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ABSTRACT

Enabling Decision Insight by Applying Monte Carlo Simulations and Eigenvalue
Spectral Analysis to the Ship-Centric Markov Decision Process Framework

by

Austin A. Kana

Chair: David J. Singer

One of the major problems facing ship design today is that engineers often focus most

of their efforts on the What of the design as opposed to understanding the Why. The

What is defined as the solution itself, while the Why is defined as the decisions that

drive how the set of solutions change through time. Decision making through time,

especially in the face of uncertainty, has consistently been difficult for engineers. This

is due to both uncertainty and the interconnected nature of complex decision making

problems. There are no standard definitions or metrics that quantify the impact of

engineering design decisions. This dissertation aims to address that need. This re-

search extends the ship-centric Markov decision process (SC-MDP) framework which

involves applying Markov decision processes to ship design and decision making. The

SC-MDP framework is useful for analyzing decision making in the maritime domain

due to its inherent temporal structure and ability to handle uncertainty. However,

the framework is limited in its ability to clearly show how uncertainty affects deci-

sions, and its inability to quantify the changes and long term implications of decisions.

xiv



Two methods unique to this research are developed and explored. First, applying

Monte Carlo simulations to the SC-MDP framework is proposed to give insight into

the impacts of uncertainty on the decisions and set of results. Second, a method

to perform eigenvalue spectral analysis within the framework was developed to un-

derstand the behavior of the decisions themselves. Three metrics are developed in

regards to eigenvalue analysis. To quantify changes in decisions, the damping ratio is

proposed, defined as the ratio of the largest eigenvalue to the magnitude of the second

largest. To understand the long term implications of a set of decisions the principal

eigenvector is presented. For eliciting relationships and inter-dependencies of deci-

sions, analyzing repeated dominant eigenvalues and the set of principal eigenvectors

are used. Three maritime case studies are presented that demonstrate the utility of

these methods and metrics involving designing for evolving Emission Control Area

regulations, ship egress analysis and general arrangements design, and lifecycle plan-

ning for ballast water treatment regulations.

xv



CHAPTER I

Introduction

One of the major problems facing ship design today is that all too often engineers

focus most of their efforts on the What of the design as opposed to understanding

the Why. The What is defined as the solution itself; whether it be a specific product,

the vessel itself, or a given technology. The Why, on the other hand, is defined as

the decisions that drive how the set of solutions may change through time. Decision

making through time, especially in the face of uncertainty, has consistently been dif-

ficult for engineers. The U.S. Office of Naval Research has identified the problem of

understanding the impact of design decisions due to the lack of standard definitions

and metrics that measure these implications (ONR, 2011). One example of where a

failure in understanding the impacts of the decisions has led to serious ramifications

is with the U.S. Navy LCS (now frigate) upgrade program. This program has been

plagued with technical issues, cost overruns, and schedule delays (O’Rourke, 2015).

Specifics of this program are discussed in more detail in Chapter II: The Why Behind

the What: Identifying Ship Design’s Next Challenge and how it relates to the overar-

ching goals of this dissertation.

This goal of this dissertation is to develop new techniques that enable decision making

insight by changing the focus away from the What of design towards one that focuses
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on understanding the Why. A focus of the decisions themselves, their relationships

and implications, as well as the impact of uncertainty on decisions are the focus of

this research. Specifically, the objectives of this research are:

1. Develop a method that elicits decision making insight in the face of multiple

layers of uncertainty that may change and evolve through time.

2. Develop new leading indicator methods and metrics to quantify the impact of

design decisions.

3. Develop a means to understand the inter-dependencies and relationships be-

tween various decision paths.

1.1 Motivation

The motivation of this dissertation came from a project with a commercial client.

The client requested a comparison of economic results from University of Michigan’s

ship-centric Markov decision process (SC-MDP) tool with their own internal lifecycle

cost analysis tools. The SC-MDP tool was developed by Niese (2012) to help generate

and analyze time domain design decisions and costs. It is stochastic in nature, while

the client’s internal lifecycle cost analysis was a static model. The results appeared

different at first, but it soon became clear that the differences were a function of

the model setup and the assumptions. Many of these assumptions came from how

externalities within the case study itself were modeled. The client requested a valida-

tion study to clarify these discrepancies. A description of that study and the results

are presented in Appendix A. The Emission Control Area case study presented in

Chapter IV: Monte Carlo Case Study: Design for Evolving Emission Control Area

Regulations provides an extension of this study to include some of the techniques

developed in this dissertation.
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After the validation study, new questions arose. There was more interest in under-

standing sensitivities of the inputs and the structure of the model than there was in

the actual answer itself. There was a recognition that this understanding was neces-

sary for the results to be meaningful. Initially, traditional interrogation methods were

used to gain this information. Due to the structure of the case study, this process soon

proved to be intractable. There was a need for new methods and metrics that could

elicit this information in an intelligent way. This method would help gain insight into

the implications of the decisions on the set of results through time. It would also

provide insight into the underlying relationships of the decisions to highlight interde-

pendencies within the model itself. The goal was to develop leading indicator metrics

for design decision making. The methods and metrics presented in this dissertation

have been developed with that goal in mind.

1.2 Contributions

Several contributions have been identified stemming from this research. Those contri-

butions are briefly mentioned here, while a more in depth discussion of them follows

in the conclusion. They are highlighted in the order they are presented in this dis-

sertation.

1. Applying Monte Carlo simulations to the SC-MDP framework to understand

the effect of uncertainty on a temporal non-stationary decision process. This

dissertation presents a new method for handling multiple layers of uncertainty

in a system by applying Monte Carlo simulations to the SC-MDP framework.

This method shows the impact of multiple decision scenarios on a suite of results.

2. Applying eigenvalue spectral analysis to a stationary SC-MDP case study to
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examine the future impact of decisions. A new method was developed that

enables the ability to perform eigenvalue spectral analysis on Markov decision

processes. This method was designed to examine and quantify the impact of

decision making. New metrics involving both the eigenvalues and eigenvectors

are discussed.

3. Applying eigenvalue spectral analysis to a non-stationary temporal SC-MDP

case study to examine relationships within the decision making process. This

research introduced the concept of applying eigenvalue spectral analysis to a

non-stationary temporal Markov decision process. Metrics that handle repeated

eigenvalues are used to study initial condition dependence of design absorbing

paths.

1.3 Overview of Dissertation

This dissertation consists of seven chapters that outline the identified problem, the

methods proposed to address that problem, and three case studies examining various

applications of the methodology applied to ship design and decision making.

Chapter 2 lays out the problem formulation that this research aims to address. This

research is about understanding the need for a design methodology that moves beyond

the What of design to understanding the Why. A overview of existing methodologies

is discussed and a new framework is proposed. The new framework includes applying

Monte Carlo simulations and eigenvalue spectral analysis to the ship-centric Markov

decision process.

Chapter 3 presents the new methods and metrics proposed in this dissertation to ad-

dress the research problem outlined in Chapter 2. Background on Markov chains and
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Markov decision processes is discussed first, followed by a discussion of Monte Carlo

simulations. The methods and metrics involved with applying eigenvalue spectral

analysis are discussed at the end of the chapter.

Chapter 4 presents the Monte Carlo case study, involving design considerations in the

face of evolving Emission Control Area Regulations. The focus of this chapter is on

the implications of uncertainty on decision making, and how stochastic analysis can

be used to help synthesize this uncertainty.

Chapter 5 presents the first case study involving applying eigenvalue spectral analysis

to the SC-MDP framework. The focus of this chapter is on quantifying the impact of

specific decisions and examining their long term implications. A stationary decision

process is presented, and metrics involving both the eigenvalues and eigenvectors are

explored. This case study involves studying egress patterns and general arrangements

design.

Chapter 6 presents a second case study on eigenvalue spectral analysis using the SC-

MDP framework. This chapter differs from Chapter 5 by presenting a non-stationary,

temporal decision process. This chapter focuses on identifying relationships and inter-

dependencies in the decision process and how those relationships may change through

time. Metrics involving repeated eigenvalues and eigenvectors are presented. The case

study involves lifecycle considerations for ballast water treatment compliance.

Chapter 7 consists of the conclusion of the dissertation, specific contributions of this

research, and areas of potential future work.
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CHAPTER II

The Why Behind the What: Identifying Ship

Design’s Next Challenge

“Without a clear capabilities-based assessment, it is not clear what oper-

ational requirements the upgraded LCS is designed to meet. The Navy

must demonstrate what problem the upgraded LCS is trying to solve [em-

phasis added]. We must not make this mistake again.” U.S. Senator John

McCain (Freedberg Jr., 2015)

“No one in the Navy seems to have ever figured out quite what to do with

all that expensive speed in a real-world tactical situation. It’s a solution

searching for a problem [emphasis added].” (Freedberg Jr., 2015)

“In short, you figure out what problem you’re trying to solve, then how

to solve it, then how best to implement that solution. The upgraded LCS

skipped the first two steps.”(Freedberg Jr., 2015)

The quotes above regarding the upgraded US Navy Littoral Combat Ship (LCS)

program (now re-branded Frigate (FF)) adequately set the stage for the dissertation

that follows. These quotes lay out the common perceptions as to why the LCS upgrade

program has been considered a failure. Essentially, the common thought is the Navy
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failed to understand the problem, failed to understand the implications of specific

requirements, and that there was a breakdown in the structured decision process.

This dissertation argues that the real problems came from the external pressures

facing the program, and the inability for designers to fully comprehend their impacts

on the design realizations through time. The LCS upgrade program is discussed as

simply an example of the problems that can arise with a failure to understand the

Why. The Why is defined as the decisions that drive how the set of solutions may

change through time, while the What is defined as the solution itself; whether it be a

specific product, the vessel itself, or a given technology.

2.1 The US Navy Littoral Combat Ship / Frigate Program

Originally funded in FY2005, the US Navy LCS program was a program to procure

52 LCSs and frigates. The ships were designed to be a relatively inexpensive surface

combatant equipped with modular mission packages to enable the ship to be adapt-

able to different missions and operational scenarios. Two variants of the vessel were

designed and built: a steel-hulled monohull designed by Lockheed Martin and built

by Marinette Marine shipyard in Marinette, WI, and an aluminum hulled trimaran

designed by General Dynamics built by Austal USA in Mobile, AL (Figure 2.1).

According to O’Rourke (2015) the program has been controversial from the outset,

due to past cost growth, design and construction issues with the lead ships

built to each design, concerns of the ships’ survivability (i.e. ability to

withstand battle damage), concerns over whether the ships are sufficiently

armed and would be able to perform their stated missions effectively, and

concerns over the development and testing of the ships’ modular mission

packages.
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Figure 2.1: The two LCS variants. The top is the Freedom class steel-hulled monohull
LCS built by Marinette Marine in Wisconsin, while the bottom is the Independence
class aluminum hulled trimaran LCS built by Austal USA in Alabama. (US Navy,
2010)

Due to these reasons, in 2014 under the direction of the Secretary of Defense Chuck

Hagel, the program was restructured significantly. The program has been reclassified

as a Frigate program which entails significant modifications to both the remaining

vessels in the program and well as certain modifications to some of the existing vessels

already in service.

While this restructuring was intended to breath new life into a faltering program, the

decision making process the Navy performed has come under serious criticism. Some

of the most damning criticism has been outlined in the opening three quotes and by

Ronald O’Rourke, a specialist in Naval Affairs (Freedberg Jr., 2015; O’Rourke, 2015).

The Navy did not have a clear understanding of the root problem the original LCS

was intended to address, or if and how that problem had changed in the nearly 10
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years since the program’s inception. They also never examined whether a modified

LCS was the best option. Instead, the US Navy moved forward with a solution that

was a modified LCS without a formal rigorous assessment of not only whether the

upgraded LCS was the best option, but if it even addressed a known gap in the Navy

(O’Rourke, 2015).

However, this dissertation argues that the problems that plagued the LCS upgrade

program run deeper than those previously discussed. That problem involves properly

accounting for all the uncertain external factors affecting both the design and decision

making throughout the upgrade process. Figure 2.2 lists many of the pressures that

had to be accounted for in the program. Not only is there uncertainty surrounding the

actual affect of these factors, but the nature of which changed and evolved through

time.

Figure 2.2: External factors affecting the LCS upgrade program.
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Due to the multi-mission capabilities required for this vessel, new technology was

required. This technology development had a long lead time, and in the meantime

requirements changed, and, as discussed above, some requirements remained through-

out the process that eventually proved to have no utility as the design progressed.

What are the implications of these requirements both throughout the design phase

and throughout the lifecycle of the vessel? Throughout this, the management of the

program changed, as well as the needs of the Navy as whole. How does the upgraded

LCS fit into the big picture needs of the Navy both today and into the future? As

this is a federal government program, there was congressional oversight. Due to the

two design realizations, how does Congress and the Navy balance the needs of the

two different shipyards contracted to build the two variants? All of these issues have

led to cost overruns plaguing the original program and the restructuring as well.

From a design perspective, how do the designers make sense of all these external

pressures through time? How do they understand the implications and impacts they

have on how the solutions evolve through time? To achieve this, this dissertation ar-

gues, requires changing the focus away from designing for the What towards a focus

of understanding the Why. The LCS case study is just one example of how focusing

on the Why can help decision makers navigate through evolving uncertain external

pressures. Other examples that will be be discussed later in this dissertation include:

designing for evolving Emission Control Areas, ship egress analysis and general ar-

rangements design, and lifecycle planning for ballast water treatment compliance.
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2.2 The Importance of Decision Making: The Why not the

What

One of the real benefits of focusing on the Why is gaining an understanding of the im-

pacts of design decisions. According to the American Board for Engineering and Tech-

nology, “engineering design...is a decision-making process (often iterative) (ABET,

2015).” Thus, engineering decision making has been recognized as one of the funda-

mental constructs in engineering design for decades (Le Masson et al., 2013). These

decisions vary in importance (Seram, 2013), and the US Navy Office of Naval Research

has specifically identified the following problem involving decision making, stating,

It is often difficult to measure the impact of design decisions, as there are

no standard definitions, metrics, and measurements that define, let alone

calculate, the return on investment of any design decision that impacts

multiple aspects of the Navy enterprise (ONR, 2011).

This distinction between the What and the Why is important. At its core, engineering

and ship design are disciplines designed around making decisions to solve problems.

However, as individuals, all too often engineers and ship designers tend to become

too singularly focused on generating solutions. Some engineers are only able to de-

scribe the design itself and not the decisions that went into its development. This

dissertation argues that understanding the Why first can lead to designing a better

What.

This dissertations aims to explore new methods and metrics that measure the impact

of decision making. Thus moving the focus away from the What of design towards

one that examines the Why. However, developing sound decision making methods

and processes has traditionally been difficult. This is due to both practical and psy-

chological reasons, as described in the following sections.
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2.2.1 Practical Reasons Engineering Decision Making is Difficult

Practically, decision making for large scale engineering projects is difficult due to

the temporal, sometimes fragmented, and uncertain nature that is inherent with the

design process (Hastings and McManus, 2004; Seram, 2013). This dissertation decom-

poses the problem of engineering decision making into two parts: first the problem

of understanding the uncertainty and how it affects decision making, and second

understanding the implications of the decisions themselves and the inherent interre-

lationships that may be hard discern.

2.2.1.1 Understanding Uncertainty and Decision Making

Uncertainty arises in decision making from not only endogenous factors, such as tech-

nological or engineering uncertainty, but also arises from exogenous factors, such as

regulatory, economic (Niese and Singer, 2013), or weather and climate uncertainty

(Vanem, 2015). Due to the complex and sometimes intractable nature of large scale

strategic planning and decision making problems, practitioners typically omit the un-

certain or stochastic elements when modeling the problem (Fagerholt et al., 2010).

However, Zayed et al. (2002) showed that differing and sometimes conflicting results

may arise when comparing deterministic and stochastic methods for the same prob-

lem. Zayed et al. (2002) studied the economics of maintenance and scheduling of

bridge painting by comparing a deterministic economic analysis using net present

value to a stochastic model using a Markov decision process. They concluded that

while the deterministic method may show more promising results at times, its advan-

tages are “offset by the MDP’s ability to incorporate the inherent stochastic nature of
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the phenomenon being modeled” (Zayed et al., 2002). Thus, properly accounting for

the uncertainty in any decision aiding model is necessary when attempting to elicit

decision making insight.

Uncertainty is also not uniform, as many types of uncertainty affect lifecycle design

and operation. While numerous types of design aim to mitigate the impact of uncer-

tainty - for example: robust, versatile, and flexible designs - developing a coherent,

comprehensive strategy for decision making in the face of this remains difficult (Hast-

ings and McManus, 2004). Decisions are also expected to be made earlier in the

design process to help gain strategic advantages over competitors (Seram, 2013).

2.2.1.2 Understanding Complexity and Interrelationships of Decisions

Decisions are also sequential and have inter-relationships and dependencies that may

not be immediately obvious to the decision maker. To understand these relation-

ships, Klein et al. (2009) notes that decisions must be contextualized in terms of the

environment in which they are being made, stating:

For each [decision] there is a distribution of possible consequences. Each

distribution is a function of uncertainty of elements in the decision situa-

tion and uncertainty regarding executing the course of actions defined in

the decision option. Decision makers must choose among the options for

action that are at their disposal. Decision makers therefore must be able

to compare these options ... and choose among them, given an analysis of

the facts of the situation, which maps from the facts to the consequences

of each option.

Failure to recognize these consequences and implications increases risk and may im-

pede future opportunities. These relationships and dependencies can also have a sig-
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nificant effect on lifecycle cost estimates. The total complexity of the design problem

makes it difficult to develop tools to handle everything from a lifecycle cost perspec-

tive (Hoff, 2007). This is problematic since so many engineering design decisions are

based on cost implications. When there are multiple decision paths available, select-

ing the one optimal strategy may prove problematic (Klein et al., 2009). Providing

insight into the Why may prove to be beneficial in understanding how the What will

behave through time.

2.2.2 Psychological Reasons Engineering Decision Making is Difficult

Psychologically, decision making is difficult because many engineers are not adept at

handling the multifaceted and uncertain nature that is inherent with many engineer-

ing projects. Wankat and Oreovicz (2015) claim this struggle has roots in education,

stating that decision making is consistently difficult for engineering students. To dis-

cuss this, an understanding of Perry’s model of intellectual development is necessary

(Table 2.1). Perry’s model shows different levels of intellectual development a student

may achieve while in college (Felder and Brent, 2005). This understanding is more

conceptual, as opposed to related to a specific subject.

Table 2.1: Perry’s model for the development of college students.

1 and 2 Dualism All knowledge known, right and wrong answers exist
for everything.

3 Early multiplicity Knowledge includes methods for solving problems,
OK to have more than one right answer.

4 Late multiplicity Uncertainty with respect to knowledge is OK,
all opinions equally valid.

5 Relativism All knowledge must be viewed in context.
6 - 9 Commitment For life to have meaning commitments must be

made, taking into account that the world is a
relativistic place.
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Students at various levels of their collegiate career were studied to see where they fell

on this intellectual development scale. Felder and Brent (2004) describes the results

of those studies,

On average, freshmen enter college at the level of prereflective thinking

(dualism), basing their judgments on unsubstantiated beliefs and the pro-

nouncements of authorities, and leave at the quasi-reflective thinking level

(multiplicity), beginning to seek and use evidence to support their judg-

ments. Very few graduates reach the level of reflective thinking (contex-

tual relativism), however...only advanced doctoral students were consis-

tently found to reason reflectively.

The level of intellectual development relates to decision making because, “reflective

thinkers accept the inevitability of uncertainty in decision making but they are not

immobilized by it. They make judgments and decisions on the basis of a careful

weighing of all available evidence, the practicality of the solution, and the pragmatic

need for action (Felder and Brent, 2004).” Wankat and Oreovicz (2015) claim that

engineering students may not have to confront issues of multiplicity and uncertainty

until graduate level studies. This is limiting because students and practicing engi-

neers in the first two positions in the model will have significant difficulty practicing

engineering in our multiplistic society. Wankat and Oreovicz (2015) states, “these

engineers cannot see the big picture, and without further growth they are unlikely to

advance significantly in their careers.”

Wankat and Oreovicz (2015) summarize how evolutions in the problems that engineers

face may affect the functionality a engineer at a particular development level,

“Fifty years ago [1920], our researches suggest, a college senior might

achieve a world view such as that of Position 3 or Position 4 on our
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scheme and count himself a mature man [(Perry Jr., 1970)].” However,

the world has changed and current practice of engineering involves solving

open-ended problems that are complicated by lack of data, interactions

with various stakeholders, and rapidly changing conditions. To function

as a seasoned engineer in this environment requires a person who is at

level 5 or higher (Pavelich and Moore, 1996).

2.2.3 Practical Reasons Engineers Do Not Focus on the Why

There are other reasons engineers do not focus on the Why. One of the most com-

mon practical reasons designers do not is because designers want to know What to

design so that it can actually be built. It is natural for engineers to focus on the

What because it is what they are trying to build. Eventually the product needs to be

built, so spending adequate and sufficient time designing the details of the What is

important. However, due to tight schedules and budgets, many feel there is no time

to focus on the Why. Properly defining the problem up front and understanding how

decisions can impact how the solutions evolve can save time and effort on the back

end. This attention to the Why may even reduce re-work at later stages of design

if it is determined the design does not meet desired goals (Sommez, 2012). Figure

2.3 outlines how change costs grow by a factor of ten for each step in the design and

construction process, highlighting the importance of making good decisions upfront

to mitigate changes and high costs later.

2.2.4 Psychological Reasons Engineers Do Not Focus on the Why

On top of the practical reasons, there is a deeper, more psychological reason as to why

many engineers do not focus on the Why. This is explained by Kolb learning cycle,

and the significant body of social research surrounding it. The Kolb learning cycle is
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Figure 2.3: Estimates of change costs during different stages of design for naval vessels
(adapted from Keane and Tibbitts (1996)).

presented graphically in Figure 2.4. This process explains the cycle students need to

complete in order to fully master a topic, such as engineering. At each step there is a

characteristic question. The question associated with the first step is why, meaning a

focus on the problem and the decisions. This is where students study the importance

of identifying and characterizing the problem correctly and understanding how to

make the decisions to approach the problem. The next two steps are described by the

questions what and how, meaning a focus on possible solutions methods, and how to

implement them. This is where students learn ways of approaching the problem as

well as ways to actually deconstruct and solve the problem. The cycle ends with the

question what if, which is where students start exploring hypothetical situations to

gain a full understanding of the topic. This last step is where the boundaries of the

methods studied are explored to test new problems. Achieving this last step is when

full understanding of a subject happens.

Multiple studies have been performed on thousands of engineering students to de-

termine the breakdown of where most students fall between the Type 1 to Type 4

learners. The results of those studies have been remarkably consistent showing that

on average, roughly 40% of undergraduate engineering students are Type 2, 30% Type
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Figure 2.4: Learning styles and learning cycle based on Kolb’s model (adapted from
(Montgomery and Groat, 1997)

3, 20% Type 4, and only 10% Type 1 (Harb et al., 1993; Sharp, 2001; Spurlin et al.,

2003). The grade level of the student also has an effect on both their Type as well

as their potential ability to succeed in their engineering studies. Spurlin et al. (2003)

have studied freshman engineering students and have shown that Type 2 and Type

3 students typically perform better academically than Type 1 and Type 4 students.

On top of the individual student breakdown, the classroom instruction has also been

structured to reflect a stronger focus on the What as opposed to the Why. According

to Felder and Brent (2005), “traditional science and engineering instruction focuses

almost exclusively on lecturing, a style comfortable for Type 2 learners.” Bernold et al.

(2000) studied the effect of teaching styles on students with various preferred learn-

ing styles. Their results were not conclusive but suggested that Type 1 and Type 4

learners perform worse when taught using traditional methods, as opposed to teach-

ing using the full Kolb cycle. This may lead to an associated higher risk of attrition

for Type 1 and Type 4 students (Felder and Brent, 2005). Thus, the structure of

the lecture based classroom alone may have a significant effect on the type of person
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who pursues engineering as a career. The current education structure favors those

individuals more interested in the What and How as opposed to those interested in

the Why.

Many graduate students in engineering develop an understanding and appreciation

for Type 1 and Type 4 learning during their highly specialized study (Harb et al.,

1993). However, most practicing engineers have only a bachelors level education, thus

the problem of failing to focus on the Why still persists in the engineering community.

Even though each individual engineer will have a preference to a given learning Type,

Felder and Brent (2005) note that, “to function effectively as engineers or members of

any other profession, students will need skills characteristic of each type of learner.”

Harb et al. (1993) also discussed the importance for students to complete the full

cycle during their education,

Failure to consistently traverse the full cycle is likely to produce defi-

ciencies in the abilities of those whom we teach. For example, we have

all observed students who were very good at the mechanics of problem

solving, but lacked the vision and perspective necessary to recognize the

problem.

As discussed previously, this failure to recognize the problem and understand the

implications of certain decisions was one of the key reasons behind the problems that

have plagued the US Navy LCS upgrade program.

2.3 What Makes Marine Design Unique?

The maritime design problem is unique due to its physically large, often fragmented

structure of complex systems with long lifespans involving multiple stakeholders (Fet
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et al., 2013). Ships also face a myriad of disturbances throughout their lifespan that

engineers and designers need to account for during all stages of design. While the

maritime domain has always faced some form of disturbance, the nature of which is

different today. Evolutions in the global marketplace, competition, technology, regu-

latory constraints, and societal systems (Frickle and Schulz, 2005) are necessitating

a change in the way ship design is approached. These disturbances arise from both

internal and external factors. Internal disturbances come from such factors as techno-

logical performance drift (Son and Savage, 2007; Styblinski, 1991; Niese, 2012), asset

depreciation (Stopford, 2009) and even evolving design requirements (Mouravieff,

2014). External disturbances come in the form of federal or international regulations,

such as environmental policies (IMO, 2011; Whitefoot, 2011), economic or budgetary

changes (Frickle and Schulz, 2005; LaGrone, 2014), supply chain risks (El-Gohary,

2012), and posturing of economic competitors (Tan and Park, 2014) or other navies

(D’eon, 2014). These disturbances can drastically change the vessel’s mission, use-

fulness, functionality and operating profile (Almeida, 2014; Niese and Singer, 2013),

and can vary in terms of sources, strengths, and time scales (Niese, 2012).

It is not only the presence of these disturbances themselves, but the uncertainty

associated with them through time that complicates maritime design and decision

making. While uncertainty in system design and operation has been studied in var-

ious engineering fields for decades (Pistikopoulos, 1995), the maritime domain faces

unique challenges. The complicated, and sometimes complex, maritime regulatory

environment is not precisely defined (Princaud et al., 2010) due to the uncertainty

associated with the policy instrument, geographical extent, and implementation date

of certain upcoming regulations. This is on top of flag states, coastal states, or in-

dividual ports that may implement their own individual regulations (Balland et al.,

2013; Stopford, 2009).
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Numerous techniques have been proposed to handle the topic of maritime life cycle

design and decision making under uncertainty. The following literature is intended to

show a breadth of the techniques used to approach this problem. Yang et al. (2009)

approached the problem of vessel selection by relating it to multiple criterion decision

making (MCDM) under uncertainty. Their technique involved a decomposition of

the criteria using hierarchical decision trees and fuzzy reasoning to help guide the

decision making. Balland et al. (2013) looked into the effects of uncertainty over the

actual emission reductions of certain emission abatement technologies. They employ

a two stage optimization technique to address the uncertainty in the decision mak-

ing. Finally, Fet et al. (2013) proposed systems engineering as a means for holistic life

cycle design to increase sustainability performance. They describe various process,

product, and environmental conscious management tools that can be used within the

systems engineering framework; however, they note that these efforts are often frag-

mented and that there is a lack of a holistic approach in the literature.

