB.
This is a popular design among current production AVs. The ACC module is designed as
a convenience system with a low control authority (usually the acceleration is smaller than
+0.4 g). The AEB module is designed as a safety system, which is usually tuned to activate
late with a harsh braking as a safeguard for frontal collisions. In this chapter, we use an AV
control model that can handle both daily driving and emergency situations proposed in
[145]. In the following, we first derive the vehicle dynamic model and then design the

longitudinal controller.

5.2.3.1 Vehicle dynamics

We use a longitudinal vehicle dynamic model from [115]
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Mdv(t) _F M iné 7
S = B0 = Mg 5inbg(0) — frymg c056,5(0) (5.8)

— 0.5pairApCa(v(t) + 1, (D)’

where M is the vehicle mass, F; is the longitudinal force, 6, 4is the road grade angle, g is
the gravitational constant, f,.. is the rolling resistance coefficient, p,;, is the air density, 4,
is the frontal area, C; is the aerodynamic coefficient and v,, is the wind speed.

At equilibrium i.e. when dv/dt = 0, the equilibrium longitudinal force in Eq. (5.8)

at v, can be solved from

Fyo (t) = Mg sinf,4(t) + frrmg cos6,,4(t)

, (5.9)
+ O-SpairAde (UO (t) + Uw(t)) .

Eq. (5.9) can be linearized about the equilibrium point by using the Taylor series expansion

dv -
@ + U =Ky (F, +day) (5.10)

where 7 is the velocity deviation, defined as
7=v -1, (5.11)

and E, is the longitudinal force deviation, defined as
E, = F, — Fy (5.12)

Parameters 7, K4y, and dy4,, were derived as © = M /(pgirCady (Vo + Vi),
Kyy = 1/pairCaAy, (Vo +v,,), and dyy = Mg(frrsinGrg — cos@rg)derg/dt . Assume
1, = 0and 6,, = 0. Using Laplace transformation [146] on Eq. (5.10), we obtain a first

order lag system representing the vehicle longitudinal dynamics.

v(s) _ Kay
E(s) ts+1

(5.13)

86



The vehicle mass was set as the summation of the curb mass of 2011 Volvo V60
[147] and the mass of two 60 kg. The frontal area, rolling resistance coefficient, frontal
area, and aerodynamic coefficient were set as the same parameters of the Class E sedan
model used in the commercial software CarSim® [118]. It should be noted that the vehicle
models presented in the section may not be a good representation of the actual systems in
a production vehicle. If more accurate simulations are desired, the proposed accelerated
evaluation process can be used in junction with more accurate simulation models such as

CarSim®. More details of vehicle dynamic techniques can found in [148], [149].

5.2.3.2 Adaptive cruise control

The Adaptive cruise control is designed based on the research in [145]. The
longitudinal control of AV is designed to follow the lead HV velocity and maintain a proper

frontal distance. As shown in Figure 5.4, the controller is implemented in the discrete time

domain.
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RL ( Zero order hold
- —_> Kd
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Figure 5.4 Automated vehicle model

The discrete-time control algorithm can be expressed as

F(z) = (Kp K )ﬁL @) + KR,(2) (5.14)

7 —

where E,(2), R, (z), and R, (2) are Z transformation [150] of F,(t), R, (t), and R, (t). Ts

is the time step. R, (t) is defined as
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R,(t) = R, (t) — R (5.15)

where R#esire = p, x tiesire and tlesire s the desired time headway. R, is regulated by a
discretized Proportional-Integral (PI) controller and the range rate is regulated by a

Proportional (P) controller. R, is calculated from

t
R.(t) = f R, (t)dt + R;, — Rfesire (5.16)

0

where R, is the initial range. R, is equal to RS to make the test starts from an

equilibrium.

5.3 The Optimal Mean Shift Approach

The statistics of the motion of the lead HV is modified to generate more intense
interactions with the AV. From Eq. (5.1), the acceleration in the next step of the lead HV

follows the probability density function
aL(k + 1)~N(h0 + hlaL(k) + hva(k), 0-5) (517)
The general idea to accelerate the evaluation is to add a series of biases
[6(1),46(2),...] to the mean of the acceleration distribution. The modified acceleration
distribution becomes

a,(k + D~N(ho + hya, (k) + hyv, (k) + 6(k), o2). (5.18)

In this section, we first derive a car-following model into the state space form. We

then calculate the optimal 4 (k).
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5.3.1 State space form of the car-following model

The car-following model can be linearized and rewritten in the state space form. In

discrete time, the lead vehicle velocity is calculated from

vi(k+1) =v,(k) + Ta, (k).

