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ABSTRACT 

Automated Vehicles (AVs), which monitor the driving environment and conduct 

some or all of the driving tasks, must be evaluated thoroughly before their release and 

deployment. The challenges of AV evaluation stem from two facts. i) Crashes are 

exceedingly rare events. In the U.S., one needs to drive on average 530 thousand miles to 

experience a police-reported crash and nearly 100 million miles for a fatal crash. The low 

exposure to safety-critical scenarios makes the Naturalistic-Field Operational Tests (N-

FOT) very time-consuming and expensive to conduct, in which prototype AVs are driven 

by volunteers or test engineers on public roads. ii) AVs can “cheat” to pass predefined tests. 

Traditionally, vehicle test protocols and test conditions are pre-defined and fixed. This is 

not a problem when the vehicle is “dumb”, but becomes a problem when the vehicle is 

intelligent and can be customized to excel in the predefined tests, and performance in other 

test conditions receives less attention. An evaluation approach that represents the real world 

but not as time-consuming as the N-FOT is needed to address the problems mentioned 

above. 

In this research, we propose an “Accelerated Evaluation” concept to accelerate the 

evaluations of AV by several orders of magnitude. The interactions between the AV and 

the surrounding Human-controlled Vehicles (HVs) are modeled based on the naturalistic 

driving data collected by the University of Michigan Transportation Research Institute in 

the Safety Pilot Model Deployment Program and the Integrated Vehicle-Based Safety 

Systems Program. Probabilities of conflict, crash, and severe injury are used as the main 

metrics to assess the safety of AV designs. In general, Accelerated Evaluation consists of 

six steps. 1) Collect a large quantity of naturalistic driving data. 2) Extract events that have 

potential multi-vehicle conflicts. 3) Model the conflict driving scenarios using stochastic 

models. 4) Reduce the non-safety-critical events by skewing the probability density 

functions. 5) Conduct Monte Carlo simulations with the skewed (accelerated) probability 

density function, resulting in more intense interactions between the AV and HVs. 6) “Skew 

back” the simulation results to calculate the performance of AVs under naturalistic driving 



 

xxii 

 

conditions. The proposed approach can be used in computer simulations, human-in-the-

loop tests with driving simulators, hardware-in-the-loop tests, or vehicle tests. 

Four methodologies were developed in this dissertation to form the basis of the 

Accelerated Evaluation concept. The first method is based on the likelihood analysis of 

naturalistic driving. The test scenarios are built as a probabilistic model based on time 

series driving data. The evaluation procedure is accelerated by reducing the relatively safe 

events that have a high likelihood of occurring. The second method provides a 

mathematical basis for the “skewing back” mechanism in step 5) based on the Importance 

Sampling theory, such that the statistical equivalence between the accelerated tests and 

naturalistic driving tests can be rigorously proved. The third method, the “Adaptive 

Accelerated Evaluation”, provides a procedure to recursively find the best way to skew the 

probabilistic density functions of HVs to maximally reduce the evaluation duration. 

Finally, the Accelerated Evaluation approach to analyzing the dynamic interactions 

between AVs and HVs was developed based on stochastic optimization techniques. 

Simulation results show that the accelerated tests can reduce the evaluation time of 

crash, injury or conflict events by 300 to 100,000 times. In other words, driving for 1,000 

miles can expose the AV with challenging scenarios that take 300 thousand to 100 million 

miles in the real-world to encounter. This technique thus has the potential to dramatically 

reduce the development and validation time of AVs. 
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INTRODUCTION 

1.1 Motivation 

Automated Vehicle1 (AV) technologies have the potential to significantly change 

the future of ground mobility. AVs can save fuel, reduce traffic accidents, ease traffic 

congestion, and provide better mobility service to the elderly, physically challenged and 

vision challenged population [1]. 

Effort is being made to remove the legal obstacles to developing AVs. As of 

December 2015, six U.S. states (Nevada, Florida, California, and Michigan, Tennessee, 

North Dakoda, and Arizona) and the District of Columbia have passed laws permitting 

testing of automated cars on public roads. Fourteen other states are considering similar 

legislations [2], [3] as shown in Figure 1.1. In Europe, the United Kingdom permitted the 

testing of autonomous cars on public roads starting January 2015 [4] and promise to update 

the U.K. regulations in 2017 [5]. Some cities in Belgium, France, and Italy are planning to 

operate transport systems using driverless cars [6], [7]. Gothenburg, Sweden gave the green 

light to driverless cars, in their current plan 100 Volvo cars will be launched in 2017 [8]. 

Almost all major car companies have initiated research and development programs 

for AVs. Table 1.1 shows the announced AV production plans [9], [10]. On October 14, 

2015, Tesla activated the Autopilot function on Model S through an over-the-air software 

update [11] enabling functions such as Adaptive Cruise Control, Lane Keeping, Auto Lane 

Change, Autopark, and Automatic Emergency Steering [12]. 

 

                                                 
1 The term “automated” is used instead of "autonomous", because the former term is more accurate and is 

more widely adopted [159]. 
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Figure 1.1 States with enacted automated vehicle legislation [13] 

 

Table 1.1 Announced automated vehicle technologies [9], [10] 
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The Society of Automotive Engineers (SAE) defined six levels of automated 

driving in the SAE J3016 Standard [14] as shown in Table 1.2 (details shown in 

APPENDIX A). “A key distinction is between level 2, where the human driver performs 

part of the dynamic driving task, and level 3, where the automated driving system performs 

the entire dynamic driving task.” [15] We are in an era when the industry is moving from 

level 1 and up, possibly all the way to level 5. Since Electronic Stability Control (ESC) has 

been mandatory in the U.S. since 2013, all new models of light vehicles can be said to be 

at least level 1 automation already. However, some argues that ESC really should not be 

treated as an AV function because it is activated intermittently and is designed for vehicle 

stability rather than automated driving. 

 

Table 1.2 SAE 6 Levels of Automation Vehicles [14] 

Le
ve

l 

Name 

Execution of steering 

and acceleration/ 

deceleration 

Monitoring of 

driving 

environment 

Fallback performance 

of dynamic driving 

task 

System 

capability 

(driving modes) 

Human driver monitors the driving environment 

0 No Automation Human Human Human n/s 

1 
Driver 

Assistance 
Human system Human Human Some modes 

2 
Partial 

Automation 
System Human Human 

Some 
modes 

Automated driving system monitors the driving environment 

3 
Conditional 
Automation 

System System Human 
Some 

modes 

4 
High 

Automation 
System System System 

Some 
modes 

5 
Full 

Automation 
System System System All modes 

 

As the level of automation increases, the AV system will become more complex, 

making the evaluation of AV more challenging. Today’s high-end cars may have 100 

million lines of code while the Boeing 787 only has 6.5 million [16]. It is not practical for 

either the company’s internal design release team or the evaluation authorities, such as the 

National Highway Traffic Safety Administration (NHTSA) [17], to check every line of the 

algorithms. As a result, problems may be found after the product release, which could lead 

to expensive recalls [18], [19]. It is desirable to evaluate automated driving systems early 
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in the design process. This is consistent with NHTSA’s view for the development of 

automated driving: 

“The main topics that will need to be addressed include … Development 

of test and evaluation methods - Based on the real world scenarios (use cases) 

that map to the functional description of the automated system, develop test 

track tests and/or simulation approaches that can evaluate the performance of 

the level 2 or level 3 systems2 relative to these use cases.”[20, p. 9] 

In this research, we focus on AVs in level 3 to level 5, namely, highly to fully 

Automated Vehicles. For simplicity, in the remainder of this dissertation, when we talk 

about evaluating AVs, we mean evaluating levels 3-5 AVs, which monitor the environment 

and conduct the driving tasks without the help from the human driver. 

1.2 Naturalistic Field Operational Tests 

Naturalistic Field Operational Tests (N-FOTs) [21] have been used to evaluate 

AVs. In an N-FOT, data is collected from a number of equipped vehicles driven in 

naturalistic conditions over an extended period of time [22]. Large-scale N-FOT projects 

conducted in the U.S. are as shown in Table 1.3. The 100-Car Naturalistic Driving Study 

was conducted by the Virginia Polytechnic Institute and State University (popularly known 

as Virginia Tech or VT) to determine the main contributing factors of crashes. Its data had 

been used to analyze driver performance, behavior, environment, driving context and other 

factors that were associated with critical incidents, near crashes and crashes [23]–[27]. The 

Automotive Collision Avoidance System (ACAS) project [28] tested Forward Collision 

Warning (FCW) and Adaptive Cruise Control (ACC) functions of light vehicles. The Road 

Departure Crash Warning (RDCW) project [29] developed and assessed a set of 

technologies intended to warn drivers about lane departure and excessive speed entering a 

curve. The Sweden-Michigan Naturalistic Field Operational Test (SeMiFOT) [30] is a 

project that involves 13 organizations from the automotive industry, road authority, and 

                                                 
2 The NHTSA has a five level taxonomy of AVs as shown in APPENDIX A. The NHTSA level 2 is the 

same as SAE level 2. The NHTSA level 3 includes the entire SAE level 3 and partially level 4 and 5. 
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academia. The test vehicles were equipped with ACC, FCW with Emergency Brake, Lane 

Departure Warning, Blind Spot Information System, Electronic Stability Control, and 

Impairment Warning, and were tested by 39 drivers for a total of 106,528 miles. The 

Integrated Vehicle-Based Safety Systems (IVBSS) [31], [32] project developed and 

evaluated an integrated system with three crash-warning functions: forward crash, lateral 

drift, and lane change/merge crash warnings on both light sedans and heavy trucks. More 

recently, Safety Pilot Model Deployment (SPMD) program [33]–[36] exploited the 

connected vehicle technologies and tested about 2,800 equipped vehicles in Ann Arbor, 

Michigan. 

 

Table 1.3 Major N-FOT projects in the U.S. 

Name Conductor Period 
Mileage 

[mile] 
Vehicle Sensor Drivers Research topic 

100 Car 
Naturalistic 
Driving Study 

VT 
2001-
2009 

2,000,000 
100 
sedans 

Camera 

109 primary 
drivers 
132 secondary 
drivers 

Rear end collision 

ACAS UM 
2004-
2005 

137,000 11 sedans 
Camera 
Radar 

96 drivers 
Forward collision 
warning 

RDCW UM 
2005-
2006 

83,000 11 sedans 
Camera 
Radar 

11 drivers 
Lane departure 
warning 

SeMiFOT UM 
2008-
2009 

106,528 
10 
sedans, 
4 trucks 

Camera 
Radars 

39 drivers 

Forward collision 
warning, lane 
departure warning, 
blind spot 
information system, 
electronic stability 
control, and 
impairment 
warning 

IVBSS UM 
2010-
2011 

sedan: 
213,309 
truck: 
601,944 

16 sedans 
10 heavy 
trucks 

Camera 
Radar 

108 drivers for 
sedans 
18 professional 
truck drivers 

Integrated warning 

SPMD UM 
2012-
2014 

Over 34 
million 

2,800 
various 
types of 
vehicles 

Camera 
DSRC 

2,700 volunteer 
drivers and 
several 
professional bus 
and truck 
drivers 

Connected vehicle  

Google 
driverless car 

Google 
2012-
present 

1.3 million 
At least 
50 sedans 
and SUVs 

Lidar 
Camera 
Radar 

Google 
technicians and 
volunteers 

Fully self-driven 
vehicle 
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Google, instead of testing a specific function, designed several SAE Level 4 AVs 

[37] and tested them on the public road since 2012. The Google driverless car scans and 

generates a 3D map of its environment using a Velodyne LiDAR (Light Detection And 

Ranging) system [38] mounted on the top of the car. On March 28, 2012, Google posted a 

YouTube video showing Steve Mahan, a Morgan Hill California resident who is ninety-

five percent blind. He was taken on a ride in a driverless Toyota Prius [39] as shown in 

Figure 1.2. In the video, it is noted that the AV takes him from his home to a drive-through 

restaurant, then to the dry cleaning shop, and finally back home [40]. Up to December 

2015, the Google driverless cars have logged nearly 1.3 million miles of autonomous 

driving [41]. 

 

 

Figure 1.2 Google driverless car took a man with vision disability [39] 

 

Conducting an N-FOT to evaluate an AV involves non-intrusive driving conditions, 

i.e., the test subjects were told to drive the way they normally did. This test approach suffers 

from several limitations. An obvious problem is the time needed. Under naturalistic 

conditions, the probability of exposure to critical events is very low. In the U.S., there were 

5.7 million police-reported motor vehicle crashes and 30,057 fatal crashes in 2013, while 

the vehicles traveled a total of 2.99 trillion miles [42]. This translates to approximately 0.53 

million miles for a police-reported crash and 99 million miles for a fatal crash. The later is 

almost the same as the distance from Earth to the Sun (93 million miles). Since the average 

mileage driven annually by licensed drivers is 14,012 miles [42], on average one needs to 

drive 38 years to experience a police-reported crash and 6,877 years for a fatal crash. 
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Because of this low exposure rate, the N-FOT projects require a large number of vehicles, 

long test duration, and a large budget. According to Akamatsu et al. [43], an N-FOT 

“cannot be conducted with less than $10,000,000”. A more efficient approach for AV 

evaluation is needed. 

 

1.3 Literature Review on Evaluation Approaches of Automated Vehicle 

The field of automated vehicle has a rich history, with early demonstrations [44] in 

the 1990s and continuous improvement [45] over the last decade. Meanwhile, methods for 

AV evaluation have been developed and improved over time. In this section, we reviewed 

existing approaches that can accelerate the evaluation procedure. We divided the 

approaches into three categories: Test Matrix approach, Worst-Case Scenario evaluation, 

and Monte Carlo Simulations. 

1.3.1 Test Matrix evaluation 

In a Test Matrix evaluation, a series of test scenarios are first defined. The vehicles 

then go through each test and are assessed objectively or subjectively. An example 

evaluation process is shown in Figure 1.3. 

 

Figure 1.3 Test Matrix evaluation flowchart [46] 
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Many programs have been launched to develop evaluation procedure using the Test 

Matrix method. In the U.S., one of the earliest efforts was conducted by the CAMP (Crash 

Avoidance Metrics Partnership) program [47]–[49]. Twenty-six dynamic, vehicle-level 

tests were proposed to evaluate Forward Collision Warning system performance. A 

surrogate target (a mock vehicle) as shown in Figure 1.4 was used. The total test time is 

two to four weeks (not including initial fabrication, set-up, and surveying of test sites) [50]–

[52]. CICAS (Cooperative Intersection Collision Avoidance System) project [53] used a 

scenario-based field-test approach to evaluating a comprehensive system to reduce the 

number of crashes at intersections due to violations of traffic control devices [54], [55]. In 

the “Development of Performance Evaluation Procedures for Active Safety Systems” 

project [56], eleven scenarios were used to assess the performance of DBS (Dynamic Brake 

Support) and CIB (Crash Imminent Braking) on two production vehicles sold in the U.S. 

 

 

Figure 1.4 CAMP surrogate target vehicle [52] in a field test 

 

The European Commission also conducted several projects to develop evaluation 

procedure using the Test Matrix method. The HASTE (Human Machine Interface And the 

Safety of Traffic in Europe) project [57] was launched by the European Commission to 

develop methodologies and guidelines for the assessment of In-Vehicle Information 

Systems (IVIS). Three levels of road complexities were defined: straight roads, gentle S-

shaped roads, and discrete critical events [58]. Both simulator experiments and field trials 

were used. It was found that visual distraction and cognitive distraction from the use of 

IVIS have very different impacts on the primary task of driving and static performance 

[57]. AIDE (Adaptive Integrated Driver-vehicle InterfacE) [59], [60] introduced a 15-

scenario test regime for an integrated in-vehicle Human Machine Interface (HMI) based 
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on test scenarios suggested in previous studies. TRACE (Traffic Accident Causation in 

Europe) [61] adopted a case study method with scenarios based on National crash statistics 

and in-depth crash data. APROSYS (Advanced Protection Systems) [62]–[64] proposed 

various test scenarios for cars, heavy trucks, motorcyclists, pedestrians and pedal cyclists, 

based on various sources including SAVE-U [65], COMPOSE (subproject of PReVENT 

[66]) and GIDAS (German In-depth Accident Study) databases [67]. The interactIVe 

(accident avoidance by active intervention for Intelligent Vehicles) project [68] applied 

Hardware-in-the-loop testing, driving simulator and test track experiments to assess crash 

avoidance intervention systems. ASSESS [69] (Assessment of Integrated Vehicle Safety 

Systems) developed multiple test mechanisms for collision avoidance. ‘Accident data 

study in support of development of Autonomous Emergency Braking (AEB) test 

procedures’ project [70] developed types of evaluation scenarios: 1) stopped lead vehicle, 

2) slow lead vehicle with constant speed, and 3) braking lead vehicle with constant 

deceleration determined based on GIDAS, STATS 19 (2008) and OTS (2000-2009) 

databases. The results of this project were used in the EURO NCAP AEB test procedure 

[71]. 

Test Matrix scenarios can be implemented in field tests, Hardware-in-the-Loop 

(HIL) test, driving simulator test and computer simulation. Field tests were used by all 

certification authorities. Driving simulator and computer simulation have also been used 

to reduce the cost and time. One example of evaluation using simulator is shown in 

Figure 1.5. 

 

 

Figure 1.5 Urban simulator environment in HASTE [58] 
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The choices of test scenarios in Test Matrix based evaluations are primarily based 

on crash databases. A series of research on pre-crash scenarios was conducted [72]–[76]. 

As shown in Figure 1.6, the “44-crashes typology” was developed by General Motors. The 

“pre-crash scenarios” typology was devised by United States Department of Transportation 

based the NASS crash databases GES (General Estimates System) [77] and CDS 

(Crashworthiness Data System) [78]. Volpe combined crash information from both 

typologies and developed the 37 pre-crash scenarios that depict vehicle movements and 

dynamics as well as the critical events occurring immediately prior to crashes involving at 

least one other light vehicle [76]. Volpe further used the GES, NMVCCS (National Motor 

Vehicle Crash Causation Survey) [79], and EDR (Event Data Recorder) [80] databases to 

generate the top five scenario groups as shown in Figure 1.7. The major crash databases in 

the U.S. and EU are summarized in APPENDIX B. More comprehensive reviews of crash 

analysis can be found in [81]. 

 

 

Figure 1.6 Pre-crash scenarios defined by NHTSA [75] 
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a) Car-following b) Lane change 

  

c) Left turn d) Crossing 

 

e) Opposite direction 

Figure 1.7 Five priority scenario groups in vehicle to vehicle crashes [75]  

 

The main benefits of the Test Matrix method are that the defined test procedure is 

repeatable, reliable and can be finished relatively quickly [82]. However, there are many 

difficulties to overcome. First, all the test scenarios are fixed and predefined. Therefore, 

control systems can achieve good scores in these tests, but the performance under broader 

conditions may not be adequately assessed. In an analogy, “Having a standard test is akin 

to holding an SAT exam for students with all problems pre-announced. Students do well in 

the test, but the score may tell very little about how much they really learn” [82]. Moreover, 

the Test Matrix scenarios are usually selected based on crash databases in which most of 
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the crashes were caused by Human-controlled Vehicles (HVs). The test scenarios of HV 

safety and their weights in the evaluation may not accurately reflect the safety-critical 

scenarios for AVs. Past projects that studied Test Matrix methods are summarized in 

Table 1.4. 

Table 1.4 Projects studying the Test Matrix method 

Project Institute Year Test scenario 
Evaluation 

approach 
Basis 

CAMP 
Ford/GM/ 
NHTSA 

1999 

26 tests to 
evaluate FCW 
system 
performance 

Test track 
GM ''44 
Crashes'' 

HASTE 
HASTE 
consortium 

2005 
Three levels of 
road complexities 

Simulator 
Test track 

Real world 
scenarios 

AIDE 
AIDE 
consortium 

2005 
15 scenarios for a 
fully integrated 
in-vehicle HMI 

Simulator 

HMI conflict 
scenarios in 
previous 
research 

TRACE 
LMS, LAB, 
INRETS, VW, 
TNO, ALLIANZ 

2006 
Scenarios from 
crash database 

Simulator 
Test track 
Computer 
simulation 

National 
statistics 
combined 
with in-
depth crash 
data 

Pre-Crash Scenario 
Typology for Crash 
Avoidance Research 

Volpe 2007 
37 pre-crash 
scenarios for light 
vehicles 

Crash data 
analysis 

GES (General 
Estimates 
System) 

APROSYS 
APROSYS 
consortium 

2007 

Scenarios for car, 
heavy trucks, 
motorcyclists, 
pedestrians and 
pedal cyclists 

Simulator 
Test track 

SAVE-U 
COMPOSE 
PReVENT 
INVENT 
project 
GIDAS data 

CICAS 
U of Minnesota 
PATH 
VTech 

2008 
Scenarios for 
intersection 
conflict 

Test track  

ASSESS 
ASSESS 
consortium 

2010 

Stopped lead 
vehicle 
Slow lead vehicle 
with constant 
speed 
Braking lead 
vehicle with 
constant 
deceleration 

Test track GIDAS 

interactIVe 
interactIVe 
consortium 

2011 
Multiple 
scenarios for 
active 

Hardware-in-
the-loop 
testing 

Previous 
studies 
based on 
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Project Institute Year Test scenario 
Evaluation 

approach 
Basis 

intervention 
systems 

Simulator 
Test track 

real traffic 
crashes 

Accident data study in 
support of 
development of 
Autonomous 
Emergency Braking 
(AEB) test procedures 

Loughborough 
University 

2012 
EURO NCAP AEB 
test procedure 

Test track 

STATS 19 
(2008) 
OTS (2000-
2009) 

Depiction of priority 
light-vehicle pre-crash 
scenarios for safety 
applications based on 
vehicle-to-vehicle 
communications 

Volpe 2013 
37 pre-crash 
scenarios for light 
vehicle impact 

Crash data 
analysis 

GES  
NMVCCS  
EDR  

Development of 
Performance 
Evaluation Procedures 
for Active Safety 
Systems 

UMTRI 2013 
11 scenarios to 
assess DBS and 
CIB 

Test track 
Real traffic 
accidents 

 

1.3.2 Worst-case scenario evaluation 

The Worst-Case Scenario Evaluation (WCSE) methodology was proposed to 

identify the truly challenging scenarios for any vehicles with or without active control 

systems. Ma [83], [84] first applied WCSE on rollover and jackknifing of articulated 

vehicles based on a dynamic game theory, in which control inputs and disturbance inputs 

compete in a two-player game situation. Ungoren [85] solved the problem as a one-player 

game by considering the vehicle and its control system as a combined dynamic system, and 

the iterative dynamic programming method was conducted to solve the WCSE problem 

numerically. Kou [86] applied the WCSE method to evaluate the Integrated Chassis 

Control (ICC) system. Initial conditions suitable for searching optimal disturbance were 

investigated through theoretical and practical means. In general the vehicle (with or without 

control systems) is modeled mathematically and WCSE is treated as a horizon optimization 

problem to solve for a trajectory (e.g. a sequence of steering inputs) that minimizes or 

maximizes the cost function (e.g. rollover index) [86]. When the system is linear, the worst 

bounded inputs are derived from the convolution of impulse responses [87]. For nonlinear 

systems, the solution of the Hamilton-Jacobi-Bellman equations is derived by variational 

calculus to solve the optimal trajectory problem [88]. 
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While the WCSE method can identify the weakness of a vehicle and vehicle control 

systems, it did not consider the probability of the occurrence of such Worst-Case scenarios 

[89], [90]. Therefore, the WCSE results do not provide sufficient information about the 

risk in real driving scenarios, and may not be the fairest way to compare between or 

evaluate different designs. Moreover, when the control algorithms are not available in 

analytical or numerical form (e.g., only as a black box) or complex (e.g. evolving systems 

[91] with millions of lines of code), the WCSE methods may have difficulties finding the 

worst scenarios, or will take a very long time to do so. 

 

1.3.3 Monte Carlo simulations 

Some researchers built stochastic models based on data obtained from N-FOTs and 

ran Monte Carlo simulations to evaluate AVs. Yang et al. [92] evaluated collision 

avoidance systems by building an “errorable” driver model to simulate human inattention 

based on Road-Departure Crash-Warning (RDCW) FOT and Intelligent Cruise Control 

(ICC) FOT naturalistic driving databases. Woodrooffe et al. [93] generated 1.5 million 

forward collision scenarios based on naturalistic driving conflicts and used them to 

evaluate collision warning and collision mitigation braking technologies on heavy trucks. 

A key benefit of this approach is that all the scenarios/models are extracted from 

naturalistic driving records and thus represent real-world driving scenarios. Using 

simulations instead of field tests may reduce the evaluation cost. However, if Monte Carlo 

simulations are used directly, the non-safety-critical parts of naturalistic driving will 

dominate and thus the simulations are not done efficiently. When hardware or human is in 

the loop, this approach may not be able to accelerate the procedure. 

 

1.3.4 Summary 

Four types of existing AV evaluation approaches were reviewed in Sections 1.2 and 

1.3. Their main pros/cons are summarized in Table 1.5. The N-FOT approach is time-

consuming and is the non-accelerated approach to be improved. The Test Matrix methods 

identify critical scenarios based on analysis of crash data. The Worst-Case Scenario 
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evaluation identifies critical scenarios by studying the AV dynamics and control 

algorithms. The Monte Carlo Simulations build stochastic test models based on naturalistic 

driving databases. The Test Matrix and Worst-Case Scenario approach successfully reduce 

the time required significantly compared with the N-FOT approach. However, the test 

scores may not be directly related to the real world crash rate. The Monte Carlo simulations 

can be used to estimate safety benefit of AVs. However, it cannot reduce the non-safety 

critical events to reduce the test efforts. A new approach is needed to achieve both goals: 

reflect real-world safety benefits, and accelerated. 

 

Table 1.5 Summary of AV evaluation approaches 

Method Basis Advantages Limitations 

N-FOT 
Public road 

testing 

Real-world 

field test 
Inefficient; expensive and time-consuming 

Test Matrix Crash data 
Efficient, 

repeatable 

Test scenarios are fixed and predefined. The 

failure modes of AVs might not be reflected in 

the existing crash scenarios.  

Worst-Case Scenario 
evaluation 

AV model 
Worst-Case 

scenarios 

The probabilities for the Worst-Case scenarios 

are not considered. 

Monte Carlo 
Simulation 

N-FOT 

driving data 

Stochastic 

tests 

It does not reduce the test of non-safety critical 

events 

 

1.4 Objective, Approaches, and Scope of the Study 

The objective of this research is to develop an approach that can significantly 

accelerate the evaluation procedure of AVs and accurately represents their real-world 

safety benefits. Such an approach can be used by car companies to make AVs safer and 

can be used to develop government certification process. 

We propose the Accelerated Evaluation concept to achieve this goal. The core idea 

is that by skewing the statistics of the ‘principle other vehicles’, we can reduce the 

noncritical or “boring” parts of daily driving so that the test duration is reduced i.e. the 

evaluation procedure is accelerated. More specifically, the Accelerated Evaluation consists 

six steps: 
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1) Collect a large quantity of naturalistic driving data. 

2) Extract events that have potential conflicts between an AV and surrounding HVs. 

3) Model the behaviors of “other vehicles” as the major disturbance to AVs. The 

randomness is modeled as random variables vector 𝒙 with probabilistic distribution 𝑓(𝒙). 

4) Skew the disturbance statistics to reduce the non-safety-critical portion of daily 

driving by replacing 𝑓(𝒙) with the accelerated distribution 𝑓∗(𝒙). 

5) Conduct Monte Carlo tests with the skewed (accelerated) the probability density 

function𝑓∗(𝒙), resulting in more intense interactions/crash between the AV and HVs. 

6) “Skew back” the results of the accelerated tests to understand the performance 

of AVs under naturalistic driving conditions using the statistics analysis. 

 

The procedure of the Accelerated Evaluation is shown in Figure 1.8. 

 

 

Figure 1.8 Concept of the Accelerated Evaluation method 

 

The scope of this study includes: 

1. We focus on the interaction between AV and other Human Controlled Vehicles 

(HVs). In the early phase of AV deployment, AVs mostly encounter HVs. It is 

critical for AVs to deal with HVs including their imperfectness. The AV to AV 

and HV to HV interactions are beyond the scope of this study (except when 

used as a benchmark). 

2. The sensors and controls of the AV are assumed to work perfectly. The HVs 

making unsafe maneuvers are modeled as the primary disturbance to AVs. The 
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measurement and perception errors and control inaccuracy are also beyond the 

scope of this study. 

3. Human drivers are assumed to react to AVs in the same way as they do to other 

HVs. Some automakers, like GM, work hard to hide sensors and make their 

prototype AVs look ”normal” [94]. In this research, we assumed AVs look 

similar to HVs, so other vehicles do not treat AVs differently. 

4. Only the first impact in a crash event will be considered. Secondary impacts 

may occur but are outside of the scope of this study. 

 

1.5 Contributions 

We propose a new AV evaluation approach – The “Accelerated Evaluation” 

approach. The main contributions are in the following three aspects: 

 The “Accelerated Evaluation” concept is new in the field of AV testing and 

evaluation. 

In this approach, driver behaviors reflected in the N-FOT are modeled statistically. 

The test duration is dramatically reduced because the non-safety-critical events are 

compressed. For crash analysis, the test mileage can be reduced by a factor of 10,000 to 

100,000. This technique thus can reduce the development and validation time for AVs 

significantly. 

 We developed four Accelerated Evaluation methods. 

i. Accelerated Evaluation based on the analysis of likelihood of the naturalistic 

driving 

This method accelerates the evaluation procedure by reducing the relatively safe 

events with a high likelihood of occurring. An import observation of the safety-

critical events is that they all have a low probability of occurring [22], [26]. By 

modeling the surrounding HVs with stochastic models and modifying their 

statistics, the most common but “boring” parts are removed. Thus, the cost and 

duration of the evaluation process can be reduced. 
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ii. Accelerated Evaluation based on Importance Sampling 

By changing the statistics of the HVs, more intense interactions happen between 

the AV and its surrounding vehicles. By taking the amplified results and the 

modified statistic information in the Importance Sampling framework, the 

evaluation metrics (e.g. the crash rate) can be calculated with the statistical 

equivalence between the accelerated tests and naturalistic driving rigorously 

proved. 

iii. Adaptive Accelerated Evaluation approach 

The “Adaptive Accelerated Evaluation”, provides a procedure to find the best way 

to skew the probabilistic density functions of HVs to maximally reduce the 

evaluation duration. If the statistics changed too little or improperly, the 

acceleration rate is not sufficient. To accelerate 10,000 times, the change must be 

significant. We propose an iterative way to find the optimal parameters in the 

accelerated tests based on the Cross Entropy method. In each iteration, the modified 

statistical distributions of the HVs are updated based on the results from a small set 

of tests using the previous distributions. With this approach, we can significantly 

reduce the time needed to find an effective way to modify the HV distributions to 

significantly accelerate the evaluation. 

iv. Accelerated Evaluation of the dynamic interactions between AVs and HVs 

It is more challenging to evaluate AVs in a dynamic interaction. In a static sampling 

scenario, the randomness of the driver behavior is modeled as a set of distributions 

but sample only once at a particular moment. For instance, in the lane change 

scenario, safety is primarily determined by the vehicle making the lane change. The 

decision is made at the moment when the driver believe that it is safe to change the 

lane after multiple checking of the rear mirrors. We call this type of stochastic 

interactions static sampling scenarios. In a dynamic sampling scenario, such as in 

the car-following situation, drivers adjust their speed constantly affected by the lead 

vehicle movement, host vehicle speed, road/weather conditions and other factors. 

The statistics of the HV behaviors are state-dependent and change over time. Safety 

is determined by the states over a period of time, generated stochastically in a 

dynamic procedure. A new approach is proposed to evaluate the dynamic 
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interactions. The driving scenario is modeled as a Discrete Markov Chain. The 

statistics of the HVs in each time step during the whole car-following is folded into 

one joint distribution. By studying of the joint distribution using, the dynamic 

interactions were examined in the Accelerated Evaluation. Stochastic optimization 

approach is used to find a set of AE distributions in each step to significantly 

accelerate the evaluation procedure. The Importance Sampling techniques are used 

as the framework again to ensure the accuracy of the results in the accelerated tests. 

 We applied the Accelerated Evaluation method on two common driving 

scenarios. 

Two common driving scenarios - the car-following and lane change scenarios were 

analyzed using the Accelerated Evaluation approaches. The surrounding HVs were 

modeled based on two large naturalistic driving databases created and maintained by the 

University of Michigan Transportation Research Institute: the Safety Pilot Model 

Deployment database [33]–[36], and the Integrated Vehicle-Based Safety Systems [31], 

[32] project. The probabilities of conflict, crash and injury events for prototype AV models 

were calculated based on the Accelerated Evaluation method. Non-accelerated (i.e. 

naturalistic driving) tests were conducted to validate the proposed approaches and calculate 

its acceleration efficiency. 

 

1.6 Outline of the Dissertation 

The remainder of this dissertation is organized as follows. In CHAPTER 2, an 

Accelerated Evaluation approach is developed based on likelihood analysis of the 

naturalistic driving. In CHAPTER 3 the Importance Sampling techniques are applied to 

improve the reliability and accuracy of the Accelerated Evaluation method. In CHAPTER 

4, the Adaptive Accelerated Evaluation is developed to achieve maximum accelerated 

rates. In CHAPTER 5, an Accelerated Evaluation approach is developed to study the 

dynamic interaction between HV and AV. Finally, conclusions and future research 

directions are outlined in CHAPTER 6.
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ACCELERATED EVALUATION BASED ON LIKELIHOOD 

ANALYSIS 

2.1 Introduction 

The core idea of the Accelerated Evaluation method is to reduce the non-safety-

critical driving events. In this chapter, we introduce an approach that accelerates the 

evaluation by reducing the events with a high likelihood of occurring but do not contribute 

to the final risk calculation. The approach is demonstrated in the car-following scenario. 

First, we built a three-car car-following model based on a naturalistic driving database. 

Then the Accelerated Evaluation approach is applied to accelerate the evaluation. Finally, 

the results are compared to the naturalistic driving safety records. 

2.2 The Three-car Car-following Model 

A microscopic simulation environment was built to evaluate the AV performance 

interacting with HVs in car-following scenarios. As shown in Figure 2.1, three vehicles are 

included in the scenario: the lead HV, the AV in the middle to be evaluated, and the trailing 

HV. 

 

Figure 2.1 The three car-following simulation scenario 
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2.2.1 Stochastic lead vehicle model 

In the car-following scenarios, it is critical to model the lead vehicle motion. In the 

Test Matrix method, the lead vehicle motion is predefined. For example, in the EURO-

NCAP Autonomous Emergency Braking (AEB) test protocol [95], three scenarios are 

defined as shown in Figure 2.2: 1) stopped lead vehicle, 2) slow lead vehicle with constant 

speed, and 3) lead vehicle braking at constant deceleration. In another research, Lee [96] 

selected 100 challenging lead vehicle motions from the SAVEME naturalistic database as 

shown in Figure 2.3. As all the scenarios were extracted from naturalistic driving, they 

represent real-world driving scenarios. However, the querying approach (Time To 

Collision < 11 s) is somewhat ad hoc. It was also not clear how to assign a final 

performance score based on the simulation results of these 100-case scenarios. Yang [97] 

searched the whole Road Departure Crash Warning (RDCW) database [29] and used all 

available lead vehicle trajectories to evaluate AVs. This approach avoids the issue of 

choosing scenarios. However, the exhaustive simulation study takes a long time to finish. 

 

 

Figure 2.2 Lead vehicle speed profiles used in the EURO-NCAP AEB test 
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Figure 2.3 Speed queried from the SAVEME database with Time To Collision < 11 s 

[96] 

 

In this research, the lead vehicle is modeled as a discrete time Markov Chain. The 

lead vehicle velocity and acceleration are used as the two state variables. The acceleration 

in the next time step 𝑎𝐿(𝑘 + 1)  is modeled as a random variable with distribution 

dependent on the current acceleration 𝑎𝐿(𝑘) and velocity 𝑣𝐿(𝑘) , that is, 

 

 ℙ(𝑎𝐿(𝑘 + 1)|𝑎𝐿(𝑘),  𝑣𝐿(𝑘)) = 𝑓𝐿𝑉(𝑎𝐿(𝑘 + 1)|𝑎𝐿(𝑘),  𝑣𝐿(𝑘)). (2.1) 

 

The data from the Integrated Vehicle-Based Safety Systems (IVBSS) database [98] 

is used to fit the driver model. 108 licensed drivers were recruited to participate in the 

study. Participants were in one of three age groups: 20 to 30 (younger), 40 to 50 (middle-

aged), and 60 to 70 years old (older), and are gender balanced. Each participant drove a 

vehicle equipped with the integrated safety system and data acquisition system for 

approximately six weeks. Figure 2.4 shows all recorded trips with 213,000 miles traveled. 
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Figure 2.4 Light vehicle trips in the IVBSS database [32] 

 

Vehicle acceleration and speed were extracted from the IVBSS database with 

sampling time 𝑇𝑠 = 0.3 s. The data was further divided into bins defined by speed interval 

of 1 mph. As shown in Figure 2.5, for each driver and speed interval, the data set  

[𝑎𝐿(𝑘 + 1), 𝑎𝐿(𝑘), 𝑣𝐿(𝑘)] were collected with the acceleration quantized by 0.03 m/s2 and 

speed quantized by 1 mph. 1.5 million data points were extracted from IVBSS database. 

The data sets were further aggregated for all 108 drivers to represent the diversity 

of behaviors among drivers. For each speed interval, a two-dimensional (2-D) histogram is 

calculated to represent the statistics of the stochastic behaviors. Figure 2.6 shows the 

histogram for 𝑣𝐿 ∈ (40, 41] mph. The color represents the normalized frequency of the 

[𝑎𝐿(𝑘 + 1), 𝑎𝐿(𝑘), 𝑣𝐿(𝑘)] set such that 

 

 ∑ ∑ 𝑓ℎ𝑖𝑠𝑡
𝐿𝑉 (𝑎𝐿(𝑘 + 1), 𝑎𝐿(𝑘)|𝑣𝐿(𝑘))

𝑎𝐿(𝑘)𝑎𝐿(𝑘+1)

= 1 (2.2) 

 

where 𝑓ℎ𝑖𝑠𝑡
𝐿𝑉 (∙) is the normalized frequency. It can be seen that the center of the histogram 

where 𝑎𝐿(𝑘 + 1) =  𝑎𝐿(𝑘) = 0 has the maximum frequency, which represents constant 

speed cruising. 

 



 

24 

 

 

Figure 2.5 Data extracted from the IVBSS database 

 

 

Figure 2.6 Histogram of the lead HV with speed between 40 mph and 41 mph 

 

The 2-D histogram can be modeled by the Gaussian Mixture Model (GMM) [99]. 

The acceleration in the next step is calculated from 
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𝑓𝐿𝑉(𝑎𝐿(𝑘 + 1)|𝑎𝐿(𝑘),  𝑣𝐿(𝑘))

=∑𝑤𝑖(𝑣𝐿(𝑘)) 𝑓𝐺 ([
𝑎𝐿(𝑘 + 1)

𝑎𝐿(𝑘)
] |𝝁𝒊(𝑣𝐿(𝑘)),  𝜮𝒊(𝑣𝐿(𝑘)))

𝑀

𝑖=1

 
(2.3) 

where 𝑤𝑖 are the mixture weights satisfying ∑ 𝑤𝑖 = 1
𝑀
𝑖=1 , and 𝑓𝐺(∙)  is the component 

density, in the form of a 2-variate Gaussian model 

 

𝑓𝐺 ([
𝑎𝐿(𝑘 + 1)

𝑎𝐿(𝑘)
] |𝝁𝒊(𝑣𝐿(𝑘)),  𝜮𝒊(𝑣𝐿(𝑘))) 

=
1

2𝜋 |𝛴𝑖(𝑣𝐿(𝑘))|
1 2⁄

𝑒𝑥𝑝 {−
1

2
([
𝑎𝐿(𝑘 + 1)

𝑎𝐿(𝑘)
]

− 𝜇𝑖(𝑣𝐿(𝑘)))

𝑇

𝛴𝑖(𝑣𝐿(𝑘))
−1
([
𝑎𝐿(𝑘 + 1)

𝑎𝐿(𝑘)
] − 𝜇𝑖(𝑣𝐿(𝑘)))} 

(2.4) 

where 𝝁𝒊 is the mean vector and 𝜮𝒊 is the covariance matrix. The velocity in the next time 

step is calculated from 

 

 𝑣𝐿(𝑘 + 1) = 𝑣𝐿(𝑘) + 𝑇𝑠 ∙ 𝑎𝐿(𝑘). (2.5) 

 

The model parameters are estimated using Expectation-Maximization algorithm 

[100]. The number of components for the GMM is set to four to provide an adequate degree 

of freedom but not too large to run into problems in over-fitting. Figure 2.7 shows fitting 

results in a three-dimensional plot. The histogram of the naturalistic driving data is 

displayed in Figure 2.7 a). The fitted GMM model with the same speed intervals is plotted 

on the right-hand side of Figure 2.7 b). 
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a) Histogram of the naturalistic driving data 

 
b) Fitted Gaussian Mixture Model 

Figure 2.7 Lead HV statistics modeled by the Gaussian Mixture Model 

 

2.2.2 Trailing vehicle model 

Trailing vehicle refers to the vehicle in the same lane and is directly behind the 

subject vehicle. For AVs with a forward collision avoidance system, the likelihood to 

collide with a lead vehicle can be significantly reduced. Struck by the car from behind may 

become the major type of crashes. To include crash from behind for a more complete 

analysis, the trailing vehicle behavior is modeled. 

Car-following behaviors have been intensively studied and modeled for computer 

simulations. In [101]–[107], car-following behaviors were modeled based on the 

assumption that drivers react to the range 𝑅𝑇(𝑡) (the distance between the front end of the 

host vehicle and the rear end of the lead vehicle) and/or its derivative – the range rate 𝑅̇𝑇(𝑡) 

as shown in Figure 2.1. Table 2.1 summarizes many of the well-known car-following 

models. A linear model was first suggested by Pipe [101] in 1953, in which the acceleration 

of the host vehicle 𝑎𝑇(𝑡)  was controlled by the delayed range rate 𝑅̇𝑇(𝑡 − 𝜏)  with a 

constant feedback gain, where 𝜏 is the reaction time. Gazis, Herman, and Rothery [102] 

then modified the model with a nonlinear control gain as a function of 𝑅𝑇(𝑡) and the speed 

of the host vehicle 𝑣𝑇(𝑡), often referred as the GHR model. Over the years, many efforts 

have been devoted to finding the best parameters of the GHR model but without conclusive 

results [105]–[107]. Tyler [103] derived the car-following model based on the optimal 

control approach in 1964. The range and range-rate errors were optimized over a quadratic 

cost function. Gipps developed a car-following model [108] based on a kinematic analysis 

that always guarantee crash-free even the lead vehicle brake at its maximum deceleration. 
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Table 2.1 Deterministic car-following model 

Research

er 
Model 

Para-

meters 
Equation 

Pipe (1953) Linear 𝐶, 𝜏𝑇 𝑎𝑇(𝑡 + 𝜏𝑇) = 𝐶 ∙ 𝑅̇𝑇(𝑡) 

Gazis et al. 
(1961) 

Nonlinear 𝐶, 𝜏𝑇 , 𝑚, 𝑙 𝑎𝑇(𝑡 + 𝜏𝑇) =
𝐶 ∙ 𝑣𝑇(𝑡)

𝑚

𝑅𝑇(𝑡)
𝑙
𝑅̇𝑇(𝑡) 

Newell 
(1961) 

Exponenti
al 

convergen
ce 

𝑣𝑇
𝑑𝑒𝑠𝑖𝑟𝑒 , 𝜆𝑇 , 
𝑅𝑇𝑚𝑖𝑛 

𝑣𝑇(𝑡 + 𝜏𝑇) = 𝑣𝑇
𝑑𝑒𝑠𝑖𝑟𝑒(1 − 𝑒𝑥𝑝{−𝜆𝑇(𝑅𝑇(𝑡) − 𝑅𝑇𝑚𝑖𝑛)/𝑣𝑇

𝑑𝑒𝑠𝑖𝑟𝑒}) 

Tyler 
(1964) 

Linear 
optimal 
control 

𝐶1, 𝐶2, 
𝜏𝑇 ,  𝑇ℎ𝑤

𝑑𝑒𝑠𝑖𝑟𝑒 
𝑎𝑇(𝑡 + 𝜏𝑇) = 𝐶1𝑅̇𝑇(𝑡) + 𝐶2[𝑅(𝑡) − 𝑇ℎ𝑤

𝑑𝑒𝑠𝑖𝑟𝑒  𝑣𝑇(𝑡)] 

Gipps 
(1981) 

Crash free 𝑎𝑛 , 𝑏𝑛 

𝑣𝑇(𝑡 + 𝜏𝑇)

= 𝑚𝑖𝑛

{
 
 

 
 

𝑣𝑇(𝑡) + 2.5𝑎𝑛𝜏 (1 −
𝑣𝑇(𝑡)

𝑣𝑇0
)√0.025 +

𝑣𝑇(𝑡)

𝑣𝑇0

𝑏𝑛𝜏𝑇 +√𝑏𝑛
2𝜏𝑇
2 − 𝑏𝑛 [2(𝑅𝑇(𝑡) − 𝑅𝑚𝑖𝑛) − 𝑣𝑇(𝑡)𝜏𝑇 −

𝑣𝐿(𝑡)
2

𝑏̂
]

 

 

Most of the driver models focus on normal driving behaviors. Good fitting results 

and crash-free simulations are generally considered as model performance metrics [97, p. 

13]. However, the majority of crashes occur due to human errors [109], [110]. Therefore, 

it is important to understand driver errors that lead to unsafe situations. Error-free models 

are useful to study the average traffic flow or human behaviors but are not very helpful to 

evaluate safety systems. An ‘errorable’ driver model that can simulate the mistakes of 

human drivers was developed by Yang and Peng (the “Michigan” model) [111], which was 

used to evaluate longitudinal collision warning systems [92]. Tang et al. [112], Przybyla et 

al. [113] and Bi et al. [114] built other longitudinal or lateral errorable models based on 

this concept. 

In general, errorable driver models consist of three components as shown in Figure 

2.8: deterministic driving principles, stochastic driving behaviors, and error mechanisms. 

The deterministic driving principles establish the basic relationship between the control 

stimulus variables (range and range rate) and the response of the driver (acceleration). A 

stochastic driver behavior block is added to describe driver imperfection and variations. 
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Finally, errorable mechanisms based on statistical and psychophysical knowledge of 

human behavior are included as the third component of the model. 

 

 

Figure 2.8 Concept of the errorable driver model 

 

In this research, we use the Michigan errorable driver model (referred as the 

Michigan model below) to simulate the trailing vehicle in the car-following scenarios. In 

the Michigan model, a modified Tyler’s model was used as the deterministic driving 

principle. The desired time headway and the variance longitudinal acceleration were 

modeled as stochastic variables to simulate the randomness in human driving behaviors. 

The variation of the desired time headway is used to model the different driving styles 

among drivers, and the change in one driver over a long time. Given the desired range, the 

imperfection of human control is captured by the variation of the acceleration. Three error-

inducing mechanisms were modeled: perceptual limitation, distraction, and time delay. The 

perceptual limitation of human drivers is modeled by quantizing the range-rate 

measurement. Two types of distractions were considered in the Michigan model: “mind-

off-the-road” and “eyes-off-the-road” that are likely caused by secondary tasks, such as 

answering a cell phone or talking to passengers. During “mind-off-the-road” distraction, 

drivers are assumed to keep eyes on the road while doing the secondary tasks. The 

secondary tasks increase the mental load and degrades the driving performance. If a human 
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driver fully devotes him/herself to a secondary task, very often he/she will move the eyes 

to this task and stop updating the driving information. This situation is defined as “eyes-

off-the-road”. The mind-off-the-road, the eyes-off-the-road, and time delay were modeled 

as stochastic behaviors. 

The Michigan model was compared to Pipes model, Gazis model and Tyler model 

and showed better accuracy and robustness in [111]. As shown in Figure 2.9, the Michigan 

model shows a smaller error compared with other three models. It also shows good 

consistency between the training set and the evaluation set. 

 

 

Figure 2.9 Comparison results of the trailing HV model [111] 

 

The overall structure of the Michigan model is shown in Figure 2.10. The model 

parameters were fitted to data extracted from the RDCW naturalistic driving database [29]. 

Figure 2.11 shows an example result from the Michigan model. The trailing HV followed 

the lead HV well both at high and low speed while the driver stayed focus. However, the 

trailing driver got distracted at about 45 s while the lead vehicle started to decelerate 

abruptly. The trailing HV failed to respond to the deceleration and collide into the lead 

vehicle. 
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Figure 2.10 Structure of the Michigan errorable car-following model (based on [111]) 
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Figure 2.11 One crash example of the Michigan model 

 

2.3 Accelerated Evaluation based on Likelihood Analysis 

The driver models developed in the previous section emulates driving behaviors in 

the naturalistic driving. An accelerated model is needed to accelerate the evaluation 

procedure An important observation of the safety-critical events is that they have a low 

probability of occurring [22], [26]. 

We propose the Accelerate Evaluation approach based on likelihood analysis. The 

core idea of this method is that by reducing the safe events that have a high likelihood of 

occurring, the overall exposure rate for critical scenarios is increased and the evaluation of 

AV is accelerated. In the following, this idea is demonstrated in the three-car car-following 

scenarios. 
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There is randomness in both lead HV and trailing HV models. We can change the 

statistics in both models to amplify the interactions between the HVs and the AV. As 

maintaining a proper range with the lead HV is the responsibility of the AV, only the 

statistics of lead HV is modified for simplicity. It can be seen from Figure 2.6 and Figure 

2.7 that the center area of the histogram has a much high probability. To emphasize the tail 

part of the distribution, the histogram is plotted in logarithmic scale in Figure 2.12. 

 

 

Figure 2.12 Empirical distribution of the naturalistic driving in logarithmic scale for data 

at vehicle speed between 40 mph and 41 mph 

 

The corresponding GMM model is plotted on a logarithmic scale in Figure 2.13. 

The center of the histogram represents cruising with little speed variation. The exterior of 

the distribution embodies rarer events with low probability of occurring. 

 

 

Figure 2.13 GMM fitted lead vehicle model in the logarithmic scale for data with vehicle 

speed between 40 mph and 41 mph 
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To reduce the most frequent driving scenarios, we remove 99.5 % of the high 

probability density data. Figure 2.14 shows the procedure to generate the accelerated 

distribution. The percentage of eliminated events can be adjusted based on time/budget 

constraints. 

 

 

Figure 2.14 Procedure to generate accelerated transition matrix 

 

Figure 2.15 shows the accelerated and normal lead vehicle velocity profiles 

generated by the Accelerated Evaluation method. It can be seen that the lead vehicle 

velocity has more frequent and harsher actions than in the normal (non-accelerated) 

conditions. 

 

 

Figure 2.15 A comparison of the velocity profiles of the lead human controlled vehicle in 

accelerated and non-accelerated (naturalistic) tests 
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2.4 Simulation Analysis 

In this section, simulations are conducted to demonstrate the Accelerated 

Evaluation approach. The accelerated lead HV model in Figure 2.14 and the Michigan 

model in Figure 2.10 are applied to construct the three-car car-following scenario in Figure 

2.1. Two AVs are designed based on production vehicles, which are evaluated by the 

results in the accelerated tests with two metrics: the crash rate and relative speed, in both 

frontal crashes and rear crashes. Finally, the accelerated rate is approximated by comparing 

the crash rate for HV in the accelerated tests and in real world, followed by the discussion 

of the benefits and limitations of the proposed method. 

 

2.4.1 Automated vehicle models 

Two AVs were designed to demonstrate the proposed Accelerated Evaluation 

method. Both AVs are equipped with ACC (Adaptive Cruise Control) [115] and AEB 

(Autonomous Emergency Braking). As shown in Figure 2.16, the AVs are controlled by 

the ACC algorithm when the situation is perceived to be safe. The AEB algorithms become 

active when a threat is detected. If the AEB fails to prevent the crash, the simulation 

terminates. Otherwise, the control is returned back to the ACC. Both the AVs use the same 

ACC algorithms but different AEB designs. The AEB models used in this dissertation are 

based on the work in [116] which extracted the control algorithms from two production 

vehicles: Volvo V60 and Infiniti M37S. We name the two AV designs as Design A and 

Design B. 

 

 

Figure 2.16 Layout of the AV control model 
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The ACC is approximated by a discrete Proportional-Integral (PI) controller [115] 

to achieve a desired time headway𝑡𝐻𝑊 
𝑑𝑒𝑠𝑖𝑟𝑒. Define the time headway error as 

 

 𝑡𝐻𝑊
𝐸𝑟𝑟=𝑡𝐻𝑊  − 𝑡𝐻𝑊 

𝑑𝑒𝑠𝑖𝑟𝑒 (2.6) 

 

where 𝑡𝐻𝑊 is the current time headway, defined as 

 

 𝑡𝐻𝑊 = 𝑅𝐿/𝑣. 
(2.7) 

 

Use 𝑡𝐻𝑊
𝐸𝑟𝑟  as the controller input, the PI controller can be designed as 

 

 𝑎𝑑(𝑡) = 𝐾𝑝𝑡𝐻𝑊
𝐸𝑟𝑟(𝑡) + 𝐾𝑖∫ 𝑡𝐻𝑊

𝐸𝑟𝑟(𝜏)
𝑡

0

d𝜏 (2.8) 

 

where 𝑎𝑑 is the desired acceleration commanded by ACC controller; gains 𝐾𝑝 and 𝐾𝑖 are 

the proportional and integration gains calculated using Matlab Control Toolbox® with the 

following two requirements: 1) Loop bandwidth = 10 rad/s; 2) Phase margin = 60 degree. 

The ACC control is saturated at ±5 m/s2. 

The AEB model was extracted from a 2011 Volvo V60, based on a test conducted 

by ADAC (Allgemeiner Deutscher Automobil-Club e.V.) [116]. The test results were 

analyzed to reconstruct the AEB algorithms by Gorman [117] using together the test track 

data, owner’s manuals, information from European New Car Assessment Program (Euro 

NCAP), and videos during vehicle operation. 

The AEB algorithm becomes active when a risk is detected, and in Gorman’s 

reconstruction [117] it was assumed that the risk is only based on a threshold value of 

“Time-To-Collision”, defined as 

 

 𝑇𝑇𝐶𝐿 = −
𝑅𝐿

𝑅̇𝐿
< 𝑇𝑇𝐶𝐴𝐸𝐵 (2.9) 
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where 𝑇𝑇𝐶𝐴𝐸𝐵  is the threshold to activate AEB system as a function of vehicle speed. 

Figure 2.17 shows the relationship between 𝑇𝑇𝐶𝐴𝐸𝐵 and vehicle speed. The Lower Speed 

Thresholds of Operation (LSTO) were estimated in [117] obtained from the owner’s 

manuals and validated by data and statements in the ADAC test report [116], representing 

by the left vertical lines in Figure 2.17. The AEB will not activate if the speed of the AV 

is below the LSTO. In this research, we evaluate the AV within the operational range of 

the AEB. The lower threshold of the speed for the lead HV, AV and trailing HV are set to 

be 5 m/s. 

 

Figure 2.17 AEB triggering threshold dependent on the vehicle speed 

 

Once triggered, AEB aims to achieve a target deceleration aAEB. The build-up of 

deceleration is subject to a rate limit rAEB as shown in Figure 2.18. The desired aAEB of 

Design B is -10 m/s2. However, in reality, the maximum deceleration may not reach this 

level due to tire/road conditions. The existence of Anti-lock Braking Systems (ABS) also 

prevents the longitudinal tire force from reaching its peak value to avoid tires locked-up 

and losing control of the vehicle. In this research, we set the maximum deceleration to be 

-8 m/s2. 

 

Figure 2.18 Acceleration profiles of the AEB designs 
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A first order lag with a time constant 𝜏𝐴𝑉 is used to model the transfer function from 

the commanded acceleration to the actual acceleration for simplicity. The roads are 

assumed to be flat and straight with good adhesion. The effects of tire dynamics, chassis, 

and braking systems are not considered in this research. 

The vehicle and control models presented in the section may not be good 

representations of the actual systems in the production vehicles. The simulation results thus 

should not be interpreted as rigorous evaluation results for the two production vehicles. If 

more accurate simulations are desired, the proposed accelerated evaluation process can be 

used in junction with more accurate simulation models such as CarSim® [118] and more 

detailed control algorithms. 

 

2.4.2 Evaluation metrics 

Two evaluation metrics were used: crash rate and relative velocity Δ𝑣 at crash. 

A crash happens when 𝑅𝐿(𝑡) < 0. The crash rate of N simulations is defined as 

 

 𝑟𝑐(𝑁) =
1

𝑁
∑𝑑𝑛

𝑁

𝑛=1

 (2.10) 

 

where 𝑛 is the index of simulation tests, N is the total number of crashes. 𝑑𝑛 is the distance 

travelled in test 𝑛, defined as 

 

 𝑑𝑛 = ∫ 𝑣(𝑛)(𝑡)d𝑡
𝑡𝑐𝑟𝑎𝑠ℎ

𝑡=0

 (2.11) 

 

where 𝑣(𝑛)(𝑡) represents the velocity of AV at time 𝑡 in the 𝑛𝑡ℎ test and 𝑡𝑐𝑟𝑎𝑠ℎ is the time 

when the crash happens. 

As each test runs under the same stochastic condition, based on the Law of Large 

Numbers, the sampling average will converge to the expected value when the sample size 

approaches infinity, i.e., 

 𝑟𝑐(𝑛) → 𝜇𝑐: = 𝔼(𝑟𝑐)     for    𝑛 → ∞. (2.12) 
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Moreover, the Central limit theorem implies that, when 𝑛 is large, 𝑟𝑐(𝑛) follows the normal 

distribution 𝒩(𝜇𝑐 , 𝜎𝑐
2) approximately. 

The simulations continue until the relative error 𝑟𝑟𝑒𝑙(𝑛) < 𝑏𝑟𝑟 with a confidence 

level larger than (1 − 𝛼) ∗ 100%  (both 𝑏𝑟𝑟  and 𝛼  are small positive number to be 

selected), i.e. 

 

 𝑃(𝑟𝑟𝑒𝑙(𝑛) < 𝑏𝑟𝑟) ≥ 1 − 𝛼. (2.13) 

 

The relative error is defined as 

 𝑟𝑟𝑒𝑙(𝑛) = |
𝑟𝑐(𝑛) − 𝜇𝑐

𝜇𝑐
| (2.14) 

 

which can be approximated by 

 

 𝑟𝑟𝑒𝑙(𝑛) ≈
𝜎̂𝑐𝑛  𝑧𝛼

√𝑛 𝑟𝑐(𝑛)
 (2.15) 

 

where 𝜎̂𝑐𝑛
2  is the variance of {𝑟𝑐(1), 𝑟𝑐(2),… , 𝑟𝑐(𝑛)}. 𝑧𝛼 is defined as 

 

 𝑧𝛼 = Φ
−1(1 − 𝛼/2) (2.16) 

 

where Φ−1 is the quantile function of the standard normal distribution Φ(0,1). 

 

2.4.1 Simulation results 

Each simulation test will start with the same initial values and end when a crash 

occurs. The average crash rate is calculated after each test. Keep running the car-following 

tests until the relative error 𝑟𝑟𝑒𝑙 < 10 %  with 97 %  confident level (𝛼 = 0.03 ). The 

simulation parameters are listed in Table 2.2. 
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Table 2.2 Parameters the car-following simulation 

Var. Unit Value Var. Unit Value 

𝑎𝐿0 m/s2 0 𝑇𝐻𝑊
𝑑𝑒𝑠𝑖𝑟𝑒 s 2 

𝑎0 m/s2 0 𝑇𝑠 s 0.3 

𝑎𝑇0 m/s2 0 𝑣0 m/s 20 

𝑎𝑀𝑎𝑥 m/s2 8 𝑣𝐿0 m/s 20 

𝑎𝑀𝑖𝑛 m/s2 -8 𝑣𝑇0 m/s 20 

𝑎𝐿
𝑀𝑎𝑥 m/s2 8 𝑣𝑀𝑎𝑥  m/s 40 

𝑎𝐿
𝑀𝑖𝑛 m/s2 -8 𝑣𝑀𝑖𝑛 m/s 5 

𝑎𝑇
𝑀𝑎𝑥 m/s2 8 𝑣𝐿

𝑀𝑎𝑥 m/s 40 

𝑎𝑇
𝑀𝑖𝑛 m/s2 -8 𝑣𝐿

𝑀𝑖𝑛 m/s 5 

𝑔 m/s2 9.81 𝑣𝑇
𝑀𝑎𝑥 m/s 40 

𝑅𝐿0 m 𝑇𝐻𝑊𝑑 
𝑑𝑒𝑠𝑖𝑟𝑒 ∗ 𝑣𝐿0 𝑣𝑇

𝑀𝑖𝑛 m/s 5 

𝑅𝑇0 m 𝑇𝐻𝑊𝑑 
𝑑𝑒𝑠𝑖𝑟𝑒 ∗ 𝑣𝑇0    

 

The estimated crash rates are shown in Figure 2.19. The frontal crash and the rear 

crash are defined as the collisions of the AV with the lead HV and trailing HV respectively. 

Design B, equipped with a more aggressive algorithm, traveled a longer distance to 

encounter a frontal crash than Design A. Both designs showed similar rear crash rates. 

 

Figure 2.19 Estimated crash rate 
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The rear crash happens because the trailing HV fails to maintain a safe distance or 

gets distracted when the AV decelerates. Theoretically, Design B should have a higher rear 

crash rate since it is equipped with an AEB generating higher decelerations. The reason 

that the rear crash rates are similar is that the majority of crashes are caused by inattention 

of the trailing HVs when AV is controlled by ACC. As shown in Figure 2.20, among all 

the rear crashes, only 2.5 % happens with AEB being activated for Design A and 4.0 % for 

Design B. Although Design B brakes harder and has (4 % - 2.5 %)/2.5%×100% = 60 % 

more rear crashes with AEB on than Design A, because non-AEB-related crashes dominate, 

the overall rear crash rates of the two designs are similar. 

 

a) Design A 

 

b) Design B 

Figure 2.20 Status of AV controller when rear crashes happen 

 

The relative velocity Δ𝑣 is defined as 

 

 Δ𝑣 = |𝑅̇𝐿(𝑡𝑐𝑟𝑎𝑠ℎ)|. (2.17) 

 

The histograms of relative velocities are shown in Figure 2.21 with means and ±𝜎 error 

bars. It is shown that Design B has lower Δ𝑣 than Design A on average in frontal crashes. 

Both AVs have similar Δ𝑣 in rear crashes. 
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Figure 2.21 Estimation of relative velocity during crash 

 

2.4.2 Benefits and limitations of the proposed method 

The benefit of the proposed approach is that it provides a method to generate 

accelerated test scenarios that have a much higher crash rate based on the analysis of real-

world driving statistics. To illustrate the effect of the acceleration, an HV-HV car-

following scenario was simulated and compared with the real world crash rate. As shown 

in Figure 2.22, the two-car model was built by using the lead HV and trailing HV models 

in the previous sections. With the same accelerated setting, the crash rate between the two 

was found to be 6.98 miles/crash. In 2013, the average crash rate for the police-reported 

rear end crash is 0.817 million miles/crash in the U.S. [42, p. 70]. Considering 

approximately half of the accidents are not reported to the police [42, p. 5], the crash rate 

was estimated to have increased by roughly 0.817e6/2/6.98=5.85e4 times in the accelerated 

test. 

 

 

Figure 2.22 Simulation layout for human controlled vehicles 
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Although this method significantly accelerated the evaluation procedure, it does not 

provide a direct relationship between crash rate in the accelerated tests and crash rate in the 

real world. Therefore, this method provides a relative ‘score’ between AVs but may not 

accurately estimate the absolute value of the crash rate. In the next chapters, we will 

generalize the method by establishing a rigorous connection between the accelerated test 

results and real world performance. 

 

2.5 Summary 

A procedure to accelerate the evaluation of AVs using naturalistic driving data was 

developed in this Chapter. The general idea is to reduce the frequent events that are not 

safety critical in the daily driving so that a higher level of exposure to critical scenarios is 

achieved. This method can accelerate the evaluation procedure and the acceleration rate 

can be controlled by changing the probability density function that is eliminated. Two AVs 

equipped with ACC and AEB were designed based on production vehicles to demonstrate 

the accelerated evaluation approach. The simulation results showed that the overall 

evaluation time was reduced by a factor of 5.85e4.
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ACCELERATED EVALUATION BASED ON IMPORTANCE 

SAMPLING TECHNIQUES 

3.1 Introduction 

In this chapter, we introduce a new accelerated evaluation method to calculate the 

real-world benefits from the accelerated test results with a rigorous mathematical basis. 

The fundamental efficiency limitations of Monte Carlo simulations are first analyzed. A 

statistical framework of the Accelerated Evaluation is then established based on the 

Importance Sampling techniques. Frontal collision due to unsafe cut-ins is used as the 

target crash scenario to demonstrate the proposed approach. 

 

3.2 Importance Sampling Techniques 

3.2.1 Limitations of the Monte Carlo approach 

Monte Carlo simulations [119] aim to generate unbiased statistical samples for a 

stochastic process. To analyze the Monte Carlo method, let us start by introducing some 

mathematical notations. Let Ω be the sample space for all possible events, and ℰ ⊂ Ω be 

the rare events of interest, i.e., the occurrence of a crash .  Let 𝒙  be a random vector 

describing the motions of surrounding HVs. The indicator function of the event ℰ  is 

defined as 

 𝐼ℰ(𝒙) = {
1, 𝑖𝑓 𝒙 ∈ ℰ
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

. (3.1) 

 

Our task is to estimate the probability of ℰ happening, i.e. 

 γ = ℙ(ℰ) = 𝔼(𝐼ℰ(𝒙)). (3.2) 
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The Monte Carlo approach generates independent and identically distributed samples 

 𝒙𝟏, 𝒙𝟐, … , 𝒙𝐧 of 𝒙, and then calculate the sample average 

 

 𝛾𝑛 =
1

𝑛
∑𝐼ℰ(𝒙𝑖)

𝑛

𝑖=0

. (3.3) 

 

We state some statistical properties of Monte Carlo method. First, under mild conditions, 

the Strong Law of Large Numbers [119] holds, i.e. 

 

 ℙ( lim
𝑛→∞

𝛾𝑛 = 𝛾) = 1. (3.4) 

 

Moreover, the Central Limit Theorem [119] states that, when 𝑛  is large, γ̂n  follows 

approximately the normal distribution 𝒩(𝔼(𝛾̂𝑛), 𝜎
2(𝛾𝑛)) with mean 

 

 𝔼(𝛾̂𝑛) = 𝔼(
1

𝑛
∑𝐼ℰ(𝒙𝒊)

𝑛

𝑖=0

) = 𝛾 (3.5) 

 

and variance 

𝜎2(𝛾̂𝑛) = 𝕍ar(𝛾𝑛) = Var (
1

𝑛
∑𝐼ℰ(𝒙𝒊)

𝑛

𝑖=0

) =
1

𝑛2
∑𝕍𝑎𝑟

𝑛

𝑖=0

(𝐼ℰ(𝒙𝒊)) =
𝛾(1 − 𝛾)

𝑛
. (3.6) 

 

The accuracy of the estimation is represented by the relative half-width. With the 

Confidence Level at 100(1 − 𝛼) %, the relative half-width of 𝛾𝑛 is defined as 

 

 𝑙𝑟 =
𝑙𝛼
𝛾

 (3.7) 

where 𝑙𝛼 is the half-width given by 

 𝑙𝛼 = 𝑧𝛼𝜎(𝛾𝑛) (3.8) 
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and 𝑧𝛼 is the quartile of standard normal distribution with significance level 𝛼 defined as 

 

 𝑧𝛼 = Φ
−1(1 − 𝛼/2) (3.9) 

 

where Φ−1 is the quantile function of the standard normal distribution Φ(0,1). The target 

of estimation accuracy is to ensure 𝑙𝑟 is smaller than a constant 𝛽, it can be shown that 

 

 
𝑙𝛼
𝛾
=
𝑧𝛼𝜎(𝛾𝑛)

𝛾
=
𝑧𝛼
𝛾
√
𝛾(1 − 𝛾)

𝑛
= 𝑧𝛼√

1 − 𝛾

𝛾𝑛
≤ 𝛽 (3.10) 

 

which implies 

 𝑛 ≥
𝑧𝛼
2

𝛽2
⋅
1 − 𝛾

𝛾
. (3.11) 

 

The reason that the Monte Carlo approach is slow is because it takes many samples 

to build a confidence interval that has a satisfactory half-width. As shown in Eq. (3.11), 

when ℰ is rare, 𝑖. 𝑒. γ → 0, the required test number 𝑛 goes to infinity. 

 

3.2.2 Importance Sampling techniques 

The Importance Sampling (IS) theory provides techniques aiming to reduce the 

required test numbers in Eq. (3.11) that are effective in handling rare events with general 

overviews in [120]–[123]. IS has been successfully applied to evaluate critical events in 

reliability [124], finance [125], insurance [126], earthquake [127], and telecommunication 

networks [128]. The mathematical foundation and the implementation of this technique 

have been mostly studied from the viewpoint of these domains. The research in this 

dissertation first applies this technique to AV evaluation. 
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Figure 3.1 Procedure of the Accelerated Evaluation method based on Importance 

Sampling techniques 

 

We describe the IS techniques as follows. Let 𝑓(𝒙) be the original joint density 

function of the random vector 𝒙. The core idea of IS is to replace 𝑓(𝒙) with a new density 

𝑓∗(𝒙) (named as the AE distribution) that has a higher likelihood for the rare events to 

happen. Using a different distribution leads to biased samples, and the advantage of IS is 

to provide a mechanism to compensate for this bias. The IS techniques are very suitable 

for Accelerated Evaluation, in which probabilistic distributions of HVs are modified to 

enhance the interactions between AV and HVs. IS provides a mathematical basis to 

guarantee the statistical equivalence of the accelerated tests and naturalistic driving. The 

Accelerated Evaluation procedure is described in Figure 3.1. 

We define the likelihood ratio L (mathematically named as the Radon-Nikodym 

derivative [129]) as 

 𝐿(𝑥) =
𝑓(𝒙)

𝑓∗(𝒙)
. (3.12) 

The probability of ℰ satisfies 

 

ℙ(ℰ) = 𝔼𝑓(𝐼ℰ(𝒙)) 

= ∫ 𝐼ℰ(𝒙)𝑓(𝒙)d𝒙 

= ∫[𝐼ℰ(𝒙)𝐿(𝒙)]𝑓
∗(𝒙)d𝒙 

= 𝔼𝑓∗(𝐼ℰ(𝒙)𝐿(𝒙)). 

(3.13) 
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One required condition for Eq. (3.13) to hold is that 𝑓∗(𝒙) must be absolutely continuous 

with respect to 𝑓(𝒙) within ℰ, i.e. 

 

 ∀𝑥 ∈ ℰ: 𝑓∗(𝒙) = 0    ⇒    𝑓(𝒙) = 0 (3.14) 

 

which guarantees the existence of L in Eq. (3.13). The IS sample is 𝐼ℰ(𝒙𝑖)𝐿(𝒙𝑖) where 𝒙𝑖 

is generated under 𝑓∗(𝒙), which is an unbiased estimator for 𝛾. The overall IS estimator 

for 𝑛 tests is then 

 

 𝛾𝑛 =
1

𝑛
∑𝐼ℰ(𝒙𝑛)𝐿(𝒙𝑛)

𝑛

𝑖=0

. (3.15) 

 

Note that although a continuous distribution function is used in this paper, similar 

approaches can be applied to discrete distributions as well. 

Now consider the relative half-width constructed by the IS 

 

 

𝑙𝑟 =
𝑙𝛼
𝛾
=
𝑧𝛼𝜎(𝛾𝑛)

𝛾
=

𝑧𝛼√𝔼𝑓∗( 𝛾̂𝑛2) − 𝔼𝑓∗
2 ( 𝛾𝑛)

𝛾√𝑛
 

=
𝑧𝛼√𝔼𝑓∗ ( 𝐼ℰ

2(𝒙) 𝐿2 (𝒙)) − 𝛾2

𝛾√𝑛
 

=
𝑧𝛼

√𝑛
√
𝔼𝑓∗ ( 𝐼ℰ

2(𝒙) 𝐿2 (𝒙))

𝛾2
− 1 ≤ 𝛽. 

(3.16) 

 

The required minimum test number is then 

 

 𝑛 ≥
𝑧𝛼
2

𝛽2
(
𝔼𝑓∗ ( 𝐼ℰ

2(𝒙) 𝐿2 (𝒙))

𝛾2
− 1). (3.17) 
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When  𝑓∗(𝑥)  is properly chosen, 𝔼𝑓∗ ( 𝐼ℰ
2(𝒙) 𝐿2 (𝒙)) can be close to  𝛾2 , resulting in a 

smaller number of tests (i.e., the evaluation is accelerated). 

3.3 Evaluation of AV in Lane Change Scenario using Importance Sampling 

The lane change (cut-in) scenario is used as an example to show the benefits of the 

proposed Accelerated Evaluation method. Lane change, defined as a vehicle moving from 

one lane to another in the same direction of travel [27], can cause a frontal collision crash 

for the following vehicle when the time gap is too short. Successful completion of a lane 

change requires attention to the vehicles in both the original lane and the adjacent lane 

[130]. In the US, there are between 240,000 and 610,000 reported lane-change crashes, 

resulting in 60,000 injuries annually [27]. However, few protocols have been published 

regarding the evaluation of AV functions (e.g., AEB systems) under lane change scenarios. 

Therefore, we aim to develop such an evaluation procedure based on the Accelerated 

Evaluation approach in this research. 

3.3.1 Extraction of lane changes events from the naturalistic driving 

database 

Human drivers’ lane change behaviors have been analyzed and modeled for more 

than half a century. Early studies based on controlled experiments usually have short test 

horizons and limited control settings [131]. More recently, researchers started to use large 

scale N-FOT databases to model the lane change behaviors. Lee et al. [131] examined 

steering, turn signal and brake pedal usage, eye glance patterns, and safety envelope of 500 

lane changes. The 100-Car Naturalistic Driving Study analyzed lane change events leading 

to rear-end crashes and near-crashes [27]. Zhao et al. [132] analyzed the safety critical 

variables in mandatory and discretionary lane changes for heavy trucks [31]. Most of these 

studies are based on hundreds of lane changes. To build a more accurate model, we use the 

data collected in the Safety Pilot Model Deployment (SPMD) project [34], which contains 

more than 400,000 lane changes. 

In this research, we developed a lane change statistical model and demonstrated its 

usage for accelerated evaluation of a frontal collision avoidance algorithm. The data used 
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is from the SPMD database. The SPMD program aims to demonstrate connected vehicle 

technologies in a real-world environment. It recorded naturalistic driving of 2,842 equipped 

vehicles in Ann Arbor, Michigan for more than two years. As of April 2015, 34.9 million 

miles were logged, making SPMD one of the largest public N-FOT databases ever. 

As shown in Figure 3.2, a lane change was detected and recorded by an SPMD 

vehicle when the Lane Change Vehicle (LCV) crosses the lane markers. In the SPMD 

program, 98 sedans are equipped with a data acquisition system and MobilEye® [133], 

which provides: a) relative position to the lane change vehicle (range), and b) lane tracking 

measures pertaining to the lane delineation both from the painted boundary lines and road 

edge characteristics. The error of range measurement is around 10 % at 90 m and 5 % at 

45 m [134]. 

 

Figure 3.2 Lane change scenarios that may cause frontal crashes 

 

The following criteria were applied to ensure consistency of the used dataset: 

 𝑣(𝑡𝐿𝐶) ∈ (2 m/s, 40 m/s) 

 𝑣𝐿(𝑡𝐿𝐶) ∈ (2 m/s, 40 m/s) 

 𝑅𝐿(𝑡𝐿𝐶) ∈ (0.1 m, 75 m) 

where 𝑡𝐿𝐶 is the time when the center line of the LCV crosses the lane markers; 𝑣𝐿 and 𝑣 

are the velocities of the LCV and the SPMD vehicle; 𝑅𝐿 is the range defined as the distance 

between the rear edge of the LCV and the front edge of the SPMD vehicle. 403,581 lane 

changes were detected in total. Figure 3.3 shows the locations of the identified lane changes. 
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Figure 3.3 Recorded lane change events in the SPMD database 

3.3.2 Lane changes model 

A lane change can be divided into three phases: the decision to initiate a lane change, 

gap (range) acceptance, and lane change execution [131]. In this research, we focus on the 

effects of gap acceptance which is used in safety assessments to indicate safe lane change 

distance or time headway [135]. The gap acceptance is mainly captured by three 

variables: 𝑣𝐿(𝑡𝐿𝐶), 𝑅𝐿(𝑡𝐿𝐶) and Time To Collision (TTC) of AVs, defined as 

 

 𝑇𝑇𝐶𝐿 = −
𝑅𝐿

𝑅̇𝐿
 (3.18) 

 

where 𝑅̇𝐿 is the derivative of 𝑅𝐿. In the following, unless mentioned specifically,𝑣𝐿, 𝑅𝐿 

and 𝑇𝑇𝐶𝐿 are the variables at 𝑡𝐿𝐶. 

The distribution of 𝑣𝐿 denoted as 𝑓𝑣𝐿(𝑥) is shown in Figure 3.4. The division of 

highways and local roads is embodied in the bimodal shape of the histogram. 𝑣𝐿 is assumed 

to remain constant during the lane change. Only the events with a negative range rate are 

used to build the lane change model. Out of 403,581 lane change events, 173,692 are with 

negative range rates. 
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Figure 3.4 Distribution of vehicle speed of the cut-in vehicle in the lane change scenario 

 

To capture the influence of vehicle speed n range and TTC, we divided lane change 

events into low, medium and high speed conditions. Figure 3.5 shows the empirical 

distributions of the range reciprocal (denoted as 𝑅𝐿
−1) in different speed intervals. It is 

shown that 𝑣𝐿has little influence on the distribution of 𝑅𝐿
−1 . 

 

Figure 3.5 Distributions of the reciprocal of the range at the lane change moment 

 

Figure 3.6 illustrates the fitting of 𝑅𝐿
−1 using a Pareto distribution defined as 

 

 𝑓𝑅𝐿−1 (𝑥|𝑘𝑅𝐿−1 , 𝜎𝑅𝐿−1 , 𝜇𝑅𝐿−1  ) =
1

𝜎𝑅𝐿−1
(1 + 𝑘𝑅𝐿−1

𝑥 − 𝜇𝑅𝐿−1

𝜎𝑅𝐿−1
)

−1−1/𝑘
𝑅𝐿
−1

 (3.19) 
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where the shape parameter 𝑘𝑅𝐿−1, the scale parameter 𝜎𝑅𝐿−1, and the threshold parameter 

𝜇𝑅𝐿−1  are all positive. The Matlab® function “gpfit” is used in the fitting based on 

Expectation-Maximization approach [100]. 

 

 

Figure 3.6 Distribution of the reciprocal of range fitted with the Pareto distribution 

 

The empirical distributions of 𝑇𝑇𝐶𝐿
−1  in different speed intervals are shown in 

Figure 3.7. As the vehicle speed increases, the mean of 𝑇𝑇𝐶𝐿
−1 decreases. 𝑇𝑇𝐶𝐿

−1 can be 

approximated by an exponential distribution 

 

 𝑓𝑇𝑇𝐶𝐿−1 (𝑥|𝜆𝑇𝑇𝐶𝐿−1) =
1

𝜆𝑇𝑇𝐶𝐿−1
𝑒
−𝑥/𝜆

𝑇𝑇𝐶𝐿
−1

 (3.20) 

where the scaling factor 𝜆𝑇𝑇𝐶𝐿−1varies with the speed of the LCV. 

 

Figure 3.7 Distributions of the reciprocal of the Time To Collision at the lane change 

moment 
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The dependence of 𝜆 𝑇𝑇𝐶𝐿−1 on vehicle speed is shown in Figure 3.8. As the vehicle 

speed increases, 𝜆 𝑇𝑇𝐶𝐿−1 decreases. The blue circles represent  𝜆 𝑇𝑇𝐶𝐿−1 at the center point of 

each 𝑣𝐿 interval. We use linear interpolation and extrapolation to create smooth  𝜆 𝑇𝑇𝐶𝐿−1 

for all vehicle speeds. 

 

 

Figure 3.8 Interpolation/extrapolation of the parameters of Time To Collision at different 

velocities 

 

The effect of range on TTC is limited, as can be seen in Figure 3.9. This indicates 

that 𝑅𝐿 and 𝑇𝑇𝐶𝐿 can be modeled independently given the same 𝑣𝐿. 

 

 

Figure 3.9 Distribution of Time To Collision in different range intervals 

 

𝑅̇𝐿 can then be calculated from Eq. (3.21). 
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 𝑅̇𝐿 = −
𝑇𝑇𝐶𝐿

−1

𝑅𝐿
−1  (3.21) 

 

Finally, the velocity of the host vehicle 𝑣 can be calculated from 

 𝑣 = 𝑣𝐿 − 𝑅̇𝐿 . (3.22) 

 

In summary, the lane change events are generated in the following order: a) 

generate 𝑣𝐿 based on the empirical distributions 𝑓𝑣𝐿(𝑥) shown in Figure 3.4; b) generate 

𝑅𝐿
−1  using 𝑓𝑅𝐿−1 (𝑥|𝑘𝑅𝐿−1 , 𝜎𝑅𝐿−1 , 𝜇𝑅𝐿−1  )  shown in Figure 3.6; c) generate 𝑇𝑇𝐶𝐿

−1 using 

𝑓𝑇𝑇𝐶𝐿−1
(𝑥|𝑣𝐿) shown in Figure 3.8; and finally d) calculate 𝑣 using Eqs. (3.21) and (3.22). 

 

3.3.3 Accelerated Evaluation of AV in the lane change scenario 

The lane change scenario is modeled as a slower lane changing vehicle cut-in in 

front of an AV as shown in Figure 3.2. The events of interest are defined as 

 

 ℰ = {min(𝑅𝐿(𝑡)) < 𝑅ℰ|𝑡𝐿𝐶 < 𝑡 ≤ 𝑡𝐿𝐶 + 𝑇𝐿𝐶} (3.23) 

 

where 𝑇𝐿𝐶 represents duration of the lane change test; Rℰ is the critical range. Eq. (3.23) 

means that if the minimum range is smaller than Rℰ anytime during the lane change event, 

this lane change belongs to the ℰ set. 

 

 

Figure 3.10 Lane change scenario for AV evaluation 
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The random vector 𝒙 consists of three random variables [𝑣𝐿 , 𝑇𝑇𝐶𝐿
−1,  𝑅𝐿

−1]. 𝑣𝐿 is 

generated using the empirical distributions 𝑓𝑣𝐿(𝑥) shown in Figure 3.4. The IS approach 

considers the modified probability density functions of 𝑇𝑇𝐶𝐿
−1  and  𝑅𝐿

−1  denoted by 

𝑓
𝑇𝑇𝐶𝐿

−1
∗ (𝒙) and 𝑓

 𝑅𝐿
−1
∗ (𝒙). Because the independence of 𝑅𝐿 and 𝑇𝑇𝐶𝐿 shown in Figure 3.9, 

 

 

𝑓(𝒙) = ℙ( 𝑅𝐿
−1 = 𝑚,  𝑇𝑇𝐶𝐿

−1 = 𝑛, 𝑣𝐿 = 𝑙) 

= ℙ( 𝑅𝐿
−1 = 𝑚)ℙ( 𝑇𝑇𝐶𝐿

−1 = 𝑛|𝑣𝐿 = 𝑙)ℙ(𝑣𝐿 = 𝑙) 

= 𝑓 𝑅𝐿−1
(𝑚)𝑓 𝑇𝑇𝐶𝐿−1

(𝑛|𝑣𝐿 = 𝑙)𝑓𝑣𝐿(𝑙). 

(3.24) 

 

Similarly, the AE distribution 

 𝑓∗(𝒙 = [𝑚, 𝑛]) = 𝑓
 𝑅𝐿
−1
∗ (𝑚)𝑓

 𝑇𝑇𝐶𝐿
−1

∗ (𝑛|𝑣𝐿 = 𝑙)𝑓𝑣𝐿(𝑙) (3.25) 

 

The likelihood ratio is then calculated from 

 

 𝐿( 𝑅𝐿
−1 = 𝑚,  𝑇𝑇𝐶𝐿

−1 = 𝑛, 𝑣𝐿 = 𝑙) =
𝑓(𝒙)

𝑓∗(𝒙)
=
𝑓 𝑅𝐿−1

(𝑚)𝑓 𝑇𝑇𝐶𝐿−1
(𝑛|𝑣𝐿 = 𝑙)

𝑓
 𝑅𝐿
−1
∗ (𝑚)𝑓

 𝑇𝑇𝐶𝐿
−1

∗ (𝑛|𝑣𝐿 = 𝑙)
. (3.26) 

 

From Eq. (3.13), the probability of ℰ can be estimated as 

 ℙ(ℰ) = 𝔼𝑓(𝐼ℰ(𝒙)) = 𝔼𝑓∗(𝐼ℰ(𝒙)𝐿(𝒙)) ≈ 𝔼̂𝑓∗(𝐼ℰ(𝒙)𝐿(𝒙)) (3.27) 

 

where Ê𝑓∗(⋅) denotes the empirical average. 

 

3.4 Simulation Analysis 

The estimation of the benefits of AV in crash and injury events are used to 

demonstrate the effectiveness of the proposed Accelerated Evaluation approach. 
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3.4.1 Analysis of crash events 

A crash event occurs when the range becomes negative within 𝑇𝐿𝐶 after the lane 

change such that 

 ℰ𝑐 = {min(𝑅𝐿(𝑡)) < 0|𝑡𝐿𝐶 < 𝑡 ≤ 𝑡𝐿𝐶 + 𝑇𝐿𝐶}. (3.28) 

 

To accelerate the evaluation procedure, 𝑓𝑇𝑇𝐶𝐿−1 is modified to be 

 𝑓
𝑇𝑇𝐶𝐿

−1
∗ (𝒙) =

1

𝜆𝑇𝑇𝐶𝐿−1 − 𝜃𝑇𝑇𝐶𝐿−1
𝑒
−

𝑥
𝜆
𝑇𝑇𝐶𝐿

−1−𝜃𝑇𝑇𝐶𝐿
−1

 (3.29) 

 

and 𝑓𝑅𝐿−1 is modified as 

 𝑓
 𝑅𝐿
−1
∗ (𝒙) =

1

𝜎𝑅𝐿−1
(1 + (𝑘𝑅𝐿−1 − 𝜃𝑅𝐿−1)

𝑥 − 𝜇𝑅𝐿−1

𝜎𝑅𝐿−1
)

−1−
1

𝑘
𝑅𝐿
−1−𝜃𝑅𝐿

−1

 (3.30) 

where 𝜃𝑇𝑇𝐶𝐿−1 = 0.8 and 𝜃𝑅𝐿−1 = 0.3. Here the parameters are tuned manually. In the next 

chapter, we will introduce an adaptive method to calculate the optimal parameters of the 

AE distribution. 

The Design B developed in Section 2.4.1 is used as the AV model. Both accelerated 

and the non-accelerated simulations (crude Monte Carlo approach) were conducted to 

demonstrate the performance and validity of the proposed approach. Figure 3.11 shows 

that estimated crash rate in accelerated and naturalistic driving conditions. The statistical 

features from the Accelerated Evaluation simulations converge to the results under 

naturalistic driving conditions, which demonstrates that the Accelerated Evaluation 

approach is statistically unbiased. 

 



 

57 

 

 

Figure 3.11 Estimation of crash rate in the lane change scenario 

 

The convergence is reached when the relative half-width 𝑙𝑟  (defined in Section 

3.2.1) is below 𝛽 = 0.2 with 80% confidence. Figure 3.12 shows that the accelerated tests 

achieve this confidence level after 𝑁𝑎𝑐𝑐 = 1.14e5  simulations, while the naturalistic 

simulations take 𝑁𝑛𝑎𝑡𝑢𝑟𝑒 = 6.13e6 simulations to converge. 

 

 

Figure 3.12 Convergence of crash rate estimation in the lane change scenario 

 

In the SPMD database, during 1,325,964 miles naturalistic driving, 173,592 lane 

changes with negative range rates were found. The frequency of negative range rate lane 

change is estimated to be 
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 𝑟𝑙𝑐 =
1,325,964

173,592
= 7.64 [mile/lane change]. (3.31) 

 

The driving distance needed in naturalistic test is thus 

 

 𝐷𝑛𝑎𝑡𝑢𝑟𝑒 = 𝑟𝑙𝑐 ∙ 𝑁𝑛𝑎𝑡𝑢𝑟𝑒 = 4.71e7 miles. (3.32) 

 

The test distance in the Accelerated Evaluation is 

 

 𝐷𝑎𝑐𝑐 = ∑ ∫ 𝑣(𝑛)(𝑡)
𝑡𝐿𝐶+𝒯𝐿𝐶

𝑡=𝑡𝐿𝐶

𝑁𝑎𝑐𝑐
𝑛=1 d𝑡 = 7.48e3 miles (3.33) 

 

where 𝑣(𝑛)(𝑡) represents the velocity of AV at time t in the 𝑛𝑡ℎ test and the termination 

time 

 𝒯𝐿𝐶 = min{𝑚𝑖𝑛(𝑡|𝑅𝐿(𝑡) < 0) , 𝑇𝐿𝐶}. (3.34) 

 

The accelerated rate is defined as 

 𝑟𝑎𝑐𝑐 =
𝐷𝑛𝑎𝑡𝑢𝑟𝑒 

𝐷𝑎𝑐𝑐
= 6.30e3 (3.35) 

 

which is achieved by the application of IS as well as using the modeling of lane change 

scenarios. 

It is noted that the 𝑁𝑎𝑐𝑐 vary with different choices of confidence level (1 − 𝛼) and 

the threshold of the relative half-width 𝛽. Substituting Eq. (3.9) to Eq. (3.17), we have 

 𝑁𝑎𝑐𝑐 ∝
Φ−1 (1 −

𝛼
2)

2

𝛽2
. (3.36) 

 

𝑁𝑎𝑐𝑐 is proportional to the square of the function Φ−1(1 − 𝛼/2) and the inverse of the 

square of 𝛽. Figure 3.13 shows a numerical example of the influence of the confidence 

level on 𝑁𝑎𝑐𝑐 and relative error 𝑟𝑟𝑒𝑙 (defined in Eq. (2.14), where the expectation of the 
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crash rate 𝜇𝑐 is approximated by the crash rate calculating from all 2e5th accelerated test) 

with 𝛽 = 0.2. It can be seen that as the confidence level increases 𝑁𝑎𝑐𝑐 increases almost 

linearly yet 𝑟𝑟𝑒𝑙 decreases slowly after 1 − 𝛼 > 80%. In a real world evaluation, 𝛼 and 𝛽 

can be chosen based on time/budget constraints. In this dissertation, we choose 1 − 𝛼 =

80% and 𝛽 = 0.2. 

 

Figure 3.13 Influence of the confidence level on the relative error and test number at 

convergence 

 

3.4.2 Analysis of injury events 

Injury rate is another important indicator of the performance of AVs. Here we focus 

on injuries with the Maximum Abbreviated Injury Score [136] equal or larger than 2 

(MAIS2+) , representing moderate-to-fatal injuries. The probability of injury is related to 

the relative velocity at the crash time 𝑡𝑐𝑟𝑎𝑠ℎ 

 

 Δ𝑣 = −𝑅̇𝐿(𝑡𝑐𝑟𝑎𝑠ℎ) > 0. (3.37) 

 

The probability of moderate-to-fatal injuries for the AV passengers is estimated by 

a nonlinear model 
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 𝑃𝑖𝑛𝑗(Δ𝑣) = {
1

1 + 𝑒−(𝛽0+𝛽1𝛥𝑣+𝛽2)
crash       

0 𝑛𝑜 𝑐𝑟𝑎𝑠ℎ

 (3.38) 

 

which was proposed by Kusano and Gabler [137], and is shown in Figure 3.14 with 

parameters 𝛽0 = −6.068 , 𝛽1 = 0.1, and 𝛽2 = −0.6234. 𝛥𝑣 is in the unit of [km/h]. The 

injury rate E (Pinj(Δ𝑣)) is estimated as 

 

 𝔼(Pinj(Δ𝑣)) = 𝔼̂𝑓∗ (Pinj(Δ𝑣)) ≈
1

𝑛
∑ 𝑃𝑖𝑛𝑗(Δ𝑣(𝒙𝑛))𝐿(𝒙𝑛)

𝑁𝑎𝑐𝑐

𝑖=0

 (3.39) 

where 𝒙𝒏 represents the random variables ([𝑣𝐿 , 𝑇𝑇𝐶𝐿
−1, 𝑅𝐿

−1]) in the nth simulation. 

 

 

Figure 3.14 Moderate-to-fatal injury model for forward collisions 

 

Figure 3.15 shows that estimated injury rate in the accelerated test converges to the 

result under naturalistic driving conditions, demonstrating that the Accelerated Evaluation 

approach is unbiased in the injury index evaluation. 
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Figure 3.15 Estimation of injury rate in the lane change scenario 

 

The convergence is reached when the relative half-width 𝑙𝑟 (defined in Eq. (3.7)) 

is below  𝛽 = 0.2  with 80% confidence. Figure 3.16 shows that the accelerated tests 

achieve this confidence level after 𝑁𝑎𝑐𝑐 = 7.41e4  simulations, while the naturalistic 

simulations take 𝑁𝑛𝑎𝑡𝑢𝑟𝑒 = 6.12e6 simulations to converge. 

 

 

Figure 3.16 Convergence of injury rate estimation in the lane change scenario 

 

The accelerated rates of crash and injury events are summarized in Table 3.1. The 

accelerated rates of injuries are higher than that of crashes. This is because injuries occur 

with lower probabilities than crashes. In general, the IS techniques provide larger 

accelerated rate when target events are rarer. 
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Table 3.1 Accelerated rates of crash and injury events 

 𝐷𝑛𝑎𝑡𝑢𝑟𝑒 𝐷𝑎𝑐𝑐 𝑟𝑎𝑐𝑐 

 mile mile - 

Crash 4.71e7 7.48e3 6.30e3 

Injury 4.70e7 4.85e3 9.70e3 

 

3.5 Summary 

In this chapter, we propose an approach to accelerating the evaluation of AVs based 

on Importance Sampling technologies. Lane change scenarios with the human-controlled 

vehicles making unsafe cut-ins were used to demonstrate the approach. Lane changes 

models are modeled based on over 400,000 lane changes events collected by the University 

of Michigan Safety Pilot Model Deployment Program. The acceleration is achieved by 

using skewed statistics of collected human driver behaviors, which generate risky test 

scenarios. By using Importance Sampling, the statistical information is preserved so that 

the safety benefits of AVs in non-accelerated cases can be accurately calculated. The 

occurrence of crashes and injuries of a modeled automated vehicle are calculated to 

demonstrate the approach.
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ADAPTIVE ACCELERATED EVALUATION 

4.1 Introduction 

In the previous chapter, statistics of the cut-in HV 𝑓(𝒙) is replaced by a somewhat 

arbitrarily selected AE distribution 𝑓∗(𝒙)  to accelerate the evaluation. When the AV 

design changes or the evaluation metrics are modified, 𝑓∗(∙) may need to be reselected to 

maintain a high rate of acceleration. In this chapter, instead of tuning 𝑓∗(𝒙) manually, we 

develop an Adaptive Accelerated Evaluation (AAE) approach to searching for the optimal 

𝑓∗(𝒙). As shown in Figure 4.1, a family of 𝝑-parameterized distributions 𝑓𝝑(𝒙) is first 

defined. Through a recursive optimization procedure, the optimal parameter of 𝝑  is 

numerically obtained in a recursive way. As a result, the Accelerated Evaluation tests 

adjusts themselves to be “adaptive” to the new test requirement. 

This chapter begins with an introduction to the theoretical optimal AE distribution. 

The AAE algorithm is then developed based on the Cross Entropy method. Finally, conflict, 

crash, and injury events in the lane change scenario are analyzed to demonstrate the AAE 

method. 

 

  

Figure 4.1 Procedure of the Adaptive Accelerated Evaluation 
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4.2 The Adaptive Accelerated Evaluation 

4.2.1 The zero-variance distribution 

We first point out an important observation: for any distribution, there is a 

theoretically optimal distribution 

 

 𝑓𝑧𝑣
∗  (𝒙) = {

𝑓(𝒙)

𝛾
, 𝐼ℰ(𝒙) = 1 

0, 𝐼ℰ(𝒙) = 0

. (4.1) 

 

With 𝑓𝑧𝑣
∗  (𝒙), any sampled 𝒙 leads to a rare event so that the indicator function 𝐼ℰ(𝒙) 

constantly equals to one. This distribution is optimal in the sense that any sample generated 

from it has zero variance, and hence the required test number to construct confidence level 

to any precision is 1; thus it is also known as the zero-variance AE distribution [122]. 

The likelihood ratio for 𝑓𝑧𝑣
∗  (𝒙) is calculated as 

 

 𝐿𝑧𝑣(𝒙) =
𝑓(𝒙)

𝑓𝑧𝑣∗  (𝒙)
= 𝛾. (4.2) 

 

The probability of the rare events is calculated by 

 

 𝛾𝑛 =
1

𝑛
∑𝐼ℰ(𝒙𝑛)𝐿(𝒙𝑛) 

𝑁

𝑖=0

=
1

𝑛
∑𝛾 

𝑛

𝑖=0

= 𝛾. (4.3) 

 

Thus 𝛾𝑛  equals to 𝛾  for all 𝑛 . Unfortunately, this distribution cannot be implemented 

because it requires the knowledge of  𝛾 , which is exactly what we want to estimate. 

However, it provides a benchmark of good AE distributions. In other word, a good AE 

distribution should be close to the zero-variance distribution as much as possible. 
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4.2.2 The Cross Entropy method 

The goal of the AAE is to find an AE distribution that is close to the theoretically 

optimal AE distribution 𝑓𝑧𝑣
∗ (𝒙) . The Cross Entropy Method [138]–[140] is used to 

recursively approach the optimal parameter 𝝑∗. 

Let 𝑓𝝑(𝒙)  be a family of distributions that are modified from the original HV 

distributions 𝑓(𝒙)  by some mapping functions and a control parameter vector 𝝑 . The 

difference between 𝑓𝜗(𝒙)  and 𝑓𝑧𝑣
∗ (𝒙)  is represented by the Kullback–Leibler (KL) 

divergence 

 

 𝑓𝐾𝐿 (𝑓𝜗(𝒙) ,  𝑓𝑧𝑣
∗ (𝒙)) = ∫ 𝑙𝑜𝑔 [

𝑓𝑧𝑣
∗ (𝒙)

𝑓𝜗(𝒙)
] 𝑓𝑧𝑣

∗ (𝒙)d𝒙. (4.4) 

 

When 𝑓𝜗(𝒙) = 𝑓𝑧𝑣
∗ (𝒙), 𝑓𝐾𝐿 (𝑓𝜗(𝒙) ,  𝑓𝑧𝑣

∗ (𝒙)) = 0. The idea of Cross Entropy is to find an 

AE distribution that has the minimum KL divergence with 𝑓𝑧𝑣
∗  (𝒙), i.e. 

 

 𝝑∗ = argmin
𝝑
𝑓𝐾𝐿 (𝑓𝝑(𝒙),  𝑓𝑧𝑣

∗ (𝒙)). (4.5) 

 

Substituting Eq. (4.4) into Eq. (4.5), we have 

 

 

𝝑∗ = argmin
𝝑
∫ log [

𝑓𝑧𝑣
∗ (𝑥)

𝑓𝜗(𝑥)
] 𝑓𝑧𝑣

∗ (𝑥)d𝑥 

= argmin
𝝑
∫{log[𝑓𝑧𝑣

∗ (𝒙)] 𝑓𝑧𝑣
∗ (𝒙) − log[𝑓𝝑(𝒙)] 𝑓𝑧𝑣

∗ (𝒙)}d𝒙. 

(4.6) 

 

Note the first term inside the integration is independent of 𝝑, Eq. (4.6) can be simplified to 

 

 𝝑∗ = argmax
𝝑
∫ log[𝑓𝝑(𝒙)] 𝑓𝑧𝑣

∗ (𝒙)d𝒙. (4.7) 

 

Substituting Eq. (4.1) into Eq. (4.7), we have 
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 𝝑∗ = argmax
𝝑
∫ log[𝑓𝝑(𝒙)]

𝑓(𝒙)

𝑃(ℰ)
𝐼ℰ(𝒙)d𝒙. (4.8) 

 

Since 𝑃(ℰ) is a constant, it can be taken out of the optimal equation. 

 

 𝝑∗ = argmax
𝝑
∫ log[𝑓𝝑(𝒙)] 𝑓(𝒙)𝐼ℰ(𝒙)d𝒙 (4.9) 

 

Here we apply the IS techniques to increase the sampling efficiency by using the 

distribution 𝑓𝝑𝒊(𝒙) in the previous iteration. Let 

 𝐿̃𝝑𝑖(𝒙) =
𝑓(𝒙)

𝑓𝝑𝑖(𝒙)
. (4.10) 

 

From Eq. (4.8), 𝝑𝑖+1 can be derived as 

 

𝝑𝑖+1 = argmax
𝝑
∫ log[𝑓𝝑(𝒙)] 𝐿̃𝝑𝑖𝐼ℰ(𝒙)𝑓𝝑𝑖(𝒙)d𝒙 

≈ argmax
𝝑
𝔼̂𝑓̃𝝑𝑖

[log (𝑓𝝑(𝒙)) 𝐿̃𝝑𝑖(𝒙)𝐼ℰ(𝒙)] 

(4.11) 

 

where 𝐼ℰ(𝒙)  are test results in the 𝑖𝑡ℎ  iteration using 𝑓𝝑𝑖(𝒙) , and 𝔼̂𝑓̃𝝑𝑖
[⋅]  denotes the 

empirical average. 

 

4.3 Adaptive Accelerated Evaluation in the Lane Change Scenario 

There are many possible choices for the family of AE distribution 𝑓𝝑(𝒙). Here we 

develop 𝑓𝝑(𝒙) based on a popular class named the Exponential Change of Measure (ECM). 

We use the lane change model developed in the previous chapter to demonstrate the AAE 

approach in which 𝒙 = [𝑣𝐿 , 𝑇𝑇𝐶𝐿
−1,  𝑅𝐿

−1] following distributions 𝑓𝑣𝐿(𝑥), 𝑓 𝑇𝑇𝐶𝐿−1
(𝑥) and 

𝑓𝑅𝐿−1
(𝑥). Same as the process described in CHAPTER 3, we will modify 𝑓 𝑇𝑇𝐶𝐿−1

(𝑥) and 

𝑓𝑅𝐿−1
(𝑥) in the accelerated model and use Importance Sampling to estimate the safety 

performance in real world driving. 
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Recall that 𝑇𝑇𝐶𝐿
−1~exp (𝜆 𝑇𝑇𝐶𝐿−1

(𝑣𝐿)), i.e. 

 𝑓 𝑇𝑇𝐶𝐿−1
(𝑥) =

1

𝜆 𝑇𝑇𝐶𝐿−1
exp(−

𝑥

𝜆 𝑇𝑇𝐶𝐿−1
). (4.12) 

 

The ECM considers the family 

 𝑓 𝑇𝑇𝐶𝐿−1
(𝑥) = exp (𝜗 𝑇𝑇𝐶𝐿−1𝑥 − 𝛹 (𝜗 𝑇𝑇𝐶𝐿−1

𝐸𝐶𝑀 ))𝑓 𝑇𝑇𝐶𝐿−1
(𝑥) (4.13) 

 

parametrized by 𝜗
 𝑇𝑇𝐶𝐿

−1
𝐸𝐶𝑀 < 1/𝜆 𝑇𝑇𝐶𝐿−1  , where 𝛹 (𝜗

 𝑇𝑇𝐶𝐿
−1

𝐸𝐶𝑀 )  is the logarithmic moment 

generation function of  𝑇𝑇𝐶𝐿
−1, i.e., 

 

𝛹 (𝜗
 𝑇𝑇𝐶𝐿

−1
𝐸𝐶𝑀 ) = log 𝔼 (exp (𝜗

 𝑇𝑇𝐶𝐿
−1

𝐸𝐶𝑀  𝑇𝑇𝐶𝐿
−1)) 

= log∫ exp (𝜗
 𝑇𝑇𝐶𝐿

−1
𝐸𝐶𝑀 𝑥)  𝑓 𝑇𝑇𝐶𝐿−1(𝑥)d𝑥

+∞

0

 

= log∫ exp (𝜗
 𝑇𝑇𝐶𝐿

−1
𝐸𝐶𝑀 𝑥)

1

𝜆 𝑇𝑇𝐶𝐿−1
exp (−

𝑥

𝜆 𝑇𝑇𝐶𝐿−1
)d𝑥

+∞

0

 

(4.14) 

 

Calculate the integration, we have 

 

𝛹 (𝜗
 𝑇𝑇𝐶𝐿

−1
𝐸𝐶𝑀 ) = log

−1

1 − 𝜆 𝑇𝑇𝐶𝐿−1𝜗 𝑇𝑇𝐶𝐿−1
𝐸𝐶𝑀 [exp (−(

1

𝜆 𝑇𝑇𝐶𝐿−1
− 𝜗

 𝑇𝑇𝐶𝐿
−1

𝐸𝐶𝑀 ) 𝑥)]

0

+∞

 

= log
−1

1 − 𝜆 𝑇𝑇𝐶𝐿−1𝜗 𝑇𝑇𝐶𝐿−1
𝐸𝐶𝑀 (0 − 1) 

= log
1

1 − 𝜆 𝑇𝑇𝐶𝐿−1𝜗 𝑇𝑇𝐶𝐿−1
𝐸𝐶𝑀 . 

(4.15) 

 

Substituting Eq. (4.15) into Eq. (4.13), we have the ECM function of 𝑓 𝑇𝑇𝐶𝐿−1
(𝑥) 
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𝑓 𝑇𝑇𝐶𝐿−1
(𝑥) 

= exp(𝜗
 𝑇𝑇𝐶𝐿

−1
𝐸𝐶𝑀 𝑥 − log

1

1 − 𝜆 𝑇𝑇𝐶𝐿−1𝜗 𝑇𝑇𝐶𝐿−1
𝐸𝐶𝑀 )

1

𝜆 𝑇𝑇𝐶𝐿−1
exp(−

1

𝜆 𝑇𝑇𝐶𝐿−1
𝑥) 

=
exp (𝜗

 𝑇𝑇𝐶𝐿
−1

𝐸𝐶𝑀 𝑥)

1

1 − 𝜆 𝑇𝑇𝐶𝐿−1𝜗 𝑇𝑇𝐶𝐿−1
𝐸𝐶𝑀

1

𝜆 𝑇𝑇𝐶𝐿−1
exp (−

1

𝜆 𝑇𝑇𝐶𝐿−1
𝑥) 

= (
1

𝜆 𝑇𝑇𝐶𝐿−1
− 𝜗

 𝑇𝑇𝐶𝐿
−1

𝐸𝐶𝑀 ) exp (−(
1

𝜆 𝑇𝑇𝐶𝐿−1
− 𝜗

 𝑇𝑇𝐶𝐿
−1

𝐸𝐶𝑀 )𝑥) 

(4.16) 

 

where 𝜗
 𝑇𝑇𝐶𝐿

−1
𝐸𝐶𝑀 < 1/𝜆 𝑇𝑇𝐶𝐿−1  and 𝜆 𝑇𝑇𝐶𝐿−1 > 0 . To make 𝜗

 𝑇𝑇𝐶𝐿
−1

𝐸𝐶𝑀  have the same scale as 

𝜆 𝑇𝑇𝐶𝐿−1, we apply a nonlinear mapping by letting 

 𝜗
 𝑇𝑇𝐶𝐿

−1
𝐸𝐶𝑀 =

𝜗 𝑇𝑇𝐶𝐿−1

𝜗 𝑇𝑇𝐶𝐿−1𝜆 𝑇𝑇𝐶𝐿−1 − 𝜆 𝑇𝑇𝐶𝐿−1
2  (4.17) 

 

with 𝜗 𝑇𝑇𝐶𝐿−1 < 𝜆 𝑇𝑇𝐶𝐿−1. Substitute Eq. (4.17) into (4.16), we have 

 

 𝑓 𝑇𝑇𝐶𝐿−1 (𝑥|𝜗 𝑇𝑇𝐶𝐿−1) = (
1

𝜆 𝑇𝑇𝐶𝐿−1 − 𝜗 𝑇𝑇𝐶𝐿−1
) exp(−

𝑥

𝜆 𝑇𝑇𝐶𝐿−1 − 𝜗 𝑇𝑇𝐶𝐿−1
). (4.18) 

 

Nominally 𝑅𝐿
−1 follows a Pareto distribution, i.e. 

 

 𝑓𝑅𝐿−1
(𝑥) = 𝑃𝑎𝑟𝑒𝑡𝑜 (𝑥|𝑘𝑅𝐿−1 , 𝜎𝑅𝐿−1 , 𝜇𝑅𝐿−1  ). (4.19) 

 

The ECM cannot be applied to a Pareto distribution directly. Therefore, we first construct 

an exponential distribution 

 𝑓 𝑅𝐿−1(𝑥) =
1

𝜆 𝑅𝐿−1
exp (−

1

𝜆 𝑅𝐿−1
𝑥) (4.20) 
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with 𝜆 𝑅𝐿−1, which makes Eq. (4.20) to have the smallest least square error to Eq. (4.19). 

Then we apply ECM to Eq. (4.20) with parameter 𝜗
 𝑅𝐿
−1

𝐸𝐶𝑀 and nonlinear mapping 

 𝜗
 𝑅𝐿
−1

𝐸𝐶𝑀 =
𝜗 𝑅𝐿−1

𝜗 𝑅𝐿−1𝜆 𝑅𝐿−1 − 𝜆 𝑅𝐿−1
2  (4.21) 

 

to Eq. (4.20). We have 

 𝑓 𝑅𝐿−1 (𝑥|𝜗 𝑅𝐿−1) = (
1

𝜆 𝑅𝐿−1 − 𝜗 𝑅𝐿−1
) exp(−

𝑥

𝜆 𝑅𝐿−1 − 𝜗 𝑅𝐿−1
) (4.22) 

 

with 𝜗 𝑅𝐿−1 < 𝜆 𝑅𝐿−1. 

Now we have the two family of distributions 𝑓 𝑇𝑇𝐶𝐿−1  and 𝑓 𝑅𝐿−1  ready. We will 

apply the Cross Entropy method to calculate the optimal parameter 𝜗 𝑇𝑇𝐶𝐿−1  and 𝜗 𝑅𝐿−1 

iteratively. 

Let 𝝑𝑖 = [𝜗 𝑅𝐿−1
(i)

, 𝜗
 𝑇𝑇𝐶𝐿

−1
(i)

] be the parameters to be optimized used in the 𝑖𝑡ℎ iteration. 

The joint distribution of the lane change event is 

 

 𝑓𝝑(𝒙) = 𝑓 𝑅𝐿−1 ( 𝑅𝐿
−1|𝜗 𝑅𝐿−1) 𝑓 𝑇𝑇𝐶𝐿−1 ( 𝑇𝑇𝐶𝐿

−1|𝜗 𝑇𝑇𝐶𝐿−1) 𝑓𝑣𝐿(𝑣𝐿). (4.23) 

 

Substituting Eq. (4.23) into Eq. (4.11), we have 

 

𝝑𝑖+1 = argmax
𝝑
Ê𝑓̃𝝑𝑖

[log (𝑓 𝑅𝐿−1
( 𝑅𝐿

−1|𝝑)) 𝐿̃𝝑𝑖(𝒙)𝐼ℰ(𝒙) +

log (𝑓 𝑇𝑇𝐶𝐿−1
( 𝑇𝑇𝐶𝐿

−1|𝝑)) 𝐿̃𝝑𝑖(𝒙)𝐼ℰ(𝒙) + 𝑓𝑣𝐿(𝑣𝐿)𝐿̃𝝑𝑖(𝒙)𝐼ℰ(𝒙)]. 

(4.24) 

 

Because 𝑓𝑣𝐿(𝑙)𝐿̃𝝑𝑖(𝒙)𝐼ℰ𝝑𝑖
(𝒙)  is not a function of 𝝑 , it can be eliminated from the 

optimization. 
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𝝑𝑖+1 = argmax
𝝑
𝔼̂𝑓̃𝝑𝑖

[log (𝑓 𝑅𝐿−1 ( 𝑅𝐿
−1|𝜗 𝑅𝐿−1)) 𝐿̃𝝑𝑖

(𝒙)𝐼ℰ(𝒙) +

log (𝑓 𝑇𝑇𝐶𝐿−1 ( 𝑇𝑇𝐶𝐿
−1|𝜗 𝑇𝑇𝐶𝐿−1)) 𝐿̃𝝑𝑖

(𝒙)𝐼ℰ(𝒙)]. 

(4.25) 

 

It is shown from (4.25) that 𝜗 𝑅𝐿−1 and 𝜗 𝑇𝑇𝐶𝐿−1 can be solved separately. The parameters 

used in the (𝑖 + 1)𝑡ℎ can be calculated from 

 𝜗
 𝑅𝐿
−1

(i+1)
= arg max

𝜗
 𝑅𝐿
−1
𝔼̂𝑓̃𝝑𝑖

[log (𝑓 𝑅𝐿−1 ( 𝑅𝐿
−1|𝜗 𝑅𝐿−1)) 𝐿̃𝝑𝑖

(𝒙)𝐼ℰ(𝒙)] (4.26) 

and 

 𝜗
 𝑇𝑇𝐶𝐿

−1
(i+1)

= arg max
𝜗
 𝑇𝑇𝐶𝐿

−1
𝔼̂𝑓̃𝝑𝑖

[log (𝑓 𝑇𝑇𝐶𝐿−1 ( 𝑇𝑇𝐶𝐿
−1|𝜗 𝑇𝑇𝐶𝐿−1)) 𝐿̃𝝑𝑖

(𝒙)𝐼ℰ(𝒙)]. (4.27) 

 

The empirical average can be estimated by N samples of 𝒙. Thus Eq. (4.26) can be further 

derived as 

𝜗
 𝑅𝐿
−1

(i+1)
=  arg max

𝜗
 𝑅𝐿
−1

1

𝑁
∑ log (𝑓 𝑅𝐿−1 ( 𝑅𝐿𝑛

−1|𝜗 𝑇𝑇𝐶𝐿−1)) 𝐿̃𝝑𝑖
(𝒙𝒏)𝐼ℰ(𝒙𝒏)

𝑁

𝑛=1

 (4.28) 

 

where 𝑖  denotes the 𝑖𝑡ℎ  iteration. 𝒙𝒏  denotes the 𝑛𝑡ℎ  sample of [𝑣𝐿 , 𝑇𝑇𝐶𝐿
−1,  𝑅𝐿

−1]. The 

constant 1/𝑁 can be taken out of the arg max function. By substituting Eq. (4.22) into 

(4.28), we have 

    𝜗
 𝑅𝐿
−1

(i+1)

= arg max
𝜗
 𝑅𝐿
−1
∑log [

1

𝜆 𝑅𝐿−1 − 𝜗 𝑅𝐿−1
exp(−

 𝑅𝐿𝑛
−1

𝜆 𝑅𝐿−1 − 𝜗 𝑅𝐿−1
)] 𝐿̃𝝑𝑖(𝒙𝒏)𝐼ℰ(𝒙𝒏)

𝑁

𝑛=1

 

= arg max
𝜗
 𝑅𝐿
−1
∑[− log (𝜆 𝑅𝐿−1 − 𝜗 𝑅𝐿−1) −

 𝑅𝐿𝑛
−1

𝜆 𝑅𝐿−1 − 𝜗 𝑅𝐿−1
] 𝐿̃𝝑𝑖(𝒙𝒏)𝐼ℰ(𝒙𝒏)

𝑁

𝑛=1

. 

(4.29) 

 

Let 

 𝑔𝜗
 𝑅𝐿
−1 =∑(− log (𝜆 𝑅𝐿−1 − 𝜗 𝑅𝐿−1) −

 𝑅𝐿𝑛
−1

𝜆 𝑅𝐿−1 − 𝜗 𝑅𝐿−1
) 𝐿̃𝝑𝑖(𝒙𝒏)𝐼ℰ(𝒙𝒏)

𝑁

𝑛=1

. (4.30) 
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To find the 𝜗 𝑅𝐿−1  that maximizes function 𝑔𝜗
 𝑅𝐿
−1

 in Eq. (4.29), we set the first order 

derivative of 𝑔𝜗
 𝑅𝐿
−1  to be zero. 

 

𝑑𝑔𝜗
 𝑅𝐿
−1

𝑑𝜗 𝑅𝐿−1
= ∑(

1

𝜆 𝑅𝐿−1 − 𝜗 𝑅𝐿−1
−

 𝑅𝐿𝑛
−1

(𝜆 𝑅𝐿−1 − 𝜗 𝑅𝐿−1)
2) 𝐿̃𝝑𝑖(𝒙𝒏)𝐼ℰ(𝒙𝒏)

𝑁

𝑛=1

 

=
1

(𝜆 𝑅𝐿−1 − 𝜗 𝑅𝐿−1)
2∑(𝜆 𝑅𝐿−1 − 𝜗 𝑅𝐿−1 −  𝑅𝐿

−1) 𝐿̃𝝑𝑖(𝒙𝒏)𝐼ℰ(𝒙𝒏)

𝑁

𝑛=1

= 0 

(4.31) 

 

Because 𝜗 𝑅𝐿−1 < 𝜆 𝑅𝐿−1, we have 

 ∑(𝜆 𝑅𝐿−1 − 𝜗 𝑅𝐿−1 −  𝑅𝐿
−1) 𝐿̃𝝑𝑖(𝒙𝒏)𝐼ℰ(𝒙𝒏)

𝑁

𝑛=1

= 0. (4.32) 

 

In each iteration N should be picked large enough to have ∑ 𝐼ℰ(𝒙𝒏)
𝑁
𝑛=1 > 0, which means 

at least one event of interest (e.g. crash) happens in one iteration. Because 𝐿̃𝝑𝑖(𝒙𝒏) > 0. 

We have 

 ∑𝐿̃𝝑𝑖(𝒙𝒏)𝐼ℰ(𝒙𝒏)

𝑁

𝑛=1

> 0. (4.33) 

 

𝜗 𝑅𝐿−1 can be solved from Eq. (4.32). 

 𝜗 𝑅𝐿−1 =
∑ (𝜆 𝑅𝐿−1 −  𝑅𝐿

−1) 𝐿̃𝝑𝑖(𝒙𝒏)𝐼ℰ(𝒙𝒏)
𝑁
𝑛=1

∑ 𝐿̃𝝑𝑖(𝒙𝒏)𝐼ℰ(𝒙𝒏)
𝑁
𝑛=1

 (4.34) 

 

Taking 𝜗 𝑅𝐿−1 in Eq. (4.31), we have 

 

𝑑𝑔𝜗
 𝑅𝐿
−1

𝑑𝜗 𝑅𝐿−1

{
 
 

 
 
> 0 𝑤ℎ𝑒𝑛 𝜗 𝑅𝐿−1 <

∑ (𝜆 𝑅𝐿−1 −  𝑅𝐿
−1) 𝐿̃𝝑𝑖(𝒙𝒏)𝐼ℰ(𝒙𝒏)

𝑁
𝑛=1

∑ 𝐿̃𝝑𝑖(𝒙𝒏)𝐼ℰ(𝒙𝒏)
𝑁
𝑛=1

< 0 𝑤ℎ𝑒𝑛 𝜗 𝑅𝐿−1 >
∑ (𝜆 𝑅𝐿−1 −  𝑅𝐿

−1) 𝐿̃𝝑𝑖(𝒙𝒏)𝐼ℰ(𝒙𝒏)
𝑁
𝑛=1

∑ 𝐿̃𝝑𝑖(𝒙𝒏)𝐼ℰ(𝒙𝒏)
𝑁
𝑛=1

. (4.35) 
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So 𝜗 𝑅𝐿−1 in Eq. (4.34) is the global maxima. The optimal parameter in the next iteration 

𝜗 𝑅𝐿−1 can be derived analytically 

 𝜗
 𝑅𝐿
−1

(i+1)
=
∑ (𝜆 𝑅𝐿−1 −  𝑅𝐿

−1) 𝐿̃𝝑𝑖(𝒙𝒏)𝐼ℰ(𝒙𝒏)
𝑁
𝑛=1

∑ 𝐿̃𝝑𝑖(𝒙𝒏)𝐼ℰ(𝒙𝒏)
𝑁
𝑛=1

 (4.36) 

 

where n is the index for each simulation. Similarly, apply Eq. (4.16) to Eq. (4.11). The 

optimal parameter 𝜗 𝑅𝐿−1 can be obtained from 

 𝜗
 𝑇𝑇𝐶𝐿

−1
(i+1)

=
∑ (𝜆 𝑇𝑇𝐶𝐿−1 −  𝑇𝑇𝐶𝐿

−1)𝐿̃𝝑𝑖(𝒙𝑛)𝐼ℰ(𝒙𝑛)
𝑁
𝑗=1

∑ 𝐿̃𝝑𝑖(𝒙𝒏)𝐼ℰ(𝒙𝑛)
𝑁
1

. (4.37) 

 

𝜗
 𝑅𝐿
−1

(i+1)
 and 𝜗

 𝑇𝑇𝐶𝐿
−1

(i+1)
 can then be used in the (𝑖 + 1)𝑡ℎ iteration. 

4.4 Simulation Analysis 

In the previous chapter, the crash and injury rates are calculated using a manually 

tuned AE distribution, which successfully accelerates the evaluation by four orders of 

magnitude. In this section, we will show that the same AE distribution cannot be used as a 

universally good candidate to calculate other rare event metrics. We will first use this AE 

distribution to calculate the “conflict rate” and show that, with an improper AE distribution, 

the “accelerated” tests may converge slowly and become less efficient even than the Monte 

Carlo method. Second, we will demonstrate the ability of the AAE method to avoid the 

“bad” AE distribution issue. By applying the new AE distribution generated by the AAE 

method, it is shown that once again “close-to-optimal” distributions can be found, and the 

evaluation can be accelerated significantly. 

 

4.4.1 Evaluation with the non-optimized AE distributions 

A conflict event happens when an AV appears in the proximity zone of the LCV 

between time 𝑡𝐿𝐶 and 𝑡𝐿𝐶 + 𝑇𝐿𝐶. As shown in Figure 4.2, the proximity zone is the area 
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from 4 feet in front of the bumper of the LCV to 30 feet behind the rear bumper of the LCV 

[131, p. ix]. This area generally includes the blind spot and the area beside and behind the 

vehicle in which another vehicle is likely to travel. In our lane change model, the LCV 

always cut-in in front of the AV. So only the 30 feet proximity zone behind the LCV is 

used. Mathematically, the conflict event can be defined as 

 

 ℰ = {min(𝑅𝐿(𝑡)) < 𝑅ℰ|𝑡𝐿𝐶 < 𝑡 ≤ 𝑡𝐿𝐶 + 𝑇𝐿𝐶} (4.38) 

 

where 𝑅ℰ = 30 feet. 

 

Figure 4.2 Definition of the conflict event 

 

The AE distributions in Eqs. (3.29) and (3.30) are used. The Design B developed 

in Section 2.4.1 is used to as the AV model. Figure 4.3 shows that estimated conflict rate 

in accelerated and naturalistic driving conditions. It can be seen that although the 

Accelerated Evaluation is unbiased, it converges even slower than the non-accelerated test. 
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Figure 4.3 Estimation of the conflict rate in the lane change scenario (improper AE 

distribution) 

 

 

Figure 4.4 Convergence of conflict rate estimation in the lane change scenario (improper 

AE distribution) 

 

Figure 4.4 shows the convergence with 𝛽 = 0.2  and 80% confidence. The 

naturalistic simulations take 𝑁𝑛𝑎𝑡𝑢𝑟𝑒 = 5.90e3  simulations to converge. However, the 

accelerated test cannot converge even after 1e5  simulations, which shows that the 

“accelerated test” is even less efficient than the Monte Carlo method. When estimating the 

conflict rate by using 𝛾𝑛 =
1

𝑛
∑ 𝐼ℰ(𝒙𝑛)𝐿(𝒙𝑛) 
𝑛
𝑖=0  from Eq. (3.15), the ideal case is that the 

indication function 𝐼ℰ(𝒙𝑛) is one and the likelihood ratio 𝐿(𝒙𝑛) is closed to the expectation 

of the conflict rate 𝛾. By using the AE distributions tuned for crash analysis, conflicts were 

generated at a higher frequency. However, because the AE distributions are tuned too much, 
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many times the likelihood ratio was much smaller than 𝛾 and the sampling became less 

consistent. Therefore, more simulations are needed to make the estimation converge. This 

example shows that when the evaluation metric changes, e.g. from crash rate to conflict 

rate, the AE distribution needs to be re-selected. Without a proper AE distribution, 

convergence can be slower than the Monte Carlo simulation method. 

 

4.4.2 Evaluation with the Adaptive Accelerated Evaluation 

4.4.2.1 Estimation of the conflict rate 

The AAE approach is used to obtain near-optimal distribution to estimate conflict 

rate. 100 lane changes were simulated in each iteration to calculate the optimal parameters 

𝜗 𝑇𝑇𝐶𝐿−1 and 𝜗 𝑅𝐿−1. The values in the tenth iteration were used to calculate the conflict rate 

in the lane change scenario. As shown in Figure 4.5, three sets of 𝜗 𝑇𝑇𝐶𝐿−1 and 𝜗 𝑅𝐿−1 are 

obtained with low, medium and high velocities. It is shown in Figure 4.5 that values of 

𝜗 𝑅𝐿−1 converge to about -0.12, whereas values of 𝜗 𝑇𝑇𝐶𝐿−1 fluctuate around zero. The reason 

𝜗 𝑇𝑇𝐶𝐿−1 does not change as much as 𝜗 𝑅𝐿−1 is because the conflict events are defined based 

on 𝑅𝐿, thus changing the parameter of 𝑅𝐿 plays a more important role in evaluating conflict 

events. 

 

 

Figure 4.5 Searching for optimal parameters for conflict events with AAE 
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The estimation and convergence of conflict rate are shown in Figure 4.6 and 

Figure 4.7. It is shown that with the new distribution calculated by the AAE approach, the 

evaluation becomes much more efficient with 𝑁𝑎𝑐𝑐 = 364  while 𝑁𝑛𝑎𝑡𝑢𝑟𝑒 = 5.90e3 . 

Applying Eqs. (3.32), (3.33) and (3.35), we can calculate that 𝐷𝑛𝑎𝑡𝑢𝑟𝑒 = 4.53e4 miles, 

𝐷𝑎𝑐𝑐 = 16.4 miles, and 𝑟𝑎𝑐𝑐 = 2.77e3 respectively. 

 

 

Figure 4.6 Estimation of the conflict rate in the lane change scenario (with AE 

distribution calculated by AAE) 

 

 

Figure 4.7 Convergence of conflict rate estimation in the lane change scenario (with AE 

distribution calculated by AAE) 
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4.4.2.2 Estimation of the crash rate and injury rate 

The AAE approach was also applied to estimate the crash rate to examine its 

robustness. In each searching iteration, 500 lane changes were conducted. As shown in 

Figure 4.8 three different values of 𝜗 𝑇𝑇𝐶𝐿−1  were obtained from the iterative search for 

different velocity intervals, where as 𝜗 𝑅𝐿−1  converges to values close to zero. It can be 

explained that in the crash analysis, the safety critical function (AEB) on AV is mainly 

affected by TTC. Therefore 𝜗 𝑇𝑇𝐶𝐿−1 has a larger impact than 𝜗 𝑅𝐿−1 on the occurrence of the 

crash. 

 

 

Figure 4.8 Searching for optimal parameters for crash events with AAE 

 

Both accelerated and naturalistic tests were conducted until the crash rate 

converged with 80 % confidence level and 𝛽 = 0.2. Figure 4.9 shows that the estimation 

of the crash rate calculated by the accelerated tests converges to the naturalistic driving 

estimation, which shows that the Accelerated Evaluation is unbiased. Figure 4.10 shows 

that accelerated tests achieved the confidence level 𝛽  after 𝑁𝑎𝑐𝑐 = 5.77e4 simulations, 

while the naturalistic (crude Monte Carlo) method takes 𝑁𝑛𝑎𝑡𝑢𝑟𝑒 = 6.13e6 simulations. 

Applying Eqs. (3.32), (3.33) and (3.35), we can calculate that 𝐷𝑛𝑎𝑡𝑢𝑟𝑒 = 4.71e7 miles, 

𝐷𝑎𝑐𝑐 = 4.02e3 miles, and 𝑟𝑎𝑐𝑐 = 1.17e4 respectively. 
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Figure 4.9 Estimation of the crash rate in the lane change scenario (with AE distribution 

calculated by AAE) 

 

 

Figure 4.10 Convergence of crash rate estimation in the lane change scenario (with AE 

distribution calculated by AAE) 

 

When crashes happen, passengers may get injured. We also estimate the rate 

moderate-to-fatal injuries of the AV passengers. The estimated injury rate can be calculated 

from Eq. (3.39). Both accelerated and naturalistic tests were conducted until the injury rate 

converged with 80 % confidence level and 𝛽 = 0.2. Figure 4.11 shows that estimated 

injury rate in the accelerated test converges to the result under naturalistic driving 

conditions. 

Figure 4.12 shows that accelerated tests achieved the confidence level 𝛽  after 

𝑁𝑎𝑐𝑐 = 3.63e4 simulations, while the naturalistic (crude Monte Carlo) method took 
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𝑁𝑛𝑎𝑡𝑢𝑟𝑒 = 6.12e6 simulations. Applying Eqs. (3.32), (3.33) and (3.35), we can calculate 

that 𝐷𝑛𝑎𝑡𝑢𝑟𝑒 = 4.70e7 miles, 𝐷𝑎𝑐𝑐 = 2.53e3 miles, and 𝑟𝑎𝑐𝑐 = 1.86e4 respectively. 

 

 

Figure 4.11 Estimation of the injury rate in the lane change scenario (with AE 

distribution calculated by AAE) 

 

 

Figure 4.12 Convergence of injury rate estimation in the lane change scenario (with AE 

distribution calculated by AAE) 

 

Table 5.3 summarizes the performance of Adaptive Accelerated Evaluation 

approach in estimating the three metrics of the AV. It is shown that in the crash and injury 

cases, the proposed method successfully accelerates the evaluation by four orders of 

magnitude, while in the conflict case, the AE method achieves over three thousand times 

of acceleration in test mileage. 
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Table 4.1 Summary of performance of the Adaptive Accelerated Evaluation approach in 

estimating the crash rate, injury rate, and the conflict rate in the lane change scenario 

 𝐷𝑛𝑎𝑡𝑢𝑟𝑒 𝐷𝑎𝑐𝑐 𝑟𝑎𝑐𝑐 

 mile mile - 

Conflict 4.53e4 16.4 2.77e3 

Crash 4.71e7 4.02e3 1.17e4 

Injury 4.70e7 2.53e3 1.86e4 

 

4.5 Summary 

In this Chapter, the Adaptive Accelerated Evaluation approach is proposed to 

search for the optimal AE distributions in an iterative way. The Cross Entropy approach is 

used to calculate the local optimal in each iteration. A comparison of the accelerated 

efficiencies using distributions using non-optimized AE distributions and the distribution 

calculated by AAE is shown to demonstrate the effectiveness of the proposed method in 

the lane change conflict scenario. Three metrics of AV: conflict rate, crash rate, and injury 

rate, were calculated using the AAE method to demonstrate its performance. Results 

showed that the AAE method accelerated the evaluation mileage by roughly 3,000 to 18, 

000 times.
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ACCELERATED EVALUATION WITH DYNAMIC INTERACTIONS 

IN THE CAR-FOLLOWING SCENARIO 

5.1 Introduction 

In CHAPTER 3 and CHAPTER 4, the lane change HV was simulated using static 

sampling, in which the randomness is modeled as a set of distributions but sampled only 

once at the lane change moment. In some other cases, the statistics of the HV behaviors are 

state-dependent and sampled constantly. We call this type of stochastic process as dynamic 

sampling. One example is the car-following scenario, where the drivers adjust their speed 

stochastically according to the maneuvers of the lead vehicles. To evaluate an AV in these 

types of scenarios and interactions between the AV and HVs, in this chapter, we will 

develop a new Accelerated Evaluation approach by considering the correlations between 

each sample. Three types of events, the crash, injury and conflict, are analyzed to 

demonstrate this approach. 

5.2 Model of Dynamic Interactions in Car-following Scenario 

5.2.1 Extraction of naturalistic car-following events 

The SPMD database introduced in Section 3.3.1 was used to model the lead HV in 

the car-following scenario. As shown in Table 5.1, the advantage of the SPMD database is 

that it has six times longer mileage than the IVBSS database [31], [32], [98], which is 

beneficial to model rare events. 

As shown in Figure 5.1, the range and range rate were measured by Mobileye 

equipped on the SPMD vehicles. To ensure consistency of the used dataset, we apply the 

following criteria when extracting car-following events: 

 𝑅𝐿(𝑡) ∈ (0.1 m, 90 m) 
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 Longitude ∈ (−88.2°,  − 82.0°) 

 Latitude ∈ (41.0°,  44.5°) 

 No cut-in vehicles between HV and SPMD vehicles 

 No lane changes of HV and SPMD vehicles 

 Duration of car-following> 50 s 

where 𝑣𝐿 and 𝑣 are the velocities of the lead HV and the SPMD vehicle; 𝑅𝐿 is the range, 

defined as the distance between the rear edge of the HV and the front edge of the SPMD 

vehicle. 

 

Table 5.1 Comparison of between the IVBSS database and the SPMD database 

 IVBSS SPMD  

Name 
Integrated Vehicle-

Based Safety 

Systems (IVBSS) 

Safety Pilot Model 

Deployment 

Time 2010-2011 2012-2015 

Mileage 213,309 1,300,000 

Test vehicles 108 94 

Sensor Radar Mobileye@ 

Longitudinal 
sensor accuracy 

- 
10 % error at 90 m 

5 % error at 45 m 

 

 

Figure 5.1 Car-following scenarios that may cause frontal crashes 

 

 

163,332 car-following events were detected in the SPMD database. Figure 5.2 

shows the locations of the identified car-following scenarios. 
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Figure 5.2 Recorded car-following events in the SPMD database 

 

5.2.2 Lead human controlled vehicle 

The randomness of human behaviors is modeled by a stochastic model. The vehicle 

acceleration in the next time step is calculated based on current step acceleration and 

velocity as shown in Eq. (5.1). 

 
𝑎𝐿(𝑘 + 1) = ℎ0 + ℎ1𝑎𝐿(𝑘) + ℎ2𝑣𝐿(𝑘) + 𝑢ℎ 

= [1, 𝑎𝐿(𝑘), 𝑣𝐿(𝑘)]𝒉 + 𝑢ℎ 
(5.1) 

 

where the driver model parameter vector 𝒉 = [ℎ0, ℎ1, ℎ2]
𝑇 and 𝑢ℎ~𝒩(0, 𝜎𝑢

2). 

The lead HV velocity can be calculated from 

 𝑣𝐿(𝑘) = 𝑅̇𝐿(𝑘) + 𝑣(𝑘) (5.2) 

 

where range rate defined as 

 𝑅̇𝐿(𝑘) = 𝑣𝐿(𝑘) − 𝑣(𝑘) (5.3) 

 

is measured by the MobilEye® sensors equipped on the SPMD vehicles. 
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The lead HV acceleration 𝑎𝐿  is estimated by taking the derivative of 𝑣𝐿  with 

Forward Euler Approximation [141]. A moving average filter with windows size 16 is used 

to smooth the estimated 𝑎𝐿. The velocity and acceleration in an example car-following 

event are shown in Figure 5.3. 

 

 

Figure 5.3 Estimation of the lead vehicle acceleration 

 

The driver model parameter vector ℎ  is estimated based on the Least Square 

Method. Define the acceleration vector of the lead vehicle 

 

 𝑎𝐿
(𝑛𝑠)(𝑖: 𝑗) = [𝑎𝐿

(𝑛𝑠)(𝑖), 𝑎𝐿
(𝑛𝑠)(𝑖 + 1), … , 𝑎𝐿

(𝑛𝑠)(𝑗)] (5.4) 

 

with 𝑛𝑠 = 1,2, … ,𝑁𝑠 and 𝑗 ≥ 𝑖, where 𝑎𝐿
(𝑛𝑠)(𝑖) represents the 𝑖th step acceleration of the 

HV in the 𝑛𝑠th car-following sequence. Define the observer vector 

 

 𝒚𝒉 = [𝑎𝐿
(1)(2: 𝑒𝑛𝑑), 𝑎𝐿

(2)(2: 𝑒𝑛𝑑), … , 𝑎𝐿
(𝑁𝑠)(2: 𝑒𝑛𝑑)]

𝑇

 (5.5) 
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where 𝑒𝑛𝑑 represents the index of the final element in the acceleration vector. 𝑁𝑠 is the 

total number of car-following sequences in the SPMD database. Define the input vector of 

each car-following scenario as 

 𝒙𝒉
(𝒏𝒔) =

[
 
 
 
 1 𝑎𝐿

(𝑛𝑠)(1) 𝑣𝐿
(𝑛𝑠)(1)

1 𝑎𝐿
(𝑛𝑠)(2) 𝑣𝐿

(𝑛𝑠)(2)

⋮ ⋮ ⋮

1 𝑎𝐿
(𝑛𝑠)(𝑒𝑛𝑑 − 1) 𝑣𝐿

(𝑛𝑠)(𝑒𝑛𝑑 − 1)]
 
 
 
 
𝑇

. (5.6) 

 

Define the input vector of 𝑁𝑠 car-following events as 

 𝝌𝒉 = [𝑥ℎ
(1), 𝑥ℎ

(2), … , 𝑥ℎ
(𝑁𝑠)]

𝑇

. (5.7) 

 

The Matlab® function “robustfit” is used to fit 𝒉 with input vector 𝝌𝒉 and observer vector 

𝒚𝒉 based on “bisquare” approach [142], which is less influenced by the outlier than the 

normal least-squares fit [143], [144]. The standard deviation of 𝑢ℎ is estimated by fitting 

the estimation deviation (𝑎𝐿(𝑘 + 1) − [1, 𝑎𝐿(𝑘), 𝑣𝐿(𝑘)] 𝒉) with a normal distribution. 

 

5.2.3 Automated vehicle model 

In the previous chapter, the AV was designed as a combination of ACC and AEB. 

This is a popular design among current production AVs. The ACC module is designed as 

a convenience system with a low control authority (usually the acceleration is smaller than 

±0.4 g). The AEB module is designed as a safety system, which is usually tuned to activate 

late with a harsh braking as a safeguard for frontal collisions. In this chapter, we use an AV 

control model that can handle both daily driving and emergency situations proposed in 

[145]. In the following, we first derive the vehicle dynamic model and then design the 

longitudinal controller. 

5.2.3.1 Vehicle dynamics 

We use a longitudinal vehicle dynamic model from [115] 
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𝑀
d𝑣(𝑡)

d𝑡
= 𝐹𝑥(𝑡) − 𝑀𝑔 𝑠𝑖𝑛𝜃𝑟𝑔(𝑡) − 𝑓𝑟𝑟𝑚𝑔 𝑐𝑜𝑠𝜃𝑟𝑔(𝑡)

− 0.5𝜌𝑎𝑖𝑟𝐴𝑣𝐶𝑑(𝑣(𝑡) + 𝑣𝑤(𝑡))
2

 

(5.8) 

 

where 𝑀 is the vehicle mass, 𝐹𝑥 is the longitudinal force, 𝜃𝑟𝑔is the road grade angle, g is 

the gravitational constant, 𝑓𝑟𝑟 is the rolling resistance coefficient, 𝜌𝑎𝑖𝑟 is the air density, 𝐴𝑣 

is the frontal area, 𝐶𝑑 is the aerodynamic coefficient and 𝑣𝑤 is the wind speed. 

At equilibrium i.e. when d𝑣/d𝑡 = 0, the equilibrium longitudinal force in Eq. (5.8) 

at 𝑣0 can be solved from 

 

𝐹𝑥0 (𝑡) = 𝑀𝑔 𝑠𝑖𝑛𝜃𝑟𝑔(𝑡) + 𝑓𝑟𝑟𝑚𝑔 𝑐𝑜𝑠𝜃𝑟𝑔(𝑡)

+ 0.5𝜌𝑎𝑖𝑟𝐴𝑣𝐶𝑑(𝑣0(𝑡) + 𝑣𝑤(𝑡))
2
. 

(5.9) 

 

Eq. (5.9) can be linearized about the equilibrium point by using the Taylor series expansion 

 
d𝑣̃

d𝑡
+ 𝑣̃ = 𝐾𝐴𝑉(𝐹̃𝑥 + 𝑑𝐴𝑉) (5.10) 

 

where 𝑣̃ is the velocity deviation, defined as 

 𝑣̃ = 𝑣 − 𝑣0 (5.11) 

 

and 𝐹̃𝑥 is the longitudinal force deviation, defined as 

 𝐹̃𝑥 = 𝐹𝑥 − 𝐹𝑥0 (5.12) 

 

Parameters 𝜏, 𝐾𝐴𝑉, and 𝑑𝐴𝑉 were derived as 𝜏 = 𝑀/(𝜌𝑎𝑖𝑟𝐶𝑑𝐴𝑣(𝑣0 + 𝑣𝑤),  

 𝐾𝐴𝑉 = 1/𝜌𝑎𝑖𝑟𝐶𝑑𝐴𝑣(𝑣0 + 𝑣𝑤) , and 𝑑𝐴𝑉 = 𝑀𝑔(𝑓𝑟𝑟𝑠𝑖𝑛𝜃𝑟𝑔 − 𝑐𝑜𝑠𝜃𝑟𝑔)d𝜃𝑟𝑔/d𝑡 . Assume 

𝑣𝑤 = 0 and 𝜃𝑟𝑔 = 0. Using Laplace transformation [146] on Eq. (5.10), we obtain a first 

order lag system representing the vehicle longitudinal dynamics. 

 
𝑣̃(𝑠)

𝐹̃𝑥(𝑠)
=

𝐾𝐴𝑉
𝜏𝑠 + 1

 (5.13) 
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The vehicle mass was set as the summation of the curb mass of 2011 Volvo V60 

[147] and the mass of two 60 kg. The frontal area, rolling resistance coefficient, frontal 

area, and aerodynamic coefficient were set as the same parameters of the Class E sedan 

model used in the commercial software CarSim® [118]. It should be noted that the vehicle 

models presented in the section may not be a good representation of the actual systems in 

a production vehicle. If more accurate simulations are desired, the proposed accelerated 

evaluation process can be used in junction with more accurate simulation models such as 

CarSim®. More details of vehicle dynamic techniques can found in [148], [149]. 

5.2.3.2 Adaptive cruise control 

The Adaptive cruise control is designed based on the research in [145]. The 

longitudinal control of AV is designed to follow the lead HV velocity and maintain a proper 

frontal distance. As shown in Figure 5.4, the controller is implemented in the discrete time 

domain. 

 

Figure 5.4 Automated vehicle model 

 

The discrete-time control algorithm can be expressed as 

 

 𝐹̃𝑥(𝑧) = (𝐾𝑝 + 𝐾𝑖
𝑇𝑠

𝑧 − 1
) 𝑅̃𝐿(𝑧) + 𝐾𝑑𝑅̇𝐿(𝑧) (5.14) 

 

where 𝐹𝑥(𝑧), 𝑅̃𝐿(𝑧), and 𝑅̇𝐿(𝑧) are 𝑍 transformation [150] of 𝐹𝑥(𝑡), 𝑅̃𝐿(𝑡), and 𝑅̇𝐿(𝑡). 𝑇𝑠 

is the time step. 𝑅̃𝐿(𝑡) is defined as 
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 𝑅̃𝐿(𝑡) = 𝑅𝐿(𝑡) − 𝑅𝐿
𝑑𝑒𝑠𝑖𝑟𝑒 (5.15) 

 

where 𝑅𝐿
𝑑𝑒𝑠𝑖𝑟𝑒 = 𝑣0 ∗ 𝑡𝐻𝑊

𝑑𝑒𝑠𝑖𝑟𝑒 and 𝑡𝐻𝑊
𝑑𝑒𝑠𝑖𝑟𝑒 is the desired time headway. 𝑅̃𝐿 is regulated by a 

discretized Proportional-Integral (PI) controller and the range rate is regulated by a 

Proportional (P) controller. 𝑅̃𝐿 is calculated from 

 𝑅̃𝐿(𝑡) = ∫ 𝑅̇𝐿(𝑡)d𝑡
𝑡

0

+ 𝑅𝐿0 − 𝑅𝐿
𝑑𝑒𝑠𝑖𝑟𝑒 (5.16) 

 

where 𝑅𝐿0  is the initial range. 𝑅𝐿0  is equal to 𝑅𝐿
𝑑𝑒𝑠𝑖𝑟𝑒  to make the test starts from an 

equilibrium. 

5.3 The Optimal Mean Shift Approach 

The statistics of the motion of the lead HV is modified to generate more intense 

interactions with the AV. From Eq. (5.1), the acceleration in the next step of the lead HV 

follows the probability density function 

 

 𝑎𝐿(𝑘 + 1)~𝒩(ℎ0 + ℎ1𝑎𝐿(𝑘) + ℎ2𝑣𝐿(𝑘), 𝜎𝑢
2). (5.17) 

 

The general idea to accelerate the evaluation is to add a series of biases 

[𝒷(1),𝒷(2), … ] to the mean of the acceleration distribution. The modified acceleration 

distribution becomes 

 

 𝑎𝐿(𝑘 + 1)~𝒩(ℎ0 + ℎ1𝑎𝐿(𝑘) + ℎ2𝑣𝐿(𝑘) + 𝒷(𝑘), 𝜎𝑢
2). (5.18) 

 

In this section, we first derive a car-following model into the state space form. We 

then calculate the optimal 𝒷(𝑘). 
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5.3.1 State space form of the car-following model 

The car-following model can be linearized and rewritten in the state space form. In 

discrete time, the lead vehicle velocity is calculated from 

 

 𝑣𝐿(𝑘 + 1) = 𝑣𝐿(𝑘) + 𝑇𝑠𝑎𝐿(𝑘). (5.19) 

 

Define velocity deviation of the lead HV as 

 

 𝑣̃𝐿(𝑘) = 𝑣𝐿(𝑘) − 𝑣0. (5.20) 

 

We have 

 𝑣̃𝐿(𝑘 + 1) = 𝑣̃𝐿(𝑘) + 𝑇𝑠𝑎𝐿(𝑘). (5.21) 

 

Define another random variable 

 𝑢 = 𝑢ℎ + ℎ0 + ℎ2𝑣0. (5.22) 

 

From Eq. (5.1) and (5.20), we have 

 

 𝑎𝐿(𝑘 + 1) = ℎ1𝑎𝐿(𝑘) + ℎ2𝑣̃𝐿(𝑘) + 𝑢. (5.23) 

 

Discretize Eq. (5.13) using the Zero Order Hold method [150], 

 

 
𝑣̃(𝑧)

𝐹̃𝑥(𝑧)
=

𝑛𝑣𝑧
−1

1 + 𝑑𝑣𝑧−1
 (5.24) 

 

where 𝑣′(𝑧) and 𝐹𝑥′(𝑧) are the 𝑍 transformation of 𝑣′(𝑡) and 𝐹𝑥′(𝑡). Taking the inverse 𝑍 

transformation of Eq. (5.24), we get 

 

 𝑣̃(𝑘 + 1) = 𝑑𝑣𝑣̃(𝑘) + 𝑛𝑣𝐹̃(𝑘). (5.25) 

 

Substituting Eqs. (5.11) and (5.22) into Eq. (5.2), we have 
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 𝑅̇𝐿(𝑘) = 𝑣̃𝐿(𝑘) − 𝑣̃(𝑘). (5.26) 

 

Discretize Eq. (5.16) and substitute Eqs. (5.15) and (5.19) in (5.16). 

 

 
𝑅̃𝐿(𝑘 + 1) = 𝑅̃𝐿(𝑘) + 𝑇𝑠𝑅̇𝐿(𝑘) 

= 𝑅̃𝐿(𝑘) + 𝑇𝑠𝑣̃𝐿(𝑘) − 𝑇𝑠𝑣̃ (𝑘). 
(5.27) 

 

Take the inverse 𝑍 transformation [150] of Eq. (5.14). 

 

 𝐹̃𝑥(𝑘 + 1) = 𝐹̃𝑥(𝑘) − 𝐾𝑝𝑅̃𝐿(𝑘) + (𝐾𝑝 + 𝐾𝑖𝑇𝑠)𝑅̃𝐿(𝑘 + 1) + 𝐾𝑑𝑅̇𝐿(𝑘 + 1). (5.28) 

 

Substitute Eqs. (5.26) and (5.27) into (5.28). 

 

 
𝐹̃𝑥(𝑘 + 1) = 𝐹̃𝑥(𝑘) + 𝑇𝑠𝐾𝑖𝑅̃𝐿(𝑘) + (𝐾𝑝 + 𝑇𝑠𝐾𝑖)(𝑇𝑠𝑣̃𝐿(𝑘) − 𝑇𝑠𝑣̃(𝑘))

+ 𝐾𝑑(𝑣̃𝐿(𝑘 + 1) − 𝑣̃(𝑘 + 1)). 
(5.29) 

 

Substitute Eqs. (5.25) and (5.28) into (5.29). 

 

 𝐹̃𝑥(𝑘 + 1) = 𝑞1𝑎𝐿(𝑘) + 𝑞2𝑣̃𝐿(𝑘) + 𝑞3𝑣̃(𝑘) + 𝑞4𝐹̃𝑥(𝑘) + 𝑞5𝑅̃𝐿(𝑘) (5.30) 

 

where 𝑞1 = 𝐾𝑑𝑇𝑠, 𝑞2 = 𝐾𝑑 +𝐾𝑝𝑇𝑠 + 𝐾𝑖𝑇𝑠
2, 𝑞3 = −𝐾𝑑𝑑𝑣 − 𝐾𝑝𝑇𝑠 − 𝐾𝑖𝑇𝑠

2, 𝑞4 = 1 −

𝐾𝑑𝑛𝑣, 𝑞5 = 𝑇𝑠𝐾𝑖. 

Rewriting Eqs. (5.23), (5.25), (5.21), (5.27) and (5.30) into the state space form, we 

have 

 

 𝑿(𝑘 + 1) = 𝑨𝑿(𝑘) + 𝑩𝑢(𝑘)  

(5.31) 
 𝑅𝐿(𝑘) = 𝑪𝑿(𝑘) 
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where 𝑿(𝑘) =  [𝑎𝐿(𝑘) 𝑣̃𝐿(𝑘) 𝑣̃(𝑘) 𝐹̃𝑥(𝑘) 𝑅̃
𝐿
(𝑘)]

𝑇
 

 

𝑨 =

[
 
 
 
 
ℎ1 ℎ2 0 0 0
𝑇𝑠 1 0 0 0
0 0 −𝑑𝑣 𝑛𝑣 0
𝑞1 𝑞2 𝑞3 𝑞4 𝑞5
0 𝑇𝑠 −𝑇𝑠 0 1 ]

 
 
 
 

 

 

𝑩 =  [1 0 0 0 0]𝑇 , 𝑪 =  [0 0 0 0 1] 

 

with initial condition 𝑿(1) =  [0 0 0 0 0 ]𝑇 and physical constraints 

 

𝑿𝒎𝒊𝒏 ≤ 𝑿(𝑘) ≤ 𝑿𝒎𝒂𝒙 

 

where 𝑿𝒎𝒊𝒏 = [𝑎𝐿
𝑀𝑖𝑛, 𝑣𝐿

𝑀𝑖𝑛 − 𝑣0, 𝑣
𝑀𝑖𝑛 − 𝑣0, 𝐹𝑥

𝑀𝑖𝑛 − 𝐹𝑥0, 𝑅𝐿
𝑀𝑖𝑛 − 𝑅𝐿

𝑑𝑒𝑠𝑖𝑟𝑒]
𝑇
 and 𝑿𝒎𝒂𝒙 =

[𝑎𝐿
𝑀𝑎𝑥, 𝑣𝐿

𝑀𝑎𝑥 − 𝑣0, 𝑣
𝑀𝑎𝑥 − 𝑣0, 𝐹𝑥

𝑀𝑎𝑥 − 𝐹𝑥0, 𝑅𝐿
𝑀𝑎𝑥 − 𝑅𝐿

𝑑𝑒𝑠𝑖𝑟𝑒]
𝑇
. 

 

5.3.2 Accelerated Evaluation 

In the following, we will describe the four steps of the Accelerated Evaluation 

procedure: i) calculate the optimal 𝒷(𝑘), ii) randomize the termination time, iii) run the 

accelerated tests, and iv) calculate the likelihood and estimate the real world benefits. The 

same procedure can be applied to estimate all three metrics: crash, injury, and conflict. For 

narrative simplicity, during the derivation, we use the term “crash” to represent all the three 

types of events. 

5.3.2.1 Calculation of the optimal mean shift 

We will first calculate 𝑢∗(𝑘) - the optimal realization of 𝑢(𝑘). Second, 𝒷∗(𝑘), the 

optimal value of 𝒷(𝑘), is calculated to maximize the likelihood for 𝑢(𝑘) to be 𝑢∗(𝑘) in the 

accelerated tests. 

From Eq. (5.22), under the naturalistic driving conditions, we have 

 



 

92 

 

 𝑢(𝑘)~𝑓𝑢𝑘(𝑢(𝑘)) = 𝒩(𝜇𝑢, 𝜎𝑢
2) (5.32) 

 

where 𝜇𝑢 = ℎ0 + ℎ2𝑣0. The simulation ends when either a crash happens or the maximum 

time step is reach. Define the termination time step 

 

 𝑘𝒯 = min{𝑚𝑖𝑛(𝑘|𝑅𝐿(𝑘) < 0) , 𝐾} (5.33) 

 

where 𝑘𝒯  is an integer ∈ {1,… , 𝐾}. 𝐾  is the maximum step number in a car-following 

event. Because the lead HV is modeled as a Markov Chain, the probably density for a car-

following event (from time step 1 to 𝑘𝒯) can be calculated from 

 

 𝑓𝑢(𝑢(1: 𝑘𝒯 − 1)) = ∏ 𝑓𝑢𝑘(𝑢(𝑘))

𝑘𝒯−1

𝑘=1

. (5.34) 

 

Substituting Eq. (5.32)into Eq.(5.34), we have 

 

 𝑓𝑢(𝑢(1: 𝑘𝒯 − 1)) = (
1

√2𝜋𝜎𝑢
)

𝑘𝒯−1

𝑒𝑥𝑝 (−
‖𝑢(1: 𝑘𝒯 − 1) − 𝜇𝑢𝟏‖2

2

2𝜎𝑢2
) (5.35) 

 

where 𝑢(1: 𝑘𝒯 − 1) = [𝑢(1), 𝑢(2), … , 𝑢(𝑘𝒯 − 1)]
𝑇 , ‖∙‖2

2  represents the Euclidean two-

norm and 𝟏 = [1,1, … ,1]𝑇 ∈ ℝ(𝑘𝒯−1)×1. 

In the accelerated tests, from Eq. (5.18) and Eq. (5.22), we have 

 

 𝑢(𝑘)~𝑓𝑢𝑘(𝑢(𝑘)) = 𝒩(𝜇𝑢 +𝒷(𝑘), 𝜎𝑢
2). (5.36) 

 

The modified probabilistic density distribution is calculated from 

 𝑓𝑢(𝑢(1: 𝑘𝒯 − 1)) = ∏ 𝑓𝑢𝑘(𝑢(𝑘))

𝑘𝒯−1

𝑘=1

. (5.37) 

 

Substituting (5.36) into (5.37), we have 
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𝑓𝑢(𝑢(1: 𝑘𝒯 − 1))

= (
1

√2𝜋𝜎𝑢
)

𝑘𝒯−1

exp(−
‖𝑢(1: 𝑘𝒯 − 1) − 𝒷(1: 𝑘𝒯 − 1) − 𝜇𝑢𝟏‖2

2

2𝜎𝑢2
) 

(5.38) 

 

The optimal realization of 𝑢(𝑘) is then calculated to achieve two goals 

i) To make a crash happen at a specific time  𝑘𝒯
∗  

ii) To maximize the likelihood of the crash event happening 

We need i) to calculate the crash rate. We need ii) to focus on the events with a high 

probability of occurring. A crash happening at an extremely low probability (e.g. the 

surrounding vehicles are all Lamborghinis that cut in and accelerate/decelerate crazily) 

does not play a significant role in calculating the average crash rate. The two goals can be 

expressed as an optimization problem as follows. 

 

 

𝑢𝑘𝒯∗ (1: 𝑘𝒯
∗ − 1) = arg max

𝑢(1:𝑘𝒯
∗−1)

𝑓(𝑢(1: 𝑘𝒯
∗ − 1)) 

subject to 

𝑅𝐿(𝑘𝒯
∗ ) ≤ 𝑅ℰ  

𝑿𝒎𝒊𝒏 ≤ 𝑿(𝑘) ≤ 𝑿𝒎𝒂𝒙 

𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑘) ≤ 𝑢𝑚𝑎𝑥 

(5.39) 

 

for 𝑘 = 1,2, … , 𝑘𝒯
∗ − 1, where 𝑅ℰ  is the critical distance. For crash and injury, 𝑅ℰ = 0. 

For conflict, according to Eq. (4.38) , 𝑅ℰ = 30 feet. 

Substituting Eqs. (5.34) and (5.31) into Eq. (5.39) and rewriting Eq. (5.39) in the 

quadratic form, we have 

 

𝑢𝑘𝒯∗ (1: 𝑘𝒯
∗ − 1) 

= arg min
𝑢(1:𝑘𝒯

∗−1)
[
1

2
𝑢(1: 𝑘𝒯

∗ − 1)𝑇𝑢(1: 𝑘𝒯
∗ − 1) − 𝜇𝑢𝟏

𝑇𝑢(1: 𝑘𝒯
∗ − 1)] 

(5.40) 

subject to 

 𝑨𝒌𝓣∗  𝑢𝑘𝒯∗ (1: 𝑘𝒯
∗ − 1) ≤ 𝒃𝒌𝓣∗  
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where 

𝑨𝒌𝓣∗ =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 𝑪𝑨

(𝑘𝒯
∗−2)𝑩 𝑪𝑨(𝑘𝒯

∗−3)𝑩 ⋯ 𝑪𝑩
𝑩 0 ⋯ 0
𝑨𝑩 𝑩 ⋯ 0
⋮ ⋮ ⋱ ⋮

𝑨(𝑘𝒯
∗−3)𝑩 𝑨(𝑘𝒯

∗−4)𝑩 ⋯ 0
−𝑩 0 ⋯ 0
−𝑨𝑩 −𝑩 ⋯ 0
⋮ ⋮ ⋱ ⋮

−𝑨(𝑘𝒯
∗−3)𝑩 −𝑨(𝑘𝒯

∗−4)𝑩 ⋯ 0
1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1
−1 0 ⋯ 0
0 −1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ −1]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    ,     𝒃𝒌𝓣∗ =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 𝑅ℰ − 𝑪𝐀

(𝑘𝒯
∗−1)𝑿(1)

𝑿𝒎𝒂𝒙 − 𝑨𝑿(1)

𝑿𝒎𝒂𝒙 − 𝐴
2𝑋(1)

⋮

𝑿𝒎𝒂𝒙 − 𝐀
(𝑘𝒯
∗−2)𝑿(1)

−𝑿𝒎𝒊𝒏 + 𝑨𝑿(1)

−𝑿𝒎𝒊𝒏 + 𝑨
2𝑿(1)

⋮

−𝑿𝐦𝐢𝐧 + −𝐀
(𝑘𝒯
∗−2)𝑿(1)

𝑢𝑚𝑎𝑥
𝑢𝑚𝑎𝑥
⋮

𝑢𝑚𝑎𝑥
−𝑢𝑚𝑖𝑛
−𝑢𝑚𝑖𝑛
⋮

−𝑢min ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

 

The optimal shift parameters 𝒷𝑘𝒯∗ (1: 𝐾) are calculated to maximize the likelihood 

for 𝑢𝑘𝒯∗ (1: 𝐾) to be realized in the accelerated test. For a specific 𝑘𝒯
∗ , 𝒷𝑘𝒯∗ (1: 𝐾) can be 

calculated from 

 𝒷𝑘𝒯∗ (1: 𝑘𝒯
∗ ) = arg𝑚𝑎𝑥

𝒷(1:K)
𝑓 (𝑢𝑘𝒯∗ (1: 𝑘𝒯

∗ ), 𝒷(1: 𝑘𝒯
∗ )). (5.41) 

 

Substituting (5.38) into (5.41), we have 

 

 

𝒷𝑘𝒯∗ (1: 𝑘𝒯
∗ )

= arg𝑚𝑎𝑥
𝒷(1:𝑘𝒯

∗ )

(
1

√2𝜋𝜎𝑢
)

𝑘𝒯
∗

exp(−
‖𝑢(1: 𝑘𝒯

∗ ) − 𝒷(1: 𝑘𝒯
∗ ) − 𝜇𝑢𝟏‖2

2

2𝜎𝑢2
) . 

(5.42) 

 

Taking out the constant terms from the arg𝑚𝑎𝑥 function, we have 

 𝒷𝑘𝒯∗ (1: 𝑘𝒯
∗ ) = arg𝑚𝑎𝑥

𝒷(1:𝑘𝒯
∗ )

exp(−‖𝑢(1: 𝑘𝒯
∗ ) − 𝒷(1: 𝑘𝒯

∗ ) − 𝜇𝑢𝟏‖2
2). (5.43) 
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Because the exponential function is a monotonically increasing function, it will not affect 

the solution of the arg𝑚𝑎𝑥 function. 𝒷𝑘𝒯∗ (1: 𝑘𝒯
∗ ) can be calculated from 

 

 𝒷𝑘𝒯∗ (1: 𝑘𝒯
∗ ) = arg𝑚𝑖𝑛

𝒷(1:𝑘𝒯
∗ )

‖𝑢(1: 𝑘𝒯
∗ ) − 𝒷(1: 𝑘𝒯

∗ ) − 𝜇𝑢𝟏‖2
2. (5.44) 

 

Since ‖𝑢(1: 𝑘𝒯
∗ ) − 𝒷(1: 𝑘𝒯

∗ ) − 𝜇𝑢𝟏‖2
2 ≥ 0, to achieve the minimum value, we have 

 ‖𝑢(1: 𝑘𝒯
∗ ) − 𝒷(1: 𝑘𝒯

∗ ) − 𝜇𝑢𝟏‖2
2 = 0. (5.45) 

 

Therefore, the optimal mean shift is calculated from 

 

 𝒷𝑘𝒯∗ (1: 𝑘𝒯
∗ ) = 𝑢𝑘𝒯∗ (1: 𝑘𝒯

∗ ) − 𝜇𝑢 (5.46) 

 

𝒷𝑘𝒯∗ (1: 𝐾) for each 𝑘𝒯
∗ = 1,… , 𝐾 will be calculated offline. We will use these 𝒷𝑘𝒯∗  in the 

stochastic process during the evaluation. 

5.3.2.2 Randomization of termination time 

The termination time 𝑘𝒯
∗  is fixed in the previous section. However, crash can 

happen at any moment before time step 𝐾. 𝑘𝒯
∗  needs to be randomized to reflect all the 

crash scenarios. 

We first set the boundary of 𝑘𝒯
∗ . When 𝑘𝒯

∗  is small, it may fail to find a feasible 

solution to the optimization problem in Eq. (5.40). This is because no HV motion will lead 

to a crash when the allowed time duration is very short (e.g. 0.1 s). Let 𝑘𝒯𝑚𝑖𝑛
∗  be the 

minimum value of 𝑘𝒯
∗  that has a feasible solution in Eq. (5.40) calculated from the initial 

vehicle speed and maximum allowed deceleration, that is 

 

 

𝑘𝑇𝑚𝑖𝑛
∗ = min 𝑘𝑇

∗  

such that ∃ 𝑢𝑘𝒯∗ (1: 𝑘𝒯
∗ − 1) that makes 

𝑨𝒌𝓣∗  𝑢𝑘𝒯∗ (1: 𝑘𝒯
∗ − 1) ≤ 𝒃𝒌𝓣∗  

(5.47) 

 

𝑘𝒯
∗  is randomized using a discrete uniform distribution 
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 𝑘𝒯
∗~𝑓𝑘𝒯∗ (𝑘𝒯

∗ ) =
1

𝐾 − 𝑘𝒯𝑚𝑖𝑛
∗ + 1

 (5.48) 

 

where 𝑘𝒯
∗ = 𝑘𝒯𝑚𝑖𝑛

∗ , 𝑘𝒯𝑚𝑖𝑛
∗ + 1,… , 𝐾 − 1,𝐾 

It should be noted that 𝑘𝒯
∗  is different from 𝑘𝒯. 𝑘𝒯 is the real termination time in 

the simulation, while 𝑘𝒯
∗  is a computed value that is used to randomize termination time in 

calculating the optimal shift 𝒷𝑘𝒯∗ (1: 𝑘𝒯
∗ − 1). 

5.3.2.3 Conducting the accelerated tests 

The car-following simulation is executed in the following steps: 

i) Sample a 𝑘𝒯
∗  from Eq.(5.48) 

ii) Obtain the corresponding optimal shift vector 𝒷𝑘𝒯∗ (1: 𝐾)  calculated from 

Eq. (5.44) 

iii) Run an accelerated test with the acceleration of the lead HV following the 

distribution. 

 𝑎𝐿(𝑘 + 1)~𝒩(ℎ0 + ℎ1𝑎𝐿(𝑘) + ℎ2𝑣𝐿(𝑘) + 𝒷𝑘𝒯∗ (𝑘), 𝜎𝑢
2) (5.49) 

 

iv) Record crash indicator and the termination time 

Define the crash event ℰ as 

 

 ℰ = {min(𝑅𝐿(𝑘)) < 0|1 ≤ 𝑘 ≤ 𝐾}. (5.50) 

 

The crash indicator function is defined as 

 

 𝐼ℰ(𝑛) = {
1, 𝑐𝑟𝑎𝑠ℎ
0, 𝑛𝑜 𝑐𝑟𝑎𝑠ℎ 

 (5.51) 

 

where 𝑛 is the index of the car-following test. 

The termination time can be calculated from Eq. (5.33), which will be used in 

calculating the likelihood ratio in the next section. 
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5.3.2.4 Calculation of crash rate 

The crash rate is calculated based on the Importance Sampling techniques 

introduced in Section 3.2.2. Based on Eq. (3.15), the crash rate in the real world can be 

estimated from 

 𝛾(𝑛) =
1

𝑛
∑𝐼ℰ(𝑛)𝐿(𝑛) 

𝑛

𝑖=0

 (5.52) 

 

where 𝐿(𝑛) is the likelihood ratio in the 𝑛𝑡ℎ car-following test, defined in Eq. (3.12), which 

is the ratio between 𝑓(∙) the likelihood of in naturalistic driving condition over 𝑓∗(∙) the 

likelihood in an accelerated test. 

 𝐿(𝑛) =
𝑓(𝑎𝐿(1: 𝑘𝒯 − 1))

𝑓∗(𝑎𝐿(1: 𝑘𝒯 − 1))
 (5.53) 

 

Based on Eq. (5.17) 𝑓(𝑎𝐿(1: 𝑘𝒯 − 1)) can be calculated from 

 

 

𝑓(𝑎𝐿(1: 𝑘𝒯 − 1))

= ∏
1

𝜎𝑢√2𝜋
𝑒𝑥𝑝 {−

(𝑎𝐿(𝑘 + 1) − ℎ1𝑎𝐿(𝑘) − ℎ2𝑣𝐿(𝑘) − ℎ0)
2

2𝜎𝑢2
}

𝑘𝒯−1

𝑘=1

. 
(5.54) 

 

𝑓∗(∙)  is calculated considering both the likelihood of the uncertainty of the dynamic 

procedure and the randomness of the termination time: 

 𝑓∗(𝑎𝐿(1: 𝑘𝒯 − 1)) =∑  𝑓(𝑎𝐿(1: 𝑘𝒯 − 1)|𝑘𝒯
∗ )𝑓𝑘𝒯∗ (𝑘𝒯

∗ )
𝐾

𝑘𝒯
∗=𝑘𝒯𝑚𝑖𝑛

∗
 (5.55) 

 

where 𝑓(𝑎𝐿(1: 𝑘𝒯 − 1)|𝑘𝒯
∗ ) is calculated from 

 

𝑓(𝑎𝐿(1: 𝑘𝒯 − 1)|𝑘𝒯
∗ )

= ∏
1

𝜎𝑢√2𝜋
𝑒𝑥𝑝 {−

(𝑎𝐿(𝑘 + 1) − ℎ1𝑎𝐿(𝑘) − ℎ2𝑣𝐿(𝑘) − ℎ0 −𝒷𝑘𝒯∗ (𝑘))
2

2𝜎𝑢2
}

𝑘𝒯−1

𝑘=1

 
(5.56) 
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Keep running the car-following tests until 𝛾(𝑛) converges. The convergence is 

reached when the relative half-width 𝑙𝑟  (defined in Eq. (3.7)) is below  𝛽  with 

100(1 − 𝛼)% confidence level. 𝛽 and 𝛼 are small constant chosen by the tester. 

5.3.2.5 Summary 

The procedure of the accelerated test is summarized in Figure 5.5. 

Before simulations: 

i) Calculate the optimal mean shift vector 𝒷𝑘𝒯∗ (1: 𝐾) for each 𝑘𝒯
∗  from Eq. (5.46) 

ii) 𝑘𝒯𝑚𝑖𝑛
∗  is found from Eq. (5.47). Generate distribution 𝑓𝑘𝒯∗ (∙) in Eq. (5.48) 

using 𝑘𝒯𝑚𝑖𝑛
∗  

 

During simulations: 

iii) Sample a 𝑘𝒯
∗  from Eq.(5.48) 

iv) Run the accelerated tests with AE distribution in Eq. (5.49). After each test 

record whether a crash happens (represented by 𝐼ℰ) and the termination time 

𝑘𝒯. 

v) Calculate the likelihood of each test from Eq. (5.53) 

vi) Calculate the crash rate from Eq. (5.52) 

vii) Calculate the relative half-width 𝑙𝑟 defined in Eq. (3.7) 

viii) If 𝑙𝑟 < 𝛽, output the crash rate. Otherwise, go back to step iii) 
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Figure 5.5 Procedure to calculate crash rate in the car-following scenario  
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5.4 Simulation Analysis 

In this section, numerical examples are presented to demonstrate the performance 

and validity of the proposed approach. First, the uniform distribution is used as a baseline 

AE distribution to evaluate the dynamic interaction between AVs and HVs. The 

acceleration of the HV is amplified, but the evaluation is not accelerated. This result shows 

that the correlation between samples must be considered to effectively accelerate the 

evaluation of AVs, in the dynamic sampling environment, where the transition statistics 

are changing with states, such as in the car-following scenario. Second, the proposed 

approach is implemented to accelerate the evaluation procedure. Three metrics, cash, injury, 

and conflict rates, are calculated. In each case, both accelerated and naturalistic simulations 

were conducted to examine the accuracy and the accelerated rate of the proposed method. 

Finally, the sensitivity of the metric estimation to the accuracy of the HV model is analyzed. 

 

5.4.1 Simulation results with baseline accelerated methods 

In this section, we use a uniform AE distribution in the car-following estimation. 

The HV acceleration is generated via Eq. (5.57). 

 

 
𝑎𝐿(𝑘 + 1)~𝑓𝑢𝑑(𝑎𝐿(𝑘), 𝑣𝐿(𝑘)) 

= 𝒰([1, 𝑎𝐿(𝑘), 𝑣𝐿(𝑘)]𝒉 − 𝜗𝑢𝑑/2, [1, 𝑎𝐿(𝑘), 𝑣𝐿(𝑘)]𝒉 + 𝜗𝑢𝑑/2) 
(5.57) 

 

where 𝒰 represents the uniform distribution and parameter 𝜗𝑢𝑑 is chosen to be 6𝜎𝑢. The 

comparison between the original HV distribution and the uniform AE distribution is shown 

in Figure 5.6. 
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Figure 5.6 Original HV distribution and the uniform AE distribution 

 

The HV model and AV model developed in Section 5.2 is used to demonstrate the 

performance of the method. Each simulation run starts with the same initial states. The 

likelihood ratio of the uniform distribution method can be calculated from 

 

 𝐿(𝑛) =
𝑓(𝑎𝐿(1: 𝑘𝒯 − 1))

𝑓𝑢𝑑
∗ (𝑎𝐿(1: 𝑘𝒯 − 1))

 (5.58) 

 

where 𝑘𝒯 is the termination time defined in (5.33). 𝑓(𝑎𝐿(1: 𝑘𝒯 − 1)) is calculated from 

Eq. (5.54). 𝑓𝑢𝑑
∗ (∙) is calculated from 

 𝑓𝑢𝑑
∗ (𝑎𝐿(1: 𝑘𝒯 − 1)) = ∏ 𝑓𝑢𝑑(𝑎𝐿(𝑘))

𝑘𝒯−1

𝑘=1

= 𝜗𝑢𝑑
−𝑘𝒯 . (5.59) 

 

The model parameters used in the simulation are listed in Table 5.2. One example 

of the accelerated test is shown in Figure 5.7. Although the lead HV acceleration surged 

up and down, most of the oscillations of the acceleration were canceled out in generating 

velocity, and crash did not happen. 
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Table 5.2 Parameters for the car-following simulations 

Var. Unit Value Var. Unit Value 

𝑎𝐿0 m/s2 0 𝐾𝑝 - 62.63 

𝑎0 m/s2 0 𝑀 Kg 1757 

𝑎𝐿
𝑀𝑎𝑥 m/s2 9.81 𝑅𝐿

𝑀𝑎𝑥 m 1e3 

𝑎𝐿
𝑀𝑖𝑛 m/s2 -9.81 𝑅𝐿

𝑀𝑖𝑛 m 0 

𝑎𝑀𝑎𝑥 m/s2 9.81  𝑇𝐶𝐹 s 114 

𝑎𝑀𝑖𝑛 m/s2 -9.81 𝑡𝐻𝑊
𝑑𝑒𝑠𝑖𝑟𝑒  s 2 

𝐴𝑣 m2 2.2 𝑇𝑠 s 0.3 

𝐶𝑑 - 0.32 𝑢𝑚𝑎𝑥 m/s2 1.2 

𝐹𝑥
𝑀𝑎𝑥 N 17236 𝑢𝑚𝑖𝑛 m/s2 -1.2 

𝐹𝑥
𝑀𝑖𝑛 N -17236 𝑣𝑀𝑎𝑥 m/s 50 

𝑔 m/s2 9.81 𝑣𝑀𝑖𝑛 m/s 1 

ℎ0 - 3.395e-2 𝑣𝐿
𝑀𝑎𝑥 m/s 50 

ℎ1 - 0.8516 𝑣𝐿
𝑀𝑖𝑛 m/s 1 

ℎ2 - -1.406e-3 𝑣0 m/s 20 

𝐾 - 119 𝑣𝐿0 m/s 20 

𝐾𝑑 - 882.7 𝜌𝑎𝑖𝑟 kg/m3 1.202 

𝐾𝑖 - 1.111 𝜎𝑢 - 0.3949 

 

The crash rate was calculated from Eq. (5.52). Due to the misconnection between 

each sampling and the oversimplified AE distribution, most of the crashes had very small 

likelihood ratio. The estimated crash rate is shown in Figure 5.8. A million simulation runs 

have been conducted, but because the convergence is very weak, not much can be told 

about the crash rate. The uniform distribution cannot effectively accelerate crash evaluation 

in the car-following scenario. 
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Figure 5.7 An example maneuver generated by the baseline accelerated evaluation 

approach with uniform distribution 

 

 

Figure 5.8 Estimation of the crash rate using uniform distribution as the AE distribution 

5.4.2 Simulation results with proposed accelerated evaluation method 

In this section, we applied the proposed Accelerated Evaluation approach on three 

types of events: the crash, injury, and conflict event to examine the accuracy, robustness, 

and the accelerated rate of the method. 
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5.4.2.1 Estimation of the crash rate 

Both accelerated and naturalistic simulations were conducted. Selected examples 

of the lead HV speed in both cases are shown in Figure 5.9. In the accelerated tests, the 

vehicle tends to accelerate and decelerate at significant levels. In the naturalistic tests, the 

vehicle speed is obtained through direct Monte Carlo sampling and while the vehicle speed 

also fluctuates, it is much more mild. 

 

 

Figure 5.9 Comparison of lead vehicle speed profiles in accelerated and non-accelerated 

(naturalistic) driving conditions 

 

Figure 5.10 shows an example in an accelerated test that leads to a crash. It can be 

seen that the crash is caused by frequent acceleration and deceleration, and in this case a 

“final blow” through a severe braking from a high speed. When the lead HV accelerates, it 

creates a larger 𝑅𝐿. The AV then accelerates to catch up. If HV conduct a hash brake at the 

moment when AV overshoots, it may lead to a crash. This tactic is frequently observed in 

the proposed tests, but not in the current Euro-NCAP test protocols and ISO standards. In 

other words, the proposed accelerated evaluation method automatically generated high risk 

maneuvers, some of which might be considered in the future government certification 

process. 
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Figure 5.10 An example maneuver generated by the accelerated evaluation approach 

leading to a crash 

Both accelerated and naturalistic tests were conducted until the crash rate 

converged with 80 % confidence level and 𝛽 = 0.2. Figure 5.11 shows that the estimation 

of the crash rate calculated by the accelerated tests converges to the naturalistic driving 

estimation, which shows that the Accelerated Evaluation is unbiased. 

 

 

Figure 5.11 Estimation of the crash rate in the car-following scenario 
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Figure 5.12 shows that accelerated tests achieve the confidence level 𝛽  after 

𝑁𝑎𝑐𝑐 = 3.84e3 simulations, while the naturalistic (crude Monte Carlo) method took 

𝑁𝑛𝑎𝑡𝑢𝑟𝑒 = 4.30e8 simulations. 

 

 

Figure 5.12 Convergence of crash rate estimation in the car-following scenario 

 

5.4.2.2 Estimation of the injury rate 

We also estimate the injury rate using the proposed Accelerated Evaluation method. 

The probability of moderate-to-fatal injuries for the AV passengers is defined in Eq. (3.38). 

The estimated injury rate can be calculated from Eq. (3.39). Both accelerated and 

naturalistic tests were conducted until the injury rate converged with 80 % confidence level 

and 𝛽 = 0.2. Figure 3.15 shows that estimated injury rate in the accelerated test converges 

to the result under naturalistic driving conditions. 
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Figure 5.13 Estimation of the injury rate in the car-following scenario 

 

Figure 5.12 shows that accelerated tests achieve the confidence level 𝛽  after 

𝑁𝑎𝑐𝑐 = 3.10e3 simulations, while the naturalistic (crude Monte Carlo) method took 

𝑁𝑛𝑎𝑡𝑢𝑟𝑒 = 4.20e8 simulations. 

 

 

Figure 5.14 Convergence of injury rate estimation in the car-following scenario 

 

5.4.2.3 Estimation of the conflict rate 

Finally, we examine the conflict event, which is defined in Eq. (4.38). The conflict 

rate can be calculated from Eq. (3.39). Figure 5.15 shows that estimated conflict rate in the 

accelerated test converges to the result under naturalistic driving conditions. 
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Figure 5.15 Estimation of the conflict rate in the car-following scenario 

 

Figure 5.16 shows that accelerated tests achieve the confidence level 𝛽  after 

𝑁𝑎𝑐𝑐 = 3.26e3 simulations, while the naturalistic (crude Monte Carlo) method took 

𝑁𝑛𝑎𝑡𝑢𝑟𝑒 = 1.07e6 simulations. 

 

 

Figure 5.16 Convergence of conflict rate estimation in the car-following scenario 

 

5.4.2.4 Summary 

Table 5.3 summarizes the performance of the Accelerated Evaluation in estimating 

the three metrics of the AV. The accelerated rate is defined as 𝑁𝑛𝑎𝑡𝑢𝑟𝑒/𝑁𝑎𝑐𝑐. It is shown 

that in the crash and injury cases, the proposed method successfully accelerates the 

evaluation by five orders of magnitude. In the conflict case, the AE method achieves over 



 

109 

 

a hundred times acceleration. In general, the IS techniques provide larger accelerated rate 

when target events are rarer. Since crashes and injuries occur with much lower probabilities 

than conflicts, we get higher accelerated rates when estimating them. 

 

Table 5.3 Summary of performance of the Accelerated Evaluation in estimating the crash 

rate, injury rate, and the conflict rate in the car-following scenario 

 𝑁𝑛𝑎𝑡𝑢𝑟𝑒 𝑁𝑎𝑐𝑐 𝑁𝑛𝑎𝑡𝑢𝑟𝑒/𝑁𝑎𝑐𝑐 

Crash 4.30e8 3.84e3 1.12e5 

Injury 4.20e8 3.10e3 1.35e5 

Conflict 1.07e6 3.26e3 3.28e2 

 

5.4.3 Sensitivity analysis of the human-controlled vehicle model 

The Accelerated Evaluation is a HV model-based approach. The accuracy of the 

HV models can significantly affect the estimation of the benefits of AVs. In this section, 

we applied the Accelerated Evaluation to efficiently analyze the sensitivity of the 

estimation results to the HV models. 

The lead HV models have two sets of parameters. [ℎ0, ℎ1, ℎ2] represents the general 

principle of the driving behaviors of the drivers. 𝜎𝑢 represents the stochastic feature of the 

driving. A smaller 𝜎𝑢 means the driver accelerate/decelerate with a small increment thus 

drives more cautiously, while a larger 𝜎𝑢 means the driver drives more aggressively. In the 

SMPD database, we used driving data of 100 drivers in Ann Arbor whose cars were 

equipped Mobileye@. It may reflect the local driver behaviors but not necessary for drivers 

in other places in the U.S. By using the accelerated techniques proposed in this chapter, we 

studied the sensitivity of the estimated crash rate to the parameter 𝜎𝑢. 

Figure 5.17 shows the estimation of crash rate with different 𝜎𝑢 varying between 

±10. It can be seen that the Accelerated Evaluation approach can quickly converge even 

when the HV parameter changes. In Figure 5.18, the crash rate is plotted in a logarithmic 
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scale. We can see that the crash rate varies exponentially with 𝜎𝑢, which demonstrates that 

accurate HV behavior is crucial to understand the safety impact of AV. 

 

 

Figure 5.17 Calculation of crash rate using the Accelerated Evaluation approach with the 

varying HV parameter 𝜎u 

 

 

Figure 5.18 Crash rate varying with the HV parameter 𝜎u 

 

5.5 Summary 

In this section, we developed the accelerated evaluation approaches for the car-

following scenario. The modified statistics of the lead HV were calculated based on 

analysis using stochastic optimization methods to maximize the likelihood for a crash to 
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happen. Simulations of the accelerated tests and the non-accelerated naturalistic driving 

were conducted to verified the credibility of the Accelerated Evaluation. Results show that 

the proposed Accelerated Evaluation approaches give unbiased estimation of the conflict, 

crash and injury rate of the AV, and can reduce simulation/testing time by a factor of 300 

to 100,000.
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CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

It is critical to evaluate AVs thoroughly before their release and deployment to the 

general public. Because most trips are not safety-critical in the naturalistic driving, testing 

AVs on public roads is extremely time-consuming, inefficient, and expensive. 

In this dissertation, we proposed an “Accelerated Evaluation” approach as an 

alternative approach to evaluating AVs. The core idea is to modify the statistics of the 

naturalistic driving so that the safety-critical events are emphasized. Four approaches were 

proposed to implement this concept. In CHAPTER 2, we accelerated the evaluation by 

removing the relatively safe events with a high likelihood of occurring. As a result, the 

critical events happen more frequent in the accelerated test. A three-car car-following 

scenario was used to demonstrate the idea, in which the motion of the vehicle in front of 

the AV was modeled as a stochastic Markov Chain and the vehicle trailing the AV was 

simulated as an errorable driver model. Rear-end crashes were studied for two AVs 

simulating current production automated vehicles. 

In CHAPTER 3, the Importance Sampling techniques were used to develop an 

Accelerated Evaluation method. This method provides a rigorous mathematical basis for 

calculating the real-world benefits from the accelerated test results. First, the fundamental 

limitation of the crude Monte Carlo method was analyzed. Then a statistical framework for 

the Accelerated Evaluation was established based on the Importance Sampling techniques 

and compared to the crude Monte Carlo method. Frontal collision due to unsafe cut-ins was 

used as the target crash scenario to demonstrate the proposed approach. 

In CHAPTER 4, the “Adaptive Accelerated Evaluation” approach was developed 

to find the optimal modified statistics of HV in a systematic way. The optimal AE statistics 

was searched iteratively based on the Cross Entropy method. A comparison of the 
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accelerated performance between the non-optimized AE distribution and the Adaptive 

Accelerated Evaluation was conducted to demonstrate effectiveness of the proposed 

method. 

In CHAPTER 5, we developed a new method to capture the dynamic interactions 

between the lead HV and the AV in the car-following scenario. The optimal way to modify 

the statistics was calculated by maximizing the likelihood of occurring of the events of 

interests. Three different types of events, crash, injury, and conflict were used to examine 

the performance of the method. 

The Accelerated Evaluation approaches can be used to design AV evaluation 

procedure for field tests, Hardware-in-the-Loop (HIL), driving simulator, and computer 

simulation as shown in Figure 6.1. Since the proposed Accelerated Evaluation methods can 

accelerate the evaluation of the rare event including conflict, crash and injury events by 

300 to 100,000 times, there is great potential to reduce the development and validation time 

for AVs significantly. 

 

 

Figure 6.1 Procedure of the AV evaluation using the Accelerated Evaluation 

 

6.2 Future Research Directions 

The Accelerated Evaluation methods proposed in this research provides a new path 

of AV evaluation. While we successfully applied them in lane change and car-following 

scenarios, more can be done to improve the accuracy of the estimation and extend the 
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methods to other scenarios. A few research directions that can be exploited in the future 

research are discussed as follows. 

6.2.1 Improvement of the HV model accuracy 

The Accelerated Evaluation is an HV model-based approach. The HV models need 

to be accurate to estimate the performance of the AVs and their safety benefits. The 

naturalistic driving data used in this research recorded in Ann Arbor, MI, reflect the local 

driving behaviors but not necessarily the behaviors in other areas. Moreover, even though 

the current N-FOT database contains millions of miles of driving, it is still a challenge to 

accurately model the human behaviors under emergent conditions. More data and new 

analysis tools are of great benefits to improve the HV model accuracy. 

 

6.2.2 Accelerated Evaluation of other AV scenarios 

New Accelerated Evaluation approaches need to be developed for more scenarios 

to give a thorough evaluation of AVs. The full failure modes of AVs have not been fully 

understood by the community to design a complete list of test scenarios, but possible 

factors include: 

i) Challenge in sensing/detection (e.g., fog, snow, low light) 

ii) Challenge in perception (e.g., hand gesture, eye contact, blinking lights) 

iii) Aggression of surrounding vehicles/pedestrians/pedal-cyclists (e.g., running 

red light, cut-in, jaywalk) 

iv) Challenge in making decisions (e.g., low confidence, multiple threats) 

v) Challenge due to lower (than normal) control authorities (e.g., slippery roads, 

heavy vehicle load) 

In this dissertation, we focus on the third category by taking the interaction with 

other HVs as the major disturbance to the control of the AV. Two fundamental driving 

scenarios - car-following and lane change, were studied. However, there are other scenarios 

that needs to fully consider vehicle to vehicle interactions. Based on the analysis of the 

crash data, research [75] shows that the top five scenarios to be considered are: car-
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following, lane change, left turn, crossing, and opposite direction (illustrated in Figure 1.7). 

AV should first excel human drivers in these scenarios in order to become a safer 

alternative to human drivers. We studied the Accelerated Evaluation approaches for the 

first two scenarios, but more efforts are needed to cover the other three scenarios, and to 

gain deeper understanding of the first two. 

There are scenarios that may not be covered well by HV crash data. As shown in 

Figure 6.2, crash scenarios are divided into three categories: scenarios that are challenging 

only for HV (e.g. drowsy driving), scenarios that are challenging only for AVs (e.g. 

software bugs), and scenarios that are challenging for both AVs and HVs (e.g. fail to 

response to an aggressive cut-in). Due to the different causations, the existing database 

should not be used as the sole source to design the evaluation protocol for AVs. Four 

possible approaches can be used in the future to find test scenarios for AVs: i) 

Brainstorming, ii) Crowdsourcing, iii) Analysis of existing crash databases, iv) Analysis of 

naturalistic driving databases. 

Besides the V-V crash types, there are crashes involved the host vehicle only (single 

vehicle crash, denoted as V) or with pedestrians (V-P). These scenarios should also be 

studied and included in the AV evaluation process. 

 

 

Figure 6.2 Approaches to identify AV evaluation scenarios 
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6.2.3 Accelerated Evaluation of other systems 

In this research, we focus on AV evaluation. However, this approach may also be 

adopted in other systems such as the navigation systems of ships, auto pilot of airplane, 

drones, or other Cyber-Physical-Systems [151]. A common feature of these systems is that 

the dynamic system is controlled by intelligent algorithms and operate in an environment 

with disturbances. The proposed approaches could offer a new direction in evaluating these 

systems and obtaining better designs.
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APPENDICES



 

118 

 

APPENDIX A  

SAE SIX LEVELS OF AUTOMATED VEHICLES [14] 
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APPENDIX B  

CRASH DATABASES IN THE U.S. AND E.U. 

(Databases with larger than 5000 crashes) 

  Full name Country Crashes 
Data 

years 
Owner 

NASS-

CDS 

[78] 

National Automotive Sampling 

system - Crashworthiness Data 

System 

US 
~3300-5000 

per year 

1988-

present 
NHTSA 

NASS-

GES 

[77] 

National Automotive Sampling 

System - General Estimated System 
US 

~50,000 per 

year 

1988-

present 
NHTSA 

FARS 

[152] 
Fatal Accidents Recording System US 

~33,000 per 

year 

1975-

present 
NHTSA 

NMVCCS 

[153] 

National Motor Vehicle Crash 

Causation Survey  
US 5,470 

2005-

2007 
NHTSA 

CARE 

[154] 
Community Road Accident Database 

EU & CH, 

IS, NO 
1,000,000+ 

1991-

present 

European 

Commission 

GIDAS 

[155] 
German In- Depth Accident Study DE 22000 

1999-

present 

BASt and several 

manufacturers 

ADAC 

[156] 
ADAC Accident Investigation Study DE 11456 

2015-

present 
ADAC 

CCIS 

[157] 
Co-operative Crash Injury Study UK 15000 

1983-

2010 

Department for 

Transport 

VOIESUR 

[158] 

Vehicule Occupant Infrastructure 

Etudes de la Sécurité des Usagers de 

la Route 

FR 9000 2011 
CEESAR, CETE NC, 

IFSTTAR, LAB 

  



 

120 

 

BIBLIOGRAPHY 

 



 

121 

 

BIBLIOGRAPHY 

[1] C. Lewis, “The Economic Benefits of Driverless Cars,” Morgan Stanley, 2014. . 

[2] J. Anderson, K. Nidhi, K. Stanley, P. Sorensen, C. Samaras, and O. A. Oluwatola, 

“Autonomous Vehicle Technology: A Guide for Policymakers,” 2014. 

[3] CIS, “Automated Driving: Legislative and Regulatory Action,” Stanford 

University, 2014. [Online]. Available: 

http://cyberlaw.stanford.edu/wiki/index.php/Automated_Driving:_Legislative_and

_Regulatory_Action. [Accessed: 01-Dec-2015]. 

[4] J. Ironmonger, “UK to Allow Driverless Cars on Public Roads in January,” BBC 

News. [Online]. Available: http://www.bbc.com/news/technology-28551069. 

[Accessed: 22-Aug-2014]. 

[5] The Department for Transport of the United Kingdom, “The Pathway to Driverless 

Cars Summary Report and Action Plan.” [Online]. Available: 

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/401

562/pathway-driverless-cars-summary.pdf. [Accessed: 21-Dec-2015]. 

[6] E.U.CORDIS Research Program, “Driverless Cars Take to the Road.” [Online]. 

Available: http://cordis.europa.eu/result/rcn/90263_en.html. [Accessed: 23-Aug-

2014]. 

[7] Wikipedia, “Autonomous Car.” [Online]. Available: 

http://en.wikipedia.org/wiki/Autonomous_car. [Accessed: 22-Aug-2014]. 

[8] Volvo, “Autonomous Driving according to Volvo Car Group: Benefits for Society 

and Consumers Alike.” [Online]. Available: 

http://www.volvocars.com/us/top/about/news-

awards/pages/default.aspx?itemid=68. [Accessed: 23-Aug-2014]. 

[9] P. Natarajan and N. Ford, “Future of Autonomous Driving,” Frost and Sullivan. 

[Online]. Available: http://www.slideshare.net/FrostandSullivan/future-of-

autonomous-driving-28642051. [Accessed: 03-Dec-2015]. 

[10] “Strategic Analysis of the European and North American Market for Automated 

Driving,” M92C-18, 2014. 

[11] “Your Autopilot Has Arrived | Tesla Motors.” [Online]. Available: 

https://www.teslamotors.com/blog/your-autopilot-has-arrived. [Accessed: 14-Dec-

2015]. 

[12] “Model S Software Version 7.0 | Tesla Motors.” [Online]. Available: 

https://www.teslamotors.com/presskit/autopilot. [Accessed: 14-Dec-2015]. 

[13] “Autonomous | Self-Driving Vehicles Legislation,” National Conference of State 

Legislatures, 2015. [Online]. Available: 



 

122 

 

http://www.ncsl.org/research/transportation/autonomous-vehicles-legislation.aspx. 

[Accessed: 06-Jan-2016]. 

[14] SAE J3016, “Taxonomy and Definitions for Terms Related to On-Road Motor 

Vehicle Automated Driving Systems,” 2014. 

[15] “LEVELS OF DRIVING AUTOMATION ARE DEFINED IN NEW SAE 

INTERNATIONAL STANDARD J3016,” SAE International. [Online]. Available: 

http://www.sae.org/misc/pdfs/automated_driving.pdf. [Accessed: 28-Jan-2016]. 

[16] Information Is Beautiful, “Million Lines of Code,” 2014. [Online]. Available: 

http://www.informationisbeautiful.net/visualizations/million-lines-of-code/. 

[Accessed: 05-Sep-2014]. 

[17] NHTSA, “Preliminary Statement of Policy Concerning Automated Vehicles,” 

2013. 

[18] “Recalls & Defects,” National Highway Traffic Safety Administration (NHTSA). 

[Online]. Available: http://www.nhtsa.gov/Vehicle+Safety/Recalls+&+Defects. 

[Accessed: 05-Sep-2014]. 

[19] “2009–11 Toyota Vehicle Recalls,” Wikipedia. [Online]. Available: 

http://en.wikipedia.org/wiki/2009–11_Toyota_vehicle_recalls. 

[20] National Highway Traffic Safety Administration (NHTSA), “Department of 

Transportation Releases Policy on Automated Vehicle Development,” 2013. 

[Online]. Available: 

http://www.nhtsa.gov/About+NHTSA/Press+Releases/U.S.+Department+of+Tran

sportation+Releases+Policy+on+Automated+Vehicle+Development. [Accessed: 

21-Aug-2014]. 

[21] FESTA-Consortium, “FESTA Handbook Version 2 Deliverable T6.4 of the Field 

opErational teSt supporT Action,” Brussels: European Commission, 2008. 

[22] M. Aust, “Evaluation Process for Active Safety Functions: Addressing Key 

Challenges in Functional, Formative Evaluation of Advanced Driver Assistance 

Systems,” Chalmers University of Technology, 2012. 

[23] V. L. Neale, T. A. Dingus, S. G. Klauer, and M. Goodman, “An Overview of the 

100-Car Naturalistic Study and Findings,” Traffic Safety, pp. 1–10, 2005. 

[24] T. A. Dingus, S. G. Klauer, V. L. Neale, A. Petersen, S. E. Lee, J. Sudweeks, M. 

A. Perez, J. Hankey, D. Ramsey, S. Gupta, C. Bucher, Z. R. Doerzaph, J. 

Jermeland, and R. . Knipling, “The 100-Car Naturalistic Driving Study Phase II – 

Results of the 100-Car Field Experiment,” NHTSA, DOT HS 810 593, 2006. 

[25] S. Klauer, T. Dingus, and V. Neale, “The Impact of Driver Inattention on near-

Crash/crash Risk: An Analysis Using the 100-Car Naturalistic Driving Study 

Data,” no. April, 2006. 

[26] G. M. Fitch and J. M. Hankey, “Investigating Improper Lane Changes: Driver 

Performance Contributing to Lane Change Near-Crashes,” Proceedings of the 

Human Factors and Ergonomics Society Annual Meeting, vol. 56, no. 1, pp. 2231–

2235, Oct. 2012. 



 

123 

 

[27] G. M. Fitch, S. E. Lee, S. Klauer, J. Hankey, J. Sudweeks, and T. Dingus, 

“Analysis of Lane-Change Crashes and near-Crashes,” US Department of 

Transportation, National Highway Traffic Safety Administration, 2009. 

[28] R. Ervin, J. Sayer, D. LeBlanc, S. Bogard, M. Mefford, M. Hagan, Z. Bareket, and 

C. Winkler, “Automotive Collision Avoidance System Field Operational Test 

Report: Methodology and Results.” 

[29] D. LeBlanc, J. Sayer, C. Winkler, R. Ervin, S. Bogard, M. Devonshire, J. Mefford, 

M. Hagan, Z. Bareket, R. Goodsell, and T. Gordon, “Road Departure Crash 

Warning System Field Operational Test : Methodology and Results,” UMTRI-

2006-9-2, 2006. 

[30] T. Victor, J. Bärgman, M. Hjälmdahl, and K. Kircher, “Sweden-Michigan 

Naturalistic Field Operational Test ( SeMiFOT ) Phase 1 : Final Report,” 2010. 

[31] J. Sayer, D. LeBlanc, S. Bogard, D. Funkhouser, B. D., B. S., and A. M. L., 

Blankespoor, “Integrated Vehicle-Based Safety Systems Field Operational Test 

Final Program Report,” NHTSA, DOT HS 811 482, 2011. 

[32] D. J. Leblanc, J. R. Sayer, S. Bao, S. Bogard, M. L. Buonarosa, A. Blankespoor, 

and D. Funkhouser, “Driver Acceptance and Behavioral Changes with an 

Integrated Warning System: Key Findings from the IVBSS FOT,” 22nd ESV, pp. 

1–10, 2011. 

[33] UMTRI, “Safety Pilot Model Deployment.” [Online]. Available: 

http://safetypilot.umtri.umich.edu/. [Accessed: 22-Aug-2014]. 

[34] D. LeBlanc, “Data from the Safety Pilot Model Deployment.” [Online]. Available: 

http://assets.conferencespot.org/fileserver/file/46778/filename/39ftvo.pdf. 

[Accessed: 22-Aug-2014]. 

[35] RITA, “Connected Vehicle Project,” U.S. Department of Transportation. [Online]. 

Available: http://www.its.dot.gov/safety_pilot/. [Accessed: 22-Aug-2014]. 

[36] D. LeBlanc, S. E. Bogard, and R. Goodsel, “Connected Commercial Vehicles — 

Integrated Truck Project Model Deployment Operational Analysis Report,” 2014. 

[37] “Google Self-Driving Car Project.” [Online]. Available: 

https://www.google.com/selfdrivingcar/. 

[38] “Velodyne LiDAR.” [Online]. Available: http://velodynelidar.com/. [Accessed: 

14-Dec-2015]. 

[39] “Google Gets License to Operate Driverless Cars in Nevada,” CNN, 2012. 

[Online]. Available: http://www.cnn.com/2012/05/07/tech/nevada-driveless-car/. 

[Accessed: 05-Jan-2016]. 

[40] Wikipedia, “Google Driverless Car.” [Online]. Available: 

http://en.wikipedia.org/wiki/Google_driverless_car. 

[41] “Google Self-Driving Car Project Monthly Report - November 2015.” [Online]. 

Available: 

https://static.googleusercontent.com/media/www.google.com/en//selfdrivingcar/fil

es/reports/report-1115.pdf. [Accessed: 14-Dec-2015]. 



 

124 

 

[42] NHTSA, “Traffic Safety Facts 2013.” 

[43] M. Akamatsu, P. Green, and K. Bengler, “Automotive Technology and Human 

Factors Research: Past, Present, and Future,” International Journal of Vehicular 

Technology, vol. 2013, pp. 1–27, 2013. 

[44] E. D. Dickmanns, “The Development of Machine Vision for Road Vehicles in the 

Last Decade,” in Intelligent Vehicle Symposium, 2002. IEEE, 2002, vol. 1, pp. 

268–281. 

[45] M. Campbell, M. Egerstedt, J. P. How, and R. M. Murray, “Autonomous Driving 

in Urban Environments: Approaches, Lessons and Challenges.,” Philosophical 

ransactions. Series A, Mathematical, physical, and engineering sciences, vol. 368, 

no. 1928, pp. 4649–72, Oct. 2010. 

[46] J. Scholliers, K. Heinig, J. Blosseville, M. Netto, V. Anttila, and S. Leanderson, 

“D16.3 Proposal of Procedures for Assessment of Preventive and Active Safety 

Functions,” 2007. 

[47] K. Deering, Richard, “Crash Avoidance Metrics Partnership Annual Report, April 

2001 - March 2002,” DOT HS 809 531, 2002. 

[48] M. Shulman and R. K. Deering, “Second Annual Report of the Crash Avoidance 

Metrics Partnership,” DOT HS 809 663, 2003. 

[49] M. Shulman and R. K. Deering, “Third Annual Report of the Crash Avoidance 

Metrics Partnership,” DOT HS 809 837, 2005. 

[50] R. Kiefer, D. LeBlanc, M. Palmer, and J. Salinger, “Development and Validation 

of Functional Definitions and Evaluation Procedures for Collision 

Warning/avoidance Systems,” DOT HS 808 964, 1999. 

[51] R. J. Kiefer, M. T. Cassar, C. A. Flannagan, D. J. LeBlanc, M. D. Palmer, R. K. 

Deering, and M. A. Shulman, “Forward Collision Warning Requirements Project 

Final Report - Task 1,” DOT HS 809 574, 2003. 

[52] R. J. Kiefer, M. T. Cassar, C. A. Flannagan, C. J. Jerome, and M. D. Palmer, 

“Forward Collision Warning Requirements Project Tasks 2 and 3a Final Report,” 

DOT HS 809 902, 2005. 

[53] “Cooperative Intersection Collision Avoidance Systems (CICAS),” U.S. 

Department of Transportation Research and Innovative Technology 

Administration. [Online]. Available: http://www.its.dot.gov/cicas/. [Accessed: 04-

Sep-2014]. 

[54] M. Maile, V. Neale, F. Ahmed-Zaid, C. Basnyake, L. Caminiti, and Z. Doerzaph, 

“Cooperative Intersection Collision Avoidance System Limited to Stop Sign and 

Traffic Signal Violations (CICAS-V) – Concept of Operations.,” DTFH61-01-X-

00014, 2007. 

[55] S. E. Shladover, “Effects of Traffic Density on Communication Requirements for 

Cooperative Intersection Collision Avoidance Systems (CICAS),” California 

Partners for Advanced Transit and Highways (PATH), Mar. 2005. 

[56] David J. LeBlanc, “Development of Performance Evaluation Procedures for 



 

125 

 

Active Safety Systems,” University of Michigan Transportation Research Institute, 

2013. [Online]. Available: http://www.umtri.umich.edu/our-

results/projects/development-performance-evaluation-procedures-active-safety-

systems. [Accessed: 02-Sep-2014]. 

[57] European Commission, “Human Machine Interaction and the Safety of Traffic in 

Europe.” [Online]. Available: http://www.transport-

research.info/web/projects/project_details.cfm?id=13634. [Accessed: 04-Sep-

2014]. 

[58] O. Carsten, N. Merat, W. H. Janssen, E. Johansson, M. Fowkes, and K. A. 

Brookhuis, “Human Machine Interaction and the Safety of Traffic in Europe Final 

Report,” 2005. 

[59] H. Kussmann, H. Modler, J. Engstrom, A. Agnvall, P. Piamonte, G. Markkula’s, 

A. Amditis, A. Bolovinou, L. Andreone, E. Deregibus, and P. Kompfner, 

“Requirements for AIDE HMI and Safety Functions,” D3.2.1, 2004. 

[60] M. Rimini-Döring, A. Keinath, E. Nodari, F. Palma, A. Toffetti, N. Floudas, E. 

Bekiaris, V. Portouli, and M. Panou, “Considerations on Test Scenarios,” 2005. 

[61] V. Karabatsou, M. Pappas, P. van Elslande, K. Fouquet, and M. Stanzel, “A-Priori 

Evaluation of Safety Functions Effectiveness - Methodologies Table of Contents,” 

D4.1.3, 2007. 

[62] APROSYS, “Research Database: APROSYS - Advanced Protection Systems 

(CIC).” Department for Transport, Great Minster House, 33 Horseferry Road, 

London SW1P 4DR, 05-May-2011. 

[63] T. Wohllebe, J. Vetter, C. Mayer, M. McCarthy, and R. de Lange, “Integrated 

Project on Advanced Protection Systems,” AP-SP13-0035 Project, 2004. 

[64] “APROSYS - Advanced Protection Systems.” [Online]. Available: 

http://www.transport-research.info/web/projects/project_details.cfm?id=35419. 

[Accessed: 03-Sep-2014]. 

[65] D. Gavrila, M. P., and M. M. Meinecke, “Deliverable 1-A: Vulnerable Road User 

Scenario Selection,” IST-2001-34040, 2003. 

[66] “PReVENT | ITS Europe.” [Online]. Available: http://www.ertico.com/prevent. 

[Accessed: 04-Sep-2014]. 

[67] ERSO, “National Databases | European Road Safety Observatory.” [Online]. 

Available: 

http://ec.europa.eu/transport/wcm/road_safety/erso/data/Content/national_database

s.htm. [Accessed: 04-Sep-2014]. 

[68] T. Bakri, R. Blanco, F. Fahrenkrog, S. Koskinen, A. Larsson, K. Malone, M. Saéz, 

D. Sánchez, A. Várhelyi, D. Willemsen, and A. Zlocki, “Deliverable 7 . 1 | 

Requirements for the Evaluation Framework,” 2011. 

[69] J.-A. Bühne, A. Lüdeke, S. Schönebeck, J. Dobberstein, H. Fagerlind, A. Bálint, 

and M. McCarthy, “Assessment of Integrated Vehicle Safety Systems for 

Improved Vehicle,” ASSESS D2.2 (2/2) Socio-economic, 2012. 



 

126 

 

[70] J. Lenard and R. Danton, “Accident Data Study in Support of Development of 

Autonomous Emergency Braking ( AEB ) Test Procedures Insurance Institute of 

Highway Safety,” LUEL 5989/6175, 2010. 

[71] Euro NCAP, “Autonomous Emergency Braking.” [Online]. Available: 

http://www.euroncap.com/rewards/technologies/brake.aspx. [Accessed: 04-Sep-

2014]. 

[72] C. J. Wiacek and W. G. Najm, “Driver/Vehicle Characteristics in Rear-End 

Precrash Scenarios Based on the General Estimates System (GES),” SAE 

Technical Paper, Mar. 1999. 

[73] W. G. Najm, J. D. Smith, and M. Yanagisawa, “Pre-Crash Scenario Typology for 

Crash Avoidance Research,” DOT HS 810 767, 2007. 

[74] W. G. Najm and J. D. Smith, “Development of Crash Imminent Test Scenarios for 

Integrated Vehicle-Based Safety Systems,” DOT HS 810 757, 2007. 

[75] W. G. Najm, S. Toma, and J. Brewer, “Depiction of Priority Light-Vehicle Pre-

Crash Scenarios for Safety Applications Based on Vehicle-to-Vehicle 

Communications,” DOT HS 811 732, 2013. 

[76] W. G. Najm, R. Ranganathan, G. Srinivasan, J. D. Smith, S. Toma, E. Swanson, 

and A. Burgett, “Description of Light-Vehicle Pre-Crash Scenarios for Safety 

Applications Based On Vehicle-to-Vehicle Communications,” DOT HS 811 731, 

2013. 

[77] “NASS General Estimates System.” [Online]. Available: 

http://www.nhtsa.gov/Data/National+Automotive+Sampling+System+(NASS)/NA

SS+General+Estimates+System. [Accessed: 04-Sep-2014]. 

[78] “Crashworthiness Data System,” National Highway Traffic Safety Administration 

(NHTSA). [Online]. Available: 

http://www.nhtsa.gov/Data/National+Automotive+Sampling+System+(NASS)/NA

SS+Crashworthiness+Data+System. [Accessed: 22-Dec-2015]. 

[79] “NCSA Publications & Data Requests.” [Online]. Available: http://www-

nrd.nhtsa.dot.gov/Cats/listpublications.aspx?Id=227&ShowBy=Category. 

[Accessed: 04-Sep-2014]. 

[80] “Event Data Recorder (EDR) | National Highway Traffic Safety Administration 

(NHTSA).” [Online]. Available: http://www.nhtsa.gov/EDR. [Accessed: 04-Sep-

2014]. 

[81] C. A. . Flannagan, P. E. Green, K. D. Klinich, M. A. Manary, A. Bálant, U. 

Sanders, B. Sui, P. Sandqvist, and C. Selpi, Howard, “Mutual Recognition 

Methodology Development,” UMTRI-2014-32, 2014. 

[82] H. Peng and D. Leblanc, “Evaluation of the Performance and Safety of Automated 

Vehicles,” White paper for NSF Transportation CPS Workshop, 2012. 

[83] W. Ma, “Worst-Case Evaluation Methods for Vehicles and Vehicle Control 

Systems,” 1998. 

[84] W.-H. Ma and H. Peng, “A Worst-Case Evaluation Method for Dynamic 



 

127 

 

Systems,” Journal of Dynamic Systems, Measurement, and Control, vol. 121, no. 

2, p. 191, 1999. 

[85] A. Ungoren and H. Peng, “An Adaptive Lateral Preview Driver Model,” Vehicle 

System Dynamics, vol. 43, no. 4, pp. 245–259, Apr. 2005. 

[86] Y. Kou, “Development and Evaluation of Integrated Chassis Control Systems,” 

The University of Michigan, 2010. 

[87] S. Jayasuriya, “On the Determination of the Worst Allowable Persistent Bounded 

Disturbance for a System With Constraints,” Journal of Dynamic Systems, 

Measurement, and Control, vol. 117, no. 2, p. 126, Jun. 1995. 

[88] I. Fialho and T. Georgiou, “Worst Case Analysis of Nonlinear Systems,” 

Automatic Control, IEEE Transactions on Automatic Control, vol. 44, no. 6, pp. 

11180–1196, 1999. 

[89] Y. Fujii and R. Shiobara, “The Analysis of Traffic Accidents,” Journal of 

Navigation, vol. 24, no. 04, p. 534, Jan. 2010. 

[90] F. Goerlandt and P. Kujala, “Traffic Simulation Based Ship Collision Probability 

Modeling,” Reliability Engineering & System Safety, vol. 96, no. 1, pp. 91–107, 

Jan. 2011. 

[91] P. Angelov, D. Filev, and N. Kasabov, Evolving Intelligent Systems: Methodology 

and Applications. Wiley, 2010. 

[92] H.-H. Yang and H. Peng, “Development and Evaluation of Collision 

Warning/collision Avoidance Algorithms Using an Errable Driver Model,” Vehicle 

System Dynamics, vol. 48, no. sup1, pp. 525–535, Dec. 2010. 

[93] J. Woodrooffe, D. Blower, S. Bao, S. Bogard, C. Flannagan, P. E. Green, and D. 

LeBlanc, “Performance Characterization and Safety Effectiveness Estimates of 

Forward Collision Avoidance and Mitigation Systems for Medium/Heavy 

Commercial Vehicles,” UMTRI-2011-36, 2014. 

[94] E. Ackerman, “CMU’s Autonomous Car Doesn't Look like a Robot,” IEEE 

Spectrum, 2013. [Online]. Available: 

http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/cmu-

autonomous-car-doesnt-looks-like-a-

robot?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+Ie

eeSpectrum+(IEEE+Spectrum). [Accessed: 09-Sep-2014]. 

[95] Euro NCAP, “Euro NCAP Test Protocol – AEB Systems,” 2013. 

[96] K. Lee, “Longitudinal Driver Model and Collision Warning and Avoidance 

Algorithms Based on Human Driving Databases,” University of Michigan., 2004. 

[97] H. Yang, “Driver Models to Emulate Human Anomalous Behaviors Leading to 

Vehicle Lateral and Longitudinal Accidents,” Ph.D Dissertaion, University of 

Michigan, Ann Arbor, 2010. 

[98] J. Sayer, D. LeBlanc, S. Bogard, D. Funkhouser, J. Sayer, D. LeBlanc, S. Bogard, 

D. Funkhouser, B. D., B. S., and A. M. L., Blankespoor, “Integrated Vehicle-

Based Safety Systems Field Operational Test Final Program Report,” no. October, 



 

128 

 

2011. 

[99] D. Reynolds, “Gaussian Mixture Models,” in Encyclopedia of Biometric 

Recognition, Heidelberg: Springer, 2009, pp. 659–663. 

[100] A. Dempster, N. Laird, and D. Rubin, “Maximum Likelihood from Incomplete 

Data via the EM Algorithm,” Journal of the royal statistical society.  …, 1977. 

[101] L. A. Pipes, “An Operational Analysis of Traffic Dynamics,” Applied Physics, vol. 

24, pp. 271–281, 1953. 

[102] D. C. Gazis, R. Herman, and R. W. Rothery, “Nonlinear Follow-The-Leader 

Models of Traffic Flow,” Operations Research, vol. 9, no. 4, pp. 545–567, 1961. 

[103] J. Tyler Jr., “The Characteristic of Model-Following Systems as Synthesized by 

Optimal Control,” IEEE Transactions on Automatic Control, vol. 9, no. 4, pp. 

485–498, 1964. 

[104] H. Yang and H. Peng, “Development of an Errorable Car-Following Driver 

Model,” Vehicle System Dynamics, vol. 48, no. 6, pp. 751–773, Jun. 2010. 

[105] M. Brackstone and M. McDonald, “Car-Following: A Histori- Cal Review,” 

Transportation Research Part F: Traffic Psychology and Behaviour, vol. 2, pp. 

181–196, 1999. 

[106] H. Ozaki, “Reaction and Anticipation in the Car Following Behaviour,” in 13th 

International Symposium on Traffic and Transportation Theory, 1993, pp. 349–

366. 

[107] G. Markkula, O. Benderius, K. Wolff, and M. Wahde, “A Review of Near-

Collision Driver Behavior Models,” Human Factors: The Journal of the Human 

Factors and Ergonomics Society, vol. 54, no. 6, pp. 1117–1143, Jun. 2012. 

[108] P. G. Gipps, “A Behavioural Car-Following Model for Computer Simulation,” vol. 

I, no. 2, 1981. 

[109] J. Treat, N. Tumbas, and S. McDonald, “Tri-Level Study of the Causes of Traffic 

Accidents: Final Report,” DOT HS 034 3 535, 1979. 

[110] L. Blincoe, T. R. Miller, E. Zaloshnja, and B. A. Lawrence, “The Economic and 

Societal Impact Of Motor Vehicle Crashes, 2010 (Revised),” NHTSA, DOT HS 

812 013, 2015. 

[111] H. Yang, H. Peng, T. J. Gordon, and D. Leblanc, “Development and Validation of 

an Errorable Car-Following Driver Model,” 2008 American Control Conference, 

pp. 3927–3932, Jun. 2008. 

[112] T. Tang, C. Li, H. Huang, and H. Shang, “A New Fundamental Diagram Theory 

with the Individual Difference of the Driver’s Perception Ability,” Nonlinear 

Dynamics, vol. 67, no. 3, pp. 2255–2265, Jul. 2011. 

[113] J. Przybyla, J. Taylor, J. Jupe, and X. Zhou, “Simplified, Data-Driven, Errorable 

Car-Following Model to Predict the Safety Effects of Distracted Driving,” 2012 

15th International IEEE Conference on Intelligent Transportation Systems, pp. 

1149–1154, Sep. 2012. 

[114] L. Bi, G. Gan, J. Shang, and Y. Liu, “Queuing Network Modeling of Driver 



 

129 

 

Lateral Control With or Without a Cognitive Distraction Task,” IEEE 

Transactions on Intelligent Transportation Systems, vol. 13, no. 4, pp. 1810–1820, 

Dec. 2012. 

[115] A. G. Ulsoy, H. Peng, and M. Çakmakci, Automotive Control Systems. Cambridge 

University Press, 2012. 

[116] ADAC, “Comparative Test of Advanced Emergency Braking Systems,” 2011. 

[117] T. I. Gorman, “Prospects for the Collision-Free Car : The Effectiveness of Five 

Competing Forward Collision Avoidance Systems,” Virginia Polytechnic Institute 

and State University, 2013. 

[118] “Mechanical Simulation Corporation.” [Online]. Available: http://carsim.com/. 

[119] S. Ross, Introductory Statistics. 2010. 

[120] J. Bucklew, Introduction to Rare Event Simulation. Springer Science & Business 

Media, 2010. 

[121] J. Blanchet and H. Lam, “State-Dependent Importance Sampling for Rare-Event 

Simulation: An Overview and Recent Advances,” Surveys in Operations Research 

and Managementd Science, vol. 17, pp. 38–59, 2012. 

[122] S. Juneja and P. Shahabuddin, “Chapter 11 Rare-Event Simulation Techniques: An 

Introduction and Recent Advances,” Handbooks in Operations Research and 

Management Science, vol. 13, no. 06, pp. 291–350, 2006. 

[123] S. Asmussen and P. W. Glynn, Stochastic Simulation: Algorithms and Analysis. 

2012. 

[124] P. Heidelberger, “Fast Simulation of Rare Events in Queueing and Reliability 

Models,” ACM Transactions on Modeling and Computer Simulation, vol. 5, no. 1, 

pp. 43–85, Jan. 1995. 

[125] P. Glasserman and J. Li, “Importance Sampling for Portfolio Credit Risk,” 

Management Science, Nov. 2005. 

[126] S. Asmussen and H. Albrecher, Ruin Probabilities, 2nd ed. World Scientific, 2010. 

[127] M. Macke and C. Bucher, “Importance Sampling for Randomly Excited 

Dynamical Systems,” Journal of Sound and Vibration, vol. 268, no. 2, pp. 269–

290, 2003. 

[128] C.-S. Chang, P. Heidelberger, S. Juneja, and P. Shahabuddin, “Effective 

Bandwidth and Fast Simulation of ATM Intree Networks,” Performance 

Evaluation, vol. 20, no. 1–3, pp. 45–65, May 1994. 

[129] H. L. Royden, Real Analysis. New York: Prentice Hall, 1948. 

[130] D. Shinar, Psychology on the Road: The Human Factor in Traffic Safety. Wiley, 

1978. 

[131] S. E. Lee, C. B. E. Olsen, and W. W. Wierwille, “A Comprehensive Examination 

of Naturalistic Lane-Changes,” NHTSA, DOT HS 809 702, 2004. 

[132] D. Zhao, H. Peng, K. Nobukawa, S. Bao, D. J. LeBlanc, and C. S. Pan, “Analysis 

of Mandatory and Discretionary Lane Change Behaviors for Heavy Trucks,” in 



 

130 

 

12th International Symposium on Advanced Vehciel Control, 2014. 

[133] J. Harding, G. Powell, R. Yoon, and J. Fikentscher, “Vehicle-to-Vehicle 

Communications: Readiness of v2v Technology for Application,” 2014. 

[134] G. P. Stein, O. Mano, and A. Shashua, “Vision-Based ACC with a Single Camera: 

Bounds on Range and Range Rate Accuracy,” in IEEE Intelligent Vehicles 

Symposium, 2003, pp. 120–125. 

[135] SAE J2944, “Operational Definitions of Driving Performance Measures and 

Statistics.” [Online]. Available: http://standards.sae.org/j2944_201506/. 

[Accessed: 22-Dec-2015]. 

[136] T. Gennarelli, Abbreviated Injury Scale 2005 : Update 2008. Barrington  Ill.: 

Association for the Advancement of Automative Medicine, 2008. 

[137] K. D. Kusano and H. C. Gabler, “Safety Benefits of Forward Collision Warning, 

Brake Assist, and Autonomous Braking Systems in Rear-End Collisions,” IEEE 

Transactions on Intelligent Transportation Systems, vol. 13, no. 4, pp. 1546–1555, 

Dec. 2012. 

[138] R. Y. Rubinstein, “Optimization of Computer Simulation Models with Rare 

Events,” European Journal of Operational Research, vol. 99, no. 1, pp. 89–112, 

1997. 

[139] R. Y. Rubinstein, “Rare Event Simulation via Cross-Entropy and Importance 

Sampling,” in Second International Workshop on Rare Event Simulation, 1999, pp. 

1–17. 

[140] P.-T. de Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein, “A Tutorial on the 

Cross-Entropy Method,” Annals of Operations Research, vol. 134, no. 1, pp. 19–

67, 2005. 

[141] F. B. Hildebrand, Introduction to Numerical Analysis. Courier Corporation, 1987. 

[142] P. W. Holland and R. E. Welsch, “Robust Regression Using Iteratively 

Reweighted Least-Squares,” Communications in Statistics - Theory and Methods, 

vol. 6, no. 9, pp. 813–827, 1977. 

[143] “Robust Regression - MATLAB Robustfit.” [Online]. Available: 

http://www.mathworks.com/help/stats/robustfit.html. [Accessed: 04-Mar-2016]. 

[144] W. Dumouchel and F. O’Brien, “Integrating a Robust Option into a Multiple 

Regression Computing Environment,” Institute for Mathematics and Its 

Applications, 1991. 

[145] P. a. Ioannou and C. C. Chien, “Autonomous Intelligent Cruise Control,” IEEE 

Transactions on Vehicular Technology, vol. 42, no. 4, pp. 657–672, 1993. 

[146] Katsuhiko Ogata, Modern Control Engineering, 5th ed. Prentice Hall. 

[147] “V60 | Specifications | Volvo Cars.” [Online]. Available: 

http://www.volvocars.com/intl/cars/new-models/v60/specifications. [Accessed: 

12-Feb-2016]. 

[148] H. B. Pacejka, Tyre and Vehicle Dynamics, 3rd ed. Butterworth-Heinemann, 2012. 



 

131 

 

[149] R. Rajamani, “Vehicle Dynamics and Control,” Dynamics and Control, 2011. 

[150] K. Ogata, Discrete-Time Control Systems, 2nd ed. Prentice Hall, 1995. 

[151] “DARPA AVM Program .” [Online]. Available: http://cps-

vo.org/group/avm/meta-overview. [Accessed: 20-Jun-2015]. 

[152] “Fatality Analysis Reporting System,” National Highway Traffic Safety 

Administration (NHTSA). [Online]. Available: http://www.nhtsa.gov/FARS. 

[Accessed: 22-Dec-2015]. 

[153] “National Motor Vehicle Crash Causation Study,” National Highway Traffic 

Safety Administration (NHTSA). [Online]. Available: 

http://www.nhtsa.gov/Data/Special+Crash+Investigations+(SCI)/NASS+National+

Motor+Vehicle+Crash+Causation+Study. [Accessed: 22-Dec-2015]. 

[154] “Community Road Accident Database,” European Commission. [Online]. 

Available: 

http://ec.europa.eu/transport/road_safety/specialist/statistics/index_en.htm. 

[Accessed: 22-Dec-2015]. 

[155] “German In- Depth Accident Study,” VUFO. [Online]. Available: 

http://www.vufo.de/forschung-und-entwicklung/gidas/?L=1. [Accessed: 22-Dec-

2015]. 

[156] “ADAC Accident Investigation Study,” ADAC. [Online]. Available: 

https://www.adac.de/infotestrat/unfall-schaeden-und-

panne/Unfallforschung/default.aspx. [Accessed: 22-Dec-2015]. 

[157] “Cooperative Crash Injury Study (CCIS) - Datasets,” Department for Transport of 

the Uinited Kindom. [Online]. Available: https://data.gov.uk/dataset/cooperative-

crash-injury-study-ccis. [Accessed: 22-Dec-2015]. 

[158] “VOIESUR (Vehicle Occupant Infrastructure Road User Safety Study),” The 

French National Research Agency. [Online]. Available: http://www.agence-

nationale-recherche.fr/en/anr-funded-

project/?tx_lwmsuivibilan_pi2%255bCODE%255d=ANR-11-VPTT-0007. 

[Accessed: 22-Dec-2015]. 

[159] S. P. Wood, J. Chang, T. Healy, and J. Wood, “The Potential Regulatory 

Challenges of Increasingly Autonomous Motor Vehicles,” 52nd Santa Clara Law 

Review, vol. 4, no. 9, pp. 1423–1502, 2012. 

 