2.4 The Ship-Centric Markov Decision Process

To approach this problem, this research proposes using two novel methods applied to

the ship-centric Markov decision process (SC-MDP) framework. Those methods are

performing Monte Carlo simulations to the inputs of the SC-MDP framework, and

applying eigenvalue spectral analysis to the structure of the SC-MDP. The theory,

need, and literature background of the SC-MDP framework and the two novel meth-

ods are presented here, while specifics of the methods and applications are found in

later chapters.

Markov decision processes (MDPs) were first applied to ship design and decision
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making by Niese (2012) as a means to generate and analyze predictive time domain

design data. The SC-MDP framework is defined as applying MDPs to ship design

and decision making. MDPs are a mathematical model developed in the 1950’s to

solve dynamic decision-making problems under current and future uncertainty (Put-

erman, 2005). The SC-MDP framework has been shown to be a beneficial means

of analyzing decision making in the maritime domain due to its inherent temporal

structure and ability to handle uncertainty. The benefits of this model include a

state-based representation of both the system attributes and the environment in the

face of uncertainty, the ability to differentiate actions and sequences of decisions, and

the ability to incorporate temporal disturbances (Niese, 2012). Prior to their use in

ship design and decision making, MDPs have traditionally been used across a wide

variety of other disciplines, including: robot navigation (Russell and Norvig, 2003), fi-

nancial, economic, or portfolio management (Sheskin, 2011), inventory management,

scheduling of industrial system maintenance and replacement, and even behavioral

ecology (Puterman, 2005).

From a ship design perspective, MDPs allow for analysis of the physical product

itself, the sequential life-cycle decisions associated with that product, and the fu-

ture expected value of these products and decisions throughout their life-cycle. The

advantages of the SC-MDP framework over conventional design and analysis meth-

ods are numerous, including: an explicit model of the uncertainties associated with

the system itself and any environmental risks that may be present throughout the

system’s life-cycle, the ability to analyze dynamic operating profiles and external en-

vironments, and the ability to enable active management and decision making. The

additional use of simulations in the SC-MDP framework has enabled the ability to

examine how and why certain decisions may constrain future opportunities and to

discern differences in seemingly similar solutions. Previous research using the SC-
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MDP framework include analysis of ballast water treatment methods, designing for

the Energy Efficiency Design Index (Niese, 2012), and design considerations in the

face of evolving Emission Control Area regulations (Kana et al., 2015).

Despite these advantages, the current SC-MDP framework does have several limita-

tions. First, the sheer size and scope of the results of the model can become vast,

and in some cases can become overwhelming for the decision maker. Second, through

the use of simulation, the SC-MDP is unable to be used as a leading indicator for

predicting when and where changes in the system or operating environment may

lead to changes in the set of available decisions. The decision maker must manually

backtrack through the model to find where these decisions may change and is unable

to quantify the magnitude of these changes in the decisions. Finally, the SC-MDP

framework is limited in its ability to clearly show the sensitivities of the uncertainties

on specific decisions and the long term implications of those decisions. This research

proposes to address these limitations by introducing both Monte Carlo simulations

and eigenvalue spectral analysis techniques to the SC-MDP framework itself. In re-

gards to understanding the Why Monte Carlo simulations are proposed first, and give

high level, preliminary understanding of the decision process. To fully understand the

decisions themselves, and thus the Why, eigenvalue spectral methods are developed

and presented as the primary contribution of this research.

2.4.1 Monte Carlo Simulations: Need, Background, and Related Work

Applying Monte Carlo simulations to the SC-MDP framework distinguishes itself

from previous work by proposing a different method for handling situations with

deep uncertainty. Previous work using the SC-MDP framework has assumed discrete

probabilistic values for the uncertainty in the model. These assumptions can be lim-
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iting when applied to ship design and decision-making because of the difficulty in

precisely defining the specific stochastic values. For example, what is the exact prob-

ability that a vessel is able to obtain LNG as a bunker fuel at a given port during early

stages of infrastructure development? The exact value of this is not known. Monte

Carlo simulation account for uncertainty within the probabilistic transitions and re-

wards within the SC-MDP framework itself. Monte Carlo simulations are introduced

in this thesis as a means to properly handle this type of stochastic uncertainty in the

marine design decision making problem (Fagerholt et al., 2010).

These Monte Carlo simulations run through a range of uncertainties and input pa-

rameters to determine their respective effect on the overall solution. Monte Carlo

simulations have been used by others studying ship design, including Coraddu et al.

(2014) who used this technique to examine ship energy efficiency measures to meet

both the Energy Efficiency Design Index (EEDI) and the Energy Efficiency Opera-

tional Indicator (EEOI). Their technique differs from this work as this research uses

the MDP as the underlying framework with which to run the Monte Carlo simulations.

Nevertheless, Monte Carlo simulations are not the only means for handling uncer-

tainty regarding the probabilistic parameters of the MDP. Other techniques have

been developed, such as reinforcement learning (RL) (Otterlo and Wiering, 2012)

and partially observable Markov decision processes (Amato et al., 2013); however,

they both struggle when applying to life-cycle marine design decision making. Most

notably, both techniques involve virtually interacting and exploring the environment

in order to resolve and approximate these probabilistic values (Russell and Norvig,

2003). Physical or simulated exploration of the environment, as applied to marine

design, is difficult because there is little feedback for the model without physically

performing the actions in real life. For instance, what is the probability that the IMO
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will designate a certain body of water an ECA zone at a given time during the life-

cycle of the vessel? This answer cannot be resolved using RL or partial observability

because the only feedback to the model would come from the regulation actually

changing, and at which point the model may not be necessary as the regulation has

already changed. For uncertainties with shorter time frames that do have feedback

mechanisms, such as system maintenance and replacement scheduling, RL or partial

observability may be applicable methods. The case study presented in Chapter IV:

Design for Evolving Emission Control Area Regulations, however, focuses on the un-

certainties with longer time frames and no viable feedback mechanisms, where these

methods are not appropriate.

RL and partial observability methods are inherently different than the Monte Carlo

methods used in this paper because the Monte Carlo methods do not attempt to learn

or approximate what the specific uncertainty may be. Instead, Monte Carlo methods

run through a wide range of parameters and the objective is to understand how those

variances may affect the solution. The goal of this research is to understand how

changes in the uncertainty affect how the solutions behave through time, rather than

identifying what the specific uncertainty level may be. The objective of the overall

method is to draw from the strengths of MDPs in handling uncertain temporal deci-

sion making, and the strengths of Monte Carlo simulations in enabling true stochastic

analysis. Again, in terms of fully understanding the Why, Monte Carlo simulations

only provide some of the insight. To understand the decisions themselves requires

eigenvalue spectral analysis.
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2.4.2 Eigenvalue Spectral Analysis: Need, Background, and Related Work

Understanding the effect of the uncertainty is only part of the problem with decision

making in the maritime domain. There is also a need to understand decision making

when there is a vast number of possible decisions paths, and those decision paths are

interconnected in ways not immediately clear to the decision maker. For complex

scenarios, simply obtaining the final result does not provide sufficient insight, espe-

cially if it not clear how those results were obtained. In these cases, understanding

the implications of the decisions themselves may be just as important as obtaining

the results.

Spectral analysis applied to the SC-MDP framework is introduced as a specific con-

tribution of this thesis as a means to elicit decision making insight by parsing out the

implications and inter-relationships between decisions to help understand the Why.

In general, spectral analysis is a method for identifying and analyzing base properties

of a system, and has been applied to a wide variety of disciplines, such as: physics,

engineering, Earth sciences, social sciences and medical sciences (Stoica and Moses,

2005). This concept has even been applied to individual engineering disciplines in

the naval architecture community, such as wave mechanics and seakeeping (Dean and

Dalrymple, 1991; Faltinsen, 1990). In all cases spectral analysis is used to understand

the generalized response of the processes as opposed to specific results. For instance,

frequency analyses for dynamic systems provide information on the generalized am-

plitude and frequency across a wide variety of forcing frequencies, as opposed to

detailing the time history response given a specific forcing function and initial condi-

tions. Thus, spectral analysis applied to the SC-MDP framework has been selected as

a means to gain a deeper understanding into holistic ship design and decision making

through time.
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The applicability of spectral methods to analyze ship design and decision making in

the SC-MDP process framework is vast. Specifically, spectral analysis can be used

to identify the specific system attributes that affect the set of actions and decisions

available to the designer or operator through time. It can also be used to help identify

those secondary, tertiary, and and even weaker inter-dependencies in the system that

may not be noticeable by other methods. This can be done by identifying the minor

spectral modes of the system. The identification of the underlying system attributes

driving the system behavior will be greatly beneficial to designers and decision mak-

ers by allowing them to focus their efforts systematically on the important factors on

the design. Spectral analysis applied to the SC-MDP framework is a truly leading

indicator by enabling the identification of these design drivers without the need for

costly computer simulation.

While no single framework can capture all aspects of design decision making (Reich,

1995; Seram, 2013), the objective of this research is to provide a unique perspective on

engineering decision making processes to help elicit new insight that may improve un-

derstanding and design. Two chapters showing the application of eigenvalue spectral

analysis are presented in Chapter V: Ship Egress Analysis and General Arrangements

Design, and Chapter VI: Lifecycle Planning for Ballast Water Treatment Compliance.

2.5 Summary

This chapter outlined the primary themes and engineering problems addressed in

this dissertation. First, the importance of understanding the Why was discussed and

reasons why it has not been fully appreciated were detailed. Second, the importance

and difficulty of design decision making under uncertainty and through time was

presented. Many engineering tools do not fully address this problem, necessitating

the need for new methods and metrics. The ship-centric Markov decision process
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is proposed as the framework. Two new methods to the SC-MDP framework are

discussed that are unique to this thesis aimed at addressing the problems outlined

above.
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CHAPTER III

New Methods and Metrics for the Ship-Centric

Markov Decision Process Framework

The underlying mathematical model behind the SC-MDP framework is the Markov

decision process (MDP). This chapter covers the background methodology behind

Markov decision processes, Markov chains, as well as the two techniques unique to this

thesis: 1) applying Monte Carlo simulations to the inputs of the SC-MDP framework,

and 2) applying eigenvalue spectral analysis to the the SC-MDP framework.

3.1 Markov Chains

An understanding of basic Markov chains is a necessary precursor to Markov decision

processes. Markov chains are a linear first-order model used for tracking uncertain

system movement through time. They model sequential events under the assumption

that future behavior is independent of past events. They are characterized by a finite

set of states, S , and a set of probabilities, T , denoting the uncertainty of transitioning

from one state to another through time (Sheskin, 2011).

The probability of transitioning between states is presented mathematically using the

Markov chain transition matrix, M. An example Markov chain with three states is
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presented graphically in Figure 3.1. The probability of transitioning between states is

presented mathematically using the transition matrix, M, given in Table 3.1, where si

denotes the ith state of the previous time step and s′j denotes the jth state in the next

time step. For example, the probability of transitioning from State 1 to State 2 in the

next time step is 0.7. The cumulative probability of transitioning from one state to

any other state is always one. Thus, the rows of the Markov chain transition matrix

always sums to one. Matrices with this property are known as stochastic matrices

(Anton and Rorres, 2005).

Figure 3.1: Sample Markov chain with three states for a single epoch. pi,j denotes
the probability of transitioning from State i to State j.

Table 3.1: Markov chain transition matrix for Figure 3.1. The entries indicate the
probability of transitioning from the previous state, si, to the new state, s′j. Note,
each row must sum to unity.

New State
s′1 s′2 s′3

Previous State
s1 0 0.7 0.3
s2 0.2 0.8 0
s3 1 0 0

These transitions may vary through time, and thus M = f(t) = Mt. When the

transitions vary through time the process is known as non-stationary, otherwise, the

process is stationary.
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The probability of being located in a given state at a given time is denoted by the

state vector. The state vector is defined in Equation 3.1. The sum of all elements in

the state vector must be one.

s = (s1 s2 ... sn) (3.1)

An example state vector for the system above is given in Equation 3.2. This state

vector shows that there is a 50% probability of being located in State 1, a 30%

probability of being located in State 2, and a 20% probability of being located in

State 3.

s = (0.5 0.3 0.2) (3.2)

The probability of being located in a given state may vary through time, and this

evolution is calculated by multiplication of the state vector with the transition matrix,

as given in Equation 3.3.

st+1 = stMt (3.3)

While Markov chains are a useful method for modeling system evolution through

time, they do have limitations. They are unable to model various decision making

scenarios, nor are they able to calculate the expected value of landing in a given

state at a given time. Extending Markov chains to handle both decision making and

expected values is known as a Markov decision process.
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3.2 The Markov Decision Process

Markov decision processes are an extension of Markov chains designed to handle

dynamic sequential decision-making problems under uncertainty. They represent un-

certain systems, can differentiate actions, and can handle temporal system variations.

The classic MDP is defined as a four-tuple < S,A, T,R >, where S is a set of finite

states where the agent can exist, A is the set of actions which the agent can take, T

is the probability the agent will transition from one state to another after taking a

given action, and R is the reward the agent receives by executing a given action, a,

and transitioning to a new state, s′. Essentially, MDPs can be thought of as a series

of action dependent Markov chains with rewards (Sheskin, 2011), where each action

can be represented by its own transition matrix.

(a) Action 1 (b) Action 2

Figure 3.2: Sample three state MDP with two actions. Note that transition proba-
bilities and rewards may vary between actions.

An example three state, two action Markov decision process is given in Figure 3.2.

Note the transition probabilities and rewards may vary between different actions. As

with the Markov chains, the transition probabilities are represented in a transition

matrix. However, there is now a different transition matrix for each action. This is
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shown in Table 3.2. Table 3.3 is the associated reward matrix, which outlines the

reward obtained after taking a given action, a, and landing a given state, s′.

Table 3.2: Sample transition matrices for the system in Figure 3.2. Each action is
represented by its own transition matrix. The specific transition probabilities in this
case have been chosen simply for demonstration purposes.

Action 1
s′1 s′2 s′3

s1 0 0.7 0.3
s2 0.2 0.8 0
s3 1 0 0

Action 2
s′1 s′2 s′3

s1 0 0 1
s2 0 1 0
s3 0.1 0.1 0.8

Table 3.3: The reward matrix associated with Figure 3.2. The entries indicate the
reward received after taking a given action, ai, and landing a given state, s′j.

a1 a2
s′1 5 -1
s′2 1 3
s′3 0 6

The objective of an MDP is to identify the sequence of actions that maximizes the

cumulative, long term expected utility of the system. This sequence of actions iden-

tifies the set of recommended decisions the agent should take during each decision

epoch. An epoch is defined as an instance when the agent must make a decision.

Epochs can represent any such decision making period, such as a time step, or phys-

ical movement by an individual. The set of decisions is known as the policy of the

MDP (Russell and Norvig, 2003). This policy takes into account both the outcomes

of current decisions and future opportunities. That is, MDPs are memory-less, which

means the preferred actions do not rely on the history of how the agent arrived at a

given state (Puterman, 2005).

The expected utility of the MDP can be obtained via Equation 3.4, known as the

Bellman equation, where U is the expected utility, γ is the discount factor, and the
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other variables are defined previously.

U(s) = R(s) + γmax
a

∑
s′
T (s, a, s′)U(s′) (3.4)

The decision policy, π, is found by taking the argument of Equation 3.4, as defined

in Equation 3.5 (Russell and Norvig, 2003).

π(s) = arg max
a

∑
s′
T (s, a, s′)U(s′) (3.5)

MDPs are commonly solved via backward induction (i.e. dynamic programming)

to evaluate the expected utilities. That is, the model is solved backward in time, by

starting at the desired end state, and then moving backwards to find the optimal route

and expected value. This method is used to ensure that the sequence of decisions

prescribed is optimal (Puterman, 2005; Sheskin, 2011). If the transition probabilities,

rewards, or decision policy do not change with time, the process is known as station-

ary, otherwise the process is non-stationary (Niese, 2012; Puterman, 2005).

The common output of solving a non-stationary MDP for displaying the decision pol-

icy is a decision matrix. Decision matrices provide the recommended actions for each

state for each decision epoch. A generic non-stationary decision matrix adapted from

Niese and Singer (2014) is given in Table 3.4. Niese and Singer (2014) used Markov

decision processes to assess changeability of engineering designs under uncertainty by

performing simulations through the decision matrix. To read the decision matrix, the

decision maker would identify the preferred action in the table that corresponds to

the system state and epoch. For instance, if the system were in State 2 during Epoch

2, then Action 2 would be preferred.

The decision matrix can be a beneficial way of displaying information for several
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Table 3.4: Example non-stationary decision matrix developed from solving the Bell-
man equation for the system in Figure 3.2. For example, Action 2 is preferred when
the system is in State 2 and Epoch 2. Note the decisions may change through time,
as is the case between Epoch 4 and Epoch 5 for State 1.

State 1 State 2 State 3
Epoch 1 Action 1 Action 2 Action 2
Epoch 2 Action 1 Action 2 Action 2
Epoch 3 Action 1 Action 2 Action 2
Epoch 4 Action 1 Action 2 Action 2
Epoch 5 Action 2 Action 2 Action 2

reasons. First, it provides a road-map of preferred actions for the decision maker.

Second, it displays the optimal decision for each state for all time. Lastly, it can be

used to simulate different decision scenarios to discern slight differences in seemingly

similar situations as well as communicating how decisions are constrained and which

states deserve greater focus (Niese, 2012).

However, there are clear limitations with the decision matrix, including: size, inability

to predict changes in decision making behavior, and inability to show long term impli-

cations and relationships between set of decisions. The decision matrix grows linearly

with number of states and can quickly become overwhelming or even intractable for

a decision maker. This problem is compounded by the uncertainty that may exist

associated with knowing the specific state the system is in at any given time (Amato

et al., 2013). Despite the model’s ability to predict the set of recommended decisions

in the face of uncertainty, the use of simulations through the decision matrix prevents

it from being used as a leading indicator to identify areas where the decisions may

change. In order to understand the impact of decision making on the full range of

possible outcomes, simulations and exhaustive sensitivity studies are required. The

decision matrix alone does not clearly show the impacts of uncertainty or sensitivity

on the decision paths. Also, the decision matrix is unable to identify the temporal

implications of specific decisions or the relationships between various decision paths.

35



In order to overcome these limitations to understand the Why for large scale decision

problems, the research presented in this thesis investigates two methods:

1. To understand the impacts the uncertainty within a decision making process

can have on the suite of results, this thesis advocates for applying Monte Carlo

simulations to the inputs of the SC-MDP framework.

2. To understand the implications and relationships between specific decisions

within a given process, this research proposes applying eigenvalue spectral anal-

ysis.

These techniques are described in more detail in the following sections.

3.3 A Monte Carlo Approach to the SC-MDP Framework

Monte Carlo simulations are used to handle the uncertainty associated with defining

the rewards and transition probabilities. As discussed in the previous chapter, these

Monte Carlo simulations are well suited for systems with uncertainties with long time

frames and no viable feedback mechanisms, such as future environmental policies and

regulations.

To perform the Monte Carlo simulations, value ranges are determined for each param-

eter and the simulations iteratively selects values at random from each input variable

distribution. This process is shown visually in Figure 3.3. Thousands of simulations

may be run to ensure convergence to a stable distribution. The cumulative incremen-

tal change in both the states and actions is calculated after each run. The maximum

incremental change is used to show that the system has stabilized and that additional

simulations do not affect the solution in any significant manner.
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Figure 3.3: Visual representation of the Monte Carlo approach to the ship-centric
Markov decision process framework.

This methods enables unique analysis on the sets of decisions. The decision maker

is able to determine the percentage of time a given action may be optimal, given a

large suite of potential scenarios, as opposed to looking at a given optimal decision

path for one given scenario. This helps decision makers understand which actions

are most likely to be preferable, even in the face of large uncertainty. Understanding

the effect of uncertainty on the expected value is also very important. Monte Carlo

methods enable the decision maker to calculate the range of expected values both

through time and through various system scenarios. Understanding the probability

that a given value expectation will be met through time is possible by applying Monte

Carlo methods to the SC-MDP framework.

Sensitivities on specific variables are also performed to gain an understanding of why

the system may behaving the way that it is and what system parameters may be

driving its behavior. A case study involving designing for evolving Emission Control

Area regulations is given to detail the specifics of this framework in Chapter IV: De-

sign for Evolving Emission Control Area Regulations.

37



In regards to understanding the Why Monte Carlo simulations come close, but do not

provide a full understanding. There are several unanswered questions, specifically:

• Which decisions change the set of solutions over time?

• How do you quantify the difference in specific decisions?

• How do you understand the long term implications of specific decisions?

• How do you understand the inter-dependencies and relationships of various

decisions within the process?

There remains a need for a method that provides a generalized response to the system

that shows the implications of the various parameters and decisions, as opposed to

one that is focused on specific correlations and the results themselves. Eigenvalue

spectral methods are proposed as a means to address these issues.

3.4 An Eigenvalue Spectral Analysis Approach to the SC-

MDP Framework

Eigenvalue spectral methods applied to the SC-MDP framework are considered the

major contribution of this thesis. Spectral methods are introduced as a means to

analyze and quantify specific decisions, examine the long term implications of those

decisions, as well as eliciting the inter-dependencies and relationships between var-

ious decision paths. In order to perform spectral analysis, a different formulation

from the decision matrix described above is necessary. This formulation involves us-

ing the decision matrix to develop a series of Markov chain transition matrices to

represent the underlying dynamics of the system. Eigenvalue spectral analysis is then
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performed in these transition matrices. The eigenvalues and eigenvectors provide key

information of the system that may not be able to be found using traditional methods.

Two case studies are presented demonstrating the utility of spectral analysis and

the metrics described in the following sections. A case study involving ship egress

analysis and general arrangements design is given in Chapter V to show the utility

of the damping ratio, using the eigenvector as a metric for steady state behavior,

and the importance of the relationship between the eigenvector and the damping

ratio. A final case study discussing lifecycle planning for ballast water treatment

compliance is presented in Chapter VI to demonstrate the significance of repeated

dominant eigenvalues and how their associated eigenvectors can be used to identify

and characterize various initial condition dependent decision absorbing paths.

3.4.1 Spectral Analysis Methodology Overview

The following steps outline how to apply eigenvalue spectral analysis methods to the

SC-MDP framework. While each step individually can be found in the literature,

it is the combination of the steps, the new algorithm development, and the new

applications presented in this dissertation, that makes this research unique. The

method is summarized first, with the details of each step following.

1. Obtain the decision policy and associated expected utilities by solving the stan-

dard ship-centric Markov decision process (Puterman, 2005).

2. From the set of decisions, develop a series of representative Markov chain tran-

sition matrices, M, for each decision epoch (Sheskin, 2011).

3. Perform eigenvalue spectral analysis on the transition matrices to generate the

spectrum of the MDP (Caswell, 2001).
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3.4.2 Forming the Representative Markov Chains

Instead of displaying the policy using the decision matrix, the proposed methodol-

ogy uses a series of Markov chain transition matrics, M, to represent each decision

epoch. Using this method has several advantages. First, it preserves state transition

probabilities, as opposed to simply stating the optimal action. Second, and more

importantly for this research, formation of a series of transition matrices enables the

ability to perform eigenvalue spectral analysis.

These transition matrices are developed from the decision matrix (Sheskin, 2011).

This is done by selecting the state transitions for each state from its respective opti-

mal action and placing it in its respective row in the representative Markov chain. For

example, if Action 1 is optimal for State 1 according to the decision matrix, then the

first row for the representative Markov chain is identical to the first row of the Action

1 transition matrix. Likewise for State 2, if Action 2 is optimal, then the second row

of the representative Markov chain will be identical to the second row of the Action 2

transition matrix. This logic is followed for all states. This new transition matrix has

all the same properties of a standard Markov chain, namely it is square stochastic.

The only difference is that this new chain is able to represent the various optimal

actions for all states. It is essentially an amalgamation of the set of action transition

matrices displaying only the optimal action for each state. The result is a different

representative Markov chain for each decision epoch.

An explicit example of this formation of the representative transition matrix is given

below. The individual action transition matrices from the system in Figure 3.2 are

presented again in Table 3.5. The colors denote the specific transition probabilities

that are transferred to the representative transition matrix according to the decision

matrix. The decision matrix for the first decision epoch is presented in Table 3.6, and
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the resulting representative transition matrix is developed in Table 3.7. Eigenvalue

analysis is then performed on this transition matrix given in Table 3.7.

Table 3.5: Sample transition matrices for the system given in Figure 3.2. The colors
denote the specific transition probabilities that are transferred to the representative
Markov chain transition matrix according to the decision matrix.

Action 1
s′1 s′2 s′3

s1 0 0.7 0.3
s2 0.2 0.8 0
s3 1 0 0

Action 2
s′1 s′2 s′3

s1 0 0 1
s2 0 1 0
s3 0.1 0.1 0.8

Table 3.6: The decision matrix for the first decision epoch from Table 3.4. This is
generated by solving the Bellman Equation (Equation 3.4).

State 1 State 2 State 3
Epoch 1 Action 1 Action 2 Action 2

Table 3.7: Sample representative Markov chain transition matrix, M, for Epoch 1
(Table 3.6). Rows are determined from the action transition matrices (Table 3.5) and
the decision matrix (Table 3.6).

s′1 s′2 s′3
s1 0 0.7 0.3 (from Action 1)
s2 0 1 0 (from Action 2)
s3 0.1 0.1 0.8 (from Action 2)

This formulation of the decision process in this manner has the added benefit of

clearly differentiating the set of decisions from that of the design. The representative

Markov chain transition matrix can be thought of as the the set of decisions, while the

state vector described previously can be thought of as the physical system or design.

Thus, using the techniques described in this thesis, one can clearly show the impact

specific decisions have on specific areas of the design.
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3.4.3 Spectral Analysis

Once the representative Markov chains are formed for each decision epoch, eigenvalue

spectral analysis can then be performed. The eigenvalues, λ, and eigenvectors, w, are

defined according to Equation 3.6. The spectrum of a Markov chain, M, is defined

as the set of its eigenvalues, λ (Cressie and Wikle, 2011). For this research, Equation

3.6 was solved numerically using a built-in MATLAB function.

wiM = λiwi (3.6)

The eigenvalues are key to understanding the underlying dynamics of the system

(Salzman, 2007). They represent the analytic solution to each Markov chain, and

can also be used to examine the system attributes driving the behavior through time.