Define velocity deviation of the lead HV as

vy (k) = v (k) — v,.

We have
ﬁL(k + 1) = ﬁL(k) + TsaL(k).

Define another random variable

u :uh +h0 +h2770.

From Eq. (5.1) and (5.20), we have

aL(k + 1) = hlaL(k) + hzﬁL(k) + u.

Discretize Eq. (5.13) using the Zero Order Hold method [150],

7(z) n,z 1

F.(z) 1+d,z7!

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

where v'(z) and E,'(z) are the Z transformation of v'(t) and E,'(t). Taking the inverse Z

transformation of Eq. (5.24), we get

vk + 1) = d,v(k) + n, F (k).

Substituting Egs. (5.11) and (5.22) into Eq. (5.2), we have
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R, (k) = ¥, (k) — 5(k). (5.26)
Discretize Eq. (5.16) and substitute Egs. (5.15) and (5.19) in (5.16).

Ry(k +1) = R (k) + TR, (k)
= ﬁL(k) + TsﬁL(k) - Tsi7 (k)

(5.27)
Take the inverse Z transformation [150] of Eq. (5.14).
Fe(k+1) = E.(k) — KR (k) + (K, + K;Ts)R,(k + 1) + KR, (k + 1). (5.28)

Substitute Egs. (5.26) and (5.27) into (5.28).

F.(k + 1) = E.(k) + TsK;R, (k) + (K, + TsK;) (T, (k) — Ts9(k)) 5.29)
+ Kay(9,(k + 1) — 5(k + 1)). '

Substitute Egs. (5.25) and (5.28) into (5.29).

Fe(k+1) = qia,(k) + g, (k) + q30(k) + q4F (k) + qsR, (k) (5.30)
where q; = KT, q; = Kq + K, Ts + K,T?, q3 = —Kud,, — K,Ts — KT? q,=1—
Kqn,, g5 = TsK;.

Rewriting Egs. (5.23), (5.25), (5.21), (5.27) and (5.30) into the state space form, we

have

X(k + 1) = AX(k) + Bu(k)
(5.31)
Ry (k) = CX(k)
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where X(k) = [a,(k) #,(k) #(k) F(k) R,(k)]

hy h, 0 0 0

[TS 1 0 0 0
A=|lo 0 —-d, n, 0
q

|CI1 92 Qg3 qs
lo 7, -1, 0 1

B=[1 0 0 0 o"c=1[0 0 0 0 1]
with initial condition X(1) = [0 0 0 0 0]" and physical constraints

Xmin < X(k) < Xmax

. . . . . . T
where Xy = [a]'™, v} — vo, vM™ — 1o, EM™ — Foo, RI'™ — RI7]" and Xppgx =

: T
Max ,,Max Max Max Max desire
[alfax, v} — pg, vMax — y EMax — F, o, RMOX — Rilesire]”,

5.3.2 Accelerated Evaluation

In the following, we will describe the four steps of the Accelerated Evaluation
procedure: i) calculate the optimal & (k), ii) randomize the termination time, iii) run the
accelerated tests, and iv) calculate the likelihood and estimate the real world benefits. The
same procedure can be applied to estimate all three metrics: crash, injury, and conflict. For
narrative simplicity, during the derivation, we use the term “crash” to represent all the three

types of events.

5.3.2.1 Calculation of the optimal mean shift

We will first calculate u* (k) - the optimal realization of u(k). Second, 4 *(k), the
optimal value of & (k), is calculated to maximize the likelihood for u (k) to be u*(k) inthe
accelerated tests.

From Eqg. (5.22), under the naturalistic driving conditions, we have
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()~ fo, (w()) = N (bt 02) (5.32)

where u,, = hy + h,v,. The simulation ends when either a crash happens or the maximum

time step is reach. Define the termination time step
ky = min{min(k|R,(k) < 0),K} (5.33)

where ks is an integer € {1, ...,K}. K is the maximum step number in a car-following
event. Because the lead HV is modeled as a Markov Chain, the probably density for a car-

following event (from time step 1 to k+) can be calculated from

kr—1

fu(u(tiky — 1)) = H £ (u(K)). (5.34)
k=1

Substituting Eq. (5.32)into Eq.(5.34), we have

k_
)Tl <|wuwf—n—uuﬁ
exp| —

207

fulu(l:ky = 1)) = ( ) (5.35)

