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ABSTRACT

Human Motor Control and the Design and Control of Backdriveable Actuators for
Human-Robot Interaction

by

Dongwon Kim

The design of the control and hardware systems for a robot intended for interaction
with a human user can profit from a critical analysis of the human neuromotor system
and human biomechanics. The primary observation to be made about the human
control and “hardware systems is that they work well together, perhaps because they
were designed for each other. Despite the limited force production and elasticity of
muscle, and despite slow information transmission, the sensorimotor system is adept
at an impressive range of motor behaviors. In this thesis I present three explorations
on the manners in which the human and hardware systems work together, hoping to
inform the design of robots suitable for human-robot interaction.

First, I used the serial reaction time (SRT) task with cuing from lights and
motorized keys to assess the relative contribution of visual and haptic stimuli to the
formation of motor and perceptual memories. Motorized keys were used to deliver
brief pulse-like displacements to the resting fingers, with the expectation that the
proximity and similarity of these cues to the response motor actions (finger-activated
key-presses) would strengthen the motor memory trace in particular. Error rate
results demonstrate that haptic cues promote motor learning over perceptual learning.

The second exploration involves the design of an actuator specialized for human-
robot interaction. Like muscle, it features series elasticity and thus displays good
backdrivability. The elasticity arises from the use of a compressible fluid while hinged
rigid plates are used to convert fluid power into mechanical power. I also propose
impedance control with dynamics compensation to further reduce the driving-point

impedance. The controller is robust to all kinds of uncertainties.

xii



The third exploration involves human control in interaction with the environment.
I propose a framework that accommodates delays and does not require an explicit
model of the musculoskeletal system and environment. Instead, loads from the
biomechanics and coupled environment are estimated using the relationship between
the motor command and its responses. Delays inherent in sensory feedback are
accommodated by taking the form of the Smith predictor. Agreements between

simulation results and empirical movements suggests that the framework is viable.
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CHAPTER I

Introduction

My work is focused on interaction between humans and machines that takes place
across a mechanical contact. By carefully considering mechanical interactions, I hope
to inform the design of computing machines that are easier to use, and robots that
are suitable and safe for human interaction. I am particularly interested in robots to
be applied for rehabilitating human motor skill and motor function. I also consider
interaction between humans and simple objects in the environment to guide the design
of robots intended for physical interaction with humans.

Interaction across a mechanical contact involves exchanges of both mechanical
power and pure information between a human and machine. An important feature
that is perhaps the most influential in determining the nature of interaction is the
mechanical impedance of both the human and the machine (or object). As is well
known in engineering design, impedance matching between the two interacting parties
promotes maximum exchange of power. It also seems likely that information transfer
is maximized when impedances are matched. However, most commercial robots are
characterized by very high impedance. Humans have rather modest impedance by
comparison. Neither a pure motion source nor a pure force source models human
behavior very well. Rather, humans bend under load and behave with restoring forces
when they are displaced. Note that muscles are extensible and are invariably modeled
with elastic elements in series (and often also in parallel) with motive elements. It
makes sense then to explore the design of robots which are impedance matched to
humans. Note also that most objects designed and built for human use also feature
modest impedance.

In my first body of work, I investigate the design of haptic cues that might be
delivered to the fingertips from a computing machine to improve human-machine per-
formance. The domain is in fact very narrow in that performance shall be measured

in terms of pressing keys in a particular sequence. Like pressing keys on a computer



keyboard. I adopt a well-known experimental paradigm called the serial reaction time
task (SRT task). This is sort of like a game of “Simon Says”, where the player must
reproduce a sequence of button presses on four buttons that gets ever longer, as cued
by a sequence of lights in the buttons. Except in the SRT task buttons are pressed
immediately after each light appears or cue is delivered. The reaction time is the
chief performance metric in the SRT task rather than the length of sequence achieved
as in Simon Says.

I introduce haptic cues to the SRT task, wherein the cues may be delivered as
activations of motors attached to each of four keys. By design, the impedance of
the motors is roughly matched to that of human fingers. Likewise, the activation of
the motor coils is carefully chosen so as to produce discernable displacements in the
fingers. The backdriveability of the motors and thereby the keys is also a significant
design features, so that actions of the human subject can be recorded even if they
potentially occur simultaneously with activations of the motor.

Haptic cues had previously been introduced in the SRT task by [1], but these were
only in the form of vibrotactile cues delivered to the proximal interphalangeal region of
the fingers. I hypothesize that cues delivered as displacements to the fingertips may
engage more of the motor control apparatus of the human, since they also engage
proprioceptors (motion sensors). Proprioceptor are naturally also engaged during
motor actions and may play a significant role in motor control.

In a second body of work, I take up the topic of designing and controlling back-
driveable actuators for use in robots intended for physical human-robot interaction.
These include wearable robots and all sorts of human-safe robots. I take inspiration
from the burgeoning field of soft robotics (soft actuators in particular), but I take a
cold hard look at the field and offer something even better.

I create an actuator that does not store elastic energy but instead functions as
close as possible to an ideal transformer (transforming input fluid energy into energy
available for doing work on the environment). Note that the environment might be
a human user that wears the robot thus actuated. It is desirable to minimize the
energy stored and maximize the energy converted into action by the robot on its
environment. In addition to the design of backdriveable actuators, I look into the
control of such actuators, noting that control is also often a viable means to achieve
backdriveability. Proportional gain realizes a virtual spring of course. But there are
limitations to achieving backdriveability by control and tradeoffs between achieving
backdriveability by physical device design and by control design. I examine these

tradeoffs with an exploratory study that involves both the realization and testing of



hardware, the production of models and associated analyses, and the undertaking of
simulation studies.

Finally in my last body of work, I turn the problem around and look at human
motor control. Obviously the actuators are already built and deployed and do not
require design. But note that muscles are backdriveable. The features of series
elasticity that imbue all of my work are also features of biological muscle, interestingly.
I take up the topic of whether human motor control is model-based or perhaps model-
free. There has been significant controversy in the field of human motor behavior
regarding the question of internal models. At the moment model-based control that
is known generally in the motor control literature as internal models is very popular.
The internal model is the prevailing hypothesis and prevailing explanation for human
motor behavior. But I offer an alternative that is in fact completely model-free.
However, the challenge in any model-free approach is that feedback must sustain
delays that are physiologically realistic, that is on the order of 30-100 ms.

The contributions of this thesis are summarized as follows:

1. Effect of Haptic Cues on the Human Motor System
e Demonstrates implicit learning with haptic cues applied to fingertips

e Shows error rates are improved with haptic cues over visual cues, suggesting

motor learning rather than perceptual learning.

2. Design and Control of Backdriveable Actuators
e Shows parallels between SEA and fluidic actuators, including options for control.

e Designs and demonstrates a new actuator that minimizes storage of elastic

energy and harnesses singularity to advantage

e Develops controllers that promote backdriveability

3. Computational Model of Human Motor Control

e Proposes a computational model that the relationship between the motor com-

mand and its responses in place of internal models

e Demonstrates the reproducibility of the proposed model in the human’s fast

movements



CHAPTER 11

Effect of Haptic Cues on the Human Motor
System

Motor learning, especially in its latter phases, often takes place without dedicated
attention and without awareness for either the process or the content of what is
learned. Fitts and Posner called this phase of motor learning autonomous [33].
Implicit learning describes not just motor but any type of learning, and is similarly
characterized by a lack of awareness for the process or the content of what is learned
(16, 93]. Implicit learning is often studied using the serial reaction time (SRT)
task, which was introduced by Nissen and Bullemer (1987) [86]. In the SRT task,
participants respond to stimuli presented in one of four locations by pressing a
corresponding key. When a repeating sequence of stimuli structured according to
certain rules is presented unbeknownst to participants, reaction times (RTs) and error
rates decrease with practice. If the stimuli later appear randomly, the participants
do not respond as quickly. Participants are often unaware of the existence of the
structure and are unable to express the sequence, implying that learning occurred
implicitly [119].

Since the SRT task involves responding with a key press, a portion of RT or error
rate improvements may be attributable to motor learning. That is, the sequence is
learned in terms of a sequence of motor responses, a view termed R-R (response-
to-response) learning. This view contends that the motor systems governing active
movement generate a memory trace of successive motor actions. This allows par-
ticipants to anticipate the next response at a given trial even without perceiving
stimuli [49,83,118]. In this sense, R-R learning would presumably be a type of
motor learning, while the alternative, S-S (stimulus-to-stimulus) learning would be a
type of perceptual learning. S-S learning assumes that perceptual memory systems

are involved in forming a representation for successive stimuli. Participants use



representations to predict the next stimulus in a sequence based on associations
with the previous stimulus even when they are not able to thoroughly recall the
sequence [31,51] .

A fair amount of attention has been dedicated to determining whether and how
motor learning and perceptual learning contribute differently to obtaining sequence
knowledge in the SRT task [8,39,45,84]. These studies have been performed with
a variety of experimental paradigms in an attempt to disentangle the motor and
perceptual contributions [48, 95, 118]. Most of these studies have, however, been
undertaken exclusively using visual stimuli [76,118]; only a few studies have explored
sequence learning using other stimulus modalities [1,126].

A stimulus modality of particular value in the development of motor skills is
the haptic modality. Haptic cues invariably accompany motor actions that involve
contact with objects in the environment. Even non-contact motor tasks involve
proprioceptive, skin stretch, and inertial force cues. Especially for motor skills that
involve sequenced actions, an accompanying sequence of haptic cues might be involved
in the development and retention of motor skills. Such cues can signal the successful
completion of a motor action. For example, the detent or click-feel and subsequent
bedding of a key on a computer keyboard together signal completion of a keypress
and possibly play a role in the development of chunked keying sequences.

A number of computer-assisted motor training environments based on haptic
technology have been created, hoping to leverage the role of haptic stimuli in motor
learning [3,32,40,43,58,71,74,87,97,112] . The idea is to synthesize the appropriate
haptic cues using a motorized device and potentially to automate the role of another
human who provides manual guidance. Results have been mixed in many studies,
but a few studies have demonstrated the benefit of automated guidance for mastering
motor skills, especially the studies of [15,20,32].

Motivated by these studies, and hoping to introduce some rigor into research
involving haptic devices for motor learning, I introduce haptic stimuli to the SRT task.
In particular, I introduce haptic cues that produce motion in the fingers. By back-
driving the tendons and joints of the fingers, which are associated with kinesthetic
receptors, haptic stimuli could enhance motor memory based on their association with
the excitation of similar kinesthetic cues that occur during the response key presses.
Consequently, it would be expected that a SRT task using haptic stimuli could show
enhanced motor-based learning relative to a SRT task using visual stimuli. The
vibrotactile stimulus introduced in [1] could also be regarded as a haptic stimulus,

but is different in that cues of small amplitude, high frequency (200 Hz) vibration



are presented to the skin on the proximal phalanx of a finger. Note that the haptic
stimuli developed in the study present trigger significant movement of the tendons,
muscles, and joints in addition to the skin of the fingers.

In this chapter, the main objective is to investigate how haptic cues contribute to
the balance of motor and perceptual learning. I adopt the SRT protocol developed
by Willingham in [118] to distinguish motor and perceptual components of learning,
adding haptic cues alongside the standard visual cues. Many variants of the SRT task
have been developed to eliminate certain effects and to even more finely distinguish
types of motor learning. In particular, the learning of the correct answer button
sequence in the egocentric space (response-based learning) can be distinguished from
learning of the finger movement patterns (effector-based learning; e.g., Willingham et
al. [120]), Willingham, Willingham et al., and Witt and Willingham showed that se-
quence knowledge can pertain to sequences of response location [118,120,122], whereas
Park and Shea, Bapi et al., Verwey and Wright, and Verwey and Clegg demonstrated
the existence of an effector-specific component in sequence learning [4, 88,116, 117].
However, Deroost et al. and Berner and Hoffmann suggested the contributions of
effector-independent (response location) and effector-specific acquisitions to learning
can coexist [10,22]. The contribution of eye movements, termed oculomotor learning,
is another type of motor learning. Gheysen et al. and Nemeth et al. devised modified
versions of Willingham’s SRT design by presenting stimuli at only one location to
eliminate the participation of oculomotor learning [39,84]. In the present study I do
not attempt to distinguish effector specific learning and response location learning.
I also do not attempt to eliminate oculomotor learning as the co-location of stimuli
in the haptic case would involve the coding (and de-coding by our participants) of
information in time rather than space. I am interested in a presentation of haptic
stimuli that is most natural and ecologically meaningful in the context of the button-
pressing task.

In Willingham’s protocol, participants perform a SRT task in an incompatible
mapping for the training phase and in a compatible mapping for the transfer phase.
In the incompatible mapping, participants are asked to press one key to the right
of the stimulus (shifted right). If the stimulus was on the far right, participants
press the key on the far left (wrapping around). In the compatible mapping, there
is a direct spatial correspondence between each stimulus and key. To see whether
participants learning is oriented to stimulus-based or response-based sequences, this
study investigate transfer to the compatible mapping (without shift) in the following

two conditions. In the perceptual condition, the transfer stimulus sequence is identical



to that used during training [but participants would press different keys due to the
change from incompatible (shifted) to compatible (unshifted) mapping]. Whereas in
the motor condition, the stimulus sequence is shifted left so that response sequences
are identical to those in the training phase. Willingham reported better transfer in
the motor group compared to the perceptual group, suggesting that participants learn
sequences at the motor response level [118]. In contrast to the Willingham’s study,
which investigated whether perceptual or motor learning is predominant in visual
stimuli, the present study focuses on determining whether one modality (haptics or
vision) would better facilitate motor learning than perceptual learning. It is expected
that the haptic modality is more closely tied to the motor system and would thus

favor motor learning.

2.0.1 Materials and Methods

Participants

A total of 32 volunteers (24 male), from the University of Michigan, ranging in
age from 19 to 33 years (24.28 £ 3.77 s.d.), participated in the study. All participants
reported normal or corrected-to-normal vision, and no neurological or motor deficit.
None of the participants had previous experience with SRT tasks and were not made
aware of our hypotheses. All gave written informed consent. The experiment was
approved under the University of Michigans Behavioral Sciences Institutional Review
Board.
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Figure 2.1: A schematic diagram of the experimental apparatus and setup.
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Figure 2.2: A schematic diagram of the experimental apparatus and setup. Four lever-
shaped keys were motorized using flat voice coil motors (VCMs) and placed under computer
control. The keys were spaced 6.5 cm centerline to centerline (a). Visual stimuli were
presented by the lighting of four horizontally positioned red LEDs spaced 5 cm apart (b)
and haptic stimuli were provided by the injection of an upward half-sinusoid pulse in the
reference position of the key. A participant sat and rested her/his ring and index fingers
of both hands on the keys. The center of the four LEDs was about 90 ¢cm away from the
participants eyes (c). She/he was allowed to adjust the height of the chair for comfort and
the participants view of her/his hands was occluded using a box. White noise was presented
through headphones.

A custom keyboard of four motorized keys was fabricated using a custom flat
voice coil motor on each key to present the haptic cues (see Fig. 2.1). The four lever-
shaped keys were motorized to present haptic stimuli using flat voice coil motors
(VCMs) and instrumented to record participants responses. Every VCM consisted
of two back-irons each affixed with four magnets. An aluminum hub was wrapped
with 28 AWG magnet wire and this subassembly was set in bearings on a steel dowel
between the two back-iron/magnet assemblies. Each key was connected to the top of
an aluminum hub, and this rotary assembly had a moment of inertia of 4500 kgmm?
about its axis of rotation. The displacement of each key was measured by an optical
encoder with a resolution of 0.18 degrees. The encoder module was fixed to the
bottom of a back-iron for reading a code strip attached along the bottom edge of
the aluminum hub (see Fig. 2.1). Each of the VCMs was connected and powered by
an Advanced Motion Controls® brushless servo drive (California, USA). The servo

drives and encoders were interfaced with a Sensoray® 626 Data Acquisition board



(Oregon, USA) installed on a standard PC. Each key was 160 mm long and 48.5 mm
high from the axis of rotation to its end and its top, respectively (a and b in Fig. 2.1).
The travel at the tip of each key when fully depressed from the unloaded state to
a physical keybed was 12 mm (c in Fig. 2.1). The four keys were equally spaced,
and the distance between key centers was 65 mm (a in Fig. 2.2). The four keys were
controlled by a 2.27 GHz personal computer running Windows® 7.

To indicate to participants when their responses had been registered by the com-
puter, the mechanical behavior of each key included a detent or click-feel. This type
of keyswitch provides feedback when a response is captured, and is preferred because
it supports fast typing speeds and low error rates [10]. Fig. 2.3 shows the force-
displacement curve programmed for each key. Let x denote the displacement of a
key from its equilibrium position. The fixed displacement x,=5 mm was defined as a
threshold past which participants would have to press the key to register a response to
the computer. The displacement x4 was also used to measure the reaction time (see
Fig. 2.4) and define the make-force (the maximum force past which the key would
break through to keybed. The force was programmed using simple proportional
feedback control with gain K; =0.22 N/mm. The commanded force increased in
proportion to the displacement x from equilibrium such that the make-force was 1
N. Once the key crossed the threshold x4, a distinct drop in force occurred during
key travel, and a constant force (0.1 N) was applied so that the key would return to
the equilibrium position if released. Beyond zpg, an additional force with a higher
effective stiffness (K =0.6 N/mm) acted. The physical keybed was located 12 mm
below the equilibrium position. Care was taken to ensure that all four keys provided
the same sensation when depressed.

Stimuli to elicit participants responses in the SRT task were presented in two ways:
visual and haptic. Visual stimuli were provided by the lighting of four horizontally
positioned red LEDs spaced 5 cm apart (b in Fig. 2.2) against a black background
situated about 90 c¢m from the participants eyes (¢ in Fig. 2.2, visual angle: 9.5
degrees). Haptic stimuli were generated by injecting an upward 100 ms half-sinusoid
pulse in the reference position of the key, with an amplitude of 7 mm with respect to
the tip of the key. Since proportional control was also used with the effective stiffness
0.22 N/mm for haptic stimuli, a corresponding pulse in force and an associated pulse
excursion in position would be delivered to a finger.

The haptic stimuli were delivered to the index and ring fingers of both hands
resting on the keys. Each finger was mapped to a key (labeled 1-4 from left to right)
with the left ring finger responding on key 1, left index finger on key 2 and so on,



’ F=K,(x — xs)*'Fc?nst ‘

; ]
1
1
1
2r F=Kx v i Physical

1
| /ll/\ I keYbejj
L A J

1

1

X Xp i
i

v

ical
d

Key tip force command F (N)
| Recorded key tip force (N)

F=Fconst

2 o 2 4 6 8 10 12 14 L0 2 4 6 8 10 12 14
Key tip displacement (mm) Key tip displacement (mm)

(a) (b)

flag =0;

while(...{
if (x > x4)
{flag =1;}
if (x <0)
{flag =0}

if (!flag)
{
F=K;X;
}
if (flag)
{
F=max(Feonse, Ko(x — xp)+Feonst);
}
}
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Figure 2.3: The force-displacement curve of a buckle spring keyswitch: (a) The command
for force versus displacement. F' and z denote the force and position at the tip of the
key, where positive values for « denote downward motion of the key. Constants K; and
K5 denote gains for proportional feedback control, and Fi,,st represents a constant force.
(b) Force versus displacement recorded by a force sensor and an encoder. (c) Pseudo-code
presenting the algorithm for the keyswitch. The variable flag was introduced to manage the
time sequence of the key movement.

as illustrated in Fig. 2.2. We followed Abrahamse et al. in presenting stimuli to the
index and ring fingers instead of the adjacent fingers in order to enhance the ability
to discriminate which finger was being presented with a haptic cue [1].