Identification of global oscillations, system stability, and bifurcation regions (Cressie

and Wikle, 2011) in the decision pathways is also possible with eigenvalue spectral

analysis. This type of analysis is common practice for Markov chains, and its appli-

cability has proven to be far-reaching (Caswell, 2001). However, applying eigenvalue

spectral analysis on Markov chains developed from a Markov decision process to an-

alyze various design decision making behavior is a unique contribution of this thesis.

By enabling spectral analysis of MDPs, this methodology has opened up vast new

areas of research and potential metrics for analyzing sequential decision making. Two

overarching metrics are developed and explored in this thesis: one is the damping

ratio, and the other is the eigenvector associated with the dominant eigenvalue.

3.4.4 The Damping Ratio

The damping ratio has traditionally been used to study the transient behavior of a

system and its rate of convergence to a steady state behavior. The damping ratio, as
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defined here for linear models, is defined in Equation 3.7, where λ1 is the dominant

eigenvalue, meaning it has the largest magnitude. |λ2| is the magnitude of the primary

sub-dominant eigenvalue, meaning it is second largest (Caswell, 2001). For stochastic

matrices, such as M, the dominant eigenvalue, λ1, is always one. Thus, for Markov

chains, the damping ratio can be uniquely defined by just λ2. All eigenvalues lie

within the unit circle in the complex plane (Kirkland, 2009).

ρ = λ1

|λ2|
(3.7)

This definition of the damping ratio has been used to analyze general state space

models in biological population modeling, such as the Leslie matrix model and the

Horn model (Caswell, 2001; Tanner and Hughes, 1994). For these more general state

space models which are not defined as stochastic, the constraint on λ1 does not apply,

and the damping ratio is defined by both λ1 and |λ2|. For Markov chains specifically,

the use of λ2 as a metric for convergence rates is more common (Pryde, 2009). Appli-

cations of the damping ratio as defined here, while available in the literature, is less

common and appears to be limited to only a few specialized topics and researchers in

biological population modeling (Hill et al., 2002, 2004) and theoretical mathematics

(Hartfiel and Meyer, 1998; Kirkland, 2009).

The damping ratio will be used in two unique ways in this dissertation. First it will

be used to identify and quantify changes in sets of decisions. Changes in the damping

ratio are coincident with changes in the Markov chain transition matrix, and thus

represent changes in the sets of decisions. When the decision of an individual state

changes, that state’s row in the representative Markov chain changes as well. The

row that consisted of the transition probabilities from the action transition matrix

from the previous set of decisions is replaced by the row consisting of the transition

probabilities of the new action transition matrix associated with the new decisions.
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This process is shown visually in Figure 3.4.

Figure 3.4: Visualization of how a change in decisions affects the representative
Markov chain transition matrix, M.

Since eigenvalue analysis is performed on these transition matrices, changes in the

representative Markov chain transition matrix change the eigenvalue spectrum of the

system. When this change affects the sub-dominant eigenvalue, λ2, it is concluded

that a major change in the system has occurred because the primary spectral mode

has changed. Thus, changes in the damping ratio signify major changes in the deci-

sion paths that have a significant effect on the overall system. When the damping

ratio is unaffected by changes in the sets of decisions, there is no significant change

to the overall system. This is similar to only affecting the minor spectral modes of

the system.

The second new application for the damping ratio is that it will be used to help

identify the significant state/action combinations that affect the process as a whole.

By associating the changes in the sets of decisions with the changes in the damping

ratio, the decision maker can identify important state/action combinations. While

the physical meaning of the eigenvalues themselves is hard to define, this research

instead focuses on how the eigenvalues change and then relates those changes to deci-

sion making behavior. These applications of the damping ratio to a Markov decision

process is a unique contribution of this thesis.
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3.4.5 The Eigenvector as a Metric for Steady State Behavior

This section outlines a brief derivation of how the eigenvector associated with the

dominant eigenvalue for stochastic matrices can be used as a metric for steady state

behavior. This eigenvector is known as the principal eigenvector. The derivation

is presented, followed by a discussion of its application to ship design and decision

making. First, assume a stationary system defined by the stochastic transition matrix,

M, and the initial state vector s0. As the system evolves through time, the state vector

will eventually converge to a steady state vector, that is st → s∞ = s. This process

is shown in Equation 3.8.

s0M = s1

s1M = s2

s2M = s3

...

sM = s

(3.8)

Notice that the final step in Process 3.8 can be defined as a eigenvalue equation with

s representing the eigenvectors and the assumption that λ = 1 (Anton and Rorres,

2005). The final line in Equation 3.8 is identical to Equation 3.6. In this case, the left

eigenvector is used because it is located on the left hand side of M in the left hand side

of Equation 3.8. As discussed previously, for stochastic matrices, not only does λ = 1

exist, but it is also the largest eigenvalue in magnitude. Thus, the eigenvector asso-

ciated with the dominant eigenvalue can be used as a metric for steady state behavior.

Even though most decision making is inherently non-stationary, this metric is still

significant to decision makers. This is because for every instant that is defined by M,
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the steady state distribution can be calculated without having to run the simulation

through time. Thus, the system converges based solely on the set of decisions, defined

by M, and not on the initial state vector s0. In these situations the projected system

is entirely independent of where the system starts.

As decisions change through time, and thus as M changes, the steady state distri-

bution may change as well. Calculating the magnitude of this change will be used

as a means to quantify the effect of a given decision on the future effect of the sys-

tem. Calculating this change between eigenvectors will be defined as determining

the magnitude of the angle between the vectors. This angle is calculated using the

identity presented in Equation 3.9 (Anton and Rorres, 2005), where w0 is the original

eigenvector and w1 is the eigenvector for the system with the updated set of decisions.

θ = cos−1( w0 ·w1

||w0|| ||w1||
) (3.9)

Thinking of the eigenvector as a vector pointing in the direction of how the system

will evolve given a set of decisions it becomes clear that this metric is truly a leading

indicator for analyzing design decisions. For instance, given the current set of deci-

sions, the specific design, as characterized by the state vector, will eventually progress

to a design characterized by the eigenvector. This is represented graphically in Figure

3.5. Here, wi are independent eigenvectors associated with a given set of decisions.

As stated, these eigenvectors are identical to the future steady state of the system

s∞ = s. Using the eigenvector in this fashion for forecasting the impact of design

decisions is a unique contribution of this thesis.
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Visualization techniques are especially helpful for when the state-space is large. For

example, the ballast water case study presented in Chapter VI has 240 states, while

the EEDI case study developed by Niese et al. (2015) has over 3,500 states.
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Figure 3.5: Visual representation of the eigenvectors as a leading indicator for the
impact of design decisions. wi are independent eigenvectors associated with a given
set of decisions which are identical to the future steady state of the system or design,
s∞ = s.

3.4.6 The relationship between the damping ratio and the eigenvector

There are instances when using the eigenvector as a metric for finding a single steady

state behavior will not work. For example, when ρ = 1. This means that the sub-

dominant eigenvalue, λ2 = 1; that is λ2 = λ1 = 1. Thus, the sub-dominant eigenvalue

is actually a repeat of the dominant eigenvalue. When the dominant eigenvalue is

repeated there are now multiple eigenvectors associated with the set of dominant

eigenvalues. This relationship between λ1, λ2, and s is why the damping ratio metric

is defined by both λ1 and λ2 in this thesis in order to highlight the importance of the

relationship between these two eigenvalues, despite λ1 = 1 in all cases.
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Two types of behavior may occur when the dominant eigenvalue is repeated. First,

the state vector may fail to converge to a single steady state distribution. This may

happen if the steady state vector oscillates between more than one distribution, or if

multiple distributions exist simultaneously, that is more than one s exists. Second,

the convergence of the state vector may be initial condition dependent (Kirkland,

2009). This means the system will converge based on both the set of decisions and

on where the system starts. In situations such as these the designer needs to be very

careful in how they select their starting state.

This relationship between the damping ratio and the principal eigenvector is logical.

As the damping ratio approaches 1, that means λ1 and λ2 approach each other. Two

things happen here. First, the system approaches repeated roots for the primary

spectral mode, which cause different phenomena then when the roots are distinct.

Second, when ρ = 1 there are multiple dominant eigenvalues, and thus there are

multiple principal eigenvectors.

3.4.7 The significance of repeated dominant eigenvalues

When the dominant eigenvalue is repeated, different analysis techniques are war-

ranted to gain insight. Two analysis techniques are examined in this dissertation.

The first involves the technique of reducible matrices to group specific aspects of the

design and decision process that align with each other (Gebali, 2008). This technique

helps identify relationships and inter-dependencies between specific decisions within

the whole decision process. The physical meaning of this is that this technique de-

composes the one decision process into multiple independent decision processes. The

second technique uses the set of principal eigenvectors to estimate the behavior of the
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state vector through time. These two techniques are the forefront of the understand-

ing of applying spectral methods to the SC-MDP framework. Results are presented

in Chapter VI: Lifecycle Planning for Ballast Water Treatment Compliance, while

further studies remain as future work.

3.4.7.1 Reducible Markov processes

There may be situations when the dominant eigenvalue is repeated multiple times. In

these situations, the Markov process is known as reducible. Reducible Markov pro-

cesses are those in which not every state is reachable from every other state. Thus, by

starting in a specific set of states, it is not possible to reach certain other states. This

aspect is important because it highlights the initial condition dependence of reducible

processes. Also, it may inform the decision maker that certain design or decision paths

may not be reachable given a specific initial condition. Reducible Markov processes

are defined by closed and transient states. Transient states are those in which the

process may pass into and through, but will not remain in for the long term. Closed

states are those in which that once the process enters those sets of states, it will never

leave. They are states the system will converge to in the long term (Gebali, 2008).

The set of closed and transient states can be identified by examining the set of princi-

ple eigenvectors (Theorem 1). The proof of the theorem can be found in Gebali (2008).

Theorem 1: Let M be the transition matrix of a reducible Markov chain whose

eigenvalue λ = 1 corresponds to an eigenvector w. The closed states of the chain cor-

respond to the nonzero elements of w and the transient states of the chain correspond

to the zero elements of w.

Essentially, the nonzero elements of each principle eigenvector represents one partic-

ular steady state distribution. These distributions depend on the initial conditions of
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the system (Gebali, 2008). By associating the absorbing paths with the closed states

of the Markov chain, Theorem 1 can be used to justify the use of the principle eigen-

vectors in identifying long term absorbing paths of the decision process. The concept

of absorbing paths is analogous to the steady state analysis described above. An ab-

sorbing path represents the long term behavior of a non-stationary decision process.

There may be more than one absorbing path for the whole decision process, each

one being dependent on the initial conditions of the system. Niese et al. (2015) dis-

cussed the importance of identifying the presence of multiple absorbing paths. They

discussed that differing absorbing paths may mean that differing decision sequences

may be viewed as only locally optimal. They were able to identify the multiple paths

via simulation through the decision matrix. This dissertation, on the other hand,

claims that these differing paths are in fact dependent on the initial conditions of the

system. Also, this dissertation uses spectral analysis as a leading indicator metric to

identify these multiple absorbing paths without the need for costly simulations and

recursive investigation.

Traditional analysis using these techniques involve stationary Markov processes. This

dissertation extends those studies to examine their applicability to non-stationary de-

cision processes. By studying non-stationary processes with this method, the decision

maker is able to gain insight into not only the instantaneous impact of their decisions

on future absorbing paths, but they can also gain an understanding of how those

absorbing paths may change and evolve over time.

3.4.7.2 Using the Principle Eigenvectors to Estimate the State Vector

The other technique proposed to handle repeated dominant eigenvalues is by using the

set of principle eigenvectors to estimate the behavior of the state vector. This method
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is used to highlight the relationship between the set of principle eigenvectors and the

state vector. This method is a unique contribution of this thesis. The objective

is to combine the set of principle eigenvectors in such a manner that it estimates

the behavior of the state vector as close as possible. Mathematically, the goal is to

minimize the difference between the state vector, st, and set of principle eigenvectors,

[w]. This is given in Equation 3.10, where α is a set of scaling factors for the principle

eigenvectors.

min||s− [w] ∗ α|| (3.10)

To solve for α, set the parameters equal to each other (Equation 3.11) and solve for

α using the pseudo-inverse of [w] (Equation 3.12). Here [w]† is the Moore-Penrose

pseudo-inverse of [w]. This is a generalized form of the inverse that can handle non-

square matrices. Details on how to calculate the Moore-Penrose pseudo-inverse can

be found in Bishop (2009).

s = [w] ∗ α (3.11)

α = [w]† ∗ s (3.12)

This method finds the α that minimize this distance. The pseudo-inverse is necessary

because [w] is not square. If [w] were square, the actual inverse could be used and

α would be able to solve this equation exactly. However, since the pseudo-inverse is

used, this technique is only an estimation.
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3.5 Summary

This chapter has highlighted three key aspects of this thesis. First, it provided the

mathematical background for Markov chains and Markov decision processes, the back-

ground model to the SC-MDP framework. Second, it outlined the methods behind

applying Monte Carlo simulations to the SC-MDP framework and how they be be

greatly beneficial in situations of multi-layered, complex uncertainty. Third, and most

significant to this thesis, eigenvalue spectral methods were explained as they relate to

the SC-MDP framework. New methods and metrics involving both eigenvalues and

eigenvectors were explained, as well as how those different aspects of the spectrum

relate to each other. Methods were described that handle both unique and repeated

eigenvalues, as well as methods that describe the relationship between the spectrum

of the decision process and the physical system itself.
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CHAPTER IV

Monte Carlo Case Study: Design for Evolving

Emission Control Area Regulations1

This chapter presents a case study showing the utility of applying Monte Carlo simu-

lations to the SC-MDP framework. The insight gained is in terms of how uncertainty

affects decision making behavior, how those decisions affect the set of possible out-

comes, as well as the economic costs associated with making those decisions. As

discussed in Chapter II, understanding how multiple layers of uncertainty affect de-

cision making and lifecycle costs is difficult. In response to this, the objectives of this

chapter are:

1. Demonstrate the benefit of applying Monte Carlo simulations to the SC-MDP

framework for a temporal, non-stationary process.

2. Demonstrate how Monte Carlo simulations can be used to analyze the impact

multiple decision scenarios on a suite of results.

3. Demonstrate how Monte Carlo simulations provide unique insight compared to

static probabilistic values traditionally used in Markov decision processes.

1Early work on this chapter was presented at the 2015 International Marine Design Conference
(IMDC) in Tokyo, Japan with the assistance of Dr. Joshua Knight, Michael Sypniewski, and Dr.
David Singer (Kana et al., 2015). See Appendix B.
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4.1 Background

Designing and adapting to evolving international emissions regulations is one area

that has, and will continue to have, drastic effects on ship design (ABS, 2010, 2013;

Bengtsson et al., 2011; Goh, 2014; Rynbach, 2014). Even though it can be argued

that maritime shipping is one of the most environmentally friendly modes of cargo

transportation due to its low CO2 emissions per ton-kilometer, it has been estimated

that before 2020 international shipping will overtake all land-based transport as the

largest emitter of NOx and SOx in Europe (Ma, 2010). To tackle this problem, the

International Maritime Organization (IMO) regulates the emissions of nitrogen oxide

(NOx) and sulfur oxide (SOx) via MARPOL Annex VI regulations as part of their

overall strategy of limiting maritime pollution (IMO, 2008). Originally adopted in

1997 under the “1997 Protocol”, these regulations were updated in 2008 with a more

stringent emissions limit schedule (DieselNet, 2011). These emission pollutants cause

respiratory problems in humans while increasing ambient ozone concentrations, acid

rain, smog, and particulate matter (EPA, 2014a,b; Pinkerton, 2007). These environ-

mental and health concerns have caused the IMO to designate certain environmentally

sensitive areas as Emission Control Areas (ECAs) where more stringent emissions

standards apply. The current ECAs lie in either densely populated or environmen-

tally sensitive areas, while proposed areas are still under consideration (Figure 4.1).

4.1.1 Regulatory Framework

The limits of NOx emissions are set based on the engine’s rated speed. The original

emissions were set in 1997 and are designated Tier I. These limits affect ships built

after January 1, 2000. Tier II limits were implemented during the 2008 amendments

and affect ships built after January 1, 2011. Tier III limits apply only in NOx ECAs

and affect ships built after January 1, 2016 (IMO, 2008). Tier II limits can be met

54



Figure 4.1: IMO regulated Emission Control Areas (Blikom, 2011)

using combustion process optimization, while Tier III emissions compliance will likely

require specific NOx emission control technologies, such as exhaust gas re-circulation,

or selective catalytic reduction (SCR) (DieselNet, 2011). The NOx emissions limits

are summarized in Table 4.1 and Figure 4.2 (IMO, 2008).

Table 4.1: MARPOL Annex VI NOx Emission Limits

NOx Limit, g/kWh
n = engine’s rating (RPM)

Tier Ship Construction Date n < 130 130 ≤ n < 2000 2000 ≤ n
(January 1 or after)

Tier I 2000 17.0 45 ∗ n−0.2 9.8
Tier II 2011 14.4 44 ∗ n−0.23 7.7
Tier III 2016* 3.4 9 ∗ n−0.2 1.96
* In NOx ECAs (Tier II standards apply outside ECAs)

SOx emissions are regulated slightly different than NOx emissions. For SOx emis-

sions, there are two levels of compliance, one for ECA zones, and one for elsewhere.

Both limits become more stringent through time. The date for implementing the

global 0.5% SOx emission limit is set for 2020, but may be extended to 2025 if the
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Figure 4.2: MARPOL Annex VI NOx Emission Limits (DieselNet, 2011)

IMO concludes that there is not enough available fuel. This will be decided in 2018,

which if the IMO decides to stick to the 2020 deadline, would only give vessel own-

ers two years to comply (IMO, 2008). The limits are measured as a percent by mass

emitted of SOx (%m/m) and are summarized in Table 4.2 and Figure 4.3 (IMO, 2008).

Table 4.2: MARPOL Annex VI SOx Emission Limits

Sulfur Limit in Fuel (%m/m)
Date SOx ECA Global
prior to July 1, 2000 1.5% 4.5%prior to July 1, 2010 1.0%prior to July 1, 2012 3.5%after January 1, 2015 0.1%after January 1, 2020∗ 0.5%
* date could be delayed to 2025 subject to
a review of available fuel to be completed
in 2018

Despite the illusion of clarity, these regulations are not precisely defined (Princaud

et al., 2010), and the uncertainty that vessel owners, operators, and designers face

remains large. The uncertainty associated with the geographical extent, implementa-

tion date, and policy instrument will significantly affect how vessels operate and do

business in the coming years. Uncertainty also exists in flag states, coastal states, or
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Figure 4.3: MARPOL Annex VI SOx Emission Limits (DieselNet, 2011)

individual ports who may decide to set their own regulatory emission limits (Balland

et al., 2013; Stopford, 2009). In the Northern European ECA a cap-and-trade market

has been discussed as an alternative approach as opposed to the top-down command

and control mechanism that currently regulates each individual ship (Nikopoulou

et al., 2013).

These regulations can, in many cases, hinder the profitability of the shipping compa-

nies (Stopford, 2009). In some cases, vessel owners have applied for temporary exten-

sions, and when not granted, have been forced to change their compliance strategy,

costing millions of dollars (Schuler, 2014a). Some have feared that these regulations

are so costly that some companies may intentionally skirt the rules, leaving those in

compliance at a serious competitive disadvantage (George, 2014). These factors add

to the risk that owners and operators must manage in order to remain profitable.

Other forms of risk that need to be accounted for include: freight rate risk, operating

cost-risk, or interest rate risk (Alizadeh and Nomikos, 2009; Psaraftis et al., 2012).

This risk may be compounded by imprecise or incomplete information regarding the

fuel or even the vessel itself (Buckley, 2008; Yang et al., 2009). Thus, identifying the
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optimal decision for compliance in the face of these risks and uncertainties is not only

challenging but highly important to remain economically competitive.

4.1.2 Compliance Mechanisms

The MARPOL Annex VI regulation is a top down regulation that directly limits the

amount of pollutants a vessel is allowed to emit; however, the regulation does not

explicitly state how each vessel may meet these standards. Currently there are four

compliance pathways available to vessels: (1) reduce vessel transit speed (Ship and

Bunker, 2013), (2) burn distillate fuel, such as marine gas oil (MGO) or marine diesel

oil (MDO) (Bengtsson et al., 2011), (3) use liquefied natural gas (LNG) as a bunker-

ing fuel, or (4) install SOx scrubbers or selective catalytic converters (SCRs) for NOx

(Santala, 2012; Andersson and Winnes, 2011). While all four are potential avenues

for compliance, they each face technological and economic challenges. Fathom Ship-

ping (2014) summarizes many of the issues with compliance, including: the rising

cost of bunker fuel and transportation, the practicality and costs of retrofitting ves-

sels, the mechanical problems arising from fuel switching, fuel availability issues, the

probability of losing vessel power, competitive disadvantage with making the wrong

compliance choice, the changes to bunker delivery notes, and the economic issues with

supplying abundant and adequate lubricant. Thus, deciding on the best solution for

a given vessel is a challenging process due to the vast number of possible compliance

strategies (Balland et al., 2013).

The cheapest solution that requires no additional technology upgrades is reducing

vessel transit speeds, known as slow steaming. Slow steaming is only viable in the

short term, however, as the emissions reductions obtained are not sufficient to meet

future limits. Slow steaming also has the additional problem of affecting transport
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schedules and thus costs (Ship and Bunker, 2013). Vessels that choose to slow steam

will need to either de-rate their engine or adjust their engine lubrication in order to

prevent premature degradation and wear on the engine (Lack et al., 2012).

Instead of slow steaming, distillate fuels are one popular option being discussed.

Distillate fuels are a more refined fuel than the standard residual crude oils, such

as heavy fuel oil (HFO), that have been used by many vessels for decades. There

are many distillate fuels available, the more common of which are MDO and MGO

(MDO is just a mixture of HFO and MGO) (El-Gohary, 2012). For the most part,

these fuels are able to run on standard engines without expensive upgrades. How-

ever, extended use of distillate fuels on standard engines can cause problems from

the lower viscosity compared to heavier crude oils, such as HFO (ABS, 2010). These

distillate fuels also tend to be more limited in supply, more expensive, and may not

meet impending 0.1% sulfur content without some form of SO2 abatement technology

(Bengtsson et al., 2011). Since, in general, over half of a ships operating costs are

fuel, these more expensive fuels struggle to be economically viable (Lin and Lin, 2006).

Despite the fact that roughly 95% of the world’s shipping fleet has traditionally run

on diesel fuel (Nikopoulou et al., 2013), many have looked to switching to LNG as a

logical choice from both an environmental and economic perspective (Banawan et al.,

2010). LNG is able to comply with both 2015 SOx regulations and Tier III NOx

regulations without the need for secondary emission treatment systems (Bengtsson

et al., 2011). LNG fuel is not only cheaper now, but the estimated maintenance costs

for a LNG engine can be as much as 1/3 that of traditional diesel engines, offering

the potential for significant economic savings (Banawan et al., 2010).

However, switching to LNG as a primary fuel can have drastic implications on the
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ship as a whole. The required volume for LNG fuel tanks can be as much as 3-4

times that of standard bunker oil, plus the ship still needs the ability to carry the

required amount of bunker oil in cases where LNG may not be available (Rynbach,

2014). This is on top of the auxiliary equipment that is necessary, such as gas supply

piping, gas detection and exhaust ventilation systems, and other components. When

changing from diesel mode to LNG, the engine must be running at greater than 20%

maximum load to avoid misfiring, which would cause a loss of power. It has also been

estimated that the specific fuel consumption for a converted LNG engines is roughly

23% higher than that of traditional diesel engines (Banawan et al., 2010). Switching

to LNG can drastically affect the number of TEUs a given containership may be able

to carry, which causes lost potential revenue to the ship owner or operator. This

lost revenue is only potential, as most vessels do not necessarily leave port at full

capacity due to market conditions (Almeida, 2014) or port draft restrictions, as may

be the case for the very large cargo ships (Schuler, 2014b). These technical reasons

have caused estimations of shipbuilding costs to be 20-25% higher than ships with

conventional engines (Nikopoulou et al., 2013). There are also supply chain issues,

as the regulatory environment and infrastructure for storage and bunkering of LNG

fuel is still under development (Bengtsson et al., 2011; Nikopoulou et al., 2013).

Another option for limiting the emissions of these pollutants is by using some form

of exhaust gas scrubber or selective catalytic converter (SCR) system. Scrubbers

are primarily used to reduce SO2, while SCRs work well in limiting NOx emissions

(ABS, 2013; Andersson and Winnes, 2011). Scrubbers have been developed and

matured over the years on land based factories, and have recently been introduced

into the maritime sector. The use of scrubbers allows the vessel to operate using

cheaper bunker fuel, such as HFO, without any required changes to the prime mover.

However, scrubbers may have high purchase, installation, and operation costs (ABS,
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2013). While SCRs are versatile in the type of vessel in which they can be installed,

technical problems arise when operating at low engine loads or with lower exhaust

gas temperature (Andersson and Winnes, 2011; Bengtsson et al., 2011).

4.2 Case Study: Designing for Evolving Emission Control

Area Regulations

This case study is designed to show the utility of the Monte-Carlo approach to the

SC-MDP framework in a maritime example that involves design and operating con-

siderations in the face of uncertain evolving ECA regulations. Nielsen and Schack

(2012) have also examined compliance strategies for vessels facing ECA regulations.

Their work included a deterministic economic analysis with sensitivity studies, as

opposed to the stochastic, temporal approach presented here. The specific case study

that follows is a modification and extension of the one originally developed by Kana

et al. (2015) and presented at the Twelfth International Marine Design Conference.

This paper proposes the use of Monte Carlo simulations to the SC-MDP framework

to this case study to gain a deeper understanding of the effects of uncertainty and

how they may change optimal decision making behavior.

4.2.1 Fixed model parameters

A notional 13,000 TEU containership routed between Rotterdam and China is ex-

amined. The route covers 22,000 nm, of which 1,100 nm is a designated ECA zone

(IMO, 2008). This ECA coverage increases to 6,800 nm of the total route in a single

year. The specifics behind when exactly the regulation changes is described in Sec-

tion 4.2.3 Monte Carlo Parameters. Two drafts are studied to simulate a full load

traveling to Rotterdam, and a partial load (or back-hauling) back to China (Table
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4.3). The vessel is at sea for a total of 290 days per year, to account for lost time in

port and dry-docking.

Table 4.3: The vessel principal characteristics for the notional 13,000 TEU contain-
ership

Length Greater than 300 m
Beam Less than 45 m
Draft - full load 13.0 m
Draft - partial load 11.5 m
Block coefficient (Cb) 0.61
Displacement (∆) - full load 112,000 MT
Displacement (∆) - partial load 99,000 MT
Ship brake power Greater than 67,000 kW

The Holtrop and Mennen (1982) method was used to estimate the required brake

power for speeds between 12 and 24 knots, while estimates from MAN B&W and

Wartsila were used to estimate base specific consumption (MAN B&W, 2012; Wart-

sila, 2014). Combining both, the fuel consumption was calculated for all three fuels

and for both drafts (Figure 4.4). When operating in dual fuel mode, the engine burns

95% LNG and 5% HFO as a pilot fuel, which is in line with estimates made by both

MAN B&W and Wartsila (MAN B&W, 2012; Wartsila, 2014).