1
V2moy,

where u(1: kr — 1) = [u(1),u(2), ...,ulks — 1)]7, |I||3 represents the Euclidean two-
normand 1 = [1,1,...,1]7 € RGr=Dx1,

In the accelerated tests, from Eq. (5.18) and Eq. (5.22), we have

u(l)~fo, (w)) = N (u, + 6(k), 0. (5.36)

The modified probabilistic density distribution is calculated from

ky—1

FulwCiler = D) = | | (). (5.37)
k=1

Substituting (5.36) into (5.37), we have
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fulu(liky — 1))

= ( ! )kT_l exp <— lu(liky —1) —6(Likr — 1) — llu1||%> (5.38)
V2ra, 207

The optimal realization of u(k) is then calculated to achieve two goals
i)  To make a crash happen at a specific time k7
i)  To maximize the likelihood of the crash event happening

We need i) to calculate the crash rate. We need ii) to focus on the events with a high
probability of occurring. A crash happening at an extremely low probability (e.g. the
surrounding vehicles are all Lamborghinis that cut in and accelerate/decelerate crazily)
does not play a significant role in calculating the average crash rate. The two goals can be

expressed as an optimization problem as follows.

wer(Liky — 1) = argu(mcaﬁl)f(u(l: ky—1))

subject to
R, (k) < Re (5.39)
Xmin < X(k) < Xmax

Umin < u(k) < Umax

fork = 1,2, ..., k3 — 1, where R¢ is the critical distance. For crash and injury, R¢ = 0.
For conflict, according to Eq. (4.38) , R¢ = 30 feet.
Substituting Egs. (5.34) and (5.31) into Eq. (5.39) and rewriting Eq. (5.39) in the
quadratic form, we have
U (Likr — 1)

1
=arg min |zu(l:k:r—DTu(l:k;:—1) —pu,1Tu(1:k: -1
gu(l:k}—l) 2 (L:ky = D) u(l:ky = 1) =, 1 u(l: kg — 1) (5.40)
subject to

Ay uk;(l: ky —1) < by
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where

cA®-DB  cA®-3DB ... CB] [ R — CAkr—DX(1)
B 0 e 0 Xmax — AX(1)
AB B a0 Xnax — A*X(1)
A= Alks-Yp 0 Xmax — A%T72X(1)
—B 0 0 _Xmin + AX(l)
—AB —B 0 —Xoin + A2X(1)
A =|-aki-0p —aki9p .. 0| » bg=|_x | _ak-2x1)|
1 0 0 Unmax
O 1 0 umax
0 0 1 U
-1 0 0 —Umin
0 -1 0 —Umin
0 0 -1 ~Umin

The optimal shift parameters &+ (1: K) are calculated to maximize the likelihood
for w,: (1: K) to be realized in the accelerated test. For a specific k7, & (1: K) can be

calculated from

b:(1:k7) = arg maxf(uk;(l: ki), 6 (1: k})). (5.41)
4(1:K)

Substituting (5.38) into (5.41), we have

b1 (1:k5)

= arg max
{V(l:k}‘-)

LT (k) — Qi) — a3y 642
V2ma,) P 207 |

Taking out the constant terms from the arg max function, we have

b (Liky) = a;y%mch exp(—llu(l:ky) = 6(1:kr) — ). (543
1:k;~ '
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Because the exponential function is a monotonically increasing function, it will not affect

the solution of the arg max function. & (1: k7) can be calculated from

b; (1 ky) = argmin|lu(l: k7)) — 6(1: k7)) — p, 1113, (5.44)
&(1:k3) )

Since ||lu(1: k) — #(1: k) — u, 1|3 = 0, to achieve the minimum value, we have
e(L: k) — &(L: k) — i 1113 = 0. (5.45)

Therefore, the optimal mean shift is calculated from
b (1 d7) = e (1 k7 — iy (5.46)

b:. (1: K) for each ky = 1, ..., K will be calculated offline. We will use these 4 in the

stochastic process during the evaluation.

5.3.2.2 Randomization of termination time

The termination time k7 is fixed in the previous section. However, crash can
happen at any moment before time step K. ks needs to be randomized to reflect all the
crash scenarios.

