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ABSTRACT

The Goal Re-activation Problem in Cognitive Architectures

by

Ning Hui Li

Chair: John E. Laird

Intelligent agents in the real world have to manage multiple goals. However, the

pursuit of some goals may only be possible under specific conditions which, if not

met, requires the agent to suspend the goals for future re-activation. In cognitive ar-

chitectures, suspended goals are stored in long-term memory; however, this prevents

agents from automatically recognizing future opportunities to complete those goals.

This thesis characterizes this previously-unidentified problem as an instance of

a more general circular dependency between the retrieval and use of knowledge in

cognitive architectures: the agent must recognize that a goal is relevant to retrieve

it, but cannot recognize it as such without retrieving it in the first place. We apply

this characterization to develop preemptive and spontaneous retrieval strategies for

goal re-activation in the Soar cognitive architecture. Evaluation of these strategies in

an abstract domain shows that the spontaneous retrieval strategy dominates the other

strategies, achieving higher goal completion rates in fewer operations, although it is

also not without failure cases. Both types of strategies not only provide solutions to

the goal re-activation problem, but also pave the way for further exploration of how

intelligent agents can access the right knowledge at the right time.
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CHAPTER 1

Introduction

1.1 Goal Re-activation in Cognitive Architectures

This thesis examines the question of how artificial agents manage multiple, concurrent goals when a
subset of the goals cannot be immediately pursued. In particular, it looks at the problem of goal

re-activation: if a goal was not originally relevant and was stored, how does the agent detect that
the situation has changed so that the goal is now relevant and should be acted upon? Consider the
following scenarios:

• An agent is tasked with conveying a message to someone, but it doesn’t know their schedule.
While performing some other task, the recipient of the message coincidentally appears.

• An agent is tasked with buying milk from the grocery store, but is currently on its way to a
work shift patrolling a building. During its patrol, the robot happens to go by a grocery store
that sells milk.

In these scenarios, the agent is given a goal (also known as the prospective goal) that should
only be considered for pursuit under some specific conditions, called the target. For example,
a target for the goal of delivering a message may be when the recipient is in sight; the target is
satisfied when the described situation occurs. The example goals above are also one-time — while
the target may again be satisfied after the goal is completed (that is, the agent may run into the
recipient again), the agent should not pursue the goal again (the agent should not deliver the message
twice). Crucially, when the agent is first given the goal, the target is not satisfied, and therefore the
goal cannot be immediately pursued. Furthermore, the agent is unable to predict when the target
will be satisfied. Finally, the prospective goal is not important enough for the agent to attempt to
immediately satisfy the target — the agent does not go looking for the recipient of the message,
nor immediately go to the grocery store. Thus, in the mean time, the agent pursues other goals
(foreground goals), during which the target of the original prospective goal may be satisfied, giving
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the agent the option of pursuing the prospective goal. Such scenarios can occur for an agent that
has multiple, non-hierarchical goals, and whether a goal can be pursued is out of the control of the
agent, and the opportunities for completion are unpredictable.

To summarize, the scenario with which this thesis is concerned has these characteristics, de-
scribed with terminology from literature [7]:

A1 The agent has a one-time goal. This corresponds to achieve and perform goals in a classifi-
cation of goals, where the agent must take some action once, either to achieve some world
state, or simply for the performance of the action itself. After the goal is completed, the
same circumstance may require a different response from the agent. Achieve and perform
goals contrast with maintenance goals, where the agent must ensure that some environmental
state remains true — and more importantly, that the agent must act whenever the state does
not hold. Although an identical achievement goal could be instantiated after the goal is first
complete, we consider these separate goals and do not attempt to take advantage of this
possibility.

A2 The goal cannot be immediately pursued due to the absence of its target. That is, while the
agent adopts the goal, it does not become an option, and is instead suspended. We treat this
scenario as a special case of task resumption — where an agent, after beginning some goal, is
unable to complete it for some reason [59] — except in this case, the agent has not made any
progress at all. The techniques discussed in this thesis apply to both scenarios.

A3 The agent does not know when the target will be satisfied (such that the goal can be pursued),
and does not have a model of the environment.

A4 The agent has multiple goals, and these other goals are pursued while waiting for the target of
the prospective goal to be satisfied. This assumption rules out the possibility of devoting all
of the agent’s resources to the prospective goal.

The goal re-activation problem is the problem of how the agent detects a change in the situation
that makes it possible for the goal to be pursued. The focus of this thesis is on developing
computational strategies for recognizing that a goal can be pursued and is a possible choice for
the agent. Whether the agent chooses to pursue the goal, or whether the agent’s plans allow it to
complete the goal are outside the scope of this thesis.

Although goal re-activation can be tackled on an agent-by-agent basis using decision theory and
planning, this thesis considers the problem in the context of cognitive architectures, which is an
agent framework. Agent frameworks, such as cognitive architectures and the Belief-Desire-Intention
(BDI) formalization, aim to provide developers with tools to quickly create intelligent agents that
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operate in diverse domains [29]. The goal re-activation problem is relevant to the agent framework
community for two reasons. First, since the ability to pursue and complete goals is an important
part of many agents, it may be beneficial for agent frameworks to standardize the mechanisms for
agents to reason about goals. Second, the structure of agent frameworks may determine how the
goal re-activation problem can be solved, since the organization of their components determines
how knowledge — including goals — are stored and processed.

Cognitive architectures such as Soar and ACT-R share multiple structure similarities. They
store knowledge in separate memories, and many architectures organize declarative knowledge into
memory hierarchies, analogous to the memory hierarchies in computer architectures. A depiction
of this hierarchy is shown in Figure 2.5 and this organization is further discussed in Section 2.3.
Most importantly for the goal re-activation problem, only knowledge stored in the memory at the
top of the hierarchy (working memory) can directly affect reasoning and behavior. At the same
time, knowledge in working memory is automatically removed (or forgotten) over time, although it
can be recovered (or retrieved) from the next level in the hierarchy (known as long-term memory).
This structure mirrors the relationship between registers and the cache, or the cache and RAM, in
computer architectures.

This division of knowledge stores and the processes that transfer knowledge between them
present additional challenges for goal re-activation. Consider the message-delivering scenario above.
When the agent first receives the message it must deliver, the goal of delivering the message is
stored in working memory. Since the recipient is absent, however, the goal target is not satisfied
and the agent cannot immediately pursue the goal. Over time, the goal is removed from working
memory and stored in long-term memory. When the recipient appears, however, the change in the
situation means that the goal can now be pursued. But while the agent may see the recipient, it
cannot connect its perception of the recipient to its representation of the recipient as the target of the
message delivery goal, since the goal and its target remain in long-term memory and are unavailable
for use in reasoning. That is, while in theory the target of the goal is satisfied, the agent does not

recognize it as such, and therefore the agent fails to pursue the goal.
In sum, this thesis is concerned with architectures where the following statements hold. These

statements are a mix of assumptions that define a class of cognitive architectures, and conventions
within the cognitive architecture community. The exact epistemic status of these statements is
discussed in Section 2.4.

A5 Suspended goals are represented symbolically and declaratively, and are subject to the
remaining assumptions describing the processing of declarative knowledge by the architecture.
In other words, there are no architectural mechanisms that process goals specially.

A6 Only declarative knowledge in working memory can be used for immediate decision making;
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this implies that the goal must be in working memory when it is used for decision making.
Specifically, the goal must be in working memory during the encoding, initiation, and
completion stages of the goal’s life-cycle (see Section 2.1.1).

A7 Declarative knowledge in working memory is automatically removed over time. Thus,
although goals are initially created in working memory (A6), they are not automatically
maintained in working memory indefinitely.

A8 Knowledge that is automatically removed from working memory can be retrieved from long-
term memory. This implies that the forgetting of goals in and of itself does not mean the goal
cannot be completed, only that it must be retrieved into working memory when the goal is
required for decision making — for example, when the agent must decide whether to pursue
the goal.

A9 The only mechanism for long-term memory retrieval is deliberate cued retrieval.

A10 Rules automatically match on and modify declarative knowledge in working memory.

A11 The agent cannot directly modify procedural memory, including the modification and deletion
of existing rules. The one exception to this is the ability to create rules.

At a high level, the main research question of this thesis is therefore the following: Given the
structure of memory in cognitive architectures, what are strategies for ensuring that a prospective
goal is in working memory when its target is satisfied, such that the agent can pursue the goal?

1.2 General Approach

The field of cognitive architectures aims to discover general mechanisms that are sufficient for
generally intelligent agents. A more detailed account of the methodology of cognitive architecture
research is given in Section 2.4, but a brief introduction is required to understand the layout of
this thesis. Research often cycles between developing agents that performs a novel task, and the
development of the architecture to support more sophisticated agents — challenges in the former
drives advancements in the latter. A new task or a new cognitive capability is analyzed theoretically,
which involves identifying the architectural components that can be involved in the solution. For
example, if a task requires the agent to acquire knowledge online, this may imply that the long-term
memory of the agent must be used; a deeper analysis may also consider how this knowledge
interacts with other architectural components. With this understanding, the existing mechanisms
of the architecture are then used to attempt to support the capability, and the result evaluated. The
goal of this attempt is to determine, either positively or negatively, whether the architecture in its
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current state is sufficient (in terms of effectiveness and efficiency) to support the desired capability.
Finally, if the architecture is found wanting, new mechanisms may be added to the architecture.
While the inability of the architecture to provide the capability is sufficient to justify the new
mechanism, it would be ideal if the mechanism was also beneficial to other tasks beyond its role
as a specialized module for the desired capability. Often, inspiration is taken from other fields of
artificial intelligence and from disciplines such as psychology and neuroscience, to provide evidence
that the mechanism is general. If this is the case, the architecture with its new mechanism is then
evaluated for the cognitive capability again. Over time, these experimental mechanisms are adopted
into the architecture proper, and a new cognitive capability is found to drive the next round of
development.

This research and the layout of this thesis follow this methodology. Since the goals and
restrictions of cognitive architectures constrain and define much of this work, Chapter 2 first
provides background on the goal re-activation problem, then goes into detail about existing cognitive
architectures. Most of the work in this thesis is done in the Soar cognitive architecture, but its
many similarities with other architectures, and with the ACT-R cognitive architecture in particular,
suggests that the results are transferable and are relevant to a wider audience. After the major
components and processes of Soar are defined, Chapter 3 begins with a theoretical analysis of goal
re-activation. Despite the importance of re-activating goals, this has not been a problem that has
received much attention in the artificial intelligence community. As a result, inspiration is taken
from psychology, where human goal re-activation is studied as prospective memory. Work in that
field, especially the taxonomic organization of human strategies, paved the way for the first major
result of this thesis: that goal re-activation is difficult due to a circular knowledge dependency
between the retrieval of goals and the recognition of their pursuability. Although this result may
seem obvious, the community has yet to tackle problems where this dependency causes significant
problems; the novelty of this characterization means that there has been no attempt to adapt existing
solutions to the memories of cognitive architectures.

The strategies developed in this thesis roughly resemble a different circular dependency problem,
namely, that of detecting input/output events in operating systems via the use of polling and
interrupts. Chapter 4 describes preemptive strategies that aim to retrieve goals into working memory
before they are needed, by actively ensuring that goals are frequently in working memory. This
was the first strategy we explored, and its initial success led to the development of an abstract
domain that allow more controlled variations in environmental properties, such that the limits of the
strategies can be tested. Chapter 5 describes the spontaneous strategy that uses a new architectural
mechanism to retrieve goals at the time they are needed; since it is long-term memory that signals
the agent with a relevant goal, it has parallels with the use of interrupts in computer systems. Chapter
6 then describes how these two strategies can be combined, and compares all strategies evaluated to
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form a meta-strategy for when each strategy should be used.
Finally, to conclude this thesis, Chapter 7 reviews the contributions of this thesis. Goal re-

activation is a new problem for cognitive architectures, and much work remains to be done,
particularly in evaluating the strategies developed in this thesis on real-world domains. Additionally,
in tackling the goal re-activation problem, we discovered that it is in fact an instance of a larger
problem, that of retrieving the right knowledge at the right time, when the agent may not have the
correct search knowledge, in terms of both the when to search and what to search for. For goal
re-activation, the agent must retrieve the goal (which is a piece of knowledge) when the goal is
pursuable; at the same time, without the goal in working memory, the agent cannot know the right
time to retrieve it. The strategies from this thesis serve as a good starting point for future cognitive
architecture research on how to have the right knowledge available at the right time.

1.3 Contributions

The major contributions of this thesis are:

• This thesis defines the goal re-activation problem for cognitive architectures, and a compu-
tational analysis of its source. Namely, that the current memory mechanisms of cognitive
architectures lead to a circular dependency problem if the agent lacks memory search knowl-
edge. We demonstrate this with goals, but the same problem exists for general knowledge,
and may also exist for agents with only remote access to a knowledge base. As such, any
developer of real-time, knowledge-rich agents may be interested in this result, as would
cognitive modelers of human memory phenomena.

• This thesis generalizes existing, and develops new, memory strategies for goal re-activation.
Although solutions for circular knowledge dependencies exist, this thesis is the first to adapt
them to the use of knowledge bases by artificial agents. Broadly, they correspond to the
polling and interruption mechanisms seen in computer systems, the latter of which does not
current exist for architectural memories.

• This thesis characterizes the benefits of spontaneous retrieval. While spontaneous retrieval,
which roughly corresponds to interrupts, has been previously implemented in a subset of
cognitive architectures, it has not received widespread use due to its inherent unpredictability.
Using the goal re-activation problem as an example, we show that spontaneous retrieval can
be beneficial when the agent does not know when to search memory, or does not know how
to perform such a search. Aside from the direct applications to architecture developers and
cognitive modelers, this characterization may be of interest to the developers of agents with
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partially observable internal state, as it may violate the assumption that it is sufficient for the
agent to control which internal state to observe.

• Implementation and evaluation of strategies with respect to environmental and task properties.
Although they adapt existing solutions, the implementation details of the adaption to long-
term memories — particularly the meaning of an interrupt — is non-trivial. This thesis
provides such details for future developers, as well as an evaluation of the strategies and the
environmental characteristics in which the strategies perform well.
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CHAPTER 2

Background

This chapter describes the precise problem that goal re-activation problem poses for cognitive
architectures. Section 2.1 breaks down the life-cycle of a goal, a description that is surprisingly
consistent between the agent-design community and the psychological study of human prospective
memory. Section 2.2 then takes a slight detour by describing the Soar cognitive architecture, in
which the work in this thesis is done, before integrating it with the goal re-activation problem in
Section 2.3 to examine why it is a problem for cognitive architectures. Since Soar is found to be
inadequate at goal re-activation, we discuss the criteria for modifying Soar in Section 2.4. Finally,
Section 2.5 looks at existing work in goal management, as well as relevant ideas from outside
artificial intelligence and psychology.

2.1 The Goal Re-Activation Problem

This section more precisely defines the goal re-activation problem by reviewing the existing literature
on goals in both artificial intelligence and psychology. The difference between the goal re-activation
problem and other related problems is also described.

2.1.1 The Life-Cycle of Goals

One of the basic distinctions between different types of agents is whether the agent is goal oriented
[51]. As a result, a theoretical understanding of goals and their management has been of some
interest to the artificial intelligence community. Simultaneously, the human ability to pursue goals
after some delay has also led to the growing field of prospective memory in psychology [40],
although the phenomenon has no concise definition short of a “fuzzy set” of intuitions around
“remembering to do something at a particular moment (or time period) in the future” (emphasis in
original) [41]. We draw from both fields to aid in understanding the problem.

First, we must acknowledge that arriving at a standard definition of goals is difficult, as it
must accommodate the representations and processes of different agent architectures, in addition
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to providing a description of the types of activities that researchers would like agents to perform.
This difficulty is also recognized elsewhere [6]. Since this thesis is primarily concerned with the
management of goals, and not with their fulfillment, we keep our definition of goals general by
under-specifying its representation. The goal may be associated with a sequence of actions that
must be performed, or may describe some desired state of the world independent of specific actions;
this representation has no effect on this thesis. Instead, we require that the goal contain a target,
which describes the conditions under which the goal can be pursued. We use “pursue” here in the
general sense. One possible target for the message delivery agent is being in the same room as
the recipient, in which case the target represents a precondition that must be met before the agent
can take action. Alternately, the target could also be an unexpected opportunity that can lead to
the completion of the goal if taken advantage of (for example, unexpected learning the telephone
number of the recipient). In this case, the agent may not have planned for receiving the recipient’s
phone number, but this knowledge may cause the agent to replan and thus make the goal relevant.
The target therefore represents a set of features which, when present, indicate that the agent should
reason about a goal.

To use the first scenario from Section 1.1 as a concrete example, the goal of delivering a message
may have multiple targets. One target may be being in the same room as the recipient, but another
may be learning the recipient’s telephone number, which would now allow a different action for
achieving the goal (that of calling them instead of meeting them physically). Note that the two
targets are different in nature: the first is a precondition for an existing plan, the other is a criterion
for replanning. These targets are not mutually exclusive — multiple targets could exist for one
goal, each of which could require the agent act different when satisfied. The only common element
between targets is that they require the agent to deliberately consider the goal, whether that means
the agent should take action or should re-plan.

Under this definition, both the psychology and artificial intelligence literatures have proposed
similar models of the life-cycle of a goal [18, 49]:

Encoding In this stage, the agent is either given the goal externally or generates it from some
internal process. Whatever the source of the goal, it must be stored in the agent’s memory. In
the message-delivery example, the goal to deliver the message is conveyed to the robot.

Retention Between the creation of the goal and when its target is satisfied and the goal can be
pursued, the goal is retained in the agent’s memory, where it is subject to the dynamics of the
memory system. During the retention interval, the agent is working on other immediately-
pursuable tasks (foreground tasks), and its computational resources are allocated for that
purpose. In the running example, this stage corresponds to the time while the recipient of the
message is not present, the goal is maintained in memory and the agent is otherwise occupied.
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Initiation The initiation stage is the crux of the goal re-activation problem, and this stage begins
when the target is satisfied. There needs to be a careful distinction, however, between whether
the target of a goal is objectively satisfied in a situation, and whether the agent recognizes
that the target is satisfied in the situation (that it is subjectively satisfied). To use the message-
delivery example again, the recipient could be in the same room as the agent, meaning that
the target is objectively satisfied. For a bounded agent, however, it is possible that it fails
to perceive the recipient, or alternately fails to recognize that it has a goal of delivering the
message. In either case, the agent would not recognize the goal as pursuable in that situation.
It is the recognition that the target of a goal is subjectively satisfied, not objectively satisfied,
that is the goal for the initiation stage.

Performance Once the agent recognizes that the target of a goal is satisfied, the agent may choose
to pursue the goal. In the example, the agent catches the attention of the recipient and gives
them the message.

Completion After the goal is achieved, the agent must update its memory so that it will not pursue
the goal in the future. As a concrete example, the message-delivery agent should not try to
get the target’s attention (for the purpose of delivering the same message) the next time they
are near each other.

Goals that agents have adopted are often classified as either active, as an option, or as suspended.
Active goals are those currently pursued by the agent; options are goals that the agent could pursue
if it so chooses (that is, when its target is subjectively satisfied); and suspended goals are ones whose
targets are not satisfied. This thesis is concerned with the transition of a goal from being suspended
to being an option, which corresponds to the initiation stage above. While agents could deliberately
decide to pursue suspended goals — for example, by deciding to call the recipient of a message
instead of waiting until they are nearby — that case is not within the scope of this thesis. However,
that use case must be kept in mind, as it implies that goals must remain declaratively available for
the agent’s goal management reasoning.

2.1.2 Other Concerns

First, the goal re-activation problem is not concerned with the goal being completed, only that it is
an option for the agent to pursue. Whether the agent chooses to pursue the goal is well-suited to
be tackled by decision theory; that the goal was first suspended requires no special consideration.
Since choosing which goal to pursue (or whether to pursue it) is not the topic of interest, this thesis
treats all goals as having the same utility, and agents will simply select randomly between multiple
prospective goals if they are simultaneously options for pursuit. Additionally, this thesis ignores the
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Figure 2.1: The five phases in Soar’s decision cycle

foreground task and only considers the amount of computation required for detecting the satisfaction
of the targets of prospective goals. It is possible that a particular goal re-activation strategy could be
impacted by the foreground task — a strategy may generally perform well but degrade quickly when
interrupted — but as a starting point, this thesis focuses only on the cost of the goal re-activation
strategy.

The second and third questions of whether the action is optimal and whether the action achieves
the goal can be solved with a multitude of other artificial intelligence techniques. To keep the focus
on goal re-activation — that is, whether the agent recognizes that the target of a goal is satisfied —
the problems in this thesis assume that the agent always completes the goal.

It should be noted that these are not assumptions that restrict the scope of the thesis, but
considerations that are irrelevant to the goal re-activation problem. They are described here to
further delineate the boundaries of the problem, and to acknowledge that we selected solutions to
these issues in the evaluation; they are not required for the results of the evaluations to apply.

2.2 The Soar Cognitive Architecture

Since we implemented the work of this thesis in the Soar cognitive architecture, this section describes
the mechanisms and processes of the architecture. The Soar cognitive architecture was chosen
because its structure is representative of many other cognitive architectures, and is additionally
well-documented for use and for architectural experimentation.

2.2.1 Overview

Soar is a cognitive architecture focused on knowledge-rich agents that operate in real-time. It has
been successfully deployed not just on robots, but also as intelligent opponents in computer games.
The architecture was first developed as a realization of the problem space computational model,
which describes how agents represent knowledge, propose different ways of processing that data,
and decide which of these methods to perform. A decision cycle in Soar therefore comprises five
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phases (also shown in Figure 2.1):

Input The architecture updates the agent’s state with perception from the environment.

Elaboration The agent applies knowledge to enrich its understanding of its current state. This
knowledge includes the proposal of multiple actions, which could be both internal (e.g. a
knowledge retrieval) or external (e.g. moving an actuator)

Decision The agent selects one of the actions, taking into account its goals, the environmental state,
and other knowledge.

Application The agent executes the selected internal or external action.

Output The architecture communicates any actuator movement to the control system.

These phases are all involve changes to Soar’s working memory — a rooted, edge-labeled
directed connected graph that represents Soar’s current state. This representation is explicitly
relational — the edge labels describe relationships between entities, which are represented by the
nodes. A <node, edge, node> tuple in working memory is called a working memory element.
Special regions of this graph are buffers, and serve as communication channels for other modules
of the agent. For example, perception from the environment arrives through the input link, while
actuator movement is created in the output link. Additionally, there are also buffers to the long-term

memory of Soar, which are described in Section 2.2.2. An overview of the Soar architecture is
depicted in Figure 2.2. Although multiple symbolic long-term memories are shown in the figure,
this thesis is only concerned with semantic memory as a declarative long-term memory. All usage
of “long-term memory” therefore refers to semantic memory.

Elements are added to and removed from working memory through if-then rules that are stored
in procedural memory; they constitute the procedural knowledge of the agent. Unlike the graph
structure of working memory, the agent does not have declarative access to rules, nor can it directly
modify or remove them. The condition and action parts of a rule both describe graph structures.
A rule applies or fires if the conditions of the rule matches the structures in working memory, at
which point working memory is modified according to the actions of the rule. Rules also propose
the different actions (or in Soar terms, operators) that the agent can take, while other rules create
preferences for these operators so that a single best operator is selected to be pursued; the results
of these operators are considered the deliberate actions of the agent. Since working memory is a
graph, matching the conditions of a rule to the structures of working memory requires solving a
subgraph isomorphism problem, which is known to be NP-complete. Soar therefore uses the Rete
algorithm [22] to help mitigate some of these costs in the typical case, although it remains the case
that rule matching can take time exponential to the size of working memory.
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As an architecture to be used in real-time agents, Soar needs to be reactive to changes in the real
world. This is often translated into a requirement that a decision cycle takes at most 50 milliseconds,
a threshold that has been found to be sufficient in human tasks [9]. This requirement, however,
can be in conflict with the goal of agent competency, which in general requires larges amount of
knowledge. Storing all knowledge in working memory drives up rule-matching costs, which in turn
would reduce the reactivity of the agent. In general, the paradoxical reduction of agent performance
despite (or rather, because of) the addition of knowledge is known as the utility problem [44].

In Soar, a heuristic solution to this problem is forgetting, the automatic removal of knowledge
from working memory. Associated with each working memory element is a number, called the
element’s activation value or simply activation. The activation of a working memory element
increases (is boosted) when it is tested by the conditions of a rule that matches; semantically, this
means that the piece of knowledge was used in the agent’s decision process, and is therefore more
likely to be useful in the future. Over time, if the element is not used in rule matching, its activation
decreases or decays logarithmically to signify its falling importance; the decay rate is an agent
parameter often tuned to the particular domain. If the activation drops below a forgetting threshold,
the element is removed from working memory. An example trajectory of two working elements is
shown in Figure 2.3, which shows the activation of the elements on the y-axis and time on the x-axis.
One of the elements (designated by a ‘X’) is tested by the conditions in several rules that fire, leading
to the discontinuous positive jumps in its activation; the other element (designated by a ‘+’) is only
tested once by a single rule that fires, and so its activation decays over time, until it passes below the
forgetting threshold. This model of activation boosting and decay is known as base-level activation,
which comes from the cognitive modeling literature and has been found to predict the likelihood
that features in the real-world reoccur [4]. Base-level activation is mathematically described by the
equation shown in Figure 2.4, where n is the number of activation boosts, ti is the time since the ith

boost occurred, and d is a free decay-rate parameter.
The inclusion of forgetting means that it is possible for the agent to lose knowledge. To prevent

this, forgetting only applies to knowledge can be recovered from long-term memory, which is
described in the next section.

2.2.2 Long-Term Memory Mechanisms

Soar’s long-term memory serves several purposes. First, philosophically, working memory is only
for knowledge that is immediately relevant to the agent, and not for other general knowledge that
the agent may need in other situations; long-term memory is the architectural answer to the question
of where such knowledge would be stored. Second, as mentioned in Section 2.2.1, the capacity of
working memory must be balanced against the speed of rule matching, and the introduction of a
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Figure 2.4: The base-level activation equation

forgetting mechanism in working memory suggests that the ability to recover forgotten knowledge
is desirable. Long-term memory therefore serves as a “backup” repository of knowledge, from
which the agent can retrieve knowledge into working memory at some point in the future.

Finally, long-term memory is a mechanism to allow more flexible indexing of knowledge. Like
working memory, long-term memory represents knowledge as an edge-labeled directed graph; this
shared representation allows seamless transfer of knowledge between the two memories. Long-term
memory currently has two sources of knowledge. First, knowledge can be pre-loaded into an agent;
this often occurs with large knowledge bases such as WordNet [43] or DBpedia [5]. Alternately, the
agent can deliberately store knowledge via the long-term memory buffer in working memory. The
same buffer is also used for retrieving knowledge from long-term memory. To do this, the agent
creates a cue — a description of the features in the desired piece of knowledge. Long-term memory
then selects one element that matches this cue, and recreates it in working memory, allowing the
agent to reason with this knowledge, incorporating it into its decision making process. The retrieved
knowledge can also be modified while in working memory, and then stored into long-term memory
again; by this process, the contents of long-term memory can be updated. Although deleting long-
term memory elements is not technically possible, the same effect can be achieved by modifying
an element such that it has no features; in essence, this prevents it from being retrieved, and could
therefore have no further effect on the behavior of the agent.

Similar to working memory, knowledge in long-term memory has associated activation. Every
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long-term memory element has an activation level that follows the base-level activation equation.
Whereas in working memory the activation is boosted by rule matches, the activation of long-term
memory elements is boosted whenever it is stored or retrieved, since these are the events that
indicate that an element is useful. Unlike working memory, however, activation is not used to
remove knowledge from long-term memory; rather, it is used as a bias for retrieval. For example,
consider a retrieval in which the agent-created cue matches multiple long-term memory elements.
In this situation, which element should be retrieved? To break the tie, long-term memory selects the
most highly activated element, which can be intuitively understood as retrieving the element with
the highest prior probability of being useful. The connection between base-level activation and a
Bayesian interpretation of memory retrieval is beyond the scope of this thesis, but has always been
part of the original rational analysis work on long-term memory [4].