Reaction time (RT) was defined as the difference between the time at which a

stimulus command was initiated and the time at which the threshold x4 was crossed,
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Figure 2.4: The command signals for visual and haptic stimuli and recorded responses:
(a) The control signal to turn on/off the LED for visual stimuli. (b) The reference position
to be followed by the tip of the key for haptic stimuli. (c) A sample of atypical recorded
trajectory responding to a visual stimulus. (d) A sample of typical recorded trajectories in
response to a haptic stimulus(dashed line: without the finger resting on the key,solid line:
with the finger resting on the key). Reaction time(RT)was defined as the difference between
the initial stimulus command and the point at which the key crosses the threshold. Both
visual and haptic stimuli were presented for a 100 ms time interval.

as presented in Fig. 2.4. The participants view of their hands was blocked using a box
and white noise was presented via headphones in order to eliminate spurious audio
cues.

Procedure

All participants were randomly and evenly divided into two groups: one group
(N = 16) responded to visual stimuli (the visual group), while the other group (N
= 16) responded to haptic stimuli (the haptic group). Each of these two groups was
randomly and evenly divided into two subgroups. One of the two subgroups (N =
8) was assigned to the transfer condition that preserved stimulus sequence across
transfer (perceptual condition), whereas the other subgroup (N = 8) was assigned to
the transfer condition that preserved response sequence across transfer (motor con-
dition). For convenience, the four subgroups will be named visual-perceptual, visual-

motor, haptic-perceptual, and haptic-motor subgroups, respectively. The motor and
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perceptual conditions will be further explained below. The motor and perceptual
conditions were different only in name up until the transfer phase, at which point
different sequences (one of them shifted) were presented to the two subgroups.

Responses to stimuli were made either in the so-called “incompatible” or “compat-
ible” stimulus-response mappings. In the incompatible mapping, participants were
instructed to press the key one position to the right of the position at which the
stimulus appeared. If the stimulus on the far right appeared, they were to press the
key on the far left.

The experiments unfolded in three stages: the familiarization, training, and trans-
fer phases. Before the SRT task began, the familiarization phase was introduced to
allow participants to practice making responses on the keyboard apparatus. This
phase provided an opportunity to teach participants how to press the keys properly
and to ensure they understood the incompatible and compatible stimulus-response
mappings. Participants were allowed to view their hands during this exercise to
facilitate this learning process. When participants were able to demonstrate proper
key pressing and stimulus-response mappings, the familiarization phase was stopped,
and the SRT task began.

In the training phase, all participants performed the SRT task in the incompat-
ible stimulus-response mapping, regardless of whether visual or haptic stimuli were
presented. All four subgroups experienced the same stimulus sequences during this
phase. Shortly afterward, the transfer phase followed, to test whether or not the
sequence knowledge acquired during the training phase appeared in the compatible
mapping and whether it appeared to differing degree according to the stimulus type
(haptic/visual) or presentation mode (perceptual /motor).

Now I define the perceptual and motor presentation modes after transfer in detail.
In the transfer phase, the visual-perceptual and the haptic-perceptual subgroups
responded using the compatible mapping to cues delivered in sequences that were
not altered from those delivered during the training phase (under the perceptual
condition). However, the visual-motor and haptic-motor subgroups responded during
transfer using the compatible mapping to cues delivered in sequences that were shifted
so that the sequence of responses (key presses) would turn out identical to those made
in the training phase. That is, in the perceptual condition, the sequence of responses
was shifted since cue delivery (perceived sequences) was the same across the training
and transfer phases, while under the motor condition, the sequence of responses
remained consistent (unshifted, with motor responses the same across training and

transfer phases), since cue delivery was shifted across the training and transfer phases.
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Both visual and haptic stimuli were presented for a 100 ms time interval and then
turned off, as described in Fig. 2.4. The response-to-stimulus interval (RSI) was 250
ms for correct responses. All participants were asked to respond as fast as possible
without making errors in a manner that corresponded to the incompatible mapping
in the training phase and compatible mapping in the transfer phase. Responses were
declared erroneous when participants failed to press the appropriate key or make a
response within 1.5 s of stimulus presentation. Errors were signaled to participants
via audio tones and an extended RSI of 1 s. Thirty second breaks were provided
between blocks.

Stimulus events (cues) were organized into sequences of 12 and were constructed
according to the rules of second-order conditional (SOC) sequences. In a SOC
sequence, each event can be predicted only by a unique combination of two preceding
events and each pairwise association is equally likely so that pairwise association can-
not be used to predict subsequent stimuli [94]. These sequences were then organized
into blocks of 108 events. Two types of blocks were presented: sequence blocks that
consisted of one SOC (242134123143) repeated nine times, and pseudorandom blocks
which consisted of nine distinct, successively presented SOCs picked from a pool of
12. Sequences were presented seamlessly such that participants were only aware of a
set of 108 events, and each SOC sequence presented was initiated at the beginning.

The training phase comprised one pseudorandom block succeeded by seven se-
quence blocks, a pseudorandom block (block 9) and a final sequence block (block 10).
The first pseudorandom block acclimated participants with the task and established
a baseline RT while the final pseudorandom block allowed us to differentiate sequence
learning from general practice effects. Transfer consisted of two pseudorandom blocks
(blocks 11 and 12) for adjusting to the new mapping; one sequence block (block 13)
and a final pseudorandom block (block 14). A given participant never experienced
the same pseudorandom block twice. Median RT and error percentage were displayed
for participants between blocks.

Awareness survey

After the experiment, a 6-question survey was conducted to determine how much
explicit knowledge participants had gained. Question 1 asked participants to choose
from a list of four alternatives the statement that best described the task carried
out: (1) Stimulus presentation was completely random, (2) Some fingers had to
respond more often than others, (3) Sometimes I wanted to respond before stimulus
presentation, and (4) Stimulus presentation was mostly structured [1]. Questions 2

and 3 were adapted from the process dissociation procedure (PDP) introduced in
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[24]. Question 2 required participants to generate the 12-event sequence experienced
(inclusion) while Question 3 asked participants to generate another 12-event sequence
that completely avoided the first (exclusion). Participants were told to recall the
sequence as experienced in the training phase [8]. During these exercises, populating
the sequence with repeating smaller patterns was not allowed (e.g., 123412341234
would not be a valid response). Therefore chance level was 0.33. In Question 4, six
different SOC sequences were presented through the apparatus in whichever modality
participants trained and the participants were asked to identify the correct one (the
sequence experienced during training). Questions 5 and 6 asked the participants to
rank their engagement in the task and the tasks difficulty on a scale of 1 to 5 (5 being
very engaged and very difficult, respectively).

Training scores, transfer scores, and awareness scores

Median RTs were obtained for each participant and block of data (nominally 108
responses), though RTs from erroneous responses and trials immediately following
erroneous responses were excluded. We chose median RT over mean RT for its
robustness to outliers. The median was then averaged across the participants within
a group (subgroup) to determine an overall RT value for each block and group
(subgroup). Two learning scores were computed in terms of RT: a Training RT Score
and a Transfer RT Score. The Training RT Score was determined by subtracting the
average of the RT values in blocks 8 and 10 (sequence blocks) from the RT value in
block 9 (a random block). The Transfer RT Score was determined by subtracting the
RT value in block 13 (a sequence block) from the average of the RT values in blocks
12 and 14 (random blocks).

For Error Scores, error rates were first obtained for each participant and block
of data. I then averaged them across the participants within a group (subgroup)
to determine an overall error value for each block and group (subgroup). Two Error
Scores were computed: a Training Error Score and Transfer Error Score. The Training
Error Score was determined by subtracting the average of the error rates in blocks
8 and 10 (sequence blocks) from the error rate in block 9 (a random block). The
Transfer Error Score was determined by subtracting the error rate in block 13 (a
sequence block) from the average of the error rates in blocks 12 and 14 (random
blocks).

We computed Training RT Scores and Training Error Scores for each group
(visual /haptic) but not condition (no subgroups) since there were no differences in
the cues presented to the subgroups in the training phase.

To obtain Awareness Scores, the sequences generated by participants in response
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to Questions 2 and 3 were broken into 3-element chunks. The actual sequence used
in that participants sequence blocks was likewise divided. Chunks from the generated
sequences were compared against those in the actual sequence and the number of
correct chunks was divided by 12 (the maximum possible number of correct chunks)
resulting in an awareness score between zero and one. The awareness scores were
calculated for each participant in both inclusion and exclusion recall tasks.

Data analysis

I employed ANOVA and t-tests for statistical analysis as elaborated below. Sta-
tistical analyses were performed with SPSS (Windows v.21, SPSS Inc.). Significance
level was set at 0.05. T used a mixed-design ANOVA and repeated-measure ANOVA to
investigate performance change across repeated measurements and to assess how stim-
ulus (visual/haptic) or/and condition (perceptual/motor) influenced these changes.
Two-way ANOVAs were used to test for significant differences in mean across the four
subgroups. If the sphericity assumption in ANOVAs was violated, GreenhouseGeisser
adjusted p-values were used.

Independent-sample t-tests were carried out to test whether the two groups were
significantly different in means. I used one-tailed ¢-tests to determine whether learning
scores were greater than zero. Paired-sample t-tests were employed in cases where

data were paired.

2.0.2 Results

Reaction times improved with practice regardless of whether the cues were de-
livered in the visual or the haptic modality. Fig. 2.5 shows the means of individual
median RTs computed for both the visual and haptic groups in the training phase
and for each of the four subgroups in the transfer phase. Downward trends in RT
appeared as participants practiced in the training phase in blocks 2 through 8. Since
a pseudorandom block followed sequence block 8, increases in RT occurred at block 9.
But RTs decreased again for sequence block 10. Notable drops in RT occurred at the
transition from the training phase to the transfer phase (between blocks 10 and 11),
which could be expected since the compatible mapping is easier than the incompatible
mapping. Also, as expected, decreases in RT appeared at sequence block 13, because
participants benefited from knowledge of the sequence acquired during the training
phase.

Trends in the training phase (blocks 2-8)

Because all subgroups experienced the same sequences in the training phase, I did

not differentiate the groups by Condition; we partitioned participants into the visual
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Figure 2.5: Mean by group and subgroup of individual median RTs for the training phase
(blocks 1-10) and transfer phase (blocks 11-14). Error bars are + 1 standard error of the
mean. R and S stand for pseudorandom and sequenced stimuli, respectively.

and haptic groups regardless of the perceptual and motor conditions.
Repeated-measure ANOVAs were performed on median RT's and error rates from
block 2 to block 8 to evaluate participants performance with Block (seven levels:
blocks 28) as a within-subject variable and Stimulus (two levels: visual and haptic)
as a between-subject variable. RTs for the haptic group were in general longer in
comparison to the visual group (see Fig. 2.5). ANOVA produced a significant main
effect of Stimulus [F'(1,30) = 12.463, MSE = 0.515, p < 0.001, nf, = 0.294]. A main
effect of Block [F'(4.128,123.839) = 32.381, MSE = 0.048, p < 0.001, fr]]% = 0.519]
was also significant. Polynomial contrasts reported a linear trend in Block [F'(1,30)
= 104.388, MSE = 0.197, p < 0.001, 7712) = 0.777]. The other main and interaction
effects were not significant (all p > 0.1). Likewise, error rates were generally higher
in the haptic group than in the visual group regardless of Condition (see Fig. 2.6).
ANOVA reported a significant main effect of Stimulus (visual/haptic) [F(1,30) =
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Figure 2.6: Mean by group and subgroup of individual error rates for the training phase
(blocks 1-10) and transfer phase (blocks 11-14). Error bars are 4+ 1 standard error of the
mean. R and S stand for pseudorandom and sequenced stimuli, respectively.

17.458, MSE = 1800.506, p < 0.001, 772 = 0.368]. The other main and interaction
effects did not reach significance (all p > 0.1).

Sequence-unspecific learning

I investigated sequence-unspecific learning in the visual and haptic groups in the
training phase by comparing pseudorandom blocks 1 and 9. A repeated measures
ANOVA was performed on RT with Block (two levels: blocks 1 and 9) as a within-
subject variable and Stimulus (two levels: visual and haptic) as a between-subject
variable. A main effect of Stimulus [F(1,30) = 8.291, MSE = 0.101, p < 0.01, 7}
= 0.217] reached significance, implying that the haptic group showed higher RTs at
the pseudorandom blocks than the visual group. A main effect of Block [F(1,30) =
30.234, MSE = 0.110, p < 0.005, 7)12, = 0.502] was significant, indicating that sequence-
unspecific learning occurred in both the visual and haptic groups. The interaction
(Stimulus Block) was not significant (p = 0.533).
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Similarly, a repeated measures ANOVA was used to analyze error rate with Block
(two levels: blocks 1 and 9) as a within-subject variable and Stimulus (two levels:
visual and haptic) as a between-subject variable. A main effect of Stimulus [F'(1,30)
= 7.431, MSE = 739.79, p < 0.05, 17127 = 0.751] was significant, indicating that the
haptic group exhibited higher error rates at the pseudorandom blocks than the visual
group. The ANOVA on error rate reported no other main or interaction effects (all
p> 0.1).
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Figure 2.7: Training RT Score and Transfer RT Score. The Training RT Score is defined
as a difference in RT between the means of blocks 8 and 10 and block 9, and the Transfer RT
score is defined as a difference in RT between the means of blocks 12 and 14 and block 13.
(a) Training RT Scores of the visual and haptic groups (no differences in the cues presented
to the subgroups in the training phase). (b) Transfer RT Score of the visual-perceptual,
haptic-perceptual, visual-motor, and haptic-motor subgroups. (c) Pooled Transfer RT Score
(averaged across the visual and haptic groups) in each condition. The motor group shows
a significantly greater pooled Transfer RT Score than the perceptual group (ANOVA, p =
0.044). Error bars are £ 1 standard error of the mean. An asterisk on a line linking bars
indicates a significant difference between two groups (subgroups) while an asterisk above a
bar indicates a significant difference from zero.

Training RT scores and training error scores

Each Training RT Score quantifies the increase in RT of pseudorandom block
9 over the average RT of sequence blocks 8 and 10. One-tailed t-tests revealed
that the Training RT Scores were significantly greater than zero in the visual and
haptic groups, as indicated with asterisks over the bars in Fig. 2.7(a). However,
independent-sample t-tests comparing between groups reported that there was no
significant difference between the visual and haptic groups in Training RT Scores
[t(30) = 0.139, p = 0.89].

While there was no difference in Training RT Scores across the visual and haptic
groups, the difference in Training Error Scores reached significance [t(30) = 2.117, p =
0.043], as displayed in Fig. 2.8(a). Each Training Error Score quantifies the increase

in error rate of pseudorandom block 9 over the average error rate of sequence blocks
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Figure 2.8: Training Error Score and Transfer Error Score. The Training Error Score
is defined as a difference in error rate between the means of blocks 8 and 10 and block
9, and the Transfer Error score is defined as a difference in error rate between the means
of blocks 12 and 14 and block 13. (a) Training Error Scores of the visual and haptic
groups. There is a significant difference between the two groups (¢-test, p = 0.043). (b)
Transfer Error Score of the visual-perceptual, haptic-perceptual, visual-motor, and haptic-
motor subgroups. (c) Pooled Transfer Error Score (averaged across the visual and haptic
groups) in each condition. Error bars are & 1 standard error of the mean. An asterisk on a
line linking bars indicates a significant difference between two groups (subgroups) while an
asterisk above a bar indicates a significant difference from zero.

8 and 10.

Transfer RT scores and transfer error scores

In the transfer phase (blocks 11 through 14) all participants responded to cues
using a compatible mapping. The cues were delivered during the transfer phase such
that the visual-perceptual and haptic-perceptual subgroups experienced cues that
preserved the stimulus sequence across blocks 10 and 11, while the visual-motor and
haptic-motor subgroups experienced cues that preserved the motor response sequence
across blocks 10 and 11. Thus there were four Transfer RT Scores and four Training
Error Scores computed, one each for each of the four subgroups.

One-tailed t-tests revealed that the Transfer RT Scores were significantly greater
than zero in all the subgroups with the exception of the haptic-perceptual subgroup
which was close as well (the haptic-perceptual subgroup: p = 0.068). Asterisks over
the bars indicate the significant differences from zero in Fig. 2.7(b). These significant
differences from zero imply that all the subgroups other than the haptic-perceptual
subgroup utilized the advantage of their skills gained during the training phase in
reducing RTs at sequence block 13.

Meanwhile, one-tailed t-tests revealed that the Transfer Error Scores were signifi-
cantly greater than zero in only the haptic-motor subgroup: ¢(7) = 2.710, p = 0.006,
as indicated in Figs. 1.8(a) and 1.8(b). The other three subgroups did not show
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significant differences from zero (the visual-perceptual: p = 0.346, the visual-motor:
p = 0.551, the haptic-perceptual: p = 0.788)

Two-way ANOVAs across the four subgroups were used to test for differences
among subgroups, with Stimulus and Condition as between-subject variables. For
the Transfer RT Scores (the increase in the average RT of pseudorandom blocks 12
and 14 over the RT of sequence block 13), the main effect of Stimulus and Stimulus x
Condition interaction were not significant (all p > 0.1, Fig. 2.7(b)). However, ANOVA
revealed a significant main effect of Condition [F'(1,28) = 4.43, MSE = 0.001, p =
0.044, nz = 0.137], implying that the knowledge was transferred better in the motor
condition than in the perceptual condition, as exhibited in Fig. 2.7(c).

For the Transfer Error Scores (the increase in the average error rate of pseudoran-
dom blocks 12 and 14 over the error rate of sequence block 13), the ANOVA reported
no significant main effects of Stimulus and Condition and no Stimulusx Condition
interaction (see Figs. 1.8(b) and 1.8(c)).

In sum, I had participants practice a SRT sequence task in which responses
were cued either visually or haptically. Responses were prolonged when haptically
cued, but the two groups exhibited parallel slopes of improvement during sequence
repetition. Though both the visual and haptic groups showed a similar amount of
sequence learning in terms of RTs, the haptic group gained more sequence learning
than the visual group in terms of the number of errors made. I note that the SRT task
resulted in a greater amount of motor learning than perceptual learning, irrespective
of the stimuli (visual or haptic).

Awareness

It is noteworthy that the awareness survey revealed that the sequence knowledge
participants had gained during the SRT task was “implicit”. Also, the awareness
survey showed that participants in the haptic group perceived more difficulty in
performing the SRT task than participants in the visual group.

Table 1.1 summarizes the results of the awareness survey. For analysis of Questions
2 and 3, inclusion, and exclusion scores were calculated for each participant and
averaged per subgroup (see Table 1.1). However, since the participants were told
to recall the sequence experienced in the training phase (the same sequence was
presented regardless of Condition), we considered only the visual and haptic groups,
which were distinguished strictly by Stimulus. One-tailed ¢-tests were used to compare
the mean inclusion and exclusion scores (collapsed by modality as there were no
reliable group differences) to chance level (0.33). This revealed that both inclusion
[t(15) = 2.763, p = 0.007] and exclusion [t(15) = 3.201, p < 0.005] scores in the
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haptic group are reliably greater than chance. The visual groups inclusion scores
were greater than chance [t(15) = 3.844, p < 0.005] but the exclusion scores were
not [t(15) = 1.069, p = 0.151], which would traditionally indicate explicit knowledge.
However, paired-sample t-tests between inclusion and exclusion scores for the visual
[t(15) = 1.438, p = 0.171] and haptic [t(15) = 0.115, p = 0.910] groups show that
neither group’s means were significantly different, suggesting that participants did
not recognize the sequence they experienced. The idea that such recognition should
exhibit itself among participants with explicit knowledge is central to the application
of the PDP in the SRT task along with the notion that comparing scores to chance
level is not, by itself, an accurate indicator of awareness. As a significant difference
was not observed in the visual group nor the haptic group, we could assert that
sequence knowledge was largely implicit.