We first set the boundary of kr. When k7 is small, it may fail to find a feasible
solution to the optimization problem in Eq. (5.40). This is because no HV motion will lead
to a crash when the allowed time duration is very short (e.g. 0.1 s). Let kr,,;, be the
minimum value of k7 that has a feasible solution in Eq. (5.40) calculated from the initial

vehicle speed and maximum allowed deceleration, that is

*
Tmin

such that 3 uk;(l: ks — 1) that makes (5.47)

= min k7

Ak} uk;(l: k} - 1) < bk*T

k7 is randomized using a discrete uniform distribution
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ky~fi:(ky) = (5.48)

where k3 = ki Krmin + 1, .., K = 1LK
It should be noted that k7 is different from k. ks is the real termination time in

the simulation, while k7 is a computed value that is used to randomize termination time in

calculating the optimal shift 6, (1: k; — 1).

5.3.2.3 Conducting the accelerated tests
The car-following simulation is executed in the following steps:
i)  Sample a k7 from Eq.(5.48)
if)  Obtain the corresponding optimal shift vector 6:(1:K) calculated from
Eq. (5.44)
i) Run an accelerated test with the acceleration of the lead HV following the
distribution.

a,(k + D)~N (hg + hya; (k) + hov, (k) + b (k),02) (5.49)

iIv)  Record crash indicator and the termination time

Define the crash event € as
€ = {min(R,(k)) < 0|1 < k < K}. (5.50)

The crash indicator function is defined as

_ (1, crash
le(m) = {O, no crash (5.51)

where n is the index of the car-following test.

The termination time can be calculated from Eq. (5.33), which will be used in

calculating the likelihood ratio in the next section.
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5.3.2.4 Calculation of crash rate

The crash rate is calculated based on the Importance Sampling techniques
introduced in Section 3.2.2. Based on Eqg. (3.15), the crash rate in the real world can be

estimated from

1 n
P = > LML) (552)

where L(n) is the likelihood ratio in the n* car-following test, defined in Eq. (3.12), which
is the ratio between f(-) the likelihood of in naturalistic driving condition over f*(-) the

likelihood in an accelerated test.

_ f(ay(1:ky — 1))

L = 5.53
M = @ - D) (559
Based on Eq. (5.17) f(a,(1: ks — 1)) can be calculated from
fla,(1iks — 1))
_ kﬂ 1 {_ (a,(k + 1) — hyay (k) — ko, (k) — W} (5.54)
= | | Uumexp 202 :

f*(-) is calculated considering both the likelihood of the uncertainty of the dynamic

procedure and the randomness of the termination time:

FlaGhk-10)=) [k =Dk (655)

7=Krmin

where f(a, (1: k; — 1)|k3) is calculated from

fla,(1:ky — D]k3)

T { (aL(k+1)—hlaL(k)—hzmk)—ho—frk;;(m)z} (5.56)
el
o,V 2m

202
k=1 u
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Keep running the car-following tests until ¥(n) converges. The convergence is
reached when the relative half-width [. (defined in Eqg. (3.7)) is below g with

100(1 — a)% confidence level. 8 and a are small constant chosen by the tester.

5.3.2.5 Summary
The procedure of the accelerated test is summarized in Figure 5.5.
Before simulations:
1) Calculate the optimal mean shift vector 4. (1: K) for each kz. from Eq. (5.46)
i) KFmin i found from Eq. (5.47). Generate distribution fy-(-) in Eq. (5.48)

USing k;"min

During simulations:

iii) Sample a k7 from Eq.(5.48)

iv) Run the accelerated tests with AE distribution in Eq. (5.49). After each test
record whether a crash happens (represented by I¢) and the termination time
ks

V) Calculate the likelihood of each test from Eq. (5.53)

vi) Calculate the crash rate from Eqg. (5.52)

vii)  Calculate the relative half-width L, defined in Eq. (3.7)

viii)  If [, < B, output the crash rate. Otherwise, go back to step iii)
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Figure 5.5 Procedure to calculate crash rate in the car-follow



5.4 Simulation Analysis

In this section, numerical examples are presented to demonstrate the performance
and validity of the proposed approach. First, the uniform distribution is used as a baseline
AE distribution to evaluate the dynamic interaction between AVs and HVs. The
acceleration of the HV is amplified, but the evaluation is not accelerated. This result shows
that the correlation between samples must be considered to effectively accelerate the
evaluation of AVs, in the dynamic sampling environment, where the transition statistics
are changing with states, such as in the car-following scenario. Second, the proposed
approach is implemented to accelerate the evaluation procedure. Three metrics, cash, injury,
and conflict rates, are calculated. In each case, both accelerated and naturalistic simulations
were conducted to examine the accuracy and the accelerated rate of the proposed method.
Finally, the sensitivity of the metric estimation to the accuracy of the HV model is analyzed.

5.4.1 Simulation results with baseline accelerated methods

In this section, we use a uniform AE distribution in the car-following estimation.