In addition to the bias mechanism, the agent can also iterate through all long-term memory
elements matched by the cue by prohibiting previously retrieved elements from being retrieved
again. That is, after the first element is retrieved, the agent can search long-term memory again
with the same cue, but this time with the first result prohibited. Long-term memory then returns the
second-highest activated element that matches the cue. The agent can repeat this process as long as
necessary, until no new elements are returned, in order to iterate through matching elements; for
example, this is a way an agent can retrieve all suspended goals.

2.2.3 Rule Learning

Thus far, the description of Soar has focused on how the architecture manipulates declarative
knowledge in working memory and in long-term memory. As the beginning of Section 2.2.1
mentioned, this process is described by rules, which themselves form the procedural knowledge of
the agent. Although any agent needs both procedural and declarative knowledge, these two types of
knowledge are considered distinct, and the architecture treats them differently. The most important
of these differences is that procedural knowledge is not considered part of the data available for the
agent for reasoning, and as such, as a fixed, limited set of mechanisms for access. The matching
of rule conditions with working memory elements occurs automatically, and this match must be
complete — satisfying a subset of the conditions of a rule is not sufficient to cause the actions to
apply. Furthermore, since rules are not considered knowledge for reasoning, Soar has no declarative
access to the conditions or actions of rules, nor to reason over the structure of those rules; this also
means that the agent cannot delete rules, since it cannot specify which rule to remove. In contrast,
long-term memory allows the agent to search for knowledge using only a subset of its features,
and also allows the agent to freely create new knowledge by linking and re-combining existing
knowledge. These restrictions on procedural knowledge exist primarily because rule matching is one
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of the inner loops in the architecture, and as such must be efficiently computable; the Rete algorithm
achieves its speed partially by exploiting these constraints. In turn, the long-term memories were
developed to allow a more flexible method of knowledge access that rules could not provide.

While Soar agents do not have declarative access to its rules, there does exist a single mechanism,
chunking, for the agent to learn new rules. Chunking, also known as production compilation in
ACT-R, is a learning mechanism that learns new rules by combining existing rules, thus eliminating
the need for those rules to match and apply individually. Despite this mechanism, however, there
are several disadvantages to using procedural memory as a store for declarative knowledge. First, if
knowledge is stored in rules, the only mechanism for retrieving that knowledge is for the rule to
match. Thus, if a piece of knowledge is needed in multiple contexts, the agent must create a rule for
each of these contexts. Not only is this process inefficient, but it also requires that the agent be able
to predict all the contexts when a piece of knowledge is needed at the time rules are learned. This is
a difficult task, if not impossible for many domains. Second and more problematic is that agents do
not have declarative access to the knowledge in rules. This means that unless a rule fires, the agent
has no way to reason about the stored knowledge — nor does it have a way to create the conditions
under which the rule would apply. The lack of declarative access also implies that once learned,
rules cannot be modified or removed, as the agent has no mechanism to refer to a particular rule to
be deleted, nor to indicate which part of it should be modified. Together, this means that chunking
should only be used for knowledge that is unlikely to change over time, and whose use is highly
predictable. All other knowledge is better stored in long-term memory.

2.3 Goal Re-activation in Cognitive Architectures

The memory mechanisms discussed above may not be the most suitable for goal re-activation, as
they were designed for more generally uses of memory. This section addresses two concerns. First,
are these mechanisms specific to Soar? Second, how might the memory mechanisms described
be used for goal re-activation? We first point out the similarities between Soar and other agent
architectures, focusing particularly on those that impact goal re-activation, before considering their
application in goal re-activation.

2.3.1 Declarative Memory Hierarchies

The relationship between working memory and long-term memory can be generalized into a memory

hierarchy, an organization of knowledge that is shared by many architectures, including ACT-R,
Clarion, LIDA, and others. Much like their analogues in computer architectures, the memories in
the hierarchy are arranged by the stability, the influence on behavior, and the amount of knowledge
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contained. A depiction of this hierarchy is shown in Figure 2.5.
At the top of the hierarchy is short-term or working memory. This memory contains the

immediate perceptions of the agent and knowledge that are relevant to the current situation. The
knowledge in short-term memory directly determines the behavior of the agent, as it is the only
knowledge against which procedural knowledge is matched. Since the size of short-term memory
is a major factor in the cost of rule-matching [22] it is usually kept small. For this reason, some
architectures place an architectural limit on the size of working memory (as in ACT-R), while others
have an architectural process that removes memory elements over time (as in Soar). Both of these
mechanisms limits the data that is available to direct behavior, and may be considered forms of
forgetting.

At the next level of the memory hierarchy is one or more long-term memories. This level of the
hierarchy contains knowledge that may be useful to the agent over its lifetime, but not necessarily at
the present; examples include facts about the domain and the agent’s previous experiences. Due to
its potential size, procedural knowledge cannot directly be conditioned on knowledge in long-term
memory. Instead, long-term knowledge is accessed through deliberate cued-retrievals, where the
results are deposited in specialized buffers in working memory. Although knowledge in long-term
memory does not directly impact rule-matching costs, it may still be forgotten (depending on the
architecture); whether a particular memory element is lost is often a function of the agent’s previous
access to that knowledge.

The last level in the “memory” hierarchy is the environment, which is included for completeness.
It is considered a level in the hierarchy because knowledge that is lost from long-term memory
may be recoverable from the environment. Since the environment is external to the agent, access to
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knowledge is extremely slow as compared to other memories.
Although not all cognitive architectures implement the entire hierarchy, this thesis mainly focuses

on the interaction between the first two layers, on working memory and long-term memory, which
many architectures do contain. In particular, the architecture must have a working memory of limited
size (e.g. CHREST, Companions, Polyscheme) or that is subject to forgetting (e.g. CLARION,
LIDA), and must support directed memory retrievals (all of the above) [10, 20, 23, 56, 57]; a specific
example of the memory hierarchy of ACT-R [3] is given in Appendix A. As described in Chapter
3, these features are sufficient for goal re-activation to be problematic, and for the analysis and
solutions of this thesis to apply.

Agents that contain this memory hierarchy present additional challenges for goal re-activation
due to the assumption that goals cannot be maintained in working memory indefinitely. The problem
is that, for any goal with a sufficiently lengthy retention interval, the goal is removed from working
memory, only existing in long-term memory. Since the contents of long-term memory cannot
directly affect behavior, this means that even if the target is objectively satisfied, the agent would
not recognize that the goal is an option for pursuit. In cognitive architectures, where procedural
knowledge automatically matches against the contents of working memory, the detection of goal
target satisfaction is automatic, as long as the description of the target is also in working memory.
Thus, the crux of goal re-activation for cognitive architectures is the retrieval of the goal from
long-term memory at the right time. This is the retrieval problem of goal re-activation.

It should be noted that the cognitive architecture community has thus far not addressed the
goal re-activation problem. Most research in the field assumes that the agent can be designed with
knowledge of when exactly to retrieve its goals, as well as how to do so. This may be true of the
domains in which cognitive architectures have been applied, where the targets of goals are known at
the time of agent design and their satisfaction could be predicted. This is, however, not true more
generally, which suggests that the community has yet to consider domains where the goal targets
are more varied and where the environment may be less predictable. As a result, while models of
human prospective memory exist, they have not tackled the processes in the initiation stage, which
is the crux of the goal re-activation problem.

2.3.2 Procedural Memory

There is one type of long-term memory that the previous section did not address: procedural memory.
This section considers the type of memory mechanisms that are necessary to support the storage
and retrieval of suspended goals, and demonstrates why procedural memory is ill-suited for goal
re-activation.

Consider the case where the agent unexpectedly finds itself with some idle time, and decides
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to organize its goals and perhaps pick another goal to pursue. A simple procedure for doing so
may involve the agent iterating over its goals, then for each goal determine whether it is still
achievable (and delete it if not), or if details about the goals need to be updated (if, for example, a
message-passing agent has learned of a new way to contact the recipient). The agent could then
use the content of the goals to prioritize them, before selecting a particular goal for pursuit. A
more sophisticated agent may take the environment into account to do a more targeted search for
applicable goals; for example, if the agent is in a part of the environment that it does not often visit,
it may search for goals that need to be performed in the area, to avoid the need to return in the
future.

This simple vignette hints at how an agent interacts with its goals, and therefore the memory
mechanisms that are necessary to support these interactions. Although not all of the processes
that the agent goes through in this vignette are addressed in this thesis, as mentioned in Section
2.1.2, they must nonetheless be taken into account in a complete goal management system. Broadly
speaking, this example illustrates the need for goals to be declarative, in that the agent must reason
about its goals in a number of ways. First, the agent must be capable of retrieving and iterating
through its goals, in order to consider all the possible goals it could pursue. Furthermore, this
consideration process requires the goal to be represented declaratively, since it is the content of the
goals that allows the agent to prioritize different goals. While simple iteration and filtering them
may be sufficient, a more efficient method of finding pursuable goals is to directly search for goals
with specific features, such as the location in which the goal should be performed. In addition to
these access requirements, the example also suggests that goals need to be modifiable, not only
so that they can be marked as completed, but also because alternate methods for their completion
may arise, or their specification may be changed after they are initially created. Finally, if a goal
becomes unachievable, the agent may decide to remove it from memory entirely, which suggests
that the deletion of goals is also necessary.

We can now consider whether different memory mechanisms in cognitive architectures meet
these requirements. We first consider procedural memory, that is, the use of rules. At a glance,
the non-declarative nature of procedural memory means that it likely does not meet many of
these requirements. For completeness, however, we can examine how procedural memory fails
specifically. First, once a rule is learned and the goal is forgotten from working memory, the agent
has no way of retrieving the goal back into working memory without the rule firing. This means that
the agent cannot iterate over goals that are stored in procedural memory, never mind performing any
kind of search. In fact, the agent cannot determine whether it has any goals at all, outside of when
a rule matches the goal target, since unless a rule that represents that goal fires, the agent would
have no method of interacting with the goal. Even if the agent could create the conditions for a
rule representing a goal to match, other problems remain. In the scenario where the goal must be
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updated, the agent has no way of modifying the original rule that had brought the goal into working
memory. Similarly, the agent cannot simply replace the rule with a new one, procedural memory
does not provide a mechanism for deleting rules. While new rules can be learned, the now-obsolete
goal would remain in memory for the remainder of the agent’s lifetime. To be more specific, both
replacing and deleting rules would require a mechanism for the agent to specify which rule to
replace or delete. No such mechanism currently exist in cognitive architectures, and its development
would also require significant changes to the architecture. In summary then, the limited access
methods to rules in procedural memory means that it is not a strong candidate for supporting the
storage and retrieval of goals.

Declarative long-term memory, in contrast, was designed to overcome these problems with
procedural memory, and is a more suitable mechanism for goal management. The deliberate
retrieval mechanism of long-term memory explicitly allows for filtering goals by their substructure,
thus allowing the agent to efficiently narrow the number of goals it has to consider. The same
mechanism allows the agent to easily iterate through its goals by not specifying any substructure
at all. Once a goal is retrieved, the agent could modify the goal in working memory, then use the
storage mechanism to update the contents of that goal in long-term memory; alternately, the agent
can delete the goal if it is unachievable or no longer relevant. Long-term memory therefore already
supports the various manipulations of goals that an agent requires, and is a natural candidate for
further exploration in goal re-activation.

Although procedural memory only offers a limited access mechanism and does not do well
in this comparison, it does not mean that it has no role in goal management. The automatic,
architectural matching of rules to the contents of working memory means that the agent can use
rules to detect specific targets. While the inability to delete rules means this cannot be directly
used for one-time goals (assumption A1), it is well suited for habitual behaviors that should occur
repeatedly, such as checking for cars before crossing the street. This is, however, not the focus of
this thesis, and is not examined further.

2.4 Criteria for Architectural Modifications

The previous section described the state of Soar and of other cognitive architectures before this
thesis. In the course of this work, however, we found that the existing mechanisms of Soar were
insufficient to adequately solve the goal re-activation problem, and that modifying the architecture
was necessary. Specifically, the mechanism of spontaneous retrieval was developed; this mechanism
is described in detail in Chapter 5. This section justifies this particular choice of modification.

First, it is important to understand the space of architectural modifications. The development
methodology of the cognitive architecture community is outside the scope of this thesis, but in
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general the constraints of an architecture can be classified as either core or peripheral hypotheses
[12]. Core hypotheses, known as assumptions in this thesis, are constraints that researchers do not
consider for removal or relaxation in the development of an architecture. Peripheral hypotheses,
here conventions, on the other hand, are constraints that the community has adapted, but whose
epistemic status is still subject to change. Thus, if researchers find tasks at which the architecture
cannot perform adequately under the current set of assumptions and conventions, the conventions
may be relaxed or removed. As other conventions hold over time and over multitude of tasks, they
begin to be regarded as assumptions by the community.

This thesis concerns the architectural assumptions and conventions A5 to A11 as listed in
Section 1.1. A5, A9, and A11 are conventions, while the remaining four (A6, A7, A8, and A10) are
core assumptions. We list them again below for convenience:

A5 Suspended goals are represented symbolically and declaratively, and are subject to the
remaining assumptions describing the processing of declarative knowledge by the architecture.

A9 The only mechanism for long-term memory retrieval is deliberate cued retrieval.

A11 The agent cannot deliberately modify or delete rules.

Although the relaxation or removal of any one of the three conventions may allow the Soar
architecture to adequately solve the goal re-activation problem, we have chosen to focus on the
removal of A9. There are four major reasons for this choice:

• Removing A9 takes the conservative approach to architectural development. The analysis
from Section 2.3.2 suggests that long-term memory is a natural mechanism for the storage of
goals, and it is therefore also natural to first consider how the system could be extended. While
Soar agents can only access long-term memory through deliberate retrievals, researchers have
created alternate retrieval mechanisms in other architectures. In both ACT-R and Companions,
the architecture automatically provides agents with contextually relevant knowledge from
long-term memory, without agent deliberation. Although this mechanism is rarely used
in practice, the community recognizes that there is little cost to the mechanism, even if
its benefits are thus far unknown. In contrast, no cognitive architecture has explored the
consequences of allowing agents to have deliberate access to its rules, and such a modification
is likely to have an impact beyond the scope of this thesis. Similarly, the special treatment of
suspended goals in long-term memory has not been explored. Although the consequences of
removing A5 are likely to be smaller than that of removing A11, there are other reasons for
selecting A9 over it; see below.
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• Removing A9 provides a general solution. Because cognitive architectures are tools for
creating agents, and are not themselves agents created for specific tasks, they need to address
the more general problem of knowledge retrieval from long-term memory when the agent does
not know that such a retrieval is needed; this is an obvious extension of the goal re-activation
problem. Since this larger problem is not limited to goals, removing A5 would not provide a
satisfactory general solution; this is further discussed in Section 3.1 As for the removal of A11,
because it is a generally unexplored mechanism, it is unclear how it would support general
knowledge retrieval, and furthermore deviates from the current architectural processing of
semantic knowledge.

• Removing A9 avoids incurring ongoing costs. One of the key motivations behind the develop-
ment of long-term memory is so that working memory does not grow too large, as it could
otherwise lead to decreased reactivity. Removing A5 would mean that prospective goals are
stored in working memory, possibly indefinitely, leading to a growing working memory over
the agent’s lifetime if the goals are never achieved. This in turn would increase the time
necessary for rule matching, and therefore permanently decrease the reactivity of the agent.

• Removing A9 allows this thesis to contribute to the cognitive modeling community. Although
this thesis explores a topic in computer science and artificial intelligence, it should not be
forgotten that the study of cognitive architectures came out of the need to integrate disparate
psychological and cognitive science theories. The description of architectural processes in
Section 2.2 also apply to other architectures, including ACT-R (see Section 2.3), the main
research goal of which is to model human behavioral data. As human psychological data
shows that people are not limited to deliberate memory retrievals, discarding A9 would allow
researchers to tackle a larger set of psychological phenomenon. The same cannot be said of
the two other conventions. Since rules correspond to ingrained behavior in people (either
through biology or thorough habit), removal of A11 would be the equivalent of humans having
the ability to modify and remove automatic responses at will, something that we cannot do.
Similarly, it is clear that humans do forget goals, much as we forget other knowledge, a
fact not reflected by the removal of A5. Selecting A9 for relaxation therefore broadens the
contribution of this thesis.

2.5 Related Work

This section looks at existing work on goal management in both cognitive architectures and
non-cognitive agents. We also discuss relevant ideas from computer science outside of artificial
intelligence.
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2.5.1 Other Cognitive Architectures

As described in Section 2.3, goal re-activation is a problem that is shared by a number of cognitive
architectures. The majority of prior work related to goal re-activation was done in ACT-R, due to the
architecture’s widespread use in modeling all aspects of human cognition. These models, however,
have not focused on how agents detect that the target of a goal in long-term memory is satisfied;
instead, the majority of models assume that the goal target is satisfied, then focus on matching data
of human performance on prospective memory tasks. One such study looked at two strategies [17].
A “goal monitoring” strategy first retrieves uncompleted goals, then directs the agent to test specific
aspects of the environment to determine if its target is satisfied. In contrast, a “goal cueing” strategy
first elaborates on the agent’s current perceptions, then relies on spreading activation to bias which
goal gets retrieved. In both of these strategies, however, the agent is given knowledge as to when
it is appropriate to retrieve a goal. Indeed, the only challenge for the agent is to determine which
goal is the correct one to pursue, with the assumption that all the goals are pursuable (that is, that
their targets are subjectively satisfied). A different study on the intention superiority effect, where
uncompleted goals are more easily retrieved than completed goals, has a similar issue [37].

The most complete account of prospective memory in ACT-R looked at how supergoals could
be retrieved and resumed after a subgoal has been completed in the Tower of Hanoi puzzle [1].
To ensure that the supergoal remains retrievable from declarative memory, the agent boosts the
goal’s activation sufficiently before beginning the subgoal. By ensuring that the supergoal is the
most activated element in long-term memory, the agent will retrieve it after the supergoal has been
completed. However, this solution does not completely solve the goal re-activation problem. In
order for the supergoal to be the most activated element, the agent must know the length of the
retention interval so it can sufficiently boost the activation of the goal; otherwise, it is possible for
some other long-term memory element to have a higher activation and be retrieved instead. This
not only requires knowledge of exactly when a goal should be pursued — which is only possible
due to the highly structured domain of Tower of Hanoi — but also knowledge of the properties of
how base-level activation behaves. The goal re-activation scenarios listed in Section 1.1, in contrast,
all have variable retention lengths (A3), and are also relevant during an unrelated task (A4) — in
contrast to the strict supergoal and subgoal relationship in Tower of Hanoi. In other words, this
strategy assumes relationships between goals and knowledge about goal retention intervals that may
not be available in other tasks.

There are other studies related to goal re-activation that do not directly address how the agent
detects that a goal is pursuable. One viewpoint on goal re-activation is to frame it as the agent
attempting to complete two goals — that is, the agent is multitasking. While most studies on
multitasking focus on resource allocation between tasks, and not on detecting whether a task should
be pursued [52], it may be possible to consider the detection itself as a task that the agent is pursuing
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concurrently with others. The majority of tasks modeled under the multitasking paradigm require
different resources sequentially; for example, a task may first use memory to retrieve the goal,
then require motor resources to perform an action. Detecting the pursuability of prospective goals,
however, constantly requires the same resources: the retrieval of the goal from long-term memory,
and the procedural knowledge to compare it with perception. Since the resource demand is constant,
any use of memory by other tasks would directly reduce the ability for the agent to recognize
prospective goals. Instead of creating other tasks that could impact goal-reactivation performance,
in this thesis we instead directly manipulate the resources available for goal relevance detection, in
order to study its effects on agent performance.

2.5.2 Non-Cognitive Agent Frameworks

While the representation and pursuit of goals has been the focus of much research, the generic
management of suspended goals has not received much attention. Work that does exist tends to
assume that agents have full access to suspended goals; that is, agent knowledge is fully observable,
unlike the partial observability of long-term memory in cognitive architectures. As a result, while
there is some overlap, most strategies do not apply.

In general, the detection of whether a suspended goal should become an option is reduced to an
issue of timing. That is, periodically, the agent iterates through all its suspended goals to check their
targets; if their targets are now satisfied, then the agent reasons about the newly pursuable goals and
decides on a new choice of action. [59] A more sophisticated strategy is to check the goal targets
whenever certain environmental percepts are detected [6]. While both strategies are intuitive, they
under-represent the space of possible solutions, and neither their performance nor their efficiency
has been well explored.

Other work exists which does not depend on using timers to check for goal target satisfaction,
but instead creates monitors for changes to the relevant world states [62]. Given a model of the
world, these systems examine the goal target and how it determines what changes to the current state
would result in new plans being possible. Since this work is based in the planning community, it
assumes that the agent has a model of the environment, which we do not assume in this thesis (A3).
At the same time, using environmental features to trigger goal-related actions avoids the efficiency
problems of using a countdown, and we draw inspiration from this approach in Chapter 4.

Other work has drawn on similarities between goal re-activation and re-planning. The Goal-
Driven Autonomy framework, for example [30], uses the violation of expectations to direct the
search for goals, a form of plan monitoring. For each step of the plan that the agent is currently
executing, an expectation of the environment is generated. If the actual perceived state differs
from expectation, an attempt is made to explain the discrepancy; it is the explanation that drives
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the checking of goals. Since this thesis also applies to agents that do not have a model of the
environment for creating expectations (A3), this approach would fail to generate expectations and
thus fail to detect that a goal is pursuable.

Goal re-activation has received a minimum of attention in case-based learning and planning.
The planning community has looked at opportunistic planning, where the challenge is for agents to
exploit unexpected opportunities. Goals and suspended plans in opportunistic planning literature are
also treated separately from other knowledge and there is research on how the representation of the
suspended plan affects its later recognition [53], an issue this thesis does not tackle. Finally, where
details are provided as to how satisfied goal targets are detected, they are reduced to a periodic
check of the goal [55, 63].

Perhaps the area closest to the retrieval of knowledge from memory is the control of active
sensors in robotics, which must contend with partial observability of the external environmental
state, as a parallel to the partial observability of the internal agent state that this thesis addresses. A
major difference between these two problems is that for active sensing in robots, there is a clear
objective function to maximize: the reduction of uncertainty in the robot’s belief state [32], as
compared to the ground truth of the environment. This means that while the optimal policy may
be unknown, the features that are needed to make the optimal decision is present. In contrast,
the feature that suggests that knowledge needs to be retrieved from memory itself depends on the
retrieved knowledge — or rather, it requires both the feature and the retrieved knowledge itself to
indicate that a retrieval is necessary. Of course, this is not true of all active sensing, but as far as we
know, there has not been research on how to use active sensing when its success depends on the
result of that sensing.

2.5.3 Non-Artificial-Intelligence Research

Finally, although this thesis is in artificial intelligence, the use of memory as a knowledge base
suggests similarities to ideas from both the software and hardware aspects of computer science.
Given that the memory hierarchy is inspired by the memory hierarchy in computer architecture,
it is not surprising that ideas from computer systems are also relevant. In particular, the retrieval
and retention of knowledge in working memory parallel the processes of pre-fetching and caching.
In computer architecture, pre-fetching refers to the ability of the architecture to read data that is
near data that is requested, thus exploiting the spatial locality of the data. Similarly, between local
and remote servers (for example, in the case of an internet browser), links in the current page may
be fetched before the user clicks on it, since it is likely that they will navigate to one of those
pages subsequently (known as link pre-fetching). Notably, these techniques rely on the underlying
structure of the data, that spatially-adjacent data are likely to be accessed in turn, whether the
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distance is measured by spins of a disk or by graph distance on the internet. The spontaneous
retrieval strategy explored in Chapter 5 uses some of the same idea, by assuming that using the
graph distance in long-term memory as a locality measure. Similar to link pre-fetching (but unlike
standard memory pre-fetching), however, the calculation of what to pre-fetch, as well as the fetching
itself, does not come freely with the fetch of the requested data, and in the case of long-term memory
in particular, there may be bottlenecks to the amount of knowledge that could be pre-fetched.

Caching, on the other hand, is the opposite of pre-fetching — the local retention of data after it
has been used. One of the key research questions in caching is what old data should be removed to
create space for new data. These cache replacement algorithms often use measurements of frequency
and recency as features for their decisions, which parallel how base-level activation is correlated
with these features. This provides additional support for the design of base-level activation, although
the connection with caching does not directly inform solutions to the goal re-activation problem.

A second related concept from computer science is that of polling and interruption when a
processing waits for an external device, such as getting data from disk or ensuring that a printer
is ready. The commonality with the goal re-activation problem lies in that the processing cannot
proceed without additional information, but it is unclear how long it will take for that additional
information to arrive. As a result, computer architecture designers have looked at two methods
for recognizing that the information has arrived. The first, polling, requires the processing to
periodically ask for the status of the external device; the second, interruption, requires the device to
signal the process when it is ready. These two techniques roughly correspond to the preemptive
strategies (described in Chapter 4) and spontaneous retrieval (described in Chapter 5).
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CHAPTER 3

Problem Definition and Solution Overview

This chapter presents the first result of this thesis: a computational characterization of the difficulties
of goal re-activation in a cognitive architecture. The development of this characterization is
described in Section 3.1, together with several problems related to goal re-activation that exhibit the
same characteristic. Section 3.2 then describes how this characterization leads to the strategies that
are explored and evaluated in the rest of this thesis. Finally, Section 3.3 relates these strategies to
existing work.

3.1 A Computational Definition of Goal Re-Activation

To summarize the problem that this thesis is solving: given the separation of working and long-term
memory, and the storage of suspended goals in the latter, how does the agent retrieve goals into
working memory when their targets are (objectively) satisfied, such that the goals can be pursued?
Without loss of generality, it can be assumed that retrieving the goal also retrieves the target, and that
if only the target is retrieved, its associated goal can be easily retrieved after the agent recognizes
that the target is satisfied. Since we are primarily concerned with recognizing that a goal is relevant,
we equate the retrieval of a goal with the retrieval of the representation of its target (and vice versa).

Since the only mechanism for retrieving knowledge from long-term memory is through a rule
creating a retrieval cue, it appears that a rule must be written to retrieve the goal as well. But what
should be the conditions for the rule — that is, when should the goal be retrieved? Naively, it
should be retrieved when its target is subjectively satisfied. This means the retrieval rule must first
compare the stored target of the goal to the agent’s current percepts, to ensure that it is satisfied.
This comparison, however, itself requires that the target of the goal is in working memory, which is
the reason we need the rule in the first place; this implies that any additional rules that attempt to
retrieve the target would face a similar problem, each requiring additional rules for retrieval before
the comparison, leading to an infinite regress. In fact, the conditions of the retrieval rule require that
the actions of that rule to have already occurred; the rule requires itself to have fired before it could
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Retrieve goal from
long-term memory
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Dependency 2

Figure 3.1: The knowledge dependency cycle of goal re-activation

fire.
The fundamental computational difficulty of the retrieval problem of goal re-activation is

therefore that the necessary actions have circular knowledge dependencies (Figure 3.1). In order
to retrieve a goal’s target into working memory, the agent must use procedural knowledge. The
rules that make up this procedural knowledge, however, must have a condition — in this case,
the condition that the target of a goal is satisfied by the current percepts. But for this comparison
of target and percepts to occur, the target must be in working memory in the first place. As a
concrete example, consider the task of conveying a message, with the target of seeing the recipient.
Recognizing that someone is the recipient of a message requires the agent to recall that it has the
prospective task of delivering a message (dependency 2 in Figure 3.1). And yet, the agent would
not retrieve the goal and its target unless it believes that the task was relevant — such as that the
recipient is present (dependency 1 in Figure 3.1). This dependency cycle means that it is impossible
to write a rule that only retrieves a goal when its target is subjectively satisfied. Either the goal is
already in working memory, rendering moot the point of the retrieval, or the goal is not in working
memory, and the rule for retrieval never matches.

