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Abstract

I begin to write this thesis at a time of great excitement in the field of cosmology and

particle physics. The aim of this thesis is to study and search for beyond the standard model

(BSM) physics in the cosmological and high energy particle fields. There are two main

questions, which this thesis aims to address: 1) what can we learn about the inflationary

epoch utilizing the pioneer gravitational wave detector Adv. LIGO?, and 2) what are the

dark matter particle properties and interactions with the standard model particles?. This

thesis will focus on advances in answering both questions.

xiii



Chapter 1

Introduction

I begin to write this thesis at a time of great excitement and discovery in the field of

cosmology and astroparticle physics. I am encouraged by a new but well-founded optimism

that exciting discoveries are around the corner. Two primary fields are well positioned

for growth and discovery: 1) gravitational wave (GW) astrophysics and 2) the search for

dark matter. Both of these fields will offer unprecedented access to yet to be discovered

phenomena, and will enable the scientific community the opportunity of tackling current

physical questions about the nature of gravity, high energy particle interactions at the early

universe and the particle properties of dark matter, to name a few. This thesis will focus on

some advances made in both fields.

1.1 Inflation

The recent discovery of gravitational waves by the Adv. LIGO experiment brings much

enthusiasm to the physics community [1]. Gravitational waves open up the possibility of

studying properties of the early universe much before Big Bang Nucleosynthesis (BBN) or

the Cosmic Microwave Background (CMB) allow. In particular, inflationary models could

be tested. An inflationary epoch in the early universe produces gravitational waves that can

now in principle be measured. Inflation is a superluminal growth phase of the universe which

can explain the homogeneity and isotropy of the universe as well as the generation of density

perturbations required for structure formation. There are two widely different sources of

gravitational waves during an inflationary epoch. The most commonly studied comes from

quantum fluctuations of slow rolling inflationary models. These gravitational waves could

be detected in the polarization of the CMB. The detection of primordial gravitational waves

at the present day horizon scales, like the CMB, would be a powerful tool to discriminate

between inflationary models. Although no gravitational wave signal has been detected at
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these scales, the BICEP/Keck-Planck joint analysis of the CMB have placed the most current

stringent bounds on the gravitational wave contribution to the energy density. In particular,

their analysis concludes that r < 0.12 [2]. The parameter r is named the tensor to scalar

ration and is defined by the following equation:

r =
PT
PR

, (1.1)

where PT is the tensor power spectrum and PR is the power spectrum of the comoving

curvature perturbation. Many inflationary models have been ruled out by the strict bound

r < 0.12. As an example, the classical inflationary model with a potential V (φ) = m2φ2 is

no longer viable. Inflationary models that do survive include α attractors, Starobinsky’s R2

inflation model and natural inflation [2].

The second source of GW during an inflationary epoch occurs in models with a first-order

phase transition (i.e. a tunneling event). When a tunneling event occurs, bubbles of true

vacuum are formed. The collisions of these vacuum bubbles produces gravitational waves

with wavelengths on the same order of the bubble size. Tunneling inflationary models were

the original theory proposed by Alan Guth in 1981 to help solve the horizon, flatness and

monopole problems [3]. Unfortunately, Guth’s original idea was not satisfactory because

it assumed that the tunneling rate was constant. The tunneling rate had to be so slow

that the phase transition was never able to complete [4]. At the end of inflation most of

the universe remained in a state of false vacuum, but contained disconnected bubbles of

true vacuum. The bubbles of true vacuum were unable to merge together sufficiently to

percolate and thermalize, as would be required for an end to inflation. One way of resolving

the percolation problem is to have a time dependent tunneling rate. A time dependent

tunneling rate can be achieved by having two fields like in double-field inflation [5] and

inflationary models with non-trivial coupling to gravity [6, 7]. An inflationary model with

time dependent tunneling rate would normally slow roll down the potential until resolving

the horizon and flatness problem and conclude with a first-order phase transition. The

wavelength of the gravitational waves produced by bubble collisions are set by the average

bubble size, which have to be much smaller than horizon scales in order to not produce large

inhomogeneities in the early universe and percolation to occur. Thus, the parameter space

of first-order phase transitions can be tested by gravitational wave experiments with their

largest sensitivity at much larger frequencies than the CMB, like Adv. LIGO. Adv. LIGO

is currently the pioneering gravitational wave detector after its discovery of a GW signal by

merging black holes. Adv. LIGO searches for gravitational waves in the frequency range

10− 100 Hz, which is comparable to 1 km distance. Chapter 2 of this thesis presents work
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done by my advisor Prof. Katherine Freese and I, where we study the parameter space of

first-order inflationary models that could be tested in Adv. LIGO [8]. We demonstrate that

these bubble collisions can leave an observable signature in Advanced LIGO. These GW are

dependent on two parameters of the inflationary model: ε represents the energy difference

between the false vacuum and the true vacuum of the inflaton potential, and χ measures how

fast the phase transition ends (χ the number of e-folds during the actual phase transition).

Advanced LIGO will be able to test the validity of single-phase transition models within

the parameter space 107 GeV ≤ ε1/4 ≤ 1010 GeV and 0.19 ≤ χ ≤ 1. If inflation occurred

through a first order phase transition, then Advanced LIGO could be the first to discover

high frequency GW from inflation.

One of the key success of inflationary theories is the production of the necessary density

fluctuations to produce structure formation. CMB experiments measuring these density

fluctuations determine that 26% of all matter in the universe is from a mysterious non-

baryonic and non-luminous particle referred to as dark matter. In the following sections

of this thesis, I will go through a number of projects aimed at studying and testing the

properties of dark matter.

1.2 Dark Matter

Most of my graduate research has focused on studying the properties of dark matter

(DM). The search for dark matter is now more than 80 years old, and has its origins on

Fritz Zwicki’s seminal work. Zwicki’s original argument for the existence of dark matter

relied on measuring the rotation curves of galaxies in the Coma cluster, and utilizing the

virial theorem to convert that information to the total mass of the cluster. Fritz Zwicki

observed that the total mass calculated from the galaxy rotation curves was much bigger

than that expected from their luminosity [9]. This observation led him to call the missing

matter dunkie materie ’dark matter’. Decades later, Vera Rubin convincingly established

the existence of dark matter by studying stellar motion in the Andromeda galaxy [10].

As the years progressed, the scientific community has augmented its knowledge of dark

matter. Measurements of the baryonic power spectrum [11] has taught us that a non-baryonic

neutral stable particle, like dark matter, is essential and irreplaceable to the formation of the

visible baryonic matter in large scale structures. More evidence in support for a new type of

particle is given by observations of the Bullet cluster [12], which conclude that dark matter

has ’observationally’ no interaction with ordinary matter. The current evidence in favor

of dark matter is overwhelming; nevertheless, the scientific community would like to better

understand dark matter beyond their large scale gravitational interactions. We would like to

3



know their particle properties like charge, spin and local non-gravitational interactions. The

premise that dark matter interacts with standard model particles other than by gravity is

currently not supported by direct experimental evidence; but one that is still worth pursuing.

Given that all of the evidence in favor of dark matter is gravitational in nature, models for

its particle properties are abundant. Nevertheless, many current dark matter experimental

searches are inspired by the so-called weakly-interacting massive particle (WIMP) miracle.

The WIMP miracle is an appealing paradigm as it connects dark matter to the standard

model particles and provides a mechanism for producing the correct dark matter abundance

in the universe. The WIMP miracle paradigm begins by considering the existence of a stable

particle χ that can annihilate to standard model particles. This χ particle will serve as our

dark matter candidate. In the early universe, assuming a thermal cosmological history, χ

particles annihilate with each other, decreasing their abundance until the annihilation rate

is roughly equal to the Hubble rate, which characterizes the expansion rate of the universe.

When this occurs, then the χ particles can no longer find each other to annihilate. At

this moment, the comoving density of the dark matter particle stays constant [13]. The

corresponding relic density today is given by [14]:

Ωχ =
ρχ
ρc
∼ 0.2

(
10−8 GeV 2

σ

)
, (1.2)

where ρχ is the energy density of χ, ρc is the critical energy density corresponding to a flat

universe and σ is the annihilation cross section (supposing the annihilation cross-section is

approximately velocity independent).

For an annihilation cross section that scales as

σ ≈ α2

M2
, (1.3)

where α is the relevant structure constant and M is the appropriate mass scale, one finds

that the weak-scale values α : O(10−2), M : O(100 GeV) yield a relic density consistent with

the observed dark matter relic density, ΩDM ≈ 0.26 [15]. In this picture, the dark matter

particles would be weakly-interacting and massive, hence the name WIMP.

WIMPs are an appealing dark matter candidate for current experimental searches, since

their annihilation interactions to SM particles would also produce scattering WIMP-SM

interactions. Furthermore, current experimental technology is capable of searching at Weak-

Scales. Figure 1.1 shows the different type of WIMP-SM interactions possible. Rotating

the annihilation diagram gives rise to diagrams that generate DM-SM scattering or DM

production in SM particle annihilation. As a result, a variety of different methods can be
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Figure 1.1: Feynman diagrams showing, in order from left to right, the annihilation, scat-
tering and direct production interactions

employed to search for WIMPs. Each diagram of Fig 1.1 represents a different form of

searching experimentally for WIMPs. Since the ”WIMP miracle” only gives an idea of the

scale of the interaction, but not of the dark matter mass, it is important to pursue all avenues

in the quest of finding and studying dark matter. Experiments can be classified into three

distinct categories, each corresponding to the three diagrams of Fig 1.1: indirect detection

(diagram a), direct detection (diagram b) and collider experiments (diagram c).

Direct detection experiments aim to measure the scattering event of an astrophysical

WIMP with a target nuclei. Due to the low speed of astrophysical dark matter (O(100)

km/s), the typical scattering event in direct detection experiments is a few keV. Since the

WIMP-SM scattering event is rare and the energy deposed on the detector is only a few

keV, direct detection experiments need to function in extremely low background environ-

ments and/or utilize signature properties of the signal, like annual modulation, in order to

distinguish a background event from a WIMP interaction. Typical background for direct

detection experiments are alpha particles, beta particles and neutrons from radioactive de-

cay of impure materials from the detector. Another source of background signals are cosmic

rays.

Examples of experiments with low background noise include the liquid Xenon based

experiments like XENON [16], LUX [17] and Panda-X [18]. These experiments are all based

on large, heavily-shielded underground containers. The inertness of Xenon produces a very

clean environment in which the small energy deposition associated with WIMP-nucleon

scattering could be detected. The level of background is controlled by heavy shielding of the

container, placing the detector in a deep mine so that the Earth contributes in absorbing

cosmic rays and by self-shielding of the Xenon itself. The level of background rejection

achieved in these detectors allows for dark matter discovery with only very few events [19].
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In contrast, experiments like DAMA [20] and DAMIC [21] combine the use of extremely

clean scintillating crystals to lower background noise and search for an annual modulation

signal in order to detect WIMPs. Annual modulation refers to the modulation in scattering

rate due to the motion of the Earth around the Sun, which changes the relative velocity

between the astrophysical dark matter and the detector [22]. The scattering rate is maxi-

mized (minimized) when the Earth is moving head on towards the ”Dark Matter Wind” in

the direction of the Cygnus constellation during the month of June (December). Most back-

grounds do not follow the same phase of the annual modulation; and thus, can be identified

and vetoed from the signal.

Another form of dark matter experiments rely on looking at the SM end product of

annihilation dark matter events in astrophysical areas of high DM density. These experiments

are categorized as indirect detection experiments. Areas where extreme dark matter density

is expected, hence a large enough annihilation rate for detection with current experiments,

include the galactic center and dwarf spheroidal galaxies. Unfortunately, indirect detection

experiments suffer from possible large astrophysical uncertainties like in the galactic center.

Nevertheless, the Fermi Large Array Telescope has been able to place significant bounds

on the annihilation cross-section of dark matter from observations of dwarf galaxies, whose

astrophysical uncertainties are better controlled due to their lack of baryonic interactions

[23,24].

The third and final dark matter experiment category consists of collider experiments,

mostly based at CERN. Collider experiments aim to directly produce WIMPs by annihilating

standard model particles. These experiments aim to find and study dark matter by searching

for missing energy in the detector, since a dark matter candidate would be stable enough

to escape the detector [25]. Missing energy can be defined as: energy that is not accounted

for by the visible particles produced in a collision, but that must have been carried away by

invisible particles to conserve energy-momentum in the plane transverse to the collisions.

Unfortunately, any dark matter candidate found at collider experiments will not be

enough to determine its astrophysical origin (i.e. collider experiments cannot determine

if the new particle found is also the source of ∼ 26% of the total energy budget in the

universe). Nevertheless, collider experiments have the ability to search for very high energy

events, which allows them to search through large parameter space. For this reason, it is

pivotal to use all three experiments in conjunction with each other in order to learn the true

nature of dark matter, even when a positive signal is found. The ability to use multiple

distinct experiments that aim to measure different signals in order to study the validity of a

positive signal is pivotal to Chapter 3 of this thesis.

Chapter 3 presents work done in collaboration with C. Savage, D. Spolyar and D. Adams
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aimed at utilizing two distinct indirect detection experiments to test the validity of a possible

dark matter signal [26]. We showed that a WIMP interpretation of the excess positron signal

found in AMS-02 is highly constrained by Fermi/LAT measurements of dwarf galaxies. We

took the best fit annihilation channels to the AMS-02 data [27], and compared it to the

Fermi/LAT dwarf bounds. For the single channel case, we find that dark matter annihilation

into {bb̄, e+e, µ+µ−, τ+τ−, 4−e, or 4−τ} is ruled out as an explanation of the AMS positron

excess. In addition, we find that the Fermi/LAT 2σ upper limits, assuming the best-fit AMS-

02 branching ratios, exclude multichannel combinations into bb̄ and leptons. The tension

between the AMS-02 and Fermi/LAT might relax if the branching ratios of the annihilation

channels is allowed to change significantly from the best-fit to the positron excess. Of all

the channels we considered, the only viable channel that survives the Fermi/LAT constraint

and produces a good fit to the AMS-02 data is annihilation (via a mediator) to 4 − µ, or

mainly to 4− µ in the case of multichannel combinations.

In addition to WIMPs being an appealing dark matter candidate for their experimental

value; WIMPs also hold theoretical promise. In particular the Lightest Supersymmetric

Partner of supersymmetric theories with R-parity conservation is a natural WIMP candidate.

In Chapter 4, my collaborators K. Freese, N.R. Shah, B. Shakya and I study the pseudoscalar

resonance or A-funnel in the Minimal Supersymmetric Standard Model (MSSM) within the

context of current and future dark matter detectors, and consider it as a possible candidate to

the Galactic Center excess (GCE) [28]. The Fermi/LAT telescope has consistently measured

a Galactic Center excess at GeV energies in the gamma ray spectrum. The presence of

this excess was first discovered by independent collaborations but has very recently been

confirmed by the Fermi/LAT collaboration [24]. Following the reanalysis of the Galactic

Center Excess, the best fit mass range has shifted towards heavier dark matter [29]. In

addition, Chapter 4 explores the LHC and direct detection implications of interpreting the

Galactic Center Excess in this extended mass window within the MSSM A-funnel framework.

We find that compatibility with relic density, signal strength, collider constraints, and Higgs

data can be simultaneously achieved with appropriate parameter choices. The compatible

regions give very sharp predictions of 200−600 GeV CP-odd/even Higgs bosons at low tanβ

at the LHC and spin-independent cross sections ≈ 10−11 pb at direct detection experiments,

which is within the sensitivity of LZ and Xenon 1T [30,31]. Regardless of consistency with the

Galactic Center Excess, this study serves as a useful template of the strong complementary

properties between indirect, direct, and LHC signatures in the study of the MSSM A-funnel

region.

Following Chapter 3 and Chapter 4, where WIMP properties have been studied within

the context of current experiments, Chapter 5 and Chapter 6 look to the future of dark
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matter experiments and present novel designs in order to probe untested parameter space.

Chapter 5 presents the idea of using DNA or RNA for nanometer spatial resolution. This

work was done in collaboration with A. Drukier, K. Freese, D. Spergel, C. Cantor, G. Church

and T. Sano [32]. The main concept is to use DNA or RNA in order to measure the annual

modulation effect at nanometer resolution in order to gain signal sensitivity (i.e. since

background signals do not follow an annual modulation then lower events are needed for

detection). Directional sensitivity requires either extremely large gas (TPC) detectors or

detectors with a few nanometer spatial resolution. This chapter presents a novel type of dark

matter detector: detectors made of DNA or RNA could provide nanometer resolution for

tracking, an energy threshold of 0.5 keV, and can operate at room temperature. The concept

is the following: when a WIMP from the Galactic Halo elastically scatters off of a nucleus

in the detector, the recoiling nucleus then traverses hundreds of strings of single stranded

nucleic acids (ssNA) with known base sequences and severs ssNA strands along its trajectory.

The location of the break can be identified by amplifying and identifying the segments of

cut single stranded nucleic acids using techniques well known to biologists. Given that single

stranded nucleic acids are at most 0.7 nm apart, the path of the recoiling nucleus can be

tracked to nanometer accuracy. In one such detector concept, the transducers are nanometer-

thick Au-foils of 1m×1m, and the direction of recoiling nuclei is measured by NA Tracking

Chamber consisting of ordered array of single stranded nucleic acid strands. Polymerase

Chain Reaction (PCR) and ssNA sequencing are used to read-out the detector. A variety of

other detector target elements could be used in this detector to optimize for different WIMP

masses and to identify WIMP properties. By leveraging advances in molecular biology,

we aim to achieve about 1,000-fold better spatial resolution than in conventional WIMP

detectors at reasonable cost.

In the spirit of designing new and innovative dark matter experiment with better sensitiv-

ity at an affordable price, Chapter 6 presents a second distinct design worked in collaboration

with A. Drukier, K. Freese, C. Kurdak and G. Tarle [33]. In contrast to the previous chap-

ter, this section focuses on nanoscale explosives as a novel type of dark matter detector

and study its ignition properties. When a Weakly Interacting Massive Particle WIMP from

the Galactic Halo elastically scatters off of a nucleus in the detector, the small amount of

energy deposited can trigger an explosion. For specificity, the chapter focuses on a type

of two-component explosive known as a nanothermite, consisting of a metal and an oxide

in close proximity. When the two components interact, they undergo a rapid exothermic

reaction - an explosion. As a specific design example, we consider metal nanoparticles of 5

nm radius embedded in an oxide. One cell contains more than a few million nanoparticles,

and a large number of cells adds up to a total of 1 kg detector mass. A WIMP interacts with
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a metal nucleus of the nanoparticles, depositing enough energy to initiate a reaction at the

interface between the two layers. When one nanoparticle explodes it initiates a chain reac-

tion throughout the cell. We consider a number of possible thermite materials. One of the

main advantages of this design is its excellent background rejection because of the nanoscale

granularity of the detector. A WIMP interaction will only cause a single cell to explode; in

contrast, backgrounds like beta or alpha particles will instead set off multiple cells. If the

detector operates at room temperature, we find that WIMPs with masses above 100 GeV

(or for some materials above 1 TeV) could be detected; they deposit enough energy (≥ 10

keV) to cause an explosion. When operating cryogenically at liquid nitrogen or liquid helium

temperatures, the nano explosive WIMP detector can detect energy deposits as low as 0.5

keV, making the nano explosive detector more sensitive to very light ≤ 10 GeV WIMPs,

better than other dark matter detectors. This experimental design is capable of being more

than just a WIMP detector.

Taken together, Chapters 3-6 focus on studying dark matter. The discovery of the non-

gravitational interactions of dark matter would be a significant achievement of the scientific

community. We are at the cusp of implementing/running new and more sensitive detectors

of all types: indirect, direct and collider searches. I remain hopeful that with more time and

data, the properties of dark matter will be exposed.

1.3 Summary

The aim of this thesis is to study and search for beyond the standard model (BSM) physics

in the cosmological and high energy particle fields. There are to main questions, which this

thesis aims to address: 1) what can we learn about the inflationary epoch utilizing the

pioneer gravitational wave detector Adv. LIGO?, and 2) what are the dark matter particle

properties and interactions with the standard model particles?.

The first main question is addressed in Chapter 2, where the gravitational wave signal of

first-order phase transitions is considered. The work shown in Chapter 2 shows that Adv.

LIGO is sensitive enough to probe part of the parameter space of inflationary models that

end with a tunneling event. One of the biggest motivation for inflationary models is their

production of density perturbations, which produce the large scale structure observed in

the Universe today. Beginning with the work Fritz Zwicki, observations of these large scale

structures show that most of its mass is in the form of a new particle called dark matter. The

study of dark matter is the main subject of Chapters 3-6. Multiple experiments have been

built in the search of dark matter - standard model interactions. Some of these experiments

have found a significant signal over expected background, which has been attributed to a
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dark matter signal.