The HV acceleration is generated via Eq. (5.57).

a,(k + D~fua(ay(k), v, (k)) (557)
= u([l' a, (k), (47 (k)]h - 19ud/zl [1; a, (k)' UL (k)]h + 19ud/2)
where U represents the uniform distribution and parameter 9,4 is chosen to be 6a,,. The
comparison between the original HV distribution and the uniform AE distribution is shown

in Figure 5.6.
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Figure 5.6 Original HV distribution and the uniform AE distribution

The HV model and AV model developed in Section 5.2 is used to demonstrate the
performance of the method. Each simulation run starts with the same initial states. The

likelihood ratio of the uniform distribution method can be calculated from

_ f(a(iky — 1))
fii(a,(Liky — 1))

L(n) (5.58)

where k4 is the termination time defined in (5.33). f(aL(lz ks — 1)) is calculated from

Eq. (5.54). f;;4() is calculated from

kr—1

faa(a,(Liky — 1)) = 1_[ fua(a (k) = 191::?- (5.59)
k=1

The model parameters used in the simulation are listed in Table 5.2. One example
of the accelerated test is shown in Figure 5.7. Although the lead HV acceleration surged
up and down, most of the oscillations of the acceleration were canceled out in generating

velocity, and crash did not happen.
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Table 5.2 Parameters for the car-following simulations

Var. Unit Value Var. Unit Value
a, m/s? 0 Ky - 62.63
a, m/s? 0 M Kg 1757
altax m/s? 9.81 RMax m 1e3
aMm m/s? -9.81 RMin m 0
aMax m/s? 9.81 Ter s 114
aMin m/s? -9.81 tilesire S 2
Ay m? 2.2 T, S 0.3
Cq - 0.32 Umnax m/s? 1.2
FMax N 17236 Unmin m/s? -1.2
FMin N -17236 pMax m/s 50
g m/s? 9.81 pMin m/s 1
ho - 3.395¢-2 pMax m/s 50
hy - 0.8516 pMin m/s 1
h, - -1.406e-3 Vg m/s 20
K - 119 VLo m/s 20
K, - 882.7 Pair kg/m? 1.202
K, - 1.111 oy - 0.3949

The crash rate was calculated from Eqg. (5.52). Due to the misconnection between
each sampling and the oversimplified AE distribution, most of the crashes had very small
likelihood ratio. The estimated crash rate is shown in Figure 5.8. A million simulation runs
have been conducted, but because the convergence is very weak, not much can be told
about the crash rate. The uniform distribution cannot effectively accelerate crash evaluation

in the car-following scenario.

102



velocity [m/s]

E 60
[4})
2 40
[y}
o
5
(4]
9
£ 0
|
© 5 1 1 1 1 1
0 20 40 60 80 100 120
time [s]

Figure 5.7 An example maneuver generated by the baseline accelerated evaluation
approach with uniform distribution
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Figure 5.8 Estimation of the crash rate using uniform distribution as the AE distribution

5.4.2 Simulation results with proposed accelerated evaluation method

In this section, we applied the proposed Accelerated Evaluation approach on three
types of events: the crash, injury, and conflict event to examine the accuracy, robustness,

and the accelerated rate of the method.
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5.4.2.1 Estimation of the crash rate

Both accelerated and naturalistic simulations were conducted. Selected examples
of the lead HV speed in both cases are shown in Figure 5.9. In the accelerated tests, the
vehicle tends to accelerate and decelerate at significant levels. In the naturalistic tests, the
vehicle speed is obtained through direct Monte Carlo sampling and while the vehicle speed

also fluctuates, it is much more mild.

40 - i
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%) Accelerated”
= 30
£
P
C 20 .
o
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0
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time [s]

Figure 5.9 Comparison of lead vehicle speed profiles in accelerated and non-accelerated
(naturalistic) driving conditions

Figure 5.10 shows an example in an accelerated test that leads to a crash. It can be
seen that the crash is caused by frequent acceleration and deceleration, and in this case a
“final blow” through a severe braking from a high speed. When the lead HV accelerates, it
creates a larger R;. The AV then accelerates to catch up. If HV conduct a hash brake at the
moment when AV overshoots, it may lead to a crash. This tactic is frequently observed in
the proposed tests, but not in the current Euro-NCAP test protocols and 1SO standards. In
other words, the proposed accelerated evaluation method automatically generated high risk
maneuvers, some of which might be considered in the future government certification

process.
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Figure 5.10 An example maneuver generated by the accelerated evaluation approach
leading to a crash
Both accelerated and naturalistic tests were conducted until the crash rate
converged with 80 % confidence level and g = 0.2. Figure 5.11 shows that the estimation
of the crash rate calculated by the accelerated tests converges to the naturalistic driving

estimation, which shows that the Accelerated Evaluation is unbiased.