In Question 4, all subgroups except for the haptic-perceptual subgroup had only
two members recognize the correct sequence. Four members of the haptic-perceptual
subgroup identified the correct sequence. One member of the visual-perceptual sub-
group was not able to complete this question.

Table 1.1 also presents participants average scores for Questions 5 and 6. For
analysis of Questions 5 and 6, two-way ANOVAs were conducted with Stimulus and
Condition as between-subject variables and Awareness Score as a within-subject vari-
able. For Question 5 (how engaged participants were in the task), ANOVA revealed
no significant main effects or interactions. For Question 6 (about the difficulty of the
task), ANOVA reported a significant main effect of Stimulus [F'(1,28) = 9.9, MSE =
7.031, p < 0.005, 772 = 0.261], with the haptic group showing higher scores than the
visual group. The main effect of Condition and interaction of Stimulus by Condition

were not significant.

2.0.3 Discussion

We set out to determine whether haptic cues delivered to the fingertips would favor
motor-based learning over perceptual learning, thinking that the effect would be even
stronger with haptic cues than with visual cues. Willingham showed that sequence
learning with visual cues favors motor learning over perceptual learning [118]. Thus we
expected a change in the cueing across the transition from incompatible to compatible
mapping that preserved the sequence of motor responses would enable our participants
to respond more quickly and with fewer errors than a change in cueing that preserved
the sequence of stimuli. But further, we expected this effect to be stronger for a

participant group that received haptic cues delivered to the fingers than a participant
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’ H Visual-perceptual  Visual-motor  Haptic-perceptual Haptic-motor

Question 1 || Option 1 n=0 n=2 n=1 n=1
Option 2 n=0 n=0 n=0 n=2
Option 3 n=3 n=2 n=2 n=4
Option 4 n=> n=4 n=>5 n=1
Question 2 0.468 + 0.099 0.417 + 0.126 0.469 + 0.117 0.417 £+ 0.204
Question 3 0.364 £+ 0.133 0.375 £ 0.173 0.448 £+ 0.133 0.427 £ 0.144
Question 4 n=2 n=2 n=4 n=2
Question 5 4.5 + 0.534 4.625 + 0.518 4.5 £+ 0.534 4.875 + 0.354
Question 6 3.0 £ 0.534 2.625 £+ 0.744 4.0 + 0.756 3.5 +1.195

Table 2.1: A summary of awareness survey results. The rows for Questions 1 present
how many participants chose each option. The row for Questions 4 presents how many
participants chose the correct answer. The remaining rows present the averaged values by
subgroup with standard deviations.

group that received visual cues. We hypothesized that cues delivered directly to the
fingers would have a closer relationship to the responses produced by the fingers than
cues delivered to the eyes. Roughly, we thought that haptic cues might engage motor
memory by virtue of being delivered to the body site of the motor apparatus involved
in responding to the cues.

Implicit learning in the training phase

In general, participants responded more slowly to haptic cues than to visual
cues. This result is consistent with the study of Abrahamse et al., which reported
that response times were noticeably longer with vibrotactile stimuli than with visual
stimuli [1]. These results are likely due to distinct processing of visual and haptic cues
and perhaps distinct pathways between processing centers or centers that mediate
learning [17,42,60]. Another factor may be the longer pathway to the brain from
the manual haptic receptors than from the retina. Nonetheless, the rates of RT
improvement through blocks 28 were not significantly different between the visual
and haptic groups (parallel downward slopes can be noted in Fig. 2.5).

While the RTs for the haptic group were longer, the savings in RT enabled by the
presence of the sequence once the sequence was learned (encapsulated in the Training
RT Score) indicate a similar degree of learning during training between the visual and
haptic groups. This contrasts with the result in the study of Abrahamse et al. that
showed that visual cues produce better sequence learning than vibrotactile cues [1].
We attribute these differences to the greater salience of haptic cues delivered to the
fingertips in the current study than the vibrotactile cues delivered to the proximal

phalanx in [1].
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The haptic group also demonstrated a significantly better Training Error Score
than the visual group (p = 0.043, Fig. 2.6(a)), indicating a stronger reliance on
the presence of the sequence in the haptic group at the end of the training phase.
Note that the lack of significant difference in Training RT Score between the visual
and haptic groups indicates that the participants were not trading off error rate
for RT performance. The difference in Training Error Score but lack of significant
difference in Training RT Score may indicate that haptic cues favor response-response
learning [1] or that learning for our haptic group was encoded in the “what” of
sequence execution and not so much in the “how”. We will discuss this distinction at
greater length in light of the Transfer Result below.

Implicit learning in the transfer phase

Our central hypothesis, that haptic cues would favor motor learning even more
than visual cues, was not supported by the differences in RT across our participant
subgroups. There were no significant differences in the Transfer RT Score across the
four subgroups (see Fig. 2.7(b)). Only when the subgroups were pooled together into
a motor group and a perceptual group, differences in RT Score across condition were
significant (p = 0.044), as shown in Fig. 2.7(c).

It is curious that our visual-motor subgroup did not outperform our visual-perceptual
subgroup, as the experimental conditions experienced by these subgroups were by
design essentially equivalent to those found in Experiment 3 in [118], which established
that sequence learning transfers better in the motor condition under visual cueing.
Differences in our experiment design did exist, however; we used the index and ring
fingers in each hand rather than the index and middle fingers of each hand. We
would expect an elevated motor-based learning versus perceptual learning with the
use of the index and ring fingers instead of the adjacent fingers, because it would
facilitate the ability to discriminate the locations of responding fingers when coded
in the egocentric space, a spatial frame that codes the locations of objects relative
to part of the body. But our result does not duplicate Willingham’s result. Perhaps
the design of our buttons (which required a throw of more than 5 mm) or other
features of our arrangement are responsible for the difference. Our result is, however,
consistent with his following study [8]. Bischoff-Grethe et al. also employed the same
experimental protocol [8]. This study reported that there was no significant difference
between the perceptual and motor groups regardless of the extent of knowledge about
sequences, although four fingers of one hand were used to respond to visual stimuli.

In terms of error rates, our central hypothesis did receive some support from our

experiment. Participants in the haptic-motor subgroup made on average 3% fewer
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errors when the sequence was present in the transfer phase while the other three
subgroups did not show a reduction in errors. That is, the haptic-motor subgroup
realized a 3% increase in Transfer Error Score (significantly different from zero, p
= 0.006) while the other three subgroups had Transfer Error Scores that were not
significantly different from zero. Taken together, the support our central hypothesis
received from the Transfer Error Scores and lack of support our central hypothesis
received from the Transfer RT Scores may indicate that haptic cues favor only certain
aspects of motor learning. That is, perhaps motor learning must be defined more
narrowly in the context of sequence learning. It has been suggested that higher
error rates indicate that sequence execution is influenced not so much by the stimuli
but by the previously learned motor or movement patterns. In this sense, increased
error rates at a pseudorandom block relative to surrounding sequence blocks could be
interpreted as an indication that movement patterns were guided by the preceding
movements rather than the cues. Evidently only the haptic-motor subgroup profited
from the involvement of this type of association in learning (Fig. 2.8(b)). This
pattern of exhibiting sequence-specific knowledge in terms of accuracy has also been
interpreted as participants knowing “what” to do for sequence execution. The lack
of a comparable effect size in RT suggests that they cannot translate this into how
to perform the sequence quickly [47,103]. It is perhaps reasonable to assume that
“what” and “where” is a kind of embodied knowledge, relying on motor memory
or a motor program that is cued by reafferent proprioceptive stimuli, while “how” is
more central, relying on stimuli collected from various external sources and assembled
centrally into a pattern and program. It is possible that haptic cues are in fact more
readily associated with a motor response in the sense of a motor program that governs
positioning in the allocentric space, a spatial frame that codes the locations of objects
relative to the environment. Note, however, that our current experiment did not test
this hypothesis explicitly. The association is worth further exploration.

The lack of a significant interaction effect on Transfer Error Score, an indicator of
whether haptic cues contribute differently than visual cues to the balance of motor
and perceptual learning, might be due to the sample size. The partial eta squared
(7]?,) for the interaction effect was reported as 0.121. We found through a power
analysis that 17 participants per subgroup would be needed to detect significance
with power of 0.80 and alpha of 0.05. It may be that, with larger sample sizes, the
Transfer Error Score interaction would have been significant. This should be explored
in future studies.

The results of the awareness survey also indicated that the haptic group developed
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a stronger motor representation than the visual group. Four participants in the
haptic-motor subgroup responded “Sometimes I wanted to respond before stimulus
presentation,” which is greater than in the other subgroups.

In sum, we had participants practice a SRT task in which responses were cued
either visually or haptically. Responses were prolonged when haptically cued, but
the two groups exhibited parallel slopes of improvement during sequence repetition.
Though both the visual and haptic groups showed a similar amount of sequence
learning in terms of RT's, the haptic group gained more sequence learning than the
visual group in terms of the number of errors made. We found that irrespective of the
stimuli (visual or haptic) the SRT task leads to a greater amount of motor learning
than perceptual learning. Moreover, transfer tests revealed that the haptic group
acquired a stronger motor-based representation than the visual group in terms of the

number of errors made.
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CHAPTER III

Design and Control of Backdriveable Actuators

We live in an era in which robotic systems assist us or collaborate with us in our
work and generally seep into our daily lives. Such collaboration involves mechanical
interactions between the human and robot. Backdriaveability, during interaction with
humans, should not have to be compromised for safety.

Series elastic actuators (SEAs) are used in robot designs because of its safety fea-
ture to humans interacting with robots [91,113]. In SEAs, compliance is purposefully
introduced between an actuator and robot end-effector. The compliance masks the
high impedance of the actuator from humans or environments. The high-frequency
behavior of SEAs is that of the compliant element. SEAs are able to maintain low
impedance (a very compliant spring) at high frequencies. Furthermore, they offer an
ability to shape the impedance within their operational bandwidths. Actuation that
employs compressible fluid takes over the advantages of series elastic actuation in
that the fluid compressibility provides elasticity between a bulky and heavy actuator
and end-effector. In this chapter, I shed light on the advantages of fluidic actuation
that covers many features of SEAs.

Soft robotics is a burgeoning field that is attracting attention due to its high
compliance and backdriveability during contact. A compliant structure together with
a fluid pressure or flow source and some flexible conduits can elegantly fit the needs
of numerous applications (see [63] for a review). For example, soft actuators can
be form-fitting and accommodating in wearable robot designs and can be highly
tolerant to off-axis loading and thus resilient to falling or crushing as needed for
search and rescue robots. Conventional robots with rigid links are usually driven
by electromagnetic actuators that are necessarily stiff in off-axis directions to hold
magnetic gaps. In contrast, soft actuators often lack bearings altogether. Indeed, the
dividing line between actuator and linkage is often blurred in soft robotics, enabling

solutions that avoid structural complexity and bulkiness.
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A chamber with compliant walls will expand in response to an increase in internal
pressure, induced for example when additional fluid is pushed into the chamber. If
the walls are uniformly compliant, then the chamber will maintain its basic shape
as it expands, like a balloon (Fig. 3.1(a)). If the walls have nonuniform compliance,
then expansion will be accompanied by a change in shape. One means to produce a
non-uniform distribution in compliance is the use of variable wall thickness as in the
eye-popping Martian squeeze toy (Fig. 3.1(b)). Alternatively, compliant structures
with strategically chosen resting shapes can be incorporated into the chamber walls
to produce interesting shape changes, as in the party blower (Fig. 3.1(c)). The
incorporation of inextensible fibers into the chamber walls is another important means
for controlling the changes in shape as the internal pressure increases. The McKibben
artificial muscle (Fig. 3.1(d)) is an example wherein two families of fibers wound
helically around a cylinder cause a change in length in response to a change in
volume. The McKibben artificial muscle with its symmetrically wound fibers has
much in common with certain soft-bodied animals, including worms, octopus arms,
and elephant trunks. The McKibben muscle can be generalized to an actuator capable
of twisting about its long axis if the two families of helically wound fibers are wound
with different angles. The available motions from soft actuators include longitudinal

expanding, radial expanding, bending, and twisting [9,67,82,89,107].

(a) (b) (d)

Figure 3.1: Fluidic Actuators: (a) Balloon. (b) Alien pop-eye squeeze toy. (c) Party favor
whistle. (d) McKibben artificial muscle.

Soft actuator designs, however, must cope with certain limitations. Most soft
robotic actuator designs to date are elastic structures that store elastic energy at the
same time that they actuate. The mechanical work supplied to the actuator must
include both the work available to be imposed on the environment and work stored
as elastic energy as the actuator moves. If the application within which the actuator
is to be used involves a limited supply of fluid power, and the means to recover work
stored as elastic energy is not available, then traditional soft robotic actuators may

not be appropriate. Moreover, elastomeric chambers tend to expand in all directions
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even when only a certain direction is targeted. Inextensible fiber or fabric may not
fully restrict expansion to the target direction. That is, energy supplied may be

wasted on expansion in off-axis directions.

Figure 3.2: The three-banded armadillo rolling into a sphere.

The armadillo is a mammal with armor-like rigid shells covering its upper body
including shoulder and hip while its underside is covered with soft skin and fur. The
three-banded armadillo shown in Fig. 3.2 retracts its body to a spherical shape by
pivoting its two rigid shells about the skin-separated flexible bands across its back.
Though the rigid shells exist for protection and the animal uses muscles for retraction,
I can take inspiration from the armadillo. Rigid shells incorporated into chamber walls
may be used to constrain and guide the shape change in a soft actuator. The goal
is to use rigid shells to guide the transmission of fluid power into mechanical power
in the target axes of motion. Forces transmitted across and between shells or plates
may even be used to re-direct expansion in off-axis directions into on-axis forces or
torques.

In this thesis, I propose a soft actuator design called the Origami Structured
Compliant Actuator (OSCA). This actuator incorporates hinge-connected shells or
plates arranged in a rigid origami structure. The plates contain, constrain, and guide
fluid expansion into the target motion, which in this study is bending. Origami is
the art and more recently science of paper folding that provides solutions for the
design of closed 3D structures that can be folded and unfolded. Rigid Origami
restricts all motion to the creases or hinge joints, disallowing bending or rolling of
the paper between creases. Thus the paper between creases may be replaced with
plates. It is possible to mechanically program the desired folding/unfolding trajectory
of a rigid origami structure by rearranging the array of hinge joints between plates.
Like conventional robots, these actuators are able to produce motion in predefined
directions. But unlike conventional robots, these actuators maintain backdriveability
(low back-drive impedance) and high force output capability. Power transmission can
even be enhanced as rigid plates transfer forces that arise from pressurization to the

target motion output. Moreover, kinematic singularities in the design may be used to
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produce high mechanical advantages within certain ranges of motion. OSCA utilizes
this singularity to advantage to create high mechanical advantages when desired.

Nishioka et al. [85] and Martinez et al. [75] adopted a bellows structure to create
pneumatic actuators. The pattern of folds in the bellows determined the motions of
their soft actuators on pressurization. But their bellows structures are are made of
film and paper and were subject to bulging in off-axis directions, leading to energy
losses.

In addition, I present control strategies for fluidic or SEA systems, putting an em-
phasis on the driving-point impedance. The system dynamics involving nonlinearities
could be canceled out and the desired dynamics shaped with a desired impedance.
This is the strategy that was used in the impedance controller presented by Hogan
(1985) in [50]. He achieved dynamics compensation by using the identified system
model. Once nonlinearities are compensated, high gain control is not needed for coun-
teracting nonlinear dynamic behavior. Also, because the desired inertia is replaced
with the system inertia, a lower impedance can be maintained over frequencies up
to the actuator’s controllable bandwidth. Achieving the desired inertia leads to the
increase of the closed-loop bandwidth, which is inversely proportional to the square
root of the effective inertia. As a result,the programmed stiffness dominates the
behavior rather than the system dynamics.

In the study presented here, a comparative analysis of impedance control of SEA
systems versus position control of SEA systems is carried out. I add impedance
control (with dynamics compensation) of a rigid robot system to the comparative
study. This makes evident the merit of SEA systems. Note that several impedance
controllers can be seen as a position controller (e.g., [113]). But for the sake of
convenience throughout this paper, I distinguish the term impedance control from
the term position control using the term impedance control to describe the case that
includes dynamics cancellation and substitution of desired dynamics.

Also, I propose a model-free and robust impedance controller incorporated with
time delay estimation (TDE) for the proposed pneumatic exoskeleton. It is well
known that pneumatic systems’ main drawback is the difficulty in control due to the
nonlinearity of air compression behavior [81]. In addition to the nonlinearity, it would
be nearly impossible to identify the system model precisely. Unknown disturbances
would get involved in the system. The TDE technique makes it possible to estimate all
uncertainties including disturbances as well as system dynamics without a significant
computational load. This enables the controller to cancel the system dynamics and

include the desired dynamics and impedance. While efforts toward the combination
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of impedance control and SEA systems (or flexible-joint systems) have been made
in some studies [2,13,26,80,92], these controllers require a precise system model or
high control gains to overcome uncertainties, or learning algorithms to estimate the

system dynamics and unknown factors.

3.1 Backdrivability with compressible fluid
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Figure 3.3: (a) Cylinder and piston. (b) Stiffness of air of 0.001 m3 with piston area
A = 0.0025 m? at 20 °C (T=293 K). The parameters are selected as L = 0.4 m, m = 0.0012
kg, and R = 287 J/kgK.

It is well known that fluid is typically compressible [35]. A container filled with
fluid such as air changes volume when it is pressed. If the applied force is removed,
the container tends to return to its original state. The compressibility of fluid is often
described using bulk modulus, but if the volume of air is allowed to expand or shrink
in only one direction, the compressibility can be regarded as stiffness and the fluid
as a spring. In this section, I elaborate on the idea that fluid compressibility can be
described as a spring, taking a cylinder filled with 1 7 (0.001 m?) of air for example,
which is depicted in Fig. 3.3(a). The force F' applied to the piston by fluid is the

product of the pressure inside the chamber P and the area of the piston A:
F = PA. (3.1)

The stiffness effect of the fluid in the chamber can be obtained as follows, differ-
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entiating force F' with respect to position x:

. OF 0P
s Tt (3.2)

With the following relationship coming from the assumption that the fluid in the

cylinder is an ideal gas undergoing an isothermal process (AT = 0),

mRT mRT
P = = )
% A(L + z) ’ (3.3)

where m,V are the mass and volume of the entrapped fluid, respectively; R the
universal gas constant; T' the absolute temperature and L the length of the cylinder.

The partial derivative of P with respect to x may be obtained as

oP mRT

= A4
Ox A(L + x)? (34)
Substituting Eq. (3.4) into Eq. (3.2) yields
mRT
= .
T +a)? (3:5)

From Eq. (3.5), the fluid contained in the cylinder acts as a nonlinear spring. The
stiffness k increases nonlinearly as the piston is pushed in, as shown in Fig. 3.3(b) (in
the case of air). A further finding is that the stiffness of fluid depends on the cylinder
length L; a longer L leads to a lower stiffness. This is analogous to the fact that
the equivalent stiffness depends on the deployment of multiple springs; the equivalent
stiffness of springs in series is lower than that of of springs in parallel.

Using compressible fluid in actuation, that is, including a container filled with
compressible fluid between the actuator and end-effector provides several advantages
in addition to flexible transmission and high force-to-weight ratios in fluidic systems
(Fig. 3.4(a)). Fist, the fluid in the container masks the actuator’s impedance including
inertia and friction to the end-effector. As well, impact forces on the end-effector are
absorbed by the fluid compressibility; it protects the actuator. But as a mediator, still,
the fluid transmits energy from the actuator to the end-effector. These characteristics
of fluidic systems are common to the primary features of a series elastic actuator
(SEA, Fig. 3.4(b)), a concept of actuation that purposely introduces compliance
between an actuator and end-effector. The compliance that is typically realized with a

spring significantly reduces the backdrive impedance of the device. The actuator and
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Figure 3.4: (a) Fluidic actuation with no fluid in and out, and (b) series elastic actuation.

transmission (including their equivalent mass and nonsmooth dynamics) are hidden
behind the elastic element when viewed from the environment. Also, with a reduced
apparent mass and intervening spring, impact forces are attenuated. This provides
a safety feature to persons interacting with the robot and by the same taken the
robot actuators and transmissions are protected. Fluidic systems with compressibility
share these characteristics with SEA. These fluidic systems share the advantages and

disadvantages of SEA. Table 2.1 summarizes the characteristics of fluidic actuation.

’ Advantages \ Disadvantages ‘
Decoupled actuator impedance Limited stiffness
Reduced friction effects Limited bandwidth
Inherent safety High power requirement

Impact absorption
Energy storage
Flexible transmission
High force-to-weight ratios

Table 3.1: Characteristics of fluidic actuation.

Not only systems with fluid flow entrapped (no fluid in-and-out), but also systems
that are controlled with fluid flow in and out can be regarded as a SEA system, as

described in Fig. 3.5. I demonstrate this fact in the following. The output force F;
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that is generated by the piston in Fig. 3.5(a) may be expressed as
F,=PA-P,,A,, (3.6)

where P denotes the absolute pressure inside the chamber of the pneumatic circuit;

P,im the atmospheric pressure; A, A, the piston areas.
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Figure 3.5: (a) Fluidic actuation with fluid in and out, and (b) its equivalent series elastic
actuation.

Differentiating Eq. (3.6) with respect to time yields

. OF . OF
F=— — 1. 3.7
! 6mm + ox; & (37)
Using the ideal gas law
mRT mRT
P = = 3.8
Vv Vo + Axy’ (3:8)

where 1V denotes the initial volume of the fluidic circuit,
the partial derivatives of F; with respect to m and z; are calculated as follows,

respectively:

OF 9PA  RTA 39)
am— axl —‘/o—i‘ALL’l )
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Then, Eq. (3.7) can be rewritten as
: TA T A*
£ R . mRi (3.11)

The mass flow rate 7 is a control input to the pneumatic system. A servo valve
connected to the chamber commands fluid mass flow 7 based on a current signal 7,
as described in Fig. 3.5(a).

Additionally, the stiffness of fluid is derived as

oF, mRT A?
kpg = = TS (3.12)
ox; (Vb + AZEZ)

Now, I convert the fluidic system (Fig. 3.5(a)) to an SEA system (Fig. 3.5(b)).

Uncompressed inflow () from a pressure source actuates the piston, which position

is denoted as z,,, and leads to the velocity of the piston, expressed as, in terms of
flow @,

_m (3.13)

T, =

| O
3

where p is density.

However, if the fluid entrapped in the circuit is compressed, elasticity occurs. The
piston position in the compressed state is different from that in the uncompressed state
(). With the piston position in the compressed state denoted as x;, the compression

and elasticity (stiffness ksga) can be related with the output force F} sga, as follows:

Flspa = kspa(xm — x;). (3.14)

And its derivative is given as,
Fyspa = kspa(@m — 1) + kspa(im — 7). (3.15)

If kpg (3.12) is substituted into kgga, the derivative of the output force of the
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SEA system FLSE A can be expressed as follows:

Fispa
( RT A% 2mRT A% ) ( )+ mRTA? mRTA?
= m — T | (T — T — 5 &
(Vo + Az (Vo + Azy)3" VT (Vo + Ax)? (Vo + Az;)2""
TA3 2mRT A3 TA T A*
- i m — mh Ty ) (T — x1) + R m — mh .
(‘/E) + A{L‘Z)Q (% + AIZ)S Vb + AZL‘[ (Vb + A{L‘Z)Q

(3.16)

I assume that so long as the compression is small, the change of the fluid stiffness
kfld is small; the product of them is accordingly small. Then the derivative of the
output force of the SEA system Fispa can be approximated to that of the fluidic
system F). It could be concluded that a fluidic actuator controlled through flow by
a servo valve can be modeled as a simple series elastic actuator (SEA) as presented

above.

3.1.1 Driving-point impedance

To investigate the characteristics of fluidic actuation, I look into the driving-point
impedance of the actuator, especially the open-loop impedance (I do not consider
the effect of the motor command for now). As discussed above, fluidic actuation can
be equivalent to series elastic actuation. As exhibited in Fig. 3.4, while position z,,
is in control of an actuator of inertia M based on motor command F},, position z;
determines the extension of a spring of stiffness k& between the actuator and end-
effector. 1 assume that the end-effector inertia is 0 at this moment. In practice, the
end-effector inertia would appear to be dominant at high frequencies. As long as the
end-effector inertia is small relative to the actuator inertia, the frequency at which
its effect appears would be high. T express the external force F, as the product of

stiffness k& and the compression of the spring in the frequency domain:
F. = k(Xn(s) — Xi(s)). (3.17)
With the expression for X,,(s) obtained from the actuator dynamics
(Ms*+ Bs)Xn(s) = Fy, — F., (3.18)

where B denotes viscosity of the actuator (not shown in Fig. 3.4),
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Eq.(3.17) is reexpressed as

F,, — F, X,(s)) k k(Ms* + Bs)
- S — m =
Ms2 + Bs Ms2+ Bs + k Ms2? + Bs + k

F.=k( Xi(s).  (3.19)
The driving-point impedance is defined as the displacement of the piston x; at the

effector against the external force F, exerted on the piston. That is, the definition is,

F.(s)

Z:Xl(s)'

(3.20)

Finally, I reach the open-loop impedance by setting F,,, = 0 in impedance Z (the

actuator is turned off)

k(Ms* + Bs)

" Ms2+ Bs+ k'’ (3.21)

Zor =

Note that impedance Zo; is near 0 at low frequencies s — 0, whereas the

impedance saturates to k at high frequencies (s — 00).

Cylinder DC motor

Ball screw

Figure 3.6: Driving part of a pneumatic system.
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Figure 3.7: Simulation results of the open-loop impedance of a pneumatic system.

Further, numerical and experimental examination on impendence is conducted
with a physical pneumatic system consisting of two custom cylinders. The driving
part is composed of an Aircylinder RLF10A-DAP-NAQOO 1.5in bore double acting
cylinder (Norgren® | Brookville OH) and this cylinder is actuated through a 5 mm
pitch ball screw by a Maxon RE65 motor, as shown in Fig. 3.6. The driven cylinder
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Figure 3.8: Experimental results of the open-loop impedance of a pneumatic system.

is an Airpel E16D5.0U 16 mm bore antistiction double acting cylinder (Airpot Corp.,
Norwalk CT). The mass M is an equivalent mass representing the lumped mass
of the cylinder rod, items that translate, and the moment of inertia of the motor,
ball screw and other items. Mass M is estimated as 6.56 kg. And viscosity B and
stiffness k£ are assumed to be 30 Ns/m and 120 N/m for simulation, respectively.
Note that the stiffness is assumed constant. Fig. 3.7 shows numerical results of the
driving-point impedance. As Eq.(3.21) indicates, as frequency approaches 0, the
impedance approaches 0 as well. The rate of the impedance in this frequency range is
40 dB/decade (the impedance is regarded as a mass ZoL = Ms?). The end-effector
is decoupled from the actuator dynamics except this mass. At high frequencies, the
impedance stays at 20logk (=~ 41.6) dB, meaning that the high-frequency behavior
of the pneumatic system is that of a spring. Shock loads and other high frequency
forces are filtered by the elasticity. Fig. 3.8 shows numerical results of the driving-
point impedance. As frequency increases, the open-loop impedance converges to a
value corresponding closely to an experimentally identified stiffness & = 120 N/m.
Since the dynamics of the driving part involving M and B has a high impedance (the
device is stationary), the impedance magnitude is seen relatively flat even at low
frequencies. Also, in opposition to the numerical prediction, the impedance diverges
at high frequencies mainly due to a small mass at the end-effector not accounted for

in the model.

3.2 Design of backdriveable actuators

So far, I have explored the advantages of actuation with compressible fluid. Fluid
actuation can be realized employing custom cylinders. But in this thesis, I present
several actuators designed with backdriveability in mind that employ pneumatics for
active control. As mentioned in the Introduction, soft robotics is a burgeoning field

and promises to replace hard robotics in many applications because of its inherent
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low impedance and safety. Riding on the surge of interest in soft robotics, I present
several soft actuators. Featured among these is the Origami Structured Compliant

Actuator (OSCA) that makes up for certain weaknesses in soft robotic actuators.

3.2.1 Soft actuators

In soft robotics, robots are typically created out of elastomeric materials. If an
elastomeric chamber is air-tight, it can be expanded and contracted based on the
pressure inside. By outfitting various areas of the otherwise extensible surface of the
actuator with inextensible fiber or fabric, various motions like bending, stretching, or
twisting can be achieved. The representative examples are McKibben actuators and
the Fiber Reinforced Elastomeric Enclosures (FREESs) presented in [9,67].

Elastomer

Pressure  mmmm———
[

Inextensible fiber

(b)

(c)

Figure 3.9: (a) The trimetric view and (b) side view of a bending actuator design using
an elastomeric material, and (c) the CAD rendering of the mold.
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Figure 3.10: Bending motions when pressured.

Actuator A
Fig. 3.9 presents a bending actuator made of an elastomer material for the purpose of
motor rehabilitation. Our body joints typically produce extension and flexion. The
bending actuator can help produce flexion about a paralyzed or impaired joint. The
actuator has multiple chambers on its top side, while it has a piece of inextensible
fabric on its bottom surface that restricts expansion of the surface. It is a similar
structure to the actuator presented in [89]. The actuator is molded in a 3D-printed
ABS plastic mold using an elastomer, Ecoflex® (00-30, Smooth-On, Inc., tensile
modulus of 69 kPa), as exhibited in Fig. 3.13(a). Then, a piece of inextensible fabric
is bonded to the bottom side using Ecoflex® again. Fig. 3.10 shows snap-shots of
the actuator under various pressures.

This kind of actuator, however, requires a portion of supplied power to expand
the elastic material. This supplied power is stored in the actuator and not imposed
on the environment (or a human who wears the device). Also, energy supplied may
be wasted on expansion in off-axis directions.

Actuator B
To increase the energy efficiency, the elastomeric material can be replaced with
materials that do not store energy. Inextensible but flexible materials such as vinyl
are good candidates. Fig. 3.11 shows schematics of a bending actuator that consists
of a frame and an inextensible yet flexible (compliant in bending) cover. The cover
allows the frame for expansion to bend toward one direction but it still contains fluid
(extension on the bottom side is restricted). The membranes that form multiple
chambers inside the hose play a role in enlarging the area to be fluid forced in in the
on-axis direction versus that in the off-axis direction in a chamber. This idea is for
promoting bending motion in the on-axis direction. The hole on a membrane is for
aeration between chambers.

This actuator stores less energy relative to elastomeric actuators. This actuator
also can reduce energy loss to expansion in off-axis directions.

I manufactured this bending actuator using hose. With vinyl, the hose increases
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Figure 3.11: (a ) (b) Schematics of a bending actuator design with inextensible and flexible
materials, and (c) an actuator made with vinyl hose.

NN

Figure 3.12: Bending motions when pressured.

flexibility toward one direction. Rubber membranes are injected into the inside hose
to form multiple chambers. Bending is produced in the hose when extension on one
side is restricted by an inextensible fiber. Fig. 3.12 shows snap-shots of the actuator
under various applied pressures.
Actuator C

Another type of actuator designed constrains expansion in off-axis directions and
guides fluid expansion into the target motion. One example is a pneumatic rotary
transmission with multiple air chambers, presented in Fig. 3.13. The frames of 10
cm outer diameter, along with a pair of “cup” and “cap” frames, were CAD drawn
and 3D printed out of ABS plastic. Each of the cup and cap frames has three walls
with an angle of 120 degrees between them in the radial direction. A ball bearing
enables these frames to rotate against each other. A total of six air silicone-rubber
bellows-type chambers (Ecoﬂex® 00-30, Smooth-On, Inc., tensile modulus of 69 kPa)
were created using 3D-printed ABS plastic molds. The bellows-type design allows
the chambers to expand their volumes without requiring extension on the surfaces.
Half of the chambers generate a clockwise moment, whereas the other half creates a

counter-clockwise moment. Guiding the chamber expansion enables the mechanical
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work supplied to be used in the work imposed on the environment, as long as the air

chambers do not spend energy in expansion.

Figure 3.13: (a) Schematic and (b) a picture of pneumatic rotary transmission.

3.2.2 OSCA

The OSCA features a chamber surrounded with rigid faces connected through
hinges. The actuator does not store energy as elastic energy as the actuator moves.
The rigid faces guide the expansion of fluid. This design compensates for the weakness
of soft actuators in that expansion in off-axis directions is in fact converted to useful
on-axis forces or torques. The OSCA utilizes a kinematic singularity that gives rise
to a significant mechanical advantage over certain ranges of motion.

Rigid chamber in 2 Dimensions
To gain insight into the advantages of combining soft bending actuators with rigid
plates, we undertake a comparative study using simple 2D models. Fig. 3.14 presents
a pair of 2D models which may be considered cross-sections of 3D chambers. The
upper model features two plates connected along their bottom edge by a hinge with
an elastomeric material functioning as a cap. The lower model features the same two
hinge-connected plates to either side but these are hinge-connected to two additional
smaller plates that create a top cap. The hinges may be realized with compliant
material or pin-bushings.

Considering for now only the effect of fluid pressure in the plane of the cross
section, pressure on the side plates produces a moment about the lowest hinge joint
in both models. Pressure against the elastomeric cap in the upper model, however,
only produces expansion in off-axis directions and little or negative moment about
the lowest hinge. Fluid pressure on the cap of two hinged plates in the lower model

produces a change in configuration of what might be considered a four-bar mechanism,

41



converting upward pressure into outward moment about the lowest hinge until the two
cap plates are co-planar. The configuration in which the two cap plates are co-planar
is a singularity in the mechanism.

The plates making up the cap in the lower model in fact transmit compressive
loads to the side plates, something that is not possible in a thin-walled elastomeric
structure.

The contribution of the top plates to the expansion moment about the lowest
hinge can be quantified in a simple kinetostatic model. Neglecting unbalanced loads
and assuming that the pressure is uniformly distributed inside the chamber, we
may consider only motions that maintain symmetry about the vertical centerline,
as depicted in Fig. 3.15. Link 1 models a side plate and link 2 models one of the two
cap plates. Link 2 is pin-connected to a slider whose motion is constrained to the
centerline. The angles ¢4 and ¢ depicted in Fig. 3.15 may be expressed as functions
of the half-angle 6 that describes expansion about the bottom hinge B (the actuator’s
bending angle):

Elastomeric cap _

Jg Pressurized

Rigid cap

Pressurized

Figure 3.14: Elastomeric chamber and rigid chamber.

ast

Pa :5*1(7), (P4 >
oo =m — 0 — Pa, (3.23)

bl 3

) (3.22)
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Figure 3.15: Free body diagram of half of a rigid chamber.

s denotes sin 6, cp 4 denotes cos ¢4 and so on.
An analysis enforcing static equilibrium produces the following expression for
M(6):

2 2
pa s°pach cl
M) = — b( — 0— 3.24
where p denotes the pressure injected into the chamber.
The moment M in (3.24) can be expressed as, using the definition G,
M = Gp, (3.25)

A g2 0 s2pach
where G = G + ab(g55~ — spast — =227).

The moment is related with the pressure in the chamber, defining G.

Equation (3.24) expresses the output moment M () as a sum of four terms: the
first term is a moment contributed by pressure acting on link 1 while the remaining
terms capture the contribution of pressure acting on link 2 pushing link 1 outward
while the chamber is inflated. The singular configuration is evident in that the
expression for Fy3 approaches infinity as ¢4 approaches 90°.

Plots of the moment output considering various ratios of the lengths a and b of
the the side and top plates are presented in Fig. 3.16. We set the pressure p and
length a to be 1 and 2 with the appropriate units,

respectively. The blue solid area applicable regardless of the a : b ratio indicates
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the contribution of the side plates. The red shaded area above the blue area indicates
the moment contributed by link 1 and thus the advantage of the upper cap plates.
The chamber with the elastomeric cap lacks this advantage. We would predict that
chambers with elastomeric or film caps generate smaller moments than the moment
produced by the side plate (link 1). Further, elastomeric caps can begin to pull
the side walls inward when sufficiently expanded, thereby counteracting the moment
produced by the side plates.

gl B Moment by link O [ Moment by link (2)

7 a:b=

Moment

10 20 30 40 50
Angle 6 (deg)

Figure 3.16: Moment generated by half of the rigid chamber with ratios of a : b = 2:%,
2:1, and 2:3.

Let us calculate the volume of the chamber. We have the volume of half of the

chamber as

1
V= §abs¢c. (3.26)

Differentiating volume V' with respect to time leads to
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With the relationships s6 = bs¢4/a and s*¢ + ¢4 = 1, we further rearrange 1%
as
v a? ; ch s2pach

= (g 0= S5

(3.28)

I note that the relationship between the change of the volume and the rate of the

opening angle, using G, defined in (3.25), as
V =Gé. (3.29)

This analogy of the relationships between moment and pressure and between the
change of the volume and the rate of the opening angle originates from the fact that
the power is conserved. That is, the fluidic power is converted into the mechanical

power as follows:
Vp = GOp = Gph = M0. (3.30)

Chamber with rigid origami structure
Now it is time to convert the rigid structure developed in 2D into a 3D chamber. Side
plates composed of fold-able plates are required to close both sides of the chamber.

The science of Rigid Origami considers 3D structures that may be created by folding
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paper or other materials at fixed creases without bending or otherwise deforming the
material between the creases. Thus all the faces are rigid and remain remain rigid
while flexing the creases. I have designed side plates based on the reverse fold [28].
Unfortunately, it is impossible to construct a 3D structure with rigid faces and flexible
hinges that is entirely closed in volume according to the following theorem previously

known as the Bellows theorem [19].

The Bellows Theorem  The wvolume of a polyhedron remains constant

under flexing.

This theorem suggests that an articulated rigid origami structure cannot be fully
closed; the structure must include slits or must include certain faces that are flexible.
We have designed two types of origami-structured actuators, as depicted in CAD
renderings in Fig. 3.17. Actuator I is a structure with slits. In this design an air bag
is tailored to fit inside the origami structure so that fluid is entrapped. The top plates
(named Plate B) are fashioned as trapezoids so as to not touch the side plates (Plate
Cs) at the folded state, thereby accommodating a wider range of bending motion,
as shown in Fig. 3.18. In addition, certain edges are filleted to protect the air bag
inside. Actuator II has flexible faces included in the side plates. A flexible material
such as Mylar is applied to create all the hinge edges as well as the flexible faces. For
convenience in manufacturing, Actuator II was produced from plastic material using
a 3D printer with thin breakable walls initially linking adjacent rigid faces or plates.
The breakable walls are taped with a flexible material before being broken free.

Moment generation advantage
The kinetostatic analysis in 2D presented above may be extended to 3D. I analyze
the moment generated by the prototype designs of the proposed actuators to evaluate
their advantages. I quantify the moments with and without top and side plates to
evaluate the various contributions to the actuator output moment. Again I may
consider half of the actuator design for simplicity, considering symmetry, as shown in
Fig. 3.18.

Concentrated forces are depicted instead of distributed forces applied to each
plate. I compute moments as a function of the angle # between the vertical plane and
the side plate. Firstly, the relationships between the angle 6 and the dihedral angles

boc2, Do, Pace, Pan, and the angle #yco may be described using:
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Actuator | Actuator 11

Flexible layer

e .
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Flexible

Figure 3.17: CAD renderings of two types of rigid origami structure and the side views
of their hinge joints for a bending actuator. t: thickness of the rigid plate, d: diameter of a
rod, h: thickness of a thin layer at a hinge edge between rigid plates, g: gap between rigid
plates at a hinge edge.

boea = (S (< T, (331)
_,,as0 T

¢OB =S (T): (Z 5)7 (332)

baca =550 (< 3), (3.33)

Gap =m—0— 8_1((1—29), (3.34)

I il ¢ (a(1 - (% - —”2_[’2)39)). (3.35)

Next, I carry out a static force analysis, neglecting the effects of the weights
and accelerations of the plates during actuation. Plate C1 (shown in Fig. 3.18) is
excluded considering that the force transmission of Plate C1 from the force led by
the supplied pressure to the resultant moment is negligible. Rather, Plate C1 has a
role of compressing the air bag as the actuator approaches its fully unfolded state. In
a similar way to the 2D structure, a static force analysis gives the following resultant

moment that is generated by half of the Actuator I as
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cPoc2

Figure 3.18: Free body diagram of half of Actuator I. Black thick arrows indicate
concentrated forces which are generated by air pressure; black thin arrows indicate forces
that are applied between two rigid plates. The symbol 6 denotes the angle between the
vertical plane and Plate A; 6yce denotes the angle between the line of Plate C2 contacting
with the vertical plane and vertical line; ¢s denote dihedral angles between plates or between
the vertical plane and plates.

Note that half of the bending OSCA has two Plate C2s (on the left and right
sides). This obtained moment is applicable to Actuator II as well. The moment
M (0) is the summation of the three components: a moment by Plate A, a moment by
Plate B that pushes Plate A, and a moment by Plate C2 that pushes Plate A while
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the actuator is inflated. Plots of the moment outputs with several ratios between
Plate A length a and the Plate B length b are presented in Fig. 3.19. The length a
is set at 2 units. I simply calculated Fa, Fig, Foo as pa?, pab, and pab/4, respectively,
where p is the input pressure which is selected as 1 unit of pressure. The first thing
to note is, as with 2D rigid chamber (Fig. 3.16), the singularity effect is also apparent
in the 3D case. The singularity is approached when Plate B and Plate C2 become
coplanar with those of the other side of the actuator structure. Fig. 3.19 shows the
proportion between the contributions of each plate to the resultant moment. Plate B
has a more significant effect in increasing the moment than the two Plate C2s (left
and right). Without Plate B and Plate C2s, we would predict that the moment falls
down to the blue area in the graph Fig. 3.19.

25 ; ‘
I Moment by Plate A
Moment by Plate B
y
20t D Moment by Plate C2

15¢

Moment

10+

0 10 20 30 40 50
Angle 6 (deg)

Figure 3.19: Moment generated by half of the bending OSCA with ratios of @ : b = 2:%,
2:1, and 2:%. The values are stacked in an order of moments by Plate A, Plate B and two
Plate C2s (left and right)

Experimental validation
To validate the design and models of the OSCA bending actuator, CAD models
of the two types of rigid structures (Actuator I, Actuator II) in Fig. 3.17 were 3D
printed out of ABS plastic. Also, I printed two structures with Plate A length a
versus Plate B length b of 10:5 and 10:7.5 in c¢m, respectively, for each type. The
design parameters depicted in Fig. 3.17 were set as t=2 mm, d=1.8 mm, h=0.2 mm,
and ¢g=0.2 mm. Air bags were created using Mylar with a thickness of 0.05 mm
which were tailored to the inside shape of Actuator I. Also, I used the Mylar for the
flexible faces of Actuator II and to coat the thin layers by which the hinge edges were
realized. Fig. 3.21A shows pictures of the two prototypes of Actuator I. To evaluate

the performance of the bending OSCA in terms of the moment versus the opening
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angle, a sensing apparatus was equipped with a 5-kg rated beam load cell (Transducer
Techniques LSP-5) and an optical encoder (US Digital EM1-1-1250) (see Fig. 3.21B).
Since the rotation axes of the sensing device and actuators were not exactly aligned,
the moment and motion of actuators were obtained through additional computation.
The supplied pressure was controlled by an electro-pneumatic proportional regulator
(SMC ITV0010-3BL). Control of the regulator and data acquisition were carried out
using a Sensoray 626 PCI card installed in a PC running Matlab R2013a Real-Time
Windows Target. Fig. 3.20 illustrates the experimental setup.

Pressure
source

Sensoray board

Angle & moment sensing device

Figure 3.20: Experimental setup.

Fig. 3.22 shows the moment of the Actuator I prototype with a ratio of a : b =
2:1 under a pressure of 0.1 Mpa. I investigated the contribution of each plate to the
resultant moment of the actuator: the moments when inflating the Mylar air bag
with only Plate C2s, with Plate C2s and Plate Bs, and with all plates (including end
plates), respectively. Note that with Plate B, the actuator did not open beyond 60
degrees where the actuator was fully unfolded as I limited the range of the hinges
mechanically. The actuator with only Plate As opened beyond 60 degrees to the state
where the air bag was fully expanded. The experiment result is in good agreement
with the numerical prediction (Fig. 3.19). I see a sharp increase in moment as the
opening angle approaches 60 degrees in the case including Plate Bs and case including

Plate B and end plates. This increase is due to the singularity in the OSCA design.
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(b)

Load cell

Encoder

Figure 3.21: Two prototypes of Actuator I with Mylar airbags inside (a) and measurement
of the moment of the prototype versus the opening angle (b).
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Figure 3.22: Proportion of the moment generated by an Actuator I prototype with a ratio

ofa:b=2:1.

The Mylar air bag in the case of the actuator without Plate B first expanded outward

before pushing the side plates in the desired direction. This led to a longer time to

reach a given opening angle.
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Figure 3.23: Proportion of the moment generated by an Actuator I prototype with a ratio
ofa:b=2:3.
2

Fig. 3.23 shows the moment of another prototype with a ratio of a : b = 2:%,
which has a wider range of working angle. It is revealed that this OSCA, which is
surrounded by all plates, creates a higher moment than when it is with only Plate Bs
but the contribution of Plate Bs to the output is significant. Both the cases exhibit
the singularity advantage. Without even Plate Bs, the actuator cannot generate
positive output all the way due to the predominant expansion in off-axis directions
(not shown in the graph).

Application I

Unaffected hand

Affected hand

Bending OSCA

Figure 3.24: Use of bending OSCAs to transmit body power from the joints of an
unaffected hand to the joints of a motor-impaired hand. The body-powered application
demands a transmission and actuator design that transmits power with minimal loss and
minimal elastic or inertial energy storage in a lightweight package.
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OSCAs could be applicable to needs for compliant motions including robot manip-
ulators and exoskeletons for rehabilitation. A target application is the transmission
of body-power from the less affected joints of a person with neurological injury to
their own affected or weaker joints. A passive exoskeleton that routes body power
among joints would enable an individual to assist themselves. Regardless of the
type of coupling, the user is in control of speed, power, and timing of motions.
Exoskeletons incorporated with OSCA would attain portability, safety, and compliant
backdriveability, all with the ability to scale assistance and maintain the engagement
of the patient. Fig. 3.24 presents bending OSCAs designed for eventual use in
body-powered hand rehabilitation. The bending actuators are designed to assist the

expanding and flexing motions of the hand.

=

Figure 3.25: A schematic of an OSCA manipulator with OSCAs deployed in a zig-zag
way.

Application II
A robot manipulator can be created by engaging an OSCA with the next repeatedly
in a zig-zag way, sharing one face of each OSCA, as depicted in Fig. 3.25. The
manipulator produces longitudinal expanding and bending motions according to the
opening angle of each chamber which can be controlled by pressure sources. More
independent pressure inputs leads to a larger variety of possible configurations; it
makes possible positioning the end-effector to the same position with various postures
of this highly redundant manipulator.

I consider a simple planar manipulator consisting of multiple OSCAs (2n) with
only 2 pressure sources, as presented in Fig. 3.26. Each half of the 2n OSCAs (n)
rotates a clockwise under the pressure input p,, while each of the other half (n)

rotates 3 counterclockwise under the pressure input ps. The manipulator produces
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Figure 3.26: A schematic of an OSCA manipulator with 2n OSCAs and a mass at the
end-effector controlled by 2 pressure sources.

planar motions depending on angles o and §. It is assumed that the end-effector
(mass m,) is placed at the middle of the plate of the outermost OSCA (z,, y2,) and

the inertias of the plates are negligible.
e Kinematics

[ map angles a and 3 to point (22, y2,). The distances between the middle points

of the plates that form angles o and (8 are calculated as
B o B .
lo = ——— =asin—,lg = ——— = asin= (3.37)
where a is the length of plate.

Also, the angles of the lines connecting the middle points of the plates of each

chamber versus the vertical lines are obtained as
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0o, =na — (n — 1)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

Then I express points (2, Y2,) in terms of angles a and  in turn as follows:

1 =lgsinby, y; = l,cosby,
) :lgsinﬁg + xq, Yo = lﬁCOS@Q + Y1,
r3 =losinbs + o, y3 = l,c0s03 + Yo,

x4 =lgsinty + x3,ys = lgcosty + ys,

Ton =lgsinba, + Ton_1, Yon = l3c0s02, + Yon—1.

A more general form of position can be given as
Ton =lq Z(sinQQk_l) + 1 Z(sme%),
k=1 k=1

Yon =lo 2(0056’%_1) + 15 Z(COSG%).
k=1 k=1
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The velocity may be expressed as

n

=1, Z (sinbor_1) + 1o Z k—— )cosOap,_1 a—laz k — 1)costqy_ 1)5

+ g Z (sinbay) + g Z(kcosﬁgk a—lg Z ((k— —)0039%)6

k=1 k=1

=1, ZCOSQQk 1) — la Z k?——SZ’leQk o+ Uy Z k — 1)sinfqy_ 1)6

+ s Z(COSQQk —lg Z (ksinba)d + 13 Z (k—= SmQQk)B (3.50)
k=1 k=1

Differentiating ., [ in (3.37) with regard to time, I have I, and fg as, respectively,

. a o, a B .
lo = 5008505,[5 = 500355. (3.51)
Eq.(3.50) and Eq.(3.51) can be rearranged as follows after defining the Jacobian
J that relates the opening angular velocities of chambers to the linear velocity of the

end-effector:

where

VES R (3.52)
J21 J22

, o o
Ji :§cos§ ;(smﬁgk 1) + la Z ((k—= 0039% 1)+ 15; kcosbay), (3.53)
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n

- 1
Ji2 :—cos— Z (sinbay) — Lo Z — 1)cosbag—1) — g Z((/{; — 5)0089%), (3.54)
k=1

n

a4 ax ) S
Jor :§cos§ ;(cosﬁgkl) — 1, Z((l{: — 5)527102;6,1) — g Z(l{;sanQk), (3.55)

n

Jo2 =§cosﬁ Z (cosbar) + Lo Z — 1)sinbar—1) + I3 Z ((k — 5)3@719%) (3.56)

o Kinetics

Next, I proceed to the dynamics of the end-effector by the pressure inputs to the
chambers. With the Lagrangian L defined considering the kinetic energy of the

system,

Me

the following two Euler-Lagrange equations describe the dynamics of the end-

effector:
ddL dL
o« =T o (3.58)
ddL dL

where M,,, Mz denote torques generated by chambers with opening angles of o and 3,
respectively. Note that I do not elaborate and present the equations of motion here.
The torques by chambers are produced by pressure inputs. The pressure inputs are

calculated using (3.25) as follows:

= GHGIM,, (3.60)
ps = G—1<§>Mﬁ. (3.61)

I conduct a simulation study in which the end-effector is loaded with 0.1 kg in a
gravity field and driven to various target positions, investigating the resulting opening
angles and pressures inside each group of OSCAs. I design a simple position controller
that pushes the end-effector to a desired position (xg4,ys) with virtual springs of
stiffnesses K, K, in the z-direction and y-direction, respectively. 1 do not focus

on control performance in this position control. The products of stiffnesses K, K,
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Figure 3.27: A schematic of an OSCA manipulator with 6 OSCAs controlled by 2 pressure
sources.

and the difference between the desired and actual positions in each direction are the
forces, defined as F,, F},, that the OSCA manipulator needs to generate. Using the
Jacobian J in Eq. (3.52), moments M,, Mz can be obtained from forces F,, F,. And
the pressure inputs p,, ps are obtained using Eq. (3.61). A procedure of positioning
the end-effector to the desired position is expressed in the following equations and
depicted in Fig. 3.28.

o K > —”M ”"”’ﬂ _p

X Vd

)

v
»(

»

X,y

Figure 3.28: Position control of the OSCA manipulator with ideal pressure sources.
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Figure 3.29: Positioning the end-effector and its accompanying opening angles and
pressures inside each group of OSCAs: (a), (e) the end-effector position, (b), (f) the opening
angle, (c), (g) the pressure, and (d), (h) a depiction of the end-effector positioned to the
target positions.

Bl | Kalra =) (3.62)
E, Fy(ya —y)
M, | F,
=Jr (3.63)
M, F,

Fig. 3.29 presents the results with the desired positions (0, 0.1sin(27t)) and
(0.05sin(27t), 0.15sin(27t)) for 1 second. The dimensions of the identical OSCAs
a,b are set to 0.1 m and 0.03 m, respectively. The stiffnesses K, K, are both set to
150. Integration is performed using ODE45 with time step 0.5 ms.

3.3 Control of backdriveable actuators

In this section, I present several control strategies for force control and impedance

control of fluidic systems. One of the proposed force controllers decreases the driving-
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point impedance while increasing the operational bandwidth. The proposed impedance

controller cancels system dynamics without a precise system model.

3.3.1 Force control

Fluidic systems can be controlled by fluid flow through servo valves (Fig. 3.5).
And I showed in Section 3.1 that fluidic actuation controlled by flow can be reduced
to a SEA system (Fig. 3.5(b)). The dynamics of the servo valve that generates fluid
flow rate ) based on a control current i, assumed as a first-order system, shall be
described in the frequency domain as

K,

Q(s) = p— 1](3), (3.64)

where s is the Laplace variable; K, a valve gain; 7, a time constant.
Cylinder displacement X,, may be expressed in terms of fluid flow rate ) and

control current I as follows:

Vs QL) K,

s As _As(Tvs+1)I(S)' (3:65)

I assume that the first-order dynamics accurately describes behaviors of the system
in the frequency range of interest as in [96]. Also, no flow and pressure limits
are assumed. [ analyze the pneumatic system in terms of bandwidth and output
impedance. However, as investigated in the previous section, the compressibility of
the air entrapped in the fluidic circuit leads to elasticity. I simply convert the system
controlled by the servo valve to an SEA system that includes elasticity (Fig. 3.5(b)).
It is reasonable to virtually map the position controlled by fluid flow to position x,,
and the position controlled by elasticity to position z; in the SEA system. Position
T, can be regarded as position x; in Eq. (3.65) With the elasticity lumped as a

constant kg, the output force F; can be expressed as

K,

Fi(s) = ks(Xm(s) — Xi(s)) = ks(m

I(s) — Xi(s)). (3.66)

Force control 1

For control of the output force Fj, I design the control signal 7, introducing a controller

Cy(s), as follows (Fig. 3.30):

I(s) = Cy(s)(Fals) — Fi(s)), (3.67)
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where Fj is a desired force.
Substituting Eq. (3.67) into Eq. (3.66) yields the closed-loop output force:

_ ks K, Cr(s)Fu(s) — ksAs(mys + 1)Xl(s).

F
(s) As(tos + 1) + ks I, Cy(5)

(3.68)

0 rc,(s)jé — VvV —)

X

m

Figure 3.30: Force control I of a fluidic system

According to Eq. (3.68), the closed-loop output force F; involves two inputs Fy
and x;. The characteristics of interest are the closed-loop bandwidth and output
impedance. By eliminating the dynamics due to desired force, setting F; to 0, I take
a look at the two characteristics. The closed-loop output impedance Z.; is expressed

as

Fi(s) ksAs(Tys + 1)
Z = — pr— . .
U= TX06) T As(ras + 1) + kaKoCy (5) (3.69)

At low frequencies, it is possible that the impedance depends on controller Cf.

As
K,Cy

Cy are tuned high, the impedance at low frequencies decreases accordingly. At high

As the Lapalce variable s approaches 0, Z.; converges to . If gains of controller
frequencies (complex variable s goes to infinity), the impedance saturates to the value
of kg, the stiffness of fluid compressibility.
Force control II

In Force control I (Eq.(3.67)), though it can decrease the impedance to almost zero
at low frequencies, controller C; cannot manipulate the impedance at frequencies
beyond the closed-loop bandwidth. An increase in the gains of the controller lead to
broadening the bandwidth, but it raises up the impendence at low frequencies. Force
control II would be a solution to this issue. I add an inner loop to Force control

I so that position z,, is forced to track to a desired position x,,; that leads to a
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desired output force Fjy through the relative distance with position x;. The outer
loop calculates x,,4 through a comparison between the desired output force F,; and
actual output force Fj. This strategy, depicted in Fig. 3.31, gives the following control

law:

— C{5) Zmd C,(s)

m

S—C3

X
m
—

Figure 3.31: Force control II of a fluidic system

1(3) = Cyl(8) (Xmd(5) — Xon(5)) = Col(5) (C3(5) (Fa(s) — Fi(s)) — Xon(5)
— Cy(3)(Cy(s) (Fals) — Fi(s)) — kﬂ — Xi(s). (3.70)

where (), is a controller of the inner loop.

I derive the closed-loop output force from the control input (3.70) as

_ ks K, Cr(s)Cp(s)Fu(s) — (ks K,Cp(s) + ksAs(tys + 1)) Xi(s)

F, 3.71
1(s) As(7ys + 1) + kKo Cr(5)Cy(5) + KoCy(s) o BT
and the output impendence as
F(s) ks K,Cp(s) + ksAs(Tys + 1)
Zar = — = : (3.72)
Xi(s)  As(rps + 1)+ ks K,Cr(s)Cp(s) + K,Cp(s)
Assume that controllers C,, and Cy are constructed as, respectively,
Cp = kaps + kpp, Cf = kdfs + Iﬂpf, (373)
where kqp, kpp, kg, and ks are gains of controllers C), and CY.
At low frequencies (s — 0), the impedance reduces to
koK, k ks
Zarr = P (3.74)

koK hipghipy + Kokpy  kighy + 17
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I see that the impedance is near 0 if gain k,; is set high. Meanwhile, at high
frequencies (s — o), the impedance approaches to

kAT, s> B kAT,
ATUS2 + ksKvkdfkdp82 N ATU + ksKvkdfkdp.

ch[[ ~ (375)

A low impedance can be achieved over all frequencies by Force control II within

flow and pressure limits by setting appropriate gains.
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Figure 3.32: Closed-loop bandwidth (a) and impedance (b) of Force control I and Force
control IT with gains varying.

Fig. 3.32 shows a comparative study of Force control I and Force control IT in
terms of the closed-loop bandwidth and impedance with control gains varying. For
this numerical investigation, I set the piston area A to 0.03 m? and the valve gain
K, to 2.38x107° [38]. The stiffness k, is selected as 100. I adopt a value of 7,
in [96] as 0.0015. To primarily examine the effects of proportional gains k,y, k,,
on bandwidth and impedance, I fix the ratio of the derivative gain versus the pro-
portional gain of controllers Cy, C, as 0.05, respectively. As for Force control I, a
higher control gain produces a broader operational bandwidth and lower impedance
within the bandwidth. As for Force control II, the operational bandwidth can be
infinite as long as derivative gains of controllers C, and Cy are nonzero. Also, as
predicted in Eqgs.(3.74) and (3.75), gains k4 and kg4, determine impedances at low
and high frequencies. Overall, Force control II shows broader bandwidths and lower

impedances in comparison with Force control 1.
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3.3.2 Position vs. Impedance control for backdriveable systems

In this section, I show how advantageous impedance control is for backdriveable
systems in comparison with position control in terms of compliance and the closed-
loop bandwidth. In addition, I also analyze impedance control of a system without
series elasticity to reveal the role of the elastic element in lowering the driving-point
impedance.

Firstly, let us consider the following simplified system with no distinction between
joint-space and task-space, which is depicted in Fig. 3.33(a) and Fig. 3.33(b). The
lumped masses M and B indicate the distal device including the exoskeleton and
proximal device, respectively. A force F, is applied to the lumped end-effector mass
M from the user, while the motor applies a force F}, directly to the mass B to control
the position of M. The compressibility of the air is lumped as stiffness k. Damping
effects on the device are not considered here. The transmission dynamics is neglected.
With z; and x,, denoting the end-effector and proximal device positions, respectively,

the equation of motion for the system can be expressed as

Mi‘l = k(l’m — {L‘l) + Fe,
By, + k(xy, — x)) = Fpy. (3.76)

Here, position and impedance control of the system is acheived through the back-
stepping control technique. The technique breaks the whole system into a sequence
of lower-order systems and starts constructing virtual inputs from the first lower-
order system toward the control input in the last lower-order system. This technique
therefore enables us to design straightforward position and impedance control laws for
the end-effector. Using the backstepping approach, I design position and impedance
controllers for the target system (3.76) that drives the end-effector position x; to track
a desired trajectory xg.

Defining the state variables as 1 = x;, x5 = @}, 3 = T, and x4 = Z,,, the system

dynamics (3.76) can be rewritten in state-space form as
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Figure 3.33: Schematic of (a) position control and (b) impedance control for SEA system,
and (c) impedance control for a system without series elasticity.

L1 = T2,

to = (k(xz — x1) + F.) /M,

Ty = Ty,

iy = (k(xy — x3) + F,,,)/B. (3.77)
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With an error and a Lyapunov function candidate V; defined as e; £ Ti4 — T1,

V& %e%, respectively, the derivative of V] is obtained as

"/1 = 61é1 = el(x'ljd — ZL’I) = 61(.1.317(1 — Ig). (378)

To cause the error e; to converge to zero using the Lyapunov theory, state x5 in
the first line of the system (3.76), called a virtual input, needs to be equal to value
14+ Clel(é Taq). C is a control gain that should be positive so that the derivative
of V} becomes negative as —Clef. With e, £ T9,4 — T2, I construct another Lyapunov
function candidate V, £ %e%. The negative definite derivative of V5 gives a virtual

input z3 for the error e; to go to zero as follows:

Vz = g€y = 62(552@ - 5'752)
= eg(#14+ Créy — (k(x3 — 11) /M) = —e2Ches, (3.79)
I3 — T + M/k‘(jlyd + Clél + 0262), (380)

where (5 denotes a positive control gain. The external force F, is not taken into
account in control design.

Using the relationship ey = é; + Cieq, Eq. (3.80) can be rewritten as
Tr3 = T + M/k’(de + (Cl + Cg)él + 010261). (381)

Note that Eq. (3.81) is a (virtual) control input for position control. Here, I attempt
to construct an impedance control law that ejects the real impedance (e.g., link mass)
and injects a desired impedance. The virtual impedance control law for the link is (it

also guarantees boundedness of states with the Lyapunov function)
xg(]Mp) =T + M/k’(ii‘Ld — él + mdél + (Cl + Og)él + 010261), (382)

where m, denotes the desired end-effector inertia to the user.
By looking at the link error dynamics, I gain the insight into the link impedance

against the external force if it is applied:
mgéy + (C1 + Ca)é1 + C1Chey + F, = 0. (3.83)

Combinations of C'; and C5 can set the desired damping bd(é C1+C5) and desired
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stiffness kq(= C1Cy).

From here, I construct a virtual input (x4) in the third line of the system (3.77)
for x5 and the actual control input F;, so that the link is under the position control
or impedance control I designed above.

As for the virtual input x4, I follow the procedure again:

e3 = I3 — T3, (3.84)
Vs = egé3 = e3(d3q — I3) = e3(d3q — x4) = —e3Cses, (3.85)
Ty = L‘U3,d + 0363 (386)

where C5 denotes a positive control gain and @34 is the derivative of x5 in (3.81) or
the derivative of z3ap) in (3.82).

The actual control input can be obtained through one more repetition; the objec-
tive is to force state x4 to track the virtual control input obtained in (3.86). Letting
x4 in (3.86) be x44, I define an error e, and a Lyapunov function candidate Vj as

follows:

€1 = Ty — 74, (3.87)

V4 = eq64 = 64(j74,d — 1) = —e4Cyey, (3.88)
and the actual control inputs I have are
Fm = —/{?(Z'l — 333) + Bi‘?&d + BCgég + BC4é4, (389)

where Cy denotes a positive control gain.

The final control laws are arranged as, with the relationship e; = é3 + Cses:

e SEA Position control

F,,=—k(x; —x3) + B(#, + M/k($(4)1,d + (CL + Cy) €y + C1Cqé1) + B(Cs + Cy)és+
B030463, (390)

e SEA Impedance control

Fm = — k($1 — .’L"g,) + B(.Z'l + M/k(xﬁ)i — 654) + mde§4) + (Cl + CQ)Gl + 0102é1)
+ B(Cg + C4>é3 + BCgC4€3. (391)
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Note that only the two terms —e§4) + mde§4) are added to the impedance control

law from the position control law. These two terms are needed to replace the desire
inertia with the end-effector inertia (see Eq. 3.83).

Fe(s)
% (KT)_e(kT) ) 20— ﬁ;(s)l

X(s)
—5S
x(KT) e 2 s2 + 2ws + w? v G(S)
Controller ZOH Actuator bandwidth limiter Plant
. T
ADC
Figure 3.34: Digital control implementation.
Impedances

To emulate the digital control environment, two limitations are taken into account:
the limited bandwidth of the actuator and a time delay from zero-order hold (ZOH),
as depicted in Fig. 3.34. The delay of half the sample time T results from the digital
computer using A/D and D/A converters [18]. I equate these two factors as

w T
D)2 Y % 3.92
(s) 52 4+ 2ws + w26 ’ ( )

where w denotes the actuator bandwidth.
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Figure 3.35: Driving-point impedance.

By applying the position (3.90) and impedance (3.91) control inputs to the system

(3.76), the closed-loop driving-point impedances defined as the interaction force F,
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over the end-effector position ¢; are obtained as follows:

Z(s) A E — Ms® ik kk‘+ D(s)(k + QB(s* + (c3 + c4)s + c3c4 — k))a
q Bs23 + k + D(s)(B(cs + c4)s + Besey — k)

(3.93)

where @ = (k — M((c1 + ¢2)s + c1¢2))/k for SEA position control and Q = (k —
M(mg/M —1)s* + (c1 + ¢2)s + c1¢2) [k for SEA impedance control.
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Figure 3.36: Effective impedance components: (a) stiffness, (b) damping, and (c) inertia.

For impedance control of the plant that does not include the elastic element

(Fig. 3.33(c)), the impedance is given as
Z(s) =(M + B)s* + D(s)((—M — B+ my)s® + (c1 + ¢2)s + c102). (3.94)

Based on the driving part developed in Section 3.1, the value of parameter B
is selected as 6.56 kg. The mass M is estimated as 0.5 kg. The stiffness k is 120
approximately. The desired damping by (=c; + ¢2) and stiffness kg (=cic2) for the
end-effector are set to 20 N/m and 100 N/m, respectively. And the desired mass m,
is 0.1 kg for the impedance control case. The desired impedance parameters my, by,
and kg are set to the same values for the three strategies so that the same impedance
appears at low frequencies. Gains c3, ¢4 are both set as 500. The actuator bandwidth
is set as 150 rad/s and the sampling time is chosen as 7' = 0.001s, which is achievable
in a typical digital implementation.

Fig. 3.35 shows the closed-loop impedance of each control strategy. Fig. 3.36
analyzes the effective impedances component by component as the so-called effective

ke

impedances, presented in [78]. At low frequencies up to the bandwidth -, Where

k., m. denote the effective programmed stiffness and effective end-effector mass, re-
spectively, the virtual desired stiffness is predominant in all strategies. After its
system bandwidth, the impedance control strategy begins showing the system mass

but the desired mass that is replaced with the system mass seems to be in effect under
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the actuator bandwidth limit. In the position control case, the real end-effector mass
appears after its closed-loop bandwidth. The impedance plot demonstrates that SEA
systems benefit from decoupling of the load from the proximal device in aspect of
impedance. As shown in Fig. 3.36(c), in the impedance control of the system without
series elasticity, the summed mass of the load and proximal device becomes apparent
at high frequencies. In contrast to this case, the SEA system has the lower upper
limit of impedance in mass. That is, SEA systems are advantageous in that only
the load mass is apparent in the frequency range beyond control. As predicted,
the combination of an SEA with impedance control further lowers the driving-point
impedance. This results in the fact that the desired mass is substituted for the real
load mass in impedance control as long as the actuator allows it. Accordingly, SEA

impedance control gives higher closed-loop bandwidth than SEA position control.

3.3.3 Robust impedance controller development

It is generally difficult to precisely identify a system model. Uncertainties in-
cluding the system inertia, unknown nonlinearities, and unforeseen disturbances in-
variably degrade control performance. In particular, control of pneumatic systems
suffers from a substantial difficulty due to the nonlinearity resulting from fluid com-
pressibility. The technique of time delay estimation (TDE) provides a simple tool
that makes it possible to estimate the actual system dynamics being controlled
[12,14,46,52,55,56,62,72]. The control input naturally gives rise to a certain system
output, going through the system dynamics and uncertainties including disturbances.
Using this fact, the TDE technique estimates the current system dynamics and
uncertainties with the latest past system dynamics and uncertainties, which are
estimated from the previous control input and its accompanying consequence. In
this section, a robust and model-free impedance controller incorporated with the
TDE technique for fluidic systems is presented. The target system to be controlled
is an exoskeleton with pneumatic circuits, as depicted in Fig. 3.37. Assume that
the master cylinder is powered by a motor, as in Fig. 3.6, and the end-effector is
actuated through the rotary transmission designed in Section 3.2.1. The driving part
is translational, while the driven part is rotational.

With the translational and rotational stiffnesses resulting from fluidic compress-

ibility lumped as k,, kg, the system model can be developed as
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Figure 3.37: Schematic of a pneumatic exoskeleton system.

16 = ko(xz/r — 0) — mglsind + f, + dy + F,
Bi + ky(x —r0) = fo+dy + F,, (3.95)

where I, m denote the inertias of the driven part including the exoskeleton; ¢ the
gravitational constant; [ the distance between the joint and the center of mass of the
driven part; B the inertia of the driving part; fi, fo friction forces; di, ds bounded
disturbances; r the ratio between translational motion and rotational motion.

The stiffnesses k., kg can be obtained using the ideal gas law PV = mRT. To
express stiffness k,, I first denote F), as the resultant force exerted on the driving
piston. The pneumatic system consists of two separate fluidic circuits: one entraps
air in front of the driving piston, the other one in back of the driving piston. I express
the first circuit with subscript 1 and the second circuit with subscript 2. It is assumed

that the air chambers are made of an inelastic material.

mlRT WLQRT
A
T

Fp - _PlAl + P2A2 - — AQ, (396)

where P, V, m with subscript 1 and 2 denote the pressure, volume and mass of the air
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entrapped in each circuit, A; is the front side area of the piston and A, is the back
side area of the piston considering the area of the rod.

The volumes of the air entrapped in each circuit Vi, V5 are obtained as

3th(a? — b2)0

th(a?® — 12)6
Vo = Voo + Agt — 3(&% (3.98)

where V' with subscript 0 indicates the initial volume, and th, a,b denote the dimen-
sions of the air chambers in the rotary pneumatic transmission, weight 3 is multiplied
because three air chambers form one fluidic circuit.

Then stiffness k, is given as

oF, mlRT ngT mlRT ngT
ke 2 — =L =— VIA; + ——VjAy = —— AT+ —— A3
ox ‘/12 1 T ‘/22 2472 ‘/’12 1 + ‘/*22 2
mlRT 2 ngT 2
= AT+ A2 (3.99)
(‘/'10 — A+ 3th(a22—b2)6)2 1 (‘/20 + Ay — 3th(a22—b2)0)2 2

Next, the stiffness ky can be obtained in a similar way.
The torque 7; that is transferred to the exoskeleton in the transmission by fluid
can be expressed as the product of the force by the air pressure and the distance of

it from the the origin along the w axis:

a a

T = 3P1th/wdw + 3P2th/wdw. (3.100)

b b

Then stiffness kg is written as

L _0m _ Bth(a® — b2)(6P1 B aPQ) 3th(a> — )\ * (miRT | maRT
T8 2 86 o6 2 V2 v )

(3.101)

With Egs. (3.97) and (3.98), Eq. (3.101) can be rewritten as

L (3th(a2 - b2)>2( my RT N myRT )
9 = .
2 <V10 — Az + —3th(a2_b2>9)2 (Vzo + Agw — —3th(“2_b2)9)2

2 2
(3.102)
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The ratio r can be derived from the following relationship:

3th(a® — b?)

df = Aydzx.
2

From this relationship, ratio r is defined as

a dx 3th(a® —b?)

T T T 24,

(3.103)

(3.104)

Note that SEA systems, which are equivalent to flexible-joint systems, are feedback

linearizable [108]. With the state variables denoted as x; = 0,25 = 0,25 = x, and

x4 = &, the equations of motion (3.95) are expressed in state-space form:

T1 = Ty,
to = (ko(zs3/r —x1) + G+ fr +di + F.)/1,
2.73:274,

Ty = (—ky(x3 —120) + fo+do + F) /B,

where G £ —myglsinz; .

Under the following nonlinear state coordinate transformation

21 =T,
29 =XT9,
23 =(ko(xs/r — 1) + G+ fL +di + Fo)/1,
2y =(ko(zs/r — x3) + G+ fL +dy + E) /I,

the model (3.105) can be written in terms of the new coordinates as

21 = 22,
22 = Z3,
23 = 24,

24 = Oé(Z) + /BFTHJ
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where

04(2):—792’3—§Z3+F(G+f1+d1+Fe)+E(G+f1+d1+Fe)
ko
— 1
+ e+ da), (3.108)
ko
o 1
V=18 (3.109)

The feedback linearizing control (FLC) F,,, = (—a(z) 4+ v)/f is one of the can-
didates for stabilizing and tracking. This control law contains two main functions:
cancelling out the system dynamics (a(z)) and injecting the desired dynamics through
the new input v. But this control is in need of a precise system model. Also, it cannot
deal with uncertainties including disturbances and friction. But, a robust controller
can be created with the TDE technique.

Before elaborating the design of the robust controller, it is noted that a continuous-
time plant is generally controlled in digital implementation. A controller is discretized
and implemented with sample and hold devices. Hence, I develop the controller in a
sample-data environment.

Assuming that the state variables of the system are measured at sampling instants

coe stk 1, te, tgat, - - -, a discrete-time controller is designed as
Fo(t) = Fo(te), t € [tr, the)- (3.110)
With an input delay approach [36], we re-express
Fo(ty) = Fn(t —d(t)),t € [tk trs1), (3.111)

where t;, denotes the sampling instant and d(t)(= ¢t — tx < dpee = L(sampling
interval)) denotes a time-varying delay that is continuous with d(t) < I <1.

Let us consider and reexpress the last line of Eq. (3.107) as follows:
g =2" = a(2) + BFp — BFu(t —d) + BF,(t —d) = h+ BE,(t —d),  (3.112)

where (3 is a constant and h contains the system dynamics and all uncertainties.

The term h can be estimated with the previous-step control input and its corre-

74



sponding measured output as aforementioned.

(t—d)=—-2t—d)+BF.(t—d—L). (3.113)

Utilizing this approach, the control law is constructed as

ot — d) :%(—h(t L) 4v) = Fa(t—d—I)+ %(—4% Cd) ). (3.114)

The new control input, denoted as v, determines the error dynamics of the system.

We can design v for position control as

v =2t —d) + e € (t — d) + c2é(t — d) + csé(t — d) + cae(t — d), (3.115)
where e(t) = z4(t) — z(t); and cy, - - - , ¢4 are design parameters.

For impedance control, the error dynamics needs to be related with the external
force through the new control input v. The error dynamics interacting with the

external force F, for the driving part is defined as €:
Q £ 148 + baé + kge + F.. (3.116)
Adjusting Eq. (3.116) to error dynamics of a 4 order system leads to
Q+pQ+¢Q =0, (3.117)

where p, ¢ are constants that shape the convergence of €.
With states measured at time ¢ — d, the control input v for achieving the desired

error dynamics (3.117) can be designed as

v =2t —d) + (by+ pla) /1€ (t — d) + (kg + pba + q1a) /Tsé(t — d)

+ (pka + qba) / Laé(t — d) + gka/Tae(t — d) + (Fu(t — d) + pF(t — d) + gF.(t — d)) /1.
(3.118)

However, TDE error, an estimation error, arises from estimating the current
value by the value obtained from the sampling. The TDE error is involved in the

convergence of the error dynamics. With TDE error defined as

) 2 h(t—d) —h(t) =v—20), (3.119)
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I have the error dynamics of the proposed controller including TDE error by substi-
tuting Eq. (3.115) into Eq. (3.119) as follows (position control):

e(t) =2t —d) — 2 (t) + 1€ (t — d) + 2t — d) + csé(t — d) + cqe(t — d).
(3.120)

Note that €(t) causes the system output to deviate from the desired trajectory.
As mentioned in the Introduction, the existence of TDE error influences the stability
and performance of the closed-loop system. In an effort to reduce the effect of (t)
on the error dynamics and guarantee system stability, I employ a learning algorithm,
which has been employed in various adaptive controllers [2,57]. The learning law to

counteract the combined TDE error e(t) is
Et—d)=¢et—d—L)—a&(t—d), (3.121)

where a is a learning factor.

The tracking error is defined as
E(t —d) 2k e (t —d) + kye (t — d) + ksé(t — d) + kaé(t — d) + kse(t — d), (3.122)

where k; (i =1,---,5) are parameters.
Applying the counteracting term £(t — d) to the actual control input (3.114), I

have
Fult—d) = Fp(t—d— L)+ B [Pt —d) +v+&(t —d)]. (3.123)

The proof of the stability of the overall closed-loop system is presented in the end
of the chapter.

Gain selection

The gains 14, by, and k; determine the desired impedance of the end-effector. The
constants p,q do not affect the desired impedance, rather determine how fast the
desired impedance against the interaction force is achieved. As for /3, it can be deter-
mined by tuning without knowledge of the target system model. One recommendable
way is to begin with a high positive value and then decrease the value until a better
performance is achieved.

Derivatives of states

The proposed control requires derivatives of states. Simple numerical differenti-

ation (backward differencing) or using an observer [61] would be a good candidate
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to obtain these derivatives. However, these candidates are sensitive to measurement
noise. Here, I present a recommendable method to calculate derivatives, which was
proposed in [73]. The separation principle is fulfilled for the method, therefore, it
could be used in almost any feedback control [73].

Assuming that z(* < M, the estimates of the derivatives of states required for
control can be the following equations: This estimation can be applied to obtain the

derivatives of external force F, as well.

|,§1| =, U= —5M1/4\,§1 — z1|3/4sign(21 —2z1) + %1, (3.124)
G =1y, vy = —3MY3)E — vy |*sign(( — 1) + 4, (3.125)
Zy=uwy, vy=—15MY2Z — v|"2sign(Z — v) + 21, (3.126)
2W = _1.1Msign(Z, — vy). (3.127)

The larger M, which can be tuned, leads to the faster the convergence but the

higher sensitivity to measurement noise and the sampling step.

3.3.4 Numerical validation

I conduct a simulation study of the proposed control with the pneumatic system
(Fig. 3.37). The system parameters are presented in Table 3.2. I first examine the
robustness of the proposed control to unstructured uncertainties through a compar-
ison with Spong’s FLC (F,, = (—a(z) + v)/f with a and § in Eq. (3.109)). And
the effect of TDE error compensation is examined with the learning factor a varying.
This examination is performed in free space. Next, the proposed impedance control

is investigated in interaction with an environment.

[ Parameter [[ Symbol ] Value [ Unit ]
Driven part inertia I 0.04 kgm2
Gravitational torque mgl 2 Nm
Driving part inertia B 1.5 kg
Driving cylinder bore A1, A2 0.0011, 0.0009 m?2
Universal gas constant R 287 J/kgK
Temperature T 293 K
Initial volume Vio, Vao 0.0003 m>
Air mass my, ma 3.6123x10 04 kg
Air chamber thickness th 0.03 m
Air chamber outer diameter a 0.04 m
Air chamber inner diameter b 0.02 m

Table 3.2: Parameters of the pneumatic system.

The mismatched disturbance d; and matched disturbance dy, are imposed as
2sin(2¢) Nm and 10cos(5t) N, respectively. Friction f; is given as 0.2¢; Nm while
fo as 2¢ +2sgn(gz) N. The sampling time L is 0.001 s. And d(t) is assumed to 0 in
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this simulation. The 4" order Runge-Kutta method is adopted to solve the system
dynamics with step size 0.00001 s. The primary objective of this simulation study
is to evaluate the performance of the proposed control. The derivatives of the states
for control are obtained simply by numerical differentiation (backward differencing),

assuming that no measurement noise is involved.
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Figure 3.38: Comparisons of the proposed control with the feedback linearizing control
(FLC) under mismatched and matched uncertainties: (a), (b) position (two curves overlap),
(c), (d) position error, and (e), (f) control input (two curves overlap).
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Robustness to uncertainties

To investigate the robustness of the proposed control to mismatched uncertainties
as well as matched uncertainties, I select Spong’s FLC as a comparison target. To
focus on unstructured uncertainties, I provide his FL.C with exact values of the system
parameters in o and § (3.109) to eliminate structured uncertainties. The same new
input v (3.115) is injected into the proposed control and FLC with the control gains
1, Co, 3, and ¢y in Eq. (3.123) set to 80, 2400, 32000, and 160000, respectively, to
achieve critical damping. The gain /8 of the proposed control is tuned to 800. TDE
counteraction is turned off through the proposed control and FLC.

Fig. 3.38 shows the results of the comparisons between the two controllers. The
figures on the left column are under mismatched uncertainties (while do = 0 and
fo = 0), whereas the figures on the left column are under matched uncertainties (while
d; = 0 and f; = 0). The proposed control exhibits notably reduced tracking error in
the presence of matched and mismatched unstructured uncertainties, in comparison
with FLC. This indicates that TDE efficiently deals with uncertainties. But note that
no notable corresponding increase in control input is shown.

Effect of TDE error compensation

The effect of TDE error compensation using a learning algorithm is examined with
4 different values of learning factor a: 0, 0.01, 0.05, and 0.1. The gains ky, ks, k3, kq4,
and ks in Eq. (3.122) are selected as 1, 80, 2400, 32000, and 160000, respectively. All
structured uncertainties are imposed.

Fig. 3.39 shows that a greater value of a provides more accuracy in tracking. This
suggests that the term £ in the control law that is introduced to counteract TDE
error plays a role in cancelling out the TDE error that influences the convergence of
the error dynamics. This accordingly leads to reduced position error. Counteracting
the TDE error does not require a significant increase in control input.

Impedance control

Next, I validate the proposed control in constrained space. The simulation scenario
is to rotate the exoskeleton 30 degrees. At the location of the angle 6, of 20 degrees
of the exoskeleton, a wall is installed, which is mathematically modeled as F, =
100(0. — 0). The control gains are set as: I; = 0.01,b;, = 2,k; = 25,p = 10, and
g = 25. B is tuned to 8500. I use a 9" order polynomial trajectory: 6; = —0.0037t° +
0.057t% — 0.273t7 + 0.7544t° — 1.0863t5 + 0.6789t*. All structured uncertainties are
imposed.

Fig. 3.40 shows the result of the proposed impedance control of the fluidic exoskele-

ton. With no interaction, the end-effector follows the desired trajectory satisfactorily.
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Figure 3.39: Performance of the proposed control with different values of learning factor

a: (a) position (four curves overlap), (b) position error, and(c) control input (four curves
overlap).
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Figure 3.40: Simulation results of impedance control of the pneumatic exoskeleton system:
(a) the end-effector position and (b) control input.

With interaction, the controller causes the end-effector to follow the desired trajectory
with the desired impedance, not penetrating the wall thoroughly. At the moment of

collision with the wall, a fluctuation is exhibited in control input. This phenomenon
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results from sudden increases in the derivatives of the robot states and external force

F, at that moment.

3.3.5 Stability analysis

The proposed control law is designed for sampled-data systems in digital imple-
mentation. The system is modeled as a continuous-time system with the delayed con-
trol input. Moreover, our controller uses time delay estimation (TDE), which results
in TDE error that could break the closed-loop stability. The learning counteraction
to TDE error guarantees stability. In this section, I prove that the closed-loop system
is globally asymptotically stable. The stability analysis of the time-delay system is
conducted based on [36]. By applying the control input (3.123) to the target system
(3.112), the closed-loop system including TDE error and its compensation can be
expressed as follows. I assume that zc(;l) (t) ~ zc(f) (t — d). The external force F, is not

considered in the stability analysis (F, is assumed to be bounded).

eW(t) = — € (t —d) — cé(t — d) — csé(t — d)
— cye(t —d) +&(t) — &t — d). (3.128)

The closed-loop dynamics can be expressed in a matrix form as

é(t) = Age(t) + Are(t — d) + E(t), (3.129)
where
0100
0010
Ay = , 3.130
“loo0o01 (3.130)
0000

A = , (3.131)
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I express Eq. (3.129) in an equivalent descriptor form as follows:
é(t) =y(t),
0=-y(t)

t

Again, Eq. (3.129) can be written in an extended form as

.o e
Fe(t) = 0 ]
o0 1 0] /
T Ag+ A, T ] A, t/d y(s)d
0
E(t)
where &(t) = [e(t),y(t)] and F = diag|I,0].

Next, 1 consider the following Lyapunov-Krasovskii functional.

(Ao + Ave(t) — Ay / y(s)ds + E(t).

(3.132)
(3.133)
(3.134)

(3.135)

(3.136)

(3.137)

(3.138)

From here, 1

assume that nxn matrices Py, Py, P3, S, Uy, Us, Z1, Zs, Z3, R, and N are all positive.

t

o~

Wi(t) 2 & (t)FPe(t) + / e’ (s)Se(s)ds
vy’ (s)Ry(s) @w+‘//k )||E(t)|dsde
t+o —Lito

t—d
0
o/
“L
0 ¢
1
+a//|§s||st|d8d0

—d t+o
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where

P 0
P, Py

A

, FP=PTF>0.

And another Lyapunov functional is taken into account:
Wy(t) = iE}z(s)ds
2a '
t—L

Differentiating W, along the trajectories of Eq. (3.129) leads to

&' ()l'e(t) — (1 —d)e’ (t — d)Se(t — d)

/yT \Ry(o da——/|e JIE()|do

t— t—L

@IH

t
/|s JIE®) o + 1 + s,
d

t—

where, T is obtained as

0 A+ A,

=
[I>
|

0 I
Ao+ A -1

S 0
_l’_
[O LR

t

w2 / & (t) Py (s)ds,

t—d

0

1o 2287 (t) PT E(1)

Under the following condition [36]

R U

>0,
vtz

where U = [Ul, UQ}
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(3.143)
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1 can be rearranged as

t

m< / y(s)Ry(s)ds + 2" (1) (U — [0 AT|P)a(t)

—2e"(t—d)(U—[0 Al]P)&(t)+ Le" (t)Z&(t), (3.146)

with matrix Z defined as

AR
* Zg

=

. (3.147)

On the other hand, differentiating W, along the trajectories of Eq. (3.129) gives

Walt) = o~ (E2(t) — 22(t — L))

- 2a

_ %(E(t) CE(t— L))(E() + &t — L))

_ %é(t)(%(t) — A(1))

_ és(t)g(t) _ %Ez(t), (3.148)

where £(t) £ £(t) — &(t — L).
I further work on Ws as, with the definition &(t — d) £ &(t — d) — &(t — d — L),

Wa(t) < és(t)g(t)
— 20—t = 1))~ @t — )~ &t — d~ L)ED
= (&) — =(t — L) — €00 + (€W — ¢(t — DEW)
= ([ oo - s + [ éEan)
t—L t—d
< o[ E@lEdr - 0 + [ 1E@)E®l). (3.149)

The summation of the above two Lyapunov functionals (W = W, + W,) can be
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reduced to

W(t) <& (1)T8(t) — (1 — d)e” (t — d)Se(t — d)

+2e" (1)U~ [0 AlIP)a(t)
~2"(t—d)(U [0 AT)P)&()
+ Le”(t)Za(t) + 28’ (t)PT E(()t> - ég(t)g(t). (3.150)

Letting J = [e(t) y(t) e(t—d)]7, I rewrite Eq. (3.150) as

: 0 1
W(t) <J'TJ 4 2e” (t)PT — —E(E), 3.151
(t) < (t) E() ~E()E() (3.151)
where I' is a 3n X 3n matrix, obtained as
0
¢ PT -U
I'= Ay , (3.152)
* —(1=08
where
0 I 0
¢ £P" + P+ LZ
Ay —1 Ay —1
0
+ o v + Ulr (3.153)
0 LZ 0 0

According to [36], matrix T is negative when U = [0 AT|P. T rearrange the
middle term on the right-hand side of Eq. (3.151) as

28’ (t) P 0 = 28" () P E() = 28" (t)D&(t), (3.154)
E(t) PIE(t)
with matrix D defined as
D4
Pyt pptopptopytoppto Pt Pyt P (3.155)

where P}7, Pg’j denote the (i, j)th element of Py, Ps, respectively.
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If T design £(t) such that
£(t) = 2ae” (1) D, (3.156)
as long as matrices P, P remain positive, Eq. (3.151) is reduced to
W(t) <JIT.J. (3.157)

As T' < 0, I have W(t) < 0. Therefore, the closed-loop system is globally
asymptotically stable.
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CHAPTER IV

Computational Model of Human Motor Control

Humans are endowed with a remarkable ability to execute limb movements even
in the presence of changing loads arising from interaction with the environment or
variation in properties of one’s sensorimotor system. For example, humans are able
to move a box from one place to another even if the weight and inertial properties
of the box and contents are unknown. Even when the arm is perturbed gradually or
abruptly during the task, a corrective force will be generated to compensate for the
perturbation and the box will be placed at the goal position in the end.

To explain these motor abilities, the so-called internal model has been proposed in
the field of human motor behavior. The internal model is a hypothesized controller
residing in the motor cortex and/or cerebellum. Internal models are constructed
on the basis of accumulated past experience interacting with the environment and
are used to produce anticipatory control (feedforward control) actions. The internal
model has been represented in computational formulations and these can be run in
simulation to produce movement that matches human behavior, including behavior
under perturbations. These include behaviors that cannot be described by the so-
called equilibrium-point hypothesis.

According to the equilibrium point hypothesis, movements are generated by set-
ting desired muscle equilibrium lengths and response to perturbation is governed
by a feedback response that uses the muscle equilibrium as a reference. However,
humans and animals with impaired feedback loops are still able to produce intended
movements. Also, several pieces of empirical evidence demonstrate that stiffness of
the limb during movement is much lower than that predicted by equilibrium-point
control [41,109]. Moreover, substantial delays exist in feedback loops, which calls
into question the ability of feedback mechanisms to explain human motor behavior.
With these substantial delays, equilibrium-point control cannot describe fast move-

ments [66, 99, 102]. Alternative explanations involving complex trajectories of the
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equilibrium point to produce rapid movements seem unlikely [6,70,90]. McIntyre
and Bizzi (1993) and De Lussanet et al. (2002) proposed extensions of equilibrium-
point control by considering contraction velocity trajectories that promote stability
and lower the required stiffness [21,77]. But these extended schemes still failed to
reproduce fast movements [102]. Kistemaker et al. (2006) attempted to capture fast
movements with equilibrium-point control in an intermittent way using a realistic
musculoskeletal model of the human arm [64]. But they used a short delay value (25
ms).

Internal models are thought to participate in motor control in two forms: inverse
models and forward models. An inverse model can be used to compute an appropriate
motor command that, through the physical dynamics of the environment, would
produce a desired movement. A forward model is useful for predicting sensory
feedback that can be expected as a consequence of a given motor command. Such
expected sensory feedback may be compared to incoming sensory feedback to make
excursions from expectation immediately available to the brain.

However, it remains an open question as to how the brain acquires internal models.
Does the brain identify models of the musculoskeletal system and each environment
with which one interacts? In experiments in [25], participants were asked to familiarize
themselves through practice with the dynamics of a mass-spring system attached to
their hand. In a catch trial, a different mass and a different stiffness were presented.
By showing that behaviors of participants in the catch trial were predicted by a model-
based controller while feedback control alone failed to predict them, the authors
suggested that the participants identified the mass and stiffness of the interacting
system and could even predict the mass trajectory. But identifying the structure and
parameters of dynamical systems and external perturbations during movements may
impose highly demanding practice and computational loads.

A study by Shadmehr and Mussa-Ivaldi (1994) and several follow-up studies
showed that hypothetical internal models can be formed or adapted to new external
loads but many trials are required (near 250 trials) [7,53, 65,100, 105]. However,
such trials might not be necessary to build an internal model. Even without practice,
humans possess the ability to reach a target position even under perturbations during
fast movements [30,98]. The so-called equifinality property, defined as the ability of
a system to reach a target position under transient mechanical perturbations, was
exhibited in movements perturbed within short time periods (under 70 ms) within a
given trial [102].

Also, in an experimental study of [68] that imposed an inertia change on a
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Figure 4.1: Equifinality: the ability of a system to reach a target position even under
transient mechanical perturbations.

subjects limb during a reaching task, it was revealed that the participants did show
savings toward only a change in the inertia property they experienced most recently.
Even if subjects adapted to an effective inertia on their arm, the adaptation on the
inertia disappeared if they experienced another inertia property afterward. In another
reaching study conducted by [101], stochastic perturbations were varied from trial to
trial. This study suggests that neural structures were modified with only a short-term
memory, that is, only a memory obtained in the previous trial.

Several researchers have attempted to construct the relationship between past and
current behaviors using linear models [27,29,101,110,121]. Most of these studies found
that the current movement is influenced by only the most recent previous movement.

A motor command to a given limb and that limb’s position (and its derivatives)
are in a certain input-output relationship; the input acts on the neuromuscular
system and any environment in contact with the limb, while the output reflects the
dynamic response. Although it is difficult to identify the properties of the system and
environments with only the input and output available, the quantitative relationship
between the input and output can be used as a clue to estimate the dynamics of
the neuromuscular system for the purpose of formulating subsequent control actions.
With an estimate of the limb and environment dynamics made at the previous step,
the musculoskeletal system and environment dynamics in the current step could be
compensated. In other words, the estimate can be used in place of a system model.

In fact, time delay control (TDC) utilizes just that mechanism [125]; the rela-
tionship between input and output signals are used to estimate the dynamics of the
system under control. Time delay control is generally accepted as a simple and
powerful control architecture in the robotics area. The system dynamics and injected
perturbations are estimated using a motor command and its sensed consequence at
the previous sample in a digital implementation, assuming that the sampling time is
sufficiently small. System dynamics and perturbations are immediately compensated

based on the recent movement consequence. Thus TDC is able to cancel nonlinear
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dynamics and disturbances even when a system model is not available. The control
system can cancel nonlinear dynamics without the use of high gain control.

In this thesis, I address the possibility that human motor control produces move-
ment in a manner similar to the operation of TDC. It would be possible that an
estimate from the input-output relationship enables the brain to control a limb
without having a precise model of the limb available. If so, this mechanism could
provide a good explanation as to human capability for rapid movements regardless of
whether and how much external loads are involved. A substantial learning process is
not required.

However, biological systems have substantial delays on feedback loops, which are
at least 30 ms [69]. With such long sensory delays, estimating the current dynamics
and perturbations using a copy of a motor command and its output delayed on sensory
feedback would be inaccurate. It may be required to resolve this sensory delay issue.
In 1993, Miall and colleagues proposed a computational model of human control
mechanisms based on the Smith predictor [79]. They borrowed the Smith predictor
from control engineering to describe behaviors of biological systems. The Smith
predictor is a control scheme that had been devised more than 3 decades earlier for
factory processes with substantial feedback delays. In essence, the Smith predictor
explains how biological systems might overcome delays on feedback loops. However,
the Smith predictor has inverse and forward model components. Thus the Smith
predictor is a model-based controller; it requires a system model. In this study, I
design a control scheme that has a close relationship to the Smith predictor in its
ability to handle delays, but is free of system models. The proposed control could be
described as a model-free version of the Smith predictor.

Simulation studies are conducted to check the feasibility of the proposed control for
predicting fast movements. It is considered difficult to describe fast movements using
feedback control alone due to the inherent neurobiological delay in the human control
system. Anticipatory control needs to be involved to make an appropriate action
before sensory information is available. Also, dynamics compensation is required in
quick movement with low muscle stiffness. Fast movements would pronounce the

functioning of inverse and forward models in biological control systems.

4.1 Development of computational model

In the section, I present a brief explanation on time delay control (TDC) first.

Then I design a human control model based on the principle of TDC. To accommodate
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substantial delays of the biological sensory system, the proposed model takes the form

of the Smith predictor.

Time delay control

Fig. 4.2 describes how TDC-type control works in moving a rigid body in compar-
ison with PD-type control and model-based control. Assume that we try to move the
rigid body to a desired angle. While PD-type control attaches a spring and damper
the ends of which are anchored at the desired angle to the rigid body, model-based
control, with a system model, converts the rigid body to a massless and frictionless
one, eliminating the system dynamics. And the control includes a spring and damper
between the converted rigid body and the desired angle. In a similar way, TDC-type
control first converts the rigid body to a unit-mass and frictionless one, and then
includes a spring and damper between the converted rigid body and the desired angle
in addition to a pushing torque 6;. But TDC-type control cancels out the system

dynamics using information from a previous motor command and its output (state).
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Figure 4.2: Schematics of (a) a rigid body, and (b) PD-type control, (c¢) model-based
control, and TDC-type control on the rigid body.

To elaborate TDC-type control mathematically, I take the 1 degree of freedom
(DOF) rigid body for example, which is depicted in Fig. 4.2(a). With I(m), b defined
as the inertia and friction coefficient, respectively, the equation of motion of the model

is expressed as
16 4 b0 4+ mglcosd = T + d. (4.1)

Symbol 6 denotes the angle; g the gravitational constant; [ the length between

the center of mass and the joint; d a disturbance; 7 the torque exerted on the limb.
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The system dynamics plus disturbance d that need to be identified for control are

grouped into one term, introducing a parameter m, as follows:
b + (—mb + 10 + b0 + mglcosd — d) = mb + h = T, (4.2)
where
h 2 —mb+ 10 + b + mghlcosd — d. (4.3)

It is acceptable to assume that the term A is piece-wise continuous if disturbance
d is bounded. This implies that the value of the term h at a time point can be
approximated by its value at another time point. The closer the gap between the two
time points, the more accurate the approximation can be made. An estimate of the

value of the term A can be obtained in this way:

h ~ h—17

h = h_l =T_1— mé_l, (44)

where subscript —1 indicates a value at the previous sample.

If the value of (7_; — mé,l) is included in the motor command to the system, the
system becomes a unitmass in the ideal case, as exhibited in Fig. 4.2(d). Next, the
unit-mass limb requires additional torques to follow the desired angle. The control
injects feedforward torque (éd) and restoring torque that can be realized by placing
a spring and damper between the limb and the desired angle.

Then, the control law is expressed as
T:T,1—mé,1+méd+D(9d—é)+K(9d—9), (45)

where D, K are viscosity and stiffness, respectively.

The control law consists of three components: cancellation of system dynamics,
feedforward, and feedback. I have elaborated cancellation of system dynamics above.
As for the feedforward component, it should be proportional to the acceleration of
the desired trajectory (9d), because the controlled system is an acceleration control
system [54]. The feedforward control utilizes the inverse dynamics of the system;
the torque component is created by the acceleration of the desired trajectory, which
is programmed according to an intended movement. In the case that the initial

condition of the arm is quiescent and no uncertainties exist, the actual position of the
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arm converges to the desired one [54]. The third component, feedback control, plays
a role in diminishing the error between the desired trajectory and actual trajectory
measured by the sensory systems.

If the estimation error € is defined as

— ~

e= M~ '(h—h), (4.6)
the closed-loop dynamics can be expressed as follows:
€+ Dé+ Ke =e, (4.7)

where e £ 6, — 6.

The control gains K and D shape the error dynamics; they determine under,
critical, and over damping at convergence. Also, these gains are related to how fast
the error is suppressed. From the closed-loop dynamics (4.7), we know that a smaller
estimation error leads to more accurate tracking of the limb relative to the planned
trajectory.

Gain m determines how accurately dynamics estimation is made; the gain affects
the difference between h and h, which eventually affects the tracking error [52].

First, I re-express the system (4.1) as
T=ml + f, (4.8)

with the definitions m £ I, f £ b0 + mglcost — d.

The closed-loop dynamics in the aspect of the estimation error € can be described

as
e=mtm—1)e —n_1— (mtm—1)C, (4.9)

where
12 (m'moy — D)0+ o1 — f, (4.10)
C—l £ UV —UV_1q, (411)
v2 0, — Dé— Ke. (4.12)

From the viewpoint of the estimation error e, the terms 7,¢ in Eq. (4.9) are

regarded as forcing functions that are bounded in the case of a sufficiently small
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sampling period. The coefficient (m~'m — 1), in particular, the tuning gain m,
determines the convergence rate of e, which eventually affects the tracking error,
as seen in (4.7).

Smith predictor
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Figure 4.3: Smith predictor.

The Smith predictor, proposed by Smith in 1959 [106], is a form of controller
for systems with delays, as shown in Fig. 4.3. The outer control loop feeds back
the actual state of the system G, but due to the delay on feedback loop, use of the
outer loop alone would not provide satisfactory control performance and alone lead
to instability in the worst case. So, the inner loop is added to send the (estimated)
current state to the controller C. The current state is estimated using a system
model G that is supposed to be simulated with a copy of the control input. And the
Smith predictor delays the estimated state as long as the actual state is delayed so
that the delayed actual state and delayed estimated state cancel one another. If the
perfect match between these two delayed states is made, the controller C' can show
control performance with no influence of delay on the outer feedback loop. Miall and
his colleagues employed this Smith predictor in human control modelling to describe
good performance even in the face of sensory delays [79]. They matched controller C
and a system model G with the inverse model and forward model in the cerebellum,
respectively.

Proposed control

TDC is tolerant to modeling error (it does not require a precise system model),
but it is tolerant to sensory delays. The Smith predictor is tolerant to sensory delays,

but it is vulnerable to modeling error. I take the form of the Smith predictor to
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Figure 4.4: Proposed human control model.

liberate TDC from the sensory delay issue.

For performing the function of inverse model, the TDC control law can be placed
in controller C' in the Smith predictor (Fig. 4.3). For performing the function of
forward model to estimate the current state of the system, it is possible to construct
estimating computation grounded on the characteristic of TDC. That is, TDC pushes
the controlled system to behave according to desired dynamics. Assuming that the

estimation error ¢ =0, the closed-loop dynamics becomes
éE4+Dé+Ke=0—0+D(0y—0)+K(6;—6) =0. (4.13)

From the dynamics, it is possible to obtain estimates of states 0,6 and 6.

At '?0
to

—
)y D)
P S

t
|0
+/eAt [ X ] p(t —t)at', (4.14)
0

0 =— DA(t) — KO(t) + p(t), (4.15)
where
0 1
A= | (4.16)
p(t) =04(t) + Dby(t) + K4(t). (4.17)
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The initial values of estimates 5, 5 can be assumed to be the same as those of the
actual states 6, 0.

With the proposed forward model, the current states are estimated and fedback
to the controller. Note that this forward model is model-free. If the forward model is
plugged into the place of G in the Smith predictor, the block diagram of the control
model can be converted into that shown in Fig. 4.4. As in the Smith predictor, the
estimates é\, f from the forward model are intentionally delayed to compensate for the

actual states that are delayed on the sensory feedback loop.

Limb
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Figure 4.5: Proposed human control model (detailed version).

In the proposed control, the delayed actual position and delayed estimates are
compared. The difference between them is compared with the desired position. These

differences can be expressed as 0,.:
0,() £ 6a(t) — (6(t — ta) — Ot — 1), (4.18)

where t; denotes the time delay on the feedback loop and %\d is an estimate of t¢,.
Then, the controller forces the controlled system to follow 6,, reflecting that the
controller receives the current state estimated by the forward model. The control law

of the proposed model is designed as

~ -~

=11 —mb_1 +mb, + D0, —0) + K(6, —0). (4.19)

According to the closed-loop dynamics that the controller pursues, one of the
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formulations for the forward model (4.20) needs to be modified:

p(t) =6,(t) + DO,.(t) + K6,(t). (4.20)

Fig. 4.5 presents a detailed version of block diagram of the proposed control.

4.2 Model validation

In this section, I validate the TDC-inspired human control model through a series
of simulation studies, in aspects of fast movements of a single joint and multi joints.
As the first step, I try to check if the proposed computational model follows empirical

outputs obtained from human subject experiments.

4.2.1 Arm model implementation

Figure 4.6: Schematic of reaching experiments

The experimental data I revisit in this study were produced by horizontal arm
movements, neglecting the gravitational force. The arm movement is modeled with a
2 degree-of-freedom (DOF) robot system, as presented in Fig. 4.6. With q(¢), and 7g
denoting the joint angle trajectories and the torque from environments, respectively,

the model of limb movements can be described as follows

H(q)q+ Clq,q)q = 7(t) + 78(1), (4.21)
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where

(4.22)

Hy Hy |’

Hyy 200+ Jy + M2+ My(IF + 12 4 201100084
Hiy =Hy = Jp + Mz(l?nQ + l1lm2c0sq2)
Hayy 25 + Myl?

m2)
and

— Malyl2sings(2¢1 + ¢2) 42

4.23
Mgll lmQSiHQQQ% ( )

C(q,q)q = [

The parameters of the arm are adopted from [11]; for the upper arm, J; = 0.0141

(kgm?), My = 1.93 (kg), I = 0.31 (m), l,,1 = 0.165 (m), for the upper arm, J, =

0.0188 (kgm?), My = 1.52 (kg), Iy = 0.34 (m), Lo = 0.19 (m). The lengths [,,; and
lmo denote the distances between the center of mass and the proximal joint.

I assume that human subjects try to track their hand to a minimal-jerk planned

trajectory in joint space and Cartesian space according to the given task. From [34],

the desired (planned) trajectory is designed as

'
qa(t) = qo + (a5 — qo) (6¢° — 15¢° +10¢"),  #' = =, (4.24)

where ¢, ¢5 denote the initial and final positions of the hand, T" denotes the duration
of the movement.

I consider feedback signals as an amalgam of all achievable sources of sensory
information about limb movements including proprioceptive and visual feedback. The
sensory delay ¢4 is set as 65 ms. And it is assumed that the CNS estimates the
sensory delay so 4 is set to 65 ms (the main purpose of simulations in this study is
to see the effect of dynamics compensation of the proposed control on movements).
Simulations are conducted in Matlab using ODE45. I utilize the optimization toolbox
in Matlab to obtain control gains that give the best fit between simulated trajectory

and empirically observed trajectory.

4.2.2 Movements to be reproduced

Fast movement of a single joint
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Figure 4.7: Fast single-joint movement-experimental results provided by [64]: (a) arm
position and (b) velocity.

Kistemaker et al. (2006) investigated fast single joint (elbow) movements [64].
Participants were asked to direct their hand from the marked middle of one block
to the marked middle of another block as fast as possible, once an auditory cue was
presented. Participants practiced until they could move quickly to the target with
minimal overshoot.

For simulation, I lock the shoulder joint of the 2 DOF model (4.21) to reproduce
the fast single joint movements by participants. The values of K and D are selected
as 100 and 20, respectively. The value of gain m is arbitrarily set to 0.015. For a
comparative study, the Smith predictor [79] and an equilibrium-point controller [77]
are simulated. For the Smith predictor, I provide it with the perfect system model
and delay model. The delay on the feedback loop is set to 65 ms. PD control is
adopted as the inverse model, with the P gain set as 92 and the D gain set as 38. For
the equilibrium-point controller, I put a delay of 65 ms onto the position feedback
loop while a delay of 25 ms is imposed on the velocity feedback loop. The P gain and
D gain are tuned to 0 and 0.76, respectively (the velocity feedback loop is faster that
the position feedback loop). Note that the control gains are tuned by the optimization
toolbox until the best match with the planed trajectory is achieved. These gains, with
a reasonable range, gives the minimum deviation from the desired trajectory between
0.1 sand 0.3 s

Fast movement of multi joints

Also, I attempt to reproduce a fast movement with multi joints. Different from
single-joint movements, multi-joint movements involve interaction torques including
inertia torques from movements of other joints, centripetal torques and Coriolis

torques. These interaction torques need to be compensated to make movements, in
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particular, rapid movements [102]. T check whether the proposed control compensates
for interaction torques by reproducing a fast movement presented in [66]. Koike
and Kawato (1995) asked participants to to move their hand ahead of their body
in different directions on a desk for 500 ms 750 ms using the shoulder and elbow
joints [66]. Among these five movement paths, I select a transverse one (from point(-
0.2 m, 0.5 m) to point(0.35 m, 0.25 m)) that produces more significant deviation from
the desired path. For simulation, the movement duration is set to 500 ms.
Simulation for this task is made in Cartesian space. The Jacobian matrix of the

2 DOF arm model is given as

—lysing; — losin(qy + q2)  —losin(q1 + ¢2)

J(q) =
licosqr + lacos(qn + q2)  lacos(qr + q2)

, (4.25)

The desired trajectory is designed in Cartesian space as a minimum-jerk trajectory
and converted to the desired trajectory of each joint using the inverse kinematics of
the 2 DOF arm. The control input (4.19) is applied to the shoulder joint and elbow
joint. The values of gain m for the shoulder joint and elbow joint are arbitrarily set
to 0.27 and 0.06, respectively. And the optimization toolbox tunes the control gains:
the P gain and D gain for the shoulder joint are 271 and 180, respectively, and the
P gain and D gain for the elbow joint are 270 and 2.3, respectively. Also, simulation
with the equilibrium-point control proposed in [77] follows. The P gain and D gain
are set to 2.5 and 0.6, respectively , for both the shoulder and elbow joints. These
values give the best fit in terms of deviation and smoothness, as in [102]. A delay of
65 ms is put onto the position feedback loop while a delay of 25 ms on the velocity
feedback loop.

4.3 Simulation results

Fast movement of a single joint

Fig. 4.8 presents the simulation results of the fast single-joint movement by the
Smith predictor, equilibrium-point control and proposed control. I first focus on the
results of the Smith predictor and equilibrium-point control. The Smith predictor
outputs a minimum-jerk trajectory, whereas equilibrium-point does not. Equilibrium-
point control shows bell-shaped trajectory but it is not of the minimum jerk. Given
that biological systems make minimum-jerk movements, Equilibrium-point control
that does not have a device to deal with sensory delays is unable to capture biological

systems. This would support the existence of forward model that estimates the
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Figure 4.8: Fast single-joint movement-simulation results (position and velocity) by (a),
(b) the Smith predictor, (c), (d) the equilibrium-point control, and (g), (f) the proposed
control.

current state corresponding to a motor command. The simulation results show that
the proposed control produces a minimum-jerk movement. This at least implies
that the forward model works in the presence of the delay on sensory feedback. In
the empirical results, oscillations around the end of movement are exhibited (see

Fig. 4.7). It is likely that these fast movements are at least partially stopped using
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co-contraction of muscles near the end of the movement. The oscillations would
result from the nonlinear activation dependent viscoelasticity of muscles. As stiffness
and viscosity are assumed constant in the simulation, I do leave the existence or
nonexistence of oscillations in the simulation results out of consideration.

Fast movement of multi joints
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Figure 4.9: Fast multi-joint movement-simulation results (position) by equilibrium-point
control and the proposed control for 500 ms from movement start.

As mentioned above, multi-joint movements involve interaction torques that are
dependent in a nonlinear fashion on motions at adjacent joints including inertia
torques, centripetal torques and Coriolis torques. As movements get faster, the
interaction toques increase gradually. These torques may need to be compensated
so that an intended movement can be achieved. Fig. 4.9 shows the simulation results
of a fast multi-joint movement. Equilibrium-point control exhibits a larger deviation
from the desired trajectory. This indicates that enough dynamics compensation is
not performed. Meanwhile, the proposed control shows a far smaller deviation in
comparison with equilibrium-point control. This would suggest that the proposed
control efficiently reduces the effect of the interaction torques through dynamics

compensation, even without a system model.
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4.4 Discussion

Time delay control (TDC) shows robust performance to model uncertainties, even
not requiring substantial computational load. Using a motor command and its result
at the previous sample, TDC estimates the controlled system dynamics interacting
with environments. With no need of high stiffness and damping gains, TDC achieves
accurate and robust tracking tasks. Humans show a remarkable ability to execute limb
movements even in the presence of changes in environments as well as in the properties
of the sensorimotor system. Even in the case that our arm is perturbed gradually or
abruptly during the task, corrective torques will be generated to compensate for the
perturbation and the arm will be positioned as planned in the end, even without high
stiffness. These common points trigger a question regarding whether humans control
their limbs in a similar way to TDC. In this study, we proposed a computational
model of human control based on the TDC principles and evaluated the possibility

that the model captures empirical phenomena.

4.4.1 Model of human control

The proposed computational model consists of inverse model and forward model
as in usual computation models that support the existence of internal models in the
brain [37,79,104,111,123,124].

The inverse model of the proposed computation calculates a motor command that
moves the controlled limb to a desired state. The inputs to the inverse model include
an efferent copy of motor command and the position, velocity and acceleration values
of the desired limb state and (estimated) actual limb state. A copy of descending
command and its estimated corresponding acceleration of the limb cancels out the
dynamics of the limb and environment, and desired dynamics is replaced that is
formed by a combination of the position, velocity and acceleration of the limb with
muscle viscoelasticity. I emphasize that a precise system model is not required in the
inverse model.

The forward model estimates the actual limb state that is substantially delayed
during signal transmission on feedback loops. As well, a precise system model is not
required in the forward model. The forward model supposes that the inverse model
realizes the desired dynamics during movements. The actual limb state is extracted
from the desired dynamics.

How can this computation be realized in a real biological system?

The cerebellum receives afferents carrying sensory information on the limb and

103



reafferents carrying copies of motor command and information required for movements
including a desired trajectory from the primary motor, somatosensory and parietal
cortex. Efferent copies of descending motor commands could be transmitted by motor
neurons. Brodmann area 5 in the parietal cortex would be thought as a desired
trajectory composed of position, velocity and acceleration values [59,102]. Kalaska
et al. (1990) showed that excitations of Brodmann area 5 cells were correlated with
position, velocity and acceleration [59]. Muscle length and velocity are measured
through muscle spindles and mossy fibers [115]. The measured actual limb state
ascends to the cerebral cortex and is inputted to the forward model after comparisons.
As for the states dealt with by the forward model, mossy fibers as well as area 5 cells
are thought to transmit the acceleration component in addition to the position and

velocity components [114].

4.4.2 Fast movement

I checked the feasibility of the proposed control for fast movements. During fast
movements of which duration is nearly as short as the delay on feedback loops involves
in sensorimotor processing, the roles of inverse and forward model are pronounced.
Those movements would be completed before sensory information affects. Even dur-
ing movements while which sensory information gives an influence, online correction
that depends only on sensory feedback could lead to instability.

In the simulation of a single-joint movement, I observed that while the Smith
predictor reproduces the minimum-jerk trajectory perfectly, equilibrium-point control
that does not contain any forward model cannot describe the fast movement with a
duration of 0.2 s as in [66,99,102]. The simulation results between the Smith predictor
and equilibrium-point control support the existence of forward model [5,23]. The
proposed control reproduces the minimum-jerk trajectory as well. This indicates that
the proposed forward model in the form of the Smith predictor efficiently estimates
the current states of the limb and feeds them back to the inverse model.

In the simulation of a multi-joint movement, I checked whether the proposed
control compensates for system dynamics in multi-joint movements involving simul-
taneous motion at the shoulder and elbow. Interaction torques that arise at one
joint (e.g., the shoulder) because of motion of limb segments about other joints (e.g.,
the elbow), which include inertia torques from movements of other joints, centripetal
torques and Coriolis torques, disturb achieving planned movements. That is, these
interaction forces act as disturbances that need to be compensated. In Fig. 4.6,

equilibrium-point control shows a larger deviation from the desired trajectory than a
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biological system exhibited [66]. Equilibrium-point control well describes a relatively
slow movement with the same planed path but as the duration of movement gets short,
the deviation from the planed path increases [102]. This means that equilibrium-
point control with feedback control alone is not able to sufficiently compensate for
the interaction torques that increase according to movement speed. Also, this result
supports the role of inverse model in human movement. The proposed control shows a
far smaller deviation. This suggests that the inverse model of the proposed control ef-
ficiently carries out dynamics compensation. Note that identifying interaction torques
requires an explicit system model including the inertia and length of each segment of
the limb (see Eq. (4.21)). But the proposed control does not require a system model.
The proposed control builds inverse models using the relationship between the motor
command and its responses. Through the compensation of the system dynamics and
sensory delay, the proposed control capture the human’s voluntary movements, which

is in agreement with a study presented in [44].
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CHAPTER V

Conclusion and Future Work

5.1 Conclusion

In this thesis I have addressed three rather distinct bodies of work. The common
theme has been the analysis of mechanical interaction between the human and ma-
chine. I pay particular attention to the mechanical interaction of both the human
and environment.

The contributions documented include:

1. Effect of Haptic Cues on the Human Motor System
e Demonstrates implicit learning with haptic cues applied to fingertips

e Shows error rates are improved with haptic cues over visual cues, suggesting

motor learning rather than perceptual learning.

2. Design and Control of Backdriveable Actuators
e Shows parallels between SEA and fluidic actuators, including options for control.

e Designs and demonstrates a new actuator that minimizes storage of elastic

energy and harnesses singularity to advantage
e Develops controllers that promote backdriveability

3. Computational Model of Human Motor Control
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e Proposes a computational model that the relationship between the motor com-

mand and its responses in place of internal models

e Demonstrates the reproducibility of the proposed model in the human’s fast

movements

5.2 Future Work

The best robot is the human. Robots have been being developed to mimic the
human.It has been continuing and endlessly needs to continue to discover the secret
of the human’s musculoskeletal system, sensory system, and control system. Through
human-like robots, exchange of power and information is maximized This is entirely

for recovering and promoting the human’s motor skill, motor function and well-being.
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