In Chapters 3 and Chapters 4, we utilize complimentary information from indirect/direct

and collider experiments in order to test the viability of the signal within the framework of

a dark matter model. Chapter 3 is dedicated to testing a dark matter interpretation of the

AMS-02 positron excess by considering the Fermi/LAT dwarf galaxies over the same param-

eter space. On the other hand, Chapter 4 works withing the framework of the Pseudoscalar-

Resonance in the MSSM to produce templates of the expected signals in future collider and

direct detection experiment, in addition to considering the A-Funnel as the source of the

Galactic Center Excess.

Finally, Chapter 5-6 aim to consider new ways of probing the dark matter parameter

space in the future. Dark matter has not been conclusively found by any detector, and it is

important to consider new ways to keep searching for it. Chapter 5 presents a dark matter

detector design that uses DNA or RNA in order to produce an experiment with: 0.5 keV

energy threshold, operates at room temperature, and has nanometer spatial resolution in

order to measure annual modulation. In a similar fashion, Chapter 6 introduces another

novel dark matter design which utilizes nanometer sized thermites in order to produce an

experiment with: energy threshold ≈ 0.5 keV, affordable, excellent background rejection and

easily scalable.

I believe the level of sensitivity achieved by current detectors promise to bring excitement

in the coming years to the physics community. When considering the work presented in

Chapters 2-6 along with the current experimental advancements in the realm of gravitational

wave astrophysics and dark matter detection, I have grown confident that the next couple

of years will ignite unprecedented progress in answering the above posed questions.
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Chapter 2

First Test of High Frequency Gravity

Waves from Inflation using

ADVANCED LIGO

This chapter was completed in collaboration with Katherine Freese [8].

2.1 Introduction

Several experiments are underway to detect the stochastic gravitational background from

early universe cosmology. These gravity waves propagate almost freely throughout the entire

history of the universe and thus can be a direct source of information about the Universe at

very early times. One source of gravitational waves is inflation [3], a superluminal growth

phase of the Universe which can explain the homogeneity and isotropy of the Universe as

well as the generation of density perturbations required for structure formation. There are

two types of contributions to gravitational waves from inflation. In slowly rolling models,

quantum fluctuations of space-time lead to contributions proportional to the height of the

inflaton potential. In tunneling models, where the inflation ends in a first order phase

transition, there is an additional contribution due to bubble collisions of true vacuum bubbles

at the end of the phase transition [34–36]. This chapter will present the possible gravitational

wave signatures that Advanced LIGO could detect originating from vacuum bubble collisions

in inflationary models that end in a rapid tunneling event.

There are two widely different origins of gravitational waves from inflationary cosmology.

The most commonly studied are those due to quantum fluctuations of the inflation field in

slowly rolling models of inflation. Whereas the scalar modes of the fluctuations produce den-
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sity perturbations that seed structure formation, the tensor modes produce gravity waves.

These gravitational waves are on very large scale lengths, comparable to the present-day

horizon scale. Cosmic microwave background experiments can in principle search for these

gravitational waves. The Wilkinson Microwave Anisotropy Probe (WMAP) and Planck

satellites have not found gravitational waves yet but instead place bounds on their con-

tribution to the energy density of the Universe. Specifically, WMAP bounds gravitational

waves in the range of frequencies 10−18 Hz < f < 10−16 Hz [37–40] at the level of roughly

h2ΩGW . 10−15, where ΩGW is the fraction of the Universe’s (critical) energy density in the

form of gravitational waves. The bounds from Planck are currently only slightly better but

should improve once the polarization data is analyzed [41]. Most recently, the BICEP2 ex-

periment has claimed detection of gravitational waves at frequencies f ∼ 2× 10−17 Hz [42].

BICEP2 measured the tensor to scalar ratio with a mean value r = 0.2 at a pivot scale

k∗ = 0.002 Mpc−1. A tensor to scalar ratio r = 0.2 implies that h2ΩGW
∼= 1.3 × 10−15. At

first glance, the results on the value of the tensor to scalar ratio from WMAP and Planck

seem to contradict those of BICEP2. There have been many different proposals to allevi-

ate the tension between WMAP/Planck and BICEP2, such as allowing for the running of

the scalar spectral index [43, 44], the inclusion of sterile neutrino contributions [45, 46], and

other considerations [47, 48]. The incorporation of dust polarization maps to the BICEP2

data could also explain the discrepancy between experiments [49]. The polarization data

from the Planck experiment, expected to be released in the near future, will be an important

test in collaborating BICEP2’s claim of detection. Proposed for the future is CMBPOL,

which would have a sensitivity at least an order of magnitude better than existing CMB

experiments [38].

In this work we study the second possible origin of gravitational waves from inflation,

bubble collisions in tunneling models of inflation that end in a first order phase transition.

The physical signatures of these bubbles are on much smaller length scales. Adv LIGO can

be used to test gravitational waves densities due to bubble collisions roughly in the range of

10 Hz < f < 200 Hz and is sensitive up to h2ΩGW ∼ 10−9. The current 95% upper bound

of LIGO S5 is around h2ΩGW ∼ 10−6 in the frequency band 41.5-169.25 Hz. Consequently

LIGO S5 has not been able to test any of the first order phase transitions studied here [39].

The largest amplitude considered is approximately h2ΩGW ∼ 10−8 as will be shown in the

Results section 2.3. LIGO S6 has also gathered data, but its bounds are very similar to those

of LIGO S5 and thus would also not be able to elucidate on the first order phase transition

considered here. Proposed for the more distant future are the space-interferometers BBO

and DECIGO, with possible launch within 20 or 30 years [38,50].

We also wish to mention previous wok on bubble collisions in a thermal background; i.e.
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the bubbles nucleate in a radiation dominated background, rather than in the vacuum domi-

nated background of inflationary transitions. Thermal bubbles differ from vacuum bubbles in

that they have extra structure such as turbulence which produce relevant signatures [51–56].

Another source of gravitational waves that has captured much interest in recent years is

preheating, which also has an elaborate structure due to the thermal background [57–65].

While all of this work on bubble collisions in a thermal background is very interesting it does

not apply to the vacuum bubbles from inflation studied here.

We restrict our studies to bubble collisions in inflationary models with one single tunnel-

ing event. In future work we will turn to the possibility of multiple tunneling events such

as seen in chain inflation [66–71]. The purpose of this study is to determine if Adv LIGO

would be able to measure the gravitational wave energy spectrum of single phase transition

tunneling models; and if so, which region of the parameter space they would be able to “see”.

The outline of this chapter is as follows. In section 2.2, we present the parameters and

theory on first-order phase transition inflationary models and the production of gravitational

waves. Section 2.3 presents our results, and section 2.4 presents final remarks and summarizes

the key findings.

2.2 Tunneling inflationary models

In tunneling models of inflation, the universe starts out in a high-energy minimum and

then tunnels down to its global minimum. During the time spent in the “false” vacuum,

the universe expands superluminally by ∼ 60 (or so) e-folds required to resolve the flatness

problem. There are two competing factors which constrain single-phase transition model

building: the horizon/flatness problems on the one hand and percolation on the other. In

order to explain the lack of intrinsic curvature of the universe, a Grand Unified (GUT) scale

inflationary model needs the universe to inflate by approximately 60 e-folds. Thus, it is

necessary for the universe to stay in the “false” minimum long enough to expand e60 times

its original size. On the other hand, the phase transition needs to be rapid enough such that

bubbles of true vacuum intersect one another and percolation is complete. Both criteria

can be met if we introduce a time-dependent nucleation rate Γ, which gives the probability

per physical volume per time that a bubble will be produced in a region still in the “false”

minimum.

The failure of “old” inflation (Guth’s (1981) original inflation model [3]) was due primarily

to assuming a constant nucleation rate. Old inflation produced a ‘Swiss Cheese Universe’:

to allow for sufficient inflation, the tunneling rate had to be so slow that the phase transition

was never able to complete [72]. At the end of inflation most of the Universe remained in
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a state of false vacuum but contained disconnected bubbles of true vacuum. The bubbles

of true vacuum were unable to merge together sufficiently to percolate and thermalize, as

would be required for an end to inflation.

As a solution to this problem Adams and Freese (1991) as well as Linde (1990) suggested

models with a time-dependent tunneling rate. The tunneling rate starts out very slow, so that

sufficient inflation can take place; and then suddenly the tunneling rate becomes very fast so

that the phase transition quickly percolates and completes, allowing for a Universe consisting

entirely of true vacuum. The time dependence of the nucleation rate has been proposed by

Adams and Freese (1991) and by Linde (1990) to arise from multi-field interactions [73–75].

Equivalently (using different terminology) in a multi-dimensional potential, at first the field

slowly rolls in one field direction for at least 60 e-folds of inflation, and after that tunnels

rapidly in a different field direction to complete the phase transition. Cortês and Liddle

(2009) studied these models in light of WMAP data and concluded they are still viable [76].

The results found in this work applies to any inflationary model that ends in a first order

phase transition. Other examples besides the double-field model mentioned above include

models with a scalar field non-minimally coupled to gravity [77] [78].

The nucleation rate of true vacuum bubbles in the sea of false vacuum is given by

Γ(t) = Ae−S(t), (2.1)

where S(t) is the action for the bounce solution extrapolating between false and true vacua

and A is a determinant constant with units of [Mass]4 [79] [80] [34] [36]. We follow the work

of C. Caprini, R. Durrer and G. Servant (2007) and expand our action to first order around

t∗, which will be defined below as the time when the universe became 99% true vacuum.

Thus, the nucleation rate can be expressed as

Γ(t) = Γ(t∗)e
−β(t−t∗). (2.2)

Here β = dS(t)
dt
|t∗ is a parameter whose inverse sets a rough time scale for the phase transition

to complete in our inflationary model (more accurately see Equation [2.9] below) [81].

The probability of a point staying in the false vacuum, p(t), can be calculated from the

nucleation rate:

p(t) = e−I(t), (2.3)

where I(t) is given by

I(t) =

∫ t

−∞
dt′Γ(t′)a3(t′)

4π

3
r(t, t′)3. (2.4)
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Here a(t) is the scale factor of the Friedmann-Lemaitre-Robertson-Walker metric. A bubble

nucleated at time t′ grows to have a radius r(t, t′) at a later time t given by

r(t, t′) =

∫ ′t
t

dt′′
c

a(t′′)
, (2.5)

where we have assumed that the wall of the bubbles expand at the speed of light c, and will

take c = 1 for all future calculations. If we further assume that the phase transition occurs

fast enough that we can neglect the expansion of the universe, then Equation [2.4] simplifies

to

I(t) =

∫ t

−∞
dt′Γ(t′)

4π

3
(t− t′)3 =

8π

β4
Γ(t). (2.6)

This assumption is justified if the duration of the phase transition is less than a Hubble time

interval, H−1 [35].

We can proceed to calculate the duration of the phase transition from p(t) [34] [36] [81].

The “beginning” of the phase transition tm will be defined as the time when 1% of the

universe is found to be in the true vacuum; and similarly, the “end” of the phase transition

t∗ is given by the time when the universe is 99% in the true vacuum. We will choose m and

M such that p(tm) = e−m ∼= 1 and p(t∗) = e−M ∼= 0. In other words, m and M satisfy

1− p(tm) = 1− e−m = 0.01 ⇒ m = 0.01 (2.7)

1− p(t∗) = 1− e−M = 0.99 ⇒ M = 5.0. (2.8)

Thus, the duration of the phase transition, i.e. the time it takes for the universe to move

from 1% to 99% true vacuum, is given by

t∗ − tm = ln(
M

m
)β−1. (2.9)

For the values of m and M chosen above,

t∗ − tm ∼ 6β−1 . (2.10)

It should be noted that this time duration is not a measurement of how long the universe

stayed in the “false” vacuum. The exponential nature of the nucleation rate allows the “false”

minimum to be stable for a long time, providing the necessary expansion that resolves the

flatness problem; and proceeds to rapidly destabilize the “false” vacuum so that it can tunnel

quickly and percolation is achieved. Thus, the duration of the phase transition as defined

by Equation [2.9] measures the pace at which vacuum changes from being 1% to 99% in
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the global minimum. In the model where the Universe slowly rolls for a long time before

changing direction in field space and rapidly tunneling, this is the time for the tunneling

only.

It will serve convenient to take advantage of the natural cosmological time parameter,

the Hubble time, to define

χ = ln

(
M

m

)
Hβ−1 ∼= 6Hβ−1. (2.11)

One can roughly think of χ as the number of e-foldings during the tunneling transition, as

evidenced by Equation [2.11] and Equation [2.9]. Therefore, the assumption of having a

phase transition faster than a Hubble time interval constrains the values of χ that can be

consistently studied. We require that

H(t∗ − tm) = H ln(
M

m
)β−1 < 1 (2.12)

⇒ χ < 1. (2.13)

Thus, the single-phase transition inflationary models studied here will be restrained to have

χ ≤ 1 . (2.14)

With the choices leading to Eqn. (2.10), this constraint amounts to no more than 1 e-fold

during the tunneling (as expected since the origin of this constraint is that the simplified

equations we are using only apply if we can neglect the expansion of the Universe.)

In addition any physically viable inflationary model needs to percolate. We will follow

the arguments made by Turner et al.(1992) in order to utilize their bound on the nucleation

rate to further constrain the parameter χ [34]. In order for the bubbles to “outrun” the

general cosmic expansion, a successful inflationary transition needs to decrease the actual

physical volume in the false vacuum, Vphys ∝ a3(t)p(t). Nucleated bubbles will be able to

“outrun” the inflationary expansion once

V −1
phys

dVphys
dt

= 3H − dI

dt
< 0 . (2.15)

The ability to decrease the physical volume found in the false vacuum does not guarantee

percolation but is a necessary condition. We define “te” to be the time at which this criterion

is satisfied, dI
dt
|te = 3H (i.e. dV

dt
|te = 0). Turner et al. (1992) found a lower bound on a time-
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dependent nucleation rate
Γ

H4

∣∣∣
te
>

9

4π
, (2.16)

which we apply here. We note that Guth and Weinberg (1983) had originally found a lower

bound on a constant nucleation rate in order to achieve percolation, applicable to the case

of old inflation (which failed exactly because it does not percolate) [72]. The work of Turner

et al (1992), on the other hand, is for time-dependent nucleation rates as relevant here.

We would like to convert the constraint in Eqn. (2.16) to a bound on χ. Utilizing

Equation (2.6) and taking t = te, we find that

dI

dt

∣∣∣
te

= 3H = 8π

(
χ

ln M
m

)3

H
Γ

H4

∣∣∣
te

(2.17)

⇒ Γ

H4

∣∣∣
te

=
3

8π

(
ln M

m

χ

)3

(2.18)

Thus the bound in Eq. (2.16) implies the following upper bound on χ:

Γ

H4

∣∣∣
te

=
3

8π

(
ln M

m

χ

)3

>
9

4π
⇐⇒ χ <

(
1

6

)1/3

ln

(
M

m

)
∼ 3.4. (2.19)

It should be noted that this bound is less restrictive than the one in Eqn.(2.14); any model

satisfying χ ≤ 1 automatically satisfies the percolation bound. We require both constraints

to hold, i.e., the inflationary transition goes from 1% − 99% true vacuum sufficiently fast

to ignore the expansion of the universe and the physical volume of false vacuum decreases,

allowing for the Universe to percolate.

2.2.1 Gravity Waves from a Single First Order Phase Transition

The spectrum of gravity waves from multi-bubble collisions at a tunneling phase transition

(PT) with energy difference ε between false and true vacua was worked out numerically in [35]

and subsequently more accurately by [82] and [81]. The parameters ε and χ will be the only

two free variables that characterize the spectrum of single PT models. Figure 2.1 gives

an intuitive sense as to the roles of ε and χ in a first order phase transition model. The

difference in energy density between the false and true vacua is characterized by ε, while χ

parametrizes how many e-folds does the transition last.

We follow the results of Huber and Konstandin (2008) [82]. They computed the gravita-

tional wave spectrum resulting from multi-bubble collisions produced by a time-dependent
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Figure 2.1: The

exponential nucleation rate. Their simulations assumed a phase transition that lasted much

less than H−1 and thus justified neglecting the expansion of the universe. The assumptions

taken by Huber et al. (2008) are the same taken in the previous section, which enable us to

take full advantage of their results. Here we examine which region of the parameter space

{χ, ε} Advanced LIGO would be able to observe.

The gravitational wave energy spectrum is defined to be

ΩGW (f) =
1

ρc

dρGW
d ln(f)

, (2.20)

where f is the frequency, ρc is the current critical density and ρGW is the gravitational wave

energy density. The gravitational wave energy spectrum depends on the wall velocity of the

bubbles (vb), the fraction of vacuum energy to radiation energy (α = ρvac
ρrad

), and the efficiency

at which the vacuum energy is transformed into kinetic energy of the bulk fluid instead of

reheating the plasma inside the bubble (κ) [82]. For purposes of this study, we will take the

wall velocity to be close to the speed of light( vb ∼= 1), assume the strong-detonation limit

(α→∞), and take κ = 1 so that the vacuum energy is converted almost to its entirety into

the kinetic (rather than thermal) energy of the bubble. This further supports our assumption

of taking the wall velocity to be close to the speed of light, since the constant pressure felt by

the bubble wall will force it to accelerate to relativistic speeds very quickly [36]. Henceforth

we will take the results found by Huber and Konstandin (2008) in [82] and take the limits:

vb = 1, α→∞ and κ = 1. These are the limits necessary to study vacuum bubbles [36].

The numerical results of Huber and Konstandin (2008) [82] can roughly be fit in the
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following three frequency regimes as

h2ΩGW (f) ∼=


f 3 f � fpeak

h2Ωpeak
3.8( f

fpeak
)2.8

1+2.8( f

fpeak
)3.8

f ≈ fpeak

f−1 f � fpeak

(2.21)

Here Ωpeak is the gravitational wave energy spectrum evaluated at the peak frequency and

will be defined in terms of physical parameters of the phase transition shortly. Here h

is the current Hubble parameter in units of 100 km/sec/Mpc. In order to work with an

analytic expression for the spectrum, we construct the gravitational wave energy spectrum

as a piece-wise function in the following manner

h2ΩGW (f) ∼=

 h2Ωpeak( f
F

)3 if f < ηf peak with η < 1

h2Ωpeak
3.8( f

fpeak
)2.8

1+2.8( f

fpeak
)3.8

if f ≥ ηfpeak with η < 1.
(2.22)

We determine the value of the constants η and F by demanding the spectrum to be sufficiently

smooth, i.e., we take the matching conditions

lim
f→ηfpeak−

h2ΩGW (f) = lim
f→ηfpeak+

h2ΩGW (f) (2.23)

lim
f→ηfpeak−

dh2ΩGW (f)

d ln f
∼= lim

f→ηfpeak+

dh2ΩGW (f)

d ln f
. (2.24)

In Eq. (2.24) we accept an error of 7%. Then we find that the gravitational wave energy

spectrum has the following approximate structure

h2ΩGW (f) ∼=

 h2Ωpeak38( f
fpeak

)3 if f < 10−5fpeak

h2Ωpeak
3.8( f

fpeak
)2.8

1+2.8( f

fpeak
)3.8

if f ≥ 10−5fpeak.
(2.25)

This enables us to estimate the numerical calculations for the gravitational wave energy

spectrum found by Huber and Konstandin (2008) in an analytic fashion.

The peak frequency of the gravitational wave spectrum is determined by the characteristic

timescale of the phase transition, β−1 (see Eq.(2.2)). Specifically, Huber et al. (2008) find

for the peak frequency

fpeak = 0.23β . (2.26)
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They also find

h2Ωpeak = h2 ε

ρc
κ2

(
H

β

)2(
α

α + 1

)2(
0.11v3

b

0.42 + v2
b

)
∼=

0.002h2

ρc
εχ2 (2.27)

for the peak amplitude, where we have taken vb = 1, κ = 1 and α → ∞ in the final

equality. Redshifting the frequency and energy density of gravitational radiation as a−1 and

a−4 respectively, we find that at the current epoch (subscript 0):

fpeak0 = fpeak(
a∗
a0

), (2.28)

h2Ωpeak
0 = h2Ωpeak(

a∗
a0

)4, (2.29)

where the subscript “*” denotes the time t∗ at which the phase transition ended. Assuming

that reheating is instantaneous allows us to evaluate a∗
a0
∼= 7.6 × 10−14

(
100
g∗

)1/3 (
1 GeV
T∗

)
. T∗

is the temperature increase right after a single phase transition,

T∗ =

(
30ε

g∗π2

)1/4

; (2.30)

and the total number of relativistic degrees of freedom at temperature T∗ is taken to be

g∗ ∼= 100. However, the process of reheating could be fairly complicated. Depending on the

specific model considered, the reheating epoch could also last for some time. The details

of the reheating epoch will depend on how the kinetic energy of the walls is converted into

heat. Reheating in the context of a first order phase transition has been considered in [83,84].

Furthermore, it was shown by R. Watkins and L. Widrow that bubble collisions convert the

energy in the bubble walls efficiently into scalar radiation [85]. Nevertheless, the duration

of the reheating epoch will depend on the details of the phase transition. Precise numerical

studies would be needed to study a specific reheating model, and understand the duration

and equation of state of the Universe during the reheating epoch. In Appendix A we consider

the effects of a non-instantaneous reheating epoch on the gravitational wave energy spectrum.