Test number (Naturalistic condition) %108
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Figure 5.11 Estimation of the crash rate in the car-following scenario
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Figure 5.12 shows that accelerated tests achieve the confidence level g after

N, = 3.84e3 simulations, while the naturalistic (crude Monte Carlo) method took
Ny ature = 4.30e8 simulations.
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Figure 5.12 Convergence of crash rate estimation in the car-following scenario

5.4.2.2 Estimation of the injury rate

We also estimate the injury rate using the proposed Accelerated Evaluation method.
The probability of moderate-to-fatal injuries for the AV passengers is defined in Eqg. (3.38).
The estimated injury rate can be calculated from Eg. (3.39). Both accelerated and
naturalistic tests were conducted until the injury rate converged with 80 % confidence level
and B = 0.2. Figure 3.15 shows that estimated injury rate in the accelerated test converges
to the result under naturalistic driving conditions.
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Figure 5.13 Estimation of the injury rate in the car-following scenario

Figure 5.12 shows that accelerated tests achieve the confidence level g after
Ngce = 3.10e3 simulations, while the naturalistic (crude Monte Carlo) method took

Npature = 4.20e8 simulations.

Test number (Naturalistic condition) <108
0 1 2 3 4 5
06 I T T T T |
1 Nnature
£ 0581 = == == Naturalistic
o
E 0.4 Accelerated
©
< 03
g
B 02— — — — — — — — —
© .
@ o1 d
: Nace:
0 L ] Il L
0 1000 2000 3000 4000 5000

Test number (Accelerated evaluation)
Figure 5.14 Convergence of injury rate estimation in the car-following scenario

5.4.2.3 Estimation of the conflict rate

Finally, we examine the conflict event, which is defined in Eq. (4.38). The conflict
rate can be calculated from Eqg. (3.39). Figure 5.15 shows that estimated conflict rate in the

accelerated test converges to the result under naturalistic driving conditions.
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Figure 5.15 Estimation of the conflict rate in the car-following scenario

Conflict rate [conflict/car-following]

Figure 5.16 shows that accelerated tests achieve the confidence level S after
Ny = 3.26e3 simulations, while the naturalistic (crude Monte Carlo) method took

Nparure = 1.07€6 simulations.
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Figure 5.16 Convergence of conflict rate estimation in the car-following scenario

5.4.2.4 Summary

Table 5.3 summarizes the performance of the Accelerated Evaluation in estimating
the three metrics of the AV. The accelerated rate is defined as N, ;tyre/Ngce- 1t 1S Shown
that in the crash and injury cases, the proposed method successfully accelerates the
evaluation by five orders of magnitude. In the conflict case, the AE method achieves over
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a hundred times acceleration. In general, the IS techniques provide larger accelerated rate
when target events are rarer. Since crashes and injuries occur with much lower probabilities

than conflicts, we get higher accelerated rates when estimating them.

Table 5.3 Summary of performance of the Accelerated Evaluation in estimating the crash
rate, injury rate, and the conflict rate in the car-following scenario

Nuature Nagcc Nnature/Nace
Crash 4.30e8 3.84e3 1.12e5
Injury 4.20e8 3.10e3 1.35e5
Conflict 1.07e6 3.26e3 3.28e2

5.4.3 Sensitivity analysis of the human-controlled vehicle model

The Accelerated Evaluation is a HV model-based approach. The accuracy of the
HV models can significantly affect the estimation of the benefits of AVs. In this section,
we applied the Accelerated Evaluation to efficiently analyze the sensitivity of the
estimation results to the HV models.

The lead HV models have two sets of parameters. [hy, h4, h,] represents the general
principle of the driving behaviors of the drivers. a,, represents the stochastic feature of the
driving. A smaller g,, means the driver accelerate/decelerate with a small increment thus
drives more cautiously, while a larger a,, means the driver drives more aggressively. In the
SMPD database, we used driving data of 100 drivers in Ann Arbor whose cars were
equipped Mobileye®. It may reflect the local driver behaviors but not necessary for drivers
in other places in the U.S. By using the accelerated techniques proposed in this chapter, we
studied the sensitivity of the estimated crash rate to the parameter a,,.