Although the core problem of goal re-activation is a dependency cycle for retrieving the goal
from long-term memory, a similar dependency cycle exists for perceiving the goal target in a partially
observable domain. As a concrete example, consider a scenario where both the message-delivery
agent and the recipient of the message are in a crowded room, but are unaware of each other. For
the agent to detect the recipient, it must actively search through the crowd; but without knowing
that the recipient is present, the agent has no reason to do so. There are less contrived scenarios
where this occurs; for example, if the target of a goal is a specific time and the agent must rely on
an external clock for the time. The agent could only initiate a sensing action through rules, but the
rules themselves would be conditioned on recognizing that the target is (subjectively) satisfied; this
is a second knowledge dependency cycle for interacting with external domains. Of course, these
two cycles are not mutually exclusive — such is the case for forgetful humans with a time-based
target for the goal of attending a meeting, where a clock may not be in sight, and in any case the
human has forgotten that they have a meeting, so they don’t remember to check the clock.

Another related failure is a lack of knowledge needed by the agent to recognize that the target is
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satisfied. Consider an agent with the goal of buying milk, with a reasonable target of being near
a store that sells milk. If the agent is standing outside an ethic Irish grocery store, the agent may
not recognize the target as satisfied, even if it perceives the grocery store and the goal of buying
milk is in working memory. What it is lacking is the knowledge that Ireland leads the world in
milk consumption per capita, and the store is therefore likely to carry milk as well. Just as there is
circular dependency between retrieving the target and recognizing that it is satisfied, this thought
experiment suggests there is a similar circular dependency between retrieving knowledge that is
relevant, and recognizing that it would be relevant so that it could be retrieved.

At a glance, this circular dependency leads to an absurd conclusion: if such a dependency exists
for all percepts, agent would have trouble recognizing any object. For example, if the agent sees a
face, this theory would predict that the agent would not know to retrieve the person to whom the
face belongs. There are two mistakes with this extension of the idea. First, there is a difference
between recognizing that the percepts form a face, and recognizing that the percepts form the target
of a goal. In Soar, automatically recognizing a face may mean that there is additional, sub-symbolic
processing involved, with only the symbolic output of that process entering working memory; this
parallels existing work on object recognition [45]. This symbol may then be labeled as a face via
elaboration rules. The combination of sub-symbolic processing and rules is appropriate for this task,
since facial features rarely change over time, since declarative access is not necessary, and since
there is rarely an explicit need to delete such knowledge from memory. (How such rules are learned
is a topic of ongoing research and is not part of this thesis.) Goal targets, however, do not share
these three attributes, which is why rules should not be used (as outlined in Section 2.3.2). Even if
goal targets are automatically recognized, there is a second problem: there is a difference between
recognizing a set of perceptual features and representing it as a symbol, and retrieving information
about that object. In the case of seeing a face, the recognition of it as a face does not automatically
identify to whom the face belongs, nor does it retrieve other knowledge about the person, since
this information is merely loosely associated with the percept. Similarly, even if a goal target is
automatically recognized as a higher-level feature, this does not mean that other information about
the goal is retrieved, such as what the goal is or what action needs to be taken. This suggests that
recognizing the satisfaction of a goal target is not a specialized capability, but may be an integral
part of detecting when knowledge is relevant; this connection is further explored in Chapter 7.

Generalizing from these examples, the goal re-activation, perceptual, and inference circular
dependencies are all caused by the partial observability of the agent, either of its goals, of its
environment, or of its knowledge store. Note that these issues only arise when the agent cannot
simultaneously process the entirety of its environment. For goal re-activation, this corresponds to
assumption A4, while for the other circular dependencies it corresponds to the large number of
other perceptions and knowledge, respectively. If this was not the case, the agent could always
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iterate through all its goals, perceptions, and knowledge, and no dependency cycle would arise.
This analysis shows that the underlying cause of the goal re-activation problem is in fact a

broader problem with the mechanisms of long-term memory in cognitive architectures. Although
this thesis is focused on goal re-activation, the approaches we develop will attempt to also be
applicable to the broader knowledge retrieval problem. The assumptions A1 to A4 also apply to
knowledge retrieval. The agent has knowledge that may or may not ever be useful (A1); the agent
learns knowledge that is not immediately relevant (A2); the agent does not know when a particular
piece of knowledge is useful (A3); and the agent should not devote all resources to knowledge
search (A4). While this may mean that the strategies developed may not take advantage of how
goals are a specialized type of knowledge, this is in line with convention A5, and does not pose
additional constraints.

This thesis assumes that the targets of goals are perceivable without active perception, and that
no additional knowledge is needed for the agent to recognize that the goal target is satisfied.

3.2 Strategies for the Retrieval Problem

The knowledge dependency cycle described above is a computational understanding of goal re-
activation, caused by the assumptions and conventions of cognitive architectures. This thesis focuses
on the relaxation of A9 as a solution to the goal re-activation problem, we also briefly discuss
how the other conventions (A5 and A11) could serve as solutions. Relaxing the first convention,
A5, suggests the possibility of excluding goals from the forgetting process, allowing goals to be
automatically kept in working memory for indefinite periods of time. This would allow rules to
directly match on goals without the need for retrieval from long-term memory, thus sidestepping the
dependency problem. On the other hand, convention A11 is about the limited interactions the agent
has with its rules — in particular, that rules cannot be modified or removed; without this convention,
agents could store goals in procedural memory instead of declarative long-term memory, where
the rules could directly match the agent’s perception of the target. For the reasons described in 2.4,
however, these strategies are not pursued in this thesis.

Instead, we focus on relaxing convention A9, which limits the mechanisms through which
working memory and long-term memory interact. The dependency cycle remains even without
A9, but it provides additional strategies for which to break the cycle. The first strategy — which
is already possible — is to retrieve goals without waiting for their targets to be satisfied, with
the expectation that they become pursuable before the goals are forgotten; this breaks the first
dependency in Figure 3.1. The second strategy — which is only possible by removing A9 — is to
somehow compare the target of a goal with the percepts of the agent without first retrieving it from
long-term memory; this breaks the second dependency in Figure 3.1.
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Perhaps surprisingly, this categorization of strategies can also be applied to the strategies
observed in human prospective memory behavior. Within psychology, two major approaches have
been described [41]:

• Monitoring describes any strategy where attentional resources are periodically expended to
check if the targets of goals are satisfied. Since monitoring for the target implies that the goal
is already in working memory, this falls under the first class of strategies.

• Spontaneous retrieval describes any strategy where the goal simply “pops” into mind; cru-
cially, no attentional resources are used during the retention interval. How the goal is retrieved
into working memory is unknown — accounts exist of both retrieving the goal in its entirety,
as well as having a vague feeling of knowing [31] or some other metamemory judgment [46]
that the target of a goal is satisfied. In either case, some non-deliberate process is processing
the percepts from the environment before the goal is retrieved into working memory; this
therefore falls under the second class of strategies.

Traditionally, psychology has distinguished between strategies by whether deliberate cognitive
resources are required, as opposed to automatic architectural resources. This is understandable, as
procedures for determining cognitive load are well-established. From an architectural standpoint,
however, it is more useful to consider the mechanisms required for the strategy to succeed, with a
focus on whether the retrieval is deliberate or spontaneous. This mechanism-based classification
means that the feeling-of-knowing approach combines the spontaneous metamemory judgment with
the deliberate retrieval of the goal. For this reason, the strategy is not fully explored in this thesis,
although a plausible mechanism for metamemory judgments is described in Appendix B.

Since it is difficult, if not impossible, to fully enumerate the space of strategy implementations,
this thesis explores only a subset of specific implementations. The reasoning behind the choices
made in implementing the strategies are explained, but it is possible that alternate implementations
of these strategies lead to better performance. The results in the latter chapters should therefore
be understood as a characterization of the space explored, and not as a theoretical limit on goal
re-activation performance.

Each of the three strategies is briefly described below.

3.2.1 Preemptive Strategies

Instead of using the psychological terminology of monitoring, this thesis uses the term preemptive to
describe a broader category of strategies. In the human strategy of monitoring, people are observed
to require attentional resources to check the environment for the targets of goals. These checks
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occur either periodically or during context switches [54]; the exact conditions depend on the person
and the goal.

Preemptive strategies in artificial agents also incur costs. An agent using a preemptive strategy
tries to prevent the forgetting of a goal, either by rehearsing a goal to boost its activation so that it is
never forgotten, or retrieving it into working memory periodically to ensure it is almost always there
even if it is forgotten temporarily. These actions require deliberate action from the agent during
the retention stage, by requiring the agent to perform goal maintenance operations. Since these
operations may interrupt the agent’s processing of the foreground task — analogous to how the use
of attentional resources in human monitoring degrades performance in another task — preemptive
strategies are similar to monitoring. Whether the agent rehearses or retrieves goals, these variations
on the preemptive strategy ensure that goals are in working memory before the target is satisfied;
they are preemptive in that the agent takes deliberate action before the initiation stage, thus removing
the first dependency in Figure 3.1. Both of these actions can be performed with Soar’s existing
mechanisms, and no architectural modification is necessary.

As a concrete example, a message-delivery agent employing a preemptive strategy might
prevent the goal from being forgotten from working memory. After the goal is given the agent
in the encoding stage, the agent would periodically boost the working memory activation of the
goal throughout the retention stage, by deliberating using the goal as a condition in a rule that fires.
This prevents the activation of the goal from falling below the forgetting threshold, allowing it to
remain in working memory. When the recipient does appear, the agent would detect that the target
of the goal has been satisfied, and thus have the option of pursuing the goal. Alternately, instead
of preventing the goal from being forgotten, the agent might retrieve it from long-term memory
whenever it believes the recipient is likely to appear — such as when the agent is going between
meetings. In this case, whenever the agent is transitioning towards situations where large numbers
of people are present, it would retrieve the goal of delivering the message, such that the target of
that goal is in working memory when the people are in sight, allowing rules to match if the recipient
is present. Both variants of this strategy are implemented and evaluated in Chapter 4.

3.2.2 A Spontaneous Retrieval Strategy

The spontaneous retrieval strategy, as the name implies, relies on automatic processes to retrieve
goals into working memory. Also known as remindings [28], this process is automatic and does not
require the use of procedural knowledge. As a concrete example, this is equivalent to the intention
of buying milk somehow “popping” into the working memory of the agent as it passes a grocery
store. Since no deliberation is required from the agent, this solves the goal re-activation problem by
removing the second dependency from Figure 3.1.
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Assuming that a spontaneous retrieval mechanism exists, the agent using the spontaneous
retrieval strategy only has to ensure that the goal is stored in long-term memory at the encoding
stage. In theory, when the target of the goal is (objectively) satisfied, the goal would be automatically
retrieved into working memory. Rules would then compare the retrieved goal target to the agent’s
percepts and determine that it is (subjectively) satisfied, then propose the pursuit of the goal as an
option for the agent. Since spontaneous retrieval is a new architectural memory retrieval mechanism,
there are a number of open questions regarding how this mechanism works. The implementation
and evaluation of the spontaneous retrieval mechanism (by the criteria laid out in Section 2.4), as
well as of the spontaneous retrieval strategy for goal re-activation, are detailed in Chapter 5.

3.2.3 A Noticing-Plus-Search Strategy

Noticing-plus-search refers to the strategy that uses a metamemory judgment. In psychology,
memory researchers have noted that humans do not only have knowledge about the world, they also
have knowledge about their own memory systems; this is known as metamemory. For example,
one metamemory judgment is whether someone can recall a piece of information at a later date;
this judgment-of-knowing is used by students to know when they have studied sufficiently for an
exam [46]. This phenomenon plays a role in prospective memory when people have a feeling that
there is a goal they need to pursue, leading them to perform a deliberate search of their goals. A
similar strategy could be applied in cognitive architectures, provided that a source of metamemory
judgment is available — such sources would be a new architecture mechanism.

Consider the message-delivery task. After the goal is stored in the agent’s long-term memory, at
some point the agent runs into the recipient of the message. Unlike spontaneous retrieval, where
the goal and its target are automatically retrieved, metamemory judgments return less information.
For example, the agent might receive an automatic signal that suggests that long-term memory has
additional knowledge about the recipient. Based on this signal, a rule may then search long-term
memory for this additional knowledge, and in doing so retrieve the message-delivery goal. A
different rule would then propose the pursuit of the goal after the subjective satisfaction of the goal
target is detected.

3.2.4 Strategy Summary

The three mechanisms — deliberate retrieval, metamemory judgments, and spontaneous retrieval —
can be seen as points in a space of memory mechanisms, which differ in whether agent deliberation
is necessary and in the amount of information returned. Both deliberate and spontaneous retrievals
result in a piece of knowledge in working memory, while metamemory judgments only result in a
piece of metadata about a piece of knowledge. The agent must still deliberately search long-term
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memory for the source of that metadata before the goal target is retrieved into working memory.
Although noticing-plus-search appears to be a solution to the goal re-activation problem, it

was not explored in this thesis. This decision was made due to a preliminary exploration of
metamemory judgments, that of recognition [39]. The work is reported in Appendix B, but it was
unclear how the agent should select the working memory element with which to search memory.
Since metamemory judgments is a novel architectural mechanism — more so than spontaneous
retrieval — there is no guidance from prior work as to what judgments would be useful generally
or useful for goal re-activation. In addition to this uncertainty, the noticing-plus-search strategies
are more complicated than either preemptive and spontaneous retrieval strategies, requiring both
an automatic metamemory judgment as well as agent deliberation to retrieve the goal. For these
reasons, and because there is prior literature on the mechanisms for preemptive and spontaneous
retrieval strategies, they are the focus of this thesis.

3.3 Relation to Other Circular Dependencies

Framing goal re-activation as a problem of circular dependencies allows us to draw solutions from
other subfields of computer science. The best-known circular dependency problem comes from how
low-level hardware handles input/output, where the processor must wait for a device to be ready,
but does not directly have access to the state of the device. Two common solutions to this problem,
polling and interrupts, were described in Section 2.5.3.

At first glance, these solutions map roughly onto the solutions presented here. Just as polling
requires the processor to periodically probe the device for its state, preemptive strategies require the
agent to periodically retrieve goals from long-term memory. There are, however, subtle differences
in the use case. First, with input/output from hardware, polling is used to detect a change in the state
of the device; with goal re-activation, the state of long-term memory may not change. The simple
analogical mapping of long-term memory as the IO device therefore does not hold, as there is no
state change that the agent should be notified about. Instead, in order to apply this analogy, we must
expand the “device” to include not only long-term memory, but also the external environment of the
agent. The agent is then “polling” for when the environment presents percepts that match the target
of a goal in long-term memory — and yet, even this expanded definition fails to take into account
how long-term memory and the environment can only interact through working memory. There is
also no direct parallel for how goals may remain in working memory for some time before being
forgotten. Thus, although preemptive strategies resemble polling, there are sufficient additional
components in the memory organization of cognitive architectures that warrant exploration of
preemptive strategies.

The other form of communication commonly used in IO is the interrupt, where the device sends a
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signal to the processor when it is ready. Since the signal originates from the device, this corresponds
to both the spontaneous retrieval strategy as well as the noticing-plus-search strategy. Both these
strategies require long-term memory to generate some sort of signal — a full piece of knowledge in
for spontaneous retrieval, a binary bit indicating noticing for noticing-plus-search. One difference
from interrupts, as demonstrated by the two strategies, is that because cognitive architectures are
not operating at the hardware level, there is a choice in terms of the amount of information that is
transmitted. In general, this may involve a tradeoff between amount of information provided and the
cost of acquiring that information in memory. The use of interrupts in long-term memory, however,
is a new concept, and poses questions that must be addressed. First, it is unclear what process the
interrupt signifies the completion of, and this may itself depend on what information to be contained
in the interrupt. Second, since cognitive architectures do not currently have an interrupt mechanism,
there is no previous work on how to take advantage of these interrupts, or on how to integrate them
with the architecture. Thus, while the concept of interrupts is not new, their implementation details
in the memories of cognitive architectures remain a subject of research.
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CHAPTER 4

Preemptive Strategies

This chapter presents and evaluates a class of strategies for goal re-activation called preemptive

strategies, the main unifying feature of which is that they break the dependency cycle in Figure 3.1
by removing the first dependency. Section 4.1 introduces the strategy class and the four variants
of the strategy that this thesis explores. Prior work is briefly reviewed in Section 4.2, after which
the implementation of the four variants of preemptive strategies are detailed in Section 4.3. As the
first strategy to tackle goal re-activation, three different evaluations are necessary; these are laid out
in Section 4.4. Section 4.5 explores the upper bound of the number of goals preemptive strategies
can manage, while Section 4.6 looks at the strategies in a simulated robot domain. The success of
the strategies and the need to perform more controlled experiments drives the development of an
abstract prospective memory domain, described in Section 4.7, and the trends in the performance
of the strategies in the domain are explained in Section 4.8. Finally, the results from the chapter
are summarized in Section 4.9, with takeaways for agent developers looking to use preemptive
strategies.

4.1 Overview

Preemptive strategies are strategies that ensure that the goal is in working memory before its target is
satisfied; they are preemptive in that the agent must take action prior to the satisfaction of the target.
To understand preemptive strategies, it is necessary to consider the mechanism that removes goals
from working memory: base-level decay of the activation of a goal below the forgetting threshold.
This means that for a preemptive strategy to ensure that the goal is in working memory, there are
two choices: it must either continually boost the activation of a goal such that it is not forgotten (the
rehearsal approach), or it must retrieve a forgotten goal from long-term memory before its target is
satisfied (the retrieval approach). These mechanisms are not mutually exclusive: a strategy could
retrieve a goal then boost its activation, such that it would remain in working memory for a longer
period of time before it must be retrieved again.
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Preemptive strategies can be roughly classified along two dimensions. The first is based on
whether they use rehearsal or retrieval for goal maintenance; the former is proactive (to prevent
forgetting), while the latter is reactive. Categorizing strategies by this distinction aligns them with
the capabilities of the memory systems of cognitive architectures. A proactive approach only applies
to Soar’s working memory, where the boosting of activation can prevent a goal from being removed.
In contrast, ACT-R’s working memory is limited in size, and no mechanism exists to prevent a goal
from being eventually removed. A reactive approach, on the other hand, applies to the working
memories of both Soar and ACT-R, where forgotten knowledge can be recovered from long-term
memory.

A second dimension of variation in preemptive strategies is when the retrieval or rehearsal
occurs; this is called the trigger for a preemptive strategy. This thesis explores two such triggers for
preemptive strategy, both inspired by human prospective memory behavior. The first trigger is a
simple timer: the agent performs preemptive goal maintenance every t time steps, where t is some
domain-specific parameter, the ideal value of which depends on both the environment and the agent
(specifically, the decay rate of working memory elements). Here, too small a value for t means that
the agent would spend more time and computational resources than necessary on maintaining the
goal, as would be the case if the activation of a goal is kept far above the forgetting threshold. On
the other hand, too large a value of t would mean that the goal is forgotten frequently, and thus
is out of working memory for significant periods of time, unavailable for matching against the
agent’s percepts. At the same time, t should be adjusted based on how frequently the goal target is
objectively satisfied; an environment where the target is satisfied often may require a smaller t, since
the target may be satisfied even during the short time the goal is in working memory. Although
each goal could have a different countdown time t, in this thesis we only look at the case where
t is a parameter of the agent and apply to all goals that the agent has. As a concrete example, for
the task of passing a message, countdown triggers of five seconds or of two years would both be
inappropriate, with the ideal countdown depending on the frequency with which the agent is likely
to encounter the recipient of the message.

The second trigger for preemptive strategies relies on perceived features of the environment.
For a particular environment, the agent designer determines which features are highly predictive of
situations where the goal targets are satisfied, and creates rules conditioned on those features. The
action of the rule is to retrieve goals into working memory, such that when the target is objectively
satisfied, the agent can detect that that is the case. For example, consider the message-delivery agent
in an indoor environment, where the walls of the environment limit the perception of the robot.
Since most percepts (including people) only become visible when the robot enters a room, passing
through the doorway is highly predictive of new percepts, and therefore of perceiving that the target
of a goal is satisfied. A useful strategy for goal re-activation is thus to ensure that goals and their
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targets are in working memory as the agent enters a room, so that the targets can be compared to the
percepts. In this example, doors are features that indicate a context change, which has been noted to
cause the retrieval of goals in humans [54].

Consider the extreme case for a perception trigger, where the agent only has a single goal. In
this case, the most “predictive” feature of that goal is the target of the goal itself, and therefore the
agent designer could create a rule conditioned on the appearance of the target, that retrieves the
goals of the agent (in this case, the single goal). This is different from hard coding the retrieval of
the goal into procedural memory, however, in that the action of the rule is not to propose the pursuit
of the goal, but to retrieve uncompleted goals. The difference can be seen if the single goal has
already been completed; if the goal is hard coded, the agent will propose completing the goal again,
while in a preemptive strategy, the agent would search memory for uncompleted goals, fail in that
search, and continue with the foreground task. More generally, however, an agent will have many
goals with different targets that are unknown in advance, and the agent designer must find percepts
that are predictive of the situations in which these targets arise.

In sum, this thesis explores two triggers and two goal maintenance actions for preemptive
strategies, each of which can be paired with the other, leading to a total of four preemptive strategy
variants:

• the timing-triggered preemptive retrieval strategy

• the perception-triggered preemptive retrieval strategy

• the timing-triggered preemptive rehearsal strategy

• the perception-triggered preemptive rehearsal strategy

4.2 Related Work

As mentioned in Chapter 3, preemptive strategies are inspired by the human prospective memory
behavior of monitoring. A simple description of this strategy is that people go into a Test-Wait-
Test-Exit (TWTE) loop [25], a block diagram for which is shown in Figure 4.1. The person checks
their environment to see if the goal target is satisfied; if not, they wait for a while before testing
again, until the goal can be pursued, at which point they exit the loop. For example, if the person
was tasked with delivering a message, they might employ the TWTE strategy of checking to see if
the recipient is nearby every few minutes, until the recipient does appear. Attentional resources are
spent whenever the environment is tested for the goal target; in the example, this is when the person
checks for the recipient. It should be noted that this use of resources is slightly different from that
in the preemptive strategies described here, where it is the maintenance of the goal in memory that
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Figure 4.1: The Test-Wait-Test-Exit loop [25]

uses resources, not the checking of the target, which occurs automatically via rule matching. The
main characteristic of preemptive strategies, however, remains to be the need for the expenditure of
resources during the retention interval [41].

Separate from the monitoring strategy, there is psychological evidence that people tend to recall
goals when switching between task contexts, such as when walking down a hallway to a meeting or
leaving the house in the morning [54]. Only when a goal is retrieved and an opportunity to act is
judged to be imminent does the monitoring begin.

In light of the preemptive strategy classification, it can be seen that previous work with ACT-R
also falls under this strategy. A model of “intention monitoring” [17] superficially resembles a
preemptive strategy, as goals are first retrieved then tested against the agent’s percepts. For the
Tower of Hanoi agent mentioned in Section 2.5.1 [1], since the task consists only of super-goal and
sub-goals, the generation of a sub-goal is used as the perception trigger for rehearsing the super-goal,
before the super-goal is suspended. Simultaneously, the completion of a sub-goal is also used as a
perception trigger for retrieving the next goal. For ACT-R, both rehearsal and retrieval are necessary
due to the severely limited size of working memory and the possibility of forgetting from long-term
memory. That this prior work is an instance of a general preemptive strategy demonstrates the merit
of the classification of preemptive strategies.

4.3 Implementation

This section describes the implementation of each variant of preemptive strategies, by describing
both timing and perception triggers, followed by both rehearsal and retrieval as goal maintenance
actions. In general, both triggers lead to the proposal of the same generic goal maintenance operator.
Depending on the settings of the agent, the operator then performs either retrievals or rehearsals.

To implement the timing-trigger, the agent first creates a count of the timing period in working
memory. This counter is decremented every decision cycle by whatever operator is selected; this
decrement does not require an operator of its own, and therefore does not interfere with other agent
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processing. The timing-trigger agent is created with a rule whose condition checks for the counter
reaching zero; if this is the case, the rules propose a generic perform-goal-maintenance operator,
which is described below. The goal maintenance operator also resets the counter to the timing
period, which allows the countdown to begin anew. In contrast, the perception trigger is simpler:
it only consists of a single rule that proposes the same goal maintenance operator. The condition
of the rule is domain dependent, and its conditions test for whatever features the agent designer
believes is predictive of the satisfaction of goal targets.

Although the same goal maintenance operator is proposed by the different triggers, the rules for
the operator are specialized to each goal maintenance action, as their conditions check for which
action should be taken. For the retrieval action, the rule searches long-term semantic memory
using a cue that describes the desired memory element as an uncompleted goal. Additionally,
existing goals in working memory are prohibited from being returned. At each decision cycle where
the retrieval goal maintenance operator is selected, only a single goal is retrieved from long-term
memory. Additionally, even if the retrieval is successful and there could be more unretrieved goals
in long-term memory, the operator does not continue in the next decision cycle. While in theory
the agent could add the newly retrieved goal to the list of prohibited memory elements and repeat
the memory search, thereby asking long-term memory for the next most highly activated goal, in
practice this means that the agent could have an unbounded number of retrievals per trigger. Instead,
the preemptive retrieval strategy allows only the retrieval of a single goal per trigger, to serve as an
upper bound on the number of goal maintenance operations the agent can perform. The limit of a
single retrieval is arbitrary; a higher limit trades off reactiveness (from retrieving multiple goals) for
the number of goal targets matched in a single decision cycle. Moreover, the bottleneck remains
even if more goals are retrieved. As long as there are more goals in long-term memory than can be
retrieved (or kept in working memory) simultaneously, this retrieval limit only changes the problem
in degree but not in kind.

The rehearsal action also begins with the selection of the generic goal maintenance operator. In
this case, however, the operator performs no action if there are no uncompleted goals in working
memory. If an uncompleted goal does exist, the rules for the rehearsal action first creates a second
counter, which tracks the number of rehearsals yet to be performed. Recall that to boost the
activation of a working memory element, the element must be part of the conditions of a rule that
fires. For the rehearsal action, this rule is conditioned on both the number of remaining rehearsals
(a number that it decrements), as well as on the goal to be rehearsed and its target description. This
rule fires repeatedly — within the same decision cycle, since it is considered one application of
the same operator — until the rehearsal counter reaches zero. Again, the activation of only one
goal is boosted per trigger; as with the number of goals retrieved, this limit does not cause a loss in
generality.
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Two concrete examples may help with understanding the operations of these preemptive strate-
gies. Consider a message-delivering agent that is using a perception-triggered preemptive retrieval

strategy. When the agent receives the goal to deliver the message, the agent stores the goal in
working memory, but no addition action is taken. When the designated feature for the perception
trigger is perceived, other goals may be retrieved into working memory. Once retrieved, however,
the activations of these goals are allowed to decay over time, until they fall below the forgetting
threshold and are automatically removed from working memory. This retrieve-decay-forget cycle
may repeat multiple times during the retention stage. Finally, when the target is objectively satisfied,
if the goal (and the corresponding target description) is in working memory, a different rule detects
that the target is subjectively satisfied, and proposes the pursuit of the goal to the agent. Assuming
the agent successfully pursues the goal, the goal is then marked as completed, so that it will not be
retrieved again at the next retrieval. The agent thus never considers pursuing the goal again.

To demonstrate the rehearsal action, consider the same message-delivery task performed by
an agent using the timing-triggered preemptive rehearsal strategy. The agent is created with a
countdown for (say) 20 decision cycles, together with a rule that matches when the countdown
reaches zero. Even before the agent is given the goal to deliver a message, the countdowns still
occur and the rule still matches, but the operator performs no action if no uncompleted goals are in
working memory. When the timing trigger reaches zero after the agent receives the goal, however,
the agent then selects a goal in working memory at random, and boosts its activation by the method
stated above. Between triggers, the activation of the goal decays; if the number of rehearsals is
insufficient to keep the activation of the goal above the forgetting threshold, the goal is removed
from working memory. Since no retrievals are performed as part of this strategy, these forgotten
goals will never be retrieved into working memory, and thus will remain uncompleted. On the other
hand, if the activation of the goal was sufficiently boosted so that it remains in working memory for
the next trigger, the goal may be selected to be boosted again. This decay-boost cycle may repeat,
keeping the goal in working memory indefinitely. When the target is objectively satisfied, the same
rules as the other agent apply. Once the goal is completed, the goal is marked as completed, and it
will not be selected for rehearsal at the next goal maintenance operator. This means the activation
of the goal will eventually decay sufficiently for it to be removed from working memory.

Since preemptive strategies only use existing mechanisms common to many cognitive archi-
tectures, none of the strategy variants require modification to the architecture. The different
organization of other architectures, however, may mean that only a subset of the strategies applies.
In ACT-R, for example, working memory is of fixed size, and has limited space for elements that
persist over time. As a result, it does not have the capability to keep a large number of goals in
working memory, meaning that a preemptive rehearsal strategy would not be effective. On the other
hand, since ACT-R’s long-term memory elements also decay over time, these strategies can be

42



modified to prevent goals from being permanently forgotten. A retrieval-based strategy for working
memory satisfies both needs, simultaneously bringing the goal into working memory to be checked
and boosting its long-term memory activation.

4.4 Evaluation Overview

This evaluation of preemptive strategies is separated into three components. The first is a scaling
experiment, to determine an empirical upper limit to the number of goals a retrieval strategy can
maintain in working memory. The second is an experiment in a realistic setting, which confirms
that preemptive strategies are a viable solution to the goal re-activation problem. This success led
to the need to examine the limits of preemptive strategies, which drives the creation of an abstract
domain where the environmental parameters are more easily controlled. Finally, the last component
of this evaluation is in the abstract domain, where trends in strategy performance can be seen.

All evaluation of goal re-activation strategies are measured by two metrics, which are expected
to trade off against each other in different strategies.

Percentage of goals completed This is the main performance metric for prospective memory, and
is measured as the percentage of goals that the agent completed, out of the number of goals
whose targets were objectively satisfied during the trial. An ideal strategy completes all the
goals whose targets were satisfied.

Resources required per completed goal This metric evaluates the efficiency of a strategy by
measuring the number of goal maintenance operators per completed goal. Although several
other similar metrics could be chosen — for example, measuring the resource usage per
encoded goal instead of per completed goal — this metric has the advantage that it can
measure the effects of goals that are never relevant (as per P3). As an aid to understanding
the trends in this metric, the percentage of decision cycles spent on goal maintenance may
also be shown.

4.4.1 Preemptive Strategy Parameters

The parameters for preemptive strategies can be broken down as whether they relate to the timing
trigger, the perception trigger, the rehearsal action, or the retrieval action. The timing trigger has
one parameter — the length of the countdown, the trigger period, which determines how frequently
the goal maintenance action is performed. The perception trigger, on the other hand, requires some
feature of the environment to serve as an indicator that goal targets will be imminently satisfied.
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The rehearsal action also has a parameter — the number of rehearsals to perform, or equivalently,
the amount of activation increase. Finally, the retrieval action has no parameters.

4.5 General Scaling Evaluation

The goal of this experiment is to determine, empirically, an upper limit on the number of goals that
a preemptive retrieval strategy can maintain. Such a limit exists because only a fixed number of
goals can have their activations boosted in a single decision cycle, while the activations of the other
goals in working memory decays. Even if a goal maintenance operation is performed every time
step, the strategy cannot prevent other goals from decaying and being forgotten if there are a large
number of goals in working memory. There is therefore a limit to the maximum number of goals
that a strategy can maintain, at the point where the goal maintenance operation enters equilibrium
with the activation decay process.

The experiment begins with a large number of goals in the agent’s long-term memory. The agent
then retrieves a goal into working memory every decision cycle. This continues until the activation
of one of the goals in working memory decays sufficiently that it is removed from working memory.
After this point, the number of goals in working memory remains at a steady state, since in each
time step a new goal is retrieved and a previously-retrieved goal is forgotten.

Since this evaluation is not strictly about preemptive strategies, but about retrieval mechanisms,
this experiment looks across multiple decay rates (d in Figure 2.4), which represent how quickly
the activation of working memory elements decrease. Varying the decay rate is necessary, as
although it is constant for any particular agent, the parameter is sometimes modified in ACT-R to fit
human timing data. More generally, it may be useful to increase the decay rate if percepts from the
environment change rapidly, such that retrievals are less likely to be influenced by previous percepts.
The results of this experiment provide insight as to how goal re-activation may be solved in such
domains.

The empirical results are shown in Figure 4.2. The plot shows the number of goals in working
memory on the y-axis in a log scale, at the time when the first goal is forgotten, and the decay rate
on the x-axis. The plot shows that as the decay rate increases, the limit on the number of goals
decreases exponentially (as expected).

This fits the line in the plot, which has the equation y = 0.0196 ∗ e5.61/d + 28.0, where d is
the decay rate, with a coefficient of determination R2 = 0.99. This relationship arises from the
base-level activation equation, and applies to both ACT-R and Soar. After the activation of a goal
is initially boosted by its retrieval, it simply decays while other goals are retrieved. Over different
decay rates, this results in the exponential curve shown.

It should be noted that the decay rate is not the only parameter that affects the number of time
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Figure 4.2: Maximum number of goals maintainable in working memory by retrieval wrt. decay
rate

steps for which a goal remains in working memory. As described in Section 2.2.1, another relevant
parameter is the forgetting threshold, which specifies the activation below which working memory
elements are forgotten. Setting the threshold higher means that activations do not have to decay
as much before the threshold is reached, and thus the goals would remain in working memory a
shorter period of time. Varying the forgetting threshold would therefore scale the y-axis of Figure
4.2, while the trend across decay rates would remain the same.

In literature, while there is a default decay rate of 0.5 for both ACT-R and Soar, the forgetting
threshold lacks a similar consensus (ACT-R sets the threshold to 0, while Soar sets the threshold
to -2). Changing the forgetting threshold should have no qualitative effect on the results of this
thesis. Increasing the threshold in this manner shortens the number of decision cycles before goals
are forgotten, but as this applies to all strategies equally, comparisons between strategies still hold.
On an absolute scale, it is expected that an agent with a lower forgetting threshold will maintain
more goals in working memory than suggested by the results in this thesis and, in general, strategies
should perform better when the forgetting threshold is lowered.

The results presented forms an upper bound on the number of goals that the preemptive retrieval
strategy can achieve, raising the question of whether a similar baseline for the preemptive rehearsal
strategy exists. Unfortunately, such a baseline is neither well-defined nor informative in actual agent
performance. First, the performance of the rehearsal strategy depends on more parameters than that
of the retrieval strategy: in addition to the decay rate and the forgetting threshold, there is also the
number of rehearsals to consider, as well as the order in which goals are rehearsed and the level
of activation of the goal prior to the rehearsal. Consider how each of these parameters affects the
performance of the strategy. After the decay rate and the forgetting threshold, which have the same
effect as they did for the retrieval strategy, the effect of the number of rehearsals is the simplest
to understand: the more rehearsals the agent performs, the higher the activation of the element,
and therefore the longer the element remains in memory. The last two parameters, however, are
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problematic due to the lack of declarative access to the activation of working memory elements.
Unlike in the retrieval strategy, where all retrieved goals have the same activation, the activation of
the goals to be rehearsed depends on whether the goal has been used in rule matching — that is, the
activation values are unknown. Thus, although the ideal order of goal rehearsals is to rehearse each
goal in the order of being forgotten, the agent does not have access to this information. In order
words, the upper bound on the rehearsal strategy is that all goals can be kept in working memory (if
their activations are sufficiently high and are rehearsed in ascending order), while the lower bound
is that a goal is forgotten almost immediately (if it has low activation and is not rehearsed). There is
therefore little practical benefit in computing a limit on rehearsals, as even an estimate of this would
require specifying all the factors listed above.

For agent designers, these results demonstrate that the number of goals maintainable by preemp-
tive strategies may be as high as the thousands. However, this requires that the agent perform no
operations other than retrieval, which means that the foreground task would be neglected (A4).

4.6 Mobile Robot Domain Evaluation

This evaluation serves as a proof-of-concept for preemptive strategies, to show that they allow
agents to solve the goal re-activation problem. In this domain, the Soar agent controls a simulated
SuperDroid robot in an indoor environment, which has been used in previous evaluations of
Soar [14, 33]. A bird’s-eye-view of the domain is depicted in Figure 4.3. The figure shows the
environment is divided into rooms, separated by walls (in black). Rooms in this domain are restricted
to be rectangular, meaning that irregularly shaped areas, such as the one at the right of Figure 4.3,
are divided into multiple rooms. Some rooms are also separated by doorways, which are gaps in the
wall; due to irregularly shaped rooms, the entry into a room is not necessarily preceded by passing
through a doorway. Additionally, scattered around the domain are objects with different colors,
shapes, and sizes; these are depicted as dots in Figure 4.3. These objects can be picked up, carried,
and put down by the agent, and the agent can carry multiple objects at the same time. However,
the agent’s perception of the objects is limited by the walls: only the objects in front of the robot
in the agent’s current room are perceivable to the agent. Since this domain is a simulation, the
decision cycles of Soar and the simulated time are decoupled, but decision cycles remain under the
50 millisecond reactivity threshold.

A trial in this domain involves the agent picking up and delivering objects to other rooms,
while being constrained to a predefined “patrol” route, meaning the agent must visit the rooms in
a particular order. The blue line shows the previous locations of the robot in Figure 4.3. For any
trial, objects with randomly generated attributes are placed uniformly randomly in the environment.
Each trial contains ten deliveries, and the objects that the agent must deliver, as well as the rooms
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Figure 4.3: The simulated mobile robot domain
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that they must be delivered to, are also randomly assigned. These deliveries are determined by the
description of the object and the room to which the object should be delivered; in particular, the
agent does not know the location of the objects to be picked up. Once the object is delivered to a
room, it remains in that location, and the agent does not pick up that object again; therefore, these
pick up and deliveries are one-time goals.

Before a trial begins, the deliveries are pre-loaded into the long-term memory of the agent. A
successful delivery of an object in this domain requires completing two prospective goals. First,
the agent must recognize that an object in the current room is an object to be delivered elsewhere,
and that the agent should pick it up. The target of this goal is therefore simply the perception of the
object. Second, when the agent enters a room that is the destination of a delivery, it must recognize
it as such, and put down the object; the target is the agent being in the destination room while
carrying the object to be delivered. The size of the rooms and the distances travelled means that, by
default, these goals will be forgotten from memory, and that a prospective memory strategy must be
used to ensure their completion.

4.6.1 Agent Description

This section describes the parameters used for each of the strategies, as well as how the strategy is
applied to the mobile robot domain.

This evaluation examines all four variations of preemptive strategies, which together require three
parameters: the frequency of the timing trigger, the percept used for the perception trigger, and the
amount of rehearsals for the rehearsal strategies. For this evaluation, the feature of passing through
a doorway is used for the perception trigger, since it is predictive of the subjective satisfaction of
the target. Since the agent can only perceive objects in the same room, this means that doorways are
highly predictive of the imminent satisfaction of the targets of both goals necessary for a successful
delivery. Note that other features could be chosen for this trigger; using the perception of objects
as the trigger stands out as an obvious choice. This trigger, however, only applies for the goal
of picking up objects, and is not indicative of the satisfaction of the targets of the delivery goals,
which are instead based on the location of the agent. For this reason, the doorway is used for the
perception trigger instead. After some initial experimentation, the timing trigger is set to occur
every 400 decision cycles (a little under 20 seconds of real time), as it is just frequent enough for
the agent to perform well, while still being subject to the effects of the other parameters. For the
preemptive strategy agent that uses rehearsal, a logarithmic progression of rehearsals (4, 16, 64) is
used to obtain a spread of settings.

As a concrete example, consider an agent using a perception-triggered preemptive retrieval
strategy. At the beginning of the trial, the agent is created with a rule that matches when the agent
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is in a doorway. The delivery goals are then loaded into long-term memory, but these goals do
not exist in the agent’s working memory. For this example, consider a single goal of picking up a
large green object to Room 5. Once the trial begins, the agent moves along its patrol from room to
room. When it passes through a doorway, the rule matches, leading the agent to initiate a search its
long-term memory for goals. This results in the goal being retrieved into working memory. If the
next room that the agent enters contains a large green object, a rule detects that the target of a goal
has been satisfied, and proposes the goal as an option for pursuit. Alternately, if such an object does
not exist in the room, the agent continues its patrol while the activation of the goal decays, leading
to its eventual removal from working memory.

Assuming that the agent successfully picked up the large green object, the next step is for the
delivery to occur. The agent’s working memory contains a list of objects it is carrying, so it can
perceive the object, but may not know the room to which it should be delivered (which is part of the
target of the goal). As the agent continues its patrol, passing through a different doorway would
once again cause the rule to match, this time retrieving into working memory the goal of delivering
the object. As before, if the next room is the correct destination, the agent could then pursue the
goal by putting down the object; or if the room is not the destination, the agent could continue its
patrol.

4.6.2 Evaluation Parameters and Metric

In addition to the preemptive strategy parameters mentioned in Section 4.4.1, there are two main
parameters to this domain. Both of these parameters influence the length of time before the agent
perceives a delivery object — that is, they affect the length of the retention interval. The first
parameter is the decay rate (d in Figure 2.4), which determines how quickly a memory element is
forgotten. By increasing the decay rate, thereby shortening the time that a goal remains in working
memory, the retention length is increased relatively. The second parameter is the speed of the
robot, which determines how quickly it moves forward in the simulated environment, measured in
simulated meters per second. The slower the robot’s movement, the longer the goal must remain
in working memory and not be forgotten. Again, this attempts to simulate direct changes to the
retention interval. Both parameters change the temporal dynamics of the domain, which has an
impact on the strategies’ performance.

For the robot delivery task, the main measurement of performance is the percentage of deliveries
that the agent successfully completes. Unless the agent completes all of its deliveries, it is stopped
after the third round of patrol. The efficiency of the agent is also measured, as the ideal agent should
only retrieve and rehearse as necessary for the task and no more; this is measured in the number
of goal maintenance operators the agents performed. Agents that complete the same number of
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Decay Rate Timing Trigger Perception Trigger
4 16 64 4 16 64

0.34 100% 100% 100% 100% 100% 100%
0.38 100% 100% 100% 76.36% 80.0% 94.54%
0.42 56.36% 60.0% 41.81% 7.27% 5.45% 5.45%
0.46 3.63% 3.63% 7.27% 0.0% 0.0% 0.0%
0.50 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Table 4.1: Performance of the preemptive rehearsal strategy in the mobile robot domain, wrt. decay
rate

deliveries with fewer decision cycles spent on goal maintenance are preferred.
The following two sections present the results of the rehearsal strategy and the retrieval strategy

separately.

4.6.3 Preemptive Rehearsal Strategy

Table 4.1 shows the percentage of goals completed for the agent at different decay rates, at a speed
of 0.7. The second heading indicates the number of rehearsals the agent performed per trigger. First,
comparing across columns where the decay rate is held constant, the number of rehearsals appears
to have a noisy but neutral effect. Since goals have different amounts of activation before they are
rehearsed, and the order in which they are rehearsed is random, it is not surprising that the results
are noisy. The overall neutral effect is surprising, as one may expect more rehearsals to increase the
number of completed goals. This may be explained by how the rules implementing the rehearsal
actions already causing a large boost in activation, and the further rehearsals as specified by the
strategy parameter have no additional effect. Looking down the columns, however, the performance
of all agents drops sharply over small increases in the decay rate. This rapid decline is due to
differences between varying the decay rate and varying the retention interval. To understand the
difference, consider an agent with only one goal, and is using a timing-based preemptive rehearsal
strategy sufficient to prevent the goal from being forgotten. If the retention interval is increased,
since the goal is continually maintained in working memory, there is no effect on the agent’s ability
to pursue its goal. If the decay rate is increased, however, the timing trigger may no longer be

sufficient to maintain the goal in working memory, since it now takes fewer decision cycles for the
activation of the goal to fall below the forgetting threshold. This is what causes the sharp decrease
in performance in Table 4.1.

To further examine this sharp drop-off in performance, a decay rate of 0.4 was selected, and
then the speed of the agent was varied. This decay rate is one where both strategies start exhibiting
performance declines, while the speed is varied as it also affects the retention interval. The result of

50



Speed Timing Trigger Perception Trigger
4 16 64 4 16 64

0.3 90.9% 90.9% 90.9% 18.1% 18.1% 22.7%
0.5 95.4% 81.8% 95.4% 22.7% 22.7% 13.6%
0.7 92.7% 92.7% 92.7% 56.3% 36.3% 34.5%
0.9 87.2% 92.7% 92.7% 40.0% 36.3% 34.5%
1.1 92.7% 98.1% 90.9% 52.7% 36.3% 23.6%

Table 4.2: Performance of the preemptive rehearsal strategy in the mobile robot domain, wrt. robot
speed (in simulated units per second)

varying the agent speed is shown in Table 4.2, again with the number of rehearsals in the second
heading. Comparing rows, the performance of the timing trigger agent remains roughly uniform,
while performance of the perception trigger agent decreases as the speed of the robot decreases.
While changes in robot speed are correlated with changes in the retention interval, they are not
exactly equivalent. A slower robot experiences more decision cycles until the goal target is satisfied,
but this does not affect the timing trigger, which is specified in decision cycles and not real time.
Since the activation decay of goals is calculated over decision cycles and not real time, a perception-
triggered agent with reduced speed is in effect lengthening the time between goal maintenance
actions.

Taken together, these results suggest that for a preemptive rehearsal agent, a perception trigger
performs well in a smaller range of environments as compared to the timing trigger, and is further
subject to effects from the speed of the agent, or more generally, environmental factors that affect
the temporal dynamics of the target.

4.6.4 Preemptive Retrieval Strategy

The previous section compared the timing and perception triggers for a preemptive rehearsal
strategy; this section looks at the same triggers for a preemptive retrieval strategy. As a reminder,
this evaluation aims to understand the performance of the perception trigger, and how it compares to
the timing trigger. Note that unlike the rehearsal strategies, which have a parameter for the number
of rehearsals, the retrieval strategies have no such parameter. The results in this section use the same
trigger period of 400 time steps as the previous section.

The performance of agents with different decay rates using retrieval strategies are shown in
Figure 4.4, with the percentage of deliveries completed on the y-axis and the decay rate on the
x-axis. The figure shows that as the decay rate is increased, the performance decreases for both
the timing-triggered and perception-triggered preemptive retrieval strategies; the choice of trigger
has minimal effect aside from an outlier. However, the efficiency of the strategies differs. Agents
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Figure 4.4: Performance of the preemptive retrieval strategy with different triggers

using the timing trigger occurs 50% more frequently than agents using the perceptual trigger, and
this ratio grows as the decay rate is increased; this means that the agent may be interrupted from
it’s current task. The efficiency of the room entry trigger is due to it being highly predictive of
opportunity; many of the retrievals due to timing triggers do not lead to action on the part of the
agent if, for example, deliveries are retrieved when the agent does not perceive any objects. With
the room entry trigger, the embedded domain knowledge makes it more likely that an opportunity to
act is present. The high probability of a relevant retrieval allows the agent to reduce the number of
goal maintenance operators without comprising its performance.

Compared to the results from the rehearsal strategies, a trend worth exploring is that retrieval
strategies appear to perform well across a broader range of decay rates. In fact, this trend has the
same underlying cause as the sharp decline seen in rehearsal strategies: that agent performance
depends critically on a particular value of the decay rate, above which the agent cannot maintain
goals in working memory. If the number of rehearsals is not sufficient to retain the deliveries
in memory, all deliveries will be eventually forgotten. Since the rehearsal agents do not retrieve
forgotten deliveries in this evaluation, they fail to complete any more deliveries — hence the sharp
drop-off in performance for the rehearsal agents. In contrast, the decay rate does not need to be as
carefully calibrated for retrieval strategies, as the agent recovers when a delivery is forgotten. Thus,
although deliveries may be forgotten earlier due to the lack of rehearsals, this does not affect agent
task performance until it reaches extreme levels. For the same reason, agent performance remains
stable across changes in movement speed: even if a delivery is forgotten after its retrieval, the agent
has a second opportunity to complete the delivery when it enters the room again and triggers a
second retrieval.
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4.6.5 Mobile Robotics Summary

The mobile robotics domain examined the two triggers and the two goal maintenance actions for
preemptive strategies, with the goal of comparing the perception trigger to the timing trigger. Since
we could not directly control for variations in the retention interval, we varied the decay rate and
the speed of the robot instead, despite these parameters having slightly different effects. While
both triggers perform well when the decay rate is low, the perception trigger is more sensitive to
changes in the decay rate and in the robot speed. This is because the frequency of the perception
trigger has no relationship with when goals are removed from working memory, thus emphasizing
the importance of the selection of the perceptual feature. The perception trigger is better suited for
a retrieval strategy for this reason, and leads to a strategy that performs well in a wider range of
environments.

For agent designers, these results suggest that the selection of parameter values for preemptive
strategies should not be based only on the other parameters of the agent, such as the decay rate, but
also on the temporal dynamics of the environment. Since there is no easy method of capturing the
temporal dynamics of a domain, the simplest solution to finding good strategy parameters may be
to perform pilot experiments. If such experiments are not possible, the preemptive retrieval strategy
(with either trigger) has a more robust performance than the preemptive rehearsal strategies as long
as a predictive perception trigger is used, and may be the better choice given the unknown temporal
dynamics of the environment.

4.7 An Abstract Prospective Memory Domain

The results from the mobile robot domain demonstrate that preemptive strategies can solve goal
re-activation problems, but the dependence of the results on agent and domain parameters suggest
that more experiments are necessary. Unfortunately, there are two major concerns for using the
mobile robotics domain for such an evaluation. First, mobile robotics requires parameters that do
not translate well into other domains. For example, the decreasing speed of the agent was shown
to reduce the performance of the perception-triggered rehearsal strategy, a result that is difficult
to generalize to stationary agents (or agents that are not embodied). The second concern, related
to the first, is that the simulated physical environment makes it difficult to have fine control over
experimental parameters. For example, the length of the retention interval is affected by both the
speed of the robot as well as the distribution of the packages, when it would be ideal to have a single
parameter that affects retention length.

Instead of using the mobile robotics domain, we instead create a new domain with generalizable
results and controllable parameters. Specifically, these parameters should be individually controlled
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for:

P1 Number of goals The number of prospective goals is an obvious scaling parameter for goal
re-activation. An agent may accumulate a large number of goals, some of which may never
be pursued. This parameter explores how the total number of goals in the lifetime of the agent
affects its performance. An ideal strategy will perform equally well irrespective of the total
number of goals it encounters.

In general, it is expected that the performance of strategies will decrease as the number of
goals increases. Since forgetting from working memory is determined by base-level activation
decay, there should be an upper limit to the number of goals that a preemptive strategy could
effectively maintain.

P2 Length of the retention period Aside from the number of goals, this is the other obvious
scaling parameter. From psychology literature, the length of the retention interval is one of
the most predictive conditions of prospective memory behavior — not of performance, but of
the choice of strategy. The longer the retention interval, the more likely that a spontaneous
strategy will be used over a monitoring/preemptive strategy. Since the preemptive strategy
requires computational resources proportional to the length of the retention interval — a
longer retention stage means more goal maintenance actions are necessary — this trend is
likely to also apply to artificial agents, as the cost of preemptive strategy become higher than
that of the spontaneous retrieval strategy. At the same time, a lengthier retention interval
would also mean that the long-term memory activation of goals would decrease, which would
affect retrieval bias. Since these effects are contradictory, it is difficult to predict how changes
to this parameter would impact either strategy.

P3 Goal encounter rate Although this thesis is on goal re-activation, some goals given to the
agent may never be applicable. A goal whose target is never satisfied has, in effect, an
infinitely long retention stage. For example, consider the message-delivery task. If the agent
never encountered the recipient of the message, the goal target would never be satisfied.
This is likely to have a negative effect on the preemptive strategy, which continually require
resources during the retention stage to prevent goals from being forgotten.

As a result of these considerations, we decided that goal re-activation strategies are better
evaluated in an abstract domain, where these parameters can be controlled. This domain is not
designed to be a single test to classify goal re-activation strategies as either sufficient or inadequate;
rather, it is designed to stress test the strategies, to identify locations in the parameter space where
the strategies may perform worse than others, and also to allow comparison between strategies
in that parameter space. Beyond the parameters of the environment, both preemptive strategies
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and spontaneous retrieval strategies have additional parameters that affect their performance and
cost, establishing a tradeoff between the two. Instead of specifying a threshold above which
strategies must perform, we instead leave it to the agent developer to determine the desired level
of performance, and aim only to provide guidance on the strategy parameters that allow that
performance.

Generally speaking, the abstract domain is a discrete-time simulation, with each time step in
the simulation lasting one decision cycle of the agent. At every time step in the simulation, a set of
symbolic features is presented to the agent; a set of features forms a percept for the agent. Some of
these features form the targets of goals, and the agent must correctly recognize that the goal could
be pursued when those features are perceived. Since this thesis is not concerned with the execution
stage of prospective tasks (see Section 2.1.2), if the agent decides to pursue a goal, the only action
the agent must take is to signal the environment that the goal is completed, an action that always
succeeds. The focus of the domain is therefore on the agent recognizing that the target of a goal is
satisfied.

For any trial in this domain, a number of long-term memory elements are first created as the
features. The number of features depends on the number of goals (P1). Each goal has a fixed
number of features as its target, but goals may share target features. Additionally, each goal has an
identifying number, with which the agent must signal the environment to indicate that it is pursuing
the goal. Other features that are not part of the target of any goal are also created, as distractors to
the agent. All the features are pre-loaded into the agent’s long-term memory before a trial begins.

Once the desired number of goals are created, each goal is assigned an encoding time and,
probabilistically, an initiation time; whether a goal will be initiated is determined by the goal
encounter rate parameter (P3). The encoding time is when the goal and its target are presented to
the agent, while the initiation time is when the target features are observed by the agent. These
times are chosen according to the desired retention interval length (P2), which is specified by four
numbers: the time step at which the encoding stage begins, the number of time steps until the
encoding stage ends, the time step at which the initiation stage begins, and the number of time steps
until the initiation stage ends. The “stages” here are periods within the trial during which all goals
are encoding and initiated; the encoding and initiation times of a specific goal are drawn uniformly
randomly from these periods. By varying the time steps at which each stage begins, the average
length of the retention interval can be controlled.

Finally, once all goals have an encoding time and (optionally) an initiation time, the sequence of
percepts for the entire trial is generated. The percept for the time steps at which goals are initiated
are assigned first, to be the set of features that form the target of that goal. Once this is complete, a
random subset of features is selected as the percept of the first time step, and a different random
subset selected as the percept for the last time step. The percepts for the remaining time steps are
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function CREATEPERCEPTS(percepts, start, end)
mid← (end− start)/2
percepts[mid]← INTERPOLATE(percepts[start], percepts[end])
CREATEPERCEPTS(percepts,start,mid)
CREATEPERCEPTS(percepts,mid,end)

Algorithm 4.1: The percept generation algorithm

then generated recursively. The algorithm iterates through sections of the percept sequence that
are bordered by two determined percepts; this is either between the first time step and the first
initiation time, between adjacent initiation times, or between the last initiation time and the last
time step. A noisy interpolation of the two endpoints is generated and used as the midpoint for the
sequence; the algorithm then recurses on each half to continue the process. Every random percept is
checked against every goal, to ensure that it does not contain the target of any goal that should not
be satisfied at that time. Pseudocode for this recursive algorithm is shown in Algorithm 4.1.

A deliberate decision in the design of this domain is that there is no regularity in the percepts
of the agent, meaning that no perceptual trigger is possible. We consider this acceptable for two
reasons. First, as demonstrated in the mobile robotics domain, the choice of the percept has a large
effect on the performance of the agent, but is also extremely domain dependent. One possibility for
representing the quality of the percept is to parameterize the correlation between the trigger and the
target of the goal; while this works for individual goals, it is unrealistic for all goals to be correlated
to a single percept in this way. Second, it seems obvious that the selection of a predictive percept
will lead to high goal re-activation performance, since in the extreme case of a perfectly predictive
percept, the agent behaves as though the goal is encoded in rules. Since this thesis is not concerned
with selecting predictive features, we decided that focusing on the performance of the timing trigger
would be more informative for researchers facing the goal re-activation problem.

Once the entire percept sequence is generated, the trial is ready to begin. The different stages of
a prospective task (from Section 2.1.1) can be examined in a trial:

1. The encoding stage is when the agent is presented with the goals and their targets. This is
presented separately from the percept for that time step. At this point, the agent must store the
goal, its target set of features, and the identifying number of the goal into long-term memory.

2. The retention stage exists to allow time for the activation of goals to decay; random percepts
are presented during this period. At this point, if the agent has not made any errors in the
encoding stage, all goals from the environment (specified by P1) are stored in long-term
memory. The agent is not given any foreground task, and is programmed to remain idle unless
the strategy requires agent deliberation. For preemptive strategies, the timing and perception
triggers will occur, causing the agent to perform goal maintenance operations.
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3. The initiation stage is when the goal targets are objectively satisfied, and the agent must
compare the percept to the target of its goals. If the agent recognizes that a goal target is
subjectively satisfied, a rule proposes the option of pursuing the goal.

4. The execution stage is when the agent has decided to pursue the goal. For this domain, the
agent signals the environment with the identifying number of the goal it is pursuing.

5. The completion stage occurs after the agent executes a goal. Here, the agent modifies the
goal’s representation in memory to mark is as completed.

The rest of this evaluation uses the default decay rate of 0.5 and selects a forgetting threshold of
0; the higher threshold is chosen so goals are forgotten more quickly, to reduce the run-times of the
experiments. Each trial in the abstract domain is repeated 20 times, with each trial randomizing the
encoding time, the initiation time, and the target features of all goals. The encoding stage starts at
time step 0 and lasts 300 time steps, which is sufficient for all goals to be encoded while allowing
variation between trials. The initiation stage always lasts 375 time steps — again, to allow goal
targets to be presented and to allow variation in ordering between trials. The starting time of the
initiation stage is varied according to P2, but is always after time step 1500; this allows sufficient
time for the activation of goals in working memory to decay and for the goals to be removed from
working memory. For trials that last 3000 time steps, the initiation stage begins at time steps 1500,
1875, 2250, and 2625; this corresponds to initiation stages that starts when 50% of the simulation is
over, when 62.5% of the simulation is over, and so on, until the end of the last initiation stage is the
last time step of the trial.

4.8 Abstract Domain Evaluation

Using the abstract domain described above, this section contains the results for the timing-triggered
preemptive rehearsal strategy and the timing-triggered preemptive retrieval strategy. Since goal
re-activation is a new problem in cognitive architectures, and the abstract domain a new environment
for evaluation, the quality of the results can only be established relative to different agent and envi-
ronment parameter settings. The goal of these experiments is to identify trends in the performance
of the timing-triggered preemptive strategies with respect to the parameters given in Section 4.7,
and to identify failure cases for these strategies.

4.8.1 Timing-triggered Preemptive Retrieval Strategy

Figure 4.5 shows the percentage of goals completed by the timing-triggered preemptive retrieval
strategy, as a function of the trigger period. Each sub-figure shows the results of an environment
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Figure 4.5: Performance of the preemptive retrieval strategy wrt. number of goals
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Figure 4.6: Absolute performance of the preemptive retrieval strategy
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with a different number of goals (indicated in the title), with the lines in each figure representing the
result from different retention interval lengths (that is, the length of time between the encoding and
the initiation stages).

Consider the left-most subplot, where agents only have one goal to re-activate. Along the x-axis,
even with lengthy trigger periods (longer periods before the goal is retrieved), the majority of
strategies can ensure the goal is in working memory when its target is satisfied for the majority
of the time (as demonstrated by the high values on the y-dimension). Comparing across subplots,
however, as the number of goals increase, shorter trigger periods are needed ensure that the largest
number of goals are re-activated. Even with a trigger period of 1, however, the timing-triggered
preemptive retrieval strategy can still only re-activate about 50% of its 30 goals in the right-most
subplot. To put this in context, this means that if an agent has a moderate number of goals, it can
still only achieve half of them despite spending every time step on goal maintenance.

On closer inspection of these results reveals the underlying cause: that there is an upper limit, or
a carrying capacity, based on the trigger period. This can be seen by looking at the absolute number
of goals completed in Figure 4.6, which shows all parameters of the environment on a single plot,
with the absolute number of goals completed on the y-axis and the trigger period on the x-axis.
Notice that although the actual number of goals varies, they roughly follow the same trajectory. This
behavior is due to retrievals being the sole source of activation boost for the goals. When a retrieval
occurs, the retrieved goal receives an activation boost, but if its target is not satisfied, the activation
simply decays over time, until the goal is forgotten again. Since the activation boost from retrieval
is constant, this also means that goals spend a constant amount of time in working memory, where
the total number of goals in working memory is determined entirely by how often retrievals occur.
Thus, even if more goals were encoded by the agent, the number of goals in working memory does
not change, leading to a pattern of goal completion that depends only on the trigger period. This
also explains why, aside from when the number of goals is small, the length of the retention interval
has no effect on goal re-activation performance (comparing lines in the same plot in Figure 4.5).

Figure 4.7 shows the proportion of decision cycles spent on goal maintenance operators, with
the proportion on the y-axis and the trigger period on the x-axis. A proportion is used instead of the
absolute number to allow these results to generalize across the length of the trial (here they all end
after 3000 decision cycles).

Before we discuss the results, we note that the number of goal maintenance operations plotted
does not match the timing trigger, as one might believe it should. The reason for this increase in
efficiency is that the agent does not directly attempt to retrieve goals into working memory at the
trigger. Rather, the agent keeps a count of the number of prospective goals it has yet to achieve,
on which the timing trigger is also conditioned. That is, a retrieval is attempted only when the
timing countdown reaches zero and there are prospective goals not currently in working memory.
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Figure 4.7: Goal maintenance operators of the preemptive retrieval strategy wrt. number of goals
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Although this count is itself subject to forgetting, it is rarely actually forgotten, as its activation is
boosted whenever it is used in a rule firing — that is, whenever the timing trigger occurs and a goal
is in fact retrieved. Only when there are no prospective goals in long-term memory does the rule
for the timing trigger fail to fire, in which case activation for the count will decay. This indirection
allows us to greatly reduce the number of necessary goal maintenance operations.

Inspecting each plot individually, as the trigger period increases, the number of goal maintenance
operations decreases; this is as expected. For short trigger periods, however, it can be seen that a
shorter retention interval leads to marginally fewer retrievals when the trigger is frequent. At the
same time, increasing the number of goals (comparing across plots) leads to the agent performing
more retrievals. All of these results make intuitive sense. As more goals that must be retained for a
longer retention interval means more retrievals must be used to keep goals in working memory.

Finally, the efficiency of the preemptive retrieval strategy is plotted in Figure 4.8, with the
number of goal maintenance operators required per completed goal on the y-axis, and again with
the trigger period on the x-axis. This metric of efficiency is used to indicate the amount of resources
expended per unit of measurable performance. While the plots in Figure 4.8 appear chaotic, there is
a trend when the lowest points are compared across subplots. In the two left most subplots, the
most efficient trigger period is large; as the number of goals increases (moving to subplots on the
right), the most trigger period that is most efficient decreases. This implies that the most efficient
trigger period changes depending on the number of goals: with only ten goals, a trigger every five
time steps is the most efficient, while a more frequent trigger is more efficient with more goals,
and conversely, fewer goals allow for longer trigger periods. With fewer goals, each individual
goal has a higher chance of being retrieved, and therefore will remain in working memory for a
longer period of time; in turn, this means that the trigger can occur less frequently with no impact
on performance. Conversely, once the number of goals is above the carrying capacity, the agent
cannot retrieve goals sufficiently quickly to keep all goals in working memory at the same time,
and therefore needs a more frequent trigger to keep as many goals in working memory as possible.
The remaining parameter, retention interval, shows a clear effect on efficiency when the number of
goals is small, but this effect is removed when more goals are present. This can be interpreted as
the effect of the number of goals on the number of completed goals being larger than the effect of
the retention interval on the number of goal operations, hence the effect of the latter on efficiency is
washed out.

It should be noted that an extremely frequent trigger for a retrieval-based preemptive strategy is
tantamount to keeping the goal in working memory. Take a strategy that retrieves a forgotten goal
every decision cycle — this means that as soon as a goal is forgotten, it is immediately retrieved
again, with a corresponding boost in working memory activation. In fact, this strategy works
better than a rehearsal-based one, which explicitly attempts to prevent the activation of a goal from

61



0 5 10 15 20

Trigger Period

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

%
 G
o
a
l 
M
a
in
te
n
a
n
ce
 C
y
cl
e
s

encountered=50.0%
encountered=62.5%
encountered=75.0%
encountered=87.5%
encountered=100.0%

Figure 4.9: Resource usage of the preemptive retrieval strategy wrt. goal encounter rate

dropping below the forgetting threshold. This can be seen in the amount of resources used by the
agent, measured as the number of time steps taken in managing goals. Due to the inability for the
agent to examine a memory element’s activation, a rehearsal strategy must boost the activation of a
goal at every step to be safe, lest its activation is about to fall below the threshold. In contrast, a
strategy based on retrieval only performs an action when goals are forgotten, and otherwise allows
the agent to pursue another task. This lazy approach to maintaining goals in working memory — in
the sense of only performing work when necessary — allows savings in resource consumption. As
a secondary result, the time steps needed to maintain goals do not scale linearly with how frequently
the trigger is used. A trigger for preemptive action every 20 time steps, for a trial of 3000 time
steps, gives about 150 triggers total; a retrieval-based agent uses about 135 of those, for a utilization
rate of 90%. An agent with a trigger every time step (for 3000 triggers total), on the other hand,
only uses about 730 of those, for a much lower utilization rate of 24.3%. This suggests that the
agent designer can set the trigger frequency as an upper bound on the number of goal maintenance
operations, with the strategy adapting to only perform as many operations as necessary.

The second experiment looks at the effects of different goal encounter rates. Figure 4.9 shows
the proportion of decision cycles spent on goal maintenance operators, with the proportion on the
y-axis and the trigger period on the x-axis. Note how the results for the different goal encounter

62



rates diverge with a high trigger frequency (a low trigger period, so towards the left side of the
plot); in particular, as the proportion of encountered goals decrease, the agent spends more time
steps performing goal management. Since a retrieval is performed at every preemptive trigger until

the goal is completed, if the latter never occurs, the trigger will continue to lead to action. This
means that the cost of preemptive strategies scale not only with the number of goals, but also with
the lifetime the agent. This divergence, however, disappears with lengthier trigger periods. This is
because, in the environment with these parameters, the agent already fails to complete some of the
goals, and already incurs the costs of uncompleted goals; varying the goal encounter rate therefore
has little effect. This major problem of wasted operators required for preemptive retrieval strategies
has no simple solution.

In summary, the preemptive retrieval strategy performs well with few goals and frequent triggers,
but at the cost of low efficiency. Additionally, if there are goals with targets that are never satisfied,
the agent will continue incurring the cost for those goals.

For agent designers considering the use of a timing-triggered preemptive retrieval strategy, these
results suggest that it is critical to estimate the carrying capacity that the strategy affords. The
capacity depends not only on the trigger period, but also on the decay rate and forgetting threshold
of the agent. If the number of goals is below this capacity, it is likely that the strategy can ensure
that the majority of goals are in working memory when their targets are satisfied, allowing the goals
to be pursued. If the number of goals is above this capacity, however, a different strategy may offer
better performance.

4.8.2 Timing-triggered Preemptive Rehearsal Strategy

As a reminder, these experiments aim to identify trends in the performance of preemptive strategies
as well as expose cases where the strategies fail.

The performance the preemptive rehearsal strategy is shown in Figure 4.10. The figure requires
a little explanation. Each plot represents a particular environmental setting, defined by the number
of goals and of the retention interval; these are represented in the title of each plot as G and R

respectively. Within each plot, the y-axis is the percentage of goals completed by the preemptive
rehearsal strategy, with the trigger period on the x-axis. However, the preemptive rehearsal strategy
has the additional parameter of the number of rehearsals; this is represented by the individual lines
in each plot. Since the results across the number of rehearsals are very similar — whether 10, 20,
50, or 100 rehearsals were performed — they are not individually labeled. This replicates the results
from the mobile robot domain in Table 4.1.

From this figure, the performance of the preemptive retrieval strategy shows some similar trends
as that of the retrieval strategy. As with the retrieval strategy, the retention length (looking across
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Figure 4.10: Performance of the preemptive rehearsal strategy wrt. number of goals
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Figure 4.11: Absolute performance of the preemptive rehearsal strategy wrt. number of goals
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Figure 4.12: Efficiency of the preemptive rehearsal strategy wrt. number of goals

the columns of plots) has little effect, since the carrying capacity has already been reached at the
shortest retention length. The effect of the number of goals, however, is slightly different. As the
number of goals increase (looking down the rows of plots), the percentage performance of the
strategy decreases, but increase when the absolute number of completed goals is considered, as
shown in Figure 4.11. While it may seem counter-intuitive that the decrease in relative performance
is only due to the increase in total number of goals, in fact the same phenomenon was seen in the
preemptive retrieval strategy — there is an increase in the number of complete goals between ten
and twenty total goals. This can be seen in Figure 4.6 at small trigger periods; the lower cluster of
results are from environments with only ten goals, which the higher cluster is from environments
with twenty or more goals. This implies that preemptive rehearsal strategies have a higher working
memory goal carrying capacity than the retrieval strategy, and are therefore better suited for domains
with larger numbers of goals. Returning to the idea of an equilibrium between goal maintenance
operations and the decay of activation (see Section 4.5), this is likely because rehearsals lead to
a larger increase in the activation of a goal than does a retrieval. As a result, the goal remains in
working memory for a longer period, thus increasing the carrying capacity.

The same effect is reflected in the efficiency of the strategy, shown in Figure 4.12. The layout
of this figure is the same as Figure 4.10, except with the number of goal maintenance operations
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per completed goal on the y-axis. The effects of the carrying capacity can be seen by looking
at the results as the number of goals increase (comparing between rows): the efficiency of the
agent increases, meaning that at the lower number of goals, the strategy has not yet hit its carrying
capacity.

Note that unlike the preemptive retrieval agent, it is not possible to use a separate count of
the number of prospective goals to reduce the number of goal maintenance operations — the
agent must rehearse its goals on every trigger. This inefficiency is due to the agent’s inability to
determine whether a goal will be forgotten without rehearsal, as the agent does not have access to
the activation levels of its goals, and no additional information from long-term memory can provide
that information.

4.8.3 Abstract Domain Summary

In the abstract domain, both retrieval and rehearsal preemptive strategies performed well when the
timing trigger is sufficiently frequent. A key metric of both strategies it its carry capacity, which
varies by the goal maintenance action and the trigger period; this determines how many goals can
be kept in working memory at the same time, and therefore how many goals the agent could detect
the target satisfaction of. For the same trigger period, the rehearsal strategy appears to have a
higher carrying capacity, only exceeding it with fifty goals, as opposed to the retrieval strategy that
exceeded its capacity with twenty goals. While the specific number of goals that each strategy can
support depends on the decay rate and the forgetting threshold, the result that the timing-triggered
preemptive rehearsal strategy can support more goals than the timing-triggered preemptive retrieval
strategy is likely to hold. Both strategies, however, incur costs when either the agent fails to perceive
the satisfaction of goal targets, or when goal targets are never objectively satisfied. Agent designers
considering timing-triggered preemptive strategies should therefore consider a rehearsal strategy
first, assuming that the targets of the prospective goals in the domain are likely to be satisfied.

4.9 Preemptive Strategy Summary

This chapter has presented what may seem to be the obvious solution to goal re-activation: pre-
emptively ensuring goals are in working memory before the target is satisfied. These preemptive
strategies are broadly classified by the trigger and by the goal maintenance action taken by the agent.
From the mobile robot domain, the perception trigger appears more sensitive to environmental
variations, and is better paired with a retrieval strategy — provided that the agent designer selects a
predictive feature. From the abstract domain, it is shown that both rehearsal and retrieval strategies
can be summarized by a “carrying capacity,” which determines how many goals can be kept in
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working memory at the same time; under this metric, rehearsal strategies outperform retrieval
strategies.

While preemptive strategies perform well across retention intervals, their performance decreases
when the trigger occurs less frequently. For the perception trigger, whether this occurs greatly
depends on the feature selected as the trigger, which is highly dependent on the domain and on
the insight of the agent designer. In theory, both the optimal timing trigger period and the most
predictive feature for a perception trigger could be learned, but the latter in particular is a difficult
problem. Additionally, agents with these strategies suffer when the targets of goals are never
satisfied, as the agent will continue rehearsing or retrieving the goal, potentially for the remainder
of the agent’s lifetime. This is undesirable, and opens the question of whether a strategy exists that
only consumes resources when the goal is relevant.
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CHAPTER 5

A Spontaneous Strategy

Chapter 4 showed that preemptive strategies have many limitations: they present a difficult tradeoff
between prospective task performance and resource consumption in terms of goal maintenance
operators. Preemptive strategies require frequent goal maintenance operations to achieve a high
level or performance, a cost that may continue for the remainder of the agent’s lifetime if the target
of a goal is never satisfied. There exists, however, a different approach to goal re-activation. Recall
that preemptive strategies were developed to remove the first dependency in Figure 3.1, by ensuring
that goals are in working memory before their targets are satisfied. This chapter presents a class of
spontaneous retrieval strategies, which instead remove the second dependency in Figure 3.1, by
allowing retrievals from long-term memory that do not require agent deliberation. This requires a
significant addition to the capabilities of long-term memory, but as this chapter will demonstrate, it
is a modification with multiple benefits.

Section 5.1 gives a brief overview of spontaneous retrieval strategy, highlighting the architectural
modifications that must be made for the strategy to be implemented. By the criteria listed in
Section 2.4, however, any architectural changes should be first evaluated generally. Section 5.2
therefore explains the design space of spontaneous retrieval mechanisms, including prior work. The
implementation in Soar is detailed in Section 5.3, and is evaluated for generality in Section 5.4.
With these results demonstrating that the architecture change provides additional benefits to agents,
spontaneous retrieval is applied to the goal re-activation problem and evaluated in Section 5.5. The
chapter closes with remarks in Section 5.6.

5.1 Overview

The second dependency from Figure 3.1 is the dependency of retrieval on deliberate agent action.
This dependency is a result of the limitations of the current long-term memory mechanisms of
cognitive architectures, which restrict cued retrieval as the sole method for extracting knowledge
from long-term memory. Removing this dependency therefore requires a new mechanism: a retrieval
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that does not involve agent deliberation, but is instead architectural. Just as the input buffer of
Soar changes automatically to reflect new features of the environment, an architectural long-term
memory retrieval would automatically update a buffer in working memory to reflect changes in
long-term memory and working memory. More specifically, for the goal re-activation problem, a
spontaneous retrieval mechanism would automatically retrieve a goal when the target of that goal is
subjectively satisfied, thus allowing the goal to be pursued.

The crux of the spontaneous retrieval strategy is designing the matching and retrieval mechanism,
such that it can not only solve the goal re-activation problem, but ideally also be useful to the agent
as a whole. Although the idea of spontaneous retrieval is not new, and it has been implemented in
other architectures — the Companions architecture has an “analogical tickler” that retrieves concepts
analogical to the contents of the agent’s working memory [21], and ACT-R has a spontaneous
retrieval mechanism [35] — these mechanisms have not received widespread use. In fact, both
mechanisms are often disabled by users of the architecture, as agent designers have found no
use for memory retrievals at unpredictable times with unpredictable results. This emphasizes the
importance of understanding the role of spontaneous retrieval in a cognitive architecture and the
situations in which spontaneous retrieval can be beneficial. The following sections provide this
understanding, before the use of spontaneous retrieval for goal re-activation is explored.

5.2 The Space of Spontaneous Retrieval Mechanisms

The goal of this section is to understand the role that spontaneous retrieval can play in a cognitive
architecture, and the space of implementations that would still allow it to fulfill this role.

All long-term memory retrievals, deliberate or spontaneous, are aimed towards finding knowl-
edge that is relevant to the agent’s current task; in other words, it is a mechanism for knowledge

search — the retrieval of knowledge that will aid the agent in its decision making [47]. This
search is necessary because knowledge in long-term memory may not always be well organized and
immediately accessible. This is especially true for a long-lived agent that acquires knowledge during
its lifetime and must use that knowledge for multiple goals. From the viewpoint of knowledge
search, the cues created by the agent in a deliberate cued retrieval exist to guide the search for the
knowledge that would best aid the agent in the current situation. The rules that lead to a retrieval,
however, specify not only how that knowledge can be found, but also the specific circumstances
under which knowledge search should be initiated. And yet, rules can only match on working
memory, which only contain a small subset of the knowledge of the agent; the majority of that
knowledge exists in long-term memory. As a result of this incomplete information due to the partial
observability of long-term memory, the search-guidance knowledge that rules provide may be
suboptimal, or in the worst case, inaccurate or missing. In these situations, it would be beneficial to
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have a mechanism that provides a more general heuristic for knowledge search, one that is robust to
the agent’s lack of search knowledge, even if it is not as precise as is possible with a deliberate cue.

Consider, for example, an agent in the real world, where it perceives an abundance of objects
every decision cycle. The agent may have additional knowledge about many of these objects in
long-term memory; however, only a small subset of this knowledge is useful for the agent’s current
decision making. The agent may incorrectly believe that knowledge about one object is more
important than the other, however, or it may be unsure which of the many objects is important,
if it even knows that the additional knowledge is useful in the first place. Spontaneous retrieval
could help in this situation by using architecturally maintained information to heuristically retrieve
knowledge into working memory. For example, if an object was previously used, perhaps it is
more important; alternately, perhaps objects that are novel are more likely to provide breakthroughs
in agent problem solving. The argument for spontaneous retrieval is not that the agent could
not otherwise access that knowledge — in the worse case, the agent can iterating through all
knowledge in long-term memory — but that this is impractical and inefficient. By supplementing
the architecture with a well-designed spontaneous retrieval mechanism, the cost of a lack of memory
search knowledge can be mitigated.

The goal of spontaneous retrieval as a mechanism to supplement deliberate retrieval has several
implications for the design of the mechanism. These implications are further discussed in the
following section, but the most important one is that the mechanism cannot depend on the agent’s
procedural knowledge to initiate the search nor to provide a cue to guide search, since it must
be robust to the agent’s lack of knowledge of both when to search and what to search for. The
mechanism should therefore be automatic or spontaneous and uncued. There are at least three kinds
of errors or gaps that spontaneous retrieval could provide. Using an example of a conversation about
celebrities, spontaneous retrieval could, under the right circumstances, allow an agent to overcome
its lack of knowledge of:

C1 What to search for in long-term memory, if the relation of the cue to the desired knowledge is
unknown. For example, if the agent is asked for information on a celebrity, it may not know
which aspects of the celebrity (e.g. their life story, their accomplishments, their habits, etc.)
should be searched for in memory.

C2 What to search for in long-term memory, if the cue is unknown. In contrast to the example about
not known whether to search for a celebrity’s history or accomplishments, the lack of knowledge
here is on which celebrity on which to perform a search.

C3 When to search long-term memory. In a conversation about celebrities, many celebrities are
mentioned, some of whom the agent may have no additional knowledge about. The ideal agent
should not expend resources on these celebrities, and spontaneous retrieval may provide a signal
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that no additional knowledge exists in memory. Although this is related to C2 above, it is
different in that the correct time to retrieve may not be a function of the agent’s perceptions at
all, but a function of whether knowledge exists in long-term memory.

The problem of missing or incorrect heuristics for knowledge search presents additional con-
straints on spontaneous retrieval beyond the need for it to be automatic and uncued. Within these
constraints and guided by the theoretical benefits, there is a space for variations in implementation.

5.2.1 How does spontaneous retrieval integrate with a cognitive architec-
ture?

The main consideration in this section is that spontaneous retrieval is not the only retrieval mech-
anism, and it must work in conjunction with deliberate retrieval. Since spontaneous retrieval is
supposed to supplement in deliberate retrieval, one implementation is to emphasize spontaneously-
retrieved elements, and allow them to overwrite whatever was deliberately retrieved. On the other
hand, since deliberate retrievals involve the use of agent procedural knowledge of some kind,
perhaps spontaneous retrievals should only occur when no deliberate retrievals are made. Both of
these implementations assume that spontaneous and deliberate retrievals use the same buffer in
working memory. Although the architecture designer must shoulder the burden of determining a
priority, using the same buffer for both types of retrievals reflects how the mechanisms both serve
the same purpose in knowledge search; the agent can be agnostic and apathetic as to the source of
the retrieval. The alternative is to create a separate buffer for spontaneous retrieval, which would
require that the agent decide when knowledge from each buffer should be used. Since both models
of integrating spontaneous retrieval into an architecture have merit, neither dominates the other in
this analysis.

5.2.2 When do spontaneous retrievals occur?

Much as preemptive strategies are parameterized by when goals are retrieved, an architecture
spontaneous retrieval mechanism has a parameter of when retrievals occur. A simple solution would
be that spontaneous retrieval occur every decision cycle, or more generally, every n decision cycles;
this corresponds to the timing trigger used for preemptive strategies, a term adopted here for the sake
of consistency. An alternate solution would be for spontaneous retrievals to occur when particular
features are represented in working memory. While there may not be universal percepts across
all domains upon which knowledge should be spontaneous retrieved, it is not unimaginable that
spontaneous retrieval occurs only when the agent is in particular metacognitive states, say, when the
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agent is confused. This reflects the role of spontaneous retrieval as a heuristic for when deliberate
retrievals are inadequate.

5.2.3 Which element is spontaneously retrieved?

A final consideration is how the retrieved element is relevant to the agent’s current situation.
While spontaneous retrieval could randomly select elements to retrieve into working memory, the
likelihood that such an element will be useful is small, considering that the majority of long-term
memory is irrelevant at any given time. Luckily, the requirement that a retrieved element is relevant
is one that is shared with deliberate retrieval, and thus existing solutions can be re-used. In particular,
one popular solution to the problem of retrieval relevance is spreading activation, where long-term
memory elements related to the elements in working memory get a boost in activation (and are
therefore more likely to be retrieved). Although known under other terms, a similar idea lies at
the heart of PageRank, where a link from an important page (a relation to elements in working
memory) increases the rank of a different site (increases the likelihood that a different element will
be retrieved) [26]. More generally, spreading activation is a graph centrality measure that takes into
account a set of context nodes, which also suggests the possibility of using other such centrality
measures as the retrieval bias [48]. Unfortunately, no standard spreading activation algorithm exists;
implementations differ on which elements cause spreading activation to occur, the elements to which
activation spreads, and the size of the boost in activation for those elements. Spreading activation
also raises concern with the potential for positive feedback loops, where the same elements all
spread activation to each other, such that no other elements are spontaneously retrieved [36].

Other mechanisms for biasing retrievals exist. The Companions cognitive architecture, for
example, biases deliberate long-term memory retrieval by similarity in graph structure [20]; similar
metrics are used in case-based reasoning systems [50]. More generally, spontaneous retrieval can
be cast as determining which long-term memory element is the most useful, given the agent state.
In fact, there has been much recent work in psychology that casts memory retrieval as a Bayesian
process that selects the element with the highest probability of usefulness [27, 58]. The original
rational analysis of memory and the invention of base-level activation were partially inspired by
this, and assume a power law distribution of perceptual features [2]. To our knowledge, however,
there has yet to be a fully Bayesian model of memory that works well with the semantic knowledge
common in cognitive architectures.

Even if activation is used as a bias, there remain multiple choices for which element is returned in
a retrieval. Drawing inspiration from action selection in reinforcement learning, some possibilities
include: to always select the most highly activated element; to be epsilon-greedy, where the most
highly activated element is selected except for some small probability of a random selection; or
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to use a softmax function where the probability of an element being retrieved is proportional to
its activation value. Again, these options also exist for deliberate cued retrieval, except that with
spontaneous retrieval, there is no hard constraint for the element to match a cue; in fact, ignoring
the cue from deliberate cued retrievals leads naturally to a retrieval bias for spontaneous retrieval.

5.3 Implementation

Given this space of possible spontaneous retrieval implementations, the one used in this thesis
focuses on maximizing the similarities between deliberate and spontaneous retrieval, while high-
lighting the unique aspects of the latter. Thus, like the current deliberate retrieval mechanism in
Soar, spontaneous retrieval selects the most highly activated element, and also shares the same
buffer in working memory as deliberate retrieval. Spontaneous retrieval is also limited to only
occurring when no deliberate retrievals are in progress, but otherwise occurs periodically according
to a frequency parameter. To ensure that retrievals are heuristically relevant, spreading activation is
used to boost the base-level activation of long-term memory elements. In particular, whenever an
element is stored into long-term memory or is retrieved into working memory, it’s graph neighbors,
and their graph neighbors, and so on up to a parameterized distance d, all receive an activation boost
of the same amount. This implementation of spreading activation is a strict superset of the agent’s
base-level activation mechanism, since if d = 0 — that is, if no neighbors are boosted — then only
the element that is stored or retrieved receives the boost, which is the current behavior.

Beyond the basic mechanism, there are three constraints on spontaneous retrieval to prevent
positive feedback loops. First, spontaneously retrieved elements do not receive a boost in activation,
to prevent the same element from continually having the highest activation. Second, spontaneous
retrieval only returns elements not currently in working memory. The one exception is where the
previously spontaneously retrieved element remains the one with the highest activation, in which
case the element is not replaced. Finally, to prevent positive feedback loops through cycles in
memory, elements are only boosted once per storage or retrieval.

In terms of computational efficiency, calculating the effects of spreading activation is expensive,
and has been an ongoing research problem for the cognitive architecture community [11, 15].
Since this implementation of spreading activation is aimed only to demonstrate the benefits of
spontaneous retrieval, it is straightforward and not optimized. Specifically, Soar’s long-term memory
is implemented as an SQLite database, which uses indices to allow efficient queries; all long-term
memory elements are indexed by their activation value for fast deliberate retrieval [13]. For
spontaneous retrieval, an element is selected by iterating through the index until an element is
found that is not already in working memory. This allows spontaneous retrieval to take advantage
of any efficiency improvements for spreading activation, while remaining independent of the
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Figure 5.1: Different representations of knowledge in the Missing Link domain

implementation details of spreading activation. The data presented below show the costs of these
two processes separately.

5.4 Evaluation for Spontaneous Retrieval Mechanism General-
ity

The goal of this evaluation is to explore whether spontaneous retrieval is generally beneficial to
intelligent agents, by demonstrating whether it allows agents to overcome various types of missing
knowledge (C1, C2, and C3). Although such an evaluation of the mechanism is not strictly necessary
for its inclusion into a cognitive architecture, it nonetheless highlights some of the strengths and
tradeoffs made.

5.4.1 The Missing Link Domain

In order to evaluate the benefits of spontaneous retrieval, we use the Missing Link word puzzle as a
domain. In this puzzle, the agent is given three words (stems) as clues (for example, fall, fort,
and time), and must provide a fourth word (the link; in this case, night) that forms compound
words or phrases with all three stems (nightfall, fortnight, nighttime). The puzzles used in
this evaluation are gathered from the Unix word list, using compound words that can be completely
divided into two shorter words; a total of 550 compound words formed by 195 stems are used,
with each stem being used in an average of 2.8 compound words. In the single-link representation
(explained below), the compound words and stems form a connected bipartite graph of diameter 12.

It should be noted that this puzzle is the same as the Remote Associates Test [42], and it was
chosen for some of the same reasons. In addition to the large amount of search necessary to find the
solution, the puzzle also allows the agent’s knowledge and the important features of the environment
to be transparently manipulated. Search guidance in this domain depends on the connections
between the stems and their compound words, which in turn depends on the source of knowledge. A
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generic dictionary may provide only the component stems of a compound word, while a knowledge
base optimized for the Missing Link puzzle would have connections directly between the stems.
While the existence of the latter connections may make the puzzle trivial, spontaneous retrieval may
help when only less specialized representations are available. The first variation of the Missing Link
domain models this difference in knowledge with three different long-term memory representations
of the dictionary. The three representations, also depicted in Figure 5.1, are:

• The single-link representation only has links from the compound words to its prefixes and
suffixes.

• The double-link representation also has links from the stems to all their compound words.

• The direct-link representation also has links between the prefixes and suffixes of any com-
pound word.

Two additional variations of the Missing Link domain are used. In the first variation, Subset
Missing Link, the agent is additionally presented with distractors, other words that do not form
compound words with the missing link. In the above example, the additional words foot and man

might also be presented to the agent. The addition of distractors models how only a subset of
features in the environment may be relevant to the agent’s goals.

The second variation modifies the Missing Link domain on a multi-puzzle level. In this
Probabilistic Missing Link domain, each puzzle has only some probability of being solvable (that is,
that a link exists between the three stems). As with the first variation, this models how only a subset
of features are relevant, except in the temporal dimension.

These three domain variations correspond to three cases where spontaneous retrieval is likely to
be beneficial. In the Missing Link domain with the single-link representation, the agent does not
know the relation of the stem to its compound word (that is, whether it is a prefix or a suffix), and
must therefore search memory with both (C1). For Subset Missing Link, the agent does not know
which portion of its percepts are important and should be used as the cue to search memory (C2),
while for Probabilistic Missing Link, the agent does not have knowledge of whether searching at
this time will be beneficial, or if it will just consume resources (C3).

Since the agent can always use brute-force search to find the solution, the metric for this
evaluation is not the number of puzzles that the agent solves, but the amount of computation needed
to do so, in both decision cycles and real time.

5.4.2 Missing Link Agent Design

In each puzzle, the environment presents the stems as strings. Both agents with and without
spontaneous retrieval must first retrieve the long-term memory representations of the stems. To
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correctly solve a Missing Link puzzle, an agent without spontaneous retrieval must retrieve all
compound words that contain each stem, as well as the other stem that forms those compound words,
before finally checking if a missing link exists that is shared by the compound words of all three
stems. The differences in representation only determine how quickly this can be done. With the
single-link representation, the agent must do all of these steps. With the double-link representation,
the agent does not need to retrieve the compound words, as they are retrieved together with the
representation of the clue word. With the direct-link representation, the agent can directly check
for a missing link. This is true in the two domain variations as well: the stems must be expanded
to detect which three have a missing link, just as they must be expanded to determine whether a
solution exists for any three stems.

A different search process is possible with spontaneous retrieval. When the memory element
representing each stem is retrieved, activation spreads to its compound words and to the other
prefix/suffix. Since the missing link is the only word that receives three activation boosts, it has the
highest activation and is the first element to be spontaneously retrieved. The agent can then verify
that the spontaneously retrieved word forms compound words with all three stems. The benefit of
spontaneous retrieval is therefore that the stem–compound-word–stem connections do not need to
be deliberately explored. Alternately, spontaneous retrieval can be thought of as using spreading
activation to specify a search criteria based on the graph topology around the cue elements, one that
is not constrained to return elements that must be direct neighbors of the cue.

Deliberate and spontaneous retrievals should not be thought of as separate strategies, however,
but as two mechanisms working towards the same goal. Spontaneous retrieval is returning elements
that the agent could deliberately retrieve, given the correct sequence of retrievals with the correct
cues — since in this domain deliberate retrieval is only used for brute-force search, spontaneous
retrieval allows the agent to skip ahead in its reasoning. However, there are also cases where
spontaneous retrieval may mislead the agent; for the Subset Missing Link domain in particular, the
retrieval of the distractors could be interleaved with the retrieval of the real stems, allowing time for
the activation of the missing link to decay. This may cause a more-recently-boosted element to be
returned by spontaneous retrieval instead, which would fail the verification. In this case, the agent
must resort to the deliberate strategy, at least until a different element is spontaneous retrieved.

It should be noted that the spontaneity of spontaneous retrieval is not strictly necessary for
this domain. Since the puzzles are episodic, one can imagine the agent deliberately retrieving the
solution when a new puzzle is presented, using a mechanism that returns that most highly activated
element. This agent would do better than a spontaneous retrieval agent, since it is taking advantage
of the episodic nature of the environment. To demonstrate the benefits of spontaneous retrieval,
however, the agent uses the deliberate, brute-force search, but takes advantage of any spontaneously
retrieved knowledge; that is, spontaneous retrieval provides usable knowledge without being asked
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to do so. The focus is on spontaneous retrieval complementing deliberate retrieval, especially when
brute force becomes more expensive in the Subset and Probabilistic Missing Link variations.

Since deliberate retrievals are used as a fallback, agents must be designed so that they can move
from deliberate retrievals to spontaneous retrievals and back, and be able to integrate information
from both. This can be achieved by conditioning the processing of retrieved memory elements not
by the mechanism that retrieved it, but by the information that it represents. For example, in the
Missing Link domain, if the retrieved element is a compound word that contains a stem, it should
be stored so that the other prefix/suffix can be retrieved later; on the other hand, if the retrieved
element is not a compound word connected to the clues, it may be the missing link, and it should be
checked as the answer. The key is that these behaviors depend only on the agent state and how the
retrieved element should be used, but not on whether the retrieval was deliberate or spontaneous.
Rules that process retrievals only match on the features of the retrieved element, and not on which
mechanism retrieved the element or why it is retrieved; in fact, neither mechanism provides the
latter. By separating the processing of information from its source, the agent can effectively use
both the knowledge that it knows it needs as well as any spontaneously retrieved shortcuts.

5.4.3 Results

All results in this section are averaged over 100 puzzles. Since each puzzle is independent, the agent
is reset between puzzles to negate any recency and frequency effects of activation. The knowledge
of compound words and their stems is loaded into the agent’s long-term memory before each puzzle.
Spreading activation is limited to a distance of two, the distance necessary to reach the solution
word (from a stem to its compound words, then from the compound words to the missing link); we
briefly discuss the effects of alternate settings of this parameter in the conclusion. All agents are
written as deliberate agents, with the processing of retrieved elements then modified to be agnostic
to the retrieval mechanism. In fact, the “deliberate” and “spontaneous” agents have the exact same
rules, with the only difference being that the architecture provides spontaneous retrievals for the
“spontaneous” agent. No effort was made to space deliberate retrievals so that spontaneous retrievals
could occur.

5.4.3.1 Efficiency of Spontaneous Retrieval

To evaluate the efficiency of spontaneous retrieval, we instrumented Soar to measure the amount of
time spent calculating the effects of spreading activation, versus that of selecting the most highly
activated element in long-term memory. Averaged over 100 puzzles, an agent with the single-link
representation takes an average of 350.7 milliseconds to solve a puzzle, of which 335.2 milliseconds
is spent updating activation values, and only 0.85 milliseconds for spontaneous retrieval. Although
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this mechanism goes above the reactivity threshold of 50 milliseconds, much of this is due to
spreading activation, which is known to be a computationally expensive process [11]. There is on
going work to reduce the cost of spreading activation by approximating its results [24], which is
outside the scope of this thesis. Nonetheless, spontaneous retrieval itself requires little computation,
meaning that as a new mechanism it meets the reactivity threshold.

Since spreading activation also affects the outcome of deliberate retrievals, it is included in the
results below for both the deliberate and spontaneous agents.

5.4.3.2 Missing Link

The purpose of this experiment is to demonstrate that spontaneous retrieval can overcome a lack
of knowledge of how percepts relate to the desired knowledge. In the worst case, a brute-force
search would require the agent to iterate through all possible relations, although in this domain there
are only two possible relations (i.e. prefix or suffix). The average number of decision cycles and
amount of real time needed to solve a puzzle by different agents are shown in the table below.

Knowledge Decision Cycles Real Time (msec)
Representation Delib. Spon. Delib. Spon.

Single 56.1 24.5 2631.6 350.7
Double 60.9 60.9 1167.7 1173.1
Direct 12.0 12.0 267.8 268.3

Table 5.1: Timing of spontaneous retrieval wrt. different knowledge representations

For the single-link representation, the spontaneous retrieval agent takes half the number of
decisions to complete the task, and an even smaller proportion of real time. As hypothesized
during the discussion of agent design, this is because activation spreads to the missing link, which
spontaneous retrieval then puts into working memory. This eliminates many decision cycles during
which the deliberate approach is exhaustively expanding the stems and the compound words. The
difference in real time is more dramatic because of the cost of spreading activation — since there
are fewer retrievals, there are fewer boosts to base-level activation and therefore fewer spreads. This
difference would be smaller with a more efficient spreading activation algorithm.

Spontaneous retrieval has little effect on either metric for the other two representations, although
the source of this lack of differentiation is different. For the direct-link representation, the missing
link could be immediately determined after the stem elements are retrieved, removing the need to
search long-term memory. In this case, spontaneous retrieval is unnecessary. For the double-link
representation, the majority of agent processing is from retrieving the other prefix/suffix of the
compound words; there are no gaps between these uses of long-term memory, leaving no opportunity
for spontaneous retrievals to occur. This raises questions about balancing deliberate and spontaneous
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retrievals, as well as whether spontaneous retrievals should be placed in a different buffer; these
issues are addressed in the conclusion to this section. Regardless, although spontaneous retrievals
has no benefits when these knowledge representations are used, it also incurs minimal cost.

The results across all three knowledge representations agree with the original insight that spon-
taneous retrieval supplements deliberate retrieval when the agent lacks search-guidance knowledge.
The more optimized the knowledge base for a task — as more connections are added between stems
and their links — the more effective deliberate retrieval becomes, and the less spontaneous retrieval
can offer. On the other hand, spontaneous retrieval can provide the agent with relevant knowledge
when brute-force search is necessary, greatly reducing processing time. Since the single-link repre-
sentation best highlights the difference between deliberate and spontaneous retrievals, it is the only
representation used for the remaining results.

5.4.3.3 Subset Missing Link

The presence of distractors in the Subset Missing Link domain means that the agent must retrieve
more compound words before the missing link can be identified. In terms of search, this increases
the number of initial states (memory elements), thereby increasing the size of the search “frontier.”
To be explicit, distractors are presented in addition to the three stem words, so the agent is presented
with five clue words for a puzzle with two distractors. Results from this domain variation are shown
in the table below.

Number of Decision Cycles Real Time (msec)
Distractors Delib. Spon. Delib. Spon.

0 56.1 24.5 2631.6 350.7
1 65.1 26.6 3048.6 341.4
2 70.9 28.2 5752.1 319.4
3 80.8 32.8 3679.1 613.5
4 84.5 40.0 17591.5 840.0

Table 5.2: Timing of spontaneous retrieval wrt. number of distractors

Although both agents with and without spontaneous retrieval require more resources to deal
with distractors, the agent with spontaneous retrieval requires less additional resources to do so.
For the spontaneous retrieval agent, this growth is due to the extra decision cycles necessary to
retrieve the long-term memory representations of the distractor clues. The deliberate retrieval
agent, however, also needs to search for all the compound words for those distractors, hence the
larger increase. These results suggest that, for domains where the relevant percepts are not obvious,
search-guidance knowledge is doubly important, as search grows exponentially with the number of
irrelevant percepts. This is true with spontaneous retrieval as well, but using activation as a heuristic
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reduces the exponential.
Despite this increase in resource consumption, spontaneous retrieval allows the agent to sidestep

the selection of a cue for deliberate search, and continues to reduce the amount of computation
necessary for the agent to solve the puzzle.

5.4.3.4 Probabilistic Missing Link

The goal of this experiment is to show that spontaneous retrieval can overcome the lack of knowledge
of when to retrieve from long-term memory. Unlike the previous experiments, here the role of
spontaneously retrieved elements is not only to provide the correct answer, but also to be a heuristic
for whether an answer exists at all. This difference is reflected in a change in how spontaneous
retrievals are used. The agent with spontaneous retrieval does not continue to retrieve words until
the solution is found. Instead, when a new puzzle is presented to the agent, it simply attempts to
verify whether the first spontaneously retrieved element is the missing link. The results of two
different verification procedures are shown: the more costly method (V1) retrieves all compound
words of the potential solution, while the more efficient method (V2) directly checks for compound
words formed by the potential solution and the stems. For the agent without spontaneous retrieval,
no such heuristic for solvability is available, and it must therefore deliberately retrieve all compound
words before giving up.

Probability Decision Cycles Real Time (msec)

Solvable Delib.
Spon.

Delib.
Spon. Spon.

V1 V1 V2
1.0 56.1 24.5 2631.6 350.7 100.5
0.9 56.1 25.9 2602.9 442.4 159.6
0.8 55.5 27.6 2464.0 628.4 165.4
0.7 56.0 29.8 2555.8 744.8 178.0
0.6 55.9 30.5 2459.8 777.9 179.9
0.5 53.9 31.9 2099.2 861.9 186.5
0.4 51.4 35.3 1677.9 1135.3 218.3
0.3 50.3 38.1 1574.2 1450.2 247.0
0.2 49.5 40.0 1400.6 1633.9 263.4
0.1 49.0 41.2 1324.1 1768.4 264.3
0.0 47.8 42.7 1099.5 1858.6 316.8

Table 5.3: Timing of spontaneous retrieval wrt. proportion of unsolvable puzzles

The results for the single-link agents are shown in the table above. Although the agent with
spontaneous retrieval can often identify solvable puzzles in fewer decisions than agents without
spontaneous retrieval, whether it can do so in less real time depends on the verification method.
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The deliberate agent gives up sooner on unsolvable puzzles, since those stems tend to have fewer
compound words (as it would otherwise increase the probability that a missing link exists). No
such trend exists for the spontaneously retrieved element: a word that has the most neighbors would
have the highest activation, regardless of whether the puzzle is solvable. This is exacerbated by the
quadratic time necessary to complete the naive method of iterating through all compound words
(V1), which only takes linear time for the more efficient method (V2). As spontaneous retrieval
is less and less likely to return the solution, the verification of the solution could take more time
than iterating through the compound words, leading to the tradeoff seen in the results for the naive
verification method.

Assuming the cost of verification is low, these results show that spontaneous retrieval can
cheaply provide the agent with knowledge, even if the agent is uncertain whether that knowledge
exists.

5.4.4 Conclusion on the Generality of Spontaneous Retrieval

In all three variations of the Missing Link domain, the use of spontaneous retrieval leads to agents
that more quickly complete their tasks. Spontaneous retrieval provides a short-cut through brute-
force search; allows the agent to efficiently ignore distractors; and indicates whether relevant
knowledge exists in long-term memory. Both the spontaneity and the spreading activation bias
are necessary for these benefits: spreading activation reduces the time needed for search, while
the spontaneity allows the agent to search less frequently. Together, these results provide evidence
for the hypothesis that spontaneous retrieval can supplement deliberate retrieval as a heuristic to
overcome a lack of knowledge of when to search and what to search for.

One objection to these results is that the spontaneity of the spontaneous retrievals was not
necessary. Since it was the spreading activation that correctly biased memory retrievals, the agent
could have done just as well with only a spreading activation mechanism, and performing deliberate
retrievals for every puzzle. In the general case, however, the agent designer would have to explicitly
write a rule that performs retrievals on every decision cycle. The advantage of an architectural
spontaneous retrieval mechanism is not only that it is more efficient, but also that the fallback
heuristic can be employed by other agent designers as well.

While the goal of this evaluation is not to fully explore the space of spontaneous retrieval
implementations, we acknowledge that it’s possible for alternate implementations to perform
differently in the same domain. If the spontaneous retrieval had its own buffer instead of sharing the
one with deliberate retrieval, for example, even the results with the doubly-linked representation
would likely be an improvement over that of an agent without spontaneous retrieval at all, since the
current agent’s retrieval is bottlenecked by the buffer. At the same time, a different selection bias
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for spontaneous retrieval would likely lead to poorer performance, and we admit that the domain
was chosen to match the spreading activation bias. Since spontaneous retrieval does not alter the
behavior of deliberate retrieval, however, outside of the computational cost there are no drawbacks
to having such a mechanism in the architecture, and the agent could fall back on deliberate retrieval
if necessary. As long as the verification of the retrieved answer is faster than iterating through
long-term memory to find it, spontaneous retrieval is at best neutral, but often beneficial to agent
performance.

That cognitive architecture research has continued without spontaneous retrieval thus far suggests
that there is a category of tasks that the field has not tackled — those where the agent is missing
procedural knowledge for how to search for declarative knowledge in long-term memory. Given
that researchers generally attempt to maximize the performance of the agents by providing it
with all necessary knowledge, perhaps it is not surprising that such tasks have not been explored.
Nonetheless, it is in such tasks where spontaneous retrieval shows its benefits. Goal re-activation is
one such task, and the performance of a spontaneous-retrieval-dependent strategy is evaluated in the
next section.

5.5 Evaluation for Goal Re-Activation

The previous section showed that spontaneous retrieval can benefit agents. This section evaluates
the same mechanism in goal re-activation in the abstract domain presented in Chapter 4. As with
preemptive strategies, the goal of this evaluation is two fold: first, to explore the effectiveness of
this strategy with respect to changes in environments with different parameter settings; and second,
to find scenarios where spontaneous retrieval fails as a goal re-activation strategy.

The design of the spontaneous retrieval goal re-activation agent must first be explained. Without
spreading activation, environmental percepts entering working memory had no direct effect on
long-term memory. With spreading activation, when a percept enters working memory, it causes
activation to spread from its long-term memory representation. Crucially, goals that the agent has
stored into long-term memory also receive a boost in activation, since their features correspond to
what the agent perceives. If the resulting activation of the goal is sufficiently high (in particular, if it
becomes the most highly activated element), then it will be spontaneously retrieved into working
memory.

Throughout the retention interval then, the agent perceives different random percepts from the
environment, and various long-term memory elements are spontaneously retrieved. No deliberate
retrievals are made at all by the agent. If a goal is spontaneously retrieved, its target is checked
against the percepts of the agent for satisfaction. If the target is satisfied, a rule matches and proposes
the option of pursuing the goal to the agent; if the target is not satisfied, then the goal is temporarily
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Figure 5.2: Performance of the spontaneous retrieval strategy wrt. number of goals

stored in working memory, until its working memory activation decays and is removed again.
If instead the spontaneously retrieved memory element is not a goal, the agent ignores whatever

is retrieved. In general, however, other retrieved non-goal elements may still contribute to the agent’s
reasoning; while the retrieval of a non-goal may be considered interference for goal re-activation,
it may in fact be beneficial for the agent overall (as demonstrated in the Missing Link domains).
While no additional knowledge exists in the agents tested in the abstract domain, the agent also
does not restrict its retrievals to goals. The agents must therefore deal with irrelevant retrievals,
although whether this occurs with realistic frequency depends on the real-world domain used for
comparison.

Spontaneous retrieval by itself only has a single parameter: the frequency with which long-term
memory elements are spontaneously retrieved into working memory. Additionally, the choice of the
bias function — that is, spreading activation — has a single parameter: a depth limit on how far
activation spreads.

83



5.5.1 Abstract Domain

Figure 5.2 shows the performance of the spontaneous retrieval strategy, with the percentage of
goals completed on the y-axis and the trigger period (that is, the number of decisions between each
spontaneous retrieval) on the x-axis. Each subplot contains the results for a particular environmental
parameter setting with the total number of goals (G) and the retention interval (R) indicated in the
title. Each subplot also contains two lines, which indicate the depth limit of spreading activation.

Across all subplots, spontaneous retrieval maintains a high level of performance. The trigger
period of spontaneous retrieval has a small effect, which is to be expected; the further apart the
retrievals that occur, the more likely that a goal will not be retrieved in time. The parameter with the
largest effect is the spreading activation depth limit (comparing between lines in the same plot), with
a limit of two being more effective. We believe this is because more goals are retrieved with a larger
limit (since more memory elements are boosted, leading to more turnover in terms of the element
with the highest activation); this leads to more goals being kept in working memory, increasing
the probably that the goal can be compared against the target percepts at the initiation stage. The
evidence from varying the goal encounter rate below also supports this, while a more theoretical
analysis of the effect of the depth limit on spreading is in 5.5.2.

On the other hand, neither the number of goals nor the length of the retention interval (comparing
across subplots) has a large effect. More goals decrease the performance of the agent, but the effect
is slight. This can be understood by considering how spreading activation is a measure of graph
centrality. For goal re-activation, only the relevant goal is at the center of the target features;
additional goals become peripheral nodes on the graph, and do not affect the outcome of spreading
activation. At the same time, it’s possible for other goals to be boosted simply by random percepts.
Since the activation of an element is a summary of the history of the element; by only looking
at the activation value, it is impossible to differentiate between elements whose activation were
frequently boosted by a small amount, versus elements whose activation were recently boosted by a
large amount. When spreading activation is added to the equation, this means that the most highly
activated element may be a result of what occurred in the past instead of a result of the agent’s
current situation. Thus, a random sequence of percepts that have a large overlap with the target of a
goal can cause the activation of that goal to be boosted by a large amount, and when the target of a
different goal is satisfied, it would not be spontaneously retrieved despite the spreading activation
it receives. This effect depends on the specific sequence of random percepts and does not occur
frequently, hence the small effect.

The effect of the length of the retention interval can be explained in the same way. Long-term
memory elements are only affected by time through the decay (and occasional boost) of their
activation. In this case, the boost from spreading activation is stronger than the decay of activation
over time, allowing the relevant goal to be retrieved. This is not without a failure condition, however,
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Figure 5.3: Resource usage of the spontaneous retrieval strategy wrt. number of goals

which we explore in Section 5.5.3.
Before we present the cost of the spontaneous retrieval strategy, we must first explain why the

cost is non-zero. Since spontaneous retrieval relies entirely on an architectural mechanism, there
is no agent deliberation involved in retrieving the goal into working memory. Furthermore, rule
matching is automatic, meaning that if a relevant goal is spontaneously retrieved, an operator is
automatically proposed. By the definition of computational resource in Section 4.4, spontaneous
retrieval in fact has zero cost. However, this metric does not take into account how goals may be
spontaneously retrieved when their targets are not satisfied, and are temporarily stored in working
memory. In essence, spontaneous retrieval can also play a preemptive role, where goals are retrieved
before they become relevant. It is this small computation used by the agent that is captured in Figure
5.3, which shows the number of decision cycles spent on goal maintenance (y-axis), as a function
of the trigger period (x-axis). Again, each subplot contains the results for a particular environmental
parameter setting with the total number of goals (G) and the retention interval (R) indicated in the
title. As the plots show, the cost of spontaneous retrieval is minimal, remaining at under 10% across
all parameter settings.
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Finally, Figure 5.4 shows the percentage of decision cycles spent on goal maintenance when the
goal encounter rate is varied. The parameter has little effect in general, although unlike in Figure
5.3, strategies with a deeper limit on spreading activation leads to more goal maintenance operations.
Recall that the goal maintenance operations only occur when a goal is spontaneously retrieved
and its targets are not satisfied. Since no new element is retrieved if the most highly activated
element has not changed, this results suggests that a deeper spreading activation limit leads to more
turnovers, or equivalently, leads to more changes in which long-term memory element has the
highest activation. This may also be the reason why the strategy with this parameter performs better
(as show in Figure 5.2): since different goals are more frequently brought into working memory,
they have a higher chance of remaining in working memory when their targets are satisfied.

In summary, a strategy that uses spontaneous retrieval is capable of high performance with low
cost to the agent. The parameter with the biggest effect on the performance of this strategy is the
limit on how far activation could spread, which we explore in the next section.

5.5.2 Encoding Specificity

The evaluation of spontaneous retrieval has, thus far, involved goals that are directly linked to the
perceptual features that form their target; the goal is a parent node, with many child nodes that
represent the features. This implies that the goal target is always directly perceived, and is never an
abstraction over perceptual features. For example, consider the milk-buying task. While a valid
target for the goal is for the agent to be standing outside a specific grocery store, the target could
also be a more general description of being outside any store that sells milk. This is represented by
additional memory elements between the goal and the perceptual features, elements that represent
the semantic concept of a generic grocery store. This representation, however, causes problems with
preemptive strategies — the strategy must now not only retrieve the goal, but also any intermediate
abstractions that connect the goal to the perceptual features. Spontaneous retrieval through spreading
activation avoids this problem, as the intermediate elements do not need to be retrieved — it is
sufficient for activation to spread through those elements to the goal, such that the goal is retrieved
directly.

This section explores the performance of spontaneous retrieval when the goal target is part of a
feature hierarchy; an example of such a hierarchy is show in Figure 5.5. Formally, the hierarchy is a
layered directed graph, where each layer only has incoming edges from the layer above it, and only
has outgoing edges to the layer below it. Specifically, long-term memory is a recognition hierarchy
or a feature hierarchy, where higher-level features are composed of a fixed number of lower level
features. For example, a dining room consists of tables and chairs, which in turn consists of legs
and surfaces, and so on. Such hierarchies are common both in perception (for example, in deep
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Figure 5.5: A randomly generated knowledge hierarchy, with goals

belief networks) and in logic (for example, ontologies), meaning the results of this experiment may
be broadly applicable. In the lowest level of the hierarchy are the perceptual features, while other
levels represent abstract concepts built from perceptual features. In the figure, the star-shaped node
is a goal, and the square nodes its descendant target features. At the initiation stage, the agent only
perceives the square nodes at the lowest level, but it must infer that the goal target is satisfied.

In theory, the spontaneous retrieval strategy can still retrieve the goal when its perceptual-level
targets are perceived, since activation spreads through the intermediate features to provide the goal
with activation boosts. This thesis is interested in two changes to the agent, to explore whether
they would improve the performance of the spontaneous retrieval strategy. First, the agent can use
elaboration rules to automatically bring the abstract features into working memory. In this case,
the agent has rules that are conditioned on the child features; when the rule fires, the parent feature
is retrieved into working memory. Since the goal has more descendants in working memory than
other long-term memory elements, it receives a larger spreading activation boost, and is more likely
to be spontaneously retrieved.

The second change is for the agent to encode the goal not with its abstract targets, but with
its perceptual targets. This corresponds to the idea of encoding specificity in psychology, where
it refers to the phenomenon that the more the encoding of a piece of knowledge is representative
of the context in which it is needed, the more likely a person is able to recall that piece of
knowledge [61]. In prospective memory, the principle of encoding specificity has led to the
development of implementation intentions, where people think of goals as “When I get back to my
office and sit in my chair and look at my monitor, I will send an email to my colleague” instead of
simply, “I will send an email to my colleague” [41]. The agent modifies its representation of the
goal such that it is more likely to be retrieved spontaneously. For the implementation of spontaneous
retrieval in Soar, this means altering the connections among long-term memory elements to increase
the amount of activation that spreads from the target percepts to the goal. Specifically, instead of
storing only the features of the goal, the agent also stores the goal with its lower-level features. For
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example, for the goal in Figure 5.5, this means that the goal (the star-shaped node) is stored with the
square nodes on the lowest level in addition to those in the intermediate level. This encoding means
the goal is now connected to the knowledge hierarchy at a lower level than it would be otherwise.
Since the goal is often abstract and at the top of the knowledge hierarchy, we denote the specificity
of an encoding by how many levels below the goal it is linked to; in this example, the encoding
specificity would be 2.

5.5.2.1 Theoretical Analysis

Given this definition of encoding specificity, we perform initial analysis to determine whether a
goal could be spontaneously retrieved. For goal at knowledge level g, elaboration rules that create
features up to level e, and a spreading depth of d, the goal must be encoded at specificity level s that
satisfies the following relationship:

d ≥ g− e− s+1 (5.1)

That is, the spreading depth must be able to reach from the highest-level elaborated features to
goal target features (plus an extra level to spread from the target to the goal itself). Note that the
agent cannot complete any goals when d = 0, since the goal would never receive an activation boost
from spreading (since no spreading occurs). We can additionally calculate the maximum number of
boosts a goal will receive, assuming the knowledge hierarchy has branching factor b:

min(g, s+d−1)

∑
i=max(1, s−d+1, g−e)

bi (5.2)

That is, every feature in the levels indicated by the index would boost the goal, a number that
is exponential in the branching factor. This classification allows us to group agents across a large
parameter space for comparison.

5.5.2.2 Extending the Abstract Domain

In order to evaluate whether spontaneous retrieval and spreading activation can be used with abstract
goal targets, the abstract domain is extended to include feature hierarchies. This is a strict expansion
of the domain; the goals and features in the previous version of the domain can be considered a two
layer hierarchy, where all features are on the bottom and only goals are on the top. This extension
allows abstract features to be added in between the layers.

The following algorithm is used to generate random hierarchies; its pseudocode is show in
Algorithm 5.1. This algorithm takes as input the desired breadth (w) of the hierarchy at a particular
level (h), the branching factor (b), as well as some probability of abstraction (p). First, a single
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Require: global hierarchy
function CREATEHIERARCHY(w,h,b, p)

while |{nodes at level h}| < w do
level← 0
hierarchy.CREATENODE(level)
while RANDOM( ) < p do

level← level +1
n← CREATENODE(level)
children← hierarchy.GETNUMNODESATLEVEL(b, level−1)
n.ADDCHILDREN(children)

Algorithm 5.1: The hierarchy generation algorithm

node at the lowest level (call this level 0) is created. Every time a new node at level n is created,
including the first node, there is probability p that a new node is created at level n+1. If this new
node is created, then b nodes from level n are chosen at random to be its children. The abstraction
process is then recursively applied, potentially creating a new node at level n+2, n+3, and so on.
When the abstraction process stops, then the algorithm creates a new level 0 node. This process
repeats until level h has w nodes, at which point the algorithm completes.

5.5.2.3 Results

As a reminder, this evaluation is interested in how the agent can best re-activation goals when they
are part of a feature hierarchy. For this experiment, the desired breadth of the hierarchy (w) is
set equal to the number of goals (P1). The level of the goals (h) is varied from 1 to 3 (perceptual
features are at level 0), while the branching factor is fixed at b = 7 and the probability of abstraction
at p = 0.7. These values were chosen to keep long-term memory relatively small, since the cost of
spreading activation grows with the size of long-term memory. Additionally, the level of features
that elaboration rules created (e) is also varied from 0 (that is, no elaboration rules are used) to 3.
The level of encoding specificity (s) of the agent is also varied from 1 to 3.

A number of parameter settings within the parameter space of this experiment fail in completing
any goals. These are settings where the goal is at least two steps away from the elaborated features
— for example, if elaborations provide features of level 3 and the goal target features are encoded at
level 4, thus requiring a two-level spread from elaboration to target features to the goal. Equivalently,
this is when e+ s < g, or where the right hand side of Equation 5.1 is two or more. In these cases,
the lower-level features are activated more frequently, causing them to have higher activation than
the goal and preventing the goal from being retrieved. This suggests that the activation boosting of
a goal is not sufficient to guarantee its completion.

All other parameter settings allow the agent to complete goals. The parameter that is most
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Figure 5.6: Performance of the spontaneous retrieval strategy wrt. encoding specificity
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correlated with higher performance is the specificity of the encoding: most increases in encoding
specificity lead to an increase in performance, although this trend does not always hold. Figure 5.6
shows the results across the entire parameter space, with the percentage of goals completed on the
y-axis and the encoding specificity on the x-axis. Each line in the plot shows an agent with all other
parameters fixed except for encoding specificity.

Surprisingly, the effect of encoding specificity is not uniform, with there frequently being a
decrease in performance for middle values of specificity. We suspect this is because of a tradeoff
between the boost in activation due to spreading, and the amount of activation in other goals.
Consider how high-level features are only rarely brought into working memory, since they require
many low-level features to be present at the same time. This means that if goals are only linked to
high level features (that is, the encoding is not specific), the goals will not receive much spreading
activation). The reverse is also true: specifically encoded goals retrieve more boosts in activation,
since low level features are frequently perceived; at the initiation stage, the many low-level features
will all be present, boosting the goal. With a medium level of specificity, however, other goals are
not infrequently boosted, while the initiation boost for a goal is also not particularly large. Since
other goals may also have high activation, the initiating goal may not always be spontaneously
retrieved — hence the decrease in performance.

Neither the level of elaboration nor the depth limit for spreading activation have a uniform effect
on the agent’s performance. Although these parameters also affect the number of times a goal is
boosted, the problem is that they also boost the activation of all other goals in addition to the goal
that is being initiated. As with the low-level features from above, it is a high relative activation that
allows a goal to be spontaneously retrieved. More specific encodings provide a large enough boost
at initiation for the single goal to be retrieved, while these other parameters do not. In retrospect,
this is not surprising: more specifically encoded goals are linked to more features, which means that
there are more opportunities for the activation of the goal to be boosted.

Overall, these results agree with the psychology literature: the best goal encoding should match
both environmental parameters (such as how abstract the goal is) and agent parameters (such as the
limit to spreading activation), but that more specific encodings in general lead to better performance.

5.5.3 Retention Interval (Revisited)

In the initial experiment in Section 5.5.1, the retention interval had no effect on the performance
of the spontaneous retrieval strategy. Learning from the experiments with encoding specificity,
however, we suspect that this is due to the “density” of percepts to goals. The features that an agent
perceives during the retention interval are randomly selected, and may coincidentally be one of the
target features of a goal; that goal would then receive a small boost in activation. Since all percepts
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are equally likely, all goals would receive roughly equal numbers of activation boosts, meaning no
single goal is particularly highly activated (or particularly un-activated either).

This idea can be framed as one of resting activation — activation that a goal would have during
the retention interval, which is determined by an equilibrium formed by the increase in activation
due to spreading from random input and the decrease in activation due to decay. Changes in either
would move the resting activation value; if the decay rate is increased, or if there is less activation
from random input (as would be the case if the input did not contain target features at all), the resting
activation value would decrease. Again, it is not the resting activation that directly determines the
performance of the agent, but the relative activation of a goal at initiation time; this is why the
decay rate has no effect, since it affects the activation of all goals. Conversely, if a goal has low
resting activation compared to other goals, the activation spread from its target features may not be
sufficient to make it the most activated element, preventing its spontaneous retrieval.

To explore this possibility, we modified the abstract domain such that during the retention stage,
the target features of a single goal (the blocked goal) are never presented to the agent until initiation.
The percepts that contain these features are re-generated until there is no overlap; this loop occurs in
the INTERPOLATION function in Algorithm 4.1. We call this the Leave One Out percept sequence,
as opposed to the Normal percept sequence. For that goal, there should be much less activation
boosts from spreading as compared to other goals, leading to a lower resting activation level. In this
case, a longer retention length (as activation decays after the goal is initially stored) may cause the
spontaneous retrieval of the goal to fail, preventing the agent from pursuing the goal.

As expected, the Leave One Out sequence results in much more variance in the activations of
goals. The least activated goal in a Normal percept sequence is 1.44 standard deviations away from
the mean, while with a Leave One Out sequence, the least activated goal is 12.1 standard deviations
away (the standard deviations were calculated without the left-out goal). This leads to the goals
not being retrieved for completion as the retention interval increases, as shown in Figure 5.7. The
significant decrease in performance in the Leave One Out sequence is due to the filtered features,
which not only affects the activation of the blocked goal, but also of other goals that share features
with the blocked goal. Since these other goals also receive fewer activation boosts, they are also
unlikely to be retrieved spontaneously, leading to a failure in their pursuit. At the same time, the
remaining goals have roughly equal resting activation, and thus the length of the retention interval
has no effect at this level.

This result could be interpreted in two ways. On one hand, for random percepts, using spon-
taneous retrieval for prospective memory suffers no degradations in performance, which suggests
that it may be preferable to monitoring strategies. On the other hand, goals with target features that
are never encountered outside of initiation are unlikely to be retrieved with the current mechanism.
We do not know of any studies that look at the baseline frequencies of goal target features, nor of
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Figure 5.7: Performance of the spontaneous retrieval strategy wrt. different percept sequences
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studies that examine human prospective memory performance where performing the goal requires
satisfying multiple disjoint target features. It is possible that human performance exhibits similar
patterns under such situations; alternately, a better model may be a hybrid strategy where occasional
monitoring-like retrievals prevent the activation of goals from dropping too low.

5.6 Spontaneous Retrieval Strategy Summary

This chapter presented the spontaneous retrieval strategy, where goals are automatically retrieved into
working memory. In implementing this strategy, the new architectural mechanism of spontaneous
retrieval is created and evaluated in the Missing Link domain, showing that in certain cases it allows
the agent to speed up long-term memory search. Applying spontaneous retrieval to goal re-activation
in the abstract domain, spontaneous retrieval shows consistent performance across environmental
parameters such as the number of goals, the retention interval. With spreading activation, the target
satisfaction of more abstract goals could also be detected, although a specific encoding remains the
parameter with better performance. The one drawback of spontaneous retrieval is a dependency on
the temporal dynamics of the domain, namely, that if a goal does not receive activation boosts over
a prolonged period, it would lead to its failure to be spontaneously retrieved.

For agent designers considering a spontaneous retrieval strategy for prospective memory, the
spreading depth has the most impact on the results. The optimal spreading depth depends on
multiple factors, including the structure of long-term memory, the structure of goal targets, as well
as the percepts from the environment. The experiments in this chapter present the best-case scenario
for all three, where there does not exist extraneous clusters in long-term memory; where the goal is
centrally-located from the goal target features; and where percepts do not themselves form clusters
in long-term memory. As a result, a relatively simple spreading activation scheme allows the agent
to achieve high performance. More exploration in the space of implementations for both spreading
activation and spontaneous retrieval are necessary for when these factors are not as ideal. Since
spontaneous retrieval is not yet a common mechanism in cognitive architectures, it would also be
useful to understand where the mechanism lies in the space outlined in Section 5.2, and what choices
were made to ensure the mechanism leads to better task performance. Generally, the parameters
that affect spontaneous retrieval are not well understood, and this may be an impediment to quickly
developing agents that use spontaneous retrieval.
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CHAPTER 6

A Hybrid Strategy and Strategy Comparisons

The previous chapters explored two different strategies for goal re-activation separately; however,
the strategies are not mutually exclusive. This chapter briefly explores whether their combination
can lead to better performance or efficiency in Section 6.1. The three classes of strategies —
preemptive, spontaneous retrieval, and hybrid — are then compared under different environmental
conditions in Section 6.2: Given an environment and task with a particular set of properties, which
goal re-activation strategy should be used?

6.1 A Hybrid Strategy

The previous two chapters presented preemptive strategies and spontaneous retrieval strategies, each
of which has failure conditions. Preemptive strategies require a large number of goal maintenance
operations, especially when the targets of goals are never satisfied, while spontaneous retrieval
strategies fail for a particular goal if its activation in long-term memory is too low compared to other
items in memory. These particular weaknesses appear complimentary. The problem of boosting
long-term memory activation is similar to the problem of preventing goals from being forgotten
from working memory; they both require periodic access to the memory element in question, if
only on different levels of the memory hierarchy (as described in Section 2.3). At the same time,
spontaneous retrieval brings forgotten goals into working memory, which may allow for a reduction
in the frequency of preemptive triggers. A hybrid strategy may allow agents to overcome both
issues.

This chapter is specifically concerned with the use of a hybrid strategy for individual goals,
and not with agents that adaptively employ either preemptive or spontaneous retrieval strategies
depending on the goal. The latter is already possible, as each strategy does not prevent the use of
the other; this is the common definition of “hybridization” in polling/interrupt schemes [16]. The
insight here is that the strategies are also not mutually exclusive at a more basic level, that they in
fact compensate for each other’s weaknesses.
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Hybrid strategies have not previously existed, since spontaneous retrieval strategies are new to
this thesis. If we consider spontaneous retrieval as the baseline, however, we can see similarities
between hybrid strategies and strategies that use external memory. The problem we are trying to
solve in spontaneous retrieval is the possibility of a leave-one-out scenario, where one goal has
much lower activation than other elements in long-term memory. One solution is to boost the
activation of goals periodically. Hybrid strategies do this by performing deliberate retrievals, while
the use of external memory achieves the same effect by manipulating the environment. For example,
the prototypical use of external memory is tying a string around one’s finger, with the agent forming
a link between the string and some goal. This works because every time the string is felt or seen, the
agent would be reminded of the goal, thus boosting its long-term memory activation and preventing
the activation from dropping too low. While the use of external memory is not within the scope of
this thesis, preemptive deliberate retrievals may nonetheless accomplish the same effect, through
preventing the leave-one-out scenario from occurring.

6.1.1 Evaluation

The hybrid strategy evaluated in this section is simple: spontaneous retrieval is enabled while the
agent runs, with the rules for both preemptive and spontaneous strategies as part of the agent. Since
spontaneous retrievals only occur when no deliberate retrievals are occurring, there are no conflicts
as to which strategy takes precedence when the target of a goal is satisfied. To be specific, during
the retention interval, spontaneous retrievals of goals can occur. If the retrieval occurs when the
goal target is satisfied, the agent has the option of pursuing the goal. Otherwise, the goal is stored in
working memory, and treated as though it has been deliberately retrieved. Simultaneously, periodic
deliberate retrievals would also bring goals into working memory, which are also maintained; if the
target of any of these goals become satisfied, rules propose an operator for the agent to pursue the
goal. Importantly for the hybrid strategy, the deliberate retrieval of a goal leads to a boost in the
goal’s long-term memory activation, thus making its future spontaneous retrieval more likely.

The goal of this evaluation is to explore whether a hybrid strategy can lead to agents that have
better goal re-activation performance with little additional goal maintenance cost. For this reason,
the results here focus on the cases where previous strategies have failed: where preemptive strategies
have low efficiency, and where spontaneous retrieval fails to retrieve goals. A middling range of
timing trigger period is chosen to demonstrate the possibility of performance improvement. For
spontaneous retrieval, since the goal is to demonstrate additional improvement, the best set of
parameters is used (trigger period of 1 decision cycle and a spreading depth of 2).

The performance of this strategy in the abstract domain is shown in Figure 6.1, which shows
the percentage of goals completed on the y-axis and the total number of goals on the x-axis.
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Figure 6.1: Performance of the Hybrid Strategy wrt. Number of Goals
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Figure 6.2: Resource Usage of the Hybrid Strategy wrt. Number of Goals

Each subplot shows an environment with a different number of goals, while each line represents
an environment with a different retention interval. These results show that there is a decline in
performance as the number of goals is increased (comparing between subplots), and that the length
of the retention interval has a noisy but overall neutral effect on performance (comparing lines in
the same subplot). Compared to the results from the equivalent preemptive retrieval strategy from
Figure 4.5, however, the hybrid strategy performs better, although still not as well as the spontaneous
retrieval strategy (Figure 5.2). Whereas the performance of a pure preemptive retrieval strategy
with a trigger period of ten decision cycles could only complete 10% of goals, the equivalent hybrid
strategy completes about 80%.

Figure 6.2 shows the number of goal maintenance operations the agent performed on the y-axis,
with the layout otherwise the same as the previous figure. As a reminder, this number includes both
the deliberate retrievals from the preemptive strategy, as well as the operator to temporarily store
spontaneously retrieved goals into working memory. Comparing across subplots, the number of
goal maintenance operations increases as the number of goals is increased. This growth neither
appears in preemptive retrieval strategies (Figure 4.7) nor in spontaneous retrieval strategy (Figure
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Figure 6.3: Performance of the Hybrid Strategy on the Leave One Out sequence

5.3) alone. A deeper analysis of the data suggests that the increase in goal maintenance is due to the
storage of spontaneously retrieved goals, indicating that more goals are spontaneously retrieved
by the hybrid strategy than by the spontaneous retrieval strategy alone. This is what we would
expect if the preemptive retrievals are preventing the activation of goals from decaying, since more
goals can become the most highly activated long-term memory element (and thus be spontaneous
retrieved). Since the agent must perform deliberate retrievals in addition to storing spontaneously
retrieved goals, however, the hybrid strategy requires more goal maintenance operations than either
preemptive or spontaneous retrieval strategies alone. This raises the question of whether the increase
in performance is a worthwhile tradeoff for an increase in cost, a question we tackle in Section 6.2.

Summarizing the results from the standard abstract domain, hybrid strategies greatly improve
performance over preemptive retrieval strategies, although at the cost of requiring more goal
maintenance operations as the retention interval increases. However, This section has yet to show
that hybrid strategies can also help spontaneous retrieval strategies overcome the lack of periodic
activation to goals. A comparison of hybrid and spontaneous retrieval strategies from the Leave One
Out percept sequence is shown in Figure 6.3, with the hybrid strategy in green and the spontaneous
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retrieval strategy in blue. Recall that this sequence differs from the one normally used in that the
target percepts of one of the goals never occur during its retention interval, leading to a decay in
the goal’s long-term memory activation and potentially preventing it from being retrieved. The
results show that the hybrid strategy marginally increases performance, although it does not recover
its performance in the environment where no features are blocked at all. This implies that the
preemptive retrievals only boost the activation of a subset of goals, but the ones with the lowest
activation continue to fail to be retrieved spontaneously.

6.1.2 Hybrid Strategy Summary

Our goal for developing a hybrid strategy was to use the respective strengths of the preemptive and
spontaneous retrieval strategies to cover the other strategy’s flaws. While the hybrid strategy does
out perform each basic strategy at their weak points, it also comes with additional costs — namely
that the agent must perform more goal maintenance operations. However, these results alone cannot
tell agent designs which of the three strategies to use. To do so, we need to examine how each
strategy trade off efficiency with performance — in other words, which strategy lies on the Pareto
frontier.

6.2 Strategy Comparison

With the evaluation of the different strategies proposed in this thesis, a meta-strategy can be
developed for which strategy should be used given a particular set of environmental properties.
Since the two metrics, performance and efficiency, cannot be directly traded off, the goal is instead
to find the Pareto-optimal strategies for each environmental parameter, where it is impossible for
each strategy to gain in performance or efficiency without sacrificing the other metric. On the left
side of Table 6.1 are all the environment parameters we explored in this thesis, while on the right are
the parameter settings of the strategies that lie on the Pareto frontier for that environment. We used
a table to show these results instead of the standard Pareto plot because there are non-trivial number
of environments, and because the strategies are tightly clustered, making it difficult to distinguish
between them.

This table guides agent designers as to which strategies are worth consideration depending on
environmental characteristics. While the exact numeric values of the number of goals and length
of the retention interval may not apply to other domains, we can observe some general trends in
the table. First, the environments in which preemptive strategies could be optimal strategies are
cases where there are fewer goals to complete. We understand this through the idea of a carrying
capacity — once the number of goals is above that capacity, preemptive strategies are inefficient
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# Goals Retention Length Pareto-Optimal Strategies

10 1537.5

Preemptive Retrieval (trigger=1)
Preemptive Rehearsal (trigger=10, rehearsals=50)
Preemptive Rehearsal (trigger=50, rehearsals=10)

Spontaneous (trigger=1, depth=2)

10 1912.5
Preemptive Rehearsal (trigger=50, rehearsals=10)

Spontaneous (trigger=2, depth=2)

10 2287.5
Preemptive Rehearsal (trigger=50, rehearsals=10)

Spontaneous (trigger=5, depth=2)

10 2662.5
Preemptive Rehearsal (trigger=50, rehearsals=20)

Spontaneous (trigger=10, depth=2)

20 1537.5
Preemptive Rehearsal (trigger=50, rehearsals=20)

Spontaneous (trigger=2, depth=2)

20 1912.5
Preemptive Rehearsal (trigger=50, rehearsals=20)

Spontaneous (trigger=5, depth=2)

20 2287.5
Preemptive Rehearsal (trigger=50, rehearsals=10)

Spontaneous (trigger=2, depth=2)

20 2662.5
Preemptive Rehearsal (trigger=50, rehearsals=20)

Spontaneous (trigger=5, depth=2)

30 1537.5
Preemptive Rehearsal (trigger=50, rehearsals=20)

Spontaneous (trigger=2, depth=2)

30 1912.5
Spontaneous (trigger=1, depth=2)
Spontaneous (trigger=2, depth=2)

30 2287.5 Spontaneous (trigger=1, depth=2)

30 2662.5
Spontaneous (trigger=1, depth=2)
Spontaneous (trigger=2, depth=2)

Table 6.1: Pareto-optimal strategies for goal re-activation wrt. number of goals and retention interval
length
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and perform poorly, thus fail to remain on the Pareto frontier. As a result, spontaneous retrieval
strategies dominate when preemptive strategies fail. We expect this trend to generalize beyond the
abstract domain, as the carrying capacity phenomenon is independent of the environment.

A second observable trend is that in the majority of cases where preemptive strategies are
Pareto-optimal, it is the rehearsal strategy that is preferred. The only exception to this is when
the agent has few goals with short retention intervals, when the retrieval strategy is also Pareto-
optimal. A closer inspection of the data reveals that the preemptive retrieval strategy out performs
the other three strategies for that environment parameter setting. From this, we conclude that the
preemptive retrieval strategy is in general too resource intensive, although it works well for limited
environments.

Third, we note that the retention interval has no effect on the choice of strategies. This is a result
of how neither strategy is affected by the retention interval, its effects small compared to those of
other parameters.

A fourth trend is not obvious from the table. For all of the environmental parameter settings,
the strategies are clustered into two tight groups. One group, often comprising the spontaneous
retrieval strategy, emphasizes the performance of the agent (that is, most of its prospective goals
are completed). The other group, in contrast, is extremely efficient for whatever portion of goals
it could complete. We suspect that in the abstract domain, spontaneous retrieval has such high
performance (and a relatively low cost) that only a drastic tradeoff is sufficient for other strategies
to be on the Pareto frontier. This is congruent with how many of the preemptive strategies have a
long trigger period, as this would lower the cost of the strategy sufficiently.

The results of a similar analysis performed on environments with varying rates of encountered
goals is shown in Table 6.2. In this case, all the Pareto-optimal strategies are version of spontaneous
retrieval, which is unsurprising given the ongoing costs of preemptive strategies. Similar to the
results above, most environment parameter settings only result in strategies that optimize only for
performance (here represented by spontaneous retrieval strategies with a trigger period of 1) and
those that optimize only for efficiency (strategies with a trigger period of 5).

Finally, we note that no hybrid strategy is Pareto-optimal in any environment parameter setting
— while it does increase the performance of preemptive strategies, it still does not compare to the
performance of spontaneous retrieval. In fact, the majority of parameters only have two Pareto-
optimal strategies. Since there are only two metrics being compared, it is necessarily the case
that one of these optimal strategies optimizes for performance and the other for efficiency. By
examining the parameters of the strategies, it is obvious that the preemptive strategy is “optimizing”
for efficiency by the long periods between rehearsals. We conclude that preemptive strategies
are the preferable choice only when the constraints on agent resources are extreme, as otherwise
spontaneous retrieval strategies provide high performance at a relatively low cost.
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Goal Encounter Rate Pareto-Optimal Strategies
0.5 Spontaneous (trigger=2, depth=2)

0.625
Spontaneous (trigger=1, depth=2)
Spontaneous (trigger=5, depth=2)

0.75
Spontaneous (trigger=1, depth=2)
Spontaneous (trigger=5, depth=2)

0.875
Spontaneous (trigger=1, depth=2)
Spontaneous (trigger=5, depth=2)

1.0
Spontaneous (trigger=1, depth=2)
Spontaneous (trigger=5, depth=2)

Table 6.2: Pareto-optimal strategies for goal re-activation wrt. goal encounter rate

6.3 Goal Re-activation Strategies Summary

From this analysis, we see that preemptive strategies are only Pareto-optimal when the number of
goals is small. This result is significant in that preemptive strategies can be implemented without any
architectural modifications, and can therefore be immediately applied to other architectures other
than Soar. Under ideal circumstances, preemptive strategies perform well, especially if the goal
targets are known during agent design, in which case a perceptually-triggered retrieval strategy can
be used. Otherwise, preemptive strategies err on the side of efficiency while sacrificing performance.

A number of environmental properties, however, may indicate that preemptive strategies may
not be appropriate. If the retention interval is lengthy, for example, preemptive strategies require
consistent goal maintenance operations, meaning that the cost of completing a goal increases
proportionally with its retention interval. The natural extension to this scenario is where the
retention interval is infinite and the goal targets may never be satisfied, where the cost may continue
to grow over the entirety of the agent’s lifetime. Alternately, if the foreground task is cannot
be interrupted by the goal maintenance operations, preemptive strategies may also not be the
appropriate choice.

Spontaneous retrieval, together with spreading activation, are both new mechanisms to Soar,
although related mechanisms exist in other architectures. In ACT-R, a mechanism known as buffer

stuffing may be immediately used to implement a spontaneous retrieval strategy; on the other hand,
the “analogical tickler” in Companions may require modifications, since it does not use activation
as an underlying mechanisms and the selection bias may not be as suitable for goal re-activation.
By allowing the architecture to heuristically determine what may be useful to the agent and when it
may be useful — in this case, the goal when its target is satisfied — spontaneous retrieval frees the
agent from having to deliberately bringing goals into working memory. This allows the strategy to
complete goals at low cost, while remaining relatively robust to both the number of goals and the
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retention interval.
As with all heuristics, there are cases where spreading activation may mislead spontaneous

retrieval. Spreading activation is used here as an approximation of centrality on a network, with
spontaneous retrieval selecting the most central element to be recreated in memory. It is easy to
image scenarios where the perceptual features do not center around the goal target. To use the
existing domain of Subset Missing link (presented in Section 5.4.1), if the goal was one of the
distractors, then by the design of the domain the goal would not be central to the clue words. None of
the strategies developed in this thesis are particularly well-suited for this scenario, since preemptive
strategies would likely incur costs in terms of word puzzle performance, while spontaneous retrieval
would fail to retrieve the goal at the initiation stage.

Ultimately, given the current mechanisms of cognitive architectures, there is likely no single,
universal strategy (or mixture of strategies) that would guarantee the re-activation of suspended
goals at their initiation stages. While spontaneous retrieval, as presented in this thesis, achieves high
performance at low cost on a subset of goal re-activation tasks — specifically, where the goal is
the most-centrally-located element in long-term memory from the percepts — this heuristic fails
on even simple domains where the assumption of centrality assumption does not hold. Given the
success of spreading activation and spontaneous retrieval, the next step may be to consider alternate
methods of increasing the information flow between working memory and long-term memory, such
that relationships other than centrality can also be transmitted. The goal re-activation problem in
cognitive architectures is caused by the partial observability of long-term memory, and reducing the
separation between the memory systems may allow agents to flexibly manage its goals regardless of
the delay between encoding and initiation.
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CHAPTER 7

Conclusion and Future Work

This chapter concludes the thesis by revisiting the contributions listed in the introductory chapter,
and discussing some of the questions that the thesis either has set aside or has raised about goal
re-activation and cognitive architectures in general.

7.1 Contributions

The main contributions of this thesis and a brief discussion are listed below.

• Definition of the goal re-activation problem for cognitive architectures, and identifica-
tion of a circular knowledge dependency as its central challenge. Chapter 3 shows that
the problem is one of circular dependencies for taking action. Although this thesis is about
retrieving goals, the circular dependency problem is in fact one that affects all knowledge in
long-term memory. For the cognitive architecture community, where there has been continued
research on the relationship between working and long-term memory, laying out the knowl-
edge retrieval problem as these dependencies allows a more focused approach in designing or
refining architectural mechanisms. There are other types of agents that may encounter the
same circular dependency problem as well — one example would be agents with a networked
knowledge base, with the same underlying problem of partial observability with respect to
the knowledge available to the agent’s decision making process.

Separately, the parallels between goal re-activation and prospective memory mean that
the definition may also benefit memory researchers. This computational description of
prospective memory is crisper than current definitions in psychology, even if the distinction
between human working and long-term memory is not as well articulated. For the cognitive
modeling community, however, this definition allows models to focus on the core issue of
prospective memory, which is about the control of memory retrieval mechanisms; only once
the mechanism is determined should the focus turn to the precise timing of retrievals.

106



• Generalization of existing strategies, and development of new strategies, for goal re-
activation. Chapters 4, 5, and 6 presented three classes of strategies for goal re-activation.
These strategies follow from the understanding that goal re-activation is a problem of circular
dependencies. Preemptive strategies retrieve goals into working memory before they are
needed, and provides a framework that accommodates the majority of existing models of goal
re-activation. Spontaneous retrieval strategies, on the other hand, is a new strategy that only
retrieval goals when they are relevant. Although the spontaneous retrieval memory mechanism
itself is not new to the cognitive architecture literature, this is the first demonstration of its
utility that we know of; a theoretical understanding of this mechanism is the fourth major
contribution of this thesis below. Finally, a hybrid preemptive-spontaneous strategy is also
possible, as the two classes of strategies are not mutually exclusive. While this is not an
exhaustive taxonomy of strategies for goal re-activation, it provides a framework in which
other strategies can be understood.

This taxonomy of goal re-activation strategies is of the most interest to Soar developers, and
also to the developers of other cognitive architectures to a lesser degree. With the recent focus
on task learning [34] and the ability for agents to efficiently execute learned tasks at the right
time, the goal re-activation strategies developed in this thesis are likely to be incorporated
into existing agents. Separately, cognitive modelers may also be interested in this taxonomy
of strategies, one based on the functional requirements rather than on the use of cognitive
resources, as it hints at a unified theory for how prospective memory is performed.

• Implementation and evaluation of strategies with respect to environmental and task
properties. We evaluated the three classes of strategies in Chapters 4, 5, and 6. The strategies
were compared in Section 6.2 across environments with varying number of goals and average
retention interval lengths, which demonstrated the relative strengths and weaknesses of each
strategy. In general, however, strategies that use spontaneous retrieval dominate strategies
that do not. However, there are also adversarial environments in which spontaneous retrieval
performs poorly, such as the leave-one-out scenario, the use of deliberate retrieval in a
hybrid strategy may increase performance. The dominance of spontaneous retrieval strategies
justifies its further exploration as a solution to the goal re-activation problem.

The abstract evaluation domain allows agent designers to extract general trends in the per-
formance of the strategies, which may allow an informed choice in future agents. Cognitive
modelers, however, may also find the evaluations from this thesis useful, especially since
these strategies can be transferred to ACT-R. If ACT-R is taken as a good model of human
cognition and memory, then the performance of these strategies should exhibit trends that
are also found in people. For example, the negligible effect of the retention interval directly
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contradicts the observed phenomenon that people are less likely to remember a prospective
goal the longer they have to wait. While the results in this thesis cannot be directly compared
to human behavior, it does suggest that additional factors are necessary to explain the degra-
dation of prospective memory performance over time. Thus, although the domain does not
represent a naturalistic task, it may help tease apart otherwise confounding factors in models
of prospective memory.

• Characterization of the benefits of spontaneous retrieval. Chapter 5 introduced a sponta-
neous retrieval strategy, but also justified spontaneous retrieval as an architectural mechanism,
as a heuristic for when agents lack search knowledge. The key is that spontaneous retrieval
provides bidirectional access to knowledge, as compared to the standard unidirectional access
from deliberate retrieval. The fact that the cognitive architecture community has not yet en-
countered a problem where spontaneous retrieval is necessary suggests that there is a class of
problems that have not been tackled — where the agent does not have procedural knowledge
of which facts are relevant, or how to get to the relevant knowledge. In other words, cognitive
architectures have yet to tackle a domain where knowledge search is necessary; instead, in
most domains the agent knows exactly how to access knowledge, or at worst, must iterate
through a small, prescribed set of memory elements. In both of these cases, it is implied
that the agent also knows when to search memory, knowledge that the agent does not have
when facing the goal re-activation problem. One reason that spontaneous retrieval has yet to
receive widespread use may be because it is difficult to create domains where the agent has
the relevant knowledge but cannot take advantage of it; the knowledge requirements of most
current task domains are sufficiently simple that it can be coded into the agent. With a theory
of the benefits of spontaneous retrieval, the cognitive architecture can revisit the current use
cases of memory, to consider where a deliberate search may not be the most efficient method
of extracting knowledge.

7.2 Future Work

In the process of exploring two basic strategies for goal re-activation, there remain open questions
about the problems that have not been addressed. This section discusses some of these issues, as
well as other questions that this thesis raises.

7.2.1 Goal Re-Activation

There are several other strategies for goal re-activation that were not explored in this thesis. One of
them, noticing-plus-search, was mentioned in Section 3.2.3 as a strategy that mixes preemptive and
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spontaneous strategies. In particular, it requires that the agent generate spontaneous metamemory
judgments, which are then used as the trigger for the retrieval of a goal. Although one form of
metamemory judgment — that of recognition, or of having perceived something before — was
implemented in Soar (see Appendix B), there remains no goal re-activation strategy that uses the
judgment. Progress was halted mostly due to the large amount of noise in the judgment, as too
many percepts are often recognized for the judgment to be a useful trigger for retrieval. An open
question for implementing this strategy is therefore the type of metamemory judgment that is
required and how it might affect goal re-activation performance. At a higher level, the cognitive
architecture community still lacks a theory of why metamemory judgment may be useful, nor have
we explored the space of metamemory judgments and their mechanisms. We need to first answer
these preliminary questions before noticing-plus-search can be implemented and evaluated.

A second strategy that was not explored is the use of external memories; that is, changing the
environment to lead to a likely retrieval of the goal at a later time. This strategy can be explained by
the knowledge dependency framework in several ways. For example, the external memory strategy
of tying a string to one’s finger may play a similar role to the periodic retrievals in the hybrid
strategy — the frequent perception of the string may keep the long-term memory activation of the
goal from decaying too much, or may lead the agent to attempt to retrieve suspended goals into
working memory. Alternately, a different external memory strategy for the goal of buying milk
may be to place an empty milk carton in the passenger seat. This is a strategy that addresses the
perceptual knowledge dependency cycle mentioned in Section 2.1.2, as the unexpected appearance
of the carton is likely to trigger a memory retrieval. It is notable that the recognition of such surprise
may itself be considered a type of metacognitive judgment, although in general noticing-plus-search
has no relation to the use of external memory. An open question for the latter type of external
memory strategy is whether the agent requires a model of its own perceptual system and attentional
algorithms, in order to decide how to change the environment such that it will get the attention
of its future self. Since this question has not been explored, external memory strategies remain
unimplemented.

For the future researcher that implements these additional strategies, a more complex domain
may also be needed. While the abstract domain allows variation in the basic parameters of a
prospective memory task, it is also unrealistic in many ways. The percepts in this domain do not
conform to any structural or temporal pattern, which may be necessary for the use of external
memory. In fact, the agent has no ability to modify the environment at all in the current domain,
rending the question of external memory moot. Additionally, in the current evaluations, semantic
memory only contains a feature hierarchy, an extreme simplification of the structures found in
knowledge bases. If instead semantic memory was filled with content from Cyc [38], and if the agent
was presented with more semantically-rich input, the elements that are spontaneously retrieved
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would be much more varied. This is especially true if the foreground task also requires deliberate
retrieval, which would cause further changes to long-term memory activation (as shown in the hybrid
strategy evaluation). While it is feasible that spontaneous retrieval strategies will continue perform
well, it is also possible that these additional memory elements would cause retrieval interference.
This would cause goals to have much lower activation than other knowledge, essentially leading to
a leave-one-out scenario. Further experiments are needed to determine which will occur.

More analysis is also necessary to understand the cases where goal re-activation is a problem.
Given the long history of research on memory mechanisms and goal-driven behavior, it is surprising
that goal re-activation has not already been studied. One explanation is that it requires a particular
type of ignorance on the part of the agent, that of not knowing when a goal would be relevant. It is
possible that the domains currently tackled by the cognitive architecture community simply have not
included such uncertainty. Regardless, a broader evaluation of goal re-activation strategies requires
identifying the characteristics of domains where the problem arises.

7.2.2 Spontaneous Retrieval

One of the results of this thesis is the proposal of spontaneous retrieval as a new architectural
mechanism. This proposal is justified by a theory of when spontaneous retrieval is useful, and
is applied to the goal re-activation problem with success. Since this thesis is not on spontaneous
retrieval, however, the space of possible implementations has not been explored. As suggested
in Section 5.2, spreading activation is only one possible heuristic out of many for selecting the
most relevant long-term memory for spontaneous retrieval. For this thesis, the feature hierarchy
in long-term memory meant that spreading activation served as a good heuristic, but a structure-
mapping-based heuristic [19] may perform better in a case-based reasoning domain. It may also
be possible for the agent to learn the best heuristic by treating spontaneous retrieval as a machine
learning problem: which memory element should be returned given the previous access history?
Such algorithms may draw on existing work on network predictions, which is an area still under
active research, especially when the relationships between entities are not homogeneous (unlike,
for example, a social network of friends). Another source of inspiration may be the modeling of
human associative memory, of which existing work exists in ACT-R [60]; again, it’s possible that
agents could learn the correct associations between working memory elements and the element
to be retrieved. However, there is an additional challenge is that cognitive architectures currently
can not determine which retrievals are correct and which are not — or at least, there has not been
work showing that determining the correct retrievals is possible across domains. Nonetheless, these
alternate memory biases are worth exploring; the only conclusion that can be drawn at this point is
that the heuristic must match the knowledge representation and structure imposed by the task, and
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that a broad survey of domains where spontaneous retrieval could be used would help constrain the
design of the mechanism.

A separate concern from the heuristic used in spontaneous retrieval is how it is integrated into a
cognitive architecture and its results used by the agent. The current design of reusing the buffer
from deliberate retrieval means the agent has some control over whether spontaneous retrieval
occurs. Thus far, however, no agent has taken advantage of this control: both the Missing Link agent
from Section 5.4.2 and the goal re-activation agent merely wait for spontaneous retrievals to occur.
While the hybrid strategy agent uses both deliberate and spontaneous retrieval, its design ignored
any potential interactions between the two. As mentioned in Section 5.2, spontaneous retrieval is
ultimately a mechanism for transferring relevant knowledge from long-term memory to working
memory, and there is little existing work on how to design agents that do this successfully. It is
possible that the optimal strategy requires deliberate retrieval under certain circumstances, while not
deliberately retrieving in other situations so as to allow spontaneous retrievals to occur. A related
problem is how an agent should cope with retrievals that are irrelevant. As demonstrated in the
Missing Link domain, the lack of constraints on the spontaneously retrieved element means it must
also be checked for usefulness. Since the only control the agent has is through deliberate retrieval,
one possibility is to use deliberate retrieval to guide or direct spontaneous retrievals. In general, the
interaction between deliberate and spontaneous retrieval remains unexplored.

Finally, it is possible that other mechanisms outside of deliberate and spontaneous retrieval
exists. The metamemory judgments mentioned above may be one such mechanism. It is useful
to think of the mechanisms as belonging on a spectrum: the recognition judgment only gives a
single bit of information, while spontaneous retrieval results in a memory element being returned.
The tradeoff is that recognition judgments are inexpensive to compute, while efficient spreading
activation remains a research problem. It is possible that other points on this spectrum exist, and can
provide agents with more fine-grained control over its memory usage. This possibility highlights
how the space of memory mechanisms outside of deliberate retrieval remains poorly explored, and
while this thesis offers an analysis of spontaneous retrieval, much work remains to be done.

7.2.3 Knowledge Search

Perhaps the most exciting area of research that this thesis hints at is the exploration of knowledge
search. Knowledge search is the problem of retrieving the right knowledge for use in reasoning at
the right time. Although knowledge search is hypothesized to be a necessary part of a generally
intelligent agent [47], it has not been a topic addressed by the cognitive architecture community.
This is in part because cognitive architectures were previously constrained by the single memory
retrieval mechanism, that of deliberate retrieval. Knowledge search becomes trivial under the
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implicit assumptions of deliberate retrieval, that the agent has all the information it needs to decide
to retrieve, and that memory is well organized such that enumerating through memory elements is
rarely required. This thesis shows that the assumptions do not always hold, and that spontaneous
retrieval may be a more efficient mechanism for knowledge search. Similarly, additional mechanisms
such as metamemory judgments provide a richer space of strategies for knowledge search, and
allows for cases where the agent may be missing knowledge. Together, this means that the study
of how agents retrieval knowledge is now necessary, for agents to create what may be called a
memory search strategy. Creating such a strategy that is robust to domain and knowledge base
content requires bringing together ideas not only from knowledge representation and databases,
but also from decision making in order to understand how to best use the sources of information
(metamemory) and the actions (deliberate and spontaneous retrieval) available. Additionally, this
research may also shed light on how people retrieve knowledge from their own memory system as
well, as it is known that human memory search is strategic [8]. The goal is to create agents that can
reliable retrieve and use knowledge from new knowledge bases, without the need for reprogramming
by the agent designer.

7.3 Conclusion

This thesis has defined and provided solutions for the goal re-activation problem in cognitive
architectures. The effectiveness of the solutions argue for the uniform treatment of goals as
knowledge, and that additional memory mechanisms — namely, spontaneous retrieval — are
necessary for generally intelligent agents.

While the original problem is defined for the interaction between working memory and long-
term memory, the circular knowledge dependency is a more general problem that applies not only
to cognitive architectures, but also to other artificial intelligence agents with remote access to
knowledge bases.
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APPENDIX A

Description of ACT-R

The architecture that bears the most similarity to Soar is ACT-R [3], which was developed to model
human memory and other phenomenon in detail. ACT-R was the first architecture to implement
a long-term declarative memory, as an outgrowth of the original Human Associative Memory
model [4]. In ACT-R, knowledge is represented as chunks (not to be confused with Soar’s chunking
mechanism). Chunks are stored and processed by modules, which perform specialized operations
such as perception, motor actions, and memory access. These modules are only accessible through
their buffers, each of which contains at most one chunk. The buffers of all the modules together act
as ACT-R’s working memory, and they contain the only knowledge that rules can match against and
directly modify. Since the size and the number of buffers are fixed, ACT-R’s working memory has
limited capacity; in order to access a module, the current contents of its buffer must be replaced.
This can be seen as a type of forgetting due to decay, where a chunk is only useful if no other
information is needed in its buffer.

To overcome this extremely rapid forgetting of information from working memory, all chunks
that have existed in various buffers are automatically stored into the declarative memory module.
This module acts as ACT-R’s long-term memory, allowing knowledge no longer available in working
memory to be recovered. To retrieve knowledge from declarative memory, the agent must query DM
with a partial description of the desired knowledge; knowledge that best matches the description
will be recreated in the buffer, with probability proportional to its activation. A chunk in declarative
memory may also be forgotten, based on its base-level activation, which summarizes its access
history (Figure 2.3). Activation decreases exponentially over time, a process called decay, but is
boosted whenever the chunk appears in a buffer, either due to retrieval or due to perception from the
environment. If the activation of a chunk falls below a threshold, the chunk becomes unretrievable,
and can only be boosted again through perception. Additionally, which chunk gets retrieved during
a memory search depends on the relative activations of the matching chunks; the higher a chunk’s
activation, the more likely it is retrieved. Forgetting in ACT-R therefore occurs on two levels:
knowledge may be forgotten from working memory when it is overwritten, and knowledge may be
unretrievable from long-term memory due to both decay and interference.
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In light of this hierarchy, ACT-R’s long-term memory forgetting is no different from Soar’s
working memory forgetting, although the process of recovery is more involved.
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APPENDIX B

Metamemory Judgments in Soar

Noticing-plus-search (NPS) strategies incorporate components of both spontaneous retrievals and
preemptive strategies. NPS works by using a second, automatic, non-retrieval channel to memory,
which we call metamemory judgments or simply memory metadata (examples below). This channel
signals that parts of working memory might have connections to elements in long-term memory.
Thus drawing the agent’s attention to (noticing) a memory element, the agent may choose to use
it as a cue to search memory for the source of this connection. On retrieval, if the source of this
connection is an intention, the agent then verifies that the target is present and performs the necessary
action. Since procedural knowledge is not dependent on the recognition of the target but instead on
metadata about the agent’s perceptions, NPS strategies remove the second dependency in Figure
3.1. As an example of noticing, a metamemory judgment may be made when the agent sees a bottle
of milk at work, prompting it to search for and retrieve the intention to buy milk.

The key knowledge that enables NPS strategies is the metadata that the agent receives from
the architecture. Psychology literature suggests several kinds of metamemory judgments that may
indicate an object or event has been previously stored in memory [64]. The most direct are familiarity
and recognition judgments, which convey similarities between current and previous perceptions.
More subtle is the noticing of discrepancies between the expected and actual processing fluencies.
Regardless of the type, metamemory judgments suggest cues with which the agent could search
memory. As with spontaneous retrievals, metamemory judgments do not benefit only prospective
memory; the long-term memory connection may originate from some source other than an intention.
Unlike spontaneous retrievals, however, the agent can decide whether to retrieve and whether to
add additional cue constraints; for prospective memory, the agent could specify the result to be an
intention, thus filtering out irrelevant memory elements.

The likely failure point for NPS strategies is not the number of irrelevant memory retrievals,
but the number of judgments that are unrelated to prospective memory. The agent must decide
which of many judgments are related to uncompleted intentions, such that the number of (potentially
unfruitful) memory retrievals is minimized. This is the same problem as with spontaneous retrievals:
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both strategies require trading off between the generality of an architectural mechanism and the
performance on prospective memory tasks. Since the strategies differ in where the architecture
must provide information, they also differ in where this trade-off occurs. Our minimal assumption
that goals are ordinary memory elements does not suggest a point in this trade-off; we leave the
exploration of this space for future work.
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APPENDIX C

Complete List of Experimental Parameters

A complete list of additional parameters for the abstract domain (Section 4.7) is listed below.

• Working memory decay rate — the base-level activation decay rate for working memory. Set
to 0.5.

• Working memory forgetting threshold — the threshold at which, if the activation of a working
memory element drops below, the element is removed from working memory. Set to 0.

• Long-term memory decay rate — the base-level activation decay rate for working memory.
Set to 0.5.

• Random seed — the random seed which determines the feature hierarchy in long-term
memory, the encoding and initiation time of goals, and the random percepts that are presented
to the agent.

• Number of features per goal/abstract feature — the branching factor of the feature hierarchy.
Set to 7.

• Percept change µ,σ — the normal distribution from which the probability of whether a
perceptual feature is added/removed for the next timestep is drawn. Set to 0.5 and 0.05
respectively.
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International Semantic Web Conference (ISWC), volume 4825 of Lecture Notes in Computer
Science, pages 722–735. Springer Berlin Heidelberg, 2007.

[6] Lars Braubach and Alexander Pokahr. Representing long-term and interest BDI goals. In
Lars Braubach, Jean-Pierre Briot, and John Thangarajah, editors, Programming Multi-Agent
Systems (ProMAS-7), pages 29–43. IFAAMAS, 2009.

[7] Lars Braubach, Alexander Pokahr, Daniel Moldt, and Winfried Lamersdorf. Goal repre-
sentation for BDI agent systems. In Rafael Bordini, Mehdi Dastani, Jürgen Dix, and Amal
Seghrouchni, editors, Programming Multi-Agent Systems (ProMAS-3), volume 3346 of Lecture
Notes in Computer Science, pages 44–65. Springer, 2005.

[8] Paul W. Burgess and Tim Shallice. Confabulation and the control of recollection. Memory,
4(4):359–412, 1996.

[9] Stuart K. Card, Thomas P. Moran, and Allen Newell. The Psychology of Human-Computer
Interaction. Lawrence Erlbaum, 1983.

[10] Nicholas L. Cassimatis, Perrin G. Bignoli, Magdalena D. Bugajska, Scott Dugas, Unmesh
Kurup, Arthi Murugesan, and Paul Bello. An architecture for adaptive algorithmic hybrids.
Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 40(3):903–914,
2010.

118



[11] Yang Chen, Milenko Petrovic, and Micah H. Clark. SemMemDB: In-database knowledge
activation. In Proceedings of the 27th International Florida Artificial Intelligence Research
Society Conference (FLAIRS), pages 18–23, 2014.

[12] Richard P. Cooper. The role of falsification in the development of cognitive architectures:
Insights from a Lakatosian analysis. Cognitive Science, 31(3):509–533, 2007.

[13] Nate Derbinsky, John E. Laird, and Bryan Smith. Towards efficiently supporting large symbolic
declarative memories. In Dario D. Salvucci and Glenn F. Gunzelmann, editors, Proceedings
of the 10th International Conference on Cognitive Modeling (ICCM), pages 49–54, 2010.

[14] Nate Derbinsky, Justin Li, and John E. Laird. A multi-domain evaluation of scaling in a general
episodic memory. In Proceedings of the 26th AAAI Conference on Artificial Intelligence (AAAI),
pages 193–199, 2012.

[15] Scott A. Douglass and Christopher W. Myers. Concurrent knowledge activation calculation in
large declarative memories. In Proceedings of the 10th International Conference on Cognitive
Modeling (ICCM), pages 55–60, 2010.

[16] Constantinos Dovrolis, Brad Thayer, and Parameswaran Ramanathan. HIP: Hybrid interrupt-
polling for the network interface. SIGOPS Operating Systems Review, 35(4):50–60, 2001.

[17] Renée Elio. On modeling intentions for prospective memory performance. In Proceedings
of the 28th Annual Conference of the Cognitive Science Society (CogSci), pages 1269–1274,
2006.

[18] Judi Ellis. Prospective memory or the realization of delayed intentions: A conceptual frame-
work for research. In Maria A. Brandimonte, Gilles O. Einstein, and Mark A. McDaniel,
editors, Prospective Memory: Theory and Applications, pages 1–22. Lawrence Erlbaum, 1996.

[19] Kenneth D. Forbus, Dedre Gentner, and Keith Law. MAC/FAC: A model of similarity-based
retrieval. Cognitive Science, 19(2):141–205, 1995.

[20] Kenneth D. Forbus and Thomas R. Hinrichs. Companion cognitive systems: A step toward
human-level AI. AI Magazine, 27(2):83–95, 2006.

[21] Kenneth D. Forbus, Matthew Klenk, and Thomas R. Hinrichs. Companion cognitive systems:
Design goals and some lessons learned. IEEE Intelligent Systems, 24(4):36–46, 2009.

[22] Charles L. Forgy. On the Efficient Implementation of Production Systems. PhD thesis, Carnegie
Mellon University, 1979.

[23] Fernand R. Gobet and Peter Lane. The CHREST architecture of cognition the role of perception
in general intelligence. In Proceedings of the 3rd Conference on Artificial General Intelligence
(AGI), 2010.

[24] Maurice Grinberg, Vladimir Haltakov, and Hristo Stefanov. Approximate spreading activation
for efficient knowledge retrieval from large datasets. In Proceedings of the 2011 Conference
on Neural Nets WIRN10: Proceedings of the 20th Italian Workshop on Neural Nets, pages
326–333, Amsterdam, The Netherlands, The Netherlands, 2011. IOS Press.

119



[25] J. E. Harris. Remembering to do things: A forgotten topic. In J. E. Harris and Peter E. Morris,
editors, Everyday Memory, Actions and Absent-mindedness, pages 71–92. Academic Press,
1984.

[26] Taher H. Haveliwala. Topic-sensitive PageRank. In Proceedings of the 11th International
Conference on World Wide Web (WWW), pages 517–526, New York, NY, USA, 2002. ACM.

[27] Pernille Hemmer and Mark Steyvers. A Bayesian account of reconstructive memory. Topics
in Cognitive Science, 1(1):189–202, 2009.

[28] Douglas L. Hintzman. Research strategy in the study of memory: Fads, fallacies, and the
search for the “coordinates of truth”. Perspectives on Psychological Science, 6(3):253–271,
2011.

[29] Randolph M. Jones and Robert E. Wray. Comparative analysis of frameworks for knowledge-
intensive intelligent agents. AI Magazine, 27(2):57–70, 2006.

[30] Matthew Klenk, Matthew Molineaux, and David W. Aha. Goal-driven autonomy for respond-
ing to unexpected events in strategy simulations. Computational Intelligence, 29(2):187–206,
2013.

[31] Asher Koriat. Metamemory: The feeling of knowing and its vagaries. In Michel Sabourin,
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