With the exception of Appendix A, we will assume for all future calculations that reheating

was instantaneous.

This assumption simplifies the calculation, and allows us to calculate the gravitational

wave energy spectrum as a function of only two parameters: ε and χ. Combining Equations

[2.26, 2.27] and [2.30], the dependence of fpeak0 and h2Ωpeak
0 on {ε, χ} becomes clear. The
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peak frequency and gravitational wave energy density per critical density are given by

fpeak0 = 9.35× 10−8 ε1/4

1GeV

1

χ
Hz (2.31)

h2Ωpeak
0 (χ) = 5.9× 10−8h2χ2. (2.32)

Using these two equations in Eqn. [2.22] evaluated at the current epoch, we obtain the

gravitational wave energy spectrum expected today for different choices of the two parameters

{ε, χ}. We will study which range of parameter space can be measured by Adv. LIGO.

2.3 Results

The two parameters {χ, ε} in tunneling inflation determine the gravitational wave signal.

The peak frequency in Eq. [2.26] depends on both parameters, while ΩGW in Eq. [2.27]

depends on χ (but not on ε). Since the gravitational wave energy density scales as χ2, the

largest gravitational wave amplitude is found for the largest value of χ studied, the value

χ = 1 allowed by the bound in Eqn.[2.14].

The gravitational wave energy spectrum for tunneling models is plotted in Figure [2.3] for

frequencies ranging from 10−6 Hz to 108 Hz. Adv. LIGO is in the middle of this frequency

range, approximately around 10Hz < f < 100 Hz [39]. In Figure [2.3], χ is kept constant at a

value of χ = 1, and the value of ε1/4 ∈ {104, 108.5, 1011} is varied. In making this plot we have

chosen the highest value of χ considered in this work since it produces the largest observable

signal with h2Ωpeak
0 ∝ χ2. For parameters χ = 1 and ε1/4 = 108.5 the gravitational waves are

observable in Advanced LIGO which is sensitive to stochastic signals with ΩGWh
2 & 10−9.

One can investigate the dependence of the gravitational waves on the value of χ. Figure

[2.3] shows a plot of the gravitational wave energy spectrum per critical density with ε = 108.5

and varying values of χ. The frequency range plotted in Figure [2.3] is from 0.1 Hz to 105

Hz in order to study more carefully the dependence of χ in the gravitational wave energy

spectrum. For smaller values of χ, the peak frequency shifts to higher values whereas the

amplitude of gravitational waves decreases, as evident by Equations [2.26 and 2.27] and

Figure [2.3].

When we vary the value of ε, the gravitational wave amplitude remains the same while

the spectrum shifts to a different frequency range. For 107 GeV . ε1/4 . 1010 GeV, at least a

part of the spectrum from bubble collisions falls into the Advanced LIGO sensitivity region.
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2.4 Conclusion

We have shown in the previous section that Adv. LIGO will be able to measure and

probe the gravitational wave energy spectrum produced by tunneling inflationary models.

The parameter space of single PT inflationary models that can be measured in Adv. LIGO

is shown in Figure [2.3]. Specifically, models with values of 0.19 . χ . 1 (where χ is the

number of e-folds during the actual tunneling event) and 107GeV . ε1/4 . 1010GeV (where

ε is the energy difference between vacua) could potentially be tested by Adv. LIGO. A

positive signal could be a positive evidence in favor of single PT inflationary models, while

the lack of a signal would potentially rule out the range of these models.

The details of the reheating epoch right after the phase transition ended could also

decrease the detectability of the stochastic gravitational wave signal. The calculations and

figures shown in the Results Section [2.3] assume instantaneous reheating after the end

of the phase transition. In contrast, if the Universe had an equation of state similar to

matter domination (w = 0) during the reheating phase, then the the peak frequency and

gravitational wave energy density decrease by (a∗/aR)1/4 and (a∗/aR) respectively; where

the subscript “ ∗ ” denotes the end of the phase transition, and “R” specifies the time the

Universe reaches thermal equilibrium and reheating ends. This result is shown in Appendix

A. Given the projected sensitivity of Adv. LIGO, then there is a lower limit to the duration

of the reheating phase (a∗/aR) ≥ 0.036 so that the gravitational wave signal can be detected.

The decrease in the peak frequency and gravitational wave energy density could be fairly

substantial and undetectable by Adv. LIGO in the case that the reheating epoch had

an equation of state w = 0. We refer the reader to Appendix A for the details of the

computation. Nevertheless, it was shown in [85] that reheating after a first order phase

transition could be very efficient.

It is also an interesting question to ponder the details of the inflationary model prior

to the tunneling that ends the inflation. One possibility is that the inflaton field may be

rolling down a nearly flat potential constrained by recent Planck measurements [41]. In many

models the height of the potential would be near the GUT scale, not the case considered here.

However, other models such as the Kinney-Mahanthappa version of natural inflation [86]

allow arbitrary potential heights. Such rolling fields with ε in the right range could later

tunnel to produce the signatures discussed in this work.

Other proposed gravitational wave experiments, such as BBO and DECIGO, would be

able to contribute further to the search for inflationary gravitational wave signals. These

instruments could probe smaller frequencies with higher sensitivities and therefore study

inflation models with smaller energy difference between vacua and faster phase transitions
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(i.e. lower values of ε and χ) [50].

In the future a theoretical study of gravitational waves produced in bubble collisions

arising from slower phase transitions would be interesting, as these would also be testable by

Advanced LIGO. Unfortunately this case is much more difficult. We assumed that the phase

transition lasted less than a Hubble time interval, i.e., we only considered values of χ ≤ 1.

In principle the value could be as high as χ < 3.4 and still percolate. To go to higher values

of χ, the expansion of the Universe will have to be taken into account in the dynamics of

the bubbles, rendering both analytic and numerical studies more complicated. Nevertheless,

since the gravitational wave amplitude scales as χ2, higher values of χ should be observable

in Advanced LIGO; thus a study of this theoretically more difficult case is warranted in the

future. We also plan a future study of gravitational waves produced in chain inflation [66–71],

where the Universe tunnels through a series of phase transitions rather than merely one.
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Figure 2.2: The spectrum of gravitational waves produced from bubble collision in a tunnel-
ing phase transition for χ = 1 and various values of ε (the energy difference between vacua).
Different values of ε only shift the peak frequency of the spectrum, but do not alter the
amplitude of ΩGW . Here χ is the number of e-folds during the tunneling transition (not the
same as the total number of inflationary e-folds). The expected reach of Advanced LIGO is
indicated by the horizontal line.
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Figure 2.3: gravitational wave energy spectrum produced in a tunneling inflationary model
with a difference in energy between vacua of ε1/4 = 108.5 and varying values of χ. Parameters
are as described in Figure [2.3]. The expected reach of Advanced LIGO is indicated by the
horizontal line. One can see that, for smaller values of χ, the peak frequency shifts to higher
values and the amplitude of gravitational waves decreases.
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Figure 2.4: This figure shows the range of {χ, ε1/4} in single-tunneling transition inflationary
models that could potentially be probed by Adv. LIGO (in green). Parameters are as
described in Figure [2.3]. The range of χ goes up to χ = 1, because that is the highest value
allowed by our assumption of having a PT which lasts less than a hubble time interval.
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Chapter 3

Fermi/LAT observations of Dwarf

Galaxies highly constrain a Dark

Matter Interpretation of Excess

Positrons seen in AMS-02, HEAT,

and PAMELA

This chapter was completed in collaboration with Christopher Savage, Douglas Spolyar

and Douglas Adams [26].

3.1 Introduction

One of the greatest success of inflationary models like the one studied in the previous

chapter is the production of the right matter density fluctuations to produce the observed

universe. From CMB experiments, we know that ∼ 26% of all matter in the universe is

composed of non-baryonic dark matter. In the following chapters, this thesis will concentrate

on studying and testing the properties of dark matter. In particular, this chapter will

consider Weakly Interacting Massive Particles (WIMPS), such as the lightest supersymmetric

particles (for reviews, see Refs. [87, 88]); which are thought to be the best motivated dark

matter (DM) candidates. The particles in consideration are their own antiparticles; thus,

they annihilate among themselves in the early universe and naturally provide the correct relic

density today to explain the dark matter of the universe. This same annihilation process takes

place in the present universe wherever the DM density is sufficiently high and is the basis for
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DM indirect detection searches. Indirect detection experiments search for the annihilation

products of dark matter particles, including electrons and/or positrons, antiprotons, photons,

and neutrinos. Promising sites for the observation of dark matter annihilation products

include the core of the Sun [89], the Earth [90, 91], our Galactic halo [92–95], Galactic

center [96], dwarf satellite galaxies [97,98], and from DM substructures [99–102].

This chapter is subdivided into the following sections. Section 3.2 presents the different

dark matter models that can explain the positron excess. In section 3.3, the methodology

for calculating the Fermi/LAT bounds are explained. The results are shown in section 3.4.

Finally, section 3.5 summarizes the key findings.

3.2 Dark Matter as the Source of the Positron Excess

Over the past several years, there have been a number of experimental signals which have

been interpreted as possible indications of DM. Confirmation that any of these observations

are actually due to DM, rather than being a mere experimental artifact or astrophysical

background, would likely require more than one experiment to provide complementary in-

formation. We consider the anomalous features in the spectrum of cosmic ray positrons and

electrons reported by AMS-02 [103], PAMELA [104, 105], and the Large Area Telescope of

the Fermi Gamma Ray Space Telescope (Fermi/LAT) [106] (as well as in earlier indications

from HEAT [107–109]). The positron fraction was found to be a steadily increasing function

of energy, above 10 GeV. This behavior is difficult to explain with standard astrophysical

mechanisms, in which positrons are secondary particles, produced in the interactions of pri-

mary cosmic rays during the propagation in the interstellar medium. These observations

have led to a great deal of speculation that DM annihilations [110–129] or decays [130–133]

may be responsible. However, any explanation of these positron/electron signals in terms of

DM annihilation requires somewhat nonstandard WIMP properties. In particular, the local

halo density of DM within the vicinity of the Solar System is insufficient to produce these

observations unless the annihilation cross section is considerably larger than that typically

expected for a thermal relic, or the annihilation rate is otherwise supplemented by a large

boost factor ∼ 101−104. Such an enhancement could arise due to astrophysics; for example,

due to substructures in the DM distribution; yet Ref. [134] argues that the probability of

such a nearby DM clump is < 1%. We will instead focus on the possibility of an annihilation

cross-section that is enhanced by the required boost factor compared to the standard ther-

mal annihilation. Furthermore, only a handful of possibilities can explain the spectral shape

reported by AMS-02 and PAMELA, as well as avoid overproducing antiprotons (in excess

of what is observed) [135–138]. The most well-studied approach to satisfying all these con-
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straints has been leptophilic DM, i.e. the DM annihilations proceed largely to leptons (µ+µ−

or τ−τ−), which produces a sizable amount of positrons but only a negligible amount of anti-

protons via final state radiation (FSR) [117,118,139,140]. Alternatively, other annihilations

channels—quarks, vector and Higgs bosons—are allowed if the DM particle is heavier than

∼10 TeV, producing antiprotons at higher energies than those probed by AMS-02 data [113].

Other explanations of the Cosmic Ray Positron Excess (henceforth CRPE) have also

been proposed. The most plausible is that it is due to pulsars [141–144].

Positrons can ultimately be produced by DM annihilating into a variety of channels:

single channels (leptons, quarks, gauge bosons, Higgs, or four leptons) or a mix of these

channels. Prior to 2014, when the most recent AMS-02 results became available, all annihi-

lation channels could provide explanations for the positron excess (see Table 2 in Ref. [27]).

The most popularly studied cases were WIMP masses ∼200 GeV, which matched the data

only for leptophilic channels (DM annihilates only into leptons µ+µ− or τ+τ−), though quark

and gauge boson channels well fit the data at higher WIMP masses, with best-fit masses as

high as ∼50–200 TeV (depending on the channel).

The recent AMS-02 data release [103] has greatly improved our understanding of the

positron excess. As stressed by Ref. [27], two major improvements have emerged. First the

new data are far more accurate and extend out to 500 GeV, much higher energies than previ-

ously explored. Improved accuracy in the positron spectrum leads to stronger constraints on

any model for the origin of the positrons. Second, AMS-02 has measured directly the total

electron and positron flux, the denominator in the positron fraction, reducing systematic er-

rors and leading to differences in best-fit regions for the DM mass and cross section. Ref. [27]

further stressed the importance of addressing uncertainties in the cosmic ray propagation

model, as these models are of critical importance in assessing the true nature of the positron

excess.

Boudaud et al. [27] have performed an analysis with the new AMS-02 data, exploring the

DM models that could explain the CRPE. Compared to earlier data and analyses, the recent

AMS-02 data do indeed lead to much stronger constraints on suitable DM candidates that

can explain the e+ excess and the best-fit masses have shifted by a fair amount. Primarily

these authors used the benchmark set of cosmic ray propagation model parameters known as

MED in obtaining their results; this is the model that best fits the B/C ratio in the cosmic

rays. With the recent, more accurate data and using MED, these authors found that many

of the earlier allowed models have been ruled out (see Table 1 in Ref. [27]). In terms of single

channel models, leptophillic DM is no longer viable, whereas single channel annihilation into

quarks and gauge bosons provide an excellent fit to the CRPE. They also considered the case

of DM annihilation into a mediator particle φ, where χχ → φφ with φ → `¯̀, thus yielding
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four leptons per annihilation (“4-lepton” channel). Again, single channel annihilation into

four leptons does not fit the AMS-02 data (assuming MED propagation). Alternatively,

annihilation into a combination of channels can also provide an excellent fit, in particular

annihilation into an admixture of leptons and bb̄ pairs. Finally, a combination of four lepton

channels (arising from a mediator field φ), specifically the four-tau (75%) and four-electron

(25%) channel, turns out to provide a good fit to the AMS-02 data for a DM mass between

0.5 and 1 TeV. The results reprised in this paragraph all refer to the MED cosmic ray

propagation model.

Far larger than the statistical errors in the AMS-02 data are the systematic errors asso-

ciated with the cosmic ray propagation. Thus Boudaud et al. [27] looked at a set of 1623

different combinations of the cosmic ray transportation parameters—all consistent with ob-

served boron-to-carbon ratios—which bracket the systematic uncertainty in the propagation

model (see also Ref. [147] for an analysis of the new AMS-02 data, with a different treatment

of the propagation). By including these propagation model parameters into the fits to the

AMS-02 data, specifically by finding the DM parameters that fit the data for any of the 1623

propagation parameter combinations, the allowed DM parameter space increases. In terms

of the single channel models, the 2-τ , 4-µ, and 4-τ cases can now provide excellent fits to

the positron excess in addition to the cases mentioned above.

3.3 Fermi/LAT dwarf galaxies analysis

DM annihilations that produce e+, either directly or through decays and showering of the

primary annihilation products, will invariably also produce γ-rays. Thus we can constrain

the above DM models by comparing with γ-ray observations. The best places to look are

regions with a large abundance of DM: the Galactic Center, clusters, and dwarf galaxies.

We will focus on dwarf galaxies for the remainder of the analysis. The dwarf spheroidal

galaxies inside the Milky Way are some of the most dark matter dominated objects known,

with mass-to-light ratios as high as ∼ 1000. Because they are so dark matter rich and

nearby, they are exceptionally good places to indirectly detect DM via γ-rays produced in

its annihilation. For previous γ-ray data that could be used to constrain a DM interpretation

of a positron excess, see the previous Fermi/LAT combined analysis of dwarf galaxies [148],

VERITAS [149], and MAGIC [150] observations of Segue 1, as well as results of the H.E.S.S.

collaboration [151] on Sagittarius and other dwarf galaxies.

Fermi/LAT surveys the γ-ray sky and, specifically, has looked for γ-rays from 25 dwarf

galaxies, detecting no significant excess [148]. This lack of signal is used to place γ-ray flux

upper limits for energies between 500 MeV and 500 GeV. These bounds are then used to
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constrain the dark matter annihilation for a broad range of particle masses and annihilation

channels. However, the Fermi/LAT collaboration has not examined dwarf constraints for DM

particles heavier than 10 TeV, nor have they examined four-lepton or mixed channel cases,

which continued to be the case in the analysis released after our work first appeared [23].

We review here the Fermi/LAT dwarf analysis technique and then extend the analysis to

these other interesting cases.

The differential γ-ray flux dφ
dE

from DM annihilation in a dwarf galaxy can be written as

the product of two components, a factor dΦpp

dE
that encodes all the particle physics and the

so-called J-factor that contains the astrophysics,

dφ

dE
=
dΦpp

dE
× J =

(
1

8π

〈σv〉
m2
χ

dN

dE

)
×
(

1

∆Ω

∫
∆Ω

∫
l.o.s.

ρ2(r) dr dΩ

)
. (3.1)

Here, 〈σv〉 is the DM annihilation cross section, mχ is the DM mass, and dN
dE

is the photon

spectrum from the DM annihilation, which depends on the DM mass mχ and the annihilation

channel. The J-factor (the term in the second set of parentheses) integrates the square of

the DM density ρχ along the line of sight and over a solid angle ∆Ω. The J-factor can

be estimated from stellar kinematics as stars act as tracers of the gravitational potential,

allowing the DM distribution to be inferred.

We use Fermi/LAT dwarf γ-ray results to constrain DM models using the data and

likelihood technique described by the Fermi/LAT collaboration in Ref. [148], to be briefly

reviewed here. The primary quantity used in the likelihood analysis is the energy flux

sk,j =

∫ Ej,max

Ej,min

E
dφk

dE
dE (3.2)

for each dwarf (indexed by k) and energy bin (indexed by j). Here, dφk
dE
≡ dΦpp

dE
× Jk is the

differential flux for a dwarf with J-factor Jk. For each dwarf and energy bin, Fermi/LAT

provides a likelihood Lk,j in sk,j. The likelihood function accounts for instrument perfor-

mance, the observed counts, exposure, and background fluxes. For a given annihilation

channel, the energy flux is dependent only on the theoretical parameters mχ, 〈σv〉, and Jk;

i.e. sk,j = sk,j(mχ, 〈σv〉, Jk).
Accounting for observational constraints on the J-factor, the likelihood for a given dwarf

Lk is

Lk(mχ, 〈σv〉, Jk) = LN (Jk|J̄k, σk)
∏
j

Lk,j
(
sk,j(mχ, 〈σv〉, Jk)

)
, (3.3)

where LN represents a log-normal distribution and J̄k & σk are the parameters describing

that distribution, derived from the stellar kinematics in the dwarf. The combined likelihood
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for multiple dwarfs is

L(mχ, 〈σv〉,J) =
∏
k

Lk(mχ, 〈σv〉, Jk) , (3.4)

where J represents the set of J-factors {Jk}, one for each dwarf. We use in our analysis the

same 15 non-overlapping dwarf galaxies with J-factor estimates that are used by Fermi/LAT

in their analysis. We use the J-factor estimates based upon a Navarro-Frank-White (NFW)

density profile [152], though a Burkert profile [153] would not significantly affect our results.1

Fermi/LAT constraints in 〈σv〉 at a given mχ are determined using a delta-log-likelihood

approach treating the J-factors as nuisance parameters. The delta-log-likelihood ∆L is given

by

∆ lnL(mχ, 〈σv〉) ≡ lnL(mχ, 〈σv〉, ̂̂J)− lnL(mχ, 〈̂σv〉, Ĵ) , (3.5)

where 〈̂σv〉 & Ĵ are the values of 〈σv〉 & J that jointly maximize the likelihood at the given

mχ and ̂̂J ≡ ̂̂J(mχ, 〈σv〉) are the J-factors that maximize the likelihood for the given mχ

and 〈σv〉. The 1D confidence intervals in 〈σv〉 at the nσ confidence level are determined by

identifying the range of 〈σv〉 such that

−∆ lnL(mχ, 〈σv〉) ≤ n2/2 . (3.6)

We will generally show the upper limit of the 2σ confidence intervals (95.4% confidence

level), but show in Figure 3.1 the 1σ (68.3% confidence level) and 3σ (99.7% confidence

level) constraints for comparison.

3.4 Results

We consider the case of DM annihilating directly to bb̄ and leptons `¯̀, as well as the “4-

lepton” channels (via a mediator φ). We use the bb̄ case as a proxy for all other quarks, gauge

bosons, and the Higgs boson. The spectra for the u, d, c, s, and t quarks; the W , Z, and g

gauge bosons; and the H boson are all similar in shape to the b spectrum and within ∼50%

of the amplitude. Such differences of at most a factor of two in amplitude will not prove to

be significant; thus the b spectrum should be reasonably representative of these other cases.2

The spectra from leptons, on the other hand, depend on the flavor, so we consider e, µ,

and τ separately. The annihilation spectra dN
dE

for these different channels are derived using

1References [148, 154] have shown that the the integrated J-factor within 0.5 degrees is fairly insensitive
to the choice of dark matter density profile so long as the central value of the slope is less than 1.2.