4.2.2 Markov decision process framework

The details of how the states, actions, transition probabilities, and rewards are defined

is presented in the following section.

4.2.2.1 States

There are eight possible states, split between three state variables. The three state

variables are:
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Figure 4.4: Fuel consumption curves for three different fuels and two drafts. The
curves were developed using both the Holtrop and Mennen method as well as esti-
mated from MAN B&W and Wartsila.

1. The amount of ECA coverage. The two possibilities for ECA coverage are 1,100

nm and 6,800 nm.

2. The engine installed. The two types of possible engines are single fuel and dual

fuel.

3. The bunker fuel type. The two fuel options are: 1) a combination of LNG and

HFO, and 2) a combination of MDO and HFO. The LNG and HFO option is only

valid when the dual fuel engine is installed. When LNG is not available, the dual

fuel engine will burn MDO and HFO instead (El-Gohary, 2012). The MDO and

HFO option is valid for either engine. When running this fuel combination, the

engine alternates between burning MDO in the ECA zones, and HFO elsewhere.

4.2.2.2 Starting State

The simulation begins with an ECA coverage of 1,100 nm and a single fuel engine

installed that burns MDO and HFO.
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4.2.2.3 Actions

Four possible actions are available to the vessel operator when the vessel arrives in

port:

1. Do not switch engines, and try to purchase LNG fuel

2. Do not switch engines, and purchase MDO fuel

3. Switch to a dual fuel engine, and try to purchase LNG fuel

4. Switch to a dual fuel engine, and purchase MDO fuel

The action “Do not switch engines, try to purchase LNG fuel” is only available once

a dual fuel engine is installed. The action “Switch to a dual fuel engine, and purchase

MDO fuel” is included to account for possible situations where the preferred decision

is to retrofit engines immediately in preparation for future lower LNG prices. The

preferred decision is the one that minimizes cumulative lifecycle cost.

4.2.2.4 Transition Probabilities

The state transition probabilities are defined as follows:

• The probability of transitioning between an ECA coverage of 1,100 nm and an

ECA coverage of 6,800 nm happens according to the inputs selected from the

Monte Carlo simulations, as described in Section 4.2.3 Monte Carlo Parameters.

• The probability of transitioning from the single fuel engine to the dual fuel

engine is deterministic based on the preferred action.

• The preferred fuel type is chosen according to both the preferred decision and

the supply chain risk. When the vessel wishes to purchase LNG fuel, but it is

unavailable, it will purchase MDO instead.
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4.2.2.5 Rewards

The rewards are defined by the cost function given in Equation 4.1. The costs are

calculated after each leg and are accumulated across the lifecycle of the vessel.

min(fuel cost+ opportunity cost+ retrofit cost) (4.1)

• The fuel cost is calculated via Equation 4.2. The given percentage accounts for

either the size of the ECA coverage or the dual fuel mixture.

fuel cost = fuel consumption ∗# of sea days ∗ fuel price ∗ given % (4.2)

• The opportunity cost accounts for the lost potential revenue from the LNG fuel

tanks.

• The retrofit cost is the cost of converting to a dual fuel engine.

4.2.3 Monte Carlo Parameters

Various economic, regulatory, and supply chain scenarios were modeled as part of

the Monte Carlo simulations. The economic parameters that were varied include:

engine conversion costs, fuel prices, freight rates, and interest rates. The cost of

converting to a dual fuel engine was estimated between $220-$340/kW (Banawan

et al., 2010). This estimate includes all the auxiliary equipment necessary to fully

install and operate on LNG fuel. With an engine power greater than 67,000 kW, total

engine retrofit cost was modeled with a uniform distribution between $14-$23 million.

The fuel prices for HFO, MDO, and LNG were assigned normal distributions with

means of US $650/ton, $950/ton, $500/ton respectively, and standard deviations of

US$50/ton. While more advanced fuel projection models exist, for the purposes of
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this case study, this fuel cost model is sufficient in showing both the utility of Monte

Carlo simulations as well as conclusions regarding sensitivity of the fuel prices.

Freight rates were developed from historical data from UNCTAD (2014) shown in

Figure 4.5. Rates from China to Rotterdam were modeled as a normal distribution

with a mean of US$1,500 and a standard deviation of US$285. Likewise, the rates

from Rotterdam to China were also set as a normal distribution, however, with a

mean of US$800 and a standard deviation of US$125.

2000 2002 2004 2006 2008 2010
500

1000

1500

2000

Year

F
re

ig
ht

 R
at

e 
($

/T
E

U
)

 

 
Europe to Asia
Asia to Europe

Figure 4.5: Historical average of freight rates (UNCTAD, 2014). The Monte Carlo
simulations assumed a normal distribution of freight rates from Asia to Europe with
a mean of US$1,500 and standard deviation of US$285. From Europe to Asia the
mean was set to US$800 with a standard deviation of US$125.

In addition to the freight rate uncertainty, there is also uncertainty associated with

the lost revenue stemming from installation of the LNG fuel tanks that reduce cargo

capacity. To model this, the capacity for 244 TEUs is assumed to be lost to accom-

modate the required LNG fuel tanks and equipment. This lost capacity, however,

may not necessarily lead to lost revenue potential. Ships are rarely fully laden due to

market conditions or port draft restrictions (Almeida, 2014; Schuler, 2014b). For this

case, 244 TEUs represents less than 2% of total TEU capacity. According to Alpha-

liner (2015), the average vessel capacity for traveling from China to Northern Europe
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is 88% with a standard deviation of 7.5% (Figure 4.6). Back haul load capacities

are typically much less in the range of 50 to 70% (Søndergaard et al., 2012). Thus,

lost revenue only comes into play when market conditions dictate that vessel load

conditions are above 98%. The Monte Carlo simulations were structured to match

this.
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Figure 4.6: Average vessel load factors from 2010 to 2015 (adapted from Alphaliner
(2015). Vessel load factors have averaged 88% with a standard deviation of 7.5%.

Interest rates were modeled as a normal distribution with a mean of 7% and a standard

deviation of 1%. The discount factor used in the MDP is related to the interest rate

by Equation 4.3 (Puterman, 2005) where i is the interest rate and γ is the discount

factor.

i = (i/γ)− 1 (4.3)

Modeling the regulatory uncertainty was more difficult due to the challenge in quanti-

fying the probability of when the ECA regulation will actually change. The attempt

at quantifying this uncertainty stems from the desire to examine its sensitivity on

the recommended decisions, as opposed to claiming that this particular uncertainty

model is actually how the regulations will behave. At the start of the simulation,
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ECA covers 1,100 nm of the total route. The specific year in which the ECA coverage

increases from 1,100 nm to 6,800 nm varies depending on the simulation run. The

range is uniformly distributed between 3 years and 10 years. There is also uncertainty

associated with whether the regulation actually changes at that given year. This un-

certainty is uniformly distributed between 0% and 100%. For example, one scenario

may be that there is a 75% probability that the ECA regulation will increase 5 years

from now.

While infrastructure and regulations are developed for LNG bunkering facilities, there

is great uncertainty whether the fuel will be available should a ship go into port and

want to purchase LNG. While other literature aims to quantify this development

(Danish Maritime Authority, 2012; Lee, 2014), this research is instead focused on

the implications of supply chain risk on the decisions. To simulate supply chain risk

associated with uncertainty of LNG availability, the probability of obtaining LNG in

Rotterdam is modeled uniformly between 50% and 100%, while the probability of

obtaining LNG in China is uniformly distributed between 0% and 100%.

4.3 Results

Three sets of results were explored, covering an examination of the decisions, the

economic costs, and the specific design drivers leading to both the decisions and eco-

nomic costs. Before examining the results, the system was tested for convergence. For

each simulation run, there is some uncertainty that at any given time the system may

be in a given state or that a given action may be selected. This uncertainty is in the

set [0, 1], and a running average of this uncertainty is calculated for each successive

simulation run. The cumulative incremental difference between the ith simulation

run and the ith − 1 run is then calculated. For Figure 4.7, the maximum cumulative
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difference between all actions, all states, and all speeds is plotted. As is shown, the

simulation converges visually in less than 400 simulations; however, 1,000 simulations

were performed to ensure confidence of convergence. The inset of the figure shows

that after 1,000 simulations the model has consistently converged to a value less than

10e-4, which was considered acceptable convergence.
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Figure 4.7: Convergence of the Monte Carlo simulations. The close up shows that
after 1,000 simulations, the model has consistently converged to a value less than
10e-4, which is deemed an acceptable range.

4.3.1 Decisions

The key decision defined in this problem is not just whether the ship owner should

convert to an LNG engine, but also when it may be best to perform the conversion.

The SC-MDP is able to identify when specific actions are preferred throughout the

lifecycle of the vessel, while the Monte Carlo simulations provide the likelihood that a

given operating environment may be in place to yield such actions. Thus, the frame-

work presented in this paper enables the ability to identify the percent of time a given

action is optimal, and when throughout the lifecycle of the vessel it may be optimal.

To show this, Table 4.4 presents the percent of time it is optimal for the vessel to a)
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never convert engines, b) convert engines as soon as possible, and c) convert engines

eventually. Converting engines as soon as possible is defined as converting the en-

gines within the first two voyages, while converting engines eventually is defined as

converting engines at some point after that. “Convert engines eventually” is included

to account for those situations where it may be best to hold off on converting the

vessel until the ECA regulation has increased.

Table 4.4: Percent of time a given action is optimal. The “convert engines eventually”
action means that it is best to convert to an LNG engine at a time after the first two
voyages.

Speed Never Convert engines Convert
(kts) convert as soon as engines

engines possible eventually
12 67% 33% 0%
14 30% 70% < 1%
16 8% 92% < 1%
18 3% 96% < 1%
20 < 1% 99% < 1%
22 < 1% 100% 0%
24 0% 100% 0%

As speeds are increased, the probability that it is best to convert engines increases.

For 12 knots it is best to keep the single fuel engine for 67% of the simulations, and

this percent drops significantly with only a small increase in speed. For 16 knots

and faster the percent of time it is best to keep the single fuel engine is less than

8%, and at the highest speed of 24 knots, it is never optimal to keep the single fuel

engine. The probability that it is best to convert to a dual fuel LNG engine as soon

as possible follows nearly the exact opposite trend, with the probability increasing

with increasing speed. Rarely is it preferable to delay converting the engines. Kana

et al. (2015) discussed in detail the situations where it is preferred to convert engines

later in the lifecycle, such as when the regulation changes. This analysis, however,

shows that those situations are rare, occurring less than 1% of the time in only four of
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the speeds tested. No matter the speed, there is always a possibility that converting

to an LNG engine is preferred; however, as the speed increases eventually there is a

point where it is never preferred to keep the single fuel engine.

4.3.2 Economic Costs

Understanding what decisions will likely be made is only part of the problem; the

decision maker must also understand the range of costs that are likely to occur given

each decision scenario. The expected net present lifecycle costs are given in Figure

4.8. Figure 4.8.a shows the results for a speed of 12 knots, where it is clear there is

a large spread of potential costs, given differing starting scenarios. The large beige

region signifies the extreme limits, displaying the maximum and minimum, while the

blue region shows one standard deviation above and below the mean. The high costs

at year zero come from the conversion costs during those situations when it is best

to convert to an LNG engine as soon as possible. The solid black line is the median

cost, while the dashed red line is the mean cost of all simulations.

Figure 4.8.b shows the costs for a speed of 22 knots. Even at the higher speeds, there

is still a possibility that it is best to keep the single fuel engine installed. This is

shown by the small beige area around US$0 during the first year. This is also shown

in Table 4.4, where it is apparent that this situation occurs < 1% of the simulations.

The costs for speeds of 14, 16, 18, and 20 knots follow a similar trend as that of 22

knots, however, their specific values vary with the speed. Figure 4.8.c shows the costs

for 24 knots, where it is apparent that it is never beneficial to keep the single fuel

engine installed.

The final accumulated lifecycle costs after 20 years for all speeds is given in Figure
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Figure 4.8: The expected net present cost (US$) for the range of speeds. 4.8.a shows
the expected range of costs for the slowest speed tested of 12 knots. 4.8.b shows the
range of potential costs for a high speed of 22 knots, where there is a small possibility
that is it preferable to keep the single fuel engine. 4.8.c displays the costs for the
highest speed of 24 knots where is always preferable to switch to a dual fuel engine as
soon as possible. Note the variations in the y-axis between figures to show specifics
within each speed.
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4.9. The edges of the box represent the 25th and 75th percentile respectively, while

the centerline is the median. The red marks that extend beyond the whiskers are

labeled as outliers that fall outside 2.7 standard deviations of the data. As seen, the

costs do not grow linearly with speed, instead they increase similar to the speed power

consumption curves given in Figure 4.4. The variation of costs within each speed is

large, and increases with increasing speed. That is, for a speed of 12 knots, there is

just over a 45% variation between the lowest possible cost and the highest cost, while

at 24 knots, that variation grows to nearly 68%. Thus, both the percent variation

and the gross magnitude of the variation grows with increasing speed. For 12 knots,

the variation is between US$52 million for the lowest cost and US$83 million on the

high end with a median of US$68 million. For 24 knots, that variation increases to

a minimum of US$265 million for the lowest cost and US$536 million for the highest

cost with a median of US$400 million. Finally, the outliers for the faster speeds all

lay on the high end of the costs. Since these costs were calculated via the MDP

framework, each result is considered the best scenario given the set of inputs. Thus,

should a decision maker not follow the best decision pathway, they can expect their

costs to be higher than what is displayed here.

For each speed the average savings and time to pay back the engine conversion costs

was calculated against a baseline scenario where the vessel continues to operate on a

single fuel engine throughout its lifecycle and alternates between operating on MDO

and HFO fuel. This calculation only accounts for those simulations where it is best

to convert to an LNG engine. Thus, for situations where converting engines is only

preferable a small portion of the time, the savings only account for those times when

it is preferable to convert engines. As shown in Table 4.5, for speeds less than 16

knots the average savings are less than US$16 million with a payback time of longer

than 10 years. For the highest speed of 24 knots, the savings are over US$100 million
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Figure 4.9: The accumulated lifecycle cost varies greatly both between speeds and
within individual speeds. The spread of possible costs grows both in magnitude and
in percent as speeds increase. Outliers tend to fall on the upper end of costs for the
faster speeds.

with a payback of less than 3 years. Due to the large variation in costs, the actual

savings and payback period may vary from this average.

Table 4.5: Average savings and payback periods for all speeds. Savings are increased
and payback periods are reduced as speeds are increased.

Speed Average savings Average payback
(kts) (US$MM) period (years)
12 2 18.1
14 7 14.4
16 16 10.6
18 29 7.5
20 49 5.1
22 76 3.5
24 108 2.7

4.3.3 Decision Drivers

Sensitivity studies were performed on the ECA regulation, the supply chain risk,

and the fuel prices to determine the drivers behind the decisions. The analyses were
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performed by holding constant each parameter except the variables of interest. The

constant parameters were fixed near their designated mean value, as given in Table

4.6. 1,000 simulations were run for each sensitivity test.

Table 4.6: Parameters used for the sensitivity studies. The variables for the regulation
and LNG supply chain sensitivity were uniformly distributed, while the fuel price
sensitivity used a normal distribution.

Parameter ECA LNG Supply Fuel Price
Regulation Chain Sensitivity
Sensitivity Sensitivity

Engine conversion cost $18.8M $18.8M $18.8M
Interest rate 7% 7% 7%
Lost TEUs to fit LNG equipment 18 18 18
(to Rotterdam)
TEU freight rate to Rotterdam $1,500 $1,500 $1,500
TEU freight rate to China $800 $800 $800
Probability of obtaining LNG 0.5 [0,1] 0.5
in China
Probability of obtaining LNG 0.75 [0.5,1] 0.75
in Europe
HFO price $650 $650 µ = $650, σ = $50
MDO price $950 $950 µ = $950, σ = $50
LNG price $500 $500 µ = $500, σ = $50
Year ECA coverage may increase [3,10] 5 5
Probability that ECA will increase [0,1] 0.5 0.5
at given year

4.3.3.1 ECA Regulation Sensitivity Study

The ECA regulation sensitivity showed clear results. First, there is no variation in

the individual speeds in regards to the best decision. A clear bifurcation becomes

apparent at 14 knots (Table 4.7). Below 14 knots it is always best to maintain the

single fuel engine, while at and above 14 knots it is always best to convert to a dual

fuel LNG engine. There were no instances during this study when it is best to delay

converting engines beyond the first two voyages. This study also showed almost no

variation in the cost both through the lifecycle, and as a cumulative amount (Figure
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4.10). The median cost for each speed remained unchanged in this study. Thus, this

study shows that the variation in the results, both in the decisions and the costs, is

not due to the uncertainty in the ECA regulation implementation. There were no

significant changes in the average savings or payback period as compared to the full

analysis.

Table 4.7: Sensitivity due to uncertainty in the ECA regulation implementation. For
12 knots it is always best to keep the original engine, while above 12 knots it is always
best to convert to a dual fuel LNG engine as soon as possible.

Speed Never Convert engines Convert
(kts) convert as soon as engines

engines possible eventually
12 100% 0% 0%
14 0% 100% 0%
16 0% 100% 0%
18 0% 100% 0%
20 0% 100% 0%
22 0% 100% 0%
24 0% 100% 0%
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Figure 4.10: The sensitivity study on the ECA regulation showed almost no variation
in the accumulated lifecycle costs for individual speeds. The median cost for each
speed, however, remained unchanged as compared to the original analysis.
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4.3.3.2 LNG Supply Chain Risk Sensitivity Study

The effect of the LNG supply chain risk was tested as to its impact on the results.

The decisions are similar to that from the full simulation (Table 4.8). For the slow

speeds of 12, 14, and 16 knots, the probability of it being best to never convert en-

gines is reduced between 3-13%, thus increasing the probability it is best to convert

engines as soon as possible. For 18 knots and faster, the results were very similar to

the original results, varying at most 3% from the original simulation. No instances

arose where it is preferable to delay retrofitting the engine until later.

Table 4.8: Sensitivity due to LNG supply chain risk. The probability of it being best
to never convert engines is reduced between 3-13%, compared to the original analysis.

Speed Never Convert engines Convert
(kts) convert as soon as engines

engines possible eventually
12 64% 36% 0%
14 17% 83% 0%
16 2% 98% 0%
18 0% 100% 0%
20 0% 100% 0%
22 0% 100% 0%
24 0% 100% 0%

Varying the availability of LNG in port causes a large spread in lifecycle costs (Figure

4.11). This variation, however, does not account for the full variation that is present

in the original simulation. The percent variation for 12 knots is just over 10%, while

for 24 knots the variation is only 36%. Across all speeds, the cost variation only

accounts for just over 60% of the total variation shown in the full simulation. There

are also very few outliers. Lastly, as with the ECA regulation sensitivity study, there

were no significant changes in the average savings or payback period as compared to

the full simulation.
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Figure 4.11: The sensitivity study on the LNG supply chain risk shows a slightly
smaller spread than the original analysis. The median cost for each speed also re-
mained unchanged as compared to the original analysis.

4.3.3.3 Fuel Price Sensitivity Study

The fuel prices were tested as to their effect on both the decisions and the life-cycle

costs. This study revealed that fuel price variation is one of the reasons it may be best

to delay retrofitting the engine until after the first two voyages (Table 4.9). Sensitivity

studies on the ECA regulation and LNG supply chain did not reveal any instances

when it would be best to delay retrofit, while this studied showed the opposite. Vari-

ations in the fuel prices displayed a similar trend to that of the original analysis, in

that for speeds between 14 knots and 20 knots, there are instances-albeit rare-that

delaying the engine retrofit is the best option.

This study also showed large variation in regards to the lifecycle costs (Figure 4.12).

Unlike the previous analyses, the variation here was consistent across all speeds, aver-

aging between 25-29% between lowest and highest quartile. Combined, this variation

accounts for roughly 70% of the total variation in the model. This sensitivity study

also had outliers present, meaning that while most of the data is spread through
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Table 4.9: Fuel Price sensitivity. Fuel price variability may be one of the causing
leading to delaying engine retrofits beyond the first two voyages.

Speed Never Convert engines Convert
(kts) convert as soon as engines

engines possible eventually
12 72% 28% 0%
14 11% 89% < 1%
16 < 1% 99% < 1%
18 < 1% 99% < 1%
20 < 1% < 100% < 1%
22 0% 100% 0%
24 0% 100% 0%

a consistent distribution, variable fuel prices can lead to lifecycle costs that are far

outside what is expected.
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Figure 4.12: The sensitivity study on the fuel prices shows a slightly smaller spread
than the original analysis. The median cost for each speed remained unchanged as
compared to the original analysis.

4.4 Discussion

There are several points worthy of discussion following the results of the model.
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1. This framework is intended to provide insight into decision making, not the

decision itself. It is still up to the individual decision maker to decide whether

or not to follow the results of the model. For instance, it is not expected that the

decision maker will actually follow the results in situations where the savings

are small and the payback time is long, as is the case for the slower speeds. As

the savings increase and payback time decreases with higher speeds, it is at the

discretion of the decision maker to decide for themselves whether they wish to

convert engines or not.

2. There are still inherent risks associated with making decisions. Despite giving

the best decision pathway for each scenario, this framework does not remove

all risks that vessel owners face. As with all probabilistic models, there is still

a chance that the actual situation may vary from the normal bounds of the

results, possibly causing great economic harm.

3. The framework is dynamic. It can be adapted to include any sub models for

the given scenario. It would be beneficial to include a more advanced fuel

cost and freight rate model, supply chain risk model, and measured vessel fuel

consumption curves for commercial use. While these underlying models appear

simplistic, the overarching theory and methods still hold.

4. The specific case study provides key insights despite not being fully inclusive.

The case study did not account for the potential profit loss from slow steaming.

Also, this chapter only discussed decisions related to LNG fuel; however, other

ways of meeting upcoming ECA regulations include the use of distillate fuels, or

installation of scrubbers. Decisions are also severely impacted by whether the

vessel is under charter, and the type of charter. These points do not, however,

negate the applicability of the insights gained from the framework.
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The objective of this framework was to provide the quantitative information neces-

sary for the decision maker to make sound decisions under deep uncertainty.

4.5 Conclusion

This chapter demonstrated how Monte Carlo simulations applied to the ship-centric

Markov decision process can be used for eliciting design and decision making in-

sight under uncertainty for vessel designers, owners, and operators. The SC-MDP

framework was used to identify when certain decisions are preferred throughout the

lifecycle of the vessel as well as the lifecycle costs associated with making those de-

cisions. Monte Carlo simulations were used to move beyond individual probabilistic

values that are common in many MDP applications in order to enable true stochastic

analysis. These simulations were also used to develop probabilistic distributions of

not only the decisions but also the lifecycle costs.

New insights were gained regarding lifecycle decision making for containerships facing

upcoming emissions regulations. Uncertainty regarding the regulation showed to have

little effect on when certain decisions should be made as well as contributing little to

the uncertainty in the lifecycle costs. Uncertainty over the availability of LNG as a

bunker fuel and fuel prices showed to be more significant drivers of the results.

This chapter provided a viable analysis technique to handle decision making problems

under a multitude of uncertain parameters. However, to address the limitations

outlined in Section 3.3, eigenvalue spectral methods are warranted.
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CHAPTER V

Spectral Analysis Case Study 1: Ship Egress

Analysis and General Arrangements Design

This chapter proposes a novel means of performing a ship egress analysis by applying

eigenvalue spectral analysis to the ship-centric Markov decision process framework.

Chapter II outlined the need for a method that provides insight into the implications

of decisions and the need to understand their impact on the system. These implica-

tions will provide the Why that is currently lacking in large scale engineering decision

making processes. To that end, the objectives of this chapter are:

1. Demonstrate the applicability of eigenvalue and eigenvector spectral analysis to

the SC-MDP framework in general.

2. Demonstrate how the damping ratio can be used to identify and quantify

changes in sets of decisions as well as be used to identify the system attributes

leading to those changes.

3. Demonstrate how the principal eigenvector can be used as a leading indicator

metric for steady state analysis in quantifying the impact of decision making.

4. Highlight the relationship between the damping ratio and the the principal

eigenvector.
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5.1 Background

Understanding evacuation patterns and egress routes is arguably one of the most im-

portant aspects of ship design affecting safety of those on board (Guarin et al., 2014).

Emergency situations such as fires, compartmental flooding, damage due to collisions,

or even ballistic damage, happen on vessels. Understanding how individuals on the

vessel react and move about to safety zones, muster points, or life boats during these

situations is important to save lives and minimize injuries. The IMO has recognized

evacuation and egress analysis as an important aspect that needs to be regulated for

the safety of mariners (IMO, 2007).

Many models have been developed to approach this problem. Two types of methods

have been developed: those focused on generating and analyzing the physical layout

of the vessel (Andrews et al., 2012), and those focused on evacuation patterns of the

individuals on board (Guarin et al., 2014; Qiao et al., 2014; Vanem and Skjong, 2006).

Methods focused on the layout of the vessel are defined as solution-centric by this

dissertation, meaning they are focused on the rooms themselves and their physical

layout throughout the vessel. While methods focused on evacuation routes are typ-

ically computationally expensive, and can involve multi-agent simulations (Guarin

et al., 2014), or optimization methods (Qiao et al., 2014).

Both type of analyses require a full general arrangement of the layout of the vessel

as well as the physical distribution of the crew throughout the vessel in order to run

detailed discrete event simulations to study evacuation routes (Rigterink, 2014). Two

major problems arise with this. First, during early stages of design little information

is known about the details of the general arrangement, and second, a new discrete

event simulation is required for each simulation involving a different distribution of

individuals throughout the ship.
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The complexity of the egress problem grows with vessel size and complexity. The

problem becomes more difficult due to various passenger populations (such as able

bodied seamen, children, or handicapped individuals), the number of decks and pas-

sageways, as well as the multitude of ways emergency situations may start or percolate

through the vessel. The behavior of crew versus passengers may also be an issue. Paid

crew on a vessel who know the inner layout of the vessel well will likely react differ-

ently than passengers on a cruise ship who have been on board for only a matter

of days. Thus, for a full detailed analysis, advanced methods are necessary. While

some propose using more advanced, computationally expensive evacuation models in

earlier stages of design (Vanem and Skjong, 2006), the IMO (2007) has recognized the

importance of more simplified methods to be used in the concept stage. This has led

to the increased prominence of analyses aimed at evacuation routes and egress pat-

terns in preliminary stages of design (Casarosa, 2011; Guarin et al., 2014; Rigterink,

2014). However, finding the proper balance between computational expense, analysis

time, and model fidelity remains difficult.