Figure 5.17 shows the estimation of crash rate with different a,, varying between
+10. It can be seen that the Accelerated Evaluation approach can quickly converge even

when the HV parameter changes. In Figure 5.18, the crash rate is plotted in a logarithmic
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scale. We can see that the crash rate varies exponentially with o, which demonstrates that

accurate HV behavior is crucial to understand the safety impact of AV.
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Figure 5.17 Calculation of crash rate using the Accelerated Evaluation approach with the
varying HV parameter gu
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Figure 5.18 Crash rate varying with the HV parameter oy

5.5 Summary

In this section, we developed the accelerated evaluation approaches for the car-
following scenario. The modified statistics of the lead HV were calculated based on

analysis using stochastic optimization methods to maximize the likelihood for a crash to
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happen. Simulations of the accelerated tests and the non-accelerated naturalistic driving
were conducted to verified the credibility of the Accelerated Evaluation. Results show that
the proposed Accelerated Evaluation approaches give unbiased estimation of the conflict,
crash and injury rate of the AV, and can reduce simulation/testing time by a factor of 300
to 100,000.
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CHAPTER 6
CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

It is critical to evaluate AVs thoroughly before their release and deployment to the
general public. Because most trips are not safety-critical in the naturalistic driving, testing
AVs on public roads is extremely time-consuming, inefficient, and expensive.

In this dissertation, we proposed an “Accelerated Evaluation” approach as an
alternative approach to evaluating AVs. The core idea is to modify the statistics of the
naturalistic driving so that the safety-critical events are emphasized. Four approaches were
proposed to implement this concept. In CHAPTER 2, we accelerated the evaluation by
removing the relatively safe events with a high likelihood of occurring. As a result, the
critical events happen more frequent in the accelerated test. A three-car car-following
scenario was used to demonstrate the idea, in which the motion of the vehicle in front of
the AV was modeled as a stochastic Markov Chain and the vehicle trailing the AV was
simulated as an errorable driver model. Rear-end crashes were studied for two AVs
simulating current production automated vehicles.

In CHAPTER 3, the Importance Sampling techniques were used to develop an
Accelerated Evaluation method. This method provides a rigorous mathematical basis for
calculating the real-world benefits from the accelerated test results. First, the fundamental
limitation of the crude Monte Carlo method was analyzed. Then a statistical framework for
the Accelerated Evaluation was established based on the Importance Sampling techniques
and compared to the crude Monte Carlo method. Frontal collision due to unsafe cut-ins was
used as the target crash scenario to demonstrate the proposed approach.

In CHAPTER 4, the “Adaptive Accelerated Evaluation” approach was developed
to find the optimal modified statistics of HV in a systematic way. The optimal AE statistics

was searched iteratively based on the Cross Entropy method. A comparison of the
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accelerated performance between the non-optimized AE distribution and the Adaptive
Accelerated Evaluation was conducted to demonstrate effectiveness of the proposed
method.

In CHAPTER 5, we developed a new method to capture the dynamic interactions
between the lead HV and the AV in the car-following scenario. The optimal way to modify
the statistics was calculated by maximizing the likelihood of occurring of the events of
interests. Three different types of events, crash, injury, and conflict were used to examine
the performance of the method.

The Accelerated Evaluation approaches can be used to design AV evaluation
procedure for field tests, Hardware-in-the-Loop (HIL), driving simulator, and computer
simulation as shown in Figure 6.1. Since the proposed Accelerated Evaluation methods can
accelerate the evaluation of the rare event including conflict, crash and injury events by
300 to 100,000 times, there is great potential to reduce the development and validation time

for AVs significantly.

Crash scenarios

- Stochastic Accelerated
model Evaluation

1l

Events & o
Test variations
Frequency
1
[ 1
Naturalistic-Field Naturalistic old ..
operational test driving database Fie priving HiL Simulations
tests Simulator tests

Figure 6.1 Procedure of the AV evaluation using the Accelerated Evaluation

6.2 Future Research Directions

The Accelerated Evaluation methods proposed in this research provides a new path
of AV evaluation. While we successfully applied them in lane change and car-following

scenarios, more can be done to improve the accuracy of the estimation and extend the
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methods to other scenarios. A few research directions that can be exploited in the future

research are discussed as follows.