2Each of the AMS-02 and Fermi constraints vary by less than a factor of two from the bb̄ case when
looking at other quarks, but bb̄ is ruled out by an order of magnitude, so a factor of two is not enough to
evade the Fermi/LAT constraints.
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Figure 3.1: Constraints on the dark matter annihilation cross-section 〈σv〉 and mass mχ

for annihilations into bb̄ (left) and four τ ’s via a mediator φ (right). The best-fit AMS-02
parameters, as derived by Ref. [27] for the MED propagation model parameters, are shown
in red, while the Fermi/LAT upper bounds are shown by the blue curves. Fermi/LAT dwarf
constraints are generated using the procedure described in Ref. [148]. Constraints are shown
at the 2σ confidence level. For the bb̄ case, the AMS-02 best-fit points for a selection of other
cosmic ray propagation model parameters are shown as gray dots (also taken from Ref. [27]).
For comparison, we also show the 1σ and 3σ Fermi/LAT dwarf constraints.

PYTHIA8 [155, 156]. For the first set of cases, annihilation directly to quarks or leptons, we

include final state radiation in the PYTHIA simulations as these are the primary source of

photons for the e+e− and µ+µ− channels; the FSR provides only a minor contribution to

the bb̄ and τ+τ− channels. The 4-µ case is studied using an analytical approximation for the

FSR, the dominant contribution in this case. The 4-e channel does not give a good fit to the

AMS-02 data; and thus, will be discarded as a viable explanation for the positron excess.

The AMS-02 2σ confidence regions in 〈σv〉 vs. mχ for the bb̄ and 4-τ channels are shown

in red in the left and right panels, respectively, of Figure 3.1, taken from Ref. [27]. The

Fermi/LAT 2σ upper limits in 〈σv〉 are shown by the blue curves in the figure. For both

channels, the AMS-02 regions are strongly excluded by the Fermi/LAT dwarfs data. In

Figure 3.1, the AMS-02 2σ confidence regions were determined assuming the MED prop-

agation parameters, the set of five astrophysical parameters fixed to best fit the measured

B/C ratio [158, 159]. As the choice of propagation parameters has an impact on the fit to

the AMS-02 data, we show also the best-fit points found by Ref. [27] for a selection of other

cosmic ray propagation model parameters as discussed above. These best-fit points, shown
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as gray dots for the bb̄ case, are taken from Figure 14 of Ref. [27] (parameters with p ≥ 0.0455

only). Though varying the propagation parameters broadens the region of parameter space

consistent with the AMS-02 data, the DM interpretation of the positron spectrum remains

strongly in conflict with the Fermi/LAT dwarf γ-ray observations.

We wish to comment on the differences between regions compatible with AMS-02 as-

suming the MED propagation parameters and the regions compatible when the propagation

parameters are allowed to vary over reasonable values, as represented by the 1623 sets of cos-

mic ray propagation parameters. In Figure 3.1 one can see that all the points, for both MED

and other cosmic ray propagation model parameters, are in an elongated region roughly par-

allel to the Fermi/LAT bounds. Thus changing the cosmic ray propagation parameters does

not alleviate the tension between Fermi/LAT and a DM interpretation of AMS-02. 3 This

is likely to be true for no matter which annihilation channel is studied (single or mixed).

Thus we expect the following: if a DM annihilation channel that fits AMS-02 with MED

propagation is ruled out by Fermi/LAT, then the same channel is also likely to be ruled out

if other propagation parameters are used. In other words, using different reasonable cosmic

ray propagation parameters will not likely change our results. However, we cannot prove

this assertion without a detailed reanalysis of the AMS-02 data, beyond the scope of this

work.

Figure 3.2 shows the AMS-02 best fits and Fermi/LAT dwarf constraints on 〈σv〉 and

mχ for annihilations into single channel `¯̀ or bb̄, as well as mixed cases `¯̀+ bb̄. Note that

Figure 3.2 is over a broader mass range than Figure 3.1. First let us discuss the single

channel cases. The Fermi/LAT upper bounds on the single channel cases are shown as solid

blue lines, from bottom to top: bb̄, τ+τ−, µ+µ−, e+e−. The e and µ channels have weaker

limits as photon production is suppressed in these cases, here coming only from the FSR.4

The b and τ channels produce photons through unsuppressed shower/decay processes; the

presence of FSR has little impact on the constraints for these two channels. The best-fit

AMS-02 points for these annihilation channels are shown by the red circles. Empty circles

are for the MED propagation parameters and filled circles are for the best-fit propagation

parameters [27]; the DM parameters do not differ much between the two cases for any of the

channels. The AMS-02 b and τ best-fit points are excluded by the Fermi/LAT constraints,

while the e and µ points are not. The two lighter lepton channels fail to be excluded

by Fermi/LAT because they provide positrons in abundance for the AMS-02 signal, while

photon production is suppressed, leading to little expected sensitivity to these channels via

3Since the annihilation rate scales as 〈σv〉/m2
χ, moving along the elongation line corresponds to roughly

a fixed number of e+, as is required to match the AMS-02 data. There is a slight effect on the fit due to the
mχ dependence of the spectrum, but the general trend still holds.

4The muon produces a photon in O(1%) of its decays, though this process is not accounted for in PYTHIA.
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Figure 3.2: AMS-02 best-fit parameters and Fermi/LAT constraints on 〈σv〉 and mχ for the
bb̄ and `¯̀ channels. Best-fit AMS-02 values for single annihilation channels are shown as
red circles (taken from Ref. [27]). Empty circles are for the MED propagation parameters
and filled circles are for the best-fit propagation parameters. Fermi/LAT constraints for
each of these single channels are shown as solid blue lines. The red and blue dashed curves
represent respectively the AMS-02 best-fit and Fermi/LAT constraint on 〈σv〉 at each mass
for the mixed bb̄+`¯̀ channels, assuming a common (uniform) branching ratio into each of the
three leptons; Fermi/LAT constraints are generated assuming the AMS-02 best-fit branching
ratios at each mass. The dotted curves are the same, but relaxing the assumption of uniform
lepton branching ratios. We note that the MED propagation parameters are used for the
mixed channels. Note that for the annihilation into single channel bb̄ or ll̄, shown as empty
and filled red circles, the use of different cosmic ray propagation models (i.e. MED or the
best-fit) approximately shifts the AMS-02 best fit mχ−〈σv〉 point parallel to the Fermi/LAT
constraint (solid blue line). We expect that the cosmic ray propagation parameters will not
significantly affect our results. Proving this assertion is beyond the scope of this work.
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γ-ray searches. However, both the e and µ annihilation channels, while capable of producing

substantial numbers of positrons, are simply a poor fit to the AMS-02 spectrum. Thus, none

of these four channels can provide a reasonable fit to both the AMS-02 and Fermi/LAT results

and no single annihilation channel into quarks, leptons, or gauge bosons can simultaneously

explain the AMS-02 data while remaining in agreement with Fermi-LAT bounds. We note

that both the MED and the best-fit cosmic ray propagation parameters have been used in

studying these single channel cases.

Reference [27] also considered the mixed-channel case, where the DM annihilates into

some combination of bb̄ and the three leptons. Here the MED propagation model is used

for the mixed channels. Two possibilities were considered: one where all three leptons were

assumed to have a common (uniform) branching ratio and one where this assumption is

relaxed. The AMS-02 best-fit 〈σv〉 as a function of mass are shown as red dashed and dotted

curves for the uniform and non-uniform lepton cases, respectively (taken from Figures 7 & 5

in their paper). Their results were presented only down to DM masses of 0.6 TeV, as the

positron excess extends to ∼ 500 GeV and cannot be fully explained by a lighter dark matter

mass, hence the termination of the curves at that mass. For the uniform case, the leading

annihilation channel is always to bb̄, while for the non-uniform case, τ+τ− dominates below

20 TeV and bb̄ dominates above. The corresponding Fermi/LAT 2σ upper limits, assuming

the best-fit branching ratios, are shown in blue dashed and dotted curves. The AMS-02 best-

fit 〈σv〉 and branching ratios are strongly excluded by the Fermi/LAT results. This does

not rigorously imply the AMS-02 and Fermi/LAT results are in strong conflict for all multi-

channel cases, as the Fermi/LAT constraints will vary if the branching ratios are allowed to

deviate from their best-fit values. However, bringing the two results into compatibility will

require the bb̄ channel to be heavily suppressed, as well as the τ+τ− channel at the lighter

end of the mass range, which is quite different from the best-fit case, where bb̄ dominates at

higher masses and bb̄ + τ+τ− accounts for ≥ 50% of the annihilations at lower masses.

Figure 3.3 examines the mediated 4-lepton case with χχ → φφ and φ → `¯̀. The

AMS-02 best-fit points are again shown by red circles, determined using both MED propa-

gation (empty circles) and the best-fit propagation parameters (solid circles) [27]. The 4-τ

Fermi/LAT upper limit is shown by the solid blue curve. One can see that the 4-τ point

that matches AMS data is excluded by the Fermi/LAT results. The 4-e channel is a poor

fit to the AMS-02 data and thus of little interest. The 4-µ channel provides a good fit to

the AMS-02 data, and comparison of the best fit point with bounds from FERMI/LAT is

shown in Figure 3.4 and discussed here.

The gamma-ray spectrum produced in χχ → φφ → µ+µ−µ+µ− consists of two main

components: 1) Final State Radiation and 2) photons produced by radiative muon decay.
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Figure 3.3: Same as Figure 3.2, but for the mediated 4-lepton channels. The solid blue
line is the Fermi/LAT bound for the 4-τ case, which excludes the best-fit AMS-02 values.
Empty circles are for the MED propagation parameters and filled circles are for the best-fit
propagation parameters. The 4-e and 4-µ Fermi/LAT bounds have not been calculated here,
but are likely to be weaker than their corresponding best-fit AMS-02 parameters (see the
text). Whereas the 4-e case does not provide a good fit to the AMS-02 data, the 4-µ case
does and thus survives as a viable alternative.
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The contribution to the photon spectrum from the radiative muon decay is subdominant to

the FSR off the muon if mφ � mµ [145]; which will be a valid assumption in our analysis,

since we concentrate on a scalar mediator of mass a few GeV or more. We thus take the total

gamma-ray spectrum produced to be solely sourced by FSR (dN
dE

= dNFSR
dE

). An analytical

approximation can be found for the photon spectrum given by FSR in the 4-µ case (Equation

[6] of [145]) (see also [146]).

dNFSR

dy
=

2α

πy

[
y2 + 2y

(
Li2

[mφ − 2mf

mφ −mf

]
− Li2[y]

)
+ (2− y2) ln(1− y) +

(
ln
[m2

φ

m2
f

]
− 1
)

{
2− y2 + 2y ln

[(mφ −mf )y

mφ − 2mf

]
−

(m2
φ − 2m2

f )y

(mφ −mf )(mφ − 2mf )

}
− y

2m2
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φ

{
2m2

f

(
2− ln
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fy

2
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])
− 3mfmφ

(4

3
− ln

[ mf (mφ −mf )y
2

(mφ − 2mf )2(1− y)

])
+m2

φ

(
1− ln

[ (mφ −mf )
2y2

(mφ − 2mf )2(1− y)

])}]
.

Here y = E/mχ, mφ is the mass of the scalar mediator, mµ is the muon mass, and α ≈ 1/137

is the fine structure constant. Utilizing Eq [3.7], we can proceed to calculate the Fermi/LAT

limits for the 4-µ annihilation channel. Figure 3.4 shows the 2σ Fermi/LAT dwarf limit for

the 4-µ case with a scalar mediator of mass mφ = 10 GeV (triangle blue curve), 100 GeV

(dashed blue) and 760 GeV (solid blue). The AMS-02 best-fit points for the 4-µ channel are

shown by red circles, determined using both MED propagation (empty circles) and the best-

fit propagation parameters (solid circles) [27]. Kinematically, the scalar mediator cannot be

heavier than the dark matter. Thus, the heaviest mediator mass considered is 760 GeV,

which is roughly the best fit dark matter mass to explain the positron excess in the AMS-02

data. Since mφ < mχ, the Fermi/LAT bound for mφ = 760 GeV (solid blue) does not

extend all the way down to 100 GeV. In conclusion, the Fermi/LAT dwarf galaxy bounds

do not exclude the 4-µ case [148]. A more comprehensive analysis, taking account also the

radiative muon decay (subdominant to the FSR considered here), is being done for the 4-µ

case by [157].

Reference [27] also considered the mixed 4-lepton case, with the best-fit 〈σv〉 shown

by the dotted red curve in Figure 3.3, using the MED propagation model. The best-fit

branching ratios are annihilation exclusively to taus for DM masses above 2 TeV, and a

mix of electrons and taus below that, though still dominated by the tau channel for the

masses shown. The Fermi/LAT constraint for these best-fit branching ratios is shown by

the dotted blue curve, which becomes identical to the single-channel 4-τ constraint above
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Figure 3.4: AMS-02 best-fit parameters and Fermi/LAT constraints on 〈σv〉 and mχ for the
4 − µ case. The gamma-ray spectrum is approximated by equation 3.7. Empty circles are
for the MED propagation parameters and filled circles are for the best-fit propagation pa-
rameters.The blue triangles, dashed and solid lines are the 2σ Fermi/LAT dwarf constraints
for a scalar mediator of mass mφ = 10 GeV, 100 GeV and 760 GeV, respectively. Since the
mediator cannot be heavier than the WIMP that produced it (mφ ≤ mχ), the Fermi/LAT
bound for mφ = 760 GeV stops at that mass. The Fermi/LAT dwarf galaxy constraints
using 4 years of data [148] do not rule out the 4-µ case.
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2 TeV. The AMS-02 best-fit 〈σv〉 and branching ratios are incompatible with the Fermi/LAT

data except at very high masses (mχ > 40 TeV). The analysis shown in Figure 3.3 includes

the case featured by Ref. [27] as their favored scenario: a combination between the four-tau

(75%) and four-electron (25%) channels for a DM mass between 0.5 and 1 TeV. This case is

ruled out by Fermi/LAT as an explanation of AMS-02 data (for mχ < 40 TeV). The caveats

discussed for the bb̄+`¯̀ case previously apply here: allowing the branching ratios to vary

from their best-fit values will change the Fermi/LAT constraints and could potentially bring

these experimental results into line for this model. The τ channel would need to be strongly

suppressed for that to occur, which implies branching ratios far different than the best-fit

case. An example where this happens is the predominantly 4-µ case which remains a viable

model.

In addition to bounds from γ-rays and antiprotons already discussed, there are other

observational constraints on a DM interpretation of the e+ excess seen in AMS-02. DM

annihilation products also include neutrinos. References [160–162] pointed out that a lep-

tophilic explanation of a positron excess should also produce large numbers of neutrinos

detectable in the IceCube neutrino observatory. Currently IceCube upper limits are in ten-

sion with the DM bestfit to the positron anomaly, assuming MED propagation parameters,

when DM annihilates into W+W− [163]. In addition, measurements of the CMB tempera-

ture and polarization provide constraints on the annihilation cross section of DM [164–169].

After the first release of our work, new results from the Planck collaboration were released;

imposing strong bounds on the annihilation cross-section, and mostly ruling out the DM sce-

nario [15]. Even in this case, γ-ray searches remain useful as they provide a complementary

probe of DM that is independent of assumed CMB physics.

3.5 Summary

In summary, we have used the Fermi/LAT dwarf galaxy data in order to constrain dark

matter as an explanation of the positron excess seen in HEAT, PAMELA, and AMS-02. In

particular, this chapter has focused on the annihilation channels that best fit the current

AMS-02 data [27]. We first considered the single channel case of DM annihilating directly

to bb̄ and leptons `¯̀, as well as to 4-leptons (via a mediator φ); we then considered the

multi-channel case where annihilation proceeds through a combination of channels. We used

bb̄ as our proxy for all other quarks, gauge bosons, and Higgs bosons, since the spectra and

amplitudes are similar, but considered each lepton flavor separately. For the single channel

case, we found that dark matter annihilation into {bb̄, e+e−, µ+µ−, τ+τ−, 4-e, or 4-τ} cannot

both provide a good fit to AMS-02 and avoid the 2σ upper limit from Fermi/LAT. The AMS-
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02 best-fit branching ratios and 〈σv〉 used for the analysis of this work assume either the MED

propagation model defined in Refs. [158, 159] or the best-fit propagation parameters [27].

Multi-channel annihilations are also highly constrained by Fermi/LAT’s measurement of γ-

ray flux. We use the MED propagation model parameters for the mixed channel cases, but

doubt that other reasonable choices of cosmic ray propagation parameters would change our

results. Specifically, we find that the Fermi/LAT 2σ upper limits, assuming the best-fit

AMS-02 branching ratios, exclude the annihilation into a combination of bb̄ and the three

leptons for DM masses 600 GeV ≤ mχ ≤ 100 TeV. In addition, the Fermi/LAT upper limit is

incompatible with the AMS-02 best fit 〈σv〉 and branching ratios for annihilation into a mix of

the mediator driven 4-lepton channels except for very high masses (mχ ≥ 40 TeV). However,

this does not rigorously imply that the results from AMS-02 and Fermi/LAT are in strong

conflict for all multi-channel cases, as the Fermi/LAT constraints will vary if the branching

ratios are allowed to deviate from their best fit AMS-02 values. In order to reconcile both

experiments, the branching ratios considered would have to deviate significantly from their

best-fit values. We find that the dark matter annhiliation into 4-µ provides a good fit to the

AMS-02 data and escapes Fermi/LAT constraints. The reason for the 4-µ channel escaping

Fermi/LAT upper limits is that it provides positrons in abundance for the AMS-02 signal,

while photon production is suppressed. Hence, for the best-fit branching ratio to the AMS-02

data, we find only one viable DM annihilation channel that survives Fermi/LAT constraints

and provides a good fit to the current AMS-02 data: the 4-µ channel.

We briefly mention ways around these conclusions. First, for the mixed channel cases we

have only studied the best fits to AMS-02 data (found in Ref. [27]). It is possible that there

are other branching ratios that still provide reasonably good fits (though not the best fits)

to the AMS-02 data that are not ruled out by Fermi/LAT bounds from dwarf spheroidals.

A joint statistical analysis of the AMS-02 and Fermi/LAT would be required to check for

other alternatives. Second, although it is extremely unlikely that the boost factor required

by the AMS-02 data is due to a nearby clump of DM that is 100–1000 times as dense as

its surroundings, perhaps part of the boost factor is due to a clump of, say, a factor of 10

(again, unlikely). In that case the required annihilation cross-section to explain the AMS-02

data could be lower, and more channels would remain viable. Third, it is possible that part

of the AMS-02 signal is due to pulsars, and part due to DM annihilation. Again, more

DM annihilation channels might then still remain compatible with Fermi/LAT bounds from

dwarf spheroidals. These latter two caveats would also apply to bounds on these scenarios

from the CMB including those expected from upcoming Planck data.
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Chapter 4

MSSM A-funnel and the Galactic

Center Excess: Prospects for the LHC

and Direct Detection Experiments

This chapter was completed in collaboration with Katherine Freese, Bibhushan Shakya

and Nausheen Shah [28].

4.1 Introduction

The Galactic Center (GC) of the Milky Way galaxy is the densest dark matter region in

our vicinity and has long been earmarked as the most promising target for searches of dark

matter (DM) signals. Intriguingly, recent years have seen a persistent and statistically signif-

icant excess in the gamma ray spectrum peaking at 2−5 GeV originating from the GC, above

what is predicted from known sources and conventional astrophysics [170–181]. The signal

was initially reported to be compatible with ∼ 40 (10) GeV dark matter annihilating into bb̄

(ττ), with an annihilation cross section 〈σv〉 ∼ O(10−26) cm3/s. Since this is approximately

the annihilation cross section expected of a thermal relic, a dark matter interpretation of this

excess presents itself as a very tantalizing possibility. This prospect has been explored by

many authors in various contexts (see, for instance Refs. [178, 179, 184, 185] and references

therein), including the Minimal Supersymmetric Standard Model (MSSM) [29, 187–189].

More recently, it has been shown that this excess might be attributable to unresolved point

sources [190–192], although a conclusive verdict has not been reached.

Recently, the Fermi-LAT Collaboration has presented an analysis of the region around

the GC with four different variants of foreground/background models, finding, for every
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variant, significant improvements in the agreement with data when an additional component

centered at the GC with a peaked profile (NFW, NFW-contracted), i.e. a dark matter-like

spectrum, was included in the fits [24,193] (see also Ref. [181] for an attempt at accounting

for systematic uncertainties in the background). From a dark matter perspective, a recent

study [29] found these additional components for the four choices of background models to

be compatible with several annihilation channels (WW,ZZ, hh, tt̄) and significantly higher

DM masses (165 GeV for bb̄, 310 GeV for tt̄) than previously thought possible. Similar

conclusions were also reached in Refs. [188] and [189], which reported that a higher mass

(175− 200 GeV) dark matter annihilating into tt̄ could give reasonable fits to the signal.