This dissertation proposes a method that is inherently focused on the problem of

the decision making of individuals on the vessel as they maneuver to evacuate. This

method is focused on understanding the impact that uncertainty and external pain

may have on the decision making of individuals in the vessel. This is opposed to a

method that is more focused on generating a solution of a specific layout that best

meets the safety needs. The problem is defined as how people egress, understanding

the decisions they make under uncertainty, and the interaction between the individ-

uals themselves and the general arrangement of the layout of the vessel. To do this,

eigenvalue spectral analysis applied to the SC-MDP framework is proposed to under-

stand the implications of evacuation decision making as it pertains to ship design.
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5.2 Case Study: Ship Egress Analysis and Ship General Ar-

rangements Design

This case study is designed to examine personnel movement inside a ship. The as-

sumption is that a fire has broken out in one of the rooms in the ship, and that

individuals need to move about the ship to find the exit. Their movement is prob-

abilistic to simulate the uncertainty associated with smoke that may be percolating

throughout the ship or uncertainty with hot door handles blocking passageways. A

utility function is used to simulate the pain the person experiences the longer they are

in the ship looking for the exit. The rooms themselves have not been designated for

a specific use for this analysis, as it is the attempt of this case study to understand

their interaction prior to designating their use. That is, these rooms have not yet

been classed as berthing, hallway, mess hall, engine room, etc.

To set up the problem, individuals are located somewhere in the eleven state envi-

ronment shown in Table 5.1. The solid black state represents an inaccessible area.

Their probabilistic position at any time is denoted by the generic state vector de-

fined in Equation 5.1. The person’s objective is to minimize their pain while heading

towards the exit. To do this they aim to maximize their cumulative reward after a

given number of steps. The SC-MDP framework will be used to determine their best

sequence of decisions, as well as their expected value. The states are defined as the

individual rooms in the ship. The individuals may move one step at each decision

epoch, and may choose from the set of actions: up, down, left, or right. However,

there is uncertainty in the individual’s movement, and the probability of actually

moving in the desired direction is only 0.8. There is a 0.1 probability of moving in
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either direction laterally to the desired one. The transition probability in this case is

defined as p = 0.8.

Table 5.1: Visual representation of the eleven room general arrangement. The entries
include the labeling convention of the states for the following discussion.

(3,1) (3,2) (3,3) (3,4)
(2,1) (2,3) (2,4)
(1,1) (1,2) (1,3) (1,4)

s = (s1,1 s1,2 s1,3 s1,4 s2,1 s2,2 s2,3 s2,4 s3,1 s3,2 s3,3 s3,4) (5.1)

Individuals receive a reward for landing in a given state, and those rewards are given

in Table 5.2. The room with the r = −1 reward is designed to simulate the room

with a fire, while the room with the r = +1 reward is designed to simulate the safe

exit or muster point. The incremental rewards of r = −0.04 will be varied in the

following analyses, however, the r = +1 and r = −1 rewards will remain fixed.

Table 5.2: The initial rewards the individuals receive for landing in a given state. The
following analyses vary the -0.04 rewards, while the +1 and -1 rewards remain fixed.

-0.04 -0.04 -0.04 +1
-0.04 -0.04 -1
-0.04 -0.04 -0.04 -0.04

For this case study, the transition probabilities and rewards are stationary, meaning

they do not change with time. The MDP is run for 30 decision epochs, essentially

allowing individuals to take up to 30 steps to maximize their expected utility. That

expected utility, as well as the best decision paths are given in Table 5.3. The deci-

sion paths display the preferred action a person should take for each state in order to

maximize their expected utility.
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Table 5.3: The expected utility and decision paths for p = 0.8 and r = −0.04.

Expected value
0.81 0.87 0.92 +1
0.76 0.66 -1
0.71 0.66 0.61 0.39

Decision Paths
→ → → +1
↑ ↑ -1
↑ ← ← ←

5.3 Validation

Two validation studies were performed before examining the results. First, the deci-

sion paths and expected utilities were validated against published results in Russell

and Norvig (2003), and second, the representative Markov chain was validated against

the decision matrix to ensure that it tracked the decision paths correctly.

5.3.1 Algorithm Validation

A validation study was performed on the expected utilities and decision paths against

published results in Russell and Norvig (2003). As shown in Figure 5.1 and Table 5.4

the research code matches with published results for both the expected utilities and

decision paths after 30 decision epochs.

Table 5.4: Decision path validation. The decision paths for the research code match
identically with that of the published ones from Russell and Norvig (2003).

→ → → +1
↑ ↑ -1
↑ ← ← ←
(a) Research code

(b) Results from Russell and Norvig (2003)
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Figure 5.1: Utility estimate validation. Note: Russell and Norvig (2003) labeled their
states with the convention of (column, row). For instance, state (1,4) in the research
code matches with state (4,1) in the Russell and Norvig (2003) result.

5.3.2 Markov Chain Validation

The Markov chain representing the decision paths was also validated. This validation

was performed to ensure that the Markov chain does, in fact, track the system be-

havior through time correctly, as described by Sheskin (2011). To build M, the rows

from the individual action transition matrices are selected based on actions for each

state given in Table 5.3. These individual rows are placed in the same order in the

new representative Markov chain transition matrix. For instance, for state (1,1), the

row from action transition “up” is selected, while for state (1,2), the row from “left”

is selected. Note that the action transition matrix for “down” is never used because

it is never optimal for any state. This process is shown graphically in Figure 5.2. The

colors have been selected to remain consistent between various actions.

To validate this, individuals were placed at specific locations in the vessel. The initial

distribution broke the individuals up into four groups, with 25% of the total popula-

tion located in the states below in Table 5.5 (also presented in the state vector given
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Figure 5.2: Building the representative Markov chain transition matrix, M, for p =
0.8 and r = −0.04. The colors are representative of the specific actions. Note the
action “down” is never optimal for any of the states.

in Equation 5.2).

Table 5.5: Initial placement of individuals. 25% of the individuals were placed in the
each of rooms identified.

0.00 0.00 0.00 0.00
0.25 0.00 0.00
0.25 0.25 0.25 0.00

s = (0.25 0.25 0.25 0 0.25 0 0 0 0 0 0 0) (5.2)

The location of the individuals was measured after 5, 10, and 30 decision epochs

following the decision paths as defined by the decision matrix and the representative
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Markov chain. Their probabilistic locations are given below. For example, after 5

epochs, roughly 5% of the individuals have reached the top left state, located at (3,1),

and roughly 25% of them have reached the exit located at state (3,4). Note that due

to the combination of the uncertainty and the rewards, there is a chance that an

individual may step into the room with the fire as they find their way to the exit

room. There is no variation between final location between these two methods, and

thus the representative Markov chains properly tracks the system behavior through

time.

After 5 decision epochs:

Following decision matrix
0.049 0.130 0.354 0.248
0.021 0.088 0.022
0.004 0.032 0.008 0.045

Following representative Markov chain
0.049 0.130 0.354 0.248
0.021 0.088 0.022
0.004 0.032 0.008 0.045

After 10 decision epochs:

Following decision matrix
0.001 0.003 0.125 0.844
0.000 0.019 0.004
0.000 0.001 0.002 0.001

Following representative Markov chain
0.001 0.003 0.125 0.844
0.000 0.019 0.004
0.000 0.001 0.002 0.001

After 30 decision epochs:

Following decision matrix
0.000 0.000 0.108 0.878
0.000 0.012 0.001
0.000 0.000 0.000 0.000

Following representative Markov chain
0.000 0.000 0.108 0.878
0.000 0.012 0.001
0.000 0.000 0.000 0.000

5.4 Results

Three independent sets of results were explored in this case study. First, a perturba-

tion analysis was performed on the uncertainty and rewards to examine their effect
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on both the decisions and the expected utility. This was done without the use of

spectral analysis. Second, the first spectral analysis metric was explored: the damp-

ing ratio. The third analysis explores the utility of the principal eigenvectors as a

leading indicator metric for analyzing the impact of design decisions.

5.4.1 Variations in the Decision Paths

The expected utilities and decision paths presented above in Table 5.3 are unique

only to the given rewards and uncertainty. Variations in either the rewards or the

uncertainty will change both the expected value and the decisions. The expected

value and decisions for the original case setup are presented again below in Table 5.6.

By increasing the uncertainty in the individual’s movement to p = 0.7, thus reducing

the probability of moving in the desired direction, there are noticeable changes. The

changes in the decisions are evident in states (1,4) and (2,3), which are highlighted by

the double arrow in Table 5.7. Due to the increased uncertainty, the best decision is

no longer to take the risk of stepping near the room with the fire (the r = −1 state).

Instead, it is best to take a sequence of actions that will always avoid the -1 state.

This higher uncertainty also reduces the expected utility for all states.

Table 5.6: Expected utility and decision paths for p = 0.8 and r = −0.04.

Expected value
0.81 0.87 0.92 +1
0.76 0.66 -1
0.71 0.66 0.61 0.39

Decisions Paths
→ → → +1
↑ ↑ -1
↑ ← ← ←

By reducing the incremental reward to r = −0.1, it becomes more painful for indi-

viduals to remain in the ship longer. Here there are changes in states (1,2) and (1,3),

again highlighted by the double arrows in Table 5.8. Due to the increased penalties

for each step, the best decision pathway is no longer to take the long way around
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Table 5.7: Expected utility and decision paths for p = 0.7 and r = −0.04. Note the
reduction in expected utility due to increased uncertainty and changes in decision
paths highlighted by the double arrows.

Expected value
0.75 0.82 0.87 +1
0.69 0.56 -1
0.62 0.56 0.51 0.23

Decisions Paths
→ → → +1
↑ ⇐ -1
↑ ← ← ⇓

state (2,2), but instead it is now optimal to risk the chance of taking a misstep to the

-1 state by going counter-clockwise around state (2,2).

Table 5.8: Expected utility and decision paths for p = 0.8 and r = −0.1. Note the
reduction in expected utility due to more painful rewards and changes in decision
paths highlighted by the double arrows.

Expected value
0.57 0.71 0.84 +1
0.45 0.52 -1
0.31 0.22 0.35 0.09

Decision Paths
→ → → +1
↑ ↑ -1
↑ ⇒ ⇑ ←

Finally, these decision paths may not be unique. When the incremental reward be-

comes positive, there is no penalty for individuals to move about in the ship, and

therefore no desire to proceed to either the exit (r = +1 state) or the room with the

fire (r = −1 state). This may simulate a situation where the fire has been completely

contained in a single room and there is no desire to either enter that room, nor pro-

ceed to the exit. The expected values will increase will each step, and presented below

in Table 5.9 is the result after 30 decision epochs when the reward is set to r = 0.1.

The decision paths only requires that states (1,4), (2,3), and (3,3) are as shown, while

all actions are optimal for the other states.

These results were developed without the use of spectral methods. Certain advan-

tages of the MDP are evident even without spectral analysis. First, the MDP is

able to quantify the expected values and identify the optimal decision paths for the
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Table 5.9: Expected utility and decision paths for p = 0.8 and r = 0.1. Note the
large expected utility due to positive rewards and non uniqueness of the decision
paths highlighted by the multiple arrows signifying any decision is optimal.

Expected value
3.68 3.68 3.68 +1
3.68 3.68 -1
3.68 3.68 3.68 3.68

Decision Paths
↔ l ↔ l ← +1
↔ l ← -1
↔ l ↔ l ↔ l ↓

individuals in the face of uncertainty. The method is also able to identify variations

in the decision paths due to changes in rewards and uncertainty, as well as identify

when the system may not converge to a unique set of decisions. However, there are

also limitations to the analysis presented. Manual search or simulation is required to

find the specific regions in the uncertainties or reward values that lead to changes in

the decisions. This method is also unable to identify which attributes of the process

are driving the dynamics and which cause the changes in the set of decisions.

5.4.2 Spectral Analysis

Spectral methods are introduced as a unique contribution of this thesis as a means

to gain a deeper understanding into these variations in the decision paths, and the

driving characteristics of the system that may be causing them. Both the damping

ratio and the principal eigenvector are explored as metrics to quantify changes in

decisions and the long term implications of specific decisions.

5.4.2.1 Damping Ratio Results

The representative Markov chain was formed after the MDP was run for 30 decision

epochs. The eigenvalues were generated from this representative Markov chain, and

the damping ratio was calculated. As such, these results only represent one single

time step. The objective is to obtain the relationship between the damping ratio
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and the system for a single time step before examining its behavior through time.

The results of the damping ratio for all four system inputs described previously are

presented in Table 5.10. As seen, small perturbations in both the uncertainty and

the rewards lead to damping ratios that vary between 1.111 and 2.288. In order to

fully understand these variations in the damping ratio, a broader examination of the

system is necessary.

Table 5.10: Damping ratio, ρ, for the four previous scenarios.

p r λ1 |λ2| ρ = λ1
|λ2|

0.8 -0.04 1 0.437 2.288
0.7 -0.04 1 0.850 1.765
0.8 -0.1 1 0.486 2.057
0.8 0.1 1 0.900 1.111

A sweep of the uncertainty and the rewards was performed to examine the relation-

ship of the damping ratio across a broad environment. The uncertainty was varied

from complete uncertainty of p = 0 to complete certainty of p = 1, while the rewards

were varied between −2.0 < r < 0.5. The results are presented in Figure 5.3.

Two major trends are apparent. First, there is a significant drop in the damping ratio

around where the reward transitions from negative to positive. As the rewards move

close to and into the positive region, the set of decisions changes drastically, and may

even become non-unique for areas where the rewards are fully positive. Second, as

p increases, the damping ratio grows rapidly for 0.5 < p. For the region p < 0.5,

the uncertainty is so great that the individuals take a misstep more than 50% of

the time, and the damping ratio is roughly consistent across all rewards. Figure 5.3

is only intended to show the high level trends of the damping ratio across a broad

environment. A more detailed analysis of the underlying shape and behavior follows.
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Figure 5.3: Damping ratio, ρ, for a range of rewards and uncertainties. Note the pre-
cipitous drop in ρ when the rewards become positive, as well as the rapidly increasing
nature of ρ for 0.5 < p.

In order to examine the genesis of the underlying shape of Figure 5.3, a closer exam-

ination of the data was performed with the uncertainty fixed at p = 0.8, while the

rewards were varied from −2.0 < r < 0.5. The results are shown in Figure 5.4. Five

step changes are apparent, located at points b, e, f , h, and i, which are associated

with r = −1.650, r = −0.453, r = −0.085, r = −0.028, and r = −0.022 respectively,

with the major drop occurring at r = −0.028.

The step changes in Figure 5.4 occur when there are changes in the decision paths,

and thus identify the specific changes in the environment that affect the set of deci-

sions. However, not all transitions in the decisions are identified as changes in the

damping ratio. There are in fact ten different sets of decision paths for an uncertainty

of p = 0.8. These sets are given in Table 5.11, and are arranged moving from left to

right in the damping ratio plot. The specific change in the decision path is identified
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locations where there are transitions in the decision paths. Note the step function
behavior and the precipitous drop at r = −0.028 (between h and i).

by a double arrow in the state that was affected. Those changes in the decision paths

that occurred simultaneously with changes in the damping ratio are denoted with

both double arrows as well as highlighted in yellow.

Starting from the most negative rewards, the first change in the decision path occurs

at r = −1.650 (point b), where state (2,3) changes from action “right” to “up”. At

the same time the damping ratio increases through a small step change. Due to the

painful rewards in the environment for r ≤ −1.650 the best decision is to take take

the shortest path to the -1 state. Essentially this is a situation where it is actually

less painful to be in the room with the fire than outside of it. However, when the

penalty is changed to −1.650 < r, the the best path is no longer to step directly at

the -1 state from the (2,3) state. This change in the decision paths is considered a

major change to the system because of the effect it has on the damping ratio.

This is in contrast to the change in decision paths that occurs at r = −1.565 (point

c). Here, state (1,3) changes from “right” to “up”; however, there is no change in the

damping ratio with this change in actions. This change is considered minor because
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Table 5.11: Variations in the decision paths for p = 0.8. Moving from lowest rewards
to highest rewards, the specific state that changed optimal actions is identified by a
double arrow. The states that changed optimal actions with an associated change in
the damping ratio are identified by a double arrow and yellow background.

r ≤ −1.650
(a-b)

→ → → +1
↑ → -1
→ → → ↑

−1.650 < r ≤ −1.565
(b-c)

→ → → +1
↑ ⇑ -1
→ → → ↑

−1.565 < r ≤ −0.732
(c-d)

→ → → +1
↑ ↑ -1
→ → ⇑ ↑

−0.732 < r ≤ −0.453
(d-e)

→ → → +1
↑ ↑ -1
⇑ → ↑ ↑

−0.453 < r ≤ −0.085
(e-f)

→ → → +1
↑ ↑ -1
↑ → ↑ ⇐

−0.085 < r ≤ −0.045
(f-g)

→ → → +1
↑ ↑ -1
↑ ⇐ ↑ ←

−0.045 < r ≤ −0.028
(g-h)

→ → → +1
↑ ↑ -1
↑ ← ⇐ ←

−0.028 < r ≤ −0.022
(h-i)

→ → → +1
↑ ⇐ -1
↑ ← ← ←

−0.022 < r ≤ 0.000
(i-j)

→ → → +1
↑ ← -1
↑ ← ← ⇓

0.000 < r
(j-k)

↔ l ↔ l ⇐ +1
↔ l ← -1
↔ l ↔ l ↔ l ↓

the individuals are still two steps away form the -1 state no matter the policy. The

new set of decisions recognizes the +1 state is preferable, but due to the high painful

incremental rewards, may only be slightly more preferable than stepping into the -1

state. A similar trend is apparent at r = −0.732 (point d), where state (1,1) changes

from “right” to “up” with no change in the damping ratio. This change in decisions

is minor as the individuals are still 5 steps away from the safe exit state no matter

the decision path.

For the other transitions this relationship is consistent, both qualitatively and quanti-

tatively. When the decision paths change for a given state, the change is considered a
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significant change to the overall system if there is an associated change in the damp-

ing ratio. These changes typically affect states directly adjacent to the room with

the fire (r = −1 state). State (1,2), while not directly adjacent to the -1 state does

have a significant change because the best decision is now to go the long way around

state (2,2) as opposed to taking the shorter way. On the other hand, states that are

farther away, in general, have less of an effect on the overall system as changes in

their decisions do not change the damping ratio.

Of particular note is the significant drop in the damping ratio that occurs when state

(2,3) changes from action “up” to action “left”, located at r = −0.028 (point h). Two

changes occur in the overall system with this set of decisions. First, by wanting to

move “left”, individuals will never take an uncertain misstep into the room with the

fire (r = −1 state) from the (2,3) state, and second, this set of actions effectively

blocks the passage between state (1,3) and (3,3). People must now travel clockwise

around state (2,2), as the shorter route is now blocked off. This result is, in fact,

consistent for all 0.6 < p ≤ 1. The significant drop in the damping ratio identified in

Figure 5.3 always occurs when the best decision for state (2,3) changes from “up” to

“left”. It is also noted that this drop happens at various rewards for various uncertain-

ties. For p = 0.6 this change happens at r = −0.068, while it occurs at r = −0.003

for p = 0.9. Accordingly, as more uncertainty is added into the system, this major

change in the damping ratio occurs further from 0. For p ≤ 0.5 there is no change in

the damping ratio when the decisions changes for this state.

5.4.2.2 Damping Ratio Discussion

The analysis of the damping ratio in this manner is significant because it shows where

the important transition regions in the decision paths are, as well as which states and
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action combinations have the greatest effect on the system. Without the use of the

spectral methods, the designer would have to examine all nine different transition

regions in the recommended decisions; however, the damping ratio reduces that num-

ber to five areas, with one of significant importance. State (2,3) showed to be a very

important state in the system, especially when the decision transitions from “up” to

“left”. By highlighting the importance of this state, as well as the relative insignifi-

cance of other states (such as state (1,1)), the damping ratio has been able to show

which states deserve greater focus and which rewards are likely to cause these changes.

5.4.2.3 Eigenvector Analysis

The principal eigenvector’s effect on the steady state distribution of the crew was

also examined. Applying the methods discussed in Chapter III Section 3.4.5: The

Eigenvector as a Metric for Steady State Behavior, the principal eigenvector is used

to represent the steady state distribution of the crew following a consistent set of

prescribed actions. Similar to the damping ratio analysis, the MDP was run for 30

decision epochs and the principal eigenvector associated with λ1 was calculated for

the final epoch. Again, the aim was to show the relationship between the eigenvector

and the system for a single time step before performing temporal analyses.

Three analyses were performed using the eigenvector to examine the relationship the

uncertainty and rewards have on the stable distribution of the individuals in the ves-

sel. First, a sweep of both the uncertainty and rewards was performed simultaneously

to see the percentage of individuals that will make it to the exit state (state (3,4)) in

the long run. The next two studies looked at a sweep of the rewards and a sweep of

the uncertainty individually to examine both the total distribution of individuals in

vessel as well as the magnitude of the changes in distributions based on changes in
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the uncertainty and rewards.

A Study Varying both the Uncertainty and Rewards

A sweep of the uncertainty and rewards was performed to test the impact these pa-

rameters have on the percentage of individuals that make it to the final exit state in

the long run. The uncertainty was varied from 0 < p < 1 and the rewards were varied

from −2.0 < r < 0. This range was selected to eliminate the r > 0 region where there

is no unique set of decisions, as discussed previously. For instances where r < 0.6,

ρ ≈ 1 however it never actually equals one, thus the dominant and sub-dominant

eigenvalue are distinct. Thus, the methods and metrics discussed in this chapter are

still applicable.

Figure 5.5 shows the percentage of individuals that successfully make it to the exit

state (state (3,4)) in the long term. Several items are worthy of note from this figure.

First, it is clear that the percentage of individuals that make it to the safe exit state

is more sensitive to the uncertainty than it is to the rewards. As the probability

of moving in the desires direction increases, the percentage of individuals gradually

increases as well. Below p = 0.3 the percentage of individuals that make it to the

exit remains steady at 33% for the majority of the rewards. When the r → 0, a

step change occurs and the percent of individuals drops drastically to 25%. Above

p = 0.3 the percent of individuals gradually increases until p = 1, in which case 100%

of individuals make it safely to the safe exit state.

Varying the rewards has little effect on the results. For most of the range of the

rewards tested, the percent of individuals remains mostly unchanged as the rewards

change. The one noticeable sensitivity happens as a step function near r = 0. As

the rewards increase, at some point slightly before r = 0, the percent of individuals
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Figure 5.5: Percent of individuals that make it to the safe state (state (3,4)) in the
long run based on a variation of uncertainties and rewards.

that will make it to the safe state reduces drastically. This change starts close to

r = 0 for p = 1 and slowly moves towards more negative rewards as p is reduced.

Below p = 0.5 the step begins to happen much farther away from r = 0. The step

is significant for 0.5 < p < 1 because it is the same bifurcation line that was iden-

tified as the precipitous drop in the damping ratio plot in Figure 5.3. As discussed

previously in Section 5.4.2.1: Damping Ratio Results, this bifurcation happens when

state (2,3) changes from “up” to “left”. Thus, spectral analysis is able to identify this

transition region as one of significant importance using both eigenvalue analysis with

the damping ratio, and eigenvector analysis through steady state analysis.

A Study Varying only the Rewards

A sweep of the rewards from −2 < r < 0 was performed for p = 0.8. This range was

chosen to compare the results directly to those in Section 5.4.2.1: Damping Ratio Re-

sults. As can be seen in Table 5.12, four different steady state distributions exist for
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this range of rewards. For the most negative rewards, there is nearly an 88% chance

an individual will make it to the final exit state (state (3,4)), while there is near an

11% chance they end up in the room with the fire (state (2,4)). There is a 1% chance

an individual will end up congregating in the passage near in the room with the fire

(state (2,3)). As the reward is adjusted to −1.65 < r ≤ −1.44, the probability of

an individual ending up long term in the room with the fire decreases to under 10%,

while the probability of those that end up in the safe exit remains nearly the same at

nearly 88%.

Table 5.12: Steady state distributions as calculated by the dominant eigenvector for
p = 0.8. The values indicate the long term probabilistic location of the individuals in
the vessel.

r ≤ −1.65
0.000 0.000 0.001 0.877
0.000 0.011 0.108
0.000 0.000 0.001 0.001

−1.65 < r ≤ −1.44
0.000 0.000 0.011 0.878
0.000 0.012 0.099
0.000 0.000 0.000 0.000

−1.44 < r ≤ −0.03
0.000 0.000 0.108 0.878
0.000 0.012 0.001
0.000 0.000 0.000 0.000

−0.03 < r
0.006 0.006 0.101 0.808
0.007 0.054 0.000
0.006 0.007 0.006 0.000

As soon as the reward changes above -1.44 for the range −1.44 < r ≤ −0.03, there

are clear changes. The probability of the individuals congregating long term in the

room with the fire drops to nearly zero. However, now more than 10% will end up

in the room just outside the safe exit (state (3,3)). One of the assumptions in this

model is that an individual must make a decision to move in a given direction at

each decision epoch, even if they have reached the safe state. The change in the

steady state distribution here is due to the change in underlying decision at the (3,4)

state. That is, for −1.65 < r ≤ −1.44, the best decision while in the safe state is

to move “right”, meaning 10% of the time individuals will accidentally step into the
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room with the fire. For −1.44 < r ≤ −0.03, the best decision changes to “up”, which

means that individuals take a misstep outside of the safe room to state (3,3). This

assumption could model situations where there is panic and individuals may move out

of the safe room even after they have already landed there. This causes the change

in distributions between state (2,4) and state (3,3) for a reward of r = −1.44. Again,

the percentage of those in the safe exit room remains just under 88%. The previ-

ous study that performed a sensitivity study on both the uncertainty and rewards

was unable to discern the two transition regions at r = −1.65 and r = −1.44 because

it focused only on the impact on state (3,4), and missed the impact on the other states.

The final change happens when the rewards are increased to greater than -0.03. The

percent in the safe exit is now less than 81%, while there is a 0% chance someone will

end up long term in the room with the fire. Roughly 5% will remain immediately

adjacent to the fire room (state (2,3)). A noticeable change also happens for the

states far away from the fire and safe exit states, where in each state there is just

under a 1% chance that someone will end up there. This change happens at the same

transition region identified by the major drop in the damping ratio (Figure 5.4). This

last region could simulate a situation where the pain from the smoke is not that great

and a small portion of the individuals would prefer just to stay far away from the fire

room, as opposed to heading for the exit and risking the chance of ending up in the

fire room instead.

This first metric measured only the distributions of individuals, while this next metric

examines the magnitude of the changes between decisions by looking at the magni-

tude of the angle formed between the eigenvector of the previous distribution with

that of the new distribution. Since these distributions come about from a set of de-

cisions, this metric can also be used as a metric quantifying the impact of changes
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in decisions. The angles between the vectors are given in Table 5.13 and Figure 5.6.

Displaying the angles graphically has the benefit of visually showing a vast number

of angles that may get confusing in a table alone. This will become clear in the next

section where there are numerous sets of decisions and thus multiple angles to display.

Table 5.13: The magnitude of the angles between the eigenvectors for given rewards
and p = 0.8. The rewards indicate the transition regions where the steady state
distribution changes.

Reward, r |θdeg|
-1.65 0.9
-1.44 8.9
-0.03 3.2
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Figure 5.6: Visual display of the magnitude of the angles between the eigenvectors
for given rewards and p = 0.8. The rewards indicate the transition regions where the
steady state distribution changes.