6.2.1 Improvement of the HV model accuracy

The Accelerated Evaluation is an HV model-based approach. The HV models need
to be accurate to estimate the performance of the AVs and their safety benefits. The
naturalistic driving data used in this research recorded in Ann Arbor, Ml, reflect the local
driving behaviors but not necessarily the behaviors in other areas. Moreover, even though
the current N-FOT database contains millions of miles of driving, it is still a challenge to
accurately model the human behaviors under emergent conditions. More data and new

analysis tools are of great benefits to improve the HV model accuracy.

6.2.2 Accelerated Evaluation of other AV scenarios

New Accelerated Evaluation approaches need to be developed for more scenarios
to give a thorough evaluation of AVs. The full failure modes of AVs have not been fully
understood by the community to design a complete list of test scenarios, but possible
factors include:

i)  Challenge in sensing/detection (e.g., fog, snow, low light)
i) Challenge in perception (e.g., hand gesture, eye contact, blinking lights)

iii)  Aggression of surrounding vehicles/pedestrians/pedal-cyclists (e.g., running
red light, cut-in, jaywalk)

iv)  Challenge in making decisions (e.g., low confidence, multiple threats)

v)  Challenge due to lower (than normal) control authorities (e.g., slippery roads,

heavy vehicle load)

In this dissertation, we focus on the third category by taking the interaction with
other HVs as the major disturbance to the control of the AV. Two fundamental driving
scenarios - car-following and lane change, were studied. However, there are other scenarios
that needs to fully consider vehicle to vehicle interactions. Based on the analysis of the
crash data, research [75] shows that the top five scenarios to be considered are: car-
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following, lane change, left turn, crossing, and opposite direction (illustrated in Figure 1.7).
AV should first excel human drivers in these scenarios in order to become a safer
alternative to human drivers. We studied the Accelerated Evaluation approaches for the
first two scenarios, but more efforts are needed to cover the other three scenarios, and to
gain deeper understanding of the first two.

There are scenarios that may not be covered well by HV crash data. As shown in
Figure 6.2, crash scenarios are divided into three categories: scenarios that are challenging
only for HV (e.g. drowsy driving), scenarios that are challenging only for AVs (e.g.
software bugs), and scenarios that are challenging for both AVs and HVs (e.g. fail to
response to an aggressive cut-in). Due to the different causations, the existing database
should not be used as the sole source to design the evaluation protocol for AVs. Four
possible approaches can be used in the future to find test scenarios for AVSs: i)
Brainstorming, ii) Crowdsourcing, iii) Analysis of existing crash databases, iv) Analysis of
naturalistic driving databases.

Besides the V-V crash types, there are crashes involved the host vehicle only (single
vehicle crash, denoted as V) or with pedestrians (V-P). These scenarios should also be

studied and included in the AV evaluation process.
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Figure 6.2 Approaches to identify AV evaluation scenarios
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6.2.3 Accelerated Evaluation of other systems

In this research, we focus on AV evaluation. However, this approach may also be
adopted in other systems such as the navigation systems of ships, auto pilot of airplane,
drones, or other Cyber-Physical-Systems [151]. A common feature of these systems is that
the dynamic system is controlled by intelligent algorithms and operate in an environment
with disturbances. The proposed approaches could offer a new direction in evaluating these

systems and obtaining better designs.
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APPENDIX A

SAE SIX LEVELS OF AUTOMATED VEHICLES [14]
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APPENDIX B

CRASH DATABASES IN THE U.S. AND E.U.

(Databases with larger than 5000 crashes)

Full name Country  Crashes

NASS-  |National Automotive Sampling
~3300-5000 [1988-
CDS system - Crashworthiness Data us or vear resent NHTSA
[78] System pery P
NASS-
GES National Automotive Sampling Us ~50,000 per [1988- NHTSA
(77] System - General Estimated System year present
FARS ~33,000 per |1975-
Fatal Accidents Recording System us P NHTSA
[152] year present
. . 2005-
NMVCCS Natlon?I Motor Vehicle Crash US 5,470 005 NHTSA
[153] Causation Survey 2007
CARE EU & CH, 1991- European
Community Road Accident Database 1,000,000+ urop .
[154] IS, NO present |Commission
GIDAS . 1999- BASt and several
German In- Depth Accident Study DE 22000
[155] present |manufacturers
ADAC 2015-
ADAC Accident Investigation Study  [DE 11456 ADAC
[156] present
CCIS 1983- Department for
Co- tive Crash Injury Stud UK 15000
[57]l [P R R 2010  [Transport
VOIESUR Vehicule Occu!)ant. I?frastructure CEESAR, CETE NC,
Etudes de la Sécurité des Usagers de |FR 9000 2011
[158] 2 Route IFSTTAR, LAB
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