This relaxation of the allowed range of dark matter masses compatible with the GC

excess has particularly interesting implications for MSSM dark matter, as it opens up the

possibility of explaining the signal with the well-known pseudoscalar resonance or “A-funnel”

mechanism, where the dark matter relic density is set by resonant s-channel annihilation

through the pseudoscalar A, with mA ≈ 2mχ (χ represents the lightest neutralino, which

is the dark matter candidate). The pseudoscalar resonance has been studied in connection

with the Galactic Center Excess outside the MSSM in Refs. [195,197,198]; however, realizing

the mechanism in the MSSM is of particular interest given that the MSSM remains one of

the most familiar and widely studied Beyond the Standard Model (BSM) theories. Previous

fits to the Galactic Center Excess with mχ <∼ 50 GeV did not allow for this possibility in the

MSSM due to constraints on mA from direct LHC searches [199,200] (although this constraint

can be circumvented in the the Next-to-Minimal Supersymmetric Model (NMSSM), allowing

for an NMSSM explanation of the Galactic Center Excess [197, 201]). This incompatibility

is lifted if, as discussed in Ref. [29], mχ <∼ 165 (310) GeV annihilates into bb̄ (tt̄), allowing

for mA large enough to evade collider constraints.

The aim of this paper is to explore whether, given this wider range of allowed masses,

the MSSM pseudoscalar resonance can give reasonable fits to the Galactic Center Excess,

consistent with stringent constraints from relic density, indirect/direct detection, collider

search limits, and Higgs data. Since the mechanism requires a light (∼ 200 − 500 GeV)

pseudoscalar, the SM-like nature of the 125 GeV Higgs boson is particularly constraining as

the heavier CP-even Higgs is at the same mass as the pseudoscalar and can mix with the 125

GeV Higgs, resulting in deviations from SM-like properties inconsistent with measurements.

For such light, non-decoupled heavier Higgs bosons, the Higgs sector needs to be “aligned”

[202–207] to maintain SM-like properties for the 125 GeV mass eigenstate. As we will show

in this paper, this can indeed be achieved while simultaneously satisfying all other DM

requirements.

A successful realization of neutralino dark matter along with the Galactic Center Excess

43



through the pseudoscalar resonance requires very precise choices of parameters in order to

simultaneously achieve resonant annihilation, the Higgs mass, and alignment in the Higgs sec-

tor (this is also the reason why extensive scans in the MSSM parameter space [29, 187–189]

fail to uncover it as a viable explanation of the Galactic Center Excess). It is neverthe-

less worthwhile to pursue this direction for several reasons. First, the A-funnel is one of

several “traditional” mechanisms in the MSSM that have been widely studied for a long

time, and its compatibility with a possible DM signal is therefore of considerable interest.

Second, while most scenarios put forward to explain the Galactic Center Excess could poten-

tially be constrained by stringent spin-independent direct detection limits (indeed, avoiding

these limits itself involves some nontrivial fine-tuning of parameters in supersymmetric mod-

els [208–210]), the A-funnel naturally gives small direct detection cross sections and is auto-

matically safe from these bounds. Most importantly, the framework is eminently predictive,

giving very specific predictions for heavy Higgs bosons that will be probed at the 13 TeV

LHC and future colliders, as well as direct detection cross sections that may be probed by

the next generation of experiments. Independent of these considerations, and independent

of the applicability to the Galactic Center Excess, this study serves as a valuable template

of the conditions necessary for the existence of a light pseudoscalar in the MSSM together

with indirect detection signals of dark matter via the A-funnel.

The outline of the paper is as follows. Section 4.2 introduces the parameter space relevant

for the study and discusses dark matter aspects such as the annihilation cross section and relic

density. Section 4.3 is devoted to a discussion of various constraints from direct detection,

indirect detection, collider constraints, Higgs data, and vacuum metastability. Section 4.4

presents the details of our scans and the best fit regions to the Galactic Center Excess.

Predictions for the 13 TeV LHC and future direct detection searches are presented in Section

4.5. We summarize our results in Section 4.6. The Appendices contains additional details

on the MSSM parameters and fits to the Galactic Center Excess.

4.2 The MSSM Pseudoscalar Resonance: Dark Matter

Aspects

InR-parity conserving supersymmetric models, the lightest supersymmetric particle (LSP)

is stable. If it is also neutral, it can be a dark matter candidate. In the MSSM, the LSP is

often assumed to be the lightest of the neutralinos, the neutral superpartners of the gauge

bosons and Higgs bosons (Bino, Wino and Higgsinos respectively). The Wino and the Hig-

gsinos tend to annihilate too efficiently to explain the observed dark matter abundance.
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However, the Bino can yield the correct relic density via various mechanisms, including res-

onant annihilation via the pseudoscalar, and has long been regarded as the favored dark

matter candidate.

We perform our study in the phenomenological MSSM (pMSSM) [211], which is defined

in terms of 19 parameters, which are taken to be independent at the weak scale. Of these,

our analysis will be entirely determined by the following seven parameters:

• M1, the Bino mass parameter. The dark matter is mostly Bino, so this is also approx-

imately the mass of the dark matter candidate mχ ≈M1.

• µ parameter. This is the Higgsino mass, and controls the Higgsino fraction in the dark

matter particle χ. As we will see later, the relic density, signal strength, and direct

detection cross section all depend sensitively on this fraction.

• tan β, the ratio of the up- and down-type Higgs vacuum expectation values (vevs).

• mA, the heavy Higgs mass. This is the mass of the pseudoscalar that mediates the

resonance (hence mA ≈ 2mχ) as well as the mass of the heavier scalar, which feeds

into Higgs phenomenology and expected direct detection cross-sections.

• mQ3 ,mu3 , the left and right handed stop masses, which contribute significantly to the

mass of the observed 125 GeV Higgs boson. In this paper we take the stop mass scale

M2
S ≡ m2

Q3 = m2
u3.

• At, stop trilinear coupling. This determines the mixing in the stop sector and is again

a relevant parameter for the mass of the observed Higgs boson.

All other masses, such as the other gaugino (wino and gluino) and sfermion masses, are

assumed to be heavy and decoupled from the analysis.

4.2.1 Relic Density and Signal Strength

Both the relic density and the present day annihilation cross section are driven by the

process χχ → ff̄ with the pseudoscalar A in the s-channel (we are interested in the case

where the fermion f is either b or t for compatibility with the Galactic Center Excess). When

the process occurs close to resonance, it is well-known that the annihilation cross-section in

the early universe (which sets the relic density at the time of freeze-out) is substantially

different from that at present times (which sets the signal strength fitting the Galactic

Center Excess) due to thermal broadening of the resonance during the former stage [212].

Thus, with appropriate parameter choices, one can scale the relic density and the present
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annihilation cross section independent of each other, thereby achieving better agreement

with both measurements; this degree of freedom is not afforded in non-resonant scenarios,

where these two quantities are strictly related to each other.

To understand this interplay, consider a simplified model describing a Majorana DM

particle χ coupled to a pseudoscalar A through the interaction Lagrangian

−Lint = iyaχχAχ̄γ
5χ+ iyaffAf̄γ

5f. (4.1)

The entire parameter space of the model is then determined by mA,mχ, yaχχ and yaff . A

crucial parameter in our analysis is the degeneracy parameter

δ = |1− 4m2
χ/m

2
A|, (4.2)

which characterizes the proximity to the resonant regime. We are interested in scenarios

where δ ≈ 0.

The resonant annihilation cross-section at a given temperature T is [212]

〈σv〉 '
3e−xδx3/2δ1/2y2

aχχy
2
affm

2
χ√

πm3
AΓA

, (4.3)

where x = mχ/T and ΓA is the decay width of A,

ΓA ' mA

16π
(y2
aχχ + 6y2

aff ). (4.4)

This gives the relic abundance

Ωh2 =
3.12× 10−12m3

AΓa

(GeV)2m2
χy

2
aχχy

2
affErfc

[√
xfδ
] , (4.5)

where xf is the value of x at freeze-out. This expression can be rewritten in a more illumi-

nating form as [197]

Ωh2 ∼ 0.12

(
m2
A

4m2
χ

)( mA

220 GeV

)2
[
y−2
aχχ + (δ/6) y−2

aff

105

](
Erfc[1.325]

Erfc
[√
xf δ

]) . (4.6)

Likewise, the DM annihilation cross-section today is

σv
∣∣
v=0

' 3

2π

y2
aχχy

2
affm

2
χ

(m2
A − 4m2

χ)2 +m2
AΓ2

A

. (4.7)
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Assuming that mA ∼ 2mχ so that the second term dominates in the denominator, one

obtains (for 2mχ < ma) [197]

σv
∣∣
v=0

∼ 2× 10−26cm3

(
4m2

χ

m2
A

)(
220 GeV

mA

)2
10−5

(yaχχ
yaff

δ
6

+
yaff
yaχχ

)2
. (4.8)

Comparing Eq. 4.6 and Eq. 4.8, it is clear that the relic density and the current annihila-

tion cross-section can be independently scaled with judicious choices of yaff and yaχχ
√
δ/6.

In terms of the fundamental MSSM parameters, these couplings are given by:

yabb =
imb tan β√

2v
, yatt =

imt√
2v tan β

, (4.9)

yaχχ = ig1N11(N14 cos β −N13 sin β), (4.10)

where v = 174 GeV and g1 is the SM U(1)Y gauge coupling. Note from the above that

a non-vanishing yaχχ coupling requires a non-vanishing Higgsino component in χ. From

the expressions for N11, N13, N14 listed previously, we thus see that, for given values of mA

and tan β, the desired relic density and an annihilation cross-section consistent with the

Galactic Center Excess can be obtained simultaneously by appropriately choosing µ and δ

(equivalently, mχ).

4.3 Constraints on the Pseudoscalar Resonance

As mentioned in Sec. 4.1, the relevant A-funnel parameter space is constrained from

several directions. Higgs phenomenology in our set-up is very directly linked to the Galactic

Center Excess, hence LHC direct searches as well as the properties of the observed 125 GeV

Higgs put stringent constraints on this scenario. Consistency with all collider observables can

then create tension with constraints from requiring the stability of the electroweak vacuum.

In addition, since the CP-even heavy Higgs H is expected to be approximately degenerate

in mass with A, contributions to the spin-independent direct detection cross-section from

H-exchange might be relevant. Finally, there are also several current and future indirect

detection experiments that can probe the process of interest in this paper. In this section

we detail the current status and future prospects in all of these different directions.

4.3.1 Collider and Higgs Sector Constraints

In the absence of CP-violation (which we assume in this paper), the physical spectrum

of the Higgs sector consists of two CP-even Higgs bosons, h and H, one CP-odd state A,
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and a pair of charged Higgs bosons, H±. Direct searches for these heavier Higgs bosons at

the LHC rule out a significant part of parameter space. ATLAS and CMS direct searches

for charged Higgs bosons [199,200] rule out mH+ ≤ 160 GeV (recall that m2
H+ = m2

A +m2
W

at tree level). Likewise, there exist strong limits from searches for A/H → ττ [213], which

provide the strongest limits, although these depend on tan β and can be evaded for small

values of tan β.1

Beyond these direct constraints, a small mA is still in tension with Higgs data, as a light

CP-even Higgs (mH ≈ mA in the MSSM) tends to mix with the 125 GeV state and cause

deviations from SM-like properties. This is a particularly strong constraint in our framework

and dictates what values our parameters can take. In order to maintain a SM-like light higgs,

we want to identify the lightest CP-even mass eigenstate, h, with the recently observed 125

GeV scalar. Given that all measurements suggest that its properties are SM-like, we also

want to identify it as the SM-like field in the Higgs basis. This requirement can be achieved

if the following expression is satisfied [202,203]

tβ cβ−α '
−1

m2
H −m2

h

[
m2
h +m2

Z +
3m4

tXt(Yt −Xt)

4π2v2M2
S

(
1− X2

t

6M2
S

)]
' 0 , (4.11)

where MS is the geometric mean of the stop masses and

Xt ≡ At − µ/tβ , Yt ≡ At + µ tβ . (4.12)

Note that when the second Higgs becomes heavy (mH >> mh), this relation is automatically

satisfied; this is the familiar decoupling effect. Otherwise, one requires alignment without

decoupling [202, 203], brought about by an accidental cancellation in the fundamental pa-

rameters of the theory so as to satisfy Eq. 4.11. For small tβ and MS ∼ O(1) TeV, large

values of At/MS are required to obtained an experimentally consistent Higgs mass whereas

large values of (µAt)/M
2
S lead to close to alignment conditions [202,203].

The CMS and ATLAS collaborations present both the precision measurements of the

125 GeV Higgs and the searches for H → WW/ZZ as ratios to the expectations from a SM

Higgs of the same mass. The predicted rate at the LHC for the decay of the mass eigenstate

1Light mA/mH and heavily mixed stops (as usually needed for a 125 GeV Higgs in the MSSM) can also
give large contributions to various flavor observables, for example Bs → µ+µ− and B → Xsγ. However,
in this work we will mainly be interested in moderate to small value of tanβ, hence there is no large
enhancement of these effects. Moreover, the size of these contributions are heavily dependent on the signs
of various contributions (see e.g. Ref. [214]), and consistency with all measured values could be obtained by
tuning such cancellations.
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i = {h,H} into some final state XX as a ratio to the SM value is given by

Ri
XX = (σi/SM)× (BRi

XX/SM) . (4.13)

where SM in the denominators denote the corresponding values for a SM-like Higgs of the

same mass. For a 125 GeV SM-like Higgs, the dominant decay mode is into a pair of b-

quarks (∼60%), followed by WW ; hence the total width is dominated by the width into b

quarks. The largest deviation from mixing effects is expected in the precision measurements

of h → WW . This number is reported to be Rh
WW = 1.16+0.24

−0.21 by ATLAS [215] and

Rh
WW = 0.83 ± 0.21 by CMS [216]. In our analysis we will take a conservative approach of

assuming that observational consistency is obtained (that is, the Higgs sector is sufficiently

aligned) for Rh
WW between 0.7 − 1.3. This range will narrow with additional data, and

measurements at the level of 10% are expected at the high luminosity LHC [217,218].

4.3.2 Vacuum Metastability Constraints

Another important constraint on these parameters comes from vacuum metastability.

Large values of the soft stop trilinear coupling At, required for the Higgs mass and alignment

(discussion above), can result in the appearance of charge- and color-breaking minima in the

scalar potential of the MSSM. The condition for either these minima to be energetically

unfavorable or the tunneling to these minima to have lifetimes longer than the age of the

Universe leads to the approximate bound [219]

A2
t
<∼

(
3.4− 0.5

|1− r|
1 + r

)
m2
T + 60m2

2, (4.14)

where m2
T = m2

Q3
+ m2

u3
,m2

2 = m2
Hu

+ µ2, and r = m2
u3
/m2

Q3
. In our analysis we assume

m2
Q3 = m2

u3 ≡ M2
S, so that r = 1. Minimization conditions of the Higgs potential give

m2
2 = m2

A cos2 β+0.5m2
Z cos(2β), hence the condition for vacuum metastability can be written

as

A2
t
<∼ 6.8M2

S + 60m2
A cos2 β + 30m2

Z cos(2β). (4.15)

It is worth keeping in mind that this is only an approximate bound and depends on several

assumptions (see Ref. [219] for details). However, consistency with the above provides a

rough guide for the feasibility of the parameter region under investigation.

49



4.3.3 Direct Detection Constraints

Direct detection possibilities focusing on the A-funnel in the MSSM have been studied

in Refs. [221–223]. The pseudoscalar A does not mediate spin-independent WIMP-nucleon

scattering. Instead this cross section σSI comes from light and heavy CP-even Higgs boson

exchanges in the t-channel, facilitated by the Bino-Higgsino mixture of the LSP necessary to

obtain the correct relic density. There are also contributions from tree level squark exchange

in the s-channel and from gluon loops [224,225], but these are negligible when the sfermions

are heavy. The cross section then depends only on M1, mA, tan β and µ.

For given values of mA and tan β, requiring the correct relic density and Galactic Cen-

ter Excess leaves no free parameters, thereby fixing the direct detection cross section. For

the correct dark matter relic density obtained via the A-funnel, this cross section is gener-

ally around 10−11 pb [221–223,226], well below existing bounds from XENON100 [227] and

LUX [228], which currently rule out σSI >∼ 5 × 10−10 pb. Note that while the annihilation

processes that determine the relic density as well as indirect detection signals are s-channel

and therefore enhanced by the resonance, the direct detection cross-section is mediated by

t-channel processes and does not receive this enhancement. Such small direct detection cross

sections are therefore a generic feature of this region of parameter space. Crucially, this

cross section still lies above the neutrino background and is therefore within reach of future

detectors, although detection will still be challenging.

As is well-known, an exception to this generic feature can occur for negative values of the

µ parameter due to destructive interference between the light and heavy Higgs exchange con-

tributions, giving cross sections several orders of magnitude below the neutrino background

cross section [221,223]. Such blind spots can in general occur at any dark matter mass, but

their appearance in the A-funnel framework is more strongly constrained as we also need

mH ∼ mA ∼ 2mχ. Approximating the up- and down-type quark content in the nucleus

as roughly equal, this cancellation condition in the A-funnel region can be formulated as

approximately [221]

mA ∼
(
−2µm2

h tan β
)1/3

. (4.16)

With TeV scale values of µ necessitated by relic density constraints and O(1) values of tan β

required by collider constraints (see Sec. 4.3.1), Eq. 4.16 implies that the cancellation can

only occur for large mA >∼ 650 GeV, beyond the mass range of interest from the point of view

of the GeV excess. Hence all parameter combinations of interest should predict a small but

tractable (∼ 10−11 pb) direct detection cross section (we will see in the subsequent sections

that this in indeed realized, see Fig. 4.6).
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4.3.4 Indirect Detection Constraints

Currently the strongest bounds on the annihilation cross section are given by the Fermi/LAT

analysis of 6 years of data on 15 known dwarf galaxies [23]. For 100− 300 GeV dark matter,

which is our region of interest, this analysis constrains the annihilation cross-section to be

less than ∼ a few×10−26 cm3/s. The cross section required to explain the Galactic Center

Excess is also in this region over this mass range (see [29]), hence the dwarf constraints are

in some tension with a DM interpretation of the Galactic Center Excess. However, the large

uncertainties in the dark matter distribution (J-factor) in these dwarf galaxies leave room for

compatibility (see Fig. 8 in Ref. [23]). For instance, the 95% C.L. annihilation cross-section

exclusion limit for a 100 GeV WIMP annihilating to bb̄ is 2.2 × 10−26cm3/s and has a 1σ

error interval of [9.0× 10−27, 5.6× 10−26] cm3/s, which is compatible with the cross section

interval [3.1 × 10−27, 8.8 × 10−26] cm3 needed to fit to the Galactic Center Excess at this

mass. A signal was reportedly seen in the new dwarf galaxy candidate Reticulum II [229],

found in the first year DES data [230], consistent with a dark matter of mass ∼ 40−200 GeV

annihilating into bb̄ with a cross section 〈σv〉 ∼ 10−26 cm3/s, although this was later found

to be inconsistent with the new PASS 8 diffuse emission model used to analyze Reticulum

II [231]. Bounds similar to those from the Fermi dwarf observations are also found by the

Planck satellite from CMB measurements [15].

Likewise, since DM of interest in this paper annihilates primarily through hadronic chan-

nels (bb̄ and tt̄), this is expected to generate a significant flux of antiprotons. There already

exists some tension between models that explain the Galactic Center Excess and derived con-

straints from antiproton bounds on dark matter annihilation [232–234]. However, calculation

of the antiproton flux suffers from significant uncertainties related to the propagation model

in the galaxy (see [234–237] and references therein), and the Galactic Center Excess can be

made compatible with the measured antiproton flux for conservative choices of propagation

model parameters.

Bounds on the dark matter annihilating cross-section into quarks are also obtained by

neutrino experiments like IceCube. The most current results from the IceCube-79 experiment

exclude 〈σv〉 ≥ 2 × 10−22 cm3/s into bb̄ at 90% confidence level [238]. This lower limit is

∼ 104 larger than the cross-section required for the Galactic Center Excess [29] and thus

irrelevant.

Therefore, no indirect detection results robustly rule out a DM interpretation of the

Galactic Center Excess at present, although future measurements, particularly from Fermi-

LAT observation of dwarfs, AMS-02 antiproton results, and the CMB could have interesting

implications.

51



4.4 Numerical Results

Building on the parameter space and constraints described in the previous sections,

we present the fits to the Galactic Center Excess excess in this section. We used the

following tools for our numerical analysis: the neutralino relic abundance and annihila-

tion cross-section was calculated with Micromegas-4.1.7 [239], the MSSM particle spectra

were computed using SuSpect-2.41 [240], and the Higgs phenomenology was obtained with

FeynHiggs-2.11.0 [241–245].

For the gamma ray spectrum corresponding to the signal, we follow the approach em-

ployed in Ref. [29] and consider two of the four spectra presented in Fig. 13 of Ref. [24]2,

which were derived by fitting the excess over various choices of background as exponentially

cut off power laws (see Ref. [29, 193] for further details). The four spectra are referred to

as spectra (a)-(d) in Ref. [29], and just as they do, we pick spectra (b) and (d) for our

analysis; spectrum (a) is very similar to what has been studied for light (mχ <∼ 40 GeV) DM

in previous papers and not amenable to the MSSM, whereas spectrum (c) is very similar to

spectrum (d) and does not yield any new insight.