By examining the angles, it is evident that the change in steady state distributions

that occurs at r = −1.65 is indeed small. The magnitude of the vector is only 0.9◦

different that the original one. This is opposed to the significant change at r = −1.44,
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which is nearly 9◦. This change is significant even though it does not appear in Fig-

ure 5.5, which examined only the final exit state. Thus, this is an instance when

examining all states is important, otherwise the decision maker may miss an impor-

tant transition region if there is too strong a focus on a single state. The change

at r = −0.03 is less significant that the one at r = −1.44, accounting for only a

magnitude of 3.2◦.

A Study Varying only the Uncertainty

The last study examined a sweep of uncertainties between 0.6 < p < 1 for r = −0.1.

This range was selected to examine the “ramp” section of Figure 5.3 where the

damping ratio increases rapidly for changes in the uncertainty level. The results

are markedly different than those from varying the rewards. Here, with each small

change in the uncertainty comes a small change in the distribution of individuals

in the vessel. Thus, there are no clear significant bifurcation regions, but instead a

gradual change. The stable distributions for every p = 0.1 are presented in Table 5.14.

Table 5.14: Steady state distributions as calculated by the dominant eigenvector for
r = −0.1. The values indicate the long term probabilistic location of the individuals
in the general arrangement.

p = 0.6
0.000 0.000 0.221 0.706
0.000 0.059 0.015
0.000 0.000 0.000 0.000

p = 0.7
0.000 0.000 0.166 0.799
0.000 0.030 0.005
0.000 0.000 0.000 0.000

p = 0.8
0.000 0.000 0.108 0.878
0.000 0.012 0.001
0.000 0.000 0.000 0.000

p = 0.9
0.000 0.000 0.052 0.945
0.000 0.003 0.000
0.000 0.000 0.000 0.000

As the probability of moving in the desired direction, p, increases the probability of

landing in the safe exit state gradually increases as well. For p = 0.6, just over 70%
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p = 1.0
0.000 0.000 0.000 1.000
0.000 0.000 0.000
0.000 0.000 0.000 0.000

of individuals make it to the safe state, while that percentage increases to a full 100%

for p = 1.0. The long term chance of landing in the room with the fire is 1.5% for

p = 0.6 and drops to 0% by p = 0.9. The states just outside the fire and safe exits

also have decreasing probabilities with increasing p.

This study also examined the magnitude of these incremental changes using the mag-

nitude of the angle formed between the eigenvectors. Table 5.15 shows the angles

formed incrementally for each p = 0.05 for 0.6 < p < 1. The angles are all small,

less than 0.7◦, and are decreasing with increasing p. For p = 0.61 the angle is 0.69◦,

while for p = 1.0, the angle is much less at 0.29◦. Due to the more continuous nature

of this progression, visualizing these angles is beneficial. Figure 5.7 shows numerous

small changes from p = 0.61 to p = 1. It can be seen that not only does the angle

get smaller, but the rate at which the angle gets smaller is decreased. That is, the

distributions begin to approach p = 1 asymptotically due to their ever decreasing

incremental change.

In all cases this change is gradual, and follows a more continuous trend. This behavior

is different to the step function nature that was present when varying the rewards.

This is logical based on the shape of both the damping ratio plot in Figure 5.3 and

the state distributions of the safe exit in Figure 5.5 where the gradient was more

pronounced by varying the uncertainty as opposed to the rewards. Thus, it is clearly

shown that variations in the uncertainty interact with the decisions in a different

manner than variations in the rewards.
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Table 5.15: The magnitude of the angles between the eigenvectors for given proba-
bility of moving in the desired direction, p, and r = −0.1.

Probability of moving |θdeg|
in desired direction, p

0.61 0.69
0.65 0.62
0.70 0.55
0.75 0.49
0.80 0.44
0.85 0.40
0.90 0.36
0.95 0.32
1.0 0.29
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Figure 5.7: Visual display of the magnitude of the angles between the eigenvectors
for given probability of moving in the desired direction, p, and r = −0.1.

This different behavior can be explained by smoke interfering with the decision mak-

ing of the individuals. The smoke may interfere with the respiratory system, thus

causing pain and reducing the “rewards” of the individual. The smoke may also im-

pair sight, thus causing uncertainty in movement. However, in instances such as fog

where there is high uncertainty in movement, there may not be any pain, and thus

there is no need to go to the muster point. This is analogous to situations where the
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rewards may be positive and there is a high uncertainty in movement.

5.4.2.4 Eigenvector Analysis Discussion

Performing eigenvector analysis for SC-MDP framework in this manner is significant

because it enables the ability to quantify changes in system decision making without

the need to know which specific state the individuals are in. Previously, knowledge

of the specific state, or some estimation of which was necessary to determine whether

or not a given change may be important. Eigenvector analysis removes this need as

it examines all states at once and is able to relay their relative significance during

system and decision changes. This method is also significant because it informs de-

signers and decisions makers where individuals may tend to congregate in the event

of an emergency. This may highlight key area in the vessel where special attention

should be paid at future stages of the design process.

5.5 Discussion

On top of highlighting the significance of the damping ratio and the principal eigen-

vector individually as valuable metrics for measuring the impact of design decisions,

this chapter also highlighted the relationship between these two different metrics. The

damping ratio and the principal eigenvector measure different aspects of the system’s

spectrum. The damping ratio measures the magnitude of the second largest eigen-

value, while the steady state analysis measures the eigenvector associated with the

largest magnitude eigenvalue. Yet, both metrics were able to identify the same bifur-

cations in the decision making. Primarily, the transition around the precipitous drop

in the damping ratio proved to also have a significant impact on the steady state dis-

tributions of where individuals will congregate long term in the event of an emergency.
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Performing eigenvalue and eigenvector spectral analysis for SC-MDP framework in

this manner is significant for ship design because it is inherently a discussion of the

Why instead of the What. This chapter focused exclusively on the egress problem,

which is defined as how people egress, understanding the decisions they make under

uncertainty, and the interaction between the individuals themselves and the general

arrangement of the layout of the vessel. This is juxtaposed to traditional analy-

ses that focus on the solution, namely the general arrangement of the layout of the

vessel and the physical distribution of the crew throughout the ship. This analysis

also illuminates why certain decisions were made and the driving factors behind them.

5.6 Conclusion

A method for enabling decision making insight has been presented involving apply-

ing eigenvalue spectral analysis to the SC-MDP framework. A damping ratio for

Markov decision processes was introduced, defined as the ratio between the largest

eigenvalue and the magnitude of the second largest eigenvalue. This damping ratio

was applied in two new ways: first to identify and quantify changes in the sets of

decisions, and second, to identify the specific system attributes causing the major

changes in decisions. The eigenvector associated with the dominant eigenvalue was

also demonstrated as a leading indicator metric for measuring the impact of decisions.

The relationship between the damping ratio and the principal eigenvector is apparent

from the identification of many of the same bifurcation regions in the decision space

using both metrics. Use of eigenvalue spectral methods will be beneficial for ship de-

sign and decision making by eliciting new insight into the design and decision space

that may not be possible using traditional methods.

109



5.7 Next steps

The results in this chapter showed the utility of spectral analysis in identifying and

quantifying the magnitude in changes in the decision paths. However, this was done

for stationary rewards and uncertainties, and for a single time step. Ship design

and decision making is inherently non-stationary and temporal. For example, non-

stationary transitions could arise from varying regulations, policies, supply chain risks,

or performance drift, while non-stationary rewards could come from economic vari-

ability in fuel prices or evolving budgetary requirements. Non-stationary transitions

or rewards always lead to non-stationary decisions.

While the results presented were only for a single case study, applying these tech-

niques to non-stationary temporal systems presents no significant challenges. These

metrics can still be used to determine when changes in the decision paths change the

spectral modes of the system, thus causing significant changes to the overall system.

Use of spectral methods to analyze temporal changes in non-stationary decision sce-

narios is a truly novel concept, and is a unique contribution of this research. The next

chapter shows the utility of spectral analysis on a non-stationary temporal problem of

decision making and lifecycle planning involving ballast water treatment compliance.
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CHAPTER VI

Spectral Analysis Case Study 2: Lifecycle Planning

for Ballast Water Treatment Compliance1

This chapter introduces a means to elicit decision making insight for lifecycle planning

for ballast water treatment compliance by applying a temporal spectral analysis to

the SC-MDP framework. The previous case study on egress patterns and general

arrangement design discussed situations where the process was independent of the

initial state vector. This chapter, on the other hand, examines a situation where the

system is initial condition dependent where there are multiple independent paths the

design may go. To study this, the objective of this chapter are:

1. Demonstrate the applicability of eigenvalue spectral analysis to the SC-MDP

framework for a temporal, non-stationary problem.

2. Demonstrate how to identify and group independent states and processes within

the SC-MDP framework when there are repeated dominant eigenvalues.

3. Demonstrate how the set of principal eigenvectors can be used to show various

initial condition dependent design absorbing paths.

1Early work on this case study was developed by Niese (2012); Niese and Singer (2013, 2014).
This chapter extends those studies to include the spectral methods proposed in this thesis.
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Previous work on applying the SC-MDP framework to the ballast water treatment

problem has been performed by Niese (2012); Niese and Singer (2013, 2014). These

studies applied simulations through the decision matrix to capture the interplay be-

tween internal and external forces. This was done in an effort to develop both a

design and a lifecycle decision making strategy that minimize life cycle cost while

maintaining compliance and performance.

This chapter extends this work by introducing temporal eigenvalue spectral methods

to gain a deeper understanding of the driving forces behind the different decision mak-

ing scenarios, as well as quantifying their differences. Specifically, this dissertation

uses both eigenvalue and eigenvector analysis to help identify and examine inter-

dependencies between decision paths and projected design scenarios. This chapter

introduces a temporal perspective on using spectral analysis applied to the SC-MDP

framework in understanding ballast water treatment decision making and lifecycle

planning.

6.1 Background

Ballast water treatment has become compulsory due to local and international envi-

ronmental regulations. Unfortunately for ship owners and operators, decision making

and lifecycle planning for ballast water treatment methods is difficult due to the

interplay of various factors, including: stochastic degradation, technology develop-

ment, and multiple levels of environmental policy-making. Regulating the discharge

of ballast water has been recognized as an important part in the fight against inva-

sive species. As vessels unload their cargo, they bring aboard ballast water to help

ensure the vessel remains stable and floats on its lines. The vessel then transits with

this ballast water to its new location, carrying with it all the microorganisms that
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are in the ballast water. While most of the organisms die along the way, many do

not. These organisms are then introduced into a new environment and can cause a

great disturbance to the local ecosystem. To combat this, many governing bodies

have put into place strict guidelines that specify the quality of the water that is being

discharged.

6.1.1 Regulatory Framework

Ballast water is regulated by multiple governing bodies, including, the IMO, the U.S.

Coast Guard, various states and local governing bodies, and the European Union.

In 2004, the IMO adopted the Ballast Water Management Convention designed to

regulate global transport of ballast water. These regulations will apply to all vessels

required to carry ballast, including: submersibles, floating craft, floating platforms,

floating storage units (FSUs) and floating production storage and offloading (FPSO)

vessels. However, the regulation will not apply to ships that do not carry ballast,

domestically-only operated vessels, warships and other vessels owned and operated

by the State, non-commercial ships, or ships with permanently sealed ballast tanks

(Lloyd’s Register, 2015). Table 6.1 outlines the specific limits imposed by the IMO.

The ramifications for violating the regulations are significant, ranging from monetary

fines to criminal sanctions for willful noncompliance (Davis and Levy, 2012).

While the ballast water convention was held in 2004, by 2015 it had not come into

effect. The regulation will go into effect 12 months after it has been ratified by 30

member States representing 35% of the world merchant shipping tonnage. As of

November 2015, it has been ratified by 44 countries representing just under 33% of

global merchant shipping tonnage (IMO, 2015). Despite the fact the IMO regula-

tions are not in force, there are still significant reasons to study their potential future
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Table 6.1: Discharge limits for ballast water as prescribed by IMO ballast water
convention (Lloyd’s Register, 2015).

Organism Category Discharge Limit
Plankton, > 50µm (min. dimen.) < 10 cells/m3

Plankton, 10− 50µm < 10 cells/ml
Toxicogenic Vibrio cholera

< 1 cfu∗/100ml or < 1 cfu/g (wet weight)(01 and 0139)
Escherichia coli < 250 cfu/100ml
Intestinal Enterocicci < 100 cfu/100ml
* cfu: colony forming unit

impact on ship design and decision making. These regulations will likely come into

force soon, creating a necessity to have a strategic plan for them now. Also, vessels

already have to consider national and regional regulations that are in force.

Figure 6.1: Ballast water treatment technology compliance schedule. (Lloyd’s Regis-
ter, 2012)

Figure 6.1 outlines the compliance schedule according to the IMO Ballast Water

Convention. Acceptable ballast water technologies are dependent on the size of the

ballast capacity and the year the ship was constructed. Note that the type of ap-

proved technology changes in 2016. This date was selected to give engineers time

to develop applicable technologies. Even though the regulation has yet to come into

force, technology developers and vessel owners have had to prepare for this upcom-
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ing change well in advance, despite the uncertainty surrounding the enforcement date.

6.1.2 Compliance Mechanisms

Many technologies already exist that meet some of the regulations, and others are

still in development to meet the most stringent of the policies. Ballast water exchange

systems will no longer be allowed once the regulation goes into force. The other op-

tion is ballast water treatment, which tries to kill the bacteria and living organisms

in the ballast water.

Figure 6.2: Ballast water treatment technology process (Lloyd’s Register, 2012)

Figure 6.2 outlines the process by which ballast water is treated, first by separating

the solids from the liquids, and then finished by disinfecting the liquid completely.

Currently there are over 70 different manufacturers of ballast water treatment tech-

nologies across the range of various treatment options (Lloyd’s Register, 2012). This

makes the planning and selection of proper technologies complicated and difficult.
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6.2 Case Study: Lifecycle Planning for Ballast Water Treat-

ment Compliance

A notional 150,000 deadweight tonnage containership with a 30,000 metric ton ballast

water capacity routed along the trans-pacific route is used for this study. The ballast

water treatment system must have a capacity of at least 10, 000m3/h. The vessel

has a 20 year lifespan and is put in service sometime prior to the 2004 IMO Ballast

Water Management Convention. Ten ballast water systems, labeled 1-10, are consid-

ered. System 1 is a commercially available ballast water exchange system. Systems

2-10 represent ballast water treatment systems that become commercially available

at some time during the lifespan of the vessel. Specifics of the ballast water sys-

tems, including performance, capital costs, operating expenditures, availability and

approval have been derived from Lloyd’s Register (2007, 2010); California State Lands

Commission (2010). These systems represent various treatment technologies, such as:

filtration, electrochlorination, cavitation, radiation, and de-oxygenation. The original

case setup, including inputs, stochastic variables, and economic parameters have all

been tested and validated by Niese (2012); Niese and Singer (2013, 2014).

6.2.1 Markov decision process framework

This section details how the states, actions, transition probabilities, and rewards are

defined in the MDP for this case study.

6.2.1.1 States

The MDP states are defined by the individual ballast water systems, their commer-

cial availability and regulatory approval, as well as their deterioration level. For each

ballast water system, there are six availability states, including: unavailable, commer-
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cially available, basic approval, final approval-Tier 1, final approval-Tier 2, and final

approval-Tier 3. The Tier 1, Tier 2, and Tier 3 approval states correspond to meeting

IMO regulations, State of New York regulations, and State of California regulations

respectively. The State of New York regulation is roughly 10x more stringent than

the IMO’s policy, and the State of California’s policy is roughly 100x more stringent

than the IMO’s regulation. Each system also has four deterioration levels. The de-

terioration level is defined as a percentage of total deterioration. Thus, there are 240

states, accounting for ten systems, six approval states, and four deterioration levels.

6.2.1.2 Starting State

This analysis assumes that the initial state is unknown. That is, there is equal proba-

bility of being located in any of the states at the start of the model. Niese et al. (2015)

discussed the problems associated with, and importance of, selecting the correct start

state, and its implications on future decision making opportunities. Designs may be

dependent on the initial conditions, and thus selecting differing starting states may

lead the design down a different path. By assuming equal starting probabilities, this

analysis aims to find the most natural path the design would take as opposed to

pre-determining its trajectory.

6.2.1.3 Actions

There are twelve possible actions the decision maker can make:

1. No Action: This action occurs when the system continues to deteriorate, yet

no action is necessary to maintain it.

2. Maintain: Maintenance is performed and the ballast water system is restored

to a less deteriorated state.
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3. Replace System (1-10): The ballast water system is replaced with one of the

10 possible systems. The specific system that is installed is identified by the

index 1-10. A system can only be installed after it becomes both commercially

available and meets regulatory requirements.

6.2.1.4 Transition Probabilities

The probability of transitioning between states is defined by the following models.

• The probability of transitioning between ballast water systems is deterministic

based on the best action selected by the MDP and its availability. A system

can only be selected once it is available and approved.

• Transitioning between approval states is based both on the regulatory environ-

ment and the commercial availability. The following schedule is used to model

various regulatory scenarios.

1. The ballast water convention is held which outlines the expected strength

of the legislation, as well as expected date of enforcement.

2. Laboratory testing procedures specific to ballast water treatment efficacy

are available.

3. The legislation is ratified by member States.

4. The legislation enters force.

The implementation schedule is defined as the number of years following the

convention a policy trigger occurs. For instance, the 1-4-4-9 schedule would sim-

ulate a convention being held one year after the ship enters service, and then

4 years later laboratory testing procedures become available and the legislation

is ratified. Nine years after the convention the legislation enters force.
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Prior to the convention, there is little demand for development of the ballast

water treatment technologies, and thus it is assumed the treatment technologies

will not become available until after the convention is held. Also, each individ-

ual technology will meet a different threshold of regulatory compliance and will

become available at different times. The schedule outlining the expected year

each technology will be available is given in Table 6.2. The table outlines the

number of years following the convention that the technologies are expected to

be available, as well as their expected regulatory compliance level. This data

has been based on actual dates when the technologies became available, while

the deviation has been included to simulate uncertainty in the commercializa-

tion process (Niese and Singer, 2013).

Table 6.2: The ballast water technology availability schedule and compliance level.
The mean availability details the number of years after the convention that particular
technology is expected to be both commercially and regulatory compliant.

System Mean Availability Deviation σ Compliance Level
1 - - Exchange
2 3 0.5 Treatment-Tier 3
3 2 0.4 Treatment-Tier 3
4 7 1.0 Treatment-Tier 1
5 3 0.5 Treatment-Tier 1
6 5 0.75 Treatment-Tier 2
7 7 1.0 Treatment-Tier 3
8 5 0.75 Treatment-Tier 3
9 4 0.6 Treatment-Tier 2
10 3 0.5 Treatment-Tier 3

• Transitioning between deterioration levels is modeled by a special case of the

gamma distribution, known as the exponential distribution, given in Equation

6.1.

fj(x) = γje
γjx (6.1)
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Deterioration happens independently from other factors in the model, and fol-

lows an exponential distribution for γ, given in Equation 6.2. λj is a function

of the system’s treatment method. This is due to ballast water treatment sys-

tems using filtration, electrochlorination, cavitation, radiation, de-oxygenation,

and/or ozone-generation degrade differently (Niese and Singer, 2013) A full de-

scription of this model can be found in van Noortwijk (2007).

γj = aje
−bj + cj (6.2)

Figure 6.3 shows the availability of the various system according to both commer-

cial availability and regulatory compliance for the 1-4-4-9 regulatory implementation

schedule. For visualization purposes the 240 states have been condensed to 60 rep-

resentative states. To do this, the four deterioration levels for each ballast water

system and for each approval status have been added together. This creates a single

representative state that accounts for all four deterioration levels (Niese, 2012).

6.2.1.5 Rewards

The rewards are based on the system capital costs, installation costs, and operating

and maintenance costs, as given in Table 6.3 (Lloyd’s Register, 2007, 2010; California

State Lands Commission, 2010; Rigby and Taylor, 2001). The cost function is given

in Equation 6.3.

cost = min(captial + install + operating +maintenance) (6.3)

The capital costs are dependent on whether the system meets basic approval. Capi-

tal costs tend to increase in price after achieving basic approval because the approval

status may warrant a cost increase, or supply and demand economics may dictate it
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1 2 3 4 5 6 7 8 9 1011121314151617181920

System1 Unavailable
Available

Basic Approval
Tier1 Approval
Tier2 Approval
Tier3 Approval

System2 Unavailable
Available

Basic Approval
Tier1 Approval
Tier2 Approval
Tier3 Approval

System3 Unavailable
Available

Basic Approval
Tier1 Approval
Tier2 Approval
Tier3 Approval

System4 Unavailable
Available

Basic Approval
Tier1 Approval
Tier2 Approval
Tier3 Approval
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Figure 6.3: Ballast water system commercial availability and regulatory compliance
for the 1-4-4-9 schedule. Shading represents the percent likelihood a given system
will be located in that state.

(Niese and Singer, 2013). Installation costs vary depending on whether it is during

vessel new construction or a retrofit. In cases of a retrofit, it is assumed there is

sufficient space.

As equipment deteriorates, it becomes less efficient and more costly. Equation 6.4 and

6.5 model the increasing operating costs as a function of deterioration. For this study
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Table 6.3: Ballast water technology costs. The Capex #/# corresponds to costs be-
fore/after Basic approval. The Install #/# corresponds to costs for newbuild/retrofit.

System Capex (2, 000m3/h) Install (2, 000m3/h) O&M ($/m3/h)
1 50/50 0/0 0.06
2 800/820 40/55 0.08
3 950/1,200 5/15 0.07
4 950/1,500 50/65 0.06
5 690/670 60/60 0.13
6 800/450 80/100 0.32
7 500/975 65/125 0.013
8 1,600/1,600 5/15 0.06
9 559/600 100/150 0.03
10 1,800/1,200 25/40 0.01

g = 0.01, and x = [1, 2, 3, 4] depending on the deterioration level. λ = [0.72, 0.78]

and is a function of the system installed (Niese, 2012). A full description of this

deterioration cost function model can be found in (Nguyen et al., 2010).

φ(x) = φ0 + geγjx (6.4)

O&M cost = Annual trips ∗ required ballast ∗ φ(x) (6.5)

6.3 Results

Three sets of results are discussed in this chapter:

1. The optimal states are analyzed to see the impact a given regulatory strength

and schedule has on the ballast water system of choice. This is done without

the use of spectral methods.

2. Spectral methods are used to examine interdependencies of the decision process

and how those dependencies change through time. This is done through analysis

of the set of eigenvectors associated with the set of dominant eigenvalues and

using them as a metric for identifying independent decision absorbing paths.

These specific eigenvectors are referred to as the principle eigenvectors.
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3. The relationship between the set of principle eigenvectors and the optimal state

plot is discussed.

6.3.1 Optimal States Accessed

The model was run to determine what the best decisions are, when they should be

made, and what ballast system is best to install under given conditions. An optimal

states plot is given that displays the preferred ballast system that should be installed

at any given time. This plot accounts for uncertainty in technology availability, thus

there is no uncertainty between making the choice to install a particular ballast wa-

ter system and actually having it installed. When a given system is selected in the

optimal states plot, it is assumed that the optimal action is to select that particular

system. This metric was used extensively by Kana et al. (2015) to study temporal

decision making behavior in the face of evolving Emission Control Area regulations

(see Appendix B).

A sensitivity study was performed on the strength of the regulation as to its affect

on the preferred ballast system. As shown in Figure 6.4, for the 1-4-4-9 regulatory

schedule, with a Tier 1 regulation strength, the best choice is to install ballast System

9 after year 9. System 1 becomes unavailable due to regulatory requirements at year

9, thus necessitating a change. System 9 is selected as the best option, which meets

Tier 2 requirements, despite the regulation only requiring Tier 1 compliance. When

the strength of the regulation is increased to requiring Tier 3 compliance, ballast

System 2 becomes preferred after year 9. Only 5 of the original 10 systems meet Tier

3 standards, and System 2 was selected due to it lower lifecycle costs.

While this metric shows what the best decisions are, it doesn’t show why a given
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Figure 6.4: Optimal states accessed for 1-4-4-9 regulatory schedule and two treatment
strengths.

technology was selected. This metric does not show which other technologies may

also be desirable or how the initial conditions may be affecting future decision oppor-

tunities. Also, this analysis is only able to display one particular absorbing path. The

following study on the set of principal eigenvectors aims to address these limitations.

6.3.2 Principal Eigenvector Analysis

Two metrics are presented using spectral analysis to identify the set of design ab-

sorbing paths. The first metric uses the number of dominant eigenvalues to show
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the number of possible absorbing paths and how they may evolve through time. The

second metric uses the set of principle eigenvectors to identify the specific absorbing

paths and how those paths may change and evolve through the non-stationary process.

As discussed in Section 3.4.7.1: Reducible Markov Processes the absorbing paths rep-

resent the various initial condition dependent steady state distributions of the system.

6.3.2.1 Identifying the Number of Unique Absorbing Paths

The number of unique absorbing paths was examined to show how the structure of

decision process evolves through time. As discussed in Gebali (2008), the number of

dominant eigenvalues, λi = 1, is equal to the number of unique absorbing paths of

the decision process. In a sense, the number of unique dominant eigenvalues signify

that the decision process is not a single connected process, but rather a collection of

independent decision processes.

Figures 6.5 and 6.6 show the number of unique absorbing paths for Tier 1 and Tier 3

regulatory strength respectively. Up to year 4 there is only one possible path, meaning

the process will always converge to a single set of states. Beginning at year 5, when

testing becomes available and when the regulation is ratified by the member States,

multiple paths become possible. The increasing number of absorbing paths with time

is representative of the number of ballast water systems that may be installed in the

long term. At year 10 the regulation enters force, thus removing ballast System 1

from compliance. This explains the drop in both figures at year 10. After year 10,

only those technologies that meet the regulation can become a possible absorbing

path. Thus, the number of unique paths for the Tier 3 schedule is only five (Figure

6.6) , while there are nine unique paths for the Tier 1 regulation (Figure 6.5).
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Figure 6.5: The number of initial condition dependent absorbing paths for the 1-4-4-9
schedule and Tier 1 strength.
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Figure 6.6: The number of initial condition dependent absorbing paths for the 1-4-4-9
schedule and Tier 3 strength.

The number of absorbing paths represents more than just technology availability and

compliance. It is essentially a synthesis of technology availability, compliance, their

uncertainty, as well as lifecycle costs. For instance, four different ballast systems are

potentially available at year 4, and yet there is only one absorbing path. This is

because, while those system may be technically feasible, there is no decision path

that will select them in the long run. All ballast systems become available by year 9,

yet it is not until year 12 that the number of absorbing paths becomes steady. Thus,

lifecycle time also affects which systems may be selected in the long run.

6.3.2.2 Analysis of the Set of Absorbing Paths

The eigenvectors associated with the set of dominant eigenvalues was examined as

a leading indicator metric for projecting out all possible absorbing paths. For each

decision epoch, there are a given number of principle eigenvectors equal to the num-
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ber of dominant eigenvalues for that decision epoch. Each eigenvector is analyzed

separately, as each one represents one independent absorbing path. For the following

figures, each column visually shows the values of one particular principle eigenvector.

These values represent the long term behavior of the decision process. For instance,

if eigenvector i for decision epoch t displays System j, that means that System j

represents the only long term design that the decision process will go towards for

that one given set of initial conditions.

Figure 6.7 shows the results for the 1-4-4-9 regulatory schedule with Tier 1 strength.

Years 1, 5, 8, and 20 are presented to highlight the temporal variations of the absorb-

ing paths. For year 1, the only path the design will follow involves installing System 1

in the long run. This trend continues until year 5 when two paths become apparent:

one for System 1 and one for System 3. Even though System 3 becomes commercially

available in year 3 (Figure 6.3), it does not become a viable path until year 5. As the

number of paths increase, the number of ballast systems that become viable options

increases. For year 8, six different paths are possible, representing Systems 1, 2, 3,

5, 9, and 10 being viable options in the long run. For year 20, all ballast systems

become a viable option except ballast System 1, which became unavailable due to

regulatory requirements in year 10.

The set of long term absorbing paths changes when the regulatory strength changes.

The results for a Tier 3 regulatory strength are given in Figure 6.8. Through year

5, the results are similar to that of the Tier 1 policy. However, for year 8, only five

paths are identified, one fewer than for Tier 1. Ballast System 5 is no longer a viable

option for the Tier 3 policy. Even though the Tier 3 regulation does not come into

force until year 10, this analysis projects two years prior that ballast System 5 will

not be viable in the long run. For year 20, the only ballast systems that are viable

127



indexed principle 
eigenvector       

Absorbing paths 
for year 1       

 

 

1

System1 Unavailable
Available

Basic Approval
Tier1 Approval
Tier2 Approval
Tier3 Approval

System2 Unavailable
Available

Basic Approval
Tier1 Approval
Tier2 Approval
Tier3 Approval

System3 Unavailable
Available

Basic Approval
Tier1 Approval
Tier2 Approval
Tier3 Approval

System4 Unavailable
Available

Basic Approval
Tier1 Approval
Tier2 Approval
Tier3 Approval

System5 Unavailable
Available

Basic Approval
Tier1 Approval
Tier2 Approval
Tier3 Approval

System6 Unavailable
Available

Basic Approval
Tier1 Approval
Tier2 Approval
Tier3 Approval

System7 Unavailable
Available

Basic Approval
Tier1 Approval
Tier2 Approval
Tier3 Approval

System8 Unavailable
Available

Basic Approval
Tier1 Approval
Tier2 Approval
Tier3 Approval

System9 Unavailable
Available

Basic Approval
Tier1 Approval
Tier2 Approval
Tier3 Approval

System10 Unavailable
Available

Basic Approval
Tier1 Approval
Tier2 Approval
Tier3 Approval

indexed principle 
eigenvector       

Absorbing paths 
for year 5       

 

 

1 2

System1 Unavailable
Available

Basic Approval
Tier1 Approval
Tier2 Approval
Tier3 Approval

System2 Unavailable
Available

Basic Approval
Tier1 Approval
Tier2 Approval
Tier3 Approval

System3 Unavailable
Available

Basic Approval
Tier1 Approval
Tier2 Approval
Tier3 Approval

System4 Unavailable
Available

Basic Approval
Tier1 Approval
Tier2 Approval
Tier3 Approval

System5 Unavailable
Available

Basic Approval
Tier1 Approval
Tier2 Approval
Tier3 Approval

System6 Unavailable
Available

Basic Approval
Tier1 Approval
Tier2 Approval
Tier3 Approval

System7 Unavailable
Available

Basic Approval
Tier1 Approval
Tier2 Approval
Tier3 Approval

System8 Unavailable
Available

Basic Approval
Tier1 Approval
Tier2 Approval
Tier3 Approval

System9 Unavailable
Available

Basic Approval
Tier1 Approval
Tier2 Approval
Tier3 Approval

System10 Unavailable
Available

Basic Approval
Tier1 Approval
Tier2 Approval
Tier3 Approval

indexed principle 
eigenvector       

Absorbing paths 
for year 8       

 

 

1 2 3 4 5 6

System1 Unavailable
Available

Basic Approval
Tier1 Approval
Tier2 Approval
Tier3 Approval

System2 Unavailable
Available

Basic Approval
Tier1 Approval
Tier2 Approval
Tier3 Approval

System3 Unavailable
Available

Basic Approval
Tier1 Approval
Tier2 Approval
Tier3 Approval

System4 Unavailable
Available

Basic Approval
Tier1 Approval
Tier2 Approval
Tier3 Approval

System5 Unavailable
Available

Basic Approval
Tier1 Approval
Tier2 Approval
Tier3 Approval

System6 Unavailable
Available

Basic Approval
Tier1 Approval
Tier2 Approval
Tier3 Approval

System7 Unavailable
Available

Basic Approval
Tier1 Approval
Tier2 Approval
Tier3 Approval

System8 Unavailable
Available

Basic Approval
Tier1 Approval
Tier2 Approval
Tier3 Approval

System9 Unavailable
Available

Basic Approval
Tier1 Approval
Tier2 Approval
Tier3 Approval

System10 Unavailable
Available

Basic Approval
Tier1 Approval
Tier2 Approval
Tier3 Approval

indexed principle 
eigenvector

Absorbing paths 
for year 20      

 

 

1 2 3 4 5 6 7 8 9

System1 Unavailable
Available

Basic Approval
Tier1 Approval
Tier2 Approval
Tier3 Approval

System2 Unavailable
Available

Basic Approval
Tier1 Approval
Tier2 Approval
Tier3 Approval

System3 Unavailable
Available

Basic Approval
Tier1 Approval
Tier2 Approval
Tier3 Approval

System4 Unavailable
Available

Basic Approval
Tier1 Approval
Tier2 Approval
Tier3 Approval

System5 Unavailable
Available

Basic Approval
Tier1 Approval
Tier2 Approval
Tier3 Approval

System6 Unavailable
Available

Basic Approval
Tier1 Approval
Tier2 Approval
Tier3 Approval

System7 Unavailable
Available

Basic Approval
Tier1 Approval
Tier2 Approval
Tier3 Approval

System8 Unavailable
Available

Basic Approval
Tier1 Approval
Tier2 Approval
Tier3 Approval

System9 Unavailable
Available

Basic Approval
Tier1 Approval
Tier2 Approval
Tier3 Approval

System10 Unavailable
Available

Basic Approval
Tier1 Approval
Tier2 Approval
Tier3 Approval

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

% of
states

Figure 6.7: The set of principle eigenvectors representing the various initial condition
dependent absorbing states: Tier 1 regulatory strength. Notice that the number of
possible unique paths increases through time.

represent those that meet Tier 3 requirements.

A study was performed to show that the different absorbing paths identified using

the principle eigenvectors match the behavior of the decision process with different

initial conditions. To show this, the state vector was changed so that at a given year

there was equal probability of landing in any state. The model was then run to see

how the process evolves through time given this new set of conditions. Year 8 was

chosen for this validation study. Thus, at year 8, the system is run assuming that the

prior year there is equal probability of being in any state. This is different from the

original analysis where the process was started at year 1.
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Figure 6.8: The set of principle eigenvectors representing the various initial condition
dependent absorbing states: Tier 3 regulatory strength. Notice the number of unique
paths for year 20 is less than it is for the Tier 1 policy, due to many ballast systems
not being regulatory compliant.

Figure 6.9 shows the results for Tier 1 regulatory strength. For this case there are

six different absorbing paths identified by the set of principle eigenvectors. When

the initial conditions for year 8 are changed so that there is equal probability of be-

ing in each state those same six paths can be identified using the state vector. The

probability of landing in one absorbing path over another is not equal. For example,

it is more likely that System 9 will be the preferred choice over System 2, 3, 5, or

10. System 1 appears as a long term absorbing path in the eigenvectors even though

System 1 is not viable for the whole lifespan of the vessel. Since these eigenvectors

represent an instantaneous snapshot of how the design may progress, it is unaware

that shortly there after the regulation will change, making System 1 not available.
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Figure 6.9: Optimal states accessed for 1-4-4-9 regulatory schedule and two treatment
strengths: Tier 1 strength.

Figure 6.10 shows how the set of possible absorbing paths change when the regulatory

strength is changed to Tier 3. Only five different absorbing paths are identifiable for

this regulatory strength. Unlike the situation with Tier 1, System 5 is no longer

a long term possibility. System 9, while clearly evident using eigenvector analysis,

is barely visible using the state vector. There is a very small possibility it will be

selected in the long run. Also, similar to System 1, System 9 becomes unavailable

at year 9 when the regulation changes. This study showed that the eigenvectors do

represent the various possible absorbing paths the design may follow, and that these
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Figure 6.10: Optimal states accessed for 1-4-4-9 regulatory schedule and two treat-
ment strengths: Tier 3 strength.

paths are dependent of the initial conditions of the system.

6.3.3 Relationship between Optimal States and Principal Eigenvectors

As discussed in Chapter III Section 3.4.7.2: Using the Principle Eigenvectors to Es-

timate the State Vector, the set of principle eigenvectors can be used to estimate

the non-stationary behavior of the state vector. Figure 6.11 displays the optimal

states accessed using both the state vector and the estimate from the set of principle

eigenvectors. The eigenvectors provide a close approximation of the decision paths.

Even though the state vector was used to help develop this estimation, this spectral
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recomposition of the best decision path highlights the relationship between spectral

methods and the physical decision process.
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Figure 6.11: Decision path as determined by two methods for the 1-4-4-9 regulatory
schedule and Tier 1 compliance.

6.4 Discussion

The results presented in this chapter are significant for ship designers and decision

makers for several reasons. First, the spectral techniques presented gave a unique

perspective into the structure of the decision process. Understanding the interde-

pendencies of the decision making process and how those dependencies may change
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and evolve throughout the lifecycle of the vessel provides ship designers great power

as they aim to understand the impact of their decisions. Both the number of dom-

inant eigenvalues and the structure of the principle eigenvectors clearly display the

evolution of these relationships and dependencies. Second, the spectral methods are

inherently a leading indicator highlighting the impact of decision making. Spectral

analysis has represented the long term absorbing paths the design may follow without

the need for simulation. Finally, this analysis was inherently focused on the Why as

opposed to the What. The focus was less on what the final design is, but instead this

analysis has focused on why that final design was selected, the paths that lead the

decision process to that point, and the underlying structure of the entire process.

6.5 Conclusion

A method for applying eigenvalue spectral analysis to the SC-MDP framework for a

temporal, non-stationary problem has been presented. Both the eigenvalues and the

eigenvectors were used to identify and group independent states and processes within

the SC-MDP framework. The set of principle eigenvectors was used to show vari-

ous independent design absorbing paths that are dependent on the initial conditions

of the design. These methods will provide much needed insight for ship designers

and decision makers by moving beyond understanding the What and instead moving

towards comprehending the Why.
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CHAPTER VII

Conclusion

7.1 Dissertation Conclusion

This dissertation presented a new method for enabling decision insight by applying

Monte Carlo simulations and eigenvalue spectral analysis to the SC-MDP framework.

The problem moved beyond understanding What the design looks like, to one that

focused instead on Why it was selected, the decision process that led to that design,

and understanding the structure of the specific problem has been discussed. Multiple

layers of uncertainty and the inter-dependency of decisions inhibit sound decision

making processes. To handle the uncertainty of the problem, Monte Carlo simulations

were presented as a viable method, especially during situations when the time frames

are long and there are no viable feedback mechanisms. When trying to breakdown

the complexity of decision making to understand the implications of those decisions,

eigenvalue spectral analysis was presented. These two new methods are significant

contributions to ship design and decision making by providing leading indicators for

design decisions. This gives the decision maker insight into not only the results, but

the implications, structure, and generalized response of the system.
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7.2 Contributions

The contributions of this research are highlighted in the order they were discussed in

this dissertation.

1. Applying Monte Carlo simulations to the SC-MDP framework to understand the

effect of temporal non-stationary uncertainty on decision making. This research

presented a new method for handling multiple layers of uncertainty in a system

that has a long time frame and no feedback mechanisms by applying Monte

Carlo simulations to the SC-MDP framework. Metrics were derived that calcu-

lated the percent of time a given action may be optimal given a set of uncertain

parameters. The range of best-case scenario lifecycle costs was developed to

highlight the risks and variation caused by different inputs. Sensitivity studies

showed that Monte Carlo simulations can lead to differing results compared to

the classic SC-MDP framework which uses discrete probabilistic values.

2. Applying eigenvalue spectral analysis to a stationary SC-MDP case study to

examine the future impact of decisions. A new method was developed that

enables the ability to perform eigenvalue spectral analysis on Markov decision

processes. This method was designed to examine and quantify the impact of

decision making. Three new metrics were derived:

(a) A damping ratio comparing the dominant eigenvalue and sub-dominant

eigenvalue was defined for the first time for Markov decision processes.

The damping ratio was used to identify and quantify the transition regions

in the decisions. The damping ratio was also used to identify the specific

system attributes behind the large transition regions in the decisions.

(b) The eigenvector associated with the dominant eigenvalue was used for the

first time to project the influence of a set of decisions on the future steady
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state behavior of the system. The ability to identify specific design at-

tributes driving system behavior and decision making through time was

possible using the damping ratio and the principle eigenvector.

(c) The angle between two principle eigenvectors was used as a new metric for

determining the significance of the change in decisions.

3. Applying eigenvalue spectral analysis to a non-stationary temporal SC-MDP

case study to examine the structure of the decision making process. This re-

search introduced the concept of applying eigenvalue spectral analysis to a non-

stationary Markov decision process. To study this, three new methods were

developed:

(a) The number of repeated dominant eigenvalues was used as a metric to

determine whether the process was dependent on the initial conditions.

This number was also used to identify the number of independent absorbing

paths the design may progress down depending on its initial conditions.

(b) The set of eigenvectors associated with the dominant eigenvalues was used

to identify the specific independent design absorbing paths, and how those

absorbing paths may change and evolve through time.

(c) A method was presented that showed how the set of principle eigenvectors

can be used to estimate the behavior of the specific design process (i.e. the

state vector) through time.

7.3 Future Work

Several areas have been identified and potential areas of future work. The topics

have been divided into two categories, first related to spectral analysis specifically,

and second involving the SC-MDP framework in general.
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7.3.1 Spectral Analysis Future Work

1. Analyze the impact of specific initial conditions. Chapter VI: Lifecycle Planning

for Ballast Water Treatment Compliance analyzed various initial condition de-

pendent absorbing paths. However, it only showed that the absorbing paths are

initial condition dependent, but did not describe what those initial conditions

may be. Developing a mathematical way to clearly identify which sets of initial

conditions may lead to specific absorbing states is one promising area of future

work.

2. Examine the full range of eigenvalues. This dissertation focused primarily on

two eigenvalues, the dominant and the sub-dominant ones; however, for each

Markov process there are as many eigenvalues as there are states. Understand-

ing the relationship of these minor eigenvalues and their relationship to the

behavior of the system could prove beneficial in understanding weak or non-

obvious relationships and interdependencies.

3. Understand the meaning of complex eigenvalues. For biological systems, com-

plex eigenvalues are used to study oscillatory patterns in system behavior (Cressie

and Wikle, 2011). What analogies can be applied to ship design and decision

making? Are there underlying dynamics of the system that oscillate in some

fashion that may be affecting decision making behavior? These type of inter-

esting questions are an area of future work.

4. Examine stability of eigenvalues. The eigenvalues are used in physical systems

to understand the stability of the system. Is it possible to identify instabilities

in the system, or parts of the systems using stability methods derived from

eigenvalues and eigenvectors? Could this lead to a better understanding of what

areas of the design and decision space may be more sensitive to instabilities than

others? Future work could examine these types of questions.
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5. Examine singular values and singular vectors. Singular values and singular

vectors provide a different spectral transformation compared to eigenvalues and

eigenvectors. Singular values may provide unique insight not possible through

eigenvalue analysis.

7.3.2 Generalized SC-MDP Future Work

1. Explore multi-agent MDPs or Markov games. One of the major assumptions of

this dissertation is that there is a single agent making the decisions. In reality,

multiple decision makers interact both in cooperation or adversarially. For

instance, multiple design teams make independent decisions that affect the given

vessel, while the actions of a economic competitor may affect the decisions of

the company in regards to technology selection. Applying multi-agent, or more

simple Markov games to these situations could prove to be very beneficial.

2. Explore reinforcement learning methods or partially observable MDPs. As is

discussed briefly in Chapter II, reinforcement learning or partial observability

methods may prove to be beneficial in exploring problems with high uncertainty.

Problems would include those with short time frames and feedback mechanisms,

such as system maintenance and replacement scheduling.

3. Explore non-economic reward functions. The ECA case study and the ballast

water case study both used economic measures for the reward function, while

the egress analysis used a generic utility function. Is it possible to tie the reward

function to an engineering metric? For instance, could one use roll accelerations

from a seakeeping analysis to understand various roll mitigation devices in the

face of uncertain wave and sea states? This would tie individual engineering

disciplines to holistic design. Another option would be to use measures of

effectiveness (MOEs) as defined by the US Navy as the reward parameter.
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APPENDIX A

Validation of University of Michigan’s SC-MDP

code with a commercial client’s internal analysis

This Appendix outlines the procedure and results from a validation study of the

University of Michigan’s SC-MDP code with the results from a commercial client’s

internal methods performed in the summer of 2014. This validation study was done

on the Emission Control Area case study. The objective was to validate the lifecycle

costs calculated by the SC-MDP framework with that of a more traditional lifecycle

cost analysis. The accumulated savings by switching to LNG as calculated by the

client and by the University of Michigan are compared.

Validation Assumptions

In order to validate the results between the two economic models, the assumptions for

both models had to be consistent. Some of the assumptions differed initially between

the two models and they were adjusted to make sure the results were focused on the

same parameters. Those assumptions were:
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1. ECA Implementation. The commercial client had initially assumed a gradual

annual increase of ECA from 5% to 31% beginning from year 1 onwards. This

dissertation instead proposed that the ECA coverage increases from 5% to 31%

as a step function, as opposed to gradually. This follows the predictions as laid

out by MARPOL Annex VI (IMO, 2008). For example, ECA would be 5% at

year 5 and would jump to 31% immediately at year 6. For the validation study

the client tested two cases, one where ECA switched at year 5 and one where

it switched at year 10. The SC-MDP code had ECA switch at year 7 to split

the difference between the two.

2. Trips per Year. The commercial client had assumed the vessel will make three

round-trips per year, while the University of Michigan SC-MDP code based the

number of round-trips as a function of number of annual sailing days and the

ship speed. For validation purposes, for a ship speed of 19 knots, the number

of sea days was set to 144 to achieve 3 round-trips per year. The analyses

performed in the body of this dissertation, however, used 290 annual sea days,

which essentially doubles the number of trips per year.

3. Lost Revenue. The commercial client had assumed a lost revenue of $1,500 per

TEU per year, while this dissertation used a lost revenue of $1,500 per TEU

per leg. Thus, the client assumes a lost revenue of $732,000 per year; however,

by calculating lost revenue by leg, the annual lost revenue jumps to $4,392,000

per year. This additional lost revenue has a significant impact on the expected

rewards by switching to LNG. In fact, this lost revenue completely outweighs

all benefit to switching to LNG, and in all cases switching to LNG is more

expensive than sticking with single fuel MDO/HFO. This lost revenue is all

under the assumption that the ship is carrying a full load. If the lost revenue

assumption is relaxed, the SC-MDP code does advocate for switching to LNG
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immediately, similar to the original report developed by the client.

4. Engine Switch Date. The major difference between the client’s analysis and

the SC-MDP code is that the client’s analysis assumed two scenarios: one, a

baseline where the vessel does not switch engines, and two, one where the vessel

switches engines as soon as possible. The SC-MDP code, on the other hand,

selects the best time for the vessel to switch engines. In order to be consistent,

the SC-MDP code had was adjusted to force it to a) not switch, and b) switch

as soon as possible. The SC-MDP code was able to handle this restraint, even

though the framework is not generally intended to be used in this fashion.

5. Vessel Draft. The client’s analysis used a single draft for their analysis, either

of 13m or 11.5m. The SC-MDP code, instead alternated between the two drafts

between legs of the voyage to account for full or partial loading conditions. For

validation purposes, the SC-MDP code was set to a draft of 13m always.

Validation Results

Two independent sets of results are presented. First, an initial validation study was

performed with the basic University of Michigan SC-MDP code. This was done as

soon as the model was up and running to make sure the model was delivering good

answers from the outset. The other study happened several months later after several

changes and additions to the SC-MDP code had occurred. The vessel parameters used

for the SC-MDP code are given in Table A.1 and the accumulated lifecycle costs are

given in Figure A.1. As seen for this study, the MDP code agrees very well with the

internal methods currently used by the client, for both the original and the update

SC-MDP code.
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Table A.1: Model parameters used to August validation study.

Ship Inputs
Number of service years 11 years
Year of first dry dock 0
Lowest speed tested 19 knots
Highest speed tested 19 knots
LNG fuel mixture percentage 0.9
Number of annual sea days 144 days

Economic Parameters
Engine retrofit cost US $0
Number of TEUs removed 488
TEU revenue US $1,500
Annual discount rate 7%

Supply Chain Risk Inputs
Probability of obtaining LNG in Asia 100%
Probability of obtaining LNG in Europe 100%

Emission Control Area Parameters
First year ECA may switch 7
Probability that ECA will switch at given year 100%
First year ECA guaranteed to switch 7

Figure A.1: Results from validation between the SC-MDP framework and a more
traditional lifecycle analysis performed by a commercial client.
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Preliminary Work on Chapter IV presented at the

2015 International Marine Design Conference
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ABSTRACT 

 
A Markov decision process (MDP) framework is presented for analyzing temporal design and decision 
pathways involving the impact of evolving Emission Control Areas (ECAs) on the design and operation 
considerations of a notional 13,000 TEU containership. The major decision is between converting to a 
dual fuel liquefied natural gas (LNG) engine or continue alternating between marine diesel oil (MDO) 
in the ECA zones and heavy fuel oil (HFO) otherwise. The current low cost of LNG makes converting an 
attractive option; however, uncertainties with fuel prices, fuel supply chain risks, the regulatory 
framework, conversion costs, and lost revenue, due to reduced TEU capacity, make the decision less 
obvious. The effect of lost revenue due to LNG fuel tanks, variations in economic discount rates, and fuel 
supply chain risks are examined in detail over a range of speeds.                                                  
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1. INTRODUCTION 
 
The list of challenges facing the shipping industry in the 21st century is long and continually evolving (Branch 2007). One 
of these challenges is designing and adapting to evolving international emissions regulations. These regulations have had, 
and will continue to have, drastic effects on ship design (Bengtsson et al. 2011; Goh 2014; Rynbach 2014). The 
International Maritime Organization (IMO) currently regulates the emissions of nitrogen oxides (NOx) and sulphur oxides 
(SOx) via MARPOL Annex VI regulations as part of their overall strategy of limiting maritime pollution (IMO 2008). Even 
though it can be argued that maritime shipping is one of the most environmentally friendly modes of cargo transportation 
due to its low CO2 emissions per ton-kilometer, it has been estimated that before 2020 international shipping will overtake 
all land-based transport as the largest emitter of SOx and NOx in Europe (Ma 2010). This has caused the IMO to designate 
certain environmentally sensitive areas as Emission Control Areas (ECAs) where more stringent emissions standards apply. 
The current ECAs lie in either densely populated or environmentally sensitive areas, while proposed areas are still under 
consideration (Figure 1).  
 

 
Figure 1: IMO Regulated Emission Control Areas (Blikom, 2011) 

                                                 
1 Department of Naval Architecture and Marine Engineering, University of Michigan, Ann Arbor, MI, USA. 
2 Navatek Ltd. Rhode Island, USA. 
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The NOx and SOx emission limits are set to tighten in the coming years for both the designated ECA zones as well as global 
non-ECA zones. Despite the illusion of clarity, these regulations are not precisely defined (Princaud et al. 2010), and the 
uncertainty that vessel owners, operators, and designers face remains large. The uncertainty associated with the 
geographical extent and implementation date of these regulations will significantly affect how vessels operate and do 
business in the coming years. For example, the date for implementing the global 0.5% SOx emission limit is set for 2020, 
but may be extended to 2025 if the IMO concludes that there is not enough available fuel. This will be decided in 2018, 
which if the IMO decides to stick to the 2020 deadline, would only give vessel owners two years to comply (IMO 2008). 
Uncertainty also exists in flag states, coastal states, or individual ports who may decide to set their own regulatory emission 
limits (Balland et al. 2013; Stopford 2009).  
 
These regulations can, in many cases, hinder the profitability of the shipping companies (Stopford 2009). In some cases, 
vessel owners have applied for temporary extensions, and when not granted, have been forced to change their compliance 
strategy, costing millions of dollars (Schuler 2014a). Some have feared that these regulations are so costly that some 
companies may intentionally skirt the rules, leaving those in compliance at a serious competitive disadvantage (George 
2014). These factors add to the risk that owners and operators have to manage to remain profitable. Other forms of risk that 
need to be accounted for include: freight rate risk, operating cost-risk, or interest rate risk (Alizadeh and Nomikos 2009, 
Psaraftis et al. 2012). This risk may be compounded by imprecise or incomplete information regarding the fuel or even the 
vessel itself (Buckley 2008; Yang et al. 2009). Thus, identifying the optimal decision for compliance in the face of these 
risks and uncertainties is not only challenging but highly important to remain economically competitive.  
 
Currently there are four compliance pathways available to vessels to satisfy upcoming NOx and SOx regulations: (1) burning 
distillate fuel, such as marine gas oil (MGO) or marine diesel oil (MDO) (Bengtsson et al. 2011), (2) use liquefied natural 
gas (LNG) as a bunkering fuel, (3) install SOx scrubbers or selective catalytic converters (SCRs) for NOx (Santala 2012; 
Andersson and Winnes 2011), or (4) reduce vessel transit speed (Ship and Bunker 2013). While all four are potential 
avenues for compliance, they each face technological and economic challenges. Fathom Shipping (2014) summarizes many 
of the issues with compliance, including: the rising cost of bunker fuel and transportation, the practicality and costs of 
retrofitting vessels, the mechanical problems arising from fuel switching, fuel availability issues, the probability of losing 
vessel power, competitive disadvantage with making the wrong compliance choice, the changes to bunker delivery notes, 
and the economic issues with supplying abundant and adequate lubricant. Thus, deciding on the best solution for a given 
vessel is a challenging process due to the vast number of possible compliance strategies (Balland et al. 2013).  
 
Even though roughly 95% of the world’s shipping fleet has traditionally run on diesel fuel (Nikopoulou et al. 2013), many 
have looked to switching to LNG as a logical choice from both an environmental and economic perspective (Banawan et 
al. 2010). However, switching to LNG as a primary fuel can have drastic implications on the ship as a whole. The required 
volume for LNG fuel tanks can be as much as 3-4 times that of standard bunker oil, plus the ship still needs the ability to 
carry the required amount of bunker oil in cases where LNG may not be available (Rynbach 2014). This is on top of the 
auxiliary equipment that is necessary, such as gas supply piping, gas detection and exhaust ventilation systems, and other 
components (Banawan et al. 2010). Switching to LNG can drastically affect the number of TEUs a given containership 
may be able to carry, which causes lost potential revenue to the ship owner or operator. This lost revenue is only potential, 
as most vessels do not necessarily leave port at full capacity due to market conditions (Almeida 2014) or port draught 
restrictions, as may be the case for the very large cargo ships (Schuler 2014b). These technical reasons have caused 
estimations of shipbuilding costs to be 20%-25% higher than ships with conventional engines (Nikopoulou et al. 2013).  
 
With over half of vessel operating costs going towards fuel (Lin and Lin 2006), any variations in fuel prices will have a 
drastic effect on the vessel’s bottom line. There are also supply chain issues, as the regulatory environment and 
infrastructure for storage and bunkering of LNG fuel is still under development (Bengtsson et al. 2011, Nikopoulou et al. 
2013).  
 
The Markov decision process (MDP) framework detailed below is designed specifically to quantifiably handle these 
uncertainties in determining optimal design and decision pathways. A case study is presented involving making a design 
decision for a containership between converting to a dual fuel liquefied natural gas (LNG) engine or continue alternating 
between marine diesel oil (MDO) in the ECA zones and heavy fuel oil (HFO) otherwise. 
 
2. METHODS 
 
2.1 Model Assumptions 
The vessel under consideration is a notional 13,000 TEU containership routed between Rotterdam and China, a round trip 
distance of 22,000 nm. The principal characteristics of the ship are given in Table 1. The initial ECA coverage is 1,100 nm, 
or 5% of the total route. This coverage eventually increases to 6,800 nm, or 31%, in a single year. The draught of the vessel 
is 13 m when carrying a full load from China to Rotterdam, and is 11.5 m when carrying a partial load (or back-hauling 
empty containers) from Rotterdam to China. An assumed 60% total propulsive efficiency is used to calculate ship brake 
power. This efficiency is an aggregation of hull efficiency, rotative efficiency, shaft and bearing efficiency, gearing 
efficiency, open water efficiency, and a service margin. 
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Table 1: Vessel Principal Characteristics 

Length between perpendiculars (Lbp) Greater than 300 m 
Beam Greater than 44 m 
Draught 13.0 m (full load); 11.5 m (partial load) 
Block coefficient (Cb) 0.63
Displacement (∆) 113,000 MT (full load); 100,000 MT (partial load) 
Required power at 19 knots 22,000 kW 
Total propulsive efficiency 60% 
Ship brake power 37,000 kW 

 
The fuel consumption curves for speeds of 12 to 19 knots and the two draughts were developed (Figure 2) using an in-
house University of Michigan powering and resistance prediction program that uses the Holtrop and Mennen method.  
 
 

 
Figure 2: Projected Fuel Prices and Specific Fuel Consumption Curves 

To model the lost revenue stemming from installing LNG tanks, it is assumed that a set number of TEUs are removed to 
fit the LNG fuel tanks. Initially, it is assumed that 244 TEUs need to be removed. Different scenarios are run varying this 
parameter and the results of which are discussed below in Section 4.2.2 Test Scenario 2: Effects of Ignoring Lost Revenue. 
 
2.2 Model Variables 
The model variables cover a range of ship parameters, economics parameters, supply chain risks, and Emission Control 
Areas scenarios. The specific list of variables is given below. 
 
2.2.1 Ship Parameters 

 Number of service years 
 The first year the ship can go into dry dock 
 The fuel mixture percentage (LNG to HFO) 
 Number of annual sea days 

 
2.2.2 Economic Parameters 

 The cost to retrofit to a dual fuel engine 
 Number of TEUs removed to fit LNG fuel tanks 
 TEU freight rate 
 Annual discount rate 

 
2.2.3 Supply Chain Risk Parameters 

 Probability of obtaining LNG in both China and Rotterdam 
 

2.2.4 Emission Control Areas Parameters 
 First year ECA coverage might increase from 5% to 31% of total route.  
 The probability that the designated ECA coverage will increase any given year after the first year it may increase.  
 Year by which ECA is guaranteed to have increased: This is the year in which it is guaranteed that the ECA 

coverage has increased from 5% to 31% of the prescribed route. 
These variables model the uncertainty associated with the implementation of new Emission Control Areas. For example, 
to model a situation where there is a 50% belief that ECA may increase in five years, but is guaranteed to have switched 
after ten years, the first year will be set to 5, the probability will be set to 50%, and the guaranteed year will be set to 10.   
 
2.3 Markov Decision Process 
Markov decision processes (MDPs) are designed to model and solve dynamic stochastic sequential decision-making 
problems. They are state-based representations of systems that handle uncertainty, can differentiate actions, and can handle 
non-stationary developments. The classic MDP is defined as a 4-tuple ‹S, A, T, R›, where S is a set of finite states where 
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the agent can exist, A is the set of actions which the agent can take, T is the probability the agent will transition from one 
state to another after taking a given action, and R is the reward the agent receives by executing a given action, a, and 
transitioning to a new state, s’. The objective is to identify an optimal policy that maximizes the cumulative, long term 
utility. This policy identifies the best action the agent should take during each decision epoch by considering both the 
outcomes of current decisions and future opportunities (Puterman 2005). As such, MDPs are memoryless, that is, the 
optimal decisions do not rely on the action history of how the agent arrived at a given state (Puterman 2005). The optimal 
policy can be obtained via equation 1, known as the Bellman equation (Russell and Norvig 2003). 
 

 ܷሺݏሻ ൌ ܴሺݏሻ ൅ maxߛ
௔

∑ ܶሺݏ, ܽ, ᇱሻ௦ᇲݏᇱሻܷሺݏ  [1] 

  
Where U is the expected utility, ߛ is the discount factor, and ݏᇱ is the state in the next epoch in time. The optimal policy,ߨ, 
is found by taking the argument of the max operator above, as defined in equation 2 (Russell and Norvig 2003). 
 

ሻݏሺߨ ൌ max݃ݎܽ
௔

෍ܶሺݏ, ܽ, ᇱሻݏᇱሻܷሺݏ

௦ᇲ

 [2] 

 
When the transition probabilities, rewards, or the optimal policy do not change with time, the process is known as 
stationary, otherwise the process is non-stationary (Niese 2012; Puterman 2005). From a ship design perspective, non-
stationary processes are common. For example, non-stationary transitions arise from varying regulations, policies, supply 
chain risks, or performance drift, while non-stationary rewards come from economic variability in fuel prices or evolving 
budgetary requirements. Non-stationary transitions or rewards always lead to non-stationary optimal policies. 
 
The common output of solving a non-stationary MDP is a decision matrix, which provides the optimal actions for each 
state for each decision epoch. The decision matrix can be thought of as a roadmap of optimal actions for the decision maker. 
An example of a non-stationary decision matrix from Niese (2012) is given in Table 2. 

Table 2: Sample non-stationary decision matrix 

 State 1 State 2 … State n 
Epoch 1 Action A Action A … Action A 
Epoch 2 Action B Action C … Action C 

… … … … … 
Epoch T Action D Action B … Action A

 
The advantages of using MDPs over conventional methods are numerous, including: quantitative inclusion of uncertainties 
associated with policy implementation and supply chain risks, a temporal optimal decision matrix which shows the optimal 
decision at each time epoch, the optimal state at each time epoch, and the net present value of following the optimal policy. 
Previous research using MDPs applied to ship design include analysis of ballast water treatment methods and designing 
for the Energy Efficiency Design Index (Niese 2012; Niese and Singer 2013, 2014). 
 
2.4 LNG Case Study Framework 
This section details how the states, actions, transition probabilities, and rewards are defined in the LNG conversion model. 
  
2.4.1 States 
Each epoch level consists of three different state variables:  

 The percentage of the route that is designated ECA. There are two possibilities for ECA coverage: one where 
1,100 nm (5%) of the route is designated ECA, and one where 6,800 nm (31%) is designated ECA. The specific 
year that ECA will switch from 5% to 31% varies depending on the specifics of the user defined inputs. 

 Type of engine. There are two types of possible engines: single fuel and dual fuel. The model will only allow the 
vessel to switch to a dual fuel engine after it has gone into dry dock. 

 Type of fuel. There are two fuel options: 1) a single fuel option that alternates between burning MDO in the 
designated ECA zones and HFO elsewhere, and 2) a dual fuel option that burns a mixture of LNG and HFO. When 
the single fuel engine is installed, MDO and HFO are the only viable fuels; however, a dual fuel engine may run 
on MDO, HFO, or a dual fuel mixture of LNG and HFO. When LNG fuel is unavailable, the dual fuel engine runs 
on MDO and HFO (El-Gohary 2012). 

 
2.4.2 Starting State 
The vessel initially has a single fuel engine installed, is running on MDO and HFO, and designated ECA zones cover 5% 
of the prescribed route.  
 
2.4.3 Actions 
After each leg of the voyage, a decision is made. This simulates the vessel arriving in port and having to make a decision 
on the bunkering fuel, conditionally dependent on its type of engine. There are four possible actions: 
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1. Do not switch engines, and try to purchase LNG fuel 
2. Do not switch engines, and purchase MDO fuel 
3. Switch to a dual fuel engine, and try to purchase LNG fuel 
4. Switch to a dual fuel engine, and purchase MDO fuel 

The action to switch engines is only available after the ship has gone into dry dock. The time spent in dry dock is accounted 
for in the number of annual sea days. Thus, while it may appear that engine switching can occur on the average stop in 
port, this is not the case, as time is lost due to dry docking. The action “Switch to a dual fuel engine, and purchase MDO 
fuel” is included in case there is a situation where the optimal action is to switch engines now to plan for low LNG fuel 
prices in the future. The chosen action is based on the accumulated highest net present value reward (i.e. lowest cost). 
 
2.4.4 Transition Probabilities 
The transition probabilities for each state are split between action independent states and action dependent states. The size 
of the designated ECA zones is an action independent state, as the probability of increasing to a state with larger ECA 
coverage does not depend on the ship owner’s previous actions. However, the type of engine installed and the type of fuel 
constitute action dependent states, as the probability of entering in to one of those states depends on the previous action 
taken. The probability of transitioning between the various states is defined as follows:  

 The percentage of the route that is designated ECA. The probability of transitioning from an ECA coverage of 
5% to 31% varies depending on user defined variables, described above in section 2.2.4 Emission Control Areas. 

 Engine type. The switch from a single fuel to a dual fuel engine is deterministic depending on the optimal action. 
 Type of fuel. The type of fuel is selected based on the optimal action and associated supply chain risk. When LNG 

is unavailable, the vessel may try to purchase LNG, but will be forced to purchase MDO and HFO instead.   
 
2.4.5 Rewards  
The reward at each state is the accumulated net present cost. This cost is calculated at each decision epoch (i.e. each leg of 
the voyage) according to the following reward function given in equation 3. 
 

 min	ሺ݂݈݁ݑ	ݐݏ݋ܿ ൅ ݐݏ݋ܿ	ݕݐ݅݊ݑݐݎ݋݌݌݋ ൅ ݐ݂݅݋ݎݐ݁ݎ  (ݐݏ݋ܿ
 

[3] 

 Fuel cost: The fuel cost function is given in equation 4, where the given percentage takes into account either the 
designated ECA coverage percentage or the dual fuel mixture. 
 

ݐݏ݋ܿ	݈݁ݑ݂  ൌ ݊݋݅ݐ݌݉ݑݏ݊݋ܿ	݈݁ݑ݂	݂ܿ݅݅ܿ݁݌ݏ ∗ ݎܾ݁݉ݑ݊ ݂݋ ݏݕܽ݀ ∗ ݈݁ݑ݂ ݁ܿ݅ݎ݌ ∗  [4] ݁݃ܽݐ݊݁ܿݎ݁݌	݊݁ݒ݅݃
 

 Opportunity cost: This is the lost revenue due to the installation of LNG fuel tanks that reduces TEU capacity.  
 Retrofit cost: This is the cost of retrofitting to a dual fuel engine.  

 
3. RESULTS 
 
Four different scenarios were tested. The first was a baseline case designed to model reasonable assumptions for the 
variables above. The other three scenarios investigate the impacts of lost revenue, discount rates, and supply chain risk on 
the decision space through time over a range of speeds.  
 
3.1 Test Scenario 1: Baseline 
The first scenario was developed to create a baseline (Table 3). $10 million is used as an estimate for the LNG system 
retrofit cost, which amounts to US $270/kW. This value agrees with estimates made by Banawan et al. (2010) of US $220-
340/kW for retrofitting a diesel engine to LNG. 

Table 3: Model variables for baseline scenario 

Number of service years 20 years 
Year of first dry dock 3 
Fuel mixture percentage (LNG to HFO) 90% 
Number of annual sea days 290 
LNG system retrofit cost $10 million 
Number of TEUs removed for LNG tanks 244 
TEU freight rate 1500 
Annual discount rate 7% 
Probability of obtaining LNG 100% 
First year ECA coverage may increase 5 
Probability that ECA will increase at given year 50% 
First year ECA is guaranteed to have increased 10 
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Two metrics unique to this method are used to display the optimal decision pathway: the optimal action entry plot and the 
optimal states accessed plot. The optimal action entry plot displays the optimal action at each decision epoch, given the 
prescribed starting state. Shading in the figure represents the percentage of time the given action is optimal. Solid white 
means the action is never optimal, while solid black means the action is optimal 100% of the time. The optimal states 
accessed plot pairs well with the optimal action entry plot by displaying the optimal states that the vessel will be in after 
performing the optimal actions detailed above. The optimal states accessed plot marks which states are accessible through 
time given that the optimal policies are followed. Shading is used in the same way as the optimal action entry plot to denote 
the probability that a given state is accessed at a given epoch. 
 
Two additional economic metrics are developed and presented, including: the expected cost plot and the expected savings 
plot. The expected cost plot illustrates the cumulative, net present value cost curves for two unique decision pathways: 1) 
assuming the optimal decision pathway as calculated by the MDP is followed, and 2) the base case where the vessel does 
not switch engines and continues to burn MDO and HFO throughout its lifecycle. The expected savings from following 
the optimal policy plot displays the difference between the base case pathways and optimal decision pathway. 
 
As seen in Figures 3, 4 and 6, a decision transition area is identified around a speed of 18 knots. When slow-steaming at 
speeds of 17 knots or less, the optimal decision pathway is to keep the single fuel engine and always burn MDO. For these 
speeds the expected costs and savings are not shown, as the costs for following the optimal policy is the same as the status 
quo. Thus, there are no savings for following the optimal policy.  
 

 
Figure 3: Optimal action entry and optimal states accessed plot for baseline scenario at 17 knots 

For a speed of 18 knots, the optimal decision is to switch to a dual fuel engine as soon as the designated ECA coverage 
increases from 5% to 31% over the sample route. The shading in Figure 4 represents the uncertainty of the exact year that 
ECA will increase. According to the plot, the optimal action up to year 5 is to keep the current engine, and continue burning 
MDO. At the beginning of year 5 there is a chance that the optimal action may be to switch engines and try to purchase 
LNG. This is due to ECA coverage increasing from 5% to 31%. However, if ECA does not switch in that year, there is a 
probability that the optimal action is to keep the same engine, and continue burning MDO. By year 9, the probability that 
the vessel has switched engines between years 5 and 8 is nearly certain, and the optimal action is to keep the dual fuel 
engine, and try burning LNG. When the optimal action is to “keep engine”, the optimal states accessed plot below displays 
whether that is single fuel or dual fuel. 

 
Figure 4: Optimal action entry and optimal states accessed plot for baseline scenario at 18 knots 
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The optimal states accessed plot (Figure 4) shows that the vessel should burn MDO on a single fuel engine up to year 5. 
Between years 5 and 8 the optimal state may be either single fuel or dual fuel, depending on when ECA actually increases 
from 5% to 31%. After year 9, the optimal state is the dual fuel engine burning LNG nearly 100% of the time. 
 
As shown in Figure 5, by following this optimal pathway, the accumulated savings is just under US $2 million, with a 
payback of upwards of ten years. Since the optimal decision is to switch engines when the regulatory policy changes, and 
since there is uncertainty as to when the policy changes, there is also associated uncertainty as to when to switch engines. 
This is shown by the jumps in expected cost and expected optimal policy savings curves at years five through ten, which 
represent the retrofit costs of switching to a dual fuel engine. By year 15, the cost of switching engines has been recouped 
by the cheaper LNG fuel, and by year 20 there are significant savings. In the expected optimal policy savings plot, there 
are three distinct areas: 1) prior to switching engines (year 5 in this case) where there are no savings, 2) when the vessel 
has not recouped the cost of the LNG system retrofit and the savings are negative (between year 5 and 15), and 3) when 
the cost of the retrofit has been fully recouped by the low cost LNG fuel and savings are positive (after year 15). 

 

 
Figure 5: Expected cost and optimal policy savings for the baseline case at 18 knots 

For a speed of 19 knots the optimal decision pathway is to switch to a dual fuel engine at the first dry dock opportunity 
(year 3). By following this optimal policy, an accumulated savings of over US $7 million is expected, with a payback of 
less than 11 years. Cases were not run for speeds greater than 19 knots due to lack of specific fuel consumption data, but it 
is expected that the decision to switch to a dual fuel engine at the first dry dock opportunity will continue to be optimal.  
 

 
Figure 6: Optimal action entry and optimal states accessed plot for baseline scenario at 19 knots 

 

 
Figure 7: Expected cost and optimal policy savings for the baseline scenario at 19 knots 
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Table 4 shows this transition in the optimal policy around a speed of 18 knots. Analyzing the optimal decision pathway 
from a temporal perspective across varying speeds gives the ship owner or operator great control as they can have some 
control over their payback period based on retrofit timing and vessel speeds. Greater savings are realized at higher speeds; 
however, as are higher costs. Broader market conditions may dictate whether the vessel can afford those higher costs.  

Table 4: Results summary for baseline scenario 

Speed 
(kts) 

Accumulated 
Cost (US$MM) 

Expected Savings 
(US$MM) 

Expected 
Payback Year 

Optimal Policy 

12 $ 56 $ 0 N/A Never switch engines
13 $ 65 $ 0 N/A Never switch engine 
14 $ 83 $ 0 N/A Never switch engines 
15 $ 94 $ 0 N/A Never switch engines 
16 $ 116 $ 0 N/A Never switch engines 
17 $ 143 $ 0 N/A Never switch engines 
18 $ 157 $ 2 16 Invest in dual fuel engine as soon as policy changes
19 $ 185 $ 7 11 Invest in dual fuel engine as soon as possible 

 
3.2 Test Scenario 2: Effects of Ignoring Lost Revenue 
This test scenario examines the importance of lost potential revenue due to the presence of the LNG fuel tanks has on the 
decision space. A reasonable lost revenue model is key to accurately determining the transition areas in the decision 
pathways. Even though ships are rarely at full capacity due to market conditions or port draught restrictions (Almeida 2014; 
Schuler 2014b), adequate lost revenue assumptions are key. The assumption that ship is losing TEU volume may be too 
strict for most markets, and may only be applicable in times of very profitable markets. 
 
This case assumes no containers are removed to fit the LNG tanks, and thus there is no lost revenue associated with 
switching to LNG. This models a potential situation when the market demand for transporting containers does not meet the 
available supply. This assumption drastically changes the optimal decision (Table 5). In this scenario, the optimal decision 
is to always switch to a dual fuel engine and try to burn LNG at the first dry dock opportunity, no matter the vessel speed. 

Table 5: Results summary when the effects of lost revenue are ignored 

Speed 
(kts) 

Accumulated 
Cost (US$MM) 

Expected Savings 
(US$MM) 

Expected 
Payback Year 

Optimal Policy 

12 $ 49 $ 7 11 Invest in dual fuel engine as soon as possible 
13 $ 55 $ 9 10 Invest in dual fuel engine as soon as possible 
14 $ 69 $ 14 8 Invest in dual fuel engine as soon as possible 
15 $ 77 $ 17 7 Invest in dual fuel engine as soon as possible 
16 $ 94 $ 23 7 Invest in dual fuel engine as soon as possible 
17 $ 113 $ 30 6 Invest in dual fuel engine as soon as possible 
18 $ 125 $ 34 6 Invest in dual fuel engine as soon as possible 
19 $ 149 $ 43 5 Invest in dual fuel engine as soon as possible 

 
3.3 Test Scenario 3: Effects of Lower Economic Discount Rates 
This test scenario explores the dependence of the financial discount rate on the optimal decision. The annual discount rate 
in this study was dropped from the initial baseline case of 7% to 3.5%. The relationship between the annual discount rate, 
d, and the discount factor,	ߛ, is shown in equation 5, while the relation between the discount factor and the interest rate, i, 
is given in equation 6 (Puterman 2005). 
 

ߛ  ൌ 1 െ ݀ [5] 
  

 ݅ ൌ 	
ଵ

ఊ
െ 1 [6] 

 
Referring to Figures 8 and 9, the discount rate plays a pivotal role in not only the speeds at which it is optimal to switch, 
but also the optimal policy when dealing with regulatory uncertainty. Compared to higher discount rates, the speed at which 
it is optimal to switch engines is lower. Here, the break point is roughly 17 knots. For speeds of 16 knots or lower, the 
optimal decision is to keep the single fuel engine and burn MDO. However, for speeds of 18 or higher, the optimal policy 
is to switch engines at the first dry dock opportunity.  
 
For 17 knots, the optimal policy is to switch to a dual fuel engine and try to purchase LNG only if the designated ECA 
coverage increases from 5% to 31% at year 5. If ECA coverage increases at year 6, the optimal policy is to keep the single 
fuel engine and burn MDO. The lower discount rate increases the payback time necessary for the LNG system retrofit. The 
accumulated savings is roughly US $100,000 with a payback of nearly 20 years, or the entire lifespan of the ship. While 
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this pathway is optimal, it is not expected that the vessel owner will make this switch given the low savings and long 
payback time. Not shown is the case where the discount rate is 3.5% and when ECA coverage increases at year 6. In this 
instance, the optimal action is to keep the single fuel engine throughout the lifecycle of the vessel. 
 

 
Figure 8: Optimal action entry and optimal states accessed plot for lower economic discount rates at 17 knots 

 

 
Figure 9: Expected cost and optimal policy savings for lower economic discount rates at 17 knots 

The results for all speeds are summarized in Table 6. The optimal policy bifurcation at a speed of 17 knots is apparent.   

Table 6: Results summary with a lower economic discount rate 

Speed 
(kts) 

Accumulated 
Cost (US$MM) 

Expected Savings 
(US$MM) 

Expected 
Payback Year 

Optimal Policy 

12 $ 74 $ 0 N/A Never switch engines 
13 $ 85 $ 0 N/A Never switch engines 
14 $ 109 $ 0 N/A Never switch engines 
15 $ 124 $ 0 N/A Never switch engines 
16 $ 154 $ 0 N/A Never switch engines 
17 $ 189 $ 0.1 20 Invest in dual fuel engine only if ECA coverage 

increases at year 5, otherwise do not switch engines 
18 $ 205 $ 5 14 Invest in dual fuel engine as soon as possible 
19 $ 240 $ 13 10 Invest in dual fuel engine as soon as possible

 
3.4 Test Scenario 4: Effects of LNG Supply Chain Risk 
This test scenario examines the effect of supply chain issues on the optimal decision space. In this scenario, the probability 
of obtaining LNG in Asia is only 50%, while the probability of obtaining LNG in Europe remains at 100%. For speeds of 
17 knots or less, the optimal policy is to do nothing, and continue running MDO on the single fuel engine. For 18 knots the 
optimal policy is to switch engines and try buying LNG only if ECA coverage increases at year 5. If ECA increases at year 
6 or later, the optimal policy is to keep the single fuel engine. Once the vessel has switched to dual fuel engine, there is a 
50% chance that it will have to burn MDO when bunkering in Asia. This is shown by the alternating hatching in the optimal 
states accessed plot on the bottom of Figure 10. The accumulated savings are less than US $80,000 with a payback of 20 
years. Thus, similar to the case above, while this pathway is optimal, it is not expected that the owner will switch engines 
due to the low savings and long payback period.  
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Figure 10: Optimal action entry and optimal states accessed plot for a scenario with supply chain risk at 18 knots 

 
Figure 11: Expected cost and optimal policy savings for a scenario with supply chain risk at 18 knots 

For a speed of 19 knots, the optimal policy is to switch to a dual fuel engine and try burning LNG at the first dry dock 
opportunity, despite the supply chain risk issues. However, there is still a 50% chance the vessel will have to purchase 
MDO in Asia when it wishes to purchase LNG. Accumulated savings of roughly US $3.5 million are expected with a 
payback of nearly 14 years. Supply chain issues clearly reduce the accumulated savings and extend the payback period. 
 

 
Figure 12: Optimal action entry and optimal states accessed plot for a scenario with supply chain risk at 19 knots 

 
Figure 13: Expected cost and optimal policy savings for a scenario with supply chain risk at 19 knots 
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Table 7 shows the transition in the optimal policy around a speed of 18 knots.   

Table 7: Results summary when there are LNG supply chain risks 

Speed 
(kts) 

Accumulated 
Cost (US$MM) 

Expected Savings 
(US$MM) 

Expected 
Payback Year

Optimal Policy 

12 $ 56 $ 0 N/A Never switch engines
13 $ 65 $ 0 N/A Never switch engines 
14 $ 83 $ 0 N/A Never switch engines 
15 $ 94 $ 0 N/A Never switch engines 
16 $ 117 $ 0 N/A Never switch engines 
17 $ 143 $ 0 N/A Never switch engines
18 $ 159 $ 0.1 20 Invest in dual fuel engine only if ECA coverage 

increases at year 5, otherwise do not switch engines 
19 $ 189 $ 4 14 Invest in dual fuel engine as soon as possible 

 
4. DISCUSSION 
 
While this framework quantifies the optimal pathways in the face of uncertainty, it is still at the discretion of the decision 
makers as to whether they choose to follow the optimal policy. In some cases the payback period may be too long or the 
savings too little for a ship owner to feel comfortable investing. Decisions are also severely impacted by whether the vessel 
is under charter. The type of charter may also play a key role in not only who is making the decisions, but the risk the 
decision maker is willing to accept. This approach is a means of providing the necessary and unique quantitative 
information to those faced with making these decisions in the face of uncertainties.  
 
This paper only discussed the optimal decision pathways as it pertains to LNG as a fuel; however, there are other ways of 
meeting the upcoming ECA regulations, such as use of distillate fuels, installation of scrubbers, or possibly slow steaming. 
Future research could include analysis across all methods of compliance. Also, for this particular case study to be applicable 
for commercial use, a more advanced fuel cost and freight rate model, supply chain risk model, and measured vessel fuel 
consumption curves would be beneficial. While these underlying models appear simplistic, the overarching theory and 
methods still hold.  
 
5. CONCLUSIONS 
 
This paper has demonstrated the utility of using Markov decision processes as a design and decision analysis framework 
for ship designers, owners, and operators. Several advantages of this approach bear repeating, including: a quantitative 
framework that systematically determines optimal temporal decision pathways in the face of uncertainty, identification of 
temporal decision bifurcation areas, and elucidation of how regulatory uncertainty and supply chain risks affect not only 
the ship itself, but also its operational plan. In regards to the LNG case study, new insight has been gained from the four 
case studies on the optimal decision pathways, with regards to lost revenue assumptions, discount rate impacts, and supply 
chain risks.  
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