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Abstract

We study applications of the AdS/CFT correspondence to strongly coupled condensed mat-

ter theories. Speci�cally, we focus on Lifshitz spacetime, which was proposed as a gravity

dual to �eld theories with Lifshitz scaling symmetry. We �rst show that higher derivative

corrections, such as those arising from string theory, can resolve the apparent tidal singu-

larity of pure Lifshitz spacetime in the deep infrared. We do so by explicitly constructing a

toy-model of 4-derivative gravity coupled to Maxwell-dilaton theory to show that the singu-

lar horizon can be resolved into a nonsingular AdS2 × R2 geometry. Next, we demonstrate

that the non-relativistic Lifshitz symmetry leads to an e�ective tunneling barrier for matter

�elds propagating in Lifshitz spacetime. In particular, the tunneling barrier causes scalar

modes to either grow or decay exponentially near the boundary. We investigate two conse-

quences of this behavior: First, we show that the boundary-to-bulk correlator, or smearing

function, is not well-de�ned in Lifshitz spacetime, due to a divergence at large momenta

and small frequencies. Second, we show that the boundary retarded Green's function for

scalar operators is insensitive to small changes in the near-horizon geometry. This insensi-

tivity manifests itself in an exponentially small spectral function at low energies and large

momenta. We show that this exponential behavior of the spectral weight is robust with

respect to higher derivative corrections in the bulk, and is therefore a concrete prediction

of AdS/CFT for condensed matter systems. We conclude by giving a �eld theory interpre-

tation of the exponential behavior in terms of a non-perturbative resummation of Feynman

diagrams.

xi



Chapter 1

Introduction

1.1 The AdS/CFT Correspondence

One of the most remarkable recent advances in string theory is the insight that strongly cou-

pled �eld theories can be mathematically dual to weakly coupled gravitational systems.

This duality is known as the AdS/CFT correspondence, or sometimes more broadly as

gauge/gravity duality. The original AdS/CFT conjecture is motivated by constructing a

supergravity solution of a stack of N D3-branes, and taking the low-energy (or near-horizon)

limit [1, 2, 3]. In its strongest form, the conjecture states that 4-dimensional N = 4 Super

Yang-Mills (SYM) with gauge group SU(N) is exactly equivalent to Type IIB string theory

on AdS5 × S5. Quantities on the �eld theory side, in particular the Yang-Mills coupling

gYM and the number of colors N are related to quantities on the string theory side via the

so-called holographic dictionary (see [1, 4, 5] for reviews). For example, we have

gs = g2
YM L4 = 4πgsNα

′2, (1.1)

where gs is the string coupling, L is the radius of AdS5 (and S
5), and α′ is the square of the

string length ls.

Since the full string theory in AdS5×S5 is not yet fully understood, it is often appropriate
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to rely on a weaker form of the conjecture that arises from taking the 't Hooft limit in the

�eld theory [6]. The limit consists of taking N → ∞, while holding the 't Hooft coupling

λ = g2
YMN �xed. On the string theory side, the 't Hooft limit corresponds to taking the

classical limit gs → 0 of Type IIB string theory, in which quantum e�ects arising from string

loop diagrams are suppressed by powers of gs.

An even weaker (or: more robust) version of the AdS/CFT conjecture is obtained by

�rst taking the 't Hooft limit, and subsequently taking λ → ∞ as well. Using (1.2), we

see that on the string theory side, this corresponds to taking α′ to be small (in units of L),

so that the theory reduces to classical type IIB supergravity. Corrections to the classical

α′ = 0 theory arise as a tower of higher derivative corrections to the low-energy e�ective

action, with coe�cients proportional to powers of α′. The exact numerical values of the

coe�cients can be calculated by matching Feynman diagrams of the low-energy theory to

string scattering amplitudes [7, 8, 9].

In the α′ → 0 or λ → ∞ limit, a remarkable feature of AdS/CFT becomes apparent,

namely the fact that it constitutes a weak-strong duality. In the large N limit, the relevant

coupling in the �eld theory is not gYM , but rather the 't Hooft coupling λ = g2
YMN [6]. If we

take λ → ∞, the �eld theory becomes strongly coupled, while the gravity theory becomes

weakly coupled, with dynamics governed by Einstein's equations. Since the two theories are

equivalent, this opens up a window for making predictions for strongly coupled theories by

carrying out relatively simple calculations in a weakly coupled theory.

1.2 Applying AdS/CFT to Condensed Matter Physics

Almost two decades after its initial proposal, the idea of AdS/CFT has matured to the point

where it can be extended to include a large set of theories that go well beyond the initially

conjectured case of N = 4 SYM dual to AdS5 × S5. Examples of such extensions include

applications of holography to QCD and heavy ion physics [4, 10], as well as to condensed
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matter physics (see e.g. [11] and references therein). These developments have opened up the

possibility of applying AdS/CFT, and by extension the ideas of string theory and quantum

gravity, to real-world systems.

This thesis focuses on applications of AdS/CFT to strongly coupled condensed matter

theories, an idea known as AdS/CMT. The goal of this program is to identify gravitational

backgrounds that are dual to interesting condensed matter systems, and to extract predic-

tions about strongly coupled condensed matter theories using only the weakly coupled dual

gravitational description. While there has been some remarkable recent progress in this di-

rection, one of the most important open questions is whether or not AdS/CMT can make

universal predictions that hold for a broad class of condensed matter systems, independent of

the speci�c microscopic details. This is akin to the approach often taken in condensed mat-

ter theory itself, where one studies universality classes of theories, where models within each

class share common features such as symmetries, but may di�er in some of their microscopic

dynamics.

In the known case ofN = 4 SYM, which posseses a (relativistic) conformal symmetry, one

approach to making such universal predictions has been the study of transport coe�cients,

which has led, for example, to a holographic bound on the ratio of shear viscosity to entropy

density in strongly interacting relativistic quantum �eld theories [10]. Following a similar

approach in AdS/CMT is a promising path to making predictions for condensed matter

physics. However, it turns out that not all the known concepts of AdS/CFT carry over to

the non-relativistic case without di�culty, and a number of challenges arise when trying to

apply holography to condensed matter systems. One main challenge is due to the fact that

in contrast to relativistic AdS/CFT, where explicit constructions in terms of D-branes often

give a precise microscopic description of the duality system, such a �top-down� picture is often

lacking, or at the very least incomplete, in the non-relativistic case. Instead, one usually

employs a �bottom-up� approach to constructing holographic duals, by matching spacetime

isometries to symmetries of the �eld theory and postulating the duality to hold. The validity
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of this assumption is later checked by comparing observables on both the �eld theory and

gravity side, and by trying to connect to some of the existing top-down constructions [12,

13, 14, 15, 16, 17, 18, 19]. Once su�cient evidence for the duality is established, one can

make new predictions using the techniques of AdS/CFT.

One example of employing the bottom-up approach mentioned above is the application of

AdS/CFT to theories with Lifshitz scaling symmetry [20, 21, 22]. Under this non-relativistic

symmetry, space and time scale di�erently, according to

~x→ Λ~x, t→ Λzt, (1.2)

where z > 1 is called the dynamical (or critical) exponent. An example of a �eld theory

that exhibits the scaling (1.2) is the quantum Lifshitz model in 2+1 dimensions [23], given

by the action

S =

ˆ
d2xdt

[
1

2
(∂tφ)2 − κ

2

2

(
∇2φ

)2
]
. (1.3)

This theory may be considered as the non-relativistic analog of a free scalar �eld theory.

Lorentz invariance is broken by the replacement ∇ → ∇2, and the system is Lifshitz scale

invariant with z = 2. The quantum Lifshitz model represents a line of �xed points charac-

terized by κ that arise, for example, in the description of (smectic) liquid crystals [23, 24].

In the context of the AdS/CFT correspondence, strongly coupled �eld theories with

Lifshitz scaling are conjectured to be dual to Lifshitz spacetime [20], with metric

ds2
d+2 = −

(
L

r

)2z

dt2 +

(
L

r

)2 [
d~x2

d + dr2
]
. (1.4)

The Lifshitz scaling symmetry (1.2), supplemented by a rescaling r → Λr is realized as an

isometry of the background metric (1.4).

Throughout this thesis, we will make use of suitable coordinate transformations to bring
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(1.4) into more convenient forms. Letting ρ = L
z

(
r
L

)z
, we can write the Lifshitz metric as:

ds2
d+2 =

(
L

zρ

)2 (
−dt2 + dρ2

)
+

(
L

zρ

)2/z

d~x2
d. (1.5)

Finally, we may also write (1.4) as

ds2
d+2 = −e2zr̂/Ldt2 + e2r̂/Ld~xd + dr̂2, (1.6)

where r̂ is de�ned by r = Le−r̂/L. Physical quantities in Lifshitz spacetime can be connected

to interesting observables in �eld theories with Lifshitz scaling by using the holographic

dictionary. For example, the behavior of matter �elds near the conformal boundary of

Lifshitz spacetime can be used to calculate retarded Green's functions of the �eld theory

[25].

Although there exist explicit brane constructions that provide evidence for the conjec-

ture that Lifshitz spacetimes are holographically dual to Lifshitz �eld theories [12, 16, 17,

18, 19, 26], many aspects of the holographic dictionary are not as well understood as in

the relativistic case. This issue carries over to other examples within AdS/CMT, such as

Schrödinger spacetimes [21, 22, 27], which are dual to �eld theories with non-relativistic

conformal symmetry.

In this thesis, we study Lifshitz spacetime as a concrete example of a non-relativistic

geometry within AdS/CMT, and analyze some of the unique features that arise due to its non-

relativistic isometry group. We show how some puzzles, such as the apparent tidal-singularity

at the horizon, can be resolved, and demonstrate how to extract universal predictions for

condensed matter physics using holographic techniques. In doing so, we provide a small step

towards completing the holographic dictionary for AdS/CMT, thus connecting the ideas of

string theory to the real world.
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1.3 Outline

• In chapter 2, we begin our discussion of Lifshitz spacetime by studying a complication

that arises in the near-horizon region of the geometry. An observer falling towards the

horizon will experience in�nitely strong tidal forces, indicating a physical singularity

in pure Lifshitz spacetime. We propose a resolution of this singularity by consid-

ering the e�ect of higher derivative corrections on the geometry. In particular, we

explore the e�ect of curvature-square corrections on Lifshitz solutions to the Einstein-

Maxwell-dilaton system. After exhibiting the renormalized Lifshitz scaling solution to

the system with parametrized R2 corrections, we turn to a toy model with coupling

g(φ)×Weyl2 and demonstrate that such a term can both stabilize the dilaton and re-

solve the Lifshitz horizon to a non-singular AdS2 × R2 geometry. As an example, we

construct numerical �ows from AdS4 to an intermediate Lifshitz region, and then to

AdS2 × R2 in the deep IR.

� Chapter 2 is based on previous work published in

G. Knodel and J. T. Liu, �Higher derivative corrections to Lifshitz backgrounds�,

JHEP 1310, 002 (2013) doi:10.1007/JHEP10(2013)002,

[arXiv:1305.3279 [hep-th]], [28].

• In chapter 3, we study boundary-to-bulk correlators in Lifshitz and related non-relativistic

spacetimes. We show that the spectrum of scalar modes contains �trapped modes�

whose boundary imprint is exponentially supprssed. We use these modes to show that

no smearing function exists for pure Lifshitz spacetime, nor for any �ow which includes

a Lifshitz region. Indeed, for any (planar) spacetime which breaks transverse Lorentz

invariance at any radius, we show that one cannot reconstruct the complete local bulk

data only from local boundary data. The inability to perform this reconstruction can

be interpreted as a restriction on locality in the transverse direction in non-relativistic

spacetimes.
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� Chapter 3 is based on previous work published in

C. Keeler, G. Knodel and J. T. Liu, �What do non-relativistic CFTs tell us about

Lifshitz spacetimes? �, JHEP 1401, 062 (2014) doi:10.1007/JHEP01(2014)062,

[arXiv:1308.5689 [hep-th]], [29].

• In chapter 4, we investigate the e�ects of trapped modes in Lifshitz spacetime on holo-

graphic two-point functions. We �nd that the boundary Green's function is generically

insensitive to horizon features on small transverse length scales. We explicity demon-

strate this insensitivity for Lifshitz with z = 2, and then use the WKB approximation

to generalize our �ndings to Lifshitz with z > 1, and RG �ows with a Lifshitz-like

region. Finally, we explore a physical consequence of this insensitivity, namely the fact

that the imaginary part of the retarded Green's function (i.e. the spectral function) of

scalar operators is exponentially suppressed in a window of frequencies near zero. This

behavior is universal in all Lifshitz theories without additional constraining symme-

tries. On the gravity side, we show that this result is robust against higher derivative

corrections, while on the �eld theory side we present a concrete example where the

exponential suppression arises from summing the perturbative expansion to in�nite

order.

� Section 4.2 is based on previous work published in

C. Keeler, G. Knodel and J. T. Liu, �Hidden horizons in non-relativistic AdS/CFT�,

JHEP 1408, 024 (2014) doi:10.1007/JHEP08(2014)024,

[arXiv:1404.4877 [hep-th]], [30].

� Sections 4.1, 4.3 and 4.4 are based on previous work published in

C. Keeler, G. Knodel, J. T. Liu and K. Sun, �Universal features of Lifshitz Green's

functions from holography�, JHEP 1508, 057 (2015) doi:10.1007/JHEP08(2015)057,

[arXiv:1505.07830 [hep-th]], [31].
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Chapter 2

Higher Derivative Corrections

Of course, simply knowing the form of the Lifshitz metric (1.4) is not enough to perform

holographic calculations. In particular, (1.4) is not a solution to the vacuum Einstein equa-

tions. To �nd a consistent framework in which to do non-relativistic holography, we �rst

need to identify a matter content that supports Lifshitz spacetime.

Exact Lifshitz geometries were constructed in [32] based on a simple model of a massive

vector �eld coupled to Einstein gravity. Turning on the time component of the vector breaks

d + 1-dimensional Lorentz symmetry in the t and ~x directions, and gives rise to a family of

backgrounds with z ≥ 1. Alternatively, Lifshitz backgrounds may be obtained in the near

horizon region of dilatonic branes. A simple realization is to take an Einstein-Maxwell-dilaton

system of the form [33, 34, 35, 36, 37, 38]

e−1L = R− 1

2
(∂φ)2 − f(φ)FµνF

µν − V (φ). (2.1)

Lifshitz scaling is obtained by taking a single exponential for the gauge kinetic function along

with a constant potential1

f(φ) = eλ1φ, V (φ) = −Λ. (2.2)

1Backgrounds dual to systems exhibiting hyperscaling violation may be obtained by instead taking an
exponential potential.
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The scaling solution has a running dilaton and a dynamical exponent given by the relation

λ2
1 =

2d

z − 1
. (2.3)

In addition, full solutions that interpolate between AdSd+2 in the UV and Lifshitz in the

IR may be constructed. As a consequence of the running dilaton, the Lifshitz solution runs

into strong coupling either in the UV for the electrically charged solution or in the IR for

the magnetic solution (in the case d = 2). For the magnetic case, the possibility of quantum

corrections was investigated in [39] by constructing a toy model where the gauge kinetic

function picks up an expansion in the e�ective coupling g ≡ e−
1
2
λ1φ

f(φ) =
1

g2
+ ξ1 + ξ2g

2 + ... (2.4)

Under appropriate conditions, these loop corrections will stabilize the dilaton and lead to

the emergence of an AdS2 × R2 geometry in the deep IR. The emergence of this AdS2 × R2

region also has the bene�t of resolving the Lifshitz horizon, which would otherwise lead to

tidal singularities2 [20, 42, 43]. In contrast with the magnetic solution, the electric solution is

not expected to pick up quantum corrections in the IR, as the dilaton runs to weak coupling.

In this case, the Lifshitz horizon would not get resolved by the same mechanism. However,

in a stringy context (or in that of any UV complete theory of gravity), there is another

potential type of corrections, namely those arising from higher curvature terms. Although

Riemann invariants remain �nite at the tidal singularity, this singularity is nevertheless felt

by strings [43]. Hence the Lifshitz horizon could be resolved in a consistent manner in a

stringy realization.

In this chapter, we provide evidence that higher curvature terms may indeed resolve the

Lifshitz horizon into an AdS2 region in the deep IR. In particular, we add R2 terms to the

2The dilaton can also be stabilized in the dyonic case [33, 38], as well as in models with multiple Maxwell
�elds [40, 41].
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Einstein-Maxwell-dilaton system (2.1) and seek electrically charged brane solutions that �ow

from AdSd+2 in the UV to Lifshitz and then to AdS2 ×Rd in the deep IR. As demonstrated

in [44], higher curvature terms do not necessarily destroy the Lifshitz scaling solution, but

simply renormalize the dynamical exponent z. Thus we expect that brane solutions with

a large intermediate Lifshitz region do exist. However, whether such solutions will �ow

smoothly into AdS2 × Rd will depend on the parameters of the model. We investigate the

d = 2 case in some detail below, and in particular we con�rm numerically that smooth �ows

do exist that interpolate from AdS4 to Lifshitz to AdS2 × R2.

2.1 Lifshitz Solutions in Higher Derivative Gravity

Lifshitz solutions in the presence of higher curvature terms were previously investigated in

[45, 46, 47, 48, 49, 50, 51, 52]. Here we focus on the Einstein-Maxwell-dilaton system, (2.1),

and take the potential to be a constant, V (φ) = −Λ, so that Lifshitz scaling may be obtained

at the two-derivative level. The �rst set of corrections occurs at the four-derivative level, and

in the gravitational sector may be parameterized by three constants, α1, α2 and α3, where

the action is given by

S =

ˆ
dd+2x

√
−g
(
R + Λ− 1

2
(∂φ)2 − f(φ)FµνF

µν + α1RµνρσR
µνρσ + α2RµνR

µν + α3R
2
)
.

(2.5)

Using Bianchi identities, we may write Einstein's equations as:

Tµν = Rµν −
1

2
gµνR + 2α1RµρλσR

ρλσ
ν + (4α1 + 2α2)RµρνλR

ρλ − 4α1RµρR
ρ
ν (2.6)

−(2α1 + α2 + 2α3)∇µ∇νR + (4α1 + α2)�Rµν + 2α3RRµν (2.7)

−1

2
gµν
[
α1RρλσκR

ρλσκ + α2RµνR
µν + α3R

2 − (α2 + 4α3)�R
]
, (2.8)
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where the energy momentum tensor on the left hand side is given by

Tµν =
1

2
∂µφ∂νφ+ 2f (φ) (F ρ

µ Fνρ −
1

4
gµνFρσF

ρσ) +
1

2
gµν(Λ−

1

2
∂ρφ∂ρφ). (2.9)

These equations need to be supplemented with the equations of motion of Fµν and φ:

∇µ(f(φ)F µν) = 0, (2.10)

�φ− f ′(φ)FµνF
µν = 0. (2.11)

Our goal is to �nd a matter �eld background that supports the Lifshitz metric, (1.6). From

here on, we set L = 1 without loss of generality. Thus we have

ds2
d+2 = −e2zrdt2 + e2rd~x2 + dr2, (2.12)

and we want to determine the form of Fµν and φ. We �rst note that Maxwell's equations,

(2.10), can be integrated to obtain an electric solution:

F =
Q

f(φ)
e(z−d)rdr ∧ dt, (2.13)

where Q is an integration constant (the electric charge). Allowing φ to depend on r only,

the components of the energy momentum tensor are given by

T00 = g00

(
− Q2

f(φ)
e−2dr − 1

4
(φ′)2 +

Λ

2

)
,

Trr = grr

(
− Q2

f(φ)
e−2dr +

1

4
(φ′)2 +

Λ

2

)
,

Tij = gij

(
Q2

f(φ)
e−2dr − 1

4
(φ′)2 +

Λ

2

)
. (2.14)
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Invariance of Tµν under Lifshitz scaling requires φ ∝ r and f−1 ∝ e2dr. More explicitly, we

may rewrite Einstein's equations, (2.8), as:

(φ′)2 = 2(e−2zrRHS00 + RHSrr), (2.15)

Λ = RHSrr + e−2rRHSii, (2.16)

Q2

f(φ)
e−2dr =

1

2
(e−2zrRHS00 + RHSii). (2.17)

The right hand side of each equation is a fourth order polynomial in z and does not depend

on r. (The curvatures are computed in appendix A) After integrating out the electric �eld,

the dilaton equation of motion reads

φ′′(r) + dφ′(r) + 2
f ′(φ)

f(φ)

Q2

f(φ)
e−2dr = 0. (2.18)

Plugging in f ∝ e−2dr and recalling that φ is linear in r, we now �nd that the gauge kinetic

function has to be a single exponential f (φ) = eλ1φ.

Before we write down the �nal solution, let us change to a more convenient basis of higher

derivative terms by writing the corresponding Lagrangian as

Lhd = αWCµνρσC
µνρσ + αGBG+ αRR

2, (2.19)

with the Weyl tensor

Cµνρσ = Rµνρσ −
1

d

(
gµ[ρRσ]ν − gν[ρRσ]µ

)
+

1

d (d+ 1)
gµ[ρgσ]νR, (2.20)

and the Gauss-Bonnet combination

G = RµνρσR
µνρσ − 4RµνR

µν +R2. (2.21)

The Gauss-Bonnet term is topological in four dimensions and vanishes in fewer than four
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dimensions. Hence we expect the equations of motion to be independent of αGB for d ≤ 2.

The coe�cients in (2.19) and (2.5) are related via

α1 = αGB + αW,

α2 = −4αGB −
4

d
αW,

α3 = αGB +
2

d(d+ 1)
αW + αR. (2.22)

In this new basis, the �nal solution is given by the Lifshitz metric (2.12), the Maxwell �eld

(2.13), and the dilaton

φ = −2d

λ1

r + C, (2.23)

where C is a constant of integration. The gauge kinetic function is f(φ) = eλ1φ, where

λ2
1 =

d(z + d)

Q2e−λ1C
. (2.24)

The electric charge Q and the cosmological constant Λ are given in terms of z according to

Q2e−λ1C =
1

2
(z − 1)(z + d)

[
1− 4(d− 1)

d+ 1
αWz(z − d)− 2(d− 1)(d− 2)αGB

]
−2αR

[
z4 + 2(d− 1

2
)z3 +

3

2
dz2 +

1

2
d(d2 − 2d− 1)z − 1

2
d2(d+ 1)

]
, (2.25)

Λ = (z + d)(z + d− 1)− 4(d− 1)2

d+ 1
αWz(z − 1)

(
z − 2

d

d− 1

)
−2(d− 1)(d− 2)αGB

[
z2 + 2(d− 1

2
)z +

1

2
d(d− 3)

]
+4αR

[
z3 − 3

2
d(d− 5

3
)z2 − d(d2 − 3

2
d− 1

3
)z − 1

4
d2(d+ 1)(d− 3)

]
.(2.26)

As expected, for d = 1 and 2, the Gauss-Bonnet combination does not contribute to the

equations of motion. Notice also that due to the shift symmetry φ 7→ φ + C, Fµν 7→

Fµνe
− 1

2
λ1C , only the combination Q2e−λ1C is �xed.
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We see that the higher derivative action (2.5) admits Lifshitz solutions with an electric

background gauge potential and φ ∝ r. The �running� of the dilaton has physical conse-

quences: The e�ective gauge coupling f−
1
2 runs from weak coupling in the IR (r → −∞) to

strong coupling in the UV (r →∞)3.

The above solution is the straightforward generalization of the previously known Einstein-

Maxwell-dilaton background to the case of four-derivative gravity. The e�ect of the higher

derivative corrections is to renormalize the cosmological constant and electric charge by

inducing corrections of order z4. We will demonstrate below that this leads to some nontrivial

features of the solution.

2.2 Lifshitz Solutions in Einstein-Weyl Gravity

Let us now focus on the special case of Einstein-Weyl gravity. This theory will be of particular

interest to us in the following section, where we will construct smooth �ows from AdS4 to

Lifshitz to AdS2 × R2. Lifshitz solutions in pure Einstein-Weyl gravity without additional

matter �elds have also been studied in [52].

Setting αGB = αR = 0, the solution (2.25), (2.26) simpli�es to

Q2e−λ1C =
1

2
(z − 1)(z + d)

(
1− 4(d− 1)

d+ 1
αWz(z − d)

)
, (2.27)

Λ = (z + d)(z + d− 1)− 4(d− 1)2

d+ 1
αWz(z − 1)

(
z − 2

d

d− 1

)
. (2.28)

This solution has some interesting features. For d = 1, the Weyl-tensor vanishes identically

and so there are no higher derivative corrections. Next, notice that if Q2 → 0, λ1 → ∞,

φ→ const., the matter �elds decouple and we recover a purely gravitational solution. There

are two distinct ways to achieve this: The �rst one is the case z = 1, corresponding to

3In four dimensions, we can use electric-magnetic duality to obtain a magnetic solution, F̃ ≡ f (φ) ∗ F =
Qmdx ∧ dy, with magnetic charge Qm. Since the duality transformation also requires f 7→ f−1, the dilaton
now runs towards strong coupling in the IR.
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pure AdSd+2 without matter �elds. Note that because the Weyl tensor vanishes in AdS, the

cosmological constant is not renormalized.

As a second possibility, we may choose

αW =
d+ 1

4(d− 1)z(z − d− 2)
. (2.29)

In this case we recover purely gravitational Lifshitz solutions, with

Q2e−λ1C = 0,

φ = const.,

Λ = (z + d)(z + d− 1)− (d− 1)(z − 1)
z − 2 d

d−1

z − d− 2
. (2.30)

It is interesting to consider the limit of conformal gravity, where αW →∞. From (2.29), we

expect the scaling parameter to take two possible values, z = 0, or z = d + 2. However, in

the latter case, Λ blows up for general d. It is only in the case d = 2 that the second solution

with z = 4 is well behaved. Finally, notice also that for any given α and λ1, there may be

multiple solutions for z.

2.3 Smoothing out the Singularity

The Lifshitz solutions of the previous section have a physical singularity in the infrared. For

z 6= 1, an infalling extended object, such as a string, experiences in�nitely strong tidal forces

as r → −∞ [43]. Hence pure Lifshitz solutions are IR incomplete. However, one might

argue that this kind of pathological behavior is simply a signal that our solutions should not

be trusted in this particular regime, and the singularity would presumably be resolved in

a more complete string theory picture. Some compelling evidence supporting this point of

view has been presented in [39, 53, 54].

The analysis of the previous section suggests a straightforward way of resolving the
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Lifshitz singularity: In general, a nonzero coupling of the dilaton to higher derivative terms

will generate corrections to its e�ective potential. In this section, we will use a simple

toy model in four dimensions to show that by choosing such a coupling appropriately, the

dilaton can be stabilized at some �nite value φ0. As a result, the geometry �ows smoothly

from Lifshitz to AdS2 × R2 in the deep IR, which is free of physical singularities.

In order to imitate the e�ect of generic higher derivative corrections from string theory,

we consider the following theory:

S =

ˆ
d4x
√
−g
(
R + Λ− 1

2
(∂φ)2 − f (φ)FµνF

µν + g(φ)CµνρσC
µνρσ

)
. (2.31)

Since the Weyl tensor vanishes in AdS4, the higher derivative terms do not source the dilaton

in the UV. We therefore expect a smooth �ow from AdS4 to Lifshitz, much like the domain-

wall solutions found in [33, 37]. As we �ow further towards the IR, the Weyl-squared term is

expected to become more important, and the dilaton-Weyl coupling, g(φ), may then stabilize

the dilaton. To be concrete, we choose g(φ) to be

g(φ) =
3

4
(α + βeλ2φ). (2.32)

For βeλ2φ � α, g(φ) is approximately constant and we expect to �nd Lifshitz scaling solutions

of the form described in the previous section. With an appropriate choice of parameters,

the exponential becomes more and more important as φ runs towards weak coupling and it

eventually stabilizes the dilaton in the deep IR.

Since we have introduced a Weyl-squared correction, it is convenient to choose the fol-

lowing parametrization of the metric4:

ds2 = a2(r)
(
−dt2 + dr2 + b2(r)(dx2 + dy2)

)
, (2.33)

4We will work in units where L = 1 in what follows.
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With this choice, the Weyl-invariance of the higher derivative Lagrangian is manifest as

a rescaling of a(r). In practice, this means that only b(r) will receive higher derivative

corrections in the equations of motion. Fixing Λ = 1, the AdS4 solution is given by

a =

√
6

r
, b = const., (2.34)

while the Lifshitz solution takes the form

a ∝ 1

r
, b ∝ rz̃. (2.35)

For this metric, the scaling symmetry (1.2) becomes

t→ λt, x→ λ1−z̃x, r → λr. (2.36)

In changing from the more common form of the metric, (2.12), to the Weyl form, (2.33), we

need to make the following identi�cations:

z =
1

1− z̃
,

L → L

1− z̃
,

α → (1− z̃)2α. (2.37)

As before, we choose a background electric charge:

F =
Q

b2f(φ)
dr ∧ dt. (2.38)
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Einstein's equations are:

T00 = −2

(
a′′

a
+
b′′

b

)
+

(
a′

a

)2

−
(
b′

b

)2

− 4
a′b′

ab

−4

3

g(φ)

a2

[
b(4)

b
+
b(3)b′

b2
− 2

b′′ (b′)2

b3
− 1

2

(
b′′

b

)2

+
1

2

(
b′

b

)4

+

(
b′′

b
−
(
b′

b

)2
)
g′

g
φ′′

+

(
2
b(3)

b
− b′b′′

b2
−
(
b′

b

)3
)
g′

g
φ′ +

(
b′′

b
−
(
b′

b

)2
)
g′′

g
(φ′)

2

]
, (2.39)

Trr = 3

(
a′

a

)2

+

(
b′

b

)2

+ 4
a′b′

ab

+
4

3

g (φ)

a2

[
−b

(3)b′

b2
+

1

2

(
b′

b

)4

+
1

2

(
b′′

b

)2

+

((
b′

b

)3

− b′b′′

b2

)
g′

g
φ′

]
, (2.40)

Tii
b2

= 2
a′′

a
+
b′′

b
−
(
a′

a

)2

+ 2
a′b′

ab

−4

3

g(φ)

a2

[
1

2

b(4)

b
+

1

2

(
b′

b

)4

− (b′)2 b′′

b3
+

1

2

(
b′′

b
−
(
b′

b

)2
)(

g′

g
φ′′ +

g′′

g
(φ′)

2

)

+

(
b(3)

b
− b′b′′

b2

)
g′

g
φ′

]
, (2.41)

with

T00 =
Q2

a2b4f (φ)
+

1

4
(φ′)

2 − a2Λ

2
, (2.42)

Trr = − Q2

a2b4f (φ)
+

1

4
(φ′)

2
+
a2Λ

2
, (2.43)

Tij
b2

= δij

(
Q2

a2b4f (φ)
− 1

4
(φ′)

2
+
a2Λ

2

)
. (2.44)

If we demand that φ depends only on r, the dilaton equation of motion simpli�es to

φ′′ + 2

(
a′

a
+
b′

b

)
φ′ + a2V ′eff(φ) = 0, (2.45)

where

V ′eff(φ) ≡ 2Q2

a4b4

f ′(φ)

f 2(φ)
+

4

3a4

(
d2 log(b)

dr2

)2

g′(φ). (2.46)
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Hence the e�ect of the higher derivative terms on the dilaton is to generate corrections to

its e�ective potential.

We would like to �nd out which choices of g(φ) allow for an emerging AdS2×R2 geometry

in the deep IR. Corresponding to AdS2 × R2, we make the ansatz

a(r) =
1

r
,

b(r) = b0r,

φ(r) = φ0. (2.47)

Solving (2.39) through (2.41), we �nd

Λ = 1,

Q2

b4
0

=
f(φ0)

2

(
1− 4

3
g(φ0)

)
. (2.48)

Since only the ratio Q/b2
0 is �xed, we are free to set b0 ≡ 1 in what follows. Equation (2.45)

gives us the condition

V ′eff(φ0) =
f ′(φ0)

f(φ0)

(
1− 4

3
g(φ0)

)
+

4

3
g′(φ0) = 0. (2.49)

Let us now specialize to the case f (φ) = eλ1φ. Since the dilaton runs towards weak coupling

as r →∞, this ansatz is valid even in the deep IR. With our choice of g (φ), the solution to

(2.48) and (2.49) is given by

Q2 =
(α− 1)λ2

λ1 − λ2

,

φ0 =
1

λ2

log

(
λ1

λ1 − λ2

1− α
β

)
. (2.50)

Clearly this solution only makes sense for a certain choice of λi, α, β. We will discuss the

constraints on these parameters at the end of the next section.
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2.3.1 Perturbations around AdS2 × R2

We would like to �nd numerical solutions that smoothly interpolate between AdS4 and AdS2×

R2, with some intermediate Lifshitz regime. This is most easily accomplished numerically

by using the �shooting� technique, starting in the deep IR (r → ∞). The initial conditions

have to be chosen such that we follow perturbations that are irrelevant in the IR. These are

perturbations that fall o� faster than the background solution as r → ∞. In other words,

they allow a smooth �ow away from AdS2 × R2 as r decreases. Requiring the existence of

such perturbations will introduce nontrivial constraints on the parameters of our model.

We start by perturbing the AdS2 × R2 solution, (2.47), in the following way

a (r) =
1

r
+ δa (r) , b (r) = r + δb (r) , φ (r) = φ0 + δφ (r) . (2.51)

Using the conditions (2.48) and (2.49) repeatedly, the linearized equations of motion may be

written as

3

2g0

(r3δa′)
′

r2
+
(
rδb(3)

)′ − 2
f0g
′
0

f ′0g0

(
δb′

r

)′
− g′0
g0

(rδφ′)′

r
+
g′0
g0

δφ

r2
= 0, (2.52)

3

2g0

(
r2δa

)′
+ r2δb(3) − 2

f0g
′
0

f ′0g0

δb′ − g′0
g0

(rδφ)′ = 0, (2.53)

−3
(
r2δa′

)′
+ r2g0δb

(4) − 2

(
g0 +

3

4

)
r2

(
δb′

r2

)′
− 6

δb

r2
− g′0r

(
δφ′′ − 2

δφ

r2

)
= 0, (2.54)

δφ′′ + V ′′eff (φ0)
δφ

r2
− 8

3
g′0r

(
δb′

r2

)′
= 0, (2.55)

where f0 ≡ f (φ0), etc. The presence of the δb term in the last equation emphasizes the

fact that the higher derivative corrections generate a gravitational e�ective potential for the

dilaton. This is di�erent from the case of a quantum-corrected f (φ), and will in general

lead to a nontrivial mixing of φ perturbations with gravitational perturbations. Since the

�rst three equations are related via a Bianchi identity, it is possible to eliminate the δb(4)

terms and reduce the system to a third order coupled ODE. Hence there are only seven
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independent solutions:

δa = −r, δb = r3, δφ = 0; (2.56)

δa = −
3
4

+ log(r)

r2
, δb = log r, δφ =

ξ

r
; (2.57)

δa = − 1

r2
, δb = 1, δφ = 0; (2.58)

δa = A0r
ν−1, δb = B0r

ν+1, δφ = P0r
ν . (2.59)

Here

ξ =
6λ1λ2 (1− α)

λ1λ2 (λ1 + λ2) (α− 1) + 2 (λ2 − λ1)
, (2.60)

and the constants A0, B0 and P0 in (2.59) are related by

A0 =
2g0

3

(
g′0
g0

(
P0 + 2

f0

f ′0

)
− ν (ν − 1)

)
B0, (2.61)

P0 =
8

3

g′0 (ν + 1) (ν − 2)

V ′′ (φ0) + ν (ν − 1)
B0. (2.62)

There are four solutions for the exponent in (2.59):

ν ≡ 1

2
+ ν̃,

2ν̃2 = −

(
V ′′eff (φ0)− 1

4
− 8

3

(g′0)2

g0

+ x

)
±

(V ′′eff (φ0)− 1

4
− 8

3

(g′0)2

g0

− x

)2

− 16

3

(
g′0
g0

)2
 1

2

,

x ≡ 5

12
− 1

2g0

− 4

3

f0g
′
0

f ′0g0

. (2.63)

For our choice of g (φ), given by (2.32), we �nd

ν̃ = ±1

2

[
1− (1− α)λ2

1− αλ2
λ1

[
2λ1 −

4

3λ1

+ 2αλ2

± 2

λ1

(
λ4

1 + 2αλ2λ
3
1 +

(
α2λ2

2 − 4
)
λ2

1 +
4

3
αλ1λ2 +

4

9

) 1
2
]] 1

2

.(2.64)
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Regardless of the form of the e�ective potential, there always exist two irrelevant per-

turbations, (2.57) and (2.58). Whether or not the solutions (2.59) are irrelevant depends on

the choice of parameters. Although in general there is a mixing of φ with a and b due to the

dilaton coupling to C2
µνρσ, one can check that for g (φ) ≡ 0 the ansatz (2.59) reproduces the

purely dilatonic perturbations of the two-derivative theory [39]. Although not technically

correct, we will therefore still refer to those perturbations as �dilaton perturbations� in what

follows.

To �nd the desired numerical solutions, we impose the following set of conditions:

1. λ2/λ1 > 0: This ensures that g (φ) ≈ const. during the Lifshitz scaling stage and in

the deep UV. Thus g′ (φ) only becomes important in the IR, where it stabilizes the

dilaton. Since (2.31) is invariant under φ 7→ −φ, λi 7→ −λi, we shall assume without

loss of generality that λ1 > 0 and λ2 > 0.

2. V ′eff (φ0) = 0 for some φ0 (see (2.49)): The e�ective potential stabilizes the dilaton and

admits an AdS2 × R2 solution.

3. We focus on the case g (φ0) > 0. For negative g(φ), we numerically �nd either singular

solutions or solutions with φ′ � 0 as we approach AdS4. It remains unclear whether

the sign of higher derivative terms has a physical interpretation in terms of unitarity

or causality or a generalized null energy condition.

4. Q2 > 0, i.e. the vector potential is real-valued.

5. Our numerical analysis, as well as the analysis performed in [39, 53] strongly suggest

that we need at least one of the dilaton perturbations to be irrelevant in order to �kick�

φ out of its local minimum in the IR and roll towards large negative values in the UV.

We therefore demand that ν < 0 for at least one of the dilaton perturbations. Notice

that there can be at most two solutions that satisfy this condition.

6. We require ν to be real-valued; that is, we exclude oscillating perturbations. We
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take the existence of complex eigenvalues as an indication of a dynamical instability.

However, due to the higher-derivative nature of our theory, a more detailed analysis of

the time-dependent perturbations would be needed in order to determine whether the

theory is truly unstable for complex exponents.

Let us now �nd out what these conditions imply for our parameters α, β, λ1, λ2. Conditions

3 and 4 allow for two possible choices:

1) α ≥ 1, α
λ2

λ1

≤ 1;

2) 0 < α < 1, α
λ2

λ1

> 1. (2.65)

In both cases, condition 2 then requires that β < 0. Recall that in the electric case φ ≤ φ0,

so choosing the sign of g(φ) in the IR determines the sign everywhere5. Finally, we would

like the dilaton perturbations to be non-oscillating (condition 5) and demand that at least

one of them should be irrelevant (condition 6). The details of the corresponding calculations

can be found in Appendix C. Our results are summarized in Figures 1 and 2. In the green

region, all of our conditions are satis�ed. The gray region is inconsistent with conditions

1-4, while in the red region g (φ) < 0. The yellow region has g (φ) > 0, but has either no

irrelevant dilaton perturbations, or oscillating modes.

For α < 1, we �nd either one or no irrelevant dilaton perturbations, while for α > 1 we

�nd either two or none. This result seems to be related to the fact that in the α > 1 case,

λ2
1 (z̃) is not injective, i.e. there exist two possible scaling parameters z̃1, z̃2 for any given

λ1 (see Appendix B). We will address this issue further at the end of the following section.

Notice also that while for α < 1, all values of λ1 and z̃ are allowed, for α > 1 there is a

lower bound on λ1 and an upper bound on z̃. These bounds stem from the condition that

λ2
1 > 0 and equation (B.5). We conclude that for a given choice of α, there exists a large

region in parameter space that is consistent with our conditions and hence satis�es all basic

5Although we will not consider the case of negative g(φ), let us point out that in this case we would also
have to take β < 0 to satisfy condition 2, so this is a universal result.
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Figure 1: Plot of di�erent regions in parameter space, characterized by the number of irrel-
evant dilaton perturbations (α = 0.9). The regions are bounded by the curves (C.1), (C.2),
(2.65) and λ2 = λ1. They are colored as follows: g (φ) < 0 (red), g (φ) > 0 but no irrelevant
perturbations or oscillating modes (gold), g (φ) > 0 and at least one irrelevant perturbation
(green). In the gray area, at least one of the conditions 1-4 is violated.

Figure 2: The same plot for α = 3. Now the green region has 2 irrelevant perturbations.
There is a lower bound on λ1 and an upper bound on z̃, as indicated by vertical lines.
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requirements to admit the desired AdS4 → Lifz4 → AdS2 × R2 solutions.

2.3.2 Numerical Results

In order to �nd numerical solutions to our equations, we proceed as follows: We set initial

conditions at large r by adding irrelevant perturbations to the exact AdS2 × R2 solution:

a (r) =
1

r
+

3(4)∑
i=1

Diδai,

b (r) = r +

3(4)∑
i=1

Diδbi,

φ (r) = φ0 +

3(4)∑
i=1

Diδφi. (2.66)

We focus here on the case α < 1, for which there are three irrelevant perturbations. The

case α > 1 is discussed brie�y at the end of this section. The amplitudes Di have to be

tuned in order to �nd a solution that has both an intermediate Lifshitz regime and a smooth

�ow to AdS4 in the UV. In practice, it is however easier to choose a di�erent basis for the

perturbations in (2.66), which allows us to specify a′, b′, φ′ directly. The role of the three

initial conditions is then roughly the following: The value of φ′ determines how long the

solution stays approximately AdS2 × R2. There is a minimum value φ′min that is required

to �kick� φ out of its local minimum and run logarithmically during the Lifshitz stage. The

transition stage from AdS2 ×R2 to Lifshitz is shifted towards the IR as we increase φ′. The

value of a′ determines the duration of the scaling stage: We �nd that in the space of initial

conditions, there exists a two-dimensional submanifold (a′crit (φ′) , b′, φ′) with attractor-like

behavior. As we approach this critical plane, we observe the emergence of an intermediate

Lifshitz stage, which gets wider and wider as a′ approaches a′crit from below, while for a′ > a′crit

the solution becomes singular. Therefore, by tuning a′ we can in principle make the Lifshitz

stage arbitrarily long. Finally, the value of b′ needs to be tuned in order to achieve a smooth

�ow to AdS4 in the UV.
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# 1 2
λ1 1.2 1.1
λ2 2 0.24
α 0.9 3
β −1 −1
Q 0.20 4.55
φ0 −0.95 3.91
a′ −4.9 · 10−9 −1.5 · 10−7

b′ −5.8 · 10−6 2.0 · 10−4

φ′ 8 · 10−7 10−5

b′′ - 10−5

z̃ 0.73 0.78
K 0.91 0.82
φUV −19.8 −7.6
bUV 1.5 · 10−11 2.9 · 10−8

Table 1: Parameters, initial conditions and �t parameters for numerical solutions.

The parameters and initial conditions of our numerical solutions are summarized in Ta-

ble 1. Figure 3 shows the evolution of the metric components g00 (black) and gii (blue) for

solution #1. (The individual metric functions a(r) and b(r) as well as the dilaton φ(r) are

plotted in Figures 4 and 5.) We chose to plot d log gµν/d log r versus log r so that power-law

relations are clearly visible as horizontal lines. The solution is asymptotically AdS2×R2 with

g00 ∝ r−2, gii ∝ r0 for large r. At r ≈ 10−6, the solution approaches an approximate Lifshitz

scaling stage with g00 ∝ r−2, gii ∝ r2(z̃−1), where it remains for several decades. This stage

is characterized by an e�ective scaling parameter z̃eff ≈ 0.73 (or z ≈ 3.7). Notice that z̃eff

decreases slowly towards the UV, as indicated by the slightly positive slope of d log gii/d log r.

This is due to the fact that eλ2φ is small but nonzero: E�ectively, the coupling constant α

is reduced, which in turn increases z̃eff (see Figure 29). We expect that as we approach the

attractor, the solution will take the exact form (2.35) with the predicted value of z̃ ' 0.71

for r → 0. Finally, it is worth mentioning that both gii and g00 initially overshoot slightly

before �owing to Lifshitz.

The dilaton starts out at some large negative value φUV for small r and runs towards

weak coupling during the scaling stage. In this intermediate regime, eλ2φ � 1 and φ grows
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Figure 3: Plot of the metric components g00 (black) and gii (blue) for solution #1 (see
Table 1). The �gure on the right is a magni�ed view of the Lifshitz region for gii. Constant
values of d log gµν/d log r indicate a power-law relation. One can clearly see the emergence of
an intermediate Lifshitz geometry with g00 ∝ r−2 and gii ∝ r2(z̃−1). The dotted lines indicate
the exact AdS2 × R2 solution with gii ∝ r0 in the IR and AdS4 with gii ∝ r−2 in the UV.

Figure 4: Plot of a · r for solution #1. The �gure on the right is a magni�ed view of the
Lifshitz region. The dotted lines represent the exact AdS2×R2 solution with a · r = 1 in the
IR and AdS4 with a · r =

√
6 in the UV.
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Figure 5: Plot of the metric function b (left) and the dilaton φ (right) for solution #1. The
dotted line represents the asymptotic value φ0 given by (2.50).

approximately logarithmically, as in (B.2). As φ increases, the eλ2φ-term becomes more

and more important until at large r, the higher derivative corrections eventually modify the

e�ective potential and stabilize the dilaton at φ0.

In the case of α ≥ 1, there are two possible dynamical exponents z̃1 < z̃2 (see Ap-

pendix B). There is one additional dilaton perturbation, which we can use to �x the value

of b′′ in the IR. Numerically, we were only able to �nd �ows from AdS2 × R2 to Lifz̃24 , with

z̃2 ≈ 0.78 (z2 ≈ 4.4). The metric components for this solution are shown in Figure 6. The

corresponding values for the exact analytical solution are z̃1 ≈ 0.38 and z̃2 ≈ 0.73. Although

a simple counting of dilaton perturbations would suggest that there is one irrelevant defor-

mation leading to each of the two Lifshitz solutions, we were not able to numerically shoot

to Lifz̃14 . It therefore remains unclear whether �ows to Lifz̃14 exist.

2.3.3 Flow to AdS4 in the UV

Our numerical analysis suggests that the solutions exhibit some interesting behavior as they

approach asymptotic AdS4 for r → 0. It is worthwhile to analyze this asymptotic behavior
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Figure 6: Solution #2 (α > 1): Plot of the metric components g00 (black) and gii (blue).

analytically. To lowest order, the solution to the linearized equations of motion is given by

a (r) =

√
6

r

(
1 + a+r

ν+ + a−r
ν− + a3r

3 + a4r
4 + · · ·

)
,

b(r) = bUV + b+r
ν+ + b−r

ν− + b3r
3 + b4r

4 + · · · ,

φ (r) = φUV + φ3r
3 + φ4r

4 + · · · , (2.67)

where a3, φ3, a± are free constants and

a4 =
1

180

Q2 (9 + 2g (φUV))

b4
UVf (φUV) (1 + 2g (φUV))

,

b3 = −2bUVa3,

b4 = − 1

12

Q2

(1 + 2g (φUV)) f (φUV) b3
UV

,

b± = −3 (ν + 1)

2ν
bUVa±,

φ4 = − 1

12

Q2f ′ (φUV)

b4
UVf (φUV)2 ,

ν± =
3

2
± 1

2

√
1− 16

g (φUV)
. (2.68)

The leading order perturbations rν are purely gravitational. They survive in the limit of

pure Einstein-Weyl gravity (i.e. Q→ 0) [52]. For g (φUV) < 16, ν becomes complex and the
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Figure 7: Flow to asymptotic AdS4 in the deep UV. The �rst graph shows the metric
components g00 (black) and gii (blue). While the metric functions a and b oscillate according
to (2.69), the dilaton decreases monotonically.

perturbations oscillate as

a ∼ rRe(ν)−1 cos (Im (ν) log (r) + ϕa) ,

b ∼ rRe(ν) cos (Im (ν) log (r) + ϕb) , (2.69)

where ϕa/b are constant phases. Notice that for α → 0, the imaginary part of ν blows

up, so these perturbations do not decouple in the two-derivative limit. Figure 7 shows the

asymptotic behavior of one of our numerical solutions (parameter set #1). One can clearly

see that a and b oscillate according to (2.69), while φ simply decreases monotonically.

As it turns out, the oscillating nature of our solutions makes it necessary to switch to

a �sti�� method when trying to �nd exact numerical solutions in the UV. In addition, the
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attractor-mechanism of the Lifshitz stage tends to �wipe out� initial conditions, which makes

it more and more di�cult to exactly hit AdS4 numerically as the scaling stage gets wider.

We therefore content ourselves with presenting the asymptotic behavior for a solution with a

relatively narrow scaling stage. A more e�cient way of studying the UV-asymptotics would

be to directly shoot from the UV.

2.4 Summary and Discussion

In this chapter, we �rst showed that Lifshitz backgrounds are renormalized in the presence of

higher derivative corrections, and in particular Weyl-squared corrections, according to (2.24)-

(2.26). We then demonstrated in a toy model that higher curvature corrections, such as those

that arise from the string α′ expansion, may resolve the Lifshitz horizon into AdS2 × R2.

In particular, we have constructed numerical �ows from AdS4 to an intermediate Lifshitz

region and �nally to AdS2 ×R2 in the deep IR in the Einstein-Maxwell-dilaton system with

a four-derivative correction of the form

δL =
3

4
(α + βeλ2φ)C2

µνρσ. (2.70)

The dilaton coupling β is introduced to stabilize the dilaton, so that an emergent AdS2×R2

may appear in the IR.

The existence of �ows to AdS2 × R2 is not universal, but depends on the parameters α,

β, λ1 and λ2. For α < 1, there is at most one irrelevant dilaton perturbation that can induce

a �ow from AdS2×R2 in the deep IR to an intermediate Lifshitz region. We have presented

a numerical example of such a �ow for α = 0.9. On the other hand, for α ≥ 1, if any

irrelevant dilaton perturbations exist, then they necessarily come as a pair. Furthermore,

in this case there are two possible dynamical exponents, z̃1 and z̃2 (where we take z̃1 < z̃2),

allowed in the Lifshitz region. We have constructed a numerical example for α = 3 that

�ows from AdS2 × R2 in the deep IR to an intermediate Lif z̃24 . However, we were unable to
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�nd numerical �ows to Lif z̃14 . It remains unclear whether such �ows are possible. From a

simple counting of irrelevant perturbations, we expect that these �ows should indeed exist.

In any case, the natural question that arises is whether or not the additional irrelevant

perturbation that appears for α ≥ 1 leads to an interesting geometry. To make a de�nitive

statement about the �ows that are allowed, a study of perturbations around the di�erent

Lifshitz backgrounds would be required. A similar analysis was carried out for the massive

vector case in [55, 56]. It would also be interesting to see if one can �nd numerical solutions

that interpolate between the two Lifshitz solutions.

It would be desirable to explore whether a realistic string model would lead to either

α′ or string loop corrections of the form needed to resolve the Lifshitz horizon. The α′

corrections extend beyond the gravitational sector, and for example may include RF 2 terms

at the four derivative level. Even in the gravitational sector, one would expect to have a

more general form of the four-derivative corrections, similar to (2.19), but also with possible

dilaton couplings. We expect that the mechanism to resolve the Lifshitz singularity in the IR

will also work in the more general case with αR 6= 0 and αGB 6= 0. However, the smooth �ow

to AdS4 in the UV observed here relies on the fact that the Weyl tensor vanishes quickly

enough so that it does not source the dilaton for small r. It is unclear whether the UV

asymptotics would remain unchanged for generic higher derivative corrections.

In the case of an electrically charged brane considered here, there is another source of

corrections that might modify the UV dynamics: Since the dilaton runs towards strong

coupling, we expect quantum corrections to the gauge kinetic function f (φ) to become

important and modify the e�ective potential in this regime. In addition, there is a priori no

reason why magnetic solutions should not be equally sensitive to α′-corrections. We therefore

expect our mechanism to be relevant also in the magnetic case. Since in this case the dilaton

runs towards strong coupling in the IR, a consistent approach would be to consider both α′

and quantum corrections at the same time.

We expect that our analysis can be easily extended to geometries with hyperscaling
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violation. These backgrounds can be parametrized by a metric of the form

ds2
d+1 = e2γr(−e2zr/Ldt2 + e2r/Ld~x2 + dr2). (2.71)

For γ 6= 0 this metric is invariant under the scale transformation (1.2) only up to a rescaling

of ds. One may construct solutions of this type by choosing an exponential potential for the

dilaton, which as a result runs linearly with r. Flows to AdS2 × R2 were constructed using

a quantum corrected gauge kinetic function f(φ) in [53].

Finally, although an emergent AdS2×R2 geometry provides a non-singular resolution of

the Lifshitz scaling solution, the presence of a non-contracting transverse R2 leads to non-

zero entropy density at zero temperature in the dual non-relativistic system, thus violating

the third law of thermodynamics. A more satisfying situation where the entropy density

vanishes at zero temperature may potentially be obtained by �owing into AdS4 in the deep

IR. Thus one may imagine constructing �ows from AdS4 to Lifshitz to AdS4. This would

be a special case of an AdS to AdS domain wall solution, in which case the holographic

c-theorem would apply [57, 58, 59]. It would be interesting to see whether such �ows may

be constructed in a toy model admitting AdS4 solutions with two distinct AdS radii.
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Chapter 3

Boundary-to-Bulk Correlators

In the previous chapter, we provided evidence that Lifshitz spacetime is indeed a physically

meaningful geometry by showing that the potential IR divergences can be resolved in a UV

complete theory of quantum gravity. Having gained more con�dence in Lifshitz spacetime

as a consistent geometry, we are now ready to ask interesting questions about the details

of holography for non-relativistic �eld theories. In particular, we would like to continue to

develop the holographic dictionary, a mapping between observables on the bulk and boundary

site of the duality.

In the well studied case of relativistic AdS/CFT, an important part of this dictionary is

the correspondence between normalizable modes, which scale as r∆+ near the boundary, and

states in the Hilbert space of the dual �eld theory. In particular, a quantized bulk �eld φ

can be mapped to its corresponding boundary operator O via

φ 7→ O = lim
r→0

r−∆+φ. (3.1)

The remarkable fact here is that both operators can be quantized in terms of the same

creation/annihilation operators, which implies an isomorphism between the Fock space rep-

resentations of bulk and boundary Hilbert spaces [60, 61]. Moreover, the map (3.1) can

be inverted in position space. As a result, local quantum �elds in the bulk can be ex-
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pressed in terms of boundary operators with the help of a so-called smearing function K

[62, 63, 64]. Consequently, we can study CFTs to learn something about their gravitational

duals [65, 66, 67].

If AdS/CMT is to be understood as a true equivalence between a �eld theory and a

gravitational theory, rather then just a set of prescriptions to compute condensed matter

quantities, one should expect that a similar statement can be made for non-relativistic sys-

tems. In other words, the �eld theory should somehow contain all the relevant information

about the gravitational theory. In this chapter, we address this issue by investigating the

extent of reconstructability of bulk information from boundary data in non-relativistic space-

times. Speci�cally, we examine the equivalent of the map (3.1) for such spacetimes, and show

that it is in general not invertible in position space.

A simple argument why this reconstruction procedure is not straightforward can be made

by studying geodesics in the corresponding backgrounds. For Lifshitz spacetime, the e�ective

potential is given by

Veff(r) =

(
L

r

)2z

κ+

(
L

r

)2(z−1)

~k 2. (3.2)

Null geodesics (κ = 0) with nonzero transverse momentum k turn around at �nite r and

never reach the boundary (see Figure 8). This is a result of the non-relativistic nature of

the dual theory, which manifests itself in the fact that the e�ective speed of light gtt/gxx

diverges as r → 0. Therefore, in the classical (i.e. geometric optics) limit, information about

the transverse direction of the bulk geometry can never reach an observer at the boundary.

Quantum mechanically the picture is di�erent. In general, wavefunctions are allowed

to tunnel through any classically forbidden region to reach the boundary, so there is hope

that bulk reconstruction is possible after all. However, as we will demonstrate, at large

momenta the imprint these tunneling modes leave at the boundary is exponentially small

and as a consequence, a smearing function cannot be constructed. Our arguments closely

follow those of [68, 69], where �rst steps towards generalizing smearing functions to spaces

other than pure AdS were made.
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Figure 8: E�ective potential (3.2) for null geodesics (κ = 0) in AdS (z = 1) and Lifshitz
spacetimes (z = 2, 3, 4). In Lifshitz, light rays sent from the bulk in any nonradial direction
have to turn around at �nite r and can never reach the boundary.

Our analysis for the case of pure Lifshitz spacetime can be easily generalized to show

that smearing functions do not exist for any geometry that allows for �trapped modes�,

that is, modes that have to tunnel through a momentum-barrier in the potential to reach

the boundary. In [69], the authors show that the smearing function in their spherically

symmetric spacetimes can indeed become well-de�ned, at least in some bulk region, once they

change from an AdS-Schwarzschild solution to a nonsingular asymptotically AdS spacetime.

Our case, however, does not allow such a resolution. Importantly, the smearing function in

Lifshitz remains ill-de�ned everywhere if we resolve the tidal singularity into an AdS2 × Rd

region, as we did in chapter 2. Similarly, the replacement of the near-boundary region with

an asymptotic AdSd+2 region does not resolve the issue either.

The problem we encounter when trying to construct a smearing function is related to

modes with large transverse momentum. At the end of this chapter, we will argue that we

can make limited sense of smearing functions in Lifshitz spacetime after all, provided we

are willing to introduce a momentum-cuto� Λ. This of course has the consequence that we

forego the idea of using Lifshitz spacetime to calculate holographic observables at arbitrarily

small transverse length scales. We will see in section 4.3 that a cuto� at large momenta

(or equivalently small frequencies) is forced upon us when considering the e�ect of higher
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derivative corrections.

3.1 Scalars in Planar Backgrounds

The geometric optics picture of �gure 8 shows that a classical observer sitting at the bound-

ary of Lifshitz spacetime cannot receive light signals from an observer in the bulk that

carry nonzero transverse momentum. This indicates a potential di�culty of reconstructing

bulk informatino purely from boundary data, in the spirit of AdS/CFT. However, to fully

analyze the problem, we need to go beyond the classical approximation and consider the

reconstruction of scalar �eld modes via a boundary-to-bulk correlator.

Instead of focussing only on Lifshitz spacetime, let us consider a more generall class of

planar backgrounds, given by the following metric:

ds2
d+2 = e2B(r)[−e2W (r)dt2 + d~x2

d] + e2C(r)dr2. (3.3)

For W = 0, the (d + 1)-dimensional metric at constant r is Lorentz invariant. This encom-

passes the pure AdS case as well as Lorentz invariant domain wall �ows. The W 6= 0 case

allows for `non-relativistic' backgrounds such as pure or asymptotic Lifshitz backgrounds as

well as for planar black holes. In this case, we may interpret e−W as the gravitational red-

shift factor1. The global behavior of the metric is constrained by the null energy condition

(subsequently NEC; for previous work see [70, 56]). The two independent conditions are

−Rt
t +Rr

r = deW−C∂r
(
−e−W−C∂rB

)
≥ 0, (3.4)

−Rt
t +Rx1

x1
= e−W−(d+1)B−C∂r

(
eW+(d+1)B−C∂rW

)
≥ 0. (3.5)

Here x1 is any one of the ~x transverse directions. If we choose a gauge where A = C, or

1Note that this assumes that there is an asymptotic reference region where W = 0, so that (d + 1)-
dimensional Lorentz invariance is restored. This would occur, for example, in an AdS to Lifshitz �ow.
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equivalently W = C −B, these conditions simplify to

(
(e−B)′e−2W

)′ ≥ 0, (3.6)(
W ′edB

)′ ≥ 0, (3.7)

We now consider a minimally coupled scalar in the background (3.3). The Klein-Gordon

equation is given by

[e−W−(d+1)B−C∂Me
W+(d+1)B+CgMN∂N −m2]φ = 0. (3.8)

Since the metric (3.3) has Killing vectors ∂
∂t

and ∂
∂xi

, the wave equation above is separable

and we can write

φ(t, ~x, r) = ei(
~k·~x−Et)f(r). (3.9)

The Klein-Gordon equation (3.8) then becomes

[
e2(W+B−C)

(
∂2
r +

d(W + (d+ 1)B − C)

dr
∂r

)
+ E2 − e2W~k 2 − e2(W+B)m2

]
f = 0. (3.10)

Let us choose a gauge where A = C, or W = C − B. Equivalently, starting in any given

gauge we can introduce a new radial coordinate ρ such that

eC−B−Wdr = dρ. (3.11)

Note that ρ is a tortoise coordinate for our metric ansatz. This gives

[∂2
ρ + dB′∂ρ + E2 − e2W~k 2 − e2(W+B)m2]f = 0, (3.12)
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where primes denote derivatives with respect to ρ. If we now let

f = e−dB/2ψ, (3.13)

we end up with a Schrödinger-type equation

−ψ′′ + Uψ = E2ψ, (3.14)

where

U = Vm + Vk + Vcos, (3.15)

with

Vm = e2(W+B)m2, Vk = e2W~k 2, Vcos = (d/2)B′′ + (d/2)2B′2. (3.16)

The e�ective potential U can be interpreted as a potential that timelike/null geodesics would

see, plus an additional �cosmological� pontential Vcos. To see this, note that we can simplify

the geodesic equation by de�ning conserved quantities along the Killing directions,

E ≡ e2Aṫ, ~k ≡ e2B~̇x, (3.17)

where a dot indicates a derivative with respect to the a�ne parameter λ. Geodesics then

obey

−m2 =

(
ds

dλ

)2

= −e−2(W+B)E2 + e−2B~k 2 + e2C ṙ2. (3.18)

If we de�ne

Veff ≡ e2(W+B)m2 + e2W~k2, (3.19)

with m2 = 1 for timelike and m2 = 0 for null geodesics, then we �nd

e2(W+B+C)ṙ2 = E2 − Veff . (3.20)
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This is of the form of an energy conservation equation, Etot = Ekin + Veff , where

Ekin = e2(W+B+C)ṙ2. (3.21)

and the e�ective potential is given by Veff = Vm + Vk, see (3.16). The additional potential

Vcosis a familiar correction term for the scalar potential in curved space. In AdS; it plays a

crucial role in the derivation of the Breitenlohner-Freedman bound [71].

3.2 Scalars in Lifshitz Spacetime

For Lifshitz backgrounds, the Schrödinger potential can be written as

U =

(
L

zρ

)2(
m2 +

d(d+ 2z)

4L2

)
+

(
L

zρ

)2(1−1/z)

~k2, (3.22)

where we introduced a new radial coordinate according to (3.11), to bring the metric to the

form (1.5). Explicitly, we have

ρ =
L

z

( r
L

)z
. (3.23)

Note that both Vm and the entirety of Vcos contribute to the 1/ρ2 blowup as ρ → 0 (cor-

responding to the boundary). The fact that these two pieces scale with the same power of

ρ is a feature of Lifshitz spacetime; it will not continue to be true for more complicated

spacetimes such as the AdS-Lifshitz �ows studied in chapter 2.

The qualitative behavior of solutions to the Schrödinger equation is roughly as follows:

The wavefunction starts out oscillating deep in the bulk (ρ→∞) and crosses the potential

barrier at the classical turning point ρ0. For ρ < ρ0, the mode must tunnel under the barrier,

and thus the wavefunction will in general be a superposition of exponentially growing and

suppressed modes. We will only be interested in the mass ranges where the growing solution is

non-normalizable. In this range, the normalizable modes relevant for canonical quantization

are exponentially suppressed in the area of this barrier at small ρ.
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For z = 1, Vk is a constant, but for z > 1 it blows up near the boundary, although less

fast than the other terms in the potential. Speci�cally, Vk/Vm ∝ e−2B. For spacetimes with

Lifshitz asymptotics,

∂ρ
(
e−B

) ∣∣∣∣
ρbdy

= ∂ρ

(zρ
L

)1/z
∣∣∣∣
ρbdy

> 0 (3.24)

Consequently, ∂ρe
−B > 0 throughout the spacetime. Near the boundary, the mass term

Vm will always dominate, but Vk will increase in relative importance as we head in towards

the IR region. Because of the di�erent behavior of the mass/cosmological and momentum-

dependent terms, it is crucial to distinguish between two qualitatively di�erent �types� of

tunneling. If at a given energy, the momentum ~k is su�ciently small, the wavefunction

crosses the barrier at a point where Vk is subdominant compared to the other terms in the

potential. Consequently, the 1/ρ2 part of U will control the suppression near the boundary.

We shall refer to those modes as free modes. This name is justi�ed, because even though

they are tunneling, classically they correspond to null geodesics that can reach the boundary.

If ~k is large, the wavefunction crosses the barrier already at a point where U ≈ Vk, and the

wavefunction will receive an additional suppression by an exponential in ~k, due to tunneling

through this thicker barrier. We shall refer to this class of solutions as trapped modes. They

play a crucial role in our analysis, as they are the quantum equivalent to nonradial null-

geodesics that cannot reach the boundary, which we encountered in the introduction to this

chapter.

We may study the behavior of these free and trapped modes by solving the Schrödinger

equation (3.14) in a Lifshitz background. It is convenient to scale out the energy E by

introducing the dimensionless coordinate

ζ = Eρ. (3.25)
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Then (3.14) becomes −ψ′′(ζ) + (U − 1)ψ(ζ) = 0 where

U =
ν2
z − 1/4

ζ2
+
α

ζk
, (3.26)

with

νz =
1

z

√
(mL)2 + (d+ z)2/4, α =

(
EL

z

)γ ( ~k
E

)2

, γ = 2(1− 1/z). (3.27)

Since the null energy condition demands z ≥ 1, we generally focus on the case 0 < γ < 2.

(The γ = 0, or pure AdS, case is familiar and can be treated by standard methods.) In this

case, the boundary (ζ → 0) behavior of U is ∼ 1/ζ2, while the horizon (ζ →∞) behavior is

∼ 1/ζγ.

Near the boundary, we have

−ψ′′ + ν2 − 1/4

ζ2
ψ ≈ 0 ⇒ ψ ∼ Aζ1/2−ν +Bζ1/2+ν . (3.28)

Using (3.23), (3.25) and (3.13), we can express the behavior of the original Klein-Gordon

�eld in terms of the original coordinate r as

φ ∼ Â
( r
L

)∆−
+ B̂

( r
L

)∆+

, (3.29)

where

Â = A

(
EL

z

)1/2−ν

, B̂ = B

(
EL

z

)1/2+ν

, ∆± =
d+ z

2
±

√
(mL)2 +

(
d+ z

2

)2

. (3.30)

We will consider only the mass range where the �rst solution (related toA) is non-normalizable

with respect to the Klein-Gordon norm, while the second solution (related to B) is normaliz-

able. Via the AdS/CFT correspondence, non-normalizable modes represent classical sources

of an operator O at the boundary, which rede�ne the Hamiltonian of the �eld theory [1, 3, 2].
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Normalizable �uctuations are placed on top of these classical sources and they correspond

to di�erent states in the �eld theory, or equivalently expectation values of O [61, 60]. We

will only be interested in the situation where the boundary Hamiltonian is �xed, so we will

consequently treat non-normalizable solutions as non-�uctuating. The �uctuating modes to

be quantized are thus the normalizable modes given by B. As a result, we will end up setting

A = 0 and investigating the consequences of doing so. Note that this is in contrast with the

computation of AdS/CFT correlators, which we will discuss in chapter 4. In this case, B is

interpreted as the response to turning on a source A.

Turning now to the horizon, we see that both terms in (3.26) fall o� as ζ → ∞. Hence

the horizon behavior is given by2

−ψ′′ − ψ ≈ 0 ⇒ ψ ∼ aeiζ + be−iζ . (3.31)

In terms of the original r coordinate, this becomes

ψ ∼ a exp

(
i
EL

z

( r
L

)z)
+ b exp

(
−iEL

z

( r
L

)z)
, (3.32)

so that

φ ∼ a
( r
L

)d/2
exp

(
i
EL

z

( r
L

)z)
+ b
( r
L

)d/2
exp

(
−iEL

z

( r
L

)z)
. (3.33)

The horizon modes correspond to infalling and outgoing waves, given by a and b, respectively.

Since the wave equation is second order and linear, the boundary data (A,B) must be linearly

related to the horizon data (a, b). AdS/CFT correlators are generally computed by taking

infalling conditions at the horizon, corresponding to b = 0, while bulk normalizable modes

are given instead by taking A = 0 at the boundary. Of course, the precise relation between

boundary and horizon data can only be obtained by solving the wave equation. While this

2For simplicity, we have assumed 1 < k < 2. For 0 < k ≤ 1, the horizon fallo� ∼ 1/ζk is insu�ciently
fast, and the potential becomes long-ranged. This introduces a correction to the horizon behavior of the
wavefunction. However, this is unimportant for our discussion, as we have no need for the asymptotic phase
of ψ in the classically allowed region.
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cannot be performed in general, the exact solution is known for z = 2, where the potential U

is analytic. We now turn to this case, as it provides a clean example of the behavior of trapped

modes and in particular the exponential suppression that they receive when tunneling under

the barrier in the potential.

3.2.1 A Speci�c Example: z = 2 Lifshitz

For a pure Lifshitz background with z = 2, or γ = 1, the potential (3.26) is analytic in ζ

and the Schrödinger equation takes the form

−ψ′′ +
(
ν2 − 1/4

ζ2
+
α

ζ
− 1

)
ψ = 0, (3.34)

where α = ~k 2L/2E. As this is essentially Whittaker's equation, the solution can be written

in terms of the Whittaker functions M−iα/2,ν(−2iζ) and W−iα/2,ν(−2iζ), or equivalently in

terms of con�uent hypergeometric functions [20]. Expanding for ζ → 0 and demanding that

ψ satis�es the boundary asymptotics (3.28) for normalizable and nonnormalizable modes

gives

ψ =

[(
i

2

) 1
2

+ν

B −
(
i

2

) 1
2
−ν Γ(−2ν)Γ(1

2
+ ν + iα

2
)

Γ(2ν)Γ(1
2
− ν + iα

2
)
A

]
M−iα/2,ν(−2iζ)

+

[(
i

2

) 1
2
−ν Γ(1

2
+ ν + iα

2
)

Γ(2ν)
A

]
W−iα/2,ν(−2iζ). (3.35)

For the horizon, we expand for large ζ and compare with (3.31) to obtain

ψ =

[
e−πα/4

Γ(1
2

+ ν + iα
2

)

Γ(1 + 2ν)
2−iα/2b

]
M−iα/2,ν(−2iζ)

+

[
eπα/42iα/2a+ eiπ( 1

2
−ν)eπα/4

Γ(1
2

+ ν + iα
2

)

Γ(1
2

+ ν − iα
2

)
2−iα/2b

]
W−iα/2,ν(−2iζ). (3.36)
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Comparing (3.35) with (3.36) gives the relation between horizon and boundary coe�cients

A = (2i)
1
2
−ν Γ(2ν)

Γ(1
2

+ ν − iα
2

)
eπα/4

(
2−iα/2b− eiπ( 1

2
+ν) Γ(1

2
+ ν − iα

2
)

Γ(1
2

+ ν + iα
2

)
2iα/2a

)
,

B = (2i)
1
2

+ν Γ(−2ν)

Γ(1
2
− ν − iα

2
)
eπα/4

(
2−iα/2b− eiπ( 1

2
−ν) Γ(1

2
− ν − iα

2
)

Γ(1
2
− ν + iα

2
)
2iα/2a

)
. (3.37)

Although we are primarily interested in normalizable modes in the Lifshitz bulk, we �rst

note that the usual computation of the retarded Green's function proceeds by taking infalling

boundary conditions at the horizon, namely b = 0. Then (3.36) immediately gives

ψinfalling ∼ W−iα/2,ν(−2iζ). (3.38)

We now demand that the coe�cient of M−iα/2,ν(−2iζ) in (3.35) vanishes, from which we

obtain

GR(E, ~p ) ∼ B̂

Â
=

(
EL

2

)2ν
B

A
=

(
EL

i

)2ν Γ(−2ν)Γ(1
2

+ ν + iα
2

)

Γ(2ν)Γ(1
2
− ν + iα

2
)
, (3.39)

in agreement with [20] when continued to Euclidean space. Note that in the large momentum

limit, k →∞ (or more precisely for α� ν), the Whittaker function W−iα/2,ν(−2iζ) is only

large near the boundary, and decays exponentially into the bulk. This matches with the

heuristic picture of AdS/CFT, where the CFT �lives� on the boundary. In the relativistic

case, corresponding to an AdS geometry, the boundary data has a power law fallo� as it

penetrates into the bulk. However, for this Lifshitz geometry, the fallo� is exponential.

Of course, for the bulk reconstruction that we are interested in, we actually want to

consider the space of normalizable modes, as they are the ones that span the Hilbert space

in the bulk. From the Hamiltonian picture, the natural norm is the Klein-Gordon norm,

which is in fact compatible with the norm for the Schrödinger equation (3.14). Normalizable

modes correspond to taking A = 0, so that

ψnormalizable ∼M−iα/2,ν(−2iζ). (3.40)
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Comparing (3.35) with (3.36) then gives the relation between bulk and boundary coe�cients

for normalizable modes

B

b
= 2−iα/2

(
2

i

) 1
2

+ν Γ(1
2

+ ν + iα
2

)

Γ (1 + 2ν)
e−πα/4. (3.41)

Note that M−iα/2,ν(−2iζ) is essentially a standing wave solution in the classically allowed

region ζ > ζ0, where ζ0 is the classical turning point. Since this interval is semi-in�nite, the

wavefunction must be normalized by �xing the amplitude b of these oscillations. Hence the

ratio B/b is a direct measure of the amplitude of properly normalized wavefunctions at the

boundary.

Recall our previous distinction between the two di�erent types of tunneling solutions:

�free� vs. �trapped� modes. Modes with small momenta k at �xed E (α � ν) are �free

modes�. For these modes, we have, up to an overall phase

|B|
|b|
≈

2ν+ 1
2 Γ
(

1
2

+ ν
)

Γ (1 + 2ν)
. (3.42)

The tunneling process produces the typical scaling behavior ∼ ρ∆+ at the boundary, but

there is no exponential suppression. For large momenta (α � ν) the modes are �trapped�,

and we �nd instead

|B|
|b|
≈
√

4πe−(ν+ 1
2)

Γ (1 + 2ν)
ανe−πα/2. (3.43)

These modes have to tunnel not only through the 1/ρ2 potential near the boundary, but also

through the wider momentum barrier Vk ∼ k2/ρ at larger ρ. This causes the solution to be

exponentially suppressed when it reaches the boundary. We conclude that the z = 2 Lifshitz

metric allows for trapped modes, which have arbitrarily small boundary imprint for large k.

Clearly, we could have obtained the exponential suppression factor e−πα/2 in (3.43) by

simply setting Vm = Vcos = 0 in the Schrödinger potential. More generally, since the size

of Vk is controlled by k2, in any interval [ρ1,ρ2] away from the boundary, i.e. in any region
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where the potential U is bounded, at large enough k the di�erence in amplitudes between

the points ρ1 and ρ2 will always be governed by an exponential relation like (3.43). For the

purpose of determining whether or not trapped modes exist in a given spacetime, it will

therefore be enough to study the equivalent tunneling problem in the potential U ≡ Vk. We

will come back to this issue later.

3.3 WKB Approximation

In order to study the existence of trapped modes in spacetimes beyond exact z = 2 Lifshitz,

it will be useful to have a formalism that provides a qualitative description of the behavior

of tunneling modes even for cases where an analytic solution might not exist. This will allow

us to study Lifshitz with z 6= 2, as well as more general backgrounds (3.3) with nontrivial

W , B and C. The WKB method provides us with just such a formalism.

Applying the WKB approximation to the e�ective Schrödinger equation in Lifshitz space-

time, and other spacetimes in which the potential falls of as 1/ρ2 near the origin, is not

straightforward, and some subtleties arise. It is therefore necessary to carefully develop a

formalism that will allow us to �nd approximate solutions, and furthermore to quantify its

shortcomings by performing an error analysis.

We would like to �nd approximate solutions to equations of the form

ψ′′ + Ω2(ζ)ψ = 0, (3.44)

with Ω2 > 0 as ζ → ∞ and Ω2 ∼ −ζ−2 as ζ → 0. Furthermore, we shall assume that for a

given energy, there exists only one classical turning point with Ω2 (ζ0) = 0. To capture all

of these properties explicitly, we may write

Ω2 = K2 − 1

ζ2

(
ν2 − 1

4
+ µ (ζ)

)
, (3.45)
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with limζ→0 µ (ζ) = 0 and ν > 1/2. Notice that for ν ≤ 1/2 the qualitative picture would

change considerably: The wavefunction becomes oscillating again close to the boundary,

which requires a di�erent treatment. For Lifshitz spacetime, we have K = 1 and µ = αζ2−γ,

where ζ ≡ Ex (see (3.26)). We now make the standard WKB-ansatz

ψ ∼ 1√
P (ζ)

ei
´
dζ′P (ζ′). (3.46)

Plugging into (3.44), we arrive at a di�erential equation for P (ζ):

P 2 − Ω2 +
1

2

P ′′

P
− 3

4

(
P ′

P

)2

= 0. (3.47)

This equation can be solved perturbatively, assuming that the frequency Ω2 is slowly-varying:

P 2 = Q0 + εQ1 + ε2Q2 + · · · , (3.48)

where

Q0 ≡ Ω2,

Q1 ≡ 3

4

(
Ω′

Ω

)2

− 1

2

Ω′′

Ω
, (3.49)

etc.,

and we introduced an explicit parameter ε that counts the number of derivatives and needs

to be set to 1 at the end. To lowest order, P 2 ≈ Ω2 and the error can be estimated by

comparing the size of the �rst order to the zeroth order term. Away from the classical

turning point ζ0, the full solution can be written as:

ψ (ζ) =


(−Ω2)

− 1
4

[
Ce
−
´ ζ
ζ0
dζ′
√
−Ω2

+De
´ ζ
ζ0
dζ′
√
−Ω2
]
, ζ < ζ0;

(Ω2)
− 1

4

[
ae

i
´ ζ
ζ0
dζ′
√

Ω2

+ be
−i
´ ζ
ζ0
dζ′
√

Ω2
]
, ζ > ζ0.

(3.50)
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As is obvious from (3.49), the WKB approximation always breaks down near the turning

point. As usual, this can be dealt with by approximating the potential in the region close to

ζ0 by a linear function

Ω2 ≈ β (ζ − ζ0) , β ≡ dΩ2

dζ
(ζ0) > 0. (3.51)

In this region, the solution is then given in terms of Airy functions:

ψ0 ≈ E1Ai
(
β

1
3 (ζ0 − ζ)

)
+ E2Bi

(
β

1
3 (ζ0 − ζ)

)
. (3.52)

It has the following asymptotics:

ψ0 ≈


(ζ0−ζ)−

1
4

2β
1
12
√
π

[
E1e

− 2
3

√
β(ζ0−ζ)

3
2 + 2E2e

2
3

√
β(ζ0−ζ)

3
2

]
, ζ � ζ0;

(ζ−ζ0)−
1
4

2β
1
12
√
π

[
(E2 − iE1) e

i
(
π
4

+ 2
3

√
β(ζ−ζ0)

3
2

)
+ (E2 + iE1) e

−i
(
π
4

+ 2
3

√
β(ζ−ζ0)

3
2

)]
, ζ � ζ0.

(3.53)

On the other hand, for ζ close to, but not too close to ζ0, the exponent in (3.50) can be

written as

ˆ ζ

ζ0

dζ ′
√
|Ω2| ≈


−2

3

√
β (ζ0 − ζ)

3
2 , ζ < ζ0;

2
3

√
β (ζ − ζ0)

3
2 , ζ > ζ0.

(3.54)

Matching (3.53) and (3.50), we �nd

C =
(
e−i

π
4 a+ ei

π
4 b
)
,

D =
i

2

(
e−i

π
4 a− ei

π
4 b
)
. (3.55)

Near the boundary (ζ � 1), we then have

ψ(ζ) =
ζ

1
2(

ν2 − 1
4

) 1
4

(
CeS0(ζ) +De−S0(ζ)

)
, (3.56)
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where

S0(ζ) ≡
ˆ ζ0

ζ

dζ ′
√
−Ω2. (3.57)

Hence the solution near the boundary is determined entirely in terms of S0, which is given

as an integral over the e�ective potential.

As a check of the validity of the WKB approximation, let us determine whether Q1 in

(3.48) remains small compared to Q0 for all ζ. Consider the slightly more general case where

Ω2 ∼ −ζ−s as ζ → 0. We �nd

Q1 = −s (s− 4)

16ζ2
. (3.58)

For s 6= 0, 4, this term blows up near the boundary. For s < 2, it blows up faster than

Q0 = Ω2 itself, thus rendering the WKB approximation invalid. For s > 2, it blows up

slower than Ω2, so the relative error approaches zero and we should expect WKB to yield

accurate results. In the borderline case s = 2, which is the one that is interesting for us, the

�rst order correction is in general comparable to the zero-th order term. Hence the lowest

order approximation will a priori not give very accurate results.

Stated di�erently, for s = 2 the perturbative expansion (3.48) of P is not consistent,

since in general the order n and order n+1 terms will mix. To avoid this mixing, we need to

�nd a way to explicitly move the term Q1 = −1/(4ζ2) to one lower order in the expansion.

Obviously, we could just declare

P 2 = Ω2 − 1

4ζ2
+O (ε) . (3.59)

This is equivalent to making the somewhat ad-hoc substitution ν2 → ν2 + 1/4 in (3.48). A

more rigorous way is to perform the following change of variables:

ζ ≡ ew,

ψ ≡ e
w
2 u. (3.60)
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The Schrödinger equation then reads

u′′ + ω2u = 0, (3.61)

where

ω2 ≡ e2w − ν2 − µ(w). (3.62)

It is easy to see that in these coordinates, the e�ective frequency is indeed slowly varying

both in the deep UV and the deep IR. In fact, one can check that the �rst order term Q1

becomes much smaller than Ω2 in both limits. We see that in the new variables (3.60), the

expansion (3.48) is consistent and the WKB solution is a good approximation everywhere,

except in the vicinity of the turning point.

Repeating the steps (3.50) through (3.56) for (3.61) and changing back to our previous

variables we arrive at

ψ =

(
ζ

ν

) 1
2 (
CeS(ζ) +De−S(ζ)

)
, (3.63)

with

S (ζ) ≡
ˆ ζ0

ζ

dζ ′
√
−Ω2 +

1

4ζ ′2
. (3.64)

Not surprisingly, the e�ect of the coordinate transformation (3.60) is indeed to add an

e�ective potential ∆U = 1/(4ζ2) to (3.45). Therefore, all we need to do in practice is to

replace ν2 → ν2 + 1/4. Let us emphasize that (3.61) is in fact equivalent to (3.44), so this

substitution is now on a rigorous footing.

The exponential growth/decay of the solution in the classically forbidden region is mani-

fest in the dependence on S in (3.63), which roughly corresponds to the area of the tunneling

barrier. The wider/higher the barrier, the larger the corresponding factor eS is. We are only

interested in the normalizable, or decaying solution near the boundary, so we will have to set

C = 0. Up to a �nite error, the WKB approximation then accurately captures the boundary

behavior of this solution, and in particular the exponential suppression between bulk and
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Figure 9: Plot of the WKB (dashed) and exact (solid) boundary normalization factor |B|/|b|
as a function of α. Here we have taken z = 2 and ν = 1. The large α behavior is exponentially
suppressed, |B|/|b| ∼ ανe−πα/2.

boundary amplitudes.

We can compare this WKB approximation with the exact solution for z = 2 from sec-

tion 3.2.1. Figure 9 shows a plot of the WKB solution for z = 2 Lifshitz, compared to the

exact solution. As we can see, the WKB approximation accurately captures the exponen-

tial momentum-suppression at large α. In section 3.5, we will use the WKB formalism to

investigate for which spacetimes smearing functions exist.

3.3.1 Example: AdS (z = 1)

We can use the WKB approximation to analyze the near-boundary behavior in various planar

spacetimes. For AdS, z = 1 and we have

Ω2 = 1−
ν2 − 1

4

ζ2
, (3.65)

where

ζ =
√
E2 − k2ρ. (3.66)
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Computing the integral (3.64), we �nd

S (ζ) = −
√
ν2 − ζ2 − ν

2
log

(
ν −

√
ν2 − ζ2

ν +
√
ν2 − ζ2

)
. (3.67)

Near the boundary (ζ � ν),

eS ≈
( e

2ν

)−ν
ζν . (3.68)

Plugging this result into (3.63) and rescaling back to the original �eld φ we arrive at the

familiar-looking result

φ (x) = Aρd−∆ +Bρ∆, (3.69)

where ∆ ≡ (d+ 1)/2 + ν, and

A = Ce−ν2ννν−
1
2

(
E2 − k2

) 1
4
− ν

2 ,

B = iDeν2−ν−1ν−ν−
1
2

(
E2 − k2

) 1
4

+ ν
2 . (3.70)

Notice that the inclusion of the correction term ∆U was crucial to obtain the correct bound-

ary behavior.

3.3.2 Example: z = 2 Lifshitz

For Lifshitz with z = 2, we have

Ω2 = 1−
ν2 − 1

4

ζ2
− α

ζ
. (3.71)

The classical turning point is at

ζ0 =
α

2

1 +

√
1 +

(
2ν

α

)2
 . (3.72)
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In this case, the WKB integral (3.64) can be evaluated to give

S =−
√
ν2 + αζ − ζ2 − ν log

 ζ (2ν2 + αζ0)

ζ0

(
2ν2 + αζ + 2ν

√
ν2 + αζ − ζ2

)


+
πα

4
+
α

2
arcsin

(
α− 2ζ√
4ν2 + α2

)
. (3.73)

In the near-boundary limit ζ/ν → 0, with α/ν held �xed, we �nd

eS ≈

(√
α2 + (2ν)2

(2ν)2

)−ν
exp

[
−ν +

α

2

(
π − arctan

(
2ν

α

))]
ζ−ν . (3.74)

For α/ν � 1 this can be approximated as

eS ≈
( e

2ν

)−ν
ζ−ν , (3.75)

which is exactly what we found in the AdS case.

Hence high energy/low momentum modes do not �feel� the Lifshitz background, but

instead behave like they would in the AdS case. Those are precisely the �free modes�, de�ned

in section 3.2, which only have to tunnel through the ρ−2-part of the potential. Notice that

for �nite momenta, the de�nitions of ζ in AdS (3.66) and Lifshitz (3.25) di�er slightly. They

do however agree in the α→ 0 limit.

We are interested in the normalizable mode, which may be obtained by setting C = 0;

this furthermore implies D = e−i
π
4 b. Using (3.63), we see that

|B|
|b|

∣∣∣∣
WKB

=
eν√

ν(2ν)2ν
(α2 + 4ν2)ν/2 exp

[
−α

2

(
π − arctan

(
2ν

α

))]
. (3.76)

This may be compared with the exact z = 2 solution (3.41)

|B|
|b|

= 2
1
2

+ν |Γ(1
2

+ ν + iα
2
)|

Γ(1 + 2ν)
e−πα/4. (3.77)
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Figure 10: Comparison of the WKB amplitude factor with the exact result for z = 2 and
ν = 1, 3 and 10. The fractional WKB error is given by (ηWKB − ηexact)/ηexact, where
η = |B|/|b|.

As an example, we show the behavior of the WKB and exact solution as a function of α for

ν = 1 in Figure 9.

It is straightforward to examine the behavior of the WKB and exact solutions in the

small and large α limits. The α/ν � 1 limit was already considered above. In the opposite

limit α/ν � 1, we �nd instead

eS ≈
( e

2ν

)−2ν

α−νe
απ
2 ζ−ν . (3.78)

Thus we obtain

|B|
|b|

∣∣∣∣
WKB

≈


(
e
2

)ν
ν−(ν+ 1

2), for α
ν
� 1;

e2ν√
ν(2ν)2ν

ανe−
πα
2 , for α

ν
� 1.

(3.79)

This may be compared with the exact solution in the same limits

|B|
|b|
≈


2ν+

1
2 Γ( 1

2
+ν)

Γ(1+2ν)
, for α

ν
� 1;

√
4π

Γ(1+2ν)
ανe−

πα
2 , for α

ν
� 1.

(3.80)

Our result demonstrates that the WKB solution gives the correct α behavior for both small
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and large α. Note that the ν dependent prefactors are di�erent for �nite ν, although they

coincide in the large ν limit. This is illustrated in Figure 10, where we plot the fractional

di�erence between the WKB result and the exact solution for several values of ν. In par-

ticular, while the asymptotic behavior |B|/|b| ∼ ανe−πα/2 is reproduced as α/ν → ∞, the

fractional error approaches a constant for �xed ν

δ(|B|/|b|)
|B|/|b|

→ Γ(1 + 2ν)e2ν

√
4πν(2ν)2ν

− 1 =
1

24ν
+

1

1152ν2
+ · · · . (3.81)

One should keep in mind, however, that this will not a�ect our results on the absence of

smearing functions for the Lifshitz background, as what is important is the exponential

suppression near the boundary, and not the exact form of the prefactor.

3.4 General Lifshitz Spacetime

For the general Lifshitz case, we consider the e�ective potential

Ω2 = 1− ν2

ζ2
− α

ζγ
, (3.82)

where we recall that γ is related to the critical exponent by γ = 2(1 − 1/z). We restrict

to the case z > 1, corresponding to 0 < γ < 2. While the exact WKB integral may be

performed numerically, it is in fact possible to extract the asymptotic behavior in the large

α limit.

More precisely, we note that Ω2 introduces several scales for ζ, depending on the relative

importance of the three terms. In the UV, as ζ → 0, the ν2/ζ2 term will dominate, while in

the IR, as ζ → ∞, the constant term will dominate. If α < νγ, then the α/ζγ term is not

important. In this case, the 1/ζ2 piece of the potential leads to power law behavior in the

UV, but no exponential suppression in the wavefunction. On the other hand, for α > νγ,

an intermediate region (ν2/α)1/(2−γ) < ζ < α1/γ opens up, where the α/ζγ term leads to
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tunneling behavior.

For α � νγ, the UV and IR regions are well separated, and we may approximate the

WKB integral according to

S =

ˆ ζ0

ζ

dζ ′

√
ν2

ζ ′2
+

α

ζ ′γ
− 1 ≈

ˆ ζ∗

ζ

dζ ′

√
ν2

ζ ′2
+

α

ζ ′γ
+

ˆ ζ0

ζ∗

dζ ′
√

α

ζ ′γ
− 1 = S1 + S2, (3.83)

where (ν2/α)1/(2−γ) � ζ∗ � α1/γ. The �rst integral may be performed by making the change

of variables u = (α/ν2)ζ2−γ. The result is

S1 =
ν

2− γ

[
2
√

1 + u+ log

√
1 + u− 1√
1 + u+ 1

]∣∣∣∣∣
(α/ν2)ζ2−γ∗

(α/ν2)ζ2−γ

. (3.84)

Expanding for the lower limit near zero and the upper limit near in�nity gives

S1 =
ν

2− γ
log

(
4ν2

αe2

)
− ν log ζ +

2
√
α

2− γ
ζ1−k/2
∗

(
1− ν2

2αζ2−γ
∗

+ · · ·
)
. (3.85)

This gives the correct near-boundary behavior

ψWKB ∼ ζ1/2e−S ∼ ζν+1/2. (3.86)

For the second integral, we let u = α/ζγ, so that

S2 =
α1/γ

γ

ˆ α/ζγ∗

1

u−1−1/γ
√
u− 1du. (3.87)

Although this integral can be expressed in terms of the incomplete Beta function, we only

need the expansion for large α/ζγ∗ . The result is

S2 =

√
πΓ(1/γ − 1/2)

2Γ(1/γ)
α1/γ − 2

√
α

2− γ
ζ1−γ/2
∗

(
1− 2− γ

2(2 + γ)

ζγ∗
α
− · · ·

)
. (3.88)

When S1 and S2 are added together, the leading terms in ζ∗ cancel, while the rest vanish in
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Figure 11: Comparison of the asymptotic WKB amplitude factor with the exact (numerical)
result for ν = 1, and z = 1.5, 2, 3 and 4. The fractional WKB error is given by (ηWKB −
ηexact)/ηexact, where η = |B|/|b|. Note that the asymptotic WKB result (3.89) is only valid
in the large α limit. The fractional error approaches a constant (dependent on ν) as α→∞.

the asymptotic limit. We thus obtain

ψWKB ∼
√
ζ

ν
e−S ∼ ζν+1/2 1√

ν

(
αe2

4ν2

)ν/(2−γ)

exp

(
−
√
πΓ(1/γ − 1/2)

2Γ(1/γ)
α1/γ

)
. (3.89)

This agrees with (3.78) for γ = 1, corresponding to z = 2. We have con�rmed numerically

that this WKB result for α � νγ reproduces the correct asymptotic behavior in α. As an

example, we show the fractional error for several values of z at �xed ν = 1 in Figure 11.

As in the z = 2 case discussed above, for �xed ν, the exact prefactor is not reproduced by

WKB. However, the exponential suppression is con�rmed.

3.4.1 Error Analysis

In addition to the explicit numerical analysis of the previous section, we would like to in-

vestigate the domain of validity of the WKB approximation analytically. In particular, this

allows us to identify potentially problematic regions that yield a large error when integrated

over, and identify when and where the WKB approximation breaks down.
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In the coordinates (3.60), the e�ective frequency is given by

ω2 = e2w − αe(2−γ)w − ν2. (3.90)

The relative error can be estimated by

Q1

Q0

=
1

ω6

[
1

4
e4w + ν2e2w +

1

16
α2 (2− γ)2 e2(2−γ)w

+
1

4
α
(
γ2 + γ − 2

)
e(4−γ)w − 1

4
ν2α (2− γ)2 e(2−γ)w

]
. (3.91)

Clearly, Q1/Q0 → 0 as w → −∞, so the WKB approximation is always valid in the deep UV.

The matching procedure near the turning point is only valid if there is some �nite overlap

between the matching region, where ω2 is approximately linear, and the semiclassical region,

where |Q1|/|Q0| � 1. Let us consider two separate cases:

1. α� ν: We can write ω2 ≈ e2w−ν2. The condition for the potential to be approximately

linear is

(ω2)
′′

(w0)

(ω2)′ (w0)
(w − w0)� 1. (3.92)

Since the left hand side is of order |w − w0|, the matching region is approximately

given by ew ∈ [νe−1, νe]. To check if there is some overlap of this interval with the

semiclassical region, let us plug the upper and lower bound into our error estimate:

|Q1|
|Q0|

≈


0.08
ν2
, ew = νe−1;

0.21
ν2
, ew = νe.

(3.93)

We see that for small ν (more precisely, for ν . 1/2), the error becomes of order one

and there is no overlap between the matching region and the semiclassical region. In

this case, the matching procedure fails.

2. α� ν: We can write ω2 ≈ e2w − αe(2−k)w for w near the turning point at ew0 ≈ α1/γ.
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The condition (3.92) now gives ew ∈
[
α1/γe−1, α1/γe

]
and the error at the boundary

points is Q1/Q0 ∼ α−2/γ · const. Hence for α large enough the matching always yields

good results.

Even though for large α the matching procedure works for all ν, one needs to be more careful:

As we have seen previously, there are three di�erent regimes of ζ, corresponding to each of

the three terms in (3.90) dominating. In the region where αe(2−γ)w dominates, the relative

error grows as w decreases (see (3.58)). If ν = 0, the error continues to grow to in�nity as

we approach the boundary. However, for ν 6= 0, the ν2/ρ2 part of the potential takes over

at αe(2−γ)w ∼ ν2, and the relative error decreases again. Hence there is a local maximum of

order

|Q1|
|Q0|

≈ 3

32ν2
. (3.94)

For small ν, the WKB approximation breaks down in this region. We speculate that since

αe(2−γ)w ∼ ν2 is precisely where the potential changes from k2/ρ to ν2/ρ2 behavior, there is

some nontrivial mixing between growing and decaying modes that the WKB approximation

cannot account for. This mixing is stronger for small ν, as the di�erence between the relevant

exponents, ∆+ −∆− = 2zν, becomes small. Nevertheless, we can conclude that our WKB

approximation can be trusted as long as ν & 1/2. Most importantly, the approximation

becomes more and more accurate at large α/ν, which is precisely the regime we are interested

in.

3.5 Smearing Functions in Lifshitz Spacetimes

In this section, we introduce smearing functions as a way to reconstruct bulk physics from

boundary dynamics. Using the WKB formalism developed previously, we will show that for

Lifshitz spacetimes, and more generally for any �ow involving Lifshitz, such reconstruction

is not possible.

First, recall that the normalizable solutions of the Klein Gordon equation can be used
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to construct the Hilbert space of the bulk theory in the following way: We decompose the

scalar as

φ (t, ~x, r) =

ˆ
dEddk

1

NE,k

(
φE,k (t, ~x, r) aE,k + φ∗E,k (t, ~x, r) a†E,k

)
, (3.95)

where aE,k are operators, NE,k ≡ 〈φE,k, φE,k〉
1
2and 〈·, ·〉 is the Klein-Gordon inner product,

de�ned by

〈f, g〉 ≡ i

ˆ
Σ

ddxdr
√
−gg00 (f ∗∂tg − (∂tf

∗) g) . (3.96)

Here, the integral is to be taken over a spacelike slice Σ. This norm is designed to be

preserved by the e�ective Schrödinger equation in (3.14).

If we choose
〈
φE,k, φ

∗
E,k

〉
= 0, i.e. pick de�nite frequency solutions, the a and a† are the

usual creation/annihilation operators for particles with wavefunction φE,k. We can create

all possible states in the Fock space by repeatedly acting with a† on the vacuum |0〉AdS.

In Lorentzian AdS/CFT, the bulk-boundary dictionary states that there exists a boundary

operator de�ned by

O (t, ~x) ≡ lim
r→0

r−∆+φ (t, ~x, r) , (3.97)

which is sourced by the classical, non-normalizable solution φcl behaving as r∆− at the

boundary. Taking the above limit in (3.95), we arrive at

O (t, ~x) =

ˆ
dEddk

1

NE,k

(
ϕE,k (t, ~x) aE,k + ϕ∗E,k (t, ~x) a†E,k

)
. (3.98)

Here ϕE,k ≡ limr→0 r
−∆+φE,k. The remarkable fact is that the boundary operator can be

expanded in terms of the same a,a† as the bulk �eld. Thus, to create an arbitrary state in

the bulk we can use either bulk operators or boundary operators that are �smeared� over ~x

and t in an appropriate way. For example, for a single-particle state we have

aE,k =

ˆ
dt′ddx′NE,kϕ

∗
E,k (t′, ~x′)O (t′, ~x′) , (3.99)
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so the state |E, k〉AdS can be built entirely out of boundary operators, and so on. Here we

need to assume that the ϕ are normalized such that

ˆ
dEddkϕ∗E,k (t, ~x)ϕE,k (t′, x′) = δ (t− t′) δ (~x− ~x′) . (3.100)

Notice that (3.100), and not (3.96), is the relevant inner product here. This is because

the ϕE,k are not solutions to any equation of motion at the boundary; rather, they are a

set of complete functions3. The condition (3.100) is not in tension with the Klein-Gordon

normalization condition in the bulk, since we have explicitly factored out NE,k in (3.95).

Equation (3.99) induces an isomorphism between the Fock-space representations of the

bulk and boundary Hilbert spaces. The question we would like to answer is whether we

can express any operator in the bulk entirely in terms of boundary operators. In particular,

we would like to reconstruct φ from its corresponding boundary operator O. We make the

ansatz

φ (t, ~x, r) =

ˆ
dt′ddx′K (t, ~x, r|t′, ~x′)O (t′, ~x′) , (3.101)

where K is called a smearing function. We can plug (3.99) back into (3.95) to obtain:

K (t, ~x, r|t′, ~x′) =

ˆ
dEddkφ (t, ~x, r)ϕ∗E,k (t′, ~x′) . (3.102)

Note that this K di�ers from the usual bulk-to-boundary propagator in that it is a

relationship among normalizable modes. Throughout this chapter, we will assume that K

has a well-de�ned Fourier transform, which allows us to interchange the order of integration

above. We will comment on some mathematical details and the precise de�nition of K in

section 3.7.

3In other words: O is an o�-shell operator.

62



In Lifshitz spacetime, the normalizable solutions are given by

φE,k = e−i(Et−
~k·~x)fE,k = e−i(Et−

~k·~x)e−
d
2
BψE,k. (3.103)

Near the boundary,

ψ ≈ BE,kζ
1
2

+ν ≡ B̂E,kr
z( 1

2
+ν), (3.104)

so that

ϕE,k = lim
r→0

r−∆+φ = e−i(Et−
~k·~x)B̂E,k. (3.105)

The normalization condition (3.100) then requires |B̂E,k| = (2π)−(d+1)/2. Let us now use

the WKB approximation. For normalizable solutions, we have C = 0, or a = −ib, so the

normalization of the wavefunction is �xed by

|b| = ν
1
2 z

1
2

+ν (2π)−
d+1
2 lim

y→0
yνeS(y). (3.106)

The properly normalized WKB solution is then given by

ψE,k (ρ) =


(2π)−

d+1
2 ν

1
2 z

1
2

+ν (U + ∆U − E2)
− 1

4 limy→0 y
νeS(y)−S(ρ), ρ < ρ0;

ei
π
4 (2π)−

d+1
2 ν

1
2 z

1
2

+ν (E2 − U −∆U)
− 1

4 limy→0 y
νeS(y)

[
e−iΦ(ρ) − ieiΦ(ρ)

]
, ρ > ρ0,

(3.107)

where S (ρ) =
´ ρ0
ρ
dρ′
√
U + ∆U − E2, Φ (ρ) =

´ ρ
ρ0
dρ′
√
E2 − U −∆U and ∆U ≡ 1/ (2ρ′)2

(see appendix D).

Using this result, we can write our candidate smearing function as

K = e−
d
2
B

ˆ
dE

(2π)
1
2

ddp

(2π)
d
2

ei(E(t′−t)−~k·(~x′−~x))ψE,k. (3.108)

We recognize this integral as the inverse Fourier transform of ψE,p. We will now show that

this object does not exist4 because ψ grows exponentially with momentum p.

4For a precise de�nition of what we mean by nonexistence, see section 3.7.
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First, let E and ρ be �xed. We then choose k large enough so ρ < ρ0, i.e. so the ρ we are

considering is in the tunneling region. This choice is possible for any ρ. For concreteness,

we can choose

k2 > E2ργ. (3.109)

Then ∣∣∣∣limy→0
yνeS(y)−S(ρ)

∣∣∣∣ = lim
y→0

yν exp

(ˆ ρ

y

dρ′

√
ν2

(ρ′)2 +
k2

(ρ′)γ
− E2

)
, (3.110)

and the integral is real-valued. Now let 0 < λ < 1 such that y < λρ < ρ and split the

integral accordingly: ˆ ρ

y

=

ˆ λρ

y

+

ˆ ρ

λρ

. (3.111)

Roughly speaking, the �rst integral provides the boundary data with the correct asymptotic

y-dependence, while the second integral is responsible for the exponential behavior in p. In

the �rst integral, using (3.109), we �nd

ˆ λρ

y

dρ′

√
ν2

(ρ′)2 +
k2

(ρ′)γ
− E2 > ν log

(
λρ

y

)
. (3.112)

In the second integral, for p large enough5 we can �nd a constant 0 < c < 1 such that

ˆ ρ

λρ

dρ′

√
ν2

(ρ′)2 +
k2

(ρ′)γ
− E2 >

ˆ ρ

λρ

dρ′
ck

(ρ′)
γ
2

= czρ
1
z

(
1− λ

1
z

)
k. (3.113)

Putting everything together, we conclude that for E and ρ �xed, there exist c, λ ∈ (0, 1) and

k0 such that ∣∣∣∣limy→0
yνeS(y)−S(ρ)

∣∣∣∣ > (λρ)ν exp
[
czρ

1
z (1− λ

1
z )k
]
, (3.114)

for all k > p0. Hence the function ψE,k grows exponentially with k and the smearing function

de�ned in (3.102) does not exist6.

5For concreteness, choose e.g. p2 > E2ρk/(1− c2).
6This exponential behavior in p is distinct from the behavior of |B|/|b| in α (see e.g. (3.43)), since here

we are interested in the amplitude of the wavefunction at a �xed radial location ρ, and not its overall
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The inability to construct a smearing function is due to the existence of trapped modes,

which have to tunnel through Vk to reach the boundary. The boundary imprint of these

modes is suppressed by a factor of e−ck, where c is some positive constant depending on

the geometry. However, the normalization condition (3.100) turns this suppression into an

exponential ampli�cation: For any given mode the smearing function takes the corresponding

boundary data and ampli�es it by an appropriate factor to reconstruct bulk information.

Consequently, trapped modes receive a contribution e+ck in the smearing function integral.

As k → ∞, the boundary imprint of trapped modes becomes arbitrarily small, and as a

result the smearing function integral diverges.

The splitting of the domain of integration into a near-boundary region [0, λρ] and a bulk

region [λρ, ρ] is crucial for our proof: In the near-boundary region, we use the fact that no

matter how large k is, we can make ρ′ small enough such that the cosmological- and mass-

terms in the potential dominate over Vk and we can approximate U ≈ ν2/(ρ′)2. Modes that

tunnel through this part do not contribute an exponential factor ∼ ek, but rather produce

the correct boundary scaling y−ν . This scaling is consequently stripped o� by the yν factor

in (3.110). In the bulk region near ρ, however, there is a minimum value that ρ′ can take, so

as we drive k to in�nity, eventually U ≈ k2/(ρ′)γ becomes a very good approximation. This

is what produces the exponential factor in (3.114).

We see that there are two qualitatively di�erent limits of the potential: ρ → 0 and

k → ∞. Both of them are important for understanding the behavior of (3.110), which is

why we need to pick 0 < λ < 1 to get a lower bound that re�ects this behavior. Simply

setting λ = 0 corresponds to approximating U ≈ k2/(ρ′)γ everywhere. However, in doing so

we would be neglecting the boundary scaling y−ν , and consequently the lower bound (3.114)

would be zero. Similarly, λ = 1 corresponds to approximating U ≈ ν2/(ρ′)2 everywhere.

While this is certainly true for small ρ′, we would be missing the fact that the momentum

part Vk of the potential can still dominate in any interval away from the boundary (i.e.

normalization.
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close to ρ) and lead to exponential growth. The bound (3.114) would just be a constant

independent of k and we would not be able to make the same conclusion about the smearing

function.

3.5.1 Momentum-space Analysis

It is instructive to analyze the behavior of the integral (3.108) at large momenta in the (E,|k|)-

plane. We already saw that for �xed energy E, the smearing function diverges exponentially

with |k|, as the tunneling barrier becomes arbitrarily large at high momenta. However, this

is not necessarily the only direction along which the integral diverges. Let us introduce polar

coordinates

|k| = q cos θ

E = q sin θ. (3.115)

Figure 12 shows a sketch of the spectrum in the (E,|k|)-plane: The solid line divides trapped

modes, which have to tunnel through Vk from free modes, which only tunnel through U ∼

1/ρ2. If we imagine cutting o� Lifshitz at some small value λρ with λ < 1, all modes with

E < (λρ)−
1
2 |k| (yellow region) are trapped modes7. Let us study the integral which de�nes

the smearing direction. If we perform this integral along any direction θ over these modes

(i.e. tan θ < (λρ)−
1
2 ), the exponential term in the integrand behaves as

Re (S (y)− S (ρ)) =

ˆ ρ

y

dρ′

√
ν2
z

(ρ′)2
+

(
1

(ρ′)γ
− tan2 θ

)
q2 cos2 θ. (3.116)

For q large enough, this term grows linearly and the smearing function is exponentially

divergent. We see that the variable that controls the suppression (or ampli�cation) due to

7Notice that the choice of λ is arbitrary. In particular, along any line E = tan θ|k|, there is a choice of
λ such that all modes are below the momentum-barrier for large enough |k|. Nevertheless, because of the
subtleties discussed at the end of the previous section, we should not simply take λ → 0 but instead work
with a small but �nite value.
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Figure 12: Sketch of free (F) and trapped (T) modes for general case (energy E vs. momen-

tum p ≡ |~k|). Deforming the geometry in the IR may introduce a cuto� (dotted line), but
this line will always remain below the solid line, and some trapped modes survive.

tunneling is in fact q =
√
E2 + k2, as opposed to just |k|.

3.5.2 No Smearing Function ⇔ Singularities?

The divergence of the smearing function is due to trapped modes, which correspond to clas-

sical geodesics that cannot reach the boundary. However, those are precisely the trajectories

that start and end at the tidal singularity at ρ → ∞, so their fate is not well-understood

even on the classical level. Therefore, one might wonder if the inability to construct smearing

functions is simply due to the presence of singularities. This question has been raised before

in the case of black hole solutions in AdS8 [68, 69]. Fortunately, as we have seen in chapter

2, in our case there are known ways to resolve the singularity in the IR, so we can directly

test the conjecture that non-existence of smearing functions is related to singularities. Thus

we can use the numerical �ows constructed earlier to test whether resolving the singularity

can make the smearing function well de�ned.

As a warm-up, consider the following analytical toy-model describing a �ow from AdSd+2

8However, we should point out that the two types of singularities encountered here are qualitatively
di�erent. In the Lifshitz case, the singularity is `mild', in the sense that all curvature invariants remain
�nite. It is, however, felt by strings that fall towards the horizon [43].
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to Lifshitz to AdS2 × Rd:

e2A =
1

ρ2
,

e2B =



1
ρ2
, 0 < ρ < R1;

1
Rγ1ρ

2−γ , R1 < ρ < R2;

1

Rγ1R
2−γ
2

, R2 < ρ,

C = A. (3.117)

The last condition is a gauge choice, which �xes our radial coordinate to be ρ, as de�ned in

(3.11). The potential is given by

U (ρ) =



ν21−
1
4

ρ2
+ k2, 0 < ρ < R1;

ν2z− 1
4

ρ2
+ k2

(
R1

ρ

)γ
, R1 < ρ < R2;

ν2∞− 1
4

ρ2
+ k2

(
R1

R2

)γ (
R2

ρ

)2

, R2 < ρ,

(3.118)

where νz was de�ned in (3.27), and 0 < γ < 2. All modes with k > E, or equivalently

tan θ < 1 are trapped. It is interesting to note that since the potential goes to zero as

ρ→∞, there are now modes that are below the barrier in the AdSd+2 region. For pure AdS,

this is not possible, as the wavefunction cannot be below the barrier everywhere.

Let us see if a smearing function exists for any point ρ in the bulk. For 0 < ρ < R1, we

need to compute

∣∣∣∣limy→0
yνeS(y)−S(ρ)

∣∣∣∣ = lim
y→0

yν exp

Re

ˆ ρ

y

dρ′

√
ν2

1

ρ′2
+ (1− tan2 θ) q2 cos2 θ

 . (3.119)

Naively, one might expect that since we are integrating all the way up to the boundary

at ρ = 0, the 1/ρ2-term will eventually dominate and there is no q-divergence. However,

we have seen before that it is necessary to split the integral into a near-boundary region
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and a bulk region, according to (3.111). The near boundary integral will then produce the

typical boundary scaling y−ν , while the bulk integral will grow linearly for trapped modes.

In complete analogy with (3.114) we �nd that there exist constants q0, c > 0 and λ ∈ (0, 1)

such that ∣∣∣∣limy→0
yν1eS(y)−S(ρ)

∣∣∣∣ > (λρ)ν1 ecq, (3.120)

for all q > q0. Again, even though the 1/ρ2 part of the potential dominates near the

boundary, there is still an exponential divergence due to trapped modes, and the smearing

function does not exist in the AdS region.

For points within the Lifshitz region (R1 < ρ < R2), the relevant integral contains an

integral over the AdSd+2 region, which is divergent by itself, plus an additional term

ˆ ρ

R1

dρ′

√√√√ ν2
z

ρ′2
+

((
R1

ρ′

)k
− tan2 θ

)
q2 cos2 θ. (3.121)

This integral gives a real contribution for tan θ < (R1/ρ)γ/2, which grows linearly with large

q. Hence the smearing function still grows like ec
′q, but now c′ > c and it diverges even faster

than in the AdSd+2 part.

The same logic can be applied to a point within the AdS2×Rd region in the IR (ρ > R2).

In this case there is a contribution from both AdSd+2 and Lifshitz, plus a contribution

ˆ ρ

R2

dρ′

√√√√ν2
∞
ρ′2

+

((
R1

R2

)k (
R2

ρ′

)2

− tan2 θ

)
q2 cos2 θ. (3.122)

Modes with tan θ < (R1/R2)γ/2R2/ρ begin to tunnel already in the AdS2 × Rd part of the

potential, and so the smearing function will diverge even faster at large q. The �nal result

is that there is no smearing function for any point ρ in the bulk. The trapped modes lead

to an exponential divergence which becomes worse the deeper we try to reach into the bulk.

Let us now check that the result obtained for the toy-model (3.117) is indeed correct also
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Figure 13: E�ective potential U for the numerical �ow found in section 2.3.2, form = 1 (note

that p ≡ |~k|. The momentum increases from bottom to top, with k = 0 (black), 102 (blue),
104 (red), 105 (green). At large momenta, the potential is well approximated by Vk = e2Wk2.

for the exact numerical solution found in section 2.3.2 (here d = 2). The e�ective potential is

plotted in Figure 13. As k increases, the potential becomes better and better approximated

by Vk (shown in Figure 14). The metric coe�cients and potential are of the form given in

(3.117) and (3.118), except that now there is a smooth transition between the three regions.

Figures 15-17 show the real part of S (y) − S (ρ) in the (E,|k|)-plane. Instead of taking

y to zero we choose y ≈ 10−15, which we may think of as disregarding the near-boundary

region of the ρ′-integral and starting at y = λρ. The thick line divides free (blue) modes

from trapped (yellow) modes. The contours represent lines along which Re (S(y)− S(ρ)) is

constant. If we keep E �xed and increase p, we cross the contours at approximately equal

distances, so the integral grows linearly in p. This is not only true for lines of constant E,

but for any line within the trapped region (i.e. any line that stays below the black solid line).

Hence the integral indeed diverges linearly with q =
√
E2 + k2, as was anticipated in section

3.5.1.

Figure 18 shows Re (S (y)− S (ρ)) for three points representing AdS4, Lifshitz and AdS2×

R2. The energy is held �xed at E = 1016 , such that at small p, the wavefunction is oscillating

everywhere. As we increase p, the mode eventually becomes trapped and the real part of the

integral grows linearly. Note that in the log-log plot used here, the three curves lie nicely
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Figure 14: The factor e2W for the same numerical solution. The solution �ows from AdS4

(e2W ≈ const.), to Lifshitz (e2W ∼ ρ1.45, corresponding to z ≈ 3.68) to AdS2 × R2 (e2W ∼
ρ−2).

on top of each other. This fact con�rms our prediction that the smearing function diverges

faster the deeper we try to reach into the bulk.

We conclude that resolving the tidal singularity is not enough to make the smearing

function well de�ned. The AdS2×R2 region in the IR can be thought of as the z →∞ limit

of Lifshitz spacetime. As a consequence, Vk ∼ ρ−2, and there are still trapped modes with

arbitrarily small boundary imprint.

It is also worth commenting on the addition of an AdS region in the UV, as in (3.117),

which may seem desirable to make the holographic renormalization procedure better-de�ned.

We have seen explicitly that the integral over (3.119) is still divergent at large momenta and

a smearing function does not exist, even for points close to the boundary.

3.5.3 Other Flows Involving Lifshitz

The AdS2 × Rd geometry considered in the previous section is not the only possible IR

endpoint of the RG-�ow for Lifshitz solutions. Ref. [55, 72, 73] have considered �ows from

Lifshitz an AdSd+2 �xed point in the IR. These �ows are of particular interest to us, since

Vp does not go to zero as ρ → ∞, but reaches a constant value corresponding to the AdS

geometry at the horizon. Consequently, some of the problematic trapped modes never oscil-
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Figure 15: Plot of Re (S(y)− S(ρ)) for a point within the AdS4 region (ρ ≈ 1.3 · 10−15). The
black solid line represents Vk = E2 and divides free (blue) from trapped modes (yellow).
Contours indicate lines of constant Re (S(y)− S(ρ)), with a linear increase between di�erent
contours.

Figure 16: Plot of Re (S(y)− S(ρ)) for a point within the Lifshitz region (ρ ≈ 9 · 10−8).

Figure 17: Plot of Re (S(y)− S(ρ)) for a point within the AdS2 × R2 region (ρ ≈ 1).
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Figure 18: Plot of the real part of S(y)−S(ρ) vs. p ≡ |~k| at three di�erent positions within
the AdS4 (ρ ≈ 1.3 · 10−15), Lifshitz (ρ ≈ 9 · 10−8) and AdS2 × R2 (ρ ≈ 1) regions (from
bottom to top). The energy is �xed at E = 1016 and we chose m = 1. For large momenta,
the solution begins to tunnel and contributes an exponential factor in K.

late, and are thus removed from the spectrum. To see how this works, consider the following

toy-model of such a Lifshitz to AdSd+2 �ow:

e2A =
1

ρ2
,

e2B =


1

ρ2−γ
, 0 < ρ ≤ R1;

Rγ1
ρ2
, ρ > R1,

C ≡ A. (3.123)

The potential is given by

U (ρ) =


ν2z− 1

4

ρ2
+ k2

ργ
, 0 < ρ ≤ R1;

ν21−
1
4

ρ2
+ k2

Rk1
, ρ > R1.

(3.124)
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To compute the smearing function at some �xed ρ ≤ R1 we again split the interval [0,ρ]

into a near-boundary region [0, λρ] and a bulk region [λρ, ρ], where λ < 1. In the bulk

region, the potential can be approximated by Vk = k2/ργ for p large enough. Then, modes

with k > (λρ)γ/2E are trapped by Vk. For ρ > R1, the potential takes a constant value. In

pure Lifshitz, modes with k < R
γ/2
1 E would have been oscillating in this region. However,

these modes are now completely under the barrier and therefore have to be excluded from

the spectrum. The AdSd+2 region in the IR thus introduces a natural (energy-dependent)

momentum cuto�.

Nevertheless, there is still a �nite wedge of trapped modes with R
−γ/2
1 < tan θ < (λρ)−γ/2

(cf. Figure 12) and integrating up to q = ∞ will produce the same divergent behavior as

before. In section 3.6.1, we will give a general argument as to why this has to be the case,

and show that no smooth IR-deformation can remove all trapped modes from the spectrum.

3.6 Smearing Functions for General Planar Backgrounds

We have seen that the construction of smearing functions can fail if there are modes that

have to tunnel through a momentum barrier in the potential. The integral (3.102) diverges

if such modes exist at arbitrarily large q =
√
E2 + k2. In this section, we will generalize our

previous �ndings to prove that smearing functions do not exist for any geometries that allow

trapped modes.

Consider a background that satis�es

∂ρe
W < 0 for ρ ∈ [ρ1, ρ2]. (3.125)

We would like to compute the smearing function at a bulk point ρ > ρ1. All modes with

Vk (ρ1) > E2 have to tunnel through some part of Vk and are therefore trapped modes.

Let us write the integral de�ning the smearing function in (3.102) as
´
dEd|k|

´
dΩd−1 and

focus on the integral in the (E,|k|)-plane. The domain of integration is shown in Figure 12,
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where free and trapped modes are separated by the solid line E2 = Vk (ρ1). Choosing polar

coordinates (3.115), we �nd that the exponential part of the integrand satis�es

Re (S (y)− S (ρ)) > Re

ˆ ρ2

ρ1

dρ′
√
Vm(ρ′) + Vcos(ρ′) + (e2W (ρ′) − tan2 θ) cos2 θq2. (3.126)

Since the integration domain does not include the boundary, the �rst two terms under the

square root are bounded. Thus, for tan θ < eW (ρ1), the integral grows linearly with large q

and the smearing function diverges exponentially. The divergence appears not only at �xed

E, but under any angle in the yellow region of Figure 12.

Consequently, if a geometry has trapped modes that are below the barrier at some ρ1,

a smearing function does not exist for any ρ > ρ1. Using the null energy condition (3.7),

one can show that once ∂ρe
W is negative for some ρ1, it cannot be positive for any ρ < ρ1.

Thus, once the wavefunction is below the Vk barrier, it will stay below it as we go towards the

boundary. Using the terminology introduced earlier, trapped modes cannot become free near

the boundary. Therefore, when computing the smearing function K (t, x, ρ|t′, x′), there is an

exponential contribution from trapped modes regardless of which bulk point ρ we consider.

The condition (3.125) makes it is easy to identify geometries without smearing functions.

Clearly, Lifshitz has ∂ρe
W < 0 everywhere, and as we saw earlier, K does not exist. If

we instead consider �ows that involve only a �nite region with broken Lorentz invariance,

such that (3.125) is satis�ed in some region, we still have trapped modes, and the smearing

function will not exist. This analysis includes �ows involving a Lifshitz region, as well as

hyperscaling geometries with Lifshitz scaling. Our analysis above shows that none of these

geometries admit smearing functions, provided the spacetime satis�es the NEC.

3.6.1 Removing Trapped Modes via Deformations

In our discussion above, we always assumed that the momentum-space integral (3.102) does

in fact include trapped modes with arbitrarily large q on some set of nonzero measure. This is
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clearly the case in the examples mentioned above. On the other hand, the smearing function

for AdS converges because modes with k2 > E2 are simply not part of the spectrum, as the

corresponding wavefunction would have to be below the potential globally.

One might wonder if it is possible to `�x' a geometry which a priori does not admit a

smearing function, by removing all trapped modes from the spectrum in a physical way.

The AdS example gives us a hint on how one might accomplish this task: If the geometry

is deformed in the deep IR such that would-be trapped modes never actually oscillate, they

would simply not be allowed. Using the null energy condition (3.6) and (3.7) , it is easy to

show that there are only three relevant IR asymptotics that we need to consider:

1. eW decreases monotonically to a constant value µ > 0.

2. eW attains a minimum value µ > 0, but then goes to constant M > µ.

3. eW attains a minimum value µ > 0, but then goes to in�nity.

Trapped states are equivalent to tunneling states in the potential Vk = k2e2W . For p large

enough, these states always exist [74]. This can be seen heuristically by bounding the poten-

tial from above with an appropriate square-well potential Ũ (ρ) (see Figure 19). Therefore,

no smooth deformation can ever remove all trapped modes from the spectrum.

As an example, consider case 1, which captures the case of the Lifshitz to AdSd+2 �ow

discussed in section 3.5.3. The AdS region introduces an energy-dependent momentum cuto�

k < E/µ. However, since µ is by de�nition a global minimum and (3.125) holds, we clearly

have µ < eW (ρ1). Although the cuto� may remove some trapped modes from the spectrum,

there will always remain a wedge of trapped modes that gives a divergent contribution when

integrated over (see Figure 12). We conclude that spaces without a smearing function cannot

be deformed smoothly to make the smearing function well-de�ned.
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Figure 19: Sketch of Vk for a potential satisfying (3.125). This includes deformations of AdS
and �ows involving Lifshitz. Using the min-max principle, the energy levels are bounded
from above by those of a square-well potential. In the large k limit, there are always trapped
modes. The near-horizon behavior of the potential is irrelevant for our discussion.

3.6.2 Adding Trapped Modes via Deformations

Another interesting question is what happens if we take a geometry with a smearing function,

such as AdS [62, 63, 64], and add a small (planar) perturbation in the IR. It can be seen from

(3.7) that eW must start with non-positive slope at the boundary for any background that

is asymptotically AdS9. Since the potential scales with k, such a perturbation will always

introduce new trapped modes. In particular, the momentum-potential Vk = k2e2W can

always be bounded from above by a semi-in�nite square-well potential of width l and height

h = k2h0, where h0 is some constant (see Figure 19). For large enough k, the square-well

always admits bound states with k2 (1− h0) < E2 < k2 and, via the min-max principle,

so will Vk. As a result, the smearing function would be destroyed anytime the metric is

deformed by such a perturbation.

This result is interesting, as it opens up the possibility that �small� perturbations of AdS

can make the smearing function ill-de�ned by introducing new trapped states. However, we

9If we do not insist on AdS asymptotics, then we could choose eW to immediately have a positive slope.
If eW has positive slope at some ρ+, the NEC dictates that eW cannot begin to decrease at some larger ρ.
Thus, in this scenario no trapped modes are introduced, and the smearing function will continue to exist
everywhere. In particular, we cannot have a situation akin to Figure 5 in [69], where the potential has a dip
allowing trapped modes to become oscillating again close to the boundary.
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should keep in mind that our ansatz only allows for planar perturbations; we cannot consider

localized disturbances. It would be interesting to study the e�ect of such perturbations in

a more general setup. Again, notice that the ultimate IR fate of the geometry with AdS

behavior in the UV is not important for this discussion. In particular, whether or not there

is a singularity at r →∞ does not change the qualitative result.

3.6.3 Relativistic Domain Wall Flows

Given the above considerations, one may get the impression that the smearing function no

longer exists for any geometry other than pure AdS. However, it is important to realize that

such a conclusion is in fact unwarranted. What we have seen is that the non-existence of

the smearing function is intimately tied to the presence of trapped modes with exponentially

small imprint on the boundary. Since such modes arise from the large k limit of Vk = e2W~k2,

they are naturally absent whenW = 0, corresponding to �ows preserving (d+1)-dimensional

Lorentz symmetry

ds2
d+2 = e2B(r)[−dt2 + d~x2

d] + e2C(r)dr2. (3.127)

In this case, the Schrödinger equation (3.14) is more naturally written as

−ψ′′ + (Vm + Vcos)ψ = (E2 − ~k2)ψ. (3.128)

In particular, the e�ective potential Û = Vm + Vcos no longer scales with k.

In general, Û may admit bound states and/or modes trapped at the horizon. Although

bound states fall o� exponentially outside the classically allowed region, since such states

occur only at �xed values of Q2 ≡ E2−~k 2, they will always have a non-vanishing (although

small) amplitude at the boundary. Hence the presence of such states do not present an

obstruction to the existence of a smearing function. Trapped modes at the horizon, on the

other hand, are potentially more troubling, as they may form a continuum spectrum with a

limit of vanishing amplitude on the boundary. However, it turns out that this possibility does
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not prevent the construction of a well-de�ned smearing function K(t, x, r|t′, x) for any �xed

value of r. The point here is that since Û is independent of Q, the maximum suppression

factor to tunnel from the boundary to r is bounded by setting Q = 0 in (3.128). As a

result, it is impossible to make the suppression arbitrarily small. Hence we conclude that

the smearing function exists for �nite r in the case of relativistic domain wall �ows, although

the r →∞ limit of K may not exist if there are trapped modes that live arbitrarily far from

the boundary.

We see that it is generally possible to de�ne a smearing function only for relativistic �ows,

where W = 0 along the entire �ow. Furthermore, for the case of AdSd+2 → AdSd+2 �ows,

the e�ective potential Û falls o� as 1/ρ2 both in the UV and the IR. Since this potential is

too steep to admit trapped modes in the deep IR, there are no modes completely removed

from the boundary, and hence the r → ∞ limit of the smearing function is well-de�ned.

Thus in this case the entire bulk may be reconstructed.

3.7 Modifying the Bulk-Boundary Dictionary

We have seen that for transverse Lorentz-breaking spacetimes with locally decreasing trans-

verse speed of light, the smearing function is not well de�ned, even after resolving potential

singularities. Thus, we are left with the option of loosening some of our initial assumptions

about this function and its corresponding entry in the bulk-boundary dictionary. In partic-

ular, we need to reexamine our implicit assumption that K can reconstruct the bulk up to

arbitrarily small transverse length scales.

Let us be a bit more precise about what kind of mathematical object the smearing func-

tion really is, and what we mean by saying that K does or does not exist. The most general

possible de�nition is to let the smearing function be any map from boundary operators to

bulk �elds. However, a reasonable condition is that K de�nes a continuous, linear functional

on the space of boundary operators. Continuity means that for any convergent sequence of
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boundary operators On we have

lim
n→∞

K [On] = K
[

lim
n→∞

On

]
. (3.129)

The di�culty in constructing such a K is due to the fact that the two limits are de�ned with

respect to very di�erent norms. The bulk norm relevant for the left hand side is the Klein-

Gordon norm (3.96), while the boundary norm for O is given by (3.100). We have seen that in

spacetimes with ∂ρe
W < 0 locally, there exist nonzero bulk solutions that have exponentially

small boundary imprint, which provide an obstruction for constructing continuous smearing

functions.

Our strategy in this chaper was to calculate a candidate smearing function K̂ in mo-

mentum space, and ask whether it de�nes a well-behaved object in position space. The

problematic case is when the function de�ned in this way grows exponentially, i.e. K̂ ≈ eck.

Its action on a boundary �eld can be written in momentum space as

K [O] ∼
ˆ
dk K̂ (k) Ô (k) . (3.130)

Whether or not this integral is well-de�ned clearly depends on what we allow Ô to be: If

Ô is a square-integrable function, the smearing function has to be square-integrable as well,

which is clearly not the case here.

What if we impose a stricter fall-o� condition at k → ∞? One rather strict condition

would be that Ô falls o� faster than any inverse power of k at in�nity10. A classic example

of such a function is a Gaussian ∼ e−k
2
. However, eck is not a well-de�ned functional on

this space either. This can be seen by explicitly constructing a sequence of functions with

arbitrarily small boundary imprint, i.e. a sequence that goes to zero in the boundary norm.

For example, consider

Ôn (k) ≡ e−cnΨ (k − n) , (3.131)

10In other words: O is a Schwartz-function and K is a tempered distribution.

80



where Ψ is some bump-function. Attempting to reconstruct the corresponding bulk solution

yields K[On] ∼
´
dkΨ (k), which is independent of n, and in particular never equal to zero.

Using (3.129), this means that the smearing function is not continuous.

The only way to make sense of the smearing function is to completely avoid con�gurations

with arbitrarily small boundary imprint. This can only be achieved by introducing a hard

momentum cuto� Λ. In other words, we attempt to invert the bulk-boundary map φ 7→ O

only for con�gurations with Ô(k > Λ) = 0. Acting on these functions, the exponential eck

is indeed a well-de�ned continuous functional, and the integral (3.130) converges. There is,

however, a price to pay: as is well-known, the Fourier transform of such compactly supported

functions does not have compact support. The position space wavefunction necessarily has

to leak out to in�nity, and thus full localization in the transverse direction can never be

achieved.

3.8 Summary and Discussion

In this chapter, we studied the possibility of bulk reconstruction from boundary information

in Lifshitz and more general non-relativistic spacetimes. At the classical level, the presence

of non-radial null geodesics that do not reach the Lifshitz boundary suggests that much of

the bulk data is inaccessible from the boundary. We have con�rmed this heuristic picture by

studying smearing functions for a bulk scalar �eld and demonstrating that they do not exist

for Lifshitz spacetimes with z > 1. The reason for this is that there will always be trapped

modes in the bulk that have exponentially vanishing imprint on the boundary. It is these

modes and the information that they contain that cannot be reconstructed from any local

boundary data.

Of course, as we discussed in chapter 2, Lifshitz spacetime has a tidal singularity at

the horizon. Since the trapped modes begin and end in the tidal singularity, one might

conjecture that resolving the Lifshitz singularity would remove such modes and lead to a
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well de�ned smearing function. However, this is not the case, as we have seen; even with a

regular horizon such as AdS2 × Rd or AdSd+2, there will be trapped modes with vanishing

imprint on the boundary as the transverse momentum is taken to in�nity. Thus the existence

or non-existence of a smearing function is independent of the nature of the horizon, and in

particular whether it is singular or not.

More generally, we have seen that the constructibility of the smearing function depends

crucially on whether there exists a family of trapped modes with arbitrarily small suppression

on the boundary. The only way this can arise is if the momentum dependent part of the

e�ective Schrödinger potential Vk = e2W~k2 has a local minimum or a barrier that grows as

k →∞. Thus the question of whether or not the smearing function exists is closely related

to the behavior of the gravitational redshift factor e−W . In general, all non-relativistic

backgrounds such as Lifshitz and ones with hyperscaling violation (including �ows with

such regions) do not admit smearing functions. The same is true for geometries such as

Schwarzschild-AdS, where e2W starts out as unity on the boundary, but vanishes at the

horizon [69]. On the other hand, smearing functions are expected to exist for backgrounds

withW = const., i.e those preserving (d+1)-dimensional Lorentz invariance along the entire

�ow.

The scaling of Vk with ~k2 has the important consequence that any trapped mode will

always be completely suppressed on the boundary with a factor ∼ e−cq as q → ∞, where

q2 = E2 + ~k2 and c is a geometry and radial location dependent positive constant. This

gives rise to the perhaps somewhat unexpected feature that, with the existence of trapped

modes, the smearing function K(t, x, r|t′, x) cannot exist even near an asymptotic AdSd+2

region near the boundary, so long as r is at a �xed location. One may wonder why the

presence of trapped modes living in the IR would destroy the possibility of reconstruction of

the UV region near the boundary. The reason for this is that, while a trapped mode in the

IR indeed has to tunnel to reach the boundary, its amplitude does not immediately vanish

in the interior of the bulk geometry. Moreover, these modes can live at a �nite distance from
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the boundary. Hence they can have an imprint at any �xed r in the bulk, and yet vanish

on the boundary. It thus follows that the bulk information corresponding to such modes

cannot be obtained from the boundary, and thus the smearing function would not exist for

any �xed value of r.

Since the existence of trapped modes with arbitrarily large values of q provides an ob-

struction to the construction of a smearing function, one way around this di�culty is to

remove such modes by considering a hard momentum cuto� Λ. Another way to think about

this is that it may indeed be possible to reconstruct the bulk data from the boundary infor-

mation, but only up to a �xed momentum k = Λ. As Λ is taken larger, the reconstruction

becomes more di�cult, as there would be larger ampli�cation in going from the boundary to

the bulk due to the presence of trapped modes with larger values of q. With such a cuto�,

one would have good control of the near boundary region in the bulk. However, one would

lose complete localization in the transverse directions. The analysis in this chapter provides

a �rst hint that non-relativistic spacetimes may have an intrinsic, built-in momentum-cuto�

that has gone unnoticed in previous work. In fact, we will see in section 4.3 that such a

cuto� is not an arti�cial construction, but arises naturally as soon as one considers the e�ect

of higher derivative corrections to the bulk action of matter �elds.

To summarize our discussion of smearing functions, if we limit ourselves to a minimum

spatial resolution, local operators in the non-relativistic CFT do indeed contain all the

relevant information about �elds in the bulk of Lifshitz and other non-relativistic spacetimes.

However, full locality in the transverse direction cannot be achieved using smearing functions

only, due to the presence of modes with vanishing boundary imprint. If and how the missing

local bulk information can be extracted from the �eld theory remains an interesting open

question. One possibility that comes to mind is to make use of non-local operators in

the �eld theory, such as Wilson-loops [75]. At the very least, our analysis demonstrates that

some parts of the holographic dictionary for non-relativistic gauge/gravity dualities are more

intricate than in the well-understood AdS/CFT case.
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Chapter 4

Holographic Green's Functions

The AdS/CFT correspondence provides us with a powerful set of tools to make predictions

for strongly coupled quantum �eld theories. The most striking feature of AdS/CFT is the

fact that it is a weak-strong coupling duality. This has the consequence that calculations that

might be di�cult, or impossible, to carry out on the strongly coupled �eld theory side, might

be relatively easy to carry out on the gravity side. Through the �holographic dictionary�,

AdS/CFT then provides us with a mathematical mapping between observables calculated

on the gravity side to those on the �eld theory side.

An important such observable in any �eld theory is the 2-point correlation function of

various operators. Instead of computing diagrams explicitly on the �eld theory side, we can

use a �holographic� technique for calculating boundary Green's functions [25]. For Lifshitz

spacetime, the holgraphic Green's function was �rst computed for scalar �elds in [20], and

later for fermions and other operators [76, 77, 78, 79, 80]. While the functional form of the

Green's function in Lifshitz spacetime with z = 2 is known analytically, a few open questions

still remain. First, given our discovery of �trapped modes� in the previous chapter, we are

interested in how these modes a�ect the boundary Green's functions. Since trapped modes

are exponentially suppressed near the boundary, one might suspect that their imprint on the

Green's function is also small.
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If the Green's function is in fact insensitive to a certain part of phase space containing

trapped modes, this opens up the possibility for a notion of universality of Lifshitz Green's

functions. If two spacetimes only di�er by features that a�ect modes with high momentum,

we expect the Green's functions of the corresponding �eld theories to be e�ectively the same.

The goal of this chapter is to explore precisely the e�ect of trapped modes on boundary

correlators. We will �rst demonstrate that the holographic spectral function (the imaginary

part of the Green's function) is indeed exponentially insensitive to modes with large mo-

menta, or equivalently small energies. This is true not just for Lifshitz spacetime, but for

a more general class of non-relativistic backgrounds. Finally, we will use the insensitivity

of holographic Green's functions to trapped modes to proof that in any �eld theory with

Lifshitz scaling symmetry, the spectral function exhibits a characteristic exponential sup-

pression at small energies (or large momenta). We expect that this feature is robust with

respect to changing the microscopic details of the theory. To provide concrete support for

this conjecture, we will analyze how higher derivative corrections may e�ect the universal

features of Green's functions. As we will show, the characteristic exponential suppression

survives even when adding an in�nite tower of correction terms that one would expect in

any sensible e�ective �eld theory.

4.1 Green's Functions in Quantum Field Theories

To begin our discussion of holographic Green's functions, it is worthwile recalling some of

the basic properties of Green's functions in quantum �eld theories. At zero temperature, one

typically de�nes three di�erent functions, namely the retarded, advanced, and time-ordered
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(causal) Green's functions

GR(~x, t; ~x′, t′) = i〈[φ(~x, t)φ(~x′, t′)]〉Θ(t− t′),

GA(~x, t; ~x′, t′) = −i〈[φ(~x, t)φ(~x′, t′)]〉Θ(t′ − t),

Gc(~x, t; ~x
′, t′) = i〈Tφ(~x, t)φ(~x′, t′)〉. (4.1)

When Fourier transformed into (ω,~k), unitarity and causality imply that GR is analytic in

the upper half of the complex ω-plane, while GA is analytic in the lower half. These functions

are not independent, but may be related by

GR(ω,~k) = [GA(ω,~k)]∗, (4.2)

as well as

Gc(ω,~k) = GR(ω,~k)θ(ω) +GA(ω,~k)θ(−ω). (4.3)

In general, these Green's functions can be obtained from a single real analytic function

G(ω,~k) satisfying [G(ω,~k)]∗ = G(ω∗, ~k) (except for possible poles and branch cuts) by using

an iε prescription

GR(ω,~k) = G(ω + iε,~k),

GA(ω,~k) = G(ω − iε,~k),

Gc(ω,~k) = G(ω + iε signω,~k). (4.4)

The substitution for the time-ordered Green's function is equivalent to taking ω2 → ω2 + iε.

For real ω, the spectral function is de�ned by

χ(ω,~k) = 2 ImGR(ω,~k) = −i[GR(ω,~k)−GA(ω,~k)] = −i[G(ω+ iε,~k)−G(ω− iε,~k)]. (4.5)
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The spectral function may be interpreted as the density of states in phase space. Mathemat-

ically, non-vanishing spectral weight χ(ω,~k) arises either from poles or discontinuities across

any branch cuts that lie on the real ω axis.

In the holographic calculation, the choice of Green's function is determined by choosing

appropriate boundary conditions at the horizon. For example, choosing only solutions that

are infalling (outgoing) at the horizon selects the retarded (advanced) Green's function.

4.2 Hidden Horizons in Non-relativistic AdS/CFT

4.2.1 Horizon Boundary Conditions and the Holographic Green's

Function

In contrast with Euclidean AdS/CFT, in the Minkowski case, the Green's function has a

richer analytic structure that is closely related to the causal propagation of information.

For example, while the usual computation of the retarded Green's function involves taking

infalling boundary conditions at the AdS horizon, one could equally well have obtained the

advanced Green's function by taking outgoing boundary conditions. As we saw above, in

the situation where time reversal invariance holds, the retarded and advanced Green's func-

tions are related by complex conjugation. This is easy to understand in terms of boundary

conditions at the horizon, since complex conjugation of the radial wavefunction interchanges

infalling with outgoing boundary conditions.

More generally, the AdS/CFT Green's function probes the bulk, as its computation

depends on our ability to relate horizon with boundary data. Consider, for example, the

case of the scalar Green's function arising from the action

S =

ˆ
dt ddx dρ

√
−g
[
−1

2
∂µφ∂

µφ− 1

2
m2φ2

]
, (4.6)
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in a background of the form

ds2
d+2 = e2A(ρ)(−dt2 + dρ2) + e2B(ρ)d~x2

d. (4.7)

As we have seen previously, the bulk solution takes the form

φ(t, ~x, ρ) = ei(
~k·~x−ωt)fω,~k(ρ). (4.8)

For metrics of the form (4.7), the Klein-Gordon equation (� − m2)φ = 0 can again be

converted into a Schrödinger-like equation

−ψ′′(ρ) + U(ρ)ψ(ρ) = ω2ψ(ρ), (4.9)

where the e�ective potential is

U = e2Am2 + e2A−2B~k2 +

(
dB

2

)′2
+

(
dB

2

)′′
, (4.10)

and where fω,~k(ρ) = e−dB/2ψ(ρ). Since the solution to the wave equation will depend on both

the bulk geometry and the horizon boundary condition, the Green's function will similarly

depend on the bulk and horizon data. Now, let us assume that the metric is asymptotically

of the Lifshitz (non-relativistic scale-invariant) form (1.5),

ds2
d+2 ∼

(
L

zρ

)2 (
−dt2 + dρ2

)
+

(
L

zρ

)2/z

d~x2
d. (4.11)

The asymptotic boundary solution to (3.14) has the form

ψ(ρ→ 0) ∼ A
(zρ
L

) 1
2
−νz

+B
(zρ
L

) 1
2

+νz
, (4.12)
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where

νz =
1

z

√
(mL)2 +

(
d+ z

2

)2

. (4.13)

The holographic prescription for calculating boundary Green's functions of φ is [25]

G(ω,~k) = K
B

A
, (4.14)

where K is a numerical normalization constant. This result simply states that the AdS/CFT

Green's function is proportional to the ratio of the normalizable to the non-normalizable

mode.

The coe�cients B and A are determined by solving the equation (3.14) subject to infalling

or other appropriate boundary conditions at the horizon. For the case of Lisfhitz spacetime

with z = 2, this was done in section 3.2.1. It is worthwile to discuss the form of the Green's

function in the more general case of an e�ective potential of the form (4.10). Assuming U(ρ)

approaches a constant value U0 at the horizon, the horizon solution has the form

ψ ∼ aei
√
ω2−U0ρ + be−i

√
ω2−U0ρ, (4.15)

and is oscillatory in the classically allowed range of frequencies, ω2 > U0. The a mode is

infalling, while the b mode is outgoing for positive ω. In the forbidden range, we may take
√
ω2 − U0 → i

√
U0 − ω2, so the a mode is exponentially damped, while the b mode blows

up. Although the retarded Green's function is obtained by taking b = 0, here we leave it

arbitrary so that we can examine the e�ect of changing the horizon boundary conditions.

Since the wave equation is second order and linear, the horizon and boundary data are

related by a linear transformation

A
B

 =M

a
b

 =

MAa MAb

MBa MBb


a
b

 , (4.16)
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where the connection matrix M depends on the bulk geometry connecting the horizon to

the boundary through the e�ective potential (4.10). In terms of this matrixM, the Green's

function then has the form

G(ω,~k) = K
MBa +MBb(b/a)

MAa +MAb(b/a)
. (4.17)

This explicitly demonstrates how the Green's function connects the horizon (represented by

the horizon data b/a) to the boundary via the bulk matrix M. We can, in fact, say a bit

more about the matrixM. Since we are solving a real di�erential equation (3.14), any time

ψ is a solution, so is its complex conjugate ψ∗. This allows us to relate the a and b modes in

(4.15) whenever the solution is oscillatory at the horizon. In particular,MAb = M∗
Aa, and

likewiseMBb =M∗
Ba. In this case, we obtain the expression

G(ω,~k) = K
MBa

MAa

1 + e−2i argMBa(b/a)

1 + e−2i argMAa(b/a)
. (4.18)

This expression highlights the dependence of the Green's function on the ratio b/a spec-

ifying the boundary condition at the horizon. The retarded Green's function is obtained

by taking b/a = 0, while the advanced Green's function corresponds to b/a → ∞. Since

MBae
−2i argMBa = M∗

Ba (and likewise for MAa), we may explicitly see that GA(ω,~k) =

GR(ω,~k)∗. More generally, the Green's function expression (4.18) allows us to explore the

sensitivity of the boundary behavior to small changes in the infrared. For example, a small

change to the bulk geometry in the deep IR would induce a change to the e�ective potential

U near the horizon. As a result, an infalling wave could scatter o� the perturbation, so

that at some distance outside the horizon (but still in the IR), the actual solution is mostly

infalling, but now picks up a small outgoing component as well. In this case, the e�ect of

the perturbation on the retarded Green's function can be modeled by taking b/a small but

non-vanishing, so that a small outgoing component is introduced. Expanding to lowest order
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in b/a, the result is

G(ω,~k) = K
MBa

MAa

[
1 + (e−2i argMBa − e−2i argMAa)

b

a
+ · · ·

]
. (4.19)

For generic values of the arguments, the sensitivity of the Green's function to b/a is of O(1).

However, it becomes completely insensitive to b/a (and not just to leading order) in the limit

argMBa = argMAa. Note that in this limit, the Green's function is purely real, as the ratio

MBa/MAa is real. Equivalently, the spectral function, de�ned by

χ(ω,~k) = 2 ImGR(ω,~k) = −i
(
GR(ω,~k)−GA(ω,~k)

)
, (4.20)

goes to zero. Throughout this chapter, we will therefore take an exponentially small χ as a

signal for the insensitivity to a change of the near-horizon bulk state and/or geometry.

4.2.2 Tunneling Barriers and Decoupling of the IR

As we have seen above, when argMBa = argMAa, the Green's function becomes purely real

and thus invariant under changing from retarded (infalling) to advanced (outgoing) boundary

conditions. This is actually not surprising, as complex conjugation of a real function leaves

it unchanged. What may appear more unusual is that in this case, since the dependence

on b/a completely drops out, the Green's function is una�ected by any choice of horizon

boundary conditions 0 ≤ |b/a| ≤ ∞.

It is important to note, however, that since the second order wave equation admits two

linearly independent solutions, the connection matrix M is necessarily invertible. What

this means is that argMBa can never actually be degenerate with argMAa. As a result,

the Green's function is never real (in the classically allowed range of ω), although it can

approach a real function in the limiting case. In this sense, the horizon boundary conditions

never completely drop out of the Green's function computation. However, the dependence

on the horizon can become highly suppressed wheneverM becomes nearly degenerate.
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Since the e�ective Schrödinger equation (3.14) governing the wavefunction is speci�ed by

the e�ective potential (4.10), the connection matrixM will depend on the explicit form of

U as well as the frequency ω. Here it is important to note that, while the boundary is in a

classically forbidden region, the asymptotic form of the potential U ∼ 1/ρ2 is too steep for

tunneling. This is the reason we have power law behavior at the boundary, rather than expo-

nential growth/decay. If the shape of the potential is such that there is no tunneling between

the horizon and the boundary, then the entries inM are all of O(1), and generically there

is no degeneracy. In this case, the UV and IR are tied together by an O(1) transformation,

and perturbations in the IR are directly re�ected in changes to the Green's function.

On the other hand, if the potential U admits a tunneling region and ω is below the

barrier, then the connection matrix M will become nearly degenerate. This is exactly the

situation where the Green's function becomes insensitive to the horizon boundary conditions.

Heuristically, what is going on is that the tunneling barrier decouples the IR from the UV,

so information at the horizon becomes hidden from the boundary.

We may once again use the WKB approximation (see section 3.3) to make the connec-

tion between tunneling of the wavefunction and the form of M more precise. Assuming

asymptotically Lifshitz behavior, the potential U behaves near the boundary as

U (ρ→ 0) ∼ ν2 − 1/4

ρ2
. (4.21)

We assume that the e�ective Schrödinger energy ω2 in (3.14) is such that the horizon falls into

a classically allowed region. Since the potential increases without bound as we move towards

the boundary, we will always encounter a classical turning point ρ0. The wavefunction

is thus oscillating in the classically allowed region ρ > ρ0 (corresponding to the IR) and
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growing/decaying in the forbidden region ρ < ρ0

ψWKB ≈


√
ν (U − ω2)

− 1
4
(
CeS(ρ,ρ0) +De−S(ρ,ρ0)

)
, ρ < ρ0;

√
ν (ω2 − U)

− 1
4
(
aeiΦ(ρ0,ρ) + be−iΦ(ρ0,ρ)

)
, ρ > ρ0.

(4.22)

where

S (ρ, ρ0) ≡
ˆ ρ0

ρ

dρ
√
U − ω2, Φ (ρ0, ρ) ≡

ˆ ρ

ρ0

dρ
√
ω2 − U. (4.23)

and we perform the shift ν2 → ν2 + 1/4 to make the WKB approximatino consistent. The

coe�cients in (4.22) are tied together via the connection formulae

 C

D

 =M′′

 a

b

 =

 e−i
π
4 ei

π
4

1
2
ei
π
4

1
2
e−i

π
4


 a

b

 . (4.24)

To relate the WKB coe�cients C and D to the coe�cients A and B in (4.12), we match

ψWKB with the exact solution (4.12) at some UV cuto� ρ = ε, which will be taken to zero at

the end. The result can be written as another matrix equation:

 A

B

 =M′

 C

D

 =

 M′
AC M′

AD

M′
BC M′

BD


 C

D

 . (4.25)

Combining this with (4.24), we then �nd thatM =M′M′′, which can be used to �nd the

Green's function (4.17) in the WKB approximation. To determineM′ explicitly, let us write

ψexact = Aφ1 +Bφ2,

ψWKB = Cφ3 +Dφ4, (4.26)

with φ1/2 being the exact solution with boundary behavior φ1/2 ≈ ρ
1
2
∓ν , and

φ3/4 ≡
√
ν
(
U − ω2

)− 1
4 e±S(ρ,ρ0). (4.27)
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The matching matrix is then given by

M′ =
1

W12

 W32 W42

W13 W14

 , where Wij ≡ φi (ε)φ
′
j (ε)− φ′i (ε)φj (ε) . (4.28)

Working near the boundary, this takes the explicit form

M′ =

 ενeS(ε,ρ0) 0

0 ε−νe−S(ε,ρ0)

 . (4.29)

We can easily read o� the imaginary part of the Green's function and �nd

2 ImGWKB(ω,~k) = K
M′

BD

M′
AC

1−
∣∣ b
a

∣∣2
1 +

∣∣ b
a

∣∣2 = Kε−2νe−2S(ε,ρ0) 1−
∣∣ b
a

∣∣2
1 +

∣∣ b
a

∣∣2 . (4.30)

In the case b = 0, corresponding to infalling conditions at the horizon, the above expression

is simply the spectral function χ. As we show in appendix D, the error due to the WKB

approximation can be kept under perturbative control. The dependence on the shape of the

e�ective potential U is captured in the e−2S term in (4.30). While the near-boundary 1/ρ2

behavior only leads to power-law scaling, any tunneling region with U falling o� slower than

1/ρ2 leads to an exponential suppression factor in the spectral function.

More concretely, consider a spacetime that enjoys Lifshitz scaling in some region in the

bulk. The potential takes the form (4.10), with a tunneling term ~k2e2(A−B) ∼ ~k2ρ2(1/z−1).

Tunneling of the wavefunction through this part of the potential leads to an exponential

fall-o� of the spectral function at large momenta |~k|:

χ
(
ω,~k � c−1

)
= f (ω) e−c|

~k|, (4.31)

with some geometry-dependent constant c. For some special cases like pure Lifshitz, this

constant can actually secretly carry an additional dependence on ~k and ω, making χ vanish
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even faster. We will comment on this issue at the end of the next section. From (4.31),

we see that changing from infalling to outgoing boundary conditions results only in an

exponentially small change δG ∼ χ ∼ e−c|
~k|. For |~k| → ∞, χ → 0 and so the Green's

function becomes purely real, completely decoupling the near-horizon boundary conditions.

This establishes the insensitivity of the Green's function to IR physics. We will further

illustrate the connection between horizon boundary conditions and IR physics in section

4.2.4.

4.2.3 Horizon Decoupling for Lifshitz Backgrounds

For general backgrounds, the connection matrixM and the resulting Green's function (4.17)

will have to be obtained either numerically, or using approximation methods such as WKB.

However, analytic solutions are known for simple backgrounds such as AdS and Lifz=2. Here

we highlight and contrast these two cases as an explicit demonstration of the decoupling of

the IR in a Lifshitz background. In particular, we will con�rm our prediction (4.31) for the

exponential fall-o� of χ in the Lifshitz case.

4.2.3.1 The z = 1 AdS Case

For a pure Lifshitz or AdS geometry, we can take the metric (4.11) to be exact throughout

the bulk. In this case, the e�ective potential becomes:

U =
ν2
z − 1/4

ρ2
+ ~k2

(
L

zρ

)2−2/z

. (4.32)

Let us �rst consider the AdS case, which corresponds to z = 1. Here the potential is

purely 1/ρ2 on top of a constant o�set, and there is no tunneling region (so long as ω ≥

|~k |). The 1/ρ2 potential is �too steep for tunneling�, and the wavefunction grows or decays

polynomially. The exact solution for ψ(ρ) is well known, and is given by a linear combination
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of Bessel functions

ψ =
√
ρ [αJν(qρ) + βYν(qρ)] , (4.33)

where q =
√
ω2 − ~k2 =

√
−kµkµ. In this case, it is straightforward to obtain

Mz=1 =

 Γ(ν)√
π

(
qL
2

) 1
2
−ν
ei(

ν
2
− 1

4
)π Γ(ν)√

π

(
qL
2

) 1
2
−ν
e−i(

ν
2
− 1

4
)π

Γ(−ν)√
π

(
qL
2

) 1
2

+ν
e−i(

ν
2

+ 1
4

)π Γ(−ν)√
π

(
qL
2

) 1
2

+ν
ei(

ν
2

+ 1
4

)π

 , (4.34)

at least for non-integer values of ν. Note that this has the form

M =

 M(ν)eiϕ(ν) M(ν)e−iϕ(ν)

M(−ν)eiϕ(−ν) M(−ν)e−iϕ(−ν)

 , (4.35)

where ϕ(ν) = (ν/2 − 1/4)π. This form is related to the ν → −ν symmetry of the e�ective

potential.

For ω ≥ |~k |, the AdS Green's function can be obtained from (4.18). Using relativistic

notation, we �nd

G(q) = K
Γ(−ν)

Γ(ν)

(
qL

2

)2ν

e−iνπ
1 + ei(ν+ 1

2
)π(b/a)

1 + e−i(ν−
1
2

)π(b/a)
. (4.36)

Recall that the retarded Green's function corresponds to taking b/a = 0. In order to examine

the sensitivity to horizon boundary conditions, we may expand to �rst order in b/a

G(q) = K
Γ(−ν)

Γ(ν)

(
qL

2

)2ν

e−iνπ
(

1− 2 sin(νπ)
b

a
+ · · ·

)
. (4.37)

Since we have assumed ν to be non-integral, this shows that G(q) has O(1) sensitivity to the

choice of horizon boundary conditions b/a. Moreover, this sensitivity is present in both the

real and imaginary parts of the Green's function. For the spectral function we �nd χ ∼ q2ν ,

as required by scale invariance, but no exponential suppression factor.
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4.2.3.2 The z = 2 Lifshitz Case

We now turn to z = 2 Lifshitz as an analytic example of a non-relativistic system. Here the

potential has a combination of 1/ρ2 and 1/ρ terms

Uz=2 =
ν2

2 − 1/4

ρ2
+
~k2L

2ρ
. (4.38)

As is well known from quantum mechanics, the 1/ρ potential is shallow enough that it

presents a tunneling barrier in the system. However, not all the modes have to tunnel

through this part of the potential. Denoting the crossover scale between 1/ρ and 1/ρ2

behavior as ρ∗ =
2ν22
~k2L

, the condition for a mode to tunnel is

~k2L

2ρ∗
� ω2 =⇒ α ≡

~k2L

2ω
� ν2. (4.39)

For these modes, we expect an exponential suppression in α, as sketched in Figure 20. Using

our result (3.37), we see that the connection matrix does indeed take the form (4.35), however

with

M(ν2)eiϕ(ν2) = Γ(2ν2)(ωL)
1
2
−ν2eπα/4

ei(
ν2
2
− 1

4
)π2iα/2

Γ(1
2

+ ν2 + iα
2

)
. (4.40)

In contrast with the relativistic case, this function depends on the ratio of ~k2 and ω through

the parameter α. Using (4.18), the Green's function is then [20]

G(ω,~k) = K
Γ(−2ν2)

Γ(2ν2)
(ωL)2ν2

Γ(1
2

+ ν2 + iα
2

)

Γ(1
2
− ν2 + iα

2
)
e−iν2π

1 + e−2iϕ(−ν2)(b/a)

1 + e−2iϕ(ν2)(b/a)
, (4.41)

where

ϕ(ν2) =

(
ν2

2
− 1

4

)
π +

α

2
log 2 + arg Γ(

1

2
+ ν − iα

2
). (4.42)
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Figure 20: Sketch of the e�ective potential U for z = 2 Lifshitz spacetime. The potential
changes from the near-boundary 1/ρ2 behavior to the tunneling potential U ∼ 1/ρ near

the crossover scale ρ∗ ∼ 1/|~k|2. A normalizable wavefunction with large energy ω and low

momenta |~k| crosses the barrier in the 1/ρ2 region and decays polynomially, according to
(4.12) (blue curve). For low energies and large momenta the crossing point lies within the
tunneling region and the wavefunction decays exponentially at �rst (red curve). This has
the e�ect that states that are localized close to the horizon have an exponentially small
amplitude at the boundary
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For the non-tunneling modes with small α, we �nd (to �rst order in b/a)

G(ω,~k) = K
Γ(−ν2)

Γ(ν2)

(
ωL

4

)2ν2

e−iν2π
(

1 +
iπα

2
tan(ν2π) +O(α2)

)
×
[
1− 2 sin(ν2π)

(
1 +

iα

2

(
iπ − log 4 + ψ(

1

2
+ ν2) + ψ(

1

2
− ν2)

)
+O(α2)

)
b

a
+ · · ·

]
,

(4.43)

which matches the AdS Green's function (4.36) in the limit α→ 0 once we identify L→ 2L,

ν2 → ν and ω → q. This should not be surprising because α→ 0 can be achieved by taking

~k → 0. In this limit the transverse space becomes irrelevant, and the Lifshitz potential may

be identi�ed with the AdS potential. As a result, the Green's function at small α is sensitive

to the horizon boundary conditions in essentially the same manner as given in (4.37).

What is more interesting is the α� ν2 limit, where the horizon modes must tunnel under

the 1/ρ potential to reach the boundary. For large α we �rst use Stirling's approximation to

see that

ϕ(ν2) ∼ α

2

(
1− log

α

4

)
− π

4
+O

(
1

α

)
. (4.44)

A key observation is that, at leading order, the ν2 dependence completely cancels out from

the phase, and this is exactly what is required for the Green's function (4.41) to become

insensitive to the horizon boundary conditions. Beyond leading order, we may use the

identity

ϕ(ν)− ξ(−ν) = − Im log
(
1 + e−2πiν−πα) , (4.45)

obtained by application of the re�ection formula Γ(1− z)Γ(z) = π csc(πz), to see that ϕ(ν2)

is an even function of ν2 to any �nite order in the perturbative expansion in 1/α. Explicitly,
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what we �nd is

G(ω,~k) = K
Γ(−2ν2)

Γ(2ν2)

(
|~k|L

2

)4ν2 (
1 + e−i2πν2e−πα + · · ·

)
×
(

1− 2 sin(2ν2π)
( α

4e

)iα
e−πα

b

a
+ · · ·

)
. (4.46)

This clearly demonstrates the insensitivity of the Green's function to the horizon boundary

conditions in the tunneling (large α) regime. It is important to note that the magnitude of

the Green's function is not necessarily small in this regime, and that it is only the dependence

on b/a that is being exponentially suppressed.

The same conclusion can be drawn by looking at the spectral function:

χ(ω,~k) = 2K
Γ(−2ν2)

Γ(2ν2)

(
|~k|L

2

)4ν2

sin (−2πν2) e−πα. (4.47)

At large α, χ(ω,~k) is exponentially small, as predicted in the previous section. In the α→∞

limit, the spectral function vanishes and G(ω,~k) becomes completely insensitive to changing

boundary conditions.

One interesting aspect of pure Lifshitz spacetime is that the exponential suppression is

in the variable α ∼ ~k2/ω, instead of just |~k|. Again, the WKB approximation can help us

understand this behavior. From (4.23), we can �nd the tunneling factor by evaluating

S (ε, ρ0) =

ˆ ρ0

ε

dρ

√
ν2

2

ρ2
+
~k2L

2ρ
− ω2. (4.48)

In the near boundary region ε � ρ∗, the integral will just generate the expected power-law

behavior ε2ν2 , which is stripped o� by the factor ε−2ν2 in (4.30). For large α, the tunneling

region will contribute an additional term of order

S ∼ k

ˆ ρ0

ρ∗

dρ

√
L

2ρ
≈ k

ˆ ~k2L
2ω2

0

dρ

√
L

2ρ
∼
~k2L

ω
∼ α, (4.49)
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z 2/ζ 2/ζnum

2 2 2.05
3 3/2 1.55
4 4/3 1.39

Table 2: Best �t results for numerically obtained spectral functions.

and the actual suppression term is ∼ e−α instead of just e−|
~k|. This result has a simple

interpretation: For a �nite tunneling region [R1, R2] , the barrier can be made arbitrarily

high by taking |~k| → ∞, resulting in exponential suppression e−|
~k|. However, for pure

Lifshitz, the tunneling region can also be made arbitrarily wide by taking either ω → 0 at

�xed |~k|, or |~k| → ∞ at �xed ω. Since the WKB functional S is a measure for the area

between the wavefunction and the tunneling potential, we end up with a suppression in

α ∼ |~k| · (|~k|/ω).

To demonstrate that similar results hold for Lifshitz with general z, we also computed

the spectral function χ for z = 2, 3, 4 numerically. Figure 21 shows plots of the spectral

function as a function of ω and |~k| respectively. For AdS, modes with spacelike momenta

|~k|2 > ω2 have zero spectral weight. For Lifshitz, however, we can clearly see an exponential

tail both at small ω and large |~k| due to tunneling, indicating the by now familiar insensi-

tivity to horizon boundary conditions. From the WKB approximation (4.30), we expect the

asymptotic behavior χ ∼ exp
(
−λα1/ζ

)
, with

λ =

√
πΓ(1/ζ − 1/2)

2Γ(1/ζ)
, α =

(
ωL

z

)ζ (~k
ω

)2

, ζ = 2

(
1− 1

z

)
. (4.50)

Our numerical results con�rm this behavior (see Table 2 for best-�t values).

4.2.4 Spectral Functions for Lorentz-breaking RG Flows

Our discussion so far has been focused on the insensitivity of the Green's function to a change

of horizon boundary conditions. The goal of this section is to reformulate this statement in a

more physical way. We do this by showing that for spacetimes with a tunneling barrier, the
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Figure 21: Plot of the spectral function χ(ω,~k) for Lifshitz with z = 2, 3, 4 (red, blue, black).

The AdS spectral function is shown as a dotted line. Left: Varying ω while keeping |~k| = 1/L

�xed. Right: Varying |~k| while keeping ω = 1/L �xed.

retarded Green's function is in fact exponentially insensitive to the near-horizon geometry

itself. In terms of the corresponding RG �ow, this has the somewhat surprising consequence

that in the low energy, large momentum limit, the spectral function shows a universal be-

havior that depends only very weakly on the details of the IR theory. In that sense, �ows

with di�erent IR �xed points are almost non-distinguishable.

To see explicitly how this arises, consider the case of an RG �ow that interpolates between

two di�erent �xed points in the UV and IR. Since the dual spacetime interpolates between

two di�erent geometries at the horizon and the boundary, we introduce ρc as a cross-over

scale between these two asymptotic geometries, and split the e�ective potential as

U =


UUV, ρ� ρc

UIR, ρ� ρc.

(4.51)

Although the potential near ρc depends on the precise way these two geometries are glued

together, we will not need to know its explicit form in the intermediate region in order to

study the general behavior of the spectral function. To simplify our discussion, let us assume

that U decreases monotonically, so that there are no bound states, and that UUV (ρ→ 0) ∼
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(ν2 − 1/4)/ρ2, as before.

We would like to extract information about IR physics from the spectral function. First,

consider frequencies ω large enough so that the classical turning point ρ0(ω) is in the UV,

ρ0 (ω)� ρc. Physically, since we are probing the geometry at high energies, χ is completely

independent of the IR geometry. All that remains is the spectral function for the dual theory

at the UV �xed point.

Next, let us use the WKB approximation to see what happens when we lower the energy

far enough that the scalar wavefunction actually has to tunnel through part of the IR-

potential, i.e. ρ0 (ω)� ρc. We can approximate the WKB-integral as

S (ρ, ρ0) ≈ SUV (ρ, ρc) + SIR (ρc, ρ0) + · · · , (4.52)

with SUV/IR =
´
dρ
√
UUV/IR − ω2. Here the ellipsis denotes terms that depend on the precise

way the two geometries are glued together. Using (4.30), the spectral function now becomes

χ ≈ Kε−2νe−2SUV(ε,ρc)e−2SIR(ρc,ρ0), (4.53)

and the information about IR physics shows up in the factor e−2SIR . For relativistic �ows,

one roughly gets χ ∼ f (ω)O (1) e−2SIR(ρc,ρ0), and the IR geometry has an O(1) imprint on

the spectral function. However, as we saw previously, if the UV �xed point has a Lifshitz

scaling symmetry, the tunneling barrier will induce an exponential factor and we get

χ ∼ f (ω)O
(
e−c|

~k|
)
e−2SIR(ρc,ρ0). (4.54)

At large ~|k|, all the information about IR physics is hidden under an exponentially small

factor. In the limit |~k| → ∞, a change of the geometry in the deep IR has no e�ect on the

spectral function.

The factorization of χ into UV and IR factors in (4.53) allows us to make an even more
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general statement: Consider any �ow that breaks (d + 1)-dimensional Lorentz-invariance

somewhere in the bulk, i.e. A 6= B in (4.10). At low frequencies ω and large momenta |~k| the

spectral function will have a universal exponential damping factor e−c|
~k| due to the tunneling

barrier ~k2e2A−2B.

We can demonstrate this behavior explicitly by considering holographic RG �ows with

AdS2×Rd near-horizon geometry. Examples of such geometryies are the nonsingular Lifshitz

solutions constructed in chapter 2, as well as extremal charged black branes in AdSd+2, which

are holographically dual to theories at �nite charge density [81]. Placing fermions on this

background allows us to study Fermi surfaces in non-Fermi liquids [80, 82, 83, 84].

Of particular interest to us are �ows with either AdSd+2 or Lifz near-boundary behavior.

For both cases, the Schrödinger potential can be written as

U =


ν2z−1/4
ρ2

+ ~k2
(
L
zρ

)2−2/z

, ρ� ρc;

ν2∞−1/4
ρ2

, ρ� ρc,

(4.55)

where ν2
∞ = (mLIR)2 + ~k2LIR + 1/4, and the null energy condition requires z ≥ 1. The

near-horizon AdS2 × Rd itself has a holographic dual, which is a CFT1. In particular, there

is a corresponding spectral function

χcft ≈ Kε−2ν∞e−2SIR(ε,ρ0). (4.56)

Again, in the high energy limit the spectral function carries no information about the IR

CFT. At low energies, speci�cally ω � ν∞/ρc or equivalently ρc � ρ0 (ω), we can derive a

direct relation between χcft and the full spectral function:

χ

(
ω � ν∞

ρc
, ~k

)
≈ ε−2νe−2SUV(ε,ρc)χcft. (4.57)
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Let us evaluate this expression for large |~k|. The integral we have to perform is

SUV (ρ, ρc) =

ˆ ρc

ρ

√
ν2

ρ2
+ ~k2

(
L

zρ

)2−2/z

− ω2. (4.58)

The crossover scale from 1/ρ2 behavior to 1/ρ2(1−1/z) behavior is at ρ∗ ≡ (ν/p)z. We will

assume that |~k|ρ1/z
c /ν � 1, so that this crossover still happens in the UV region, i.e. ρ∗ � ρc.

Since ω � ν∞/ρc, and the momentum is taken to be large, we can simply neglect the ω2

term in (4.58). Introducing the new variable u ≡ (p2/ν2z2(1−1/z))ρ2/z, we can evaluate the

integral:

SUV (ρ, ρc) ≈
zν

2

[
2
√

1 + u+ log

√
1 + u− 1√
1 + u+ 1

]uc
u

. (4.59)

Expanding this result around large uc and small u, we �nd

e−2SUV(ε,ρc) ≈ ε2ν

(
|~k|

2νz1−1/z

)2zν

e−2(zρc)
1
z |~k|. (4.60)

Plugging this back into (4.57), we see that the ε-dependent terms precisely cancel, and we

are left with

χ
(
ω � ν∞

ρc
, |~k| � ν

ρ
1/z
c

)
≈ K

(
|~k|

2νz1−1/z

)2zν

e−2(zρc)
1
z |~k|χcft. (4.61)

The spectral function at low energies is directly proportional to the IR spectral function χcft.

At large |~k|, χ is exponentially small. It might seem surprising that this is true even for the

case of asymptotically AdS spacetimes, where z = 1. As we discussed in chapter 3, this is

because even though pure AdS does not have a tunneling barrier, �owing to a non-relativistic

AdS2×Rd horizon necessarily breaks Lorentz invariance and introduces a tunneling barrier.

The relation (4.61) between UV and IR spectral functions has been obtained previously,

using standard matching techniques [83]. Our calculation sheds new light on this result:

While the spectral function is dominated by IR physics at low ω, the numerical coe�cient
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relating χ and χcft is exponentially small at large momenta. For a boundary observer, the

signature of low-energy physics is hidden under an exponential tail.

4.2.5 Analytic Properties of the Green's Function

In section 4.1, we discussed how di�erent types of Green's functions may be obtained from

a single real analytic function G(ω,~k) by using di�erent iε prescriptions. For a bulk scalar

in AdS or Lifshitz, the Klein-Gordon equation, and hence e�ective Schrödinger-like equation

(3.14), is quadratic in ω. However, the ω → −ω symmetry is broken by imposing infalling

boundary conditions at the horizon. In other words, the holographic computation directly

gives the retarded Green's functionGR without the need for any iε prescription. Nevertheless,

it is possible to analytically continue the resulting expressions to obtain G(ω,~k) in the

complex ω-plane.

As an example, we may start with the retarded AdS Green's function given by (4.36)

with b/a = 0, and obtain

G(ω,~k) = K
Γ(−ν)

Γ(ν)

(
~k2 − ω2

4

)ν

, (4.62)

for non-integer values of ν; we have set L = 1 for notational ease throughout this section.

This function has branch points at ω = ±|~k|, and as long as we take the principal branch

of zν , the branch cuts will extend out as shown in Fig. 23. As a result, the spectral weight

must vanish for |ω| < |~k|. This region corresponds to the �energy� ω2 lying completely under

the AdS e�ective potential given by (4.32) with z = 1. In this case, the radial wavefunction

never oscillates, and can be chosen to be real, which is consistent with the vanishing of

χ(ω,~k). Furthermore, in this case there is no longer any freedom to modify the horizon

boundary conditions, as one can only physically choose the exponentially decaying solution

at the horizon. We give an example of the spectral function for AdS in Fig. 22.

We now turn to the z = 2 Lifshitz Green's function. Starting from (4.41), we �nd the
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Figure 22: The spectral function for AdS (see (4.62), with ν = 1.1). Note that χ(ω, |~k|)
vanishes identically for |ω| < |~k|.
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Figure 23: Branch cut structure in the complex ω-plane.
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Figure 24: Spectral function χ(ω, |~k|) for |~k| = 5.
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appropriate analytic continuation to be

G(ω,~k) = K
Γ(−2ν2)

Γ(2ν2)
(−ω2)ν2

Γ(1
2

+ ν2 + ~k2/4
√
−ω2)

Γ(1
2
− ν2 + ~k2/4

√
−ω2)

. (4.63)

Again working with principal values, the factor (−ω2)ν2 gives rise to a branch cut running

from the origin to +∞ as well as from the origin to −∞. Thus χ is non-vanishing for

any ω 6= 0, although it becomes exponentially small for |ω| � ~k2/ν2. Note that, while

the Γ-function in the numerator introduces poles in G(ω,~k), they all lie on the unphysical

second Riemann sheet. Even though they are in the second sheet, the accumulation of these

poles causes an essential singularity at ω = 0. These features, along with the z = 2 Lifshitz

spectral function, are shown in Fig. 25. In general, since the e�ective potential U(ρ) in (4.32)

vanishes at the horizon for any z > 1 Lifshitz geometry, the wavefunction will be oscillatory

at the horizon. This in turn indicates that the retarded Green's function will be complex,

and hence that χ(ω,~k) will be non-vanishing for any ω 6= 0. Thus the structure of branch

cuts running along the positive and negative real ω axis is universal for z > 1 Lifshitz.

4.2.6 Physical Interpretation of Horizon Insensitivity

We have found a region of momentum space (ω � 1, |~k| � 1) in which the holographic

Green's function of Lifshitz spacetime is exponentially insensitive to a change of horizon

boundary conditions. As we argued previously, this implies that the two-point function is

insensitive to the geometry in the deep IR itself. Our discussion provides a new perspective

on the problem of �nding the �true� IR endpoints of �ows involving Lifshitz. We have seen

in chapter 2 that the tidal singularity in Lifshitz spacetime can be resolved by constructing

a �ow to AdS2 × Rd in the IR. However, the extensive ground state entropy of AdS2 × Rd

has led to the idea that the true IR endpoint of the �ow may be a di�erent geometry, such

as a striped phase [85, 86, 87, 88, 89], a lattice [90], or a Bianchi-class geometry [91, 92].

Even though the ultimate fate of the theory in the deep IR is still unclear, it appears that
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Figure 25: The spectral function for z = 2 Lifshitz (see (4.63), with ν = 1.1). The spectral
function is exponentially suppressed in the interior of the dashed circle shown in (a).
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Figure 26: Analytic features in the complex ω-plane. The branch cuts extend from the origin
to ±∞, and there are an in�nite number of poles on the second sheet that accumulate at
the origin.
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Figure 27: Spectral function χ(ω, |~k|) for |~k| = 5. The spectral function is exponentially
suppressed in the interior of the dashed circle in �gure 26.
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there is a variety of possible candidate groundstates, and thus a variety of di�erent near-

horizon geometries. From a boundary perspective, the geometric resolution of the horizon

can be thought of as introducing a low-energy regulator. However, in the low energy, large

momentum limit, the holographic Green's function becomes independent of the geometry in

the deep IR, up to exponentially small corrections. In this sense, the �eld theory seems to

care little about the exact mechanism that resolves the Lifshitz horizon. In particular, we

may speculate that horizon features at small transverse length scales are practically invisible

at the boundary. It would be interesting to con�rm this for the case of striped phases/lattices,

or a non-translationally invariant Bianchi geometry at the horizon.

Along the same lines, it would be interesting to understand how the tidal singularity

at the horizon is re�ected in �eld theory two-point functions. We can try to answer this

question using what we learned about the relation between tunneling barriers and spectral

functions: Consider a bulk state with �xed momentum |~k|, and send ω → 0. For a black

hole geometry, this corresponds to a probe falling towards the horizon. Since the spectral

function is proportional to e−α, with α ∼ |~k|2/ω2/z, it is in fact not analytic at ω = 0.

Although this behavior is in principle allowed, it is certainly a peculiar feature. Moreover, as

we saw in section 4.2.4, the non-analyticity is absent in the case of the nonsingular Lifshitz to

AdS2×Rd �ows - the spectral function only scales as χ ∼ e−|
~k|. Thus one may speculate that

the tidal singularity in Lifshitz spacetime is mirrored in a non-analyticity of the holographic

spectral function. In the next section, we will see that this non-analyticity is in fact not to

be trusted, since higher derivative corrections to the bulk action will change the low energy

behavior of the spectral function signi�cantly.

The insight that tunneling barriers correspond to exponentially suppressed information

at the boundary is not a new one. In particular, similar observations have been made in

the context of �nite temperature theories. Introducing a �nite T may result in an e�ective

tunneling barrier in the equations of motion, and as a result there are modes that are

exponentially suppressed at the boundary [25, 93, 94]. A possible future direction would be
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to explore the case of Lifshitz spacetime with T 6= 0, and study the interplay between the

tunneling barriers discussed here and the e�ects of a nonzero temperature.

4.3 Universal Features of Lifshitz Green's Functions

Although the AdS/CFT dictionary provides us with an explicit prescription to calculate

holographic Green's functions, it is interesting to note that in some cases, the functional

form of the Green's function is in fact completely determined by spacetime symmetries.

For example, consider the familiar picture of IIB theory on AdS5 × S5, which is dual to

N = 4 super-Yang Mills theory. In this case, the supergroup SU(2, 2|4) is identical to the

superconformal symmetry group of the four-dimensional CFT. As a result, all observables

are constrained by the superconformal symmetry, and in particular the two-point functions

are fully determined up to normalization. For example, the retarded scalar Green's function

in momentum space must have the form

GR(q2) = A(−q2)∆−2, q2 = ω2 − |~k |2, (4.64)

where A is an overall constant and ∆ is the conformal dimension of the scalar operator O∆.

We con�rmed this result explicitly in (4.37).

The mapping between condensed matter systems and backgrounds with non-relativistic

scaling symmetry is often less obvious. In this case, we must often fall back to the general

strategy of constructing a holographic dual to a given �eld theory by matching symmetries

and conserved quantities [20, 21, 22, 27]. Moreover, non-relativistic scale invariance is no

longer su�cient to fully constrain the form of the two-point functions. Consider, for example,

the case of Lifshitz scaling with dynamical exponent z, where energy and momentum scale

as ω → λzω and ~k → λ~k, respectively. This scaling symmetry only constrains the form of
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the Green's function up to an arbitrary function of the scale-invariant quantity ω̂ = ω/|~k |z:

GR(ω,~k ) = |~k |2νzG(ω̂). (4.65)

Here ν is the energy scaling dimension, and the momentum-dependent prefactor is chosen

to give GR the proper scaling dimension.

The form of the Green's function (4.65) holds for any (isotropic) scale-invariant theory,

whether computed directly from the �eld theory or via the holographic dual. However, in

general, G(ω̂) cannot be �xed by matching symmetries alone. (If additional symmetries are

imposed, such as z = 2 Schrödinger symmetry, then the Green's function may become fully

determined.) This suggests that symmetries are not su�cient for connecting non-relativistic

theories to their holographic duals, and in particular that the duality map must include

additional dynamical information.

At the same time, the bulk theory yields a preferred choice of the Green's function

obtained from the classical two-derivative bulk action [20]. For z = 2 Lifshitz, we calculated

the holographic scalar Green's function in section 4.2.1. Moreover, our WKB calculation

for arbitrary z > 1 revealed a characteristic exponential suppression of the spectral weight

(i.e. the imaginary part of the Green's function) in the limit ω̂ → 0. We interpreted this

feature as an �insensitivity� of the boundary theory to small changes of the geometry near

the horizon. The same exponential behavior is responsible for making the smearing function

of both Schwarzschild-AdS and Lifshitz spacetime a distribution rather than a true function

(see chapter 3) and has been interpreted as a loss of bulk locality for such non-relativistic

geometries [95].

It is natural to expect that di�erent �eld theoretic models with the same dynamical expo-

nent z will yield di�erent Green's functions. This raises the issue as to how the holographic

dual can distinguish among these models. For unbroken scaling symmetry, the bulk geom-

etry is essentially �xed to be pure Lifshitz. Thus the background alone cannot distinguish
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between di�erent models, and we are mainly left with the dynamics of the bulk �elds as the

distinguishing characteristic. In particular, the addition of higher derivative terms to the

bulk equations of motion will directly a�ect the form of the holographic Green's function.

This is in contrast with the relativistic case, where higher derivative corrections may a�ect

the constant A in (4.64), but will not otherwise modify the functional form of the retarded

Green's function.

Once we allow for a higher derivative expansion in the bulk, it may seem that some pre-

dictive power is lost, since the holographic Green's function would in principle be sensitive

to all of the in�nitely many higher derivative terms. However, in this section we demonstrate

that there are universal features that remain. In particular, the characteristic exponential

suppression of the spectral function in the low frequency regime found previously is ro-

bust with respect to higher derivatives in the bulk, as long as the frequencies stay above a

(momentum-dependent) cuto�.

We furthermore show that this exponential suppression arises in �eld theory models

with z = 2 scaling. In particular, for the quadratic band crossing model of [96], a simple

kinematical argument demonstrates that the exponential suppression arises because one has

to go to higher and higher orders in the perturbative expansion to see non-zero spectral

weight in the limit ω̂ → 0.

4.3.1 The Green's Function in a Scale Invariant Theory

In a translationally invariant theory, the retarded Green's function is naturally written in

momentum space as GR(ω,~k). Furthermore, unitarity and causality demand that GR is

analytic in the upper half of the complex ω-plane. For a scale-invariant theory, the conditions

on the Green's function are much stronger. In particular, for Lifshitz scaling symmetry with

dynamical exponent z

~x→ Λ~x, t→ Λzt, (4.66)
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scale and rotational invariance demand that GR cannot depend on ω and ~k separately, but

must have the form

GR(ω,~k) = |~k|2νzG(ω̂) where ω̂ ≡ ω

|~k|z
. (4.67)

Here ν is the energy scaling dimension and G(ω̂) is analytic in the upper half ω̂ plane.

Non-relativistic scale invariance by itself does not further constrain the form of G(ω̂).

However, additional symmetries can �x it completely. For example, relativistic conformal

invariance (for the case z = 1) constrains GR ∼ (−q2)ν where q2 = −kµkµ = ω2 − |~k|2. This

is equivalent to taking the function

GCFT = A(1− ω̂2)ν , (4.68)

where A is a constant. Similarly, full Schrödinger symmetry (for z = 2) [21, 22, 27] requires

GSch = A(1− 2mω̂)2ν , (4.69)

where A is again a constant, and m is the eigenvalue of the mass-operator of the Schrödinger

algebra.

While the relativistic and Schrödinger cases are the most extensively studied, we are

mainly interested in exploring the features of the function G(ω̂) for Lifshitz models without

additional symmetries using holographic methods. In general, G will depend on the details

of the model. However, some universal properties can be deduced in both the small and

large ω̂ limits. For ω̂ → 0, the only dimensionful quantity that remains is |~k|. Hence GR

must behave as |~k|2νz, or equivalently

G(ω̂ → 0) ∼ const. (4.70)
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On the other hand, when ω̂ →∞, the dependence on |~k| drops out, and we must have

G(ω̂ →∞) ∼ ω̂2ν . (4.71)

As can be seen from (4.68) and (4.69), the z = 1 and Schrödinger z = 2 cases both satisfy

these properties.

The retarded Green's function is in general complex, and this should be kept in mind

when considering the limiting behaviors given above. Of particular interest is the general

behavior of the spectral function χ(ω,~k) = 2 ImGR(ω,~k). For large ω, the spectral function

scales as χ ∼ ω2ν , consistent with (4.71), as well as the relativistic and Schrödinger cases.

The small ω limit, on the other hand, is more subtle. While scaling symmetry demands

χ ∼ 2|~k|2νz ImG(ω̂), with ImG(ω̂) approaching a constant as ω̂ → 0, this constant is in

fact zero for the z = 1 and z = 2 Schrödinger cases. Moreover, for these cases χ is identically

vanishing for a range of ω̂ near zero. However, this no longer needs to be the case in theories

with Lifshitz scaling, but without additional symmetries. Nevertheless, as we have shown

in section 4.2.1, in the latter case the spectral function is at most exponentially small in

the limit ω̂ → 0, at least in the two-derivative holographic theory. What we will show

below is that this exponential suppression of χ remains robust, even when higher derivative

corrections are included, as long as the perturbative expansion is kept under control.

4.3.2 Holographic Lifshitz Models

In this section, we repeat and re�ne the analysis of section 4.2.1, in particular introducing a

more suitable radial coordinate ρ̂ to determine the behavior of holographic Green's functions

in the low/high frequency regime. We start by recalling the Lifshitz metric (1.5), with

L/z ≡ 1:

ds2
d+2 =

−dt2 + dρ2

ρ2
+
d~x2

ρ2/z
. (4.72)
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The boundary of the bulk spacetime is located at ρ = 0, while the horizon is at ρ =∞. For

simplicity, we examine the scalar Green's function, which can be holographically computed

from the action of a bulk scalar φ(t, ~x, ρ).

At the two-derivative level, the minimally coupled equation of motion for φ is simply

(�−m2)φ = 0. This system has been extensively studied, and the holographic computation

of the retarded Green's function is by now standard [25]. Working in momentum space and

taking

φ(t, ~x, ρ) = ei(
~k·~x−ωt)ρd/2zψ(ρ), (4.73)

we �nd that ψ(ρ) satis�es the Schrödinger-like equation −ψ′′ + U0ψ = 0 where

U0 =
ν2 − 1/4

ρ2
+
|~k|2

ρ2−2/z
− ω2. (4.74)

and

ν =

√
m2 +

(
d+ z

2z

)2

. (4.75)

We can highlight the scaling properties of the solution by de�ning the dimensionless coordi-

nate

ρ̂ = ρ|~k|z. (4.76)

The Schrödinger-like equation now takes the form

−ψ′′(ρ̂) + Û0(ρ̂)ψ(ρ̂) = 0, Û0(ρ̂) =
ν2 − 1/4

ρ̂2
+

1

ρ̂2−2/z
− ω̂2. (4.77)

In order to apply the AdS/CFT prescription for calculating the retarded Green's function,

we need to examine the solution near the boundary at ρ̂ = 0 and as it approaches the horizon

at ρ̂ =∞. In the limit ρ̂→ 0, the Schrödinger potential is dominated by the (ν2 − 1/4)/ρ̂2

term, and we �nd the boundary behavior

ψ(ρ̂→ 0) ∼ Aρ̂
1
2
−ν +Bρ̂

1
2

+ν . (4.78)
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Here we have used the convention that B is the coe�cient of the normalizable mode, while

A is the coe�cient of the non-normalizable mode. For z > 1, Û0 approaches −ω̂2 at the

horizon, so the solution is oscillatory:

ψ(ρ̂→∞) ∼ aeiω̂ρ̂ + be−iω̂ρ̂. (4.79)

For the retarded Green's function, we take infalling boundary conditions, which correspond

to setting b = 0. In this case, we �nd

G(ω̂) =
B

A

∣∣∣∣
b=0

, (4.80)

where the relation between {A,B} at the boundary and {a, b} at the horizon is obtained by

solving the Schrödinger problem (4.77).

4.3.2.1 Bulk Higher Derivatives

At the two-derivative level, the solution for G(ω̂) has been extensively studied, and analytic

results may be obtained for z = 1 and z = 2 [25, 20]. However, as we emphasized in section

4.3.1, scaling symmetry by itself does not fully constrain the form of the Green's function.

This raises the question of where the freedom of arbitrarily choosing the function G arises in

the holographic dual. If we work within general relativity, there are two natural possibilities:

the �rst is the choice of background metric, and the second is the form of the scalar equation.

However, the metric (4.72) is essentially unique (up to coordinate transformations) once we

have imposed Lifshitz scaling. This leaves us with modi�cation of the equation of motion.

From a bulk e�ective �eld theory point of view, it is possible to include higher derivative

terms in the scalar equation. In momentum space, non-radial derivatives in the e�ective

action show up as powers of ω and ~k, while additional ρ derivatives lead to a higher order

di�erential equation for ψ(ρ). If there are no additional ρ derivatives, then the momentum

space equation remains second order and can be brought into Schrödinger form just as above.
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This time, however, the e�ective Schrödinger potential in (4.77) generalizes to

Û(ρ̂) =
ν2 − 1/4

ρ̂2
+

1

ρ̂2−2/z
− ω̂2 +

1

ρ̂2
f(ω̂ρ̂, ρ̂1/z), (4.81)

where the function f encodes the presence of the higher derivative terms.

In principle, the procedure for extracting the holographic Green's function is unchanged

from the prescription of (4.80). However, the higher derivative terms a�ect the shape of

the potential, and hence may change the boundary and horizon asymptotics and possibly

also introduce additional classical turning points in the bulk. In order to get a better

understanding of the asymptotics, we write out the expansion

1

ρ̂2
f(ω̂ρ̂, ρ̂1/z) =

∑
i,j

i+j>2

λi,jω̂
iρ̂i+j/z−2, (4.82)

where i and j count the number of temporal and spatial derivatives, respectively. The

restriction i + j > 2 ensures that f only comprises the higher derivative contributions.

Note that the coe�cients λi,j are dimensionless, although (after restoring units) we typically

expect λi,j ∼ (`/L)i+j−2, where ` is some microscopic scale and L is the curvature scale of

the Lifshitz bulk, such that `� L.

Focusing �rst on the boundary at ρ̂ = 0, we see that the behavior of the potential (4.81)

remains dominated by the 1/ρ̂2 term, since i + j > 2 in the derivative expansion. Thus the

boundary scaling behavior remains unchanged from (4.78), and the relation of the scaling

dimension to ν is una�ected by the higher order terms.

The horizon behavior, on the other hand, is considerably di�erent. Since the horizon

is located at ρ̂ → ∞, and the expansion (4.82) in general contains positive powers of ρ̂,

the successive higher derivative terms will become more and more dominant at the horizon.

Furthermore, the potential will generically go to ±∞ at the horizon, depending on the sign

of λi,j of the dominant term. As a result, strictly speaking, the perturbative expansion of
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the scalar equation breaks down near the horizon. Nevertheless, we now argue that the

holographic Green's function can be extracted from the solution of the higher derivative

equation in a controlled manner.

4.3.2.2 Consistency of the Higher Derivative Expansion

At the two-derivative level, the Schrödinger potential (4.77) is monotonically decreasing as

we move into the interior of the bulk, and there is a single classical turning point located at

ρ̂0 where Û0(ρ0) = 0. For ρ̂ < ρ̂0, the solution connects to the power-law behavior (4.78) at

the boundary, while for ρ̂ > ρ̂0, the solution is oscillatory, and infalling boundary conditions

are chosen at the horizon.

Ignoring the shift of ν2 in (4.77), there are two competing power laws in Û , namely ν2/ρ̂2

and 1/ρ̂2−2/z, and the behavior of the solution depends on which of the power laws dominates

at the classical turning point. We de�ne the crossover point as ρ̂∗ = νz, which is the location

where the two terms become comparable. There are two distinct cases to consider:

1. For ω̂ � ν1−z, the classical turning point is located at ρ̂0 ≈ ν/ω̂ � ρ̂∗. This point is

close to the boundary, and the 1/ρ̂2 potential ensures a power law behavior without

exponential suppression. The holographic Green's function is �featureless�, and behaves

as G ∼ ω̂2ν .

2. For ω̂ � ν1−z, the classical turning point is instead located at ρ̂0 ≈ ω−z/(z−1) � ρ̂∗.

The Green's function now probes deep into the bulk, and can have non-trivial features.

Note that the wavefunction has exponential behavior in the region ρ̂∗ < ρ̂ < ρ̂0, leading

to an e�ective decoupling of the boundary from the horizon (see section 4.2).

We now consider the e�ect of the higher derivative terms, encoded in the function f in

(4.82). Although this function dominates at the horizon, we nevertheless consider a formal

perturbative expansion of the Schrödinger problem in the couplings λi,j. Of course, the higher

order terms will dominate the wavefunction near the horizon. However, it is important to
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realize that the holographic Green's function is not determined by the wavefunction at the

horizon, but by its asymptotic behavior at the boundary. Infalling boundary conditions are

needed at the horizon, but this can be imposed consistently at each order in the perturbative

expansion. These infalling conditions will be seen in the boundary Green's function, but will

not dominate over lower orders in the expansion.

Although a formal perturbative expansion can be used to solve the bulk scalar equa-

tion, the expansion of G in the couplings λi,j will only be sensible if the corrections can be

kept small. Obviously this cannot be true globally, as the higher derivative terms typically

dominate near the horizon. However, as one can see for example by using the WKB approx-

imation (see section 3.3), the holographic Green's function only gives us information about

physics between the boundary and the classical turning point ρ̂0, where the wavefunction

changes from exponential to oscillating behavior. Hence all that is necessary is to ensure that

f remains small compared to the leading order potential Û0 only for ρ̂ ≤ ρ̂0. The speci�cs of

this condition depend on whether we are in the high or low frequency regime. We consider

these two cases separately:

1. In the high frequency regime (ω̂ � ν1−z), the dominant term in Û0 is ν
2/ρ̂2. Since this

term is decaying, while at the same time f becomes more important as we move away

from the boundary, we only need to demand that f is small compared to ν2/ρ̂2 at the

classical turning point. This gives rise to the condition f(ω̂ρ̂0, ρ̂
1/z
0 ) � ν2, which may

be satis�ed by taking (`/L)ν � 1, where we have assumed the expansion (4.82) along

with the behavior of the couplings λi,j ∼ (`/L)i+j−2. As we may see from (4.75), the

scale of ν is set by mL. Therefore, the condition for a valid expansion is equivalent to

demanding m` � 1. We conclude that in this case, higher derivative corrections are

under perturbative control provided the bulk couplings satisfy m`� 1. This behavior

is very much like the relativistic z = 1 case, since in both situations the ν2/ρ̂2 potential

dominates up to the classical turning point.

2. In the low frequency regime (ω̂ � ν1−z), we need to compare f with the 1/ρ̂2−2/z term
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in Û0. Once again, we only need to consider the magnitude of f at the classical turning

point. The condition is now f(ω̂ρ̂0, ρ̂
1/z
0 )� ρ̂

2/z
0 , which gives rise to the requirement

ω̂ �
(
`

L

)z−1

. (4.83)

As ω̂ is taken smaller and smaller, we need to take higher and higher order corrections

into account. As a result, the perturbative expansion breaks down at small ω̂, and

results computed in this regime will not be robust against higher derivative corrections.

Physically, what happens is that as ω̂ → 0, we probe closer and closer to the horizon,

and it is precisely there where the higher derivative corrections dominate.

Hence, as long as the scale of the bulk higher derivative corrections satis�es m` � 1, the

perturbative expansion of the boundary Green's function makes sense for dimensionless fre-

quencies ω̂ � (`/L)z−1. For lower frequencies, the higher derivative terms start dominating.

This feature of higher derivative terms becoming more pronounced at the horizon is not

restricted to the Lifshitz background, but is in fact fairly general and shows up in, e.g., the

pure AdS and Schwarzschild-AdS cases. While the pure AdS case tends to be robust against

higher derivatives because of conformal invariance, more care may be needed in the case of

holography at non-zero temperature [97, 98, 99, 25, 100, 101, 10, 102]. Transport coe�cients,

such as the shear viscosity, may be extracted using the Kubo formula, which is evaluated

at |~k| = 0 before sending ω → 0. Since this is consistent with (4.83), the perturbative

expansion for transport coe�cients is valid. At the same time, however, more care may be

needed when analyzing general hydrodynamic modes, which are de�ned for both ω and ~k

small, but nonzero (see e.g. [103]).

4.3.3 WKB Analysis of the Spectral Function

In this section, we study the holographic spectral function of a probe scalar in Lifshitz

spacetime, in the presence of higher derivative corrections. To determine the e�ect of higher
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derivatives on the retarded Green's function, we consider a probe scalar with an e�ective

potential of the form

Û =
ν2 − 1/4

ρ̂2
+

1

ρ̂2−2/z
− ω̂2 +

∑
i+j>2

λi,jω̂
iρ̂i+j/z−2. (4.84)

The last term encodes an in�nite set of higher derivative corrections to the equation of

motion, where the (i, j) term corresponds to i temporal and j spatial derivatives. The size of

the coe�cients is expected to be set by a microscopic length scale `, so that (after restoring

units of L) λi,j ∼ (`/L)i+j−2. Since it is in general not possible to solve the corresponding

Schrödinger equation for the potential (4.84) analytically, we will make use of the WKB

approximation to obtain an approximate solution. This method can be used to calculate

the imaginary part of the retarded Green's function, which is proportional to the spectral

function. After switching to the ρ̂ coordinates de�ned in (4.76), the spectral function can be

approximated by1 (4.30) with b = 0 (infalling boundary conditions):

K−1ImGR(ω,~k) ≈ |~k|2νz lim
ε→0

ε−2νe−2S. (4.85)

Here K is a normalization constant and

S =

ˆ ρ̂0

ε

dρ̂

√
Û(ρ̂) +

1

4ρ̂2
. (4.86)

The additional 1/ρ̂2 term is equivalent to an e�ective shift ν2 → ν2 + 1
4
, which is necessary

for consistency of the WKB approximation for 1/x2 potentials (see section 3.3). The integral

is taken from a UV cuto� ε to the classical turning point ρ̂0. The WKB approximation for

the imaginary part of the rescaled Green's function de�ned in (4.67) is given by

K−1ImG(ω̂) ≈ lim
ε→0

ε−2νe−2S. (4.87)

1The additional prefactor of |~k|2νz arises from letting ε → |~k|−zε, which is the proper UV cuto� needed
to cancel the log-divergence of the integral.
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This expression is valid for a potential with only one classical turning point, such that the

wavefunction is oscillating near the horizon and tunnels towards the boundary. Close to the

boundary, the 1/ρ̂2 part of the potential leads to a power-law scaling of the wavefunction,

which is stripped o� by the factor of ε−2ν in (4.87). We can use (4.87) to determine the

imprint of higher derivative corrections on the spectral function, provided that λi,j < 0.

In this case, the potential goes to −∞ at the horizon, but the wavefunction still remains

oscillating and we can consistently impose infalling boundary conditions. Later we will argue

that (4.87) can in fact be used to provide a formal expansion for corrections with arbitrary

sign.

In order to perform a perturbative expansion of the WKB integral (4.86) in terms of λi,j,

we need the higher derivative corrections to be subdominant compared to the other terms

in Û , at least in the domain of integration. We therefore demand

λi,jω̂
iρ̂i+j/z � ν2, λi,jω̂

iρ̂i+j/z � ρ̂2/z (4.88)

for all 0 < ρ̂ ≤ ρ̂0 (see also the discussion in section 4.3.2.2). We can already see that this

imposes an ω̂-dependent condition on the coe�cients λi,j, which we will make more explicit

in what follows.

We can now determine the leading order correction to ImG(ω̂) by formally expanding the

WKB integral in terms of the λi,j. At leading order, the higher derivative contributions are

linear, so for our purposes it will be enough to drop the sum in (4.84) and only consider the

e�ect of a single correction term with �xed (i, j). In a realistic model with a tower of higher

derivative corrections, one may obtain a perturbative expansion for ImG(ω̂) by summing

up the individual contributions, keeping in mind that if there are corrections at di�erent

order (e.g. α′ and (α′)2), one may have to go beyond linear order to study the e�ect of all

correction terms.

A consistent expansion in λi,j requires expanding both the integrand and the upper bound
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ρ̂0, since the location of the turning point depends on the details of the correction terms.

Writing S = S(0) + δS, where S(0) is the two-derivative integral with λi,j = 0, we �nd (see

appendix E for a rigorous derivation):

S(0) =

ˆ ρ̂
(0)
0

ε

dρ̂

√
ν2

ρ̂2
+

1

ρ̂2−2/z
− ω̂2, (4.89)

δS ≈
ˆ ρ̂

(0)
0

ε

dρ̂
λi,jω̂

iρ̂i+j/z−2

2
√

ν2

ρ̂2
+ 1
ρ̂2−2/z − ω̂2

, (4.90)

where ρ̂
(0)
0 is the turning point for the case λi,j = 0, i.e. the solution of

ν2

ρ̂2
0

+
1

ρ̂
2−2/z
0

− ω̂2 = 0, (4.91)

and we expanded up to linear order in λi,j. The large and small ω̂-behavior of the unperturbed

integral S(0) was computed in sections 3.3.2 and 3.4:

S(0)(ω̂ � ν1−z) ≈ −ν − ν log
( ε

2ν

)
, (4.92)

S(0)(ω̂ � ν1−z) ≈ −zν + zν log (2ν) + ν(z − 1) log z +

√
πΓ
(

1
2(z−1)

)
zΓ
(

z
2(z−1)

) ω̂−
1
z−1 . (4.93)

Let us now calculate the leading correction (4.90) in the same limits. For ω̂ � ν1−z, the

unperturbed turning point lies at ρ̂
(0)
0 ≈ ν/ω̂, which is well within the region where the 1/ρ̂2

term dominates over 1/ρ̂2−2/z. Hence we can approximate the integral as

δS ≈
ˆ ν/ω̂

ε

dρ̂
λi,jω̂

iρ̂i+j/z−2

2
√

ν2

ρ̂2
− ω̂2

. (4.94)

Letting x ≡ ω̂ρ̂/ν, we �nd

δS ≈ νλi,jν
i+j−2

(
ν1−z

ω̂

) j
z
ˆ 1

εω̂
ν

dx
xi+

j
z
−2

2
√

1
x2
− 1

. (4.95)
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For ω̂ � ν1−z, correction terms with j 6= 0 are highly suppressed. After taking the UV cuto�

ε to zero, we therefore have

δS ≈ δj,0ciλi,0ν
i−1 +O

(
ν1/z−1

ω̂1/z

)
, (4.96)

where

ci =

ˆ 1

0

dx
xi−1

2
√

1− x2
=

√
πΓ
(
i
2

)
4Γ
(
i+1

2

) . (4.97)

Using (4.96) and the unperturbed result (4.92), we arrive at the �nal answer

K−1ImG(ω̂ � ν1−z) ≈ Cω̂2ν , C = (2ν)−2ν exp
[
2ν
(
1− δj,0ciλi,0νi−2 + · · ·

)]
, (4.98)

where the ellipsis indicates terms that are higher order in λ. The scaling of G with ω̂2ν

re�ects the fact that at large frequencies, the Green's function GR(ω,~k) = |~k|2νzG(ω̂) be-

comes independent of ~k (see the discussion in section 4.3.1). The higher derivatives simply

renormalize the numerical prefactor in a controlled way. The size of the higher derivative

corrections at large ω̂ is controlled by

λi,0ν
i−2 ∼

(
`

L
ν

)i−2

∼ (m`)i−2 , (4.99)

where i > 2 is the number of temporal derivatives. Note that λi,0ν
i−2 � 1 is precisely what

is required for the higher derivative corrections to be small up to the classical turning point

ρ̂0, in the limit of large ω̂, as one can see by evaluating (4.88) at ρ̂0 in this limit, and noting

that the unperturbed potential is monotonically decreasing.

We now turn to calculating the higher derivative corrections in the case of small frequen-

cies (ω̂ � ν1−z). In this case, the unperturbed classical turning point lies at ρ̂
(0)
0 ≈ ω̂−z/(z−1).

We can split up the integral (4.90) in the following way: Let ρ̂∗ = νz be the crossover scale,

de�ned in the beginning of section 4.3.2.2, at which the two di�erent terms in the potential

(4.81), ν2/ρ̂2 and 1/ρ̂2−2/z, become comparable. Since ω̂ � ν1−z, we can then introduce a
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regulator scale ρ̂r such that ρ̂∗ � ρ̂r � ρ̂
(0)
0 , and split up the WKB integral in (4.90) as

ˆ ρ̂
(0)
0

ε

=

ˆ ρ̂r

ε

+

ˆ ρ̂
(0)
0

ρ̂r

. (4.100)

The �rst of the integrals above is taken over ε ≤ ρ̂ ≤ ρ̂r � ρ̂
(0)
0 , so we can approximate the

potential in this region as

Û ≈ ν2

ρ̂2
+

1

ρ̂2−2/z
+ λi,jω̂

iρ̂i+j/z−2. (4.101)

On the other hand, the second integral is taken over ρ̂r ≤ ρ̂ ≤ ρ̂
(0)
0 , so in this region we can

write

Û ≈ 1

ρ̂2−2/z
− ω̂2 + λi,jω̂

iρ̂i+j/z−2. (4.102)

Using these approximations, we �nd

δS = δS1 + δS2,

≈
ˆ ρ̂r

ε

dρ̂
λi,jω̂

iρ̂i+j/z−2

2
√

ν2

ρ̂2
+ 1
ρ̂2−2/z

+

ˆ ρ̂
(0)
0

ρ̂r

dρ̂
λi,jω̂

iρ̂i+j/z−2

2
√

1
ρ̂2−2/z − ω̂2

. (4.103)

Letting u = 1
ν2
ρ̂2/z, the �rst integral can be written as

δS1 =
zν

4
λi,jν

i+j−2

(
ω̂

ν1−z

)i ˆ ur

uε

du
u
z
2
i+ j

2
−1

√
1 + u

, (4.104)

where the integration bounds are uε = ε2/z/ν2 → 0 and ur = (ρ̂r/ρ̂∗)
2/z � 1. In the small

frequency limit ω̂ � ν1−z, the correction term is highly suppressed unless i = 0. Hence we

have

δS1 ≈ δi,0
zν

4
λ0,jν

j−2

ˆ ur

uε

du
u
j
2
−1

√
1 + u

+O

(
ω̂

ν1−z

)
. (4.105)

The remaining integral is divergent as ur →∞. However, one can show that the contribution

of the upper bound cancels with that from the lower bound of δS2, since ur is after all a
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�ctitious regulator scale. Hence the only contribution of (4.105) to δS is due to evaluating

the integral at the lower bound uε → 0:

δS1 → −δi,0
zν

4
djλ0,jν

j−2 +O

(
ω̂

ν1−z

)
, (4.106)

where

dj =

ˆ u=0

du
u
j
2
−1

√
1 + u

. (4.107)

This contribution is �nite; in particular there are no log ε terms, which would a�ect the

boundary scaling. Similar to the large ω̂ case, higher derivative corrections are controlled

by terms of order ∼ λνn−2, where n counts the number of derivatives. This becomes quali-

tatively di�erent when considering δS2, which captures the contribution of higher derivative

corrections deep in the bulk. Letting x = ω̂z/(z−1)ρ̂, we obtain

δS2 =
1

2
ω̂−

1
z−1 ei,jλi,jω̂

− 1
z−1

(i+j−2), (4.108)

where

ei,j =

ˆ 1

ρ̂r/ρ̂
(0)
0

dx
xi−1+ j−1

z√
1− x2− 2

z

. (4.109)

When expanding the lower bound in powers of ρ̂r/ρ̂
(0)
0 , each term is designed to cancel with

the corresponding contribution from δS1. Instead of carrying out this cancellation explicitly,

we can therefore let

ei,j →
ˆ 1

0

dx
xi−1+ j−1

z√
1− x2− 2

z

=

√
πΓ
(
iz+j−1
2(z−1)

)
(2− 2

z
)Γ
(

(i+1)z+j−2
2(z−1)

) , (4.110)

together with the prescription (4.106). Using (4.106), (4.108) and the zeroth order result

(4.93), we arrive at the �nal answer

K−1ImG(ω̂ � ν1−z) ≈ D exp
[
−ω̂−

1
z−1E(ω̂)

]
, (4.111)
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where

D = (2ν)−2zνz2ν(1−z) exp

[
2zν
(
1 + δi,0djλ0,jν

j−2 + · · ·
)]
,

E(ω̂) =

√
πΓ
(

1
2(z−1)

)
zΓ
(

z
2(z−1)

) + ei,jλi,jω̂
− 1
z−1

(i+j−2) + · · · . (4.112)

Here the ellipses indicate terms that are higher order in λ. We see that the higher derivative

terms have two distinct e�ects: First, corrections with i = 0, which correspond to purely

spatial derivatives, a�ect the overall normalization D of the spectral function. Second,

and more importantly, higher derivative corrections with any i and j change the behavior

of the spectral function as ω̂ → 0, encoded in E(ω̂). The ω̂-dependent correction terms

become more and more important at small frequencies, and eventually the perturbative

expansion breaks down. This was to be expected, since at small ω̂, the spectral function

probes deep into the bulk, where higher derivatives dominate. However, recall that the

coupling constants λi,j are generically given by a ratio of a microscopic versus macroscopic

length scale, λi,j ∼ (`/L)i+j−2. It is thus possible to keep the corrections in (4.111) small by

demanding

ν1−z � ω̂ �
(
`

L

)z−1

. (4.113)

This is precisely the bound we argued for in section 4.3.2.2. Since the condition (4.88),

evaluated at large ω̂, also guarantees that `ν/L � 1 (see the discussion around (4.99) and

section 4.3.2.2), there is a wide range of frequencies that satisfy the inequality (4.113). For

frequencies within this range, (4.111) is a universal result: The spectral function behaves

as ∼ exp
(
−const. · ω̂−1/(z−1)

)
, and there are both constant and ω̂-dependent corrections

that can be computed order by order in perturbation theory. The naive limit ω̂ → 0 is

non-universal, since higher derivative corrections cannot be kept under control.

The procedure for calculating higher derivative corrections to the spectral function out-
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lined here can in principle be applied to arbitrary corrections of the form (4.84). Note,

however, that since we generally expect an in�nite number of such corrections, going beyond

leading order in `/L may require expanding (4.86) to the appropriate order.

Finally, let us comment on the sign of λi,j. In the analysis above, we assumed that

λi,j < 0, so that the wavefunction is always oscillating at the horizon, and no additional

turning points are introduced. If λi,j is positive, the wavefunction is tunneling in the deep

IR, leading to another tunneling contribution SIR to the spectral function (4.85). At large

enough ρ̂, the higher derivative corrections will always dominate the potential, so SIR does

not have a perturbative expansion in λi,j. This is simply a consequence of the fact that the

potential in the IR is always sensitive to all of the (in principle in�nitely many) coe�cients

that appear in the series of higher derivative corrections, and we cannot solve the equation of

motion perturbatively in the IR. It therefore seems that one cannot trust our analysis in the

case of generic corrections with arbitrary sign. However, one can circumvent this problem

in the following way: For any given ω̂, we can de�ne a regulator surface at ρ̂ = ρ̂h(ω̂)� ρ̂0,

such that higher derivative corrections are still small at ρ̂h, i.e.

λi,jω̂
iρ̂
i+j/z
h � ν2, λi,jω̂

iρ̂
i+j/z
h � ρ̂

2/z
h . (4.114)

This guarantees that the wavefunction is still oscillating at ρ̂h, even though eventually higher

derivatives may cause the potential to bend upwards again. Ignoring the (unknown) behav-

ior of the wavefunction in the deep IR, we only impose infalling boundary conditions at

ρ̂h, instead of ρ̂ → ∞. The surface at ρ̂h thus becomes an �e�ective horizon�, where the

wavefunction is infalling:

ψ(ρ̂→ ρ̂h) ≈ aeiΦ(ρ̂). (4.115)

Here Φ is an increasing function of ρ̂. The retarded Green's function can then be computed

using the usual formula (4.80), and the spectral function can be calculated approximately

using the WKB-formula (4.85). On a practical level, this regularization prescription amounts
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to simply taking (4.85) for granted, and formally expanding the WKB integral S in λi,j,

without worrying about the dynamics close to the horizon.

4.3.4 Field Theory Models with z = 2

As we have demonstrated, a holographic computation of the spectral function yields the

universal low-frequency behavior χ ∼ exp(−const. · ω̂−1/(z−1)), provided ω̂ is in the range

(4.113), where the higher derivative corrections are controlled. From a �eld theory point of

view, such an exponential behavior is not expected to arise at any �nite perturbative order,

but can show up non-perturbatively. This, of course, �ts the framework of non-relativistic

holography, where the �eld theory dual is expected to involve strong correlations.

In this section, we explore a �eld theoretic model exhibiting z = 2 Lifshitz scaling, namely

the quadratic band crossing model of [96]. Our strategy will be to identify phase-space

regions with nonzero decay rates for bosonic quasi-particles, which, according to the optical

theorem, will contribute to the imaginary part of the corresponding bosonic Green's function,

and hence the spectral function. We con�rm the presence of exponential suppression in the

spectral function at small ω̂, in agreement with the holographic computation.

4.3.4.1 The Quadratic Band Crossing Model

To set up the quadratic band crossing model, let us start with a massless Dirac theory in

2 + 1 dimensions, with action2

S =

ˆ
d~xdt

[
Ψ̄ (iγ0∂0 − iγ1∂x − iγ2∂y) Ψ− gψ†1ψ

†
2ψ2ψ1

]
. (4.116)

2Note that we use signature (+,−,−) for the �eld theory.
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Here Ψ = (ψ1, ψ2)T is a two-component spinor and Ψ̄ = Ψ†γ0. The 2 + 1 dimensional Dirac

matrices are given by

γ0 =

0 −i

i 0

 , γ1 =

0 i

i 0

 , γ2 =

−i 0

0 i

 . (4.117)

The interaction term in (4.116) is the only four-fermi term allowed for a two-component

spinor. In the IR, this ψ4 term is also the most relevant interaction term in the RG sense.

At the Gaussian �xed point, this theory is conformally invariant with dynamical critical

exponent z = 1. By setting the speed of light to unity, the theory contains only one control

parameter, which is the interaction strength g.

The quadratic band crossing model generalizes the above to form a scaling invariant

model with z = 2 [96]. It does so by replacing the derivatives in the Dirac theory (4.116) by

the following operators:

i∂0 → i∂0 + t0∇2,

i∂x → −t1(∂2
x − ∂2

y),

i∂y → −2t2∂x∂y, (4.118)

where ∇2 = ∂2
x + ∂2

y and t0, t1 and t2 are real parameters. After this substitution, we obtain

a model with z = 2:

S =

ˆ
d~xdt

{
Ψ̄
[
γ0

(
i∂0 + t0∇2

)
+ γ1t1

(
∂2
x − ∂2

y

)
+ 2γ2t2∂x∂y

]
Ψ− gψ†1ψ

†
2ψ2ψ1

}
. (4.119)

This action bears some resemblance with the original Dirac theory. However, in direct

contrast to the Dirac theory, whose action only contains �rst-order derivatives, this model has

a �rst order time derivative and second order spatial derivatives. As a result, space and time

have di�erent scaling dimensions, and it is straightforward to show that dimensionally [t] =
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2[~x], corresponding to z = 2 at the Gaussian �xed point. In condensed matter systems, this

model describes band touching points with quadratic dispersions, which have been observed

in bilayer graphene (see for example the review articles [104, 105, 106]); a realization has

been proposed in optical lattice systems, using high angular momentum orbitals [107].

Generically, the action (4.119) contains four control parameters: t0, t1, t2, and the in-

teraction strength g. However, we can set one of the three ti's to unity (say t2 = 1) by

rescaling. As shown in [96], if we require SO(2) spatial rotational symmetry, then t1 and t2

must coincide. Furthermore, if a fermion particle-hole symmetry (i.e. charge conjugation) is

enforced, then t0 must vanish. Here we will focus on the case with t0 = 0 and t1 = t2 = 1,

which preserves both the spatial rotational and charge-conjugation symmetries. In this case,

the action reduces to

S =

ˆ
d~xdt

{
Ψ̄
[
γ0i∂0 + γ1

(
∂2
x − ∂2

y

)
+ 2γ2∂x∂y

]
Ψ− gψ†1ψ

†
2ψ2ψ1

}
, (4.120)

and the free dispersion relation for the two bands is given simply by

ε±(~k) = ±k2. (4.121)

It is worth emphasizing that most of our conclusions remain valid as long as |t0| < |t1| and

|t0| < |t2|. These inequalities ensure that the model has both particles and holes in the weak

coupling limit (small g).

4.3.4.2 Renormalization Group Analysis

At tree level, the ψ4 term in the quadratic band crossing model is irrelevant (relevant) in the

IR for systems above (below) 2+1 dimensions. In 2+1 dimensions, g is marginal at the tree

level. A one-loop RG analysis indicates that a repulsive interaction (g > 0) is marginally

relevant at IR, while an attractive interaction g < 0 is marginally irrelevant in the IR [96].

In the Dirac theory (4.116) on the other hand, the ψ4 term is irrelevant (relevant) in the IR
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for systems above (below) 1+1 dimensions. In 1+1 dimensions, due to the special properties

of the 1+1 conformal group, the ψ4 term remains exactly marginal, before the system hits a

Kosterlitz-Thouless transition.

4.3.4.3 Boson Correlation Functions

Although the model discussed above describes fermionic �elds, bosonic modes can be con-

structed from these fermionic degrees of freedom in the form of fermion bilinears. In the

particle-hole channel, we can build four di�erent fermion bilinears (boson modes)

bi = Ψ̄γiΨ, (4.122)

with i = 0, 1, 2, and 3, and the fourth gamma matrix is given by γ3 = iγ0γ1γ2. Here b0

is the fermion density operator and the other three bosonic operators can be used as order

parameters for various symmetry breaking phases (nematic or quantum anomalous Hall) [96].

At the Gaussian �xed point, these bosonic modes have z = 2, which is inherited from the

fermions.

Additional bosonic modes can also be created in the particle-particle channel (e.g. ψ†1ψ
†
2),

which are the order parameters for various superconducting states. In this section, we will

only consider fermion bilinears in the particle-hole channel. These bosons can decay into

particle-hole pairs and are thus expected to have a �nite lifetime. Via the optical theorem,

the existence of such decay channels is equivalent to a non-zero imaginary part of the two-

point function (and thus the spectral function), generated by self-energy diagrams such as

those shown in Fig. 28.

Although it is challenging to analytically compute these diagrams, it is straightforward

to prove that for a boson with momentum ~k, the imaginary part of each self-energy diagram

can only arise when the energy ω of the boson is larger than a certain threshold. For each

diagram, this threshold can be determined using energy-momentum conservation.
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Figure 28: Self-energy corrections for the boson modes. Here, solid lines represent fermionic
propagators and wiggly lines are boson propagators.

For example, the one loop diagram shown in Fig. 28 (the leading order correction) com-

putes the scattering rate for a boson mode with energy ω and momentum ~k to decay into one

particle with energy ωp and momentum ~kp and one hole with energy ωh and momentum ~kh.

Such a decay process can only take place when both the energy and momentum conservation

laws are satis�ed:

~k = ~kp − ~kh,

ω = ωp − ωh = k2
p + k2

h ≥
k2

2
. (4.123)

Here we used the quadratic dispersion relation (4.121). For �xed ~k, the momentum conser-

vation law enforces a relation between the momentum of the particle ~kp and that of the hole

~kh, i.e. ~kp = ~k + ~kh. With this constraint, the energy of the particle-hole excitation k2
p + k2

h

has a lower bound of k2/2 (which is reached when ~kp = −~kh = ~k/2). In other words, the

energy conservation law can only be satis�ed when ω ≥ k2/2. As a result, for ω ≥ k2/2, the

boson can decay into a particle-hole pair, and thus have a �nite lifetime, while for ω < k2/2,

decay is kinematically forbidden. Thus, at the one-loop level, O(g0), the imaginary part of

the bosonic correlation function only arises for ω ≥ k2/2. This energy range is known as the

particle-hole continuum.

When the ψ4-interaction term is taken into consideration, the bosonic modes can decay

through higher order processes (one example is shown in Fig. 28). For these higher order
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diagrams, the same analysis can be utilized. At order O(g2n), the energy and momentum

conservation laws imply that

~k =
n+1∑
i=1

~kpi −
n+1∑
i=1

~khi ,

ω =
n+1∑
i=1

ωpi −
n+1∑
i=1

ωhi =
n+1∑
i=1

(k2
pi

+ k2
hi

) ≥ k2

2(n+ 1)
. (4.124)

Here we consider the decay of a bosonic mode into n+1 particles and n+1 holes (see Fig. 28

for an example with n = 2). For �xed ~k, momentum conservation enforces a constraint on

the momenta of the particles and holes. Given this constraint, the energy is minimized when

the momenta are collinear, and the boson momentum ~k is equally distributed among the

particles and holes. This results in a lower bound on the energy of k2/2(n + 1). Thus the

decay is kinematically forbidden unless ω ≥ k2/2(n+ 1).

This analysis demonstrates that, up to order of O(g2n), the imaginary part of the boson

correlation function only arises when the energy of the boson is above a threshold, ω ≥

k2/2(n + 1). Furthermore, this threshold goes down to zero for higher order diagrams as

∼ 1/(n + 1). Thus, if we sum the diagrammatic expansion to in�nite order (n → ∞), we

expect that the boson correlation function can pick up a nonzero imaginary part for any

ω > 0.

Finally, we are ready to extract the asymptotic form of the imaginary part of the self-

energy correction at small ω. For ω � k2, the imaginary part can only arise via processes of

order O(g2n), where n ∼ k2/2ω. Therefore, we expect the imaginary part at energy ω and

momentum ~k to scale as ∼ g2n ∼ gk
2/ω. For su�ciently small g, this relation implies that

the imaginary part of the self-energy correction decays to zero with the singular behavior

∼ e−const./ω̂, where ω̂ = ω/k2 is the dimensionless energy. This matches the z = 2 low

frequency behavior (4.111) obtained holographically.
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4.3.4.4 Dirac Theory Revisited and Systems with Higher z

We can repeat the kinematical analysis used above for similar models with arbitrary z ≥ 1.

In this case, for O(g2n), the energy-momentum conservation law becomes

~k =
n+1∑
i=1

~kpi −
n+1∑
i=1

~khi ,

ω =
n+1∑
i=1

ωpi −
n+1∑
i=1

ωhi =
n+1∑
i=1

(kzpi + kzhi) ≥
kz

(2n+ 2)z−1
. (4.125)

For any z > 1, the lower bound for having a nonzero imaginary part depends on n, and goes

to zero as n→∞ (i.e. when considering higher and higher order diagrams). Similar to the

discussion above, after summing over all the diagrams to in�nite order, we �nd that at small

ω, the imaginary part of the self-energy scales as

Im Π ∼ g(kz/ω)1/(z−1)

. (4.126)

For small g, this indicates that Im Π decays to zero as e−const.·ω̂−1/(z−1)
, where now ω̂ =

ω/kz, in agreement with the holographic result (4.111). This suggests that the exponential

suppression of the spectral function is a generic property of Lifshitz models at ω � kz.

Note that for z = 1, the Dirac theory is recovered, and the fate of the system is funda-

mentally di�erent. As can be seen by substituting z = 1 into (4.125), the energy threshold

becomes independent of n. For any diagram, regardless of its order, the imaginary part arises

only for ω ≥ k. After summing over all diagrams (to in�nite order), the same lower bound

of energy remains (ω ≥ k). As a result, for z = 1 the imaginary part of the correlation

function vanishes identically in a �nite region ω ≤ k, which is in sharp contrast to the z > 1

case. This conclusion is consistent with a symmetry analysis, which tells us that at z = 1,

the Lorentz and conformal symmetries require the bosonic correlation function to be propor-

tional to (−ω + |~k|)α, where α is some scaling exponent. For non-integer α, (−ω + |~k|)α is

real for ω < |~k|, while the imaginary part arises for ω > |~k|. For z > 1, however, the absence
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of the Lorentz and conformal symmetries allows for very di�erent types of behavior.

In summary, we �nd that models with z > 1 and z = 1 belong to fundamentally di�erent

universality classes. The case with z = 1 (i.e. Dirac) has been well understood with the

help of conformal symmetry, which almost fully �xes the functional form of the correlation

functions. However, for z > 1, the absence of conformal symmetry allows for richer structure

in the correlation function. For arbitrary z > 1, we have presented an argument suggesting

a characteristic exponential behavior e−const./ω̂
1/(z−1)

for the imaginary part of the self-energy

correction at low energy.

4.3.4.5 Limitations of the Analysis

An exponential fall-o� ∼ e−const./ω̂
1/(z−1)

of the spectral function all the way down to ω → 0

would correspond to an essential singularity of the two-point function at the origin. However,

it is worth noting that there are two limitations of the analysis presented above. First,

because we only considered the decay of bosonic modes into n+1 particle-hole pairs without

taking into account the renormalization of the vertex function (i.e. the renormalization of

the coupling constant g), the above analysis is not expected to give quantitatively accurate

results in the extremely low (or high) energy limit. This is because, as discussed above, in

2+1 dimensions, the coupling constant g is marginally relevant or irrelevant (depending on

the sign of g). For the IR or UV limit, the �ow of g cannot be ignored. However, because g is

only marginally relevant or irrelevant, the �ow of g is expected to be slow (i.e. logarithmic).

Hence there may exist a range for ω (i.e. ω is small, but not too small) in which the RG �ow

of g may be weak enough to be ignored, so that the analysis above can produce a reasonable

estimate for the scaling behavior of Im Π.

Second, in the context of QFT, the perturbation series in terms of Feynman diagrams is

typically expected to be an asymptotic series. This means that our kinematical argument

using loop diagrams only captures the behavior of the imaginary part of the self-energy

correctly up to some �nite order O(g2N), where N is large but �nite. In particular, this
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implies that the scaling Im Π ∼ g2n ∼ g1/ω̂1/(z−1)
is only valid for n ≤ N and thus for ω̂ above

some cuto� ω̂?(N).

Both of these points suggest that while the exponential suppression of the spectral func-

tion is a generic feature in a �nite region where ω̂ is small, the behavior in the strict limit

ω̂ → 0 is model-dependent. This is consistent with the observation in the gravity the-

ory, where the would-be singular behavior of the two-point function may receive signi�cant

corrections at very small ω̂ from model-dependent higher derivative terms.

4.4 Summary and Discussion

In this chapter, we demonstrated that the spectral function for a minimally coupled scalar

in a Lifshitz background is nonzero, but exponentially small, in the low-frequency regime

ω � kz. We then showed that this behavior is a robust holographic prediction for �eld

theories with Lifshitz symmetry, in the absence of further constraining symmetries. For the

classes of higher derivative theories we study holographically, we generically �nd that the

spectral function is suppressed in the low frequency region as χ ∼ exp(−const. · ω̂−1/(z−1)),

so long as ω̂ � (`/L)z−1, where ` is the length scale at which higher derivatives become

important.

On the �eld theory side, the Lifshitz scaling symmetry is a priori not expected to lead

to a universal 2-point function, and perturbative calculations do not reveal any similarities

either between di�erent �eld theories with Lifshitz symmetry, or with the holographic the-

ory. However, in the example of the quadratic band crossing model we presented a simple

kinematical argument involving energy-momentum conservation and a resummation of loop

diagrams that reveals a similar exponential suppression as predicted by holography. Further-

more, this exponential suppression is expected for any �eld theory containing the following

three key features: The existence of particles and holes, an interaction that allows for decay

channels, and a dispersion relation with z > 1 scaling symmetry. Therefore, we expect our
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conclusion to be generic and applicable to a wide range of systems (with z > 1) regardless

of microscopic details, in agreement with the holographic prediction. In particular, we have

checked that it applies to the quadratic band crossing model (1.3) (see [31] for more details).

Although in both the holographic and the �eld theory calculation, the exponential sup-

pression is a robust feature of the spectral function for small ω̂, the strict limit ω̂ → 0 is

non-universal in both cases. In the holographic calculation, the model-dependence enters

through higher derivative terms, which introduce corrections whose size can be quanti�ed

precisely (see equation (4.113)). However, the precise regime of validity of the �eld theory

calculations is less clear. In the quadratic band crossing theory considered here, the �ow

of the coupling constant g can no longer be neglected when taking the exact limit ω̂ → 0.

Instead of just being a simple exponential, the exact (nonperturbative) spectral function will

therefore have a more complicated dependence on ω̂. Naively, one may expect a dependence

of the form

ImG ∼ g(ω̂)ω̂
−1/(z−1)

. (4.127)

In 2+1 dimensions, the coupling g is marginal, and we expect g to depend only weakly

on ω̂, so that the spectral function still shows an approximately exponential behavior. It

would be interesting to further study the renormalization group �ow of g to make a precise

statement about the range of ω̂ for which this is the case. Along the same lines, in order

to put a precise lower bound on ω̂, it would be important to account for the fact that the

perturbative expansion is in fact only an asymptotic series (see the discussion in section

4.3.4.5).

In our �eld theory calculation, we found that ImG ∼ g1/ω̂1/(z−1)
, so that exponential

suppression in fact only arises for g � 1. It is important to note that this is not in con-

tradiction to AdS/CFT being a weak-strong coupling duality. The strong coupling nature

of the �eld theory does not necessarily mean that the parameter g has to be chosen large,

but rather that strong correlations (for example seen as long-range interactions) may emerge

dynamically. This feature is familiar from the standard case of relativistic AdS/CFT, where
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it is not gYM itself that is taken large, but rather the 't Hooft coupling g2
YMN � 1. In order

to better understand the relation between strong/weak coupling on the �eld theory/gravity

side in non-relativistic AdS/CFT, it would be desirable to develop a more precise version of

the holographic dictionary for this case.

Although we have chosen not to consider higher derivatives in the radial direction ρ be-

yond second order, this is in fact not a true limitation of the perturbative analysis. Assuming

we are only interested in solutions to the higher derivative equation that are perturbatively

connected to the lowest order (i.e. the two-derivative) equation, we may always eliminate

higher derivatives by substituting in the lower order equations. Consider, for example, the

addition of a fourth order term to the Schrödinger-like equation (4.77)

−ψ′′(ρ̂) + Û(ρ̂)ψ(ρ̂) = λψ(4)(ρ̂). (4.128)

We now rewrite this as ψ′′ = Uψ − λψ(4) and take two derivatives to obtain ψ(4) = (Uψ)′′ −

λψ(6). Substituting this in the right-hand side of (4.128) and working only to linear order in

λ then reduces the equation to second order

−ψ′′(ρ̂) + Û(ρ̂)ψ(ρ̂)− λ(Û(ρ̂)ψ(ρ̂))′′ = O(λ2). (4.129)

While this equation is no longer in manifest Schrödinger form, it can be so transformed if

desired. Thus our analysis is in fact applicable to this more general case as well.

As we discussed at the end of section 4.3.3, the perturbative expansion of the spectral

function in terms of higher derivative coe�cients λi,j strictly speaking only makes sense if

these coe�cients are chosen such that no additional turning points are introduced deep in

the bulk. However, we argued that our formal perturbation series can still be used even

in the case of higher derivatives with �wrong� sign, i.e. for the case where the e�ective

potential bends upwards at large ρ. It would be interesting to determine if in a realistic

theory, there are constraints on the signs of the coe�cients λi,j, for example due to bulk

140



causality or unitarity. It would also be interesting to study string theory embeddings of

Lifshitz spacetimes, where the coe�cients of higher derivative corrections can be determined

exactly, and calculate the corrections to holographic correlation functions.
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Appendix A

Metric and Curvature of Planar

Spacetimes

Here we provide the curvature components used in the derivation of the Lifshitz solution

in section 2.1. Although not needed for the Lifshitz case, we consider slightly more general

metrics of the form

ds2 = −e2b0(r)dt2 + dr2 +
d∑
i=1

e2bi(r)
(
dxi
)2
. (A.1)

The nonvanishing curvature terms are

Rρ
σµν = δρνηµσb

′
νb
′
σe

2bσ − (µ↔ ν), (A.2)

Rr
µrν = −ηµνe2bν

(
b′′ν + (b′ν)

2 )
(A.3)

Rrr = −
∑
λ

(b′′λ + (b′λ)
2), (A.4)

Rµν = −ηµνe2bν

(
b′′ν + b′ν

∑
λ

b′λ

)
, (A.5)

R = −
∑
λ

(
2b′′λ + (b′λ)

2
)
−
(∑

λ

b′λ

)2

, (A.6)
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where µ, ν = 0, . . . , d, and repeated indices are not summed over unless explicitly stated.

The Lifshitz solution is given by

b0 (r) = zr , bi(r) = r , z > 1, (A.7)

and the case z = 1 corresponds to AdSd+2. For this class of solutions, we have

Rr
0r0 = z2e2zr,

Rr
irj = −δije2r,

R0
i0j = −δijze2r,

Ri
jkl = (δilδjk − δikδjl)e2r,

R00 = z(z + d)e2zr,

Rrr = −(z2 + d),

Rij = −δij(z + d)e2r,

R = −(z2 + d+ (z + d)2). (A.8)
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Appendix B

Higher Derivative Solutions in

Alternative Gauge

In our numerical analysis in section 2.3.2, we chose the parametrization (2.33) for the metric,

which is di�erent from (A.1). In this gauge, the Lifshitz metric of section 2.1 takes the form:

ds2 =
1

r2

(
−dt2 + dr2 + r2z̃

(
dx2 + dy2

))
. (B.1)

The scaling parameters are related via z = (1− z̃)−1. Furthermore,

φ =
4 (1− z̃)

λ1

log r + C, (B.2)

Q2e−λ1C =

(
3

2
− z̃
)
z̃

(
1− 4α

(
z̃ − 3

4

))
, (B.3)

Λ = 2

(
3

2
− z̃
)

(2− z̃) + 4αz̃ (1− z̃)

(
3

4
− z̃
)
, (B.4)

λ2
1 =

4
(

3
2
− z̃
)

(1− z̃)

Q2e−λ1C
=

1− z̃
z̃
(

1
4
− α

(
z̃ − 3

4

)) . (B.5)

It is straightforward to show that λ2
1 (z̃) has a local minimum at

z̃± = 1± 1

2

√
1− 1

α
, (B.6)
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Figure 29: Plot of λ1 (z̃) for α = 0 (black), α = 0.9 (blue) and α = 3 (red).

provided that α ≥ 1. In this case there are two di�erent scaling parameters z̃1 < z̃2 for

any given λ2
1 (away from the minimum) (see Figure 29). Notice also that λ2

1 blows up for

z̃? = 3/4 + 1/(4α), which is within the range of physical solutions for α ≥ 1 only. To

summarize, the possible ranges for the parameters are:

α < 1 : 0 ≤ λ1 <∞ , 0 < z̃ ≤ 1,

α ≥ 1 : λmin ≤ λ1 <∞ , 0 < z̃ < z̃?, (B.7)

where λmin ≡ λ1 (z̃−).
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Appendix C

Irrelevant Perturbations around Higher

Derivative Solutions

There are two ways in which the exponent of the dilaton perturbations, ν may become

complex:

1. The smaller square-root in (2.64) becomes imaginary. This happens when

λ2 =
1

αλ1

(
−
(
λ1 −

2√
3

)2

+
2

3

)
. (C.1)

2. Even if the small root is real-valued, ν̃2 may still cross zero, which happens at

λ2 =
1

λ1 (11α2 − 19α + 8)

{
4

3
(1− α)λ2

1 +
11

8
α− 1

± 3

2

[
(α− 1)2 λ4

1 −
1

2

(
11α2 − 19α + 8

)
λ2

1 +

(
11

12
α− 2

3

)2 ]}
(C.2)

To �nd out when the dilaton perturbations are irrelevant, i.e. ν̃2 = 1/4, notice that ν̃2− 1/4

can only change its sign as we go from case 1) to case 2) in (2.65). As a consequence,

irrelevant perturbations will stay irrelevant as long as αλ2/λ1 ≷ 1. In practice, it is therefore

easiest to plot the curves (C.1)/(C.2) and determine the number of irrelevant perturbations
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numerically, making use of continuity arguments (see Figures 1 and 2).

147



Appendix D

WKB Approximation for Spectral

Functions

Here we give a brief discussion of the accuracy of the WKB approximation in the context of

calculating holographic spectral functions. The wavefunction (4.22) is only the leading order

approximation to the exact result. We can parametrize a �nite error in our approximation

by writing

φ3/4 =
√
ν
(
U − ω2

)− 1
4 (1 + δ) e±S(ρ,ρ0), δ � 1. (D.1)

This error propagates to the matching coe�cients inM′ in the following way:

M′ =

 (1 +O (δ)) ενeS(ε,ρ0) O (δ) ενe−S(ε,ρ0)

O (δ) ε−νeS(ε,ρ0) (1 +O (δ)) ε−νe−S(ε,ρ0)

 . (D.2)

WhileM′
AD → 0 for ε→ 0,M′

BC actually blows up in this limit. This means that we have

no theoretical control over this coe�cient, and results containingM′
BC cannot be trusted.

There is a simple explanation for this problem: We perform the matching at ε → 0, where

the A-mode generically blows up, but the B-mode goes to zero. For a generic solution with

A,B 6= 0, we can then take an arbitrary �nite amount of B and �hide� it under the non-

normalizable mode A by taking B → B− δB and A→ A+ δB . The relative error we make
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by doing so will always be shrunk to zero near the boundary. This means that generically,

we cannot trust the WKB-calculation of B. However, any result that does not contain the

�mixing�-termM′
BC can still be calculated accurately. For example, we can calculate B for

a normalizable wavefunction, where A = 0. In this case, we need to choose a = −ib and we

obtain  A

B

 =

 0

M′
BDe

−iπ
4 b

 . (D.3)

Since M′
BC automatically shows up in the expression for the Green's function (4.17), one

might expect that we cannot trust this result. However, once we plug in (D.2), we see that

GWKB(ω,~k) = K

(
M′

BC

M′
AC

+
i

2

M′
BD

M′
AC

1− i b
a

1 + i b
a

)
, (D.4)

so the problematic term only appears in the real part of the Green's function. This means

that while we cannot trust WKB for ReG(ω,~k), we can still get accurate results for the

imaginary part, up to an O(δ)-error. In particular, one can check that M′
BC ∼ ε−2ν and

M′
AD ∼ ε2ν do not conspire with each other to make this error divergent.

149



Appendix E

Perturbative Expansion of the WKB

Integral for Spectral Functions

We would like to obtain an approximate expression for the WKB integral (4.86) for a po-

tential of the form

Û(ρ̂) = Û0(ρ̂) + δÛ(ρ̂), (E.1)

where

Û0 =
ν2

ρ̂2
+

1

ρ̂2−2/z
− ω̂2, (E.2)

and δÛ represents a small correction to the potential. To be precise, we assume that δÛ is

subdominant compared to the other terms in the potential for all ρ̂ between the boundary

and the classical turning point. To guarantee this, it is su�cient to demand that

δÛ(ρ̂)� ω̂2 for 0 ≤ ρ̂ ≤ ρ̂0. (E.3)

We can then expand the turning point as follows:

ρ̂0(t) = ρ̂
(0)
0 (1 + t+ · · · ) , (E.4)
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where

t ∼ δÛ(ρ̂
(0)
0 )

ω̂2
� 1, (E.5)

and ρ̂
(0)
0 is the turning point of the unperturbed potential, i.e. Û0(ρ̂

(0)
0 ) = 0. The relative

size of δÛ at the unperturbed turning point is what controls the higher derivative expansion.

The WKB integral (4.86) can be written as S = S(0) + δS, where

δS = S − S(0) =

ˆ ρ̂0(t)

ε

dρ̂

√
Û0(ρ̂) + δÛ(ρ̂)−

ˆ ρ̂
(0)
0

ε

dρ̂

√
Û0(ρ̂). (E.6)

One could attempt to simply expand the above expression formally in t and δÛ , and it

turns out that this does indeed give the correct result (4.90). However, this approach is

problematic, since Û0 goes to zero at ρ̂
(0)
0 , and thus the formal expansion parameter δÛ/Û0

blows up at this location. The solution is to split up the integrals in (E.6) in a way that

the integrand always has a well-de�ned expansion in terms of δÛ . To do this, we shift the

�rst integral by rescaling x ≡ ρ̂ρ̂
(0)
0 /ρ̂0(t), so that the upper bounds of both integrals are

identical. We can then combine both terms to obtain

δS ≈
ˆ ε

ε
1+t

dx

√
ν2

x2
+

1 + 2
z
t

x2−2/z
− (1 + 2t) + δÛ (x)+

ˆ ρ̂
(0)
0

ε

dx

√
Û0(x)

[√
1 + V (x)− 1

]
, (E.7)

where

V (x) =
δÛ(x) + 2

zρ̂2−2/z t− 2t

Û0(x)
, (E.8)

and we expanded to linear order in t. The �rst term in (E.7) is due to the shift of the lower

bound of the �rst integral in (E.6). Assuming that limx→0 x
2δÛ(x) = 0, this term evaluates

to νt after we send ε→ 0. To compute the second integral, notice that although Û0(x) itself

blows up at the upper bound, the ratio V (x) remains �nite everywhere. Moreover, it is small

by assumption, so we can expand (E.7) in terms of V (x): s

δS ≈ νt+

ˆ ρ̂
(0)
0

ε

dx
δÛ(x) + 2

zρ̂2−2/z t− 2t

2
√
Û0

. (E.9)
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The integral over the terms linear in t exactly cancels the νt term, and we arrive at the �nal

result:

δS ≈
ˆ ρ̂

(0)
0

ε

dx
δÛ(x)

2
√
Û0

. (E.10)

This is the �rst order correction to the WKB integral in the presence of a perturbation δÛ .
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