Spectrum (b) corresponds to a fit with OB stars as cosmic ray (CR) sources and a tuned

index for pion production within the solar circle (see [24,193]); the analysis in Ref. [29] found

it to be well fit by 75 − 95 GeV DM annihilating into bb̄ or <∼ 200 GeV DM annihilating

into tt̄. Annihilation into gauge or Higgs bosons were also found to give good fits, but

these are irrelevant for our analysis since they are always subdominant channels in the

MSSM pseudoscalar resonance scenario. Note that spectrum (b) is also in agreement with

other studies performed in Refs. [188] and [189], which also found that 175− 200 GeV DM

annihilating into tt̄ could be compatible with the Galactic Center Excess. Likewise, spectrum

(d) corresponds to a fit with OB stars as cosmic ray (CR) sources but with only the intensity

of pion production tuned (using pulsars instead of OB stars gives a very similar spectrum);

Ref. [29] found it to correspond to higher mass DM, with 130 − 165 GeV DM annihilating

into bb̄ or 250− 310 GeV DM annihilating into tt̄ giving good fits.

In this section, we will perform fits to the two spectra (b) and (d) with the idea of

gaining intuition about the range of possibilities that the Galactic Center Excess allows for

the MSSM pseudoscalar resonance. We note that the continuous region spanning spectra

(b) and (d) could also plausibly explain the Galactic Center Excess for some reasonable

background, but do not pursue this direction any further.

2The first version of our paper used the spectra presented in Ref. [193], and Ref. [24] is the corresponding
publication that recently appeared; we have chosen the spectra from Ref. [24] that correspond most closely
to the spectra we used in the first version.
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4.4.1 Fit Procedure

The astrophysical information regarding the distribution of dark matter is encoded in

the J-factor

J =
1

∆Ω

∫
∆Ω

∫
l.o.s.

ρ(r)2dsdΩ = J × J̄can., (4.17)

where ∆Ω is the region of interest, l.o.s. stands for line of sight, and ρ is the dark matter

density. J̄can. = 2.0 × 1023GeV2/cm5 is the canonical value of the J-factor obtained

from evaluating the integral with an NFW profile. Following the analyses in Ref. [29], we

parametrize the uncertainty in the dark matter density profile with the factor J , which is

allowed to vary between [0.14, 4].

The gamma-ray spectrum is computed for the following MSSM parameters:

• The pseudoscalar mass is allowed to vary over 200 GeV ≤ mA ≤ 700 GeV. Below

200 GeV, we find that the Higgs sector cannot be sufficiently aligned while remaining

consistent with bounds from H/A → τ+τ− from the 8 TeV LHC run. We terminate

the scan at 700 GeV since good fits to the Galactic Center Excess (either spectrum (b)

or (d)) are not expected for mχ ≥ 310 GeV.

• tan β is scanned over the range 4 ≤ tan β ≤ 10. Below tan β = 4, extremely heavy

(multi-TeV) stop masses are required to reproduce the Higgs mass, and large log re-

summations become important. Above tan β ∼ 10, mA <∼ 350 GeV is inconsistent with

the LHC H/A → τ+τ− bound. Masses heavier than this do not give good fits to the

Galactic Center Excess since mA >∼ 310 GeV (mχ >∼ 165 GeV) requires annihilation

primarily into tt̄, but for large values of tan β the leading annihilation channel for the

pseudoscalar is into bb̄.

• For given values of mA and tan β, we next scan over δ (equivalently, mχ as shown in

Eq. 4.2) and µ for points such that

– the relic density constraint is satisfied: the neutralino makes up all of dark matter

(0.08 ≤ Ωh2 ≤ 0.16); and

– the annihilation cross section 〈σv〉 is within the 2σ best-fit annihilation cross-

section contours from Ref. [29].

We scan over δ ∈ [0, 0.1] in order to stay close to resonance, and over µ ∈ [0.7, 10] TeV

in order to obtain a mostly bino DM.

• Next, we scan over the stop masses (MS = mQ3 = mu3) ∈ [0.7, 12.7] TeV and the stop

trilinear coupling At ∈ [5, 25] TeV for points satisfying
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– 122 ≤ mh ≤ 128 GeV; and

– alignment in the Higgs sector.

We take the branching ratio to WW normalized to the SM value Rh
WW to be a measure

of alignment and select (for each mA, tan β, µ,mχ combination) the combination of MS

and At that gives Rh
WW closest to 1 while maintaining 122 ≤ mh ≤ 128 GeV.

• All other MSSM input parameters (gaugino/wino masses, trilinear couplings, slep-

ton/squark masses) are set to 5 TeV so that they decouple from this analysis.

The goodness of fit is obtained by performing a χ2 analysis between the gamma-ray

spectrum obtained from Micromegas and the Galactic Center Excess (Fermi spectra (b) and

(d)). For a given MSSM point, the χ2 is calculated as:

χ2 =
∑
k

(
E2
k
dN
dEk

(mχ, J̄ 〈σv〉)− E2
k

(
dN
dEk

)
obs

)2

σ2
k

, (4.18)

where the subscript k runs over the 20 energy bins of the Fermi/LAT measurement [193],

dN/dE is the gamma-ray spectrum obtained from Micromegas, the subscript obs denotes

the spectrum consistent with the Fermi excess (i.e. spectrum (b) or (d)), σk denotes the sta-

tistical uncertainty [29], and J̄ is the value of J ∈ [0.14, 4] that minimizes the χ2 value. The

χ2 analysis includes statistical errors, but neglects possible systematic errors from modeling

backgrounds near the Galactic Center. After the χ2 is computed, a likelihood ratio test is

performed in order to obtain the 1σ and 2σ best fit regions in the mA-tan β plane.

4.4.2 Fit Results

The fits resulting from the above procedure are presented in Fig. 4.1. Figure 4.1 shows

in red the 1σ and 2σ best fit contours in the mA-tan β plane for Fermi spectrum (b) and

(d). The green crosses in each panel denote the points with the best fit to the corresponding

spectrum; the gamma-ray spectra of these best fit points are presented in Fig. 4.2 along with

the MSSM parameters 3 In Fig. 4.1 we also include, in solid black lines, the 1-σ and 2-σ

bounds from A/H → τ+τ− searches at the 8 TeV LHC [213]; points that lie above these

curves in the shaded region are inconsistent with these bounds. These ττ searches, however,

lose sensitivity at low tan β, hence light pseudoscalars can mediate DM annihilations capable

of explaining the Galactic Center Excess in this region. The dashed blue lines correspond to

3It is worth keeping in mind that the absolute value of χ2 does not have a proper statistical significance
without a full analysis of all uncertainties in the signal and theory prediction.
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Figure 4.1: The red contours pertain to the 1σ and 2σ best fit regions in the mA-tanβ plane
from fitting the gamma-ray spectrum from the MSSM pseudoscalar resonance to Fermi
spectrum (b) (left panel) and spectrum (d) (right panel), corresponding to “OB stars index
scaled” and “OB stars intensity scaled” spectra from Fig. 13 of Ref. [24] (see Ref. [24,29,193]
for further details). The green crosses denote the best fit points. Solid black lines mark the
1-σ and 2-σ exclusion limits (shaded region above the solid black lines excluded) from the
negative search results for H/A → τ+τ− at the 8 TeV LHC run. Dashed blue lines denote
contours of the ratioRh

WW ; current Higgs data from the 8 TeV LHC favors 0.7 <∼ Rh
WW

<∼ 1.3
(see text for details).

contours of Rh
WW as defined in Eq. 4.13. Rh

WW = 1 represents a completely SM-like Higgs,

and any mixing with the non-SM Higgs causes deviations. Current Higgs data from the LHC

allow for 0.7 <∼ Rh
WW

<∼ 1.3, as discussed in Section 4.3.1. This leads to the requirement

of large µ and hence small couplings [c.f. Eq. 4.10] between A and χ. This generically

requires close to resonance conditions 2mχ ≈ mA for consistency with both the Galactic

Center Excess and relic density.

We found that the χ2 value did not change significantly between distinct values of (µ, δ, At,

and MS) for the same mA, tan β. This is expected, since the fit quality is driven by the shape

of the spectrum, which is controlled mainly by tan β via the branching ratios, and the position

of the peak, which is controlled by mA(≈ 2mχ). Although the fit should also depend on the

signal strength, which is controlled by µ and δ via the annihilation cross section and relic

density, the freedom in choosing J ∈ [0.14, 4], which essentially rescales the signal strength,
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Figure 4.2: Gamma-ray spectra for the best-fit points corresponding to the green crosses in
Fig. 4.1. The gamma-ray spectra from Micromegas (blue line) for the best fit points are
superimposed on Fermi spectrum (b) and spectrum (d) (black points) on the left and right
panels respectively. The gray band denotes statistical uncertainties (from [24]). Numerical
values of the corresponding MSSM parameters and the leading DM annihilation channels
are also listed. The value of the higgs mass, relic density, annihilation cross-section and
spin-independent scattering cross-section (mh, Ωh2, 〈σv〉, σSIp) for the best fit point of
spectrum-b/d are (126 GeV,0.082, 3.849 × 10−26 cm3/s, 1.689 × 10−12 pb)/(127 GeV,0.11,
3.56× 10−26 cm3/s, 4.392× 10−11 pb)

smears out this dependence. In our region of interest, we find that δ <∼ 0.04 while MS, At,

and µ all take multi-TeV values; we present contour plots of these parameters in Fig. B.1 in

Appendix B. The condition for vacuum metastability, Eq. 4.15, is also found to be satisfied

in most parts of the parameter space allowed by the 8 TeV LHC A/H → τ+τ− bounds (see

Fig. B.2 in Appendix B).

From the left panel of Fig. 4.1, the best fit regions to Fermi spectrum (b) appear to be

separated into two distinct islands. The mA <∼ 250 GeV region has relatively low χ2 for all

values of tan β. In this region, annihilation into top quark pairs is kinematically forbidden, so

the dominant annihilation channels is bb̄ for all values of tan β. Recall that an approximately

100 GeV DM particle annihilating into bb̄ can fit the Galactic Center Excess [29]; this region

reflects this behavior. However, we see that this region is incompatible with the 8 TeV

LHC A/H → τ+τ− bounds and/or the Higgs data (that is, Rh
WW

<∼ 0.7 in this region,

signaling that the heavier CP-even scalar is so light that alignment does not work well). A

second island opens up at 350 GeV <∼ mA <∼ 450 GeV, when annihilation into tt̄ becomes

kinematically feasible, and tan β <∼ 6. This is consistent with Ref. [29] finding a ∼ 200 GeV
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DM annihilating into tt̄ providing a good fit to spectrum (b). Note that the best fit point

occurs at the lowest allowed value of tan β(=4) in our scan, where the coupling of A to top

quarks is the largest. The fit deteriorates as tan β gets larger, as the branching ratio into bb̄

gets larger due to the tan β enhancement of the Abb coupling. This region is also compatible

with Higgs data as Rh
WW

>∼ 0.7, and safe from the current A/H → τ+τ− bounds. Beyond

this island, the fit deteriorates rapidly as mA and/or tan β are increased.

Similar patterns are observed for the fit to spectrum (d). A small region of good fit

exists at mA ∼ 300 GeV and low tan β, safe from the A/H → τ+τ− bounds and borderline

compatible with Higgs data. Again, DM in this region annihilates dominantly to bb̄ since

tt̄ is kinematically forbidden, and this observation is compatible with Ref. [29], where DM

with mass 130− 165 GeV annihilating into bb̄ was found to give good fits to the spectrum.

A second region with better fits is again observed for larger mA once decay into tt̄ opens

up. This regions roughly spans 450 GeV <∼ mA <∼ 600 GeV and tan β <∼ 8, and appears to

correspond to the 250 − 310 GeV DM annihilating into tt̄ region reported in Ref. [29] as a

good fit to spectrum (d). Similarly to spectrum (b), the best fit occurs for small values of

tan β : tan β ∼ 4.0. This suggests that a DM candidate that annihilates significantly into tt̄

with BR(χχ→ tt̄) = 0.66 at the best fit point) provides the best fit to spectrum (d). This

can be confirmed by comparing the shape of the spectrum in Fig. 4.2, right panel, which fits

the shape of Fermi spectrum (d) quite well. Finally, the fit deteriorates for larger mA and

tan β values and we do not expect any good fits beyond the region shown in the plot.

4.5 Predictions for the LHC and Direct Detection Ex-

periments

4.5.1 LHC Prospects

There are several projections for the 14 TeV LHC provided by the CMS and ATLAS

collaborations for heavy Higgs searches in [246, 247]. There are also several theoretical

studies showing the hypothesized sensitivity of the 14 TeV LHC in the mA− tan β plane due

to different search channels, for example Ref. [248]. In Figs. 4.3 and 4.4 we show the interplay

between possible interesting signatures for H/A searches at the LHC and the Galactic Center

Excess best fit regions in the mA− tan β plane, plotting contours of various branching ratios

of interest for H/A searches at the LHC. To highlight the regions of interest, we overlay the

2σ best fit regions from Fig. 4.1 as dashed blue lines for Fermi spectrum (b) in Fig. 4.3 and

spectrum (d) in Fig. 4.4. The gray shaded regions denote the current LHC exclusion limits

from searches for H/A→ τ+τ− at the 8 TeV LHC (1-σ and 2-σ as labeled). In both figures,
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Figure 4.3: Predictions for LHC. Top: BR(A → τ+ τ−) and BR(A → Z h). Middle:
BR(H → τ+τ−) and BR(H → W+W−). Bottom: BR(H → ZZ) and BR(H → hh).
Dashed blue lines show χ2 values from fitting the Galactic Center Excess to spectrum-b, as
seen in Fig. 4.1. The colored contour regions (and bar on the right) are each plot’s respective
branching ratio values. Shaded regions labelled 1-σ and 2-σ are the A/H → τ+τ− exclusion
limits.
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Figure 4.4: Same as Fig. 4.3 but with χ2 values from fitting the Galactic Center excess to
spectrum-d, as shown in Fig. 4.1.
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the two panels in the top rows show the branching ratios of the CP-odd Higgs: A → τ+τ−

(left) and A→ Zh (right). The lower four panels display the branching ratios for H → τ+τ−

(middle left), H → W+W− (middle right), H → ZZ (lower left) and H → hh (lower right).

The top row shows that both BR(A→ ττ) and BR(A→ Zh) are a few percent through-

out the parameter region of interest, with the former always comparable to or larger (in some

cases, by more than an order of magnitude). We can understand this behavior by noting

that due to the close to alignment conditions, the AZh coupling is very suppressed. Hence,

despite the tan β enhancement of the gluon fusion production of A, we find that the rates

for A → Zh are at least 2 orders of magnitudes smaller than the current exclusion lim-

its [249,250] and therefore unlikely to be probed even at the high luminosity LHC [246,247].

Due to the absence of any other relevant decay modes, the decays to down-type fermions

will still be the dominant decay modes and offer the best prospects for discovery of the

pseudoscalar.

For the heavier CP-even Higgs H, in addition to the τ+τ− channel, there are non-

negligible branching ratios into WW or hh despite being suppressed due to alignment (recall

that, close to alignment, H ≈ HNSM). These branching ratios are largest at low tan β below

the top mass threshold, whereas BR(H → τ+τ−) is larger at higher tan β. Note again that

in the low tan β region, the main production of H is via gluon fusion, which is enhanced due

to the large unsuppressed top coupling. We computed the rate of H → WW relative to the

SM expectation, RH
WW , which is shown as colored contours in Fig. 4.5. Current bounds on

RH
WW are at the level of 0.05− 0.25 [251], hence dedicated searches at the LHC could probe

the Galactic Center Excess best-fit regions, particularly for mA <∼ 350 GeV, where RH
WW

can be within a factor of 10 of the current exclusion limit [246,247].

For H/A heavier than about 350 GeV and low values of tan β (<∼ 7), both the CP-odd

and even Higgs bosons preferentially decay to top quark pairs. However, due to the large

SM tt̄ background, this is a very challenging signature for the LHC [252, 253]; nevertheless,

stronger sensitivity is expected at a 100 TeV collider [253]. The standard τ+τ− searches can

probe regions with larger values of tan β.

It should be kept in mind that, in addition to these searches for heavier Higgs bosons,

the good fit regions at low mA <∼ 350 GeV also predict deviations in Rh
WW (see Eq. 4.13 for

definition) at the 10% level or more, hence such deviations from SM-like properties of the

125 GeV Higgs could be a stark signal of this scenario. All of the above search modes as well

as the precision measurements of the 125 GeV Higgs are expected to improve substantially

in sensitivity with the higher luminosity and energy of the 13 TeV LHC [217,218].
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Figure 4.5: Shaded contours denote values of RH
WW . Gray shaded regions bounded by solid

black lines show 1-σ and 2-σ exclusions by the H/A→ τ+τ− searches from the 8 TeV LHC
run (excluded above). The dashed blue lines correspond to contours of Rh

WW .

4.5.2 Direct Detection

Our predictions for spin-independent direct detection experiments are plotted in Fig. 4.6,

which shows DM masses and spin-independent DM-nucleon (proton) direct detection cross

sections compatible with the Galactic Center Excess (Fermi spectrum (b) in blue, spectrum

(d) in red). We only show points within the 2σ best fit region that are compatible with

both the 2σ A/H → τ+τ− 8 TeV LHC constraints and 0.7 ≤ Rh
WW ≤ 1.3. As discussed in

Section 4.3.3, we see that DM via the pseudoscalar resonance corresponds to generic cross

sections of O(10−11)pb, and these are comfortably safe from the existing Xenon100 [227]

and LUX [228] bounds. A major fraction of the predicted parameter space can be probed

with the next generation of direct detection experiments such as Xenon1T and LZ [254]. We

note that almost all points predicted from our fit lie above the neutrino floor and therefore

a signal can in principle be detected. The green cross and star correspond to the best fit

points from Fig. 4.1 for spectrum (b) and (d) respectively.

4.6 Summary

To conclude, we summarize the main findings of this paper:

61



Xenon100

LUX

Xenon1T

LZ

Neutrino Background
+

*

50 100 200 500

10-13

10-11

10-9

10-7

mχ [GeV]

σ
p
,S
I
[p
b]

Figure 4.6: Dark matter masses, mχ, and spin-independent DM-nucleon (proton) direct
detection cross sections, σpSI , predicted by our fits to the Fermi Galactic Center Excess.
Points compatible with Fermi spectrum b (d) are in blue (red); we have only plotted points
with χ2 ≤ 50 and compatible with collider and Higgs data (see text). The green cross and
star correspond to the best fit points for spectrum (b) and (d) respectively. Fig. 4.1 shows
χ2 contour regions from fitting the galactic center excess to Fermi spectrum (b) and (d).
Current bounds (Xenon100, LUX), the reach of upcoming detectors (Xenon1T, LZ), and the
neutrino background floor are also shown [254].
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• Recent reanalysis of GC background has found that the Galactic Center Excess could

be consistent with annihilation of DM with much higher masses [29,188,189,193]. This

allows the Galactic Center Excess to be explained by the MSSM pseudoscalar resonance

or “A-funnel”. We fit to two different dark matter spectra, Fermi spectrum (b) and

(d) from [29, 193], and find that reasonable fits can be obtained while maintaining

consistency with stringent constraints from collider searches, Higgs data, and direct

and indirect detection.

• For spectrum (b), the best fit region corresponds to 350 GeV <∼ mA <∼ 450 GeV and

tanβ <∼ 6. This region can be probed with searches for H → WW and tt̄ resonance

searches. mA <∼ 250 GeV also gives reasonable fits but is incompatible with Higgs

data.

• For spectrum (d), there are two regions with reasonable fits to the Galactic Center

Excess: 450 GeV <∼ mA <∼ 600 GeV at tanβ <∼ 8, and mA ∼ 300 and tanβ <∼ 5.5. The

former region can yield signals at the LHC in the A/H → ττ or tt̄ resonance searches

at the LHC. The latter region can also be probed with the same channels, and should

also lead to measurements of deviations of the 125 GeV Higgs couplings from SM-like

values.

• The best fit regions for both spectra (b) and (d) predict spin-independent direct de-

tection cross sections of O(10−11)pb for a 110 GeV <∼ mχ <∼ 350 GeV neutralino. The

entire region lies above the neutrino background, and the majority of the region is

within reach of Xenon1T and LZ (see Fig. 4.6).

This exercise therefore leads to very sharp predictions for the next round of the LHC and

direct detection experiments. Although the best fits obtained in this paper are noticeably

worse than the best fit dark matter scenarios discussed elsewhere in literature, this highly

predictive framework, coupled with the wide popularity of the MSSM, makes these results

noteworthy. Even if the Galactic Center Excess turns out to be incompatible with the MSSM

pseudoscalar resonance and is ultimately explained by some other (dark matter or astrophys-

ical) phenomenon, this study still serves as a valuable template for the interplay between

existing collider and Higgs constraints and the indirect, direct, and collider signatures of the

A-funnel region with a light pseudoscalar in the MSSM.
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Chapter 5

New Dark Matter Detectors using

DNA or RNA for Nanometer

Tracking

This chapter was completed in collaboration with Andrzej Drukier, Katherine Freese,

David Spergel, Charles Cantor, George Church and Takeshi Sano [32].

5.1 Introduction

Looking forward to the future of dark matter detection, the following chapters of this

thesis focus on novel ideas for dark matter direct detection experiments. Thirty years ago,

Refs. [19, 257] first proposed that the most efficient laboratory mechanism for detecting

weakly interacting particles, including WIMPs, is via coherent scattering with nuclei. Soon

after [258] computed detection rates in the context of a Galactic Halo of WIMPs. Then

development of ultra-pure Ge detectors permitted the first limits on WIMPs [259]. Since

that time, a multitude of experimental efforts to detect WIMPs has been underway, with

some of them currently claiming detection. The basic goal of direct detection experiments

is to measure the energy deposited when weakly interacting particles scatter off of nuclei in

the detector, depositing 1-10 keV in the nucleus. Numerous collaborations worldwide have

been searching for WIMPs using a variety of techniques to detect the nuclear recoil. The

most difficult aspect of these experiments is background rejection. To avoid cosmic rays, the

experiments are placed deep underground. Yet radioactive backgrounds persist; fast neutrons

produced by cosmic rays are particularly difficult to differentiate from WIMPs. Important

tools in isolating a WIMP signal are the annual and diurnal modulations (AME and DME)
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that would be expected for WIMPs but not for backgrounds. Annual Modulation Effect:

Three of us showed in 1986 that the count rate in WIMP direct detection experiments

will experience an annual modulation [258,260] as a result of the motion of the Earth around

the Sun: the relative velocity of the detector with respect to the WIMPs depends on the

time of year. Thus the count rate in detectors should change with a cosine dependence on

time. During the past ten years the DAMA experiment [261] has observed such an annual

modulation. This experiment consists of a large number of NaI crystals situated in the Gran

Sasso Tunnel and currently reports a 9σ detection. The CoGeNT experiment [262], made

of germanium, also reported annual modulation. A third experiment, dilution-refrigerator

based CRESST-II [263], also announced count rate above expected background. The CDMS-

Si experiment claimed three events consistent with low-mass WIMPs [264]. There has been

much discussion as to whether or not these experiments may be consistent with the same

WIMP parameter range, e.g. [265, 266] Yet CDMS II sees no annual modulation [267], and

CDMS II [268] and SuperCDMS [269] find null results. As well, the measurements from the

Xenon based dark matter detectors, XENON [270] and LUX [272], are in tension with the

positive results of other experiments. The situation is perplexing.

Diurnal Modulation Effect:

A major step forward in the field of direct detection would be the development of detectors

with directional capability [273], i.e., the capability to determine which direction the WIMP

came from. As a result of the elastic scattering of WIMP off of a nucleus in the detector,

the nucleus gets kicked in a forward direction. Thus by determining the track of the nucleus

one could identify the direction of the incoming WIMP (Figure 5.1). The WIMP flux in the

lab frame is peaked in the direction of motion of the Sun (which happens to be towards the

constellation Cygnus). Hence the recoil spectrum for most energies should be peaked in the

direction opposite to this. The event rate in the backward direction is expected to be ∼ 10

times larger than that in the forward direction [273,274]. A directional detector which could

measure the direction of the recoiling nuclei from the interaction is required to detect this

’head-tail’ asymmetry. Given the capability of ascertaining this asymmetry, the statistical

requirements to show a WIMP detection would only require ∼ 30-100 WIMPs [275–277]. In

a second generation of directional detection experiments, the measurement of the diurnal

variation of the count rate due to the daily rotation of the Earth could provide further

information. Measurements of both the annual and diurnal modulations could then provide

a ”smoking gun” for the existence of WIMPs. In addition, any galactic substructure in the

WIMP density, such as tidal streams, could show up as spikes coming from one particular

direction in a directional detector.
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Limitations of existing detectors:

The goal is to obtain the track of the recoiling nucleus after it has been hit by a WIMP.

Yet in existing detectors the track length is much shorter than the resolution of the detectors.

The length of the track of the recoiling nucleus is predicted by Lindhard Theory [278]. The

range of recoiling nuclei is super-short, often below 10 nm, while existing detectors have

spatial resolution of a few microns. In both typical solid state detectors as well as liquid

xenon detectors, the range is 100 times shorter than the spatial resolution. As a consequence,

in prior designs of ”directional detectors”, the density of the detectors must be brought low

enough to increase the recoil range. For example, it is proposed to use Xe gas pumped to

0.1 Atmosphere [279–281]. A difficulty of this proposal is that such a huge volume of gas

must be placed underground and shielded against radioactivity.

Polynucleotide based detector:

In this paper we describe a smaller and less expensive alternative: detectors made of

DNA or RNA may provide nanometer resolution for tracking, energy threshold below 0.5

keV, and can operate at room temperature. One implementation consists of a large number

of thin foils of gold (Au) with strings of single stranded nucleic acids hanging down from

them as shown in Figure 5.3. In this paper we take gold to be the target material of the

detector; but a variety of other materials could also be used instead, as detailed in the

Appendix. For simplicity, however, we will call it Au/ssNA detector even if any metal can

be used. The nucleic acid strands all consist of identical sequences of bases (combinations

of A,C,G,T), with an order that is well known. An incoming WIMP from the Halo of our

Galaxy strikes one of the gold nuclei and knocks it out of the film with ∼ 10 keV of energy.

The Au nucleus traverses a few hundred nucleic acid strands before stopping. Whenever it

hits the nucleic acids, it has a high probability of severing the single stranded nucleic acid

strand. The cutoff segment of nucleic acid falls down onto a capture foil and is periodically

removed. The locations of the breaks are easy to identify via a plurality of NA sequencing

techniques: the broken segments can be copied using Polymerase Chain Reaction (PCR),

thus amplifying the signal a billion fold. It can be sequenced with single base accuracy, i.e. ∼
nm precision. Thus the path of the recoiling nucleus can be tracked to nanometer accuracy.

More details of this particular detector design are presented below. Alternative detector

designs may be implemented instead, but the important new development is the idea of

using nucleic acids in lieu of more conventional detector materials to provide thousand-fold

better tracking resolution, so that directionality of the WIMPs can be determined.

There are many advantages to this new technology of using nucleic acids:

1. Nanometer spatial resolution enables directional detection;
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2. Operates at room temperature;

3. Low energy threshold of less than 0.5 keV, allowing for study of low mass < 10GeV

WIMPs;

4. Flexibility of materials: One may choose from a variety of elements with high atomic

mass (e.g. Au) to maximize the spin-independent scattering rate. Given a variety of

materials one can also extract information about the mass and cross section of the

WIMPs;

5. One can also select materials with high spin to maximize spin-dependent interaction

rate;

6. Signal may be amplified by a factor of 109 by using PCR;

7. Excellent background rejection, by using dE/dx in vertex and > 1016 physical granu-

larity of the detector, i.e. there are 1016 voxels in a (1m)3 detector.

The nanometer tracking described in this paper may have many uses beyond dark mat-

ter detection as will be studied in future work. The outline of this chapter is as follows.

Section 5.2 gives background into dark matter direct detection and introduces the relevant

parameters. Section 5.3 presents the new dark matter direct detection design utilising single

stranded nuclei acids strands. Finally, section 5.4 summarizes the viability of this novel

design as a dark matter direct detection experiment.

5.2 Dark Matter Detection

WIMP direct detection experiments seek to measure the energy deposited when a WIMP

interacts with a nucleus in a detector. If a WIMP of mass mχ scatters elastically from

a nucleus of mass M , it will deposit a recoil energy Enr = (µ2v2/M)(1 − cos θ), where

µ ≡ mχM/(mχ + M) is the reduced mass of the WIMP-nucleus system, v is the speed of

the WIMP relative to the nucleus, and θ is the scattering angle in the center of mass frame.

Note that the maximum energy recoil is given when the scattering angle in the center of

mass is θ = π:

Emax = 2
µ2v2

M
. (5.1)

The differential recoil rate per unit detector mass, typically given in units of cpd kg−1 keV−1

(where cpd is counts per day), can be written as:

dR

dEnr
=
nχ
M
〈v dσ
dE
〉 =

1

2Mµ2
σ(q) ρχη(vmin(Enr), t) , (5.2)
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where nχ = ρχ
mχ

is the number density of WIMPs, with ρχ the local dark matter mass density;

q =
√

2MEnr is the momentum exchange in the scatter; σ(q) is an effective scattering cross-

section; η(vmin, t) =
∫
v>vmin

d3v f(v,t)
v

is the mean inverse velocity with f(v, t) the (time-

dependent) WIMP velocity distribution; and vmin =
√

MEnr
2µ2

is the minimum WIMP velocity

that can result in a recoil energy Enr. More detailed reviews of the dark matter scattering

process and direct detection can be found in Refs. [87,88,282–284].

The typical energy transferred to the nucleus in a scattering event is from 1 to 50 keV.

Typical count rates in detectors are less than 1 count per kg of detector per day. Over the past

twenty five years a variety of designs have been developed to detect WIMPs. They include

detectors that measure scintillation; ionization; and dilution-refrigerator based calorimeters

in which the total energy deposed is measured by means of a phonon spectrum. Current

detector masses range in size up to 100 kg (e.g. XENON-100 and LUX). The plan for the

next generation of detectors is to reach one tonne.

A major concern in all WIMP detectors is backgrounds. To eliminate spurious events

from CR, the detectors must be placed deep underground ( > 2,000 m of water equivalent).

Yet radioactive backgrounds remain and must be eliminated. Thus the experimental de-

termination of annual and/or diurnal modulation is a crucial test of the WIMP origin of

any events observed in the detector, as most backgrounds should not exhibit the same time

dependence.

Particle Physics: WIMP/nucleus cross sections:

For a supersymmetric (SUSY) neutralino and many other WIMP candidates, the domi-

nant WIMP-quark couplings in direct detection experiments are the scalar and axial-vector

couplings, which give rise to spin-independent (SI) and spin-dependent (SD) cross-sections

for elastic scattering of a WIMP with a nucleus, respectively. SI scattering is typically taken

to be

σSI =
µ2

µ2
p

A2 σp,SI , (5.3)

where A is the atomic mass of the nucleus, µp is the WIMP-proton reduced mass and σp,SI

is the SI scattering cross section of WIMPs with protons. For large momentum transfer,

this relation is multiplied by a form factor correction to account for the sensitivity to the

spatial structure of the nucleus. Since the SI cross-section grows rapidly with nuclear mass,

direct detection experiments often use heavy nuclei to increase their sensitivity to WIMP

scattering.

Spin-dependent (SD) WIMP-nucleus interactions depend on the spin of the nucleus. Most

nuclei have equal numbers of neutrons and protons so that there is no SD contribution; spe-

cific nuclei must be chosen in experiments to search for nonzero SD couplings. SD scattering
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is often of lesser significance than SI scattering in direct detection experiments for the heavy

elements used in most detectors due to the extra A2 coherence factor in the cross section.

Astrophysics: Velocity Structure of the Galactic Halo:

The velocity distribution f(v) of dark matter particles in the Galactic Halo is crucial to

their signals in dark matter detectors (as first stressed by [258]). The dark matter halo in

the local neighbourhood is likely to be composed mainly of a smooth, well mixed (virialised)

component with an average density ρχ ≈ 0.4 GeV/cm3. The simplest model of this smooth

component is the Standard Halo Model, a spherically symmetric nonrotating isothermal

sphere with an isotropic, Maxwellian velocity distribution characterized by an rms velocity

dispersion σv ∼ 290 km/sec; the distribution is truncated at escape velocity vesc ∼ 600

km/sec. The resultant count rates in direct detection experiments due to the Standard Halo

Model were first discussed in [258].

In addition to the smooth component of the Galaxy, the formation of the Milky Way

via merger events throughout its history leads to significant structure in both the spatial

and velocity distribution of the dark matter halo. The dark matter affiliated with any of

these substructures (tidal streams of material, subhalos, clumps, caustics, or debris flow)

located in the Solar neighborhood will affect count rates as well as the phase and amplitude

of annual modulation in experiments1.

Annual Modulation:

The smooth component of the halo is essentially non-rotating, while the Sun moves with

the disk and rotates about the center of the galaxy at a speed vrot ∼ 245 km/sec [285]. The

halo thus exhibits a bulk motion relative to Earth. One can think of this phenomenon as

the Earth moving into a “wind” of WIMPs. The relative velocity between the WIMPs and

the detector plays an important role in detection rates.

This relative velocity experiences two types of modulation: annual and diurnal. These

can be very important in proving that any detected signal is in fact due to WIMPs rather

than background. Three of us predicted that, due to the motion of the Earth in orbit about

the Sun, the dark matter velocity distribution as seen by a detector on Earth should undergo

a yearly variation, leading to an annual variation in the recoil rate in the detector [258,260].

In many cases, the annually modulating recoil rate can be approximated by

dR

dE
(E, t) ≈ S0(E) + Sm(E) cosω(t− t0), (5.4)

1For example the Sagittarius stream l [286,287] could give an increase in the count rate in detectors up to
a cutoff energy, leading to an annually modulated steplike feature in the energy recoil spectrum. The stream
should also stand out clearly in directional detection experiments (capable of determining directionality of
the incoming WIMPs).
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with |Sm| � S0, where S0 is the time-averaged rate, Sm is referred to as the modulation am-

plitude (which may, in fact, be negative), ω = 2π/year and t0 is the phase of the modulation.

For the Standard Halo Model, the maximum count rate is on June 1 and the minimum on

December 1. The modulation is only a few percent of the average count rate. Thus, a large

number of events are required to observe a modulation of the rate in a detector. We note

that, for low enough energy recoils, the typical WIMP is moving in the opposite direction

and the phase of the modulation reverses (the signal is maximized in December); once the

crossover energy of this phase reversal is measured it can be used to determine the WIMP

mass2.

The reason that annual and diurnal modulation are so powerful as a “smoking gun” for

dark matter is that most background signals, e.g. from radioactivity in the surroundings, are

expected to be isotropic and not modulating with the same time dependence as the WIMPs.

Current Experimental Status for Direct Detection:

In the past decade, a host of direct detection experiments using a variety of different

detector materials and designs have reported unexplained nuclear recoil signals which could

be due to WIMPs. Detection of annual modulation has now been claimed by the DAMA and,

more recently, CoGenT experiments. The Italian Dark Matter Experiment, or DAMA [261],

consists of 250 kg of radio pure NaI scintillator situated in the Gran Sasso Tunnel underneath

the Apennine Mountains near Rome, and became the first direct detection experiment to

observe a positive signal. The group now has accumulated 1 ton-yr of data over the past

decade and finds an 8.9 σ annual modulation with the correct phase and spectrum to be

consistent with a dark matter signal. Recently CoGeNT [262], consisting of Germanium,

also claim to see annual modulation of the signal with the correct phase to be consistent

with WIMPs, and together with a third CRESST-II [263] experiment, could be seeing ∼10

GeV WIMPs. Positive candidate signals were also seeing in CDMS-Si [264], which agrees

with a ∼10 GeV WIMP mass. Yet, other experiments, notably CDMS-Ge [267, 268] and

SuperCDMS [269] find null results. The results from Xenon based detectors, XENON [270,

271] and LUX [272], also appear to conflict with these positive signals. Many direct detection

experiments are either currently running or gearing up to do so, and we can expect more

data soon.

In the past few years the cross-sections that have been reached by detectors have improved

by two orders of magnitude; over the next few years another two orders of magnitude should

be reached. The next generation of detectors after the current ones will be one tonne in

mass or directional. A review of the theory and experimental status of annual modulation

2xp = 0.89 is the value of x at which the phase of the modulation reverses, where x ≡ vmin/v0 with

vmin ∝
√
E).
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can be found in [288].

Diurnal Modulation:

Our motion with respect to the Galactic rest frame also produces a diurnal modulation

of the event rate. Due to the motion of the Sun around the Galactic Center we are moving

into a ”wind” of WIMPs. As shown in Figure 5.1, the daily rotation of the Eath then

introduces a modulation in recoil angle as measured in the laboratory frame [273]. The

WIMP count rate then is expected to modulate with the time of day. Measurement of

the diurnal modulation would require directional detection capabilities discussed in this

paper. An ideal detector could reject isotropy of WIMP recoils with only of order 30-100

events [275–277]. Most, but not all, backgrounds would produce an isotropic Galactic recoil

distribution. An anisotropic Galactic recoil distribution would therefore provide strong, but

not conclusive, evidence for a Galactic origin of the recoils. Roughly 30 events would be

required for an ideal (no background) detector to confirm that the peak recoil direction

coincides with the inverse of the direction of Solar motion, hence confirming the Galactic

origin of the recoil events [289, 290]. Realistically about 100 events consistent with diurnal

modulation will be required for WIMP detection (far less than without this modulation).

Measurement of the diurnal modulation would determine the direction of the WIMP

wind, which could then be compared with an annual modulation signal found in a different

experiment. If the annual modulation of the signal is dominated by the smooth halo, then

the wind direction (obtained from the directional experiments) should predict the time of

year when the event rate in direct detection experiments peaks; i.e. the time of year when

the Earth moves the most quickly into the wind would be the time of peak signal. If, on the

other hand, the phase of the modulation does not match up with the wind direction found

by the directional detectors, then one would suspect that the WIMP interpretation of the

experiments might be wrong3.

5.3 Directional Detectors

Ref. [280] reviews the status of one type of prototype directional detection experiments.

Current designs require the detector material to be gaseous in order to produce long enough

tracks compared to the spatial resolution of the detector and will thus require volumes

∼ 1000 m3.

In this paper we instead propose the use of DNA or RNA as a detector material that can

3Alternatively this discrepancy might be an indication of additional halo components such as streams,
which could change the phase of the annual modulation. In principle comparison between the wind direction
and the phase of the modulation could teach us about the structure of the dark matter in our halo.
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provide nanometer resolution tracking. Figure 5.3 illustrates an example of a novel detector

design, consisting of a thin (5-10 nanometer thick) film of metal (e.g. gold or tungsten) with

strings of single stranded nucleic acids (ssNA) hanging down from it. In Figure 5.3 we show

gold as our detector’s target material. It should be noted that a variety of other elements

could also be used as target materials. In particular, we could have a film of target material

like tungsten on top of a monolayer thin sheet of gold (see the Appendix for details on other

possible target elements). For simplicity, in this paper we will use gold as an example for the

proposed detector’s target element. The monolayer of gold is used as a ceiling for the ordered

single stranded nucleic acids to hang down from. The nucleic acid strands are all identical

in length, with an order of bases that is well known. However, they may be terminated with

forensic fragment of say 100-mer.

The basic idea is the following: An incoming WIMP from the Halo of our Galaxy strikes

one of the gold nuclei and knocks it out of the film with ∼ 10 keV of energy. The Au nucleus

moves forward into the strands of nucleic acid, traverses hundreds of these strands, and

whenever it hits one, breaks the single stranded nucleic acids. A segment of nucleic acid falls

down onto a “capture foil” below. Periodically (e.g. once an hour) the fallen segments are

scooped up. The locations of the breaks can be identified: the strands can be copied using

Polymerase Chain Reaction (PCR), thus amplifying the signal a billion fold; then nucleic

acid sequencing provides the location of the broken nucleic acid. Since the nucleic acid base

units are at most ∼0.7 nm apart (when fully stretched), the resulting detector resolution in

the z-direction is nanometer. Thus the track of the recoiling nucleus may be obtained with

nanometer accuracy.

“Nucleic Acids Tracking Chamber”:

The detector is modular and consists of a series of identical units stacked on top of each

other. It is like a book and the WIMP travels sequentially through the pages. Each module

consists of the following layers. On the top is a 1 µm layer of mylar (which is inactive

from the point of view of incoming WIMPs). Next is a 5-10 nanometer thick layer of gold,

corresponding to roughly 10-25 atoms of Au in thickness. It is with these Au nuclei that

the WIMPs will mostly interact, since the atomic number for gold, and hence the WIMP

spin-dependent interaction cross-section, is larger than for the organic atoms found in mylar:

carbon, oxygen and hydrogen. The interaction of the WIMP with the Au nucleus will give

it a kick of ∼ 10 keV out of the film. Hanging from the gold film is an ordered periodic

array of ssNA strands, which can be thought of as a curtain of nucleic acids through which

the recoiling Au nuclei will travel. As the Au nucleus moves through the “Nucleic Acids

Tracking Chamber”, it will break single stranded nucleic acids strands along its trajectory.

More accurate studies of this breaking will be required, e.g. by calibrating the response of
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the single stranded nucleic acids to heavy ions of a given energy (such as 5, 10, 30 keV Ga

ions that may be obtained from an ion implementation machine). The required amount of

energy to break the strand 4 is estimated to be 10 eV, but more accurate values must be

obtained experimentally. Thus we estimate that it will take hundreds to thousands of direct

hits of Au on single stranded nucleic acids, corresponding to a comparable number of breaks

of ssNA strands, to stop a gold nucleus. Currently off the shelf technology consists of arrays

containing single stranded nucleic acids strands that are 250 bases in length (manufactured

by Illumina Inc.). The average length of single-stranded nucleic acids is up to about 0.7 nm

per base when fully stretched. Thus this corresponds to ∼ 100−200 nm length nucleic acids

strands. Somewhat longer strands would be ideal as then all the Au nuclei would be stopped

in the Nucleic Acids Tracking Chamber and one could obtain the maximum information in

reconstructing the particle’s track.

The goal is to have the single stranded nucleic acids strands periodically ordered, with ∼
10 nanometer distances between them. The nucleic acids can be immobilized at one end by

a variety of means. For example, a Au-sulfur bond with nucleic acids terminally labeled with

a thiol group [290]. Alternatively, Au coated with Streptavidin (a biotin-binding protein),

will hold nucleic acids labeled with biotin. Even simple positively-charged dots can be

effective [291]. The challenge is to get single molecules attached to the gold film on a well

defined two-dimensional grid, “polka dot”, pattern. Grid dots 5 nm in diameter can be

microfabricated with a spacing of 10 nm in the x- and y-directions, but to guarantee close

to a single nucleic acids molecule per dot requires a trick like steric hindrance (aka “Polony

exclusion principle”) [291] or designed 3D NA-nanostructures [290]. These two methods can

also help simplify manufacturing by dividing the gold film into a 10nm grid from a 100 nm

grid (the latter made by conventional photolithography or interference methods). If very non-

repetitive nucleic acids curtains of known positioning and sequence are sought, then these

can be constructed from synthetic nucleic acids selectively amplified from oligonucleotide

nucleic acids chips [292] and/or certain natural genomes.

The single stranded nucleic acids Tracker will operate with helium or nitrogen gas in

between the hanging ssNA strands. Oxygen in air would react and water would absorb too

much energy.

Individual strands differ only in the “terminus pattern” of say 20-100 bases at the bottom

that identify the individual strands (more accurately members of a small bunch of nucleic

acids strands). One may think of the Au film as a grid of squares that are 1µm × 1µm in

4Whereas a recoiling Au nucleus will easily break ssDNA, it would only nick dsDNA. Thus in the current
implementation we propose using single stranded nucleic acids (ssNA). However in future designs it may be
useful to use a combination of the two.
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size. We will call the single stranded nucleic acids hanging down from one grid square a

“bundle” of nucleic acids. All the single stranded nucleic acids strands have the same base

sequence ordering, except the last 20-100 at the bottom are different for each grid area —

the same for all the single stranded nucleic acids within one bundle. Thus one can localize

the hit of the recoiling Au nucleus on the single stranded nucleic acids to 1µm × 1µm in x-y.

One can think of this as bar coding the ssNA strands (i.e. attaching tags of different colors

to the bottoms of a group of nucleic acids strands) that cover a square region that is 1µ by

1µ; thus the x-y resolution of the track will be micron-sized.

The individual strands will be terminated with magnetic needles. Once a single stranded

nucleic acids strand is severed, the segment falls to a collecting plate at the bottom. A

magnetizable rod that is 3-4 nm in diameter and 50 nm long is attached to the bottom

of the strand, provides the weight to pull it down, and is used to ”scoop” the cut single

stranded nucleic acids. Roughly once an hour the single stranded nucleic acids segments are

scooped up. At that point they are amplified a billion fold using PCR, and then they are

sequenced. The location where the single stranded nucleic acids was severed is identified,

with nm resolution in z and micron resolution in x and y. In this way the track of the

recoiling Au nucleus from the WIMP interaction can be reconstructed.

Mass and Volume of Detector: To study light WIMPs with mχ ∼ 10 GeV, a single

kilogram of gold is enough as target material at an energy threshold of 0.5 keV. The most

sensitive competing experiments, LUX and XENON, have very poor sensitivity to these low

mass WIMPs, so that the current bounds on the WIMP scattering cross sections are not

very strong. Hence 1 kg of gold can be used to search for light WIMPs below the current

bounds. Specifically, we find that we can use 5000 plates of gold, each 1 m2 in area, separated

by a micron layer of mylar, and containing a micron length of single stranded nucleic acids,

totaling to a complete detector volume of 0.01 m3 in size.

Studying WIMPs with mχ ∼ 100 GeV will be much more difficult with our setup. This

is the mass where LUX and XENON are optimized, and presumably in their next runs the

bounds will approach the neutrino background that also produces elastic scattering events

and will make WIMP searches to lower cross sections very difficult. We reiterate, however,

that the single stranded nucleic acids tracker will do much better for light WIMPs than any of

the xenon-based detectors, even without the search for directionality. Xenon-based detectors

can never probe WIMPs below 10 GeV: given the energy thresholds of the experiments, they

would only be sensitive to particles moving at speeds faster than escape velocity from the

Galaxy. Additionally, the single stranded nucleic acids tracker again becomes competitive

for high mass WIMPs mχ > 500 GeV (where the other experiments lose sensitivity).

Importantly, there is no reason to exclusively use gold as the target element. We have
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used gold for simplicity in this paper, since gold with nucleic acids attached already exists

and can be purchased off the shelf. Instead we can use many other elements as foils in our

detector. Since attaching gold to single stranded nucleic acids is well-studied, we can even

use a single atom layer of gold (as the element that attaches to the single stranded nucleic

acids) and then have a larger amount of a different target material on top of the gold. Again,

these possibilities are probed in the Appendix.

Diurnal Modulation: The single stranded nucleic acids tracker can be used to study

diurnal modulation. From the point of view of an experiment located at roughly 45 degrees

latitude (such as from the vantage point of the SNOLAB in Sudbury, Canada, or the Sanford

mine in South Dakota), at one point of the day, the WIMP wind is coming more or less from

directly overhead. Thus typical WIMPs will send the Au atoms in a direction parallel to

the nucleic acids strands and will not break the nucleic acids as they traverse the detector

(assuming the detector is parallel to the Earth). However, as the Earth rotates, twelve hours

later, the detector is now pointing 90 degrees away from the WIMP wind (see Figure 5.1).

In this case there will be significant breakage of nucleic acids. As we will discuss in the

following section, there is roughly 20 degree uncertainty in the direction of a typical Au

nucleus ejected from the Au film; yet the differentiation in direction is much larger, roughly

90 degrees. Thus the day/night effect can be determined by the single stranded nucleic acids

tracker, as the count rate goes through a daily maximum and minimum.

Dynamics of the gold nucleus

SRIM (the Stopping and Range of Ions in Matter) [293] is a simulation program that

studies the interaction of a heavy ion moving through a specific medium. We performed

SRIM simulations to obtain quantitative estimates of the motion of the recoiling Au nucleus

(from a WIMP interaction) as it moves through the detector. We performed this calculation

for Au, but similar results are for any high Z and high density metals. Two stages were

studied. First we studied the interaction of the Au nucleus with other Au nuclei in the gold

film, and obtained its average properties as it exits the gold film and enters the hanging

curtain of single stranded nucleic acids strands. Second, we studied the interaction of the

Au nuclei with the strands of single stranded nucleic acids it encounters, and estimated

the distance the Au travels before it comes to a stop. We performed these studies for two

different WIMP masses, 200 GeV and 1 TeV. SRIM incorporates the Lindhard equation,

Bethe-Block equation, and experimental results on those ion/medium interactions that have

been measured. The initial estimates we obtaining using SRIM of course must be tested

with real data in the future.

In using SRIM we considered a 5nm thick sheet of gold in a detector module, and we

investigated the result of WIMP/nucleus interaction at the midpoint of 2.5 nm from the
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surface of the sheet. To be quantitive, we assumed a typical energy recoil Enr = 1
2
Emax =

µ2

M
v2 in the interaction, where we have used Eq[5.1] in the previous expression. For the

WIMP velocity we used the mean speed of a Standard Halo Model distribution in the frame

of the laboratory, i.e. v = 300 km/sec. We took the direction of the recoiling Au nucleus

to be perpendicular to the Au foil. For a 200 GeV WIMP, we found the following results.

The recoil energy of a typical Au nucleus due to a WIMP interaction is 50 keV. The Au

nucleus then encounters other Au nuclei on its way out of the Au foil; but the mean stopping

range would be 7.3 nm, so that the typical Au nucleus does escape the foil. At this point

its energy is roughly halved, at 27.5 keV, and its angle is 17.1◦ off from its incident angle

(perpendicular to the foil). Before stopping, the Au nucleus traverses approximately 2.55 µm

of single stranded nucleic acids, which translates to about 255 strands crossed. Alternatively,

for a 1 TeV WIMP, the recoil energy given to the Au nucleus by the WIMP interaction is

131 keV, the mean stopping range in gold would be 14 nm, the Au nucleus typically leaves

the foil with 110 keV and an angle of 10.9◦, and it then stops after traversing 5.83 µm of

single stranded nucleic acids, which translates to about 583 strands crossed. Our calculation

is based on the assumption that the single stranded nucleic acids strands are simple packed

next to each other with a separation of 10 nm and the ”nucleic acids tracking chamber” is

optically thick. We conclude that the number of single stranded nucleic acids strands crossed

by a gold nucleus is on the order of hundreds of single stranded nucleic acids strands.

The original recoiling Au nucleus, which scattered off the galactic WIMP will also interact

with other nuclei in the gold film. As the original Au nucleus moves through the film, it will

cause a fraction of other gold nuclei to escape into the single stranded nucleic acids tracking

chamber. A gold nucleus interacting with a 200 GeV (1000 GeV) WIMP will induce an

average of 21.3 (21.4) Au atoms with 63 eV (89 eV) each to traverse around 18 (20) single

stranded nucleic acids strands. The number of strands crossed by the secondary ejected

gold atoms is much less compared to the hundreds of strands crossed by the scattered gold

nucleus from the WIMP collision.

First Generation Implementation:

The initial goal will be to identify a head/tail asymmetry of the WIMPs. As described

above, the number of WIMPs coming from the direction of Cygnus should be ten times

that from the opposite direction, since we are moving into the Galactic wind of WIMPs.

Merely identifying this head/tail asymmetry may be enough to argue (together with annual

modulation) that WIMPs have been discovered. The design described above automatically

provides this distinction. WIMPs that come in the direction of first passing through the

mylar, then into the Au film, and then into the ssNA strands will be detected. However,

WIMPS that go the other way will not: these first go unnoticed through the nucleic acids,
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then interact in the gold, producing recoiling gold nuclei that simply stop in the mylar. This

is a simple implementation of head/tail differentiation. Then the entire detector may be

flipped 180 degrees, so that it is sensitive to only WIMPs coming from the other direction.

Note that in this case, we do not need the ordered array of single stranded nucleic acids-

only the number of broken ssNA is important. Once this simplest version works, the goal

of the next generation detectors will be to look for the actual track of the recoiling nucleus

with nanometer resolution, using longer single stranded nucleic acids strands in a periodic

array.

Background rejection in the proposed Au/ssNA detector:

There are many sources of background that could mimic a WIMP signal. The improved

granularity of our detector — nanoscale vs. micron length scale — should help with back-

ground rejection. In previous detector development, the background rejection has scaled

with the spatial resolution, so one might hope that the background rejection improves a

billion fold in these new detectors; but this must be verified.

Naturally occurring DNA (and RNA) itself contains radioactive C14 and K41. The DNA

(RNA) in the detector must be made of old carbon, and potassium can be replaced by other

moieties, as discussed further at the end of this section. Studies must be performed of the

radioactivity of thin films of Au or other elements.

Backgrounds that could be confused with WIMPs include γ, α, electrons, and cosmic

rays. Yet the ranges of these particles in our detector will be at least 100 times as long

as the range of a recoiling nucleus from a WIMP, so that the differentiation between them

should easily be possible. The background with the shortest range is the α particle due to its

relative larger mass and charge. A typical radioactive decay produces a 5 MeV α particle.

The stopping distance of an α particle can be approximated with the ASTAR program.

Using the ASTAR program, a 5 MeV α particle will traverse approximately 30 µm (10 µm)

in mylar (gold) [294]. In contrast, SRIM simulations estimate that the stopping distance of a

10 keV gold nucleus in mylar is 20 nm [293]. Whereas recoiling Au nuclei will be stopped in

a single module of Au foil + ssNA, the background particles will travel much farther as they

traverse and interact with many of the sequential modules. We have described our detector

design as a book with many pages. The recoiling nuclei from WIMP interactions will never

make it past the first page, whereas the γ, α, electrons, and cosmic rays will go through

multiple pages. Thus the signature of a WIMP is that there is an interaction in “one and

only one” gold film.

In addition, as discussed, background signals are expected to be isotropic whereas the

WIMPs are expected to exhibit head/tail as well as temporal asymmetries.

Even more accurate determinations can be made by measuring the values of dE/dx of
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the various particles traveling through the detector, as this will allow differentiating between

them. Such a measurement requires the spatial resolution to be shorter than the range of the

particle. Previous to the use of nucleic acids, the spatial resolution of detectors wasn’t good

enough to make this determination, so that the best that could be done was the measurement

of the integrated value of dE/dx over the spatial resolution of the detector. The nucleic acids

tracking chamber provides for the first time the capability of obtaining this quantity.

As in all WIMP direct detection experiments, once these backgrounds are removed, the

chief remaining troublesome particles that can mimic a WIMP signal are fast neutrons.

Further studies, both experimental tests and Monte Carlos, will be required to better under-

stand the neutron background. The capability of tracking particles as they move through

the single stranded nucleic acids should assist with this distinction.

Cost Estimates using RNA: The detector could be designed using either DNA or RNA.

Since the cost per kg of the least expensive nucleic acid is yeast RNA ($750/kg), we will

here give cost estimates using RNA rather than DNA. We can make 40K and 14C- depleted

bacterial 23S-rRNA (2904 nucleotides long) for about $8000/kg. Rather than using weights

at the bottom (which does not allow dense packing), we will keep the nucleic acid straight

(rather than curling up) by using short oligonucleotides (10-mers) complementary to the 5’

and 3’ ends of the RNAs and immobilized on the surfaces of 25*25*0.1 mm coverslips. A

third 10-mer (fluorescently labeled) will be located 200 nm from the end of the 1400 nm

long stretched rRNA. The 200 nm is chosen to be out of range of TIRF, so when an RNA is

cleaved the fluor moves to <1nm and can be detected using TIRF. The three 10-mers will

constitute 1% of the mass. To get to 1 kg would require 10 million coverslips scanned at 120

per second to finish one scan cycle per day.

Here we estimate the number of radioactive decay events in 0.1 kg of RNA and show that

identifying them is financially affordable; the decay numbers and cost scale linearly with the

amount of nucleic acid. We can make the RNA 40K depleted by using Na+ as the counter-

ion for the RNA instead of K+ during purification. We can make the RNA 14C-depleted by

using petrochemicals (e.g. methane) as the sole carbon source for bacterial growth. We may

assume a ratio of 10 million for Na:K and a 40K natural abundance of 0.012% and half-life

of 1.25 ×109 years. For 0.1 kg we have 2 ×1023 molecules of nucleotides = 2 ×1011atoms of
40K. Thus, we expect 6 decays per 0.1 kg of RNA per day. Each nucleotide molecule contains

9.5 carbon atoms on average and the 14C half life is 5,730 years. In the Borexino Counting

Test Facility, a 14C/12C ratio of 1.94 ×10−18 has been determined for organic syntillation

fluid composed of old carbon derived from petroleum [295]. Extrapolating to a detector

composed of 0.1 kg of nucleic acid, this low concentration of C14 yields ∼ 2 decay per day,

which can be subsequently rejected due to the multi-module (Au foil + ssNA) interaction of
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the background. Fortunately, biological technology has advanced to such an extent that it is

currently possible to sequence millions of nucleic acid strands a day for∼ $1,000. Background

events are analyzed cheaply due to the affordable price of sequencing.

5.4 Summary

A major step forward in the field of direct detection would be the development of detectors

with directional capability. By contrasting the count rates in a detector in the direction

toward and away from the Galactic WIMP “wind” that the Sun is moving into, the statistical

requirements on the number of detected WIMPs drops to ∼ 100 rather than thousands

without the directional sensitivity. In the paper we proposed using DNA or RNA as a

detector material that can provide nanometer resolution tracking. We presented a particular

design consisting of modules of thin gold films with single stranded nucleic acids hanging

down from each film. The nucleic acids strands all consist of (almost) identical sequences

of bases (combinations of A,C,G,T), with an order that is well known. An incoming WIMP

from the Halo of our Galaxy strikes one of the gold nuclei and knocks it out of the film

with ∼ 10 keV of energy. The Au nucleus moves forward into the strands of nucleic acids,

traverses hundreds of these strands, and whenever it hits one, breaks the single stranded

nucleic acids. The locations of the breaks are easy to identify, using PCR to amplify the

broken segments a billion fold followed by NA sequencing to locate the break. In this way

the path of the recoiling nucleus can be tracked to nanometer accuracy.

We note that this design is not restricted to the use of a particular element, e.g. Au

nuclei, which can be interchanged with many different nuclei; for example one may use those

with high atomic number so as to maximize the SI interaction rate, or those with low atomic

number to study the lightest WIMPs. By using a variety of different materials, it should be

possible to identify the mass and cross-section of the interacting WIMP. In addition, although

the specific detector design may be modified, the important new development is the idea of

using nucleic acids in lieu of other detector materials to provide better tracking resolution so

that directionality of the WIMPs can be determined. More generally, it is easy to imagine

multiple applications for nanometer tracking beyond that of WIMP detection.
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Figure 5.1: Diurnal modulation of WIMPs: the Sun orbits around the Galactic Center (in
a direction that happens to be towards the constellation Cygnus), therefore experiencing
a WIMP wind, for which the orientation relative to the laboratory frame depends on the
rotation of the earth, and hence time of day.
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Figure 5.2: ssNA/Au Tracking Chamber: A WIMP from the Galaxy scatters elastically with
a gold nucleus situated in a thin gold foil. The recoiling Au nucleus traverses hanging strings
of single stranded nucleic acids, and severs any single stranded nucleic acids it hits. The
location of the breaks can be found by amplifying and sequencing the fallen single stranded
nucleic acids segment, thereby allowing reconstruction of the track of the recoiling Au nucleus
with nanometer accuracy.
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Chapter 6

New Dark Matter Detectors using

Nanoscale Explosives

This chapter was completed in collaboration with Andrzej Drukier, Katherine Freese,

Cagliyan Kurdak and Gregory Tarle [33].

6.1 Introduction

Thirty years ago, Refs. [19, 257] first proposed the idea of detecting weakly interacting

particles, including neutrinos and WIMPs, via coherent scattering with nuclei. Soon after

[258] computed detection rates in the context of a Galactic Halo of WIMPs. This work

also showed that the count rate in WIMP direct detection experiments will experience an

annual modulation [258, 260] as a result of the motion of the Earth around the Sun. Then

development of ultra-pure Ge detectors permitted the first limits on WIMPs [259]. Since

that time, a multitude of experimental efforts to detect WIMPs has been underway, with

some of them currently claiming detection. The basic goal of direct detection experiments is

to measure the energy deposited when weakly interacting particles scatter off of nuclei in the

detector, depositing small amounts of energy, e.g. 1-10 keV, in the nucleus. A recent review

of the basic calculations of dark matter detection, with an emphasis on annual modulation,

may be found in [288]. Numerous collaborations worldwide have been searching for WIMPs

using a variety of techniques to detect the nuclear recoil.

In this chapter we elaborate on a novel mechanism for direct detection of WIMPs using

explosives [297]. The small amount of energy deposited in the nucleus by the WIMP scatter-

ing event can be enough to trigger an explosion. The registration of such an explosion then

indicates that a WIMP/nucleon scattering event took place. In our search for appropriate

explosive materials, we realized a key limitation, which we named “Greg’s rule.” Everything
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on the surface of earth, including the conventional chemical explosives, has been constantly

bombarded by ionizing particles coming from trace amounts of naturally occurring radioac-

tive materials and cosmic radiation. Since conventional explosives can be stored in large

quantities for extended periods of time (without blowing up), we may conclude that all the

conventional explosives that are currently being used in commercial or military applications

cannot be used in DM detection applications. This does not imply that there are no explo-

sives that can be detonated by a single highly ionizing particle. If one were to synthesize

such a material it would be highly unstable and would mysteriously explode. We need to be

“contrarians” and test such “unsafe” explosives, which were discovered but rejected in prior

R&D. Luckily there are two directions to pursue. First, the chemical explosive, nitrogen

triodine (NI3), has been studied and can be ignited by a single highly ionizing particle (e.g.

an α-particle) [298]. Future work on using NI3 for DM detectors will be interesting. In this

chapter we instead study the second approach, nanothermites.

Thermites have been used for more than 100 years to obtain bursts of very high tem-

peratures in small volumes, typically a few cm3. Thermites are two component explosives,

consisting of a metal and either an oxide or a halide. These two components are stable when

kept separated from one another; but when they are brought together they undergo a rapid

exothermic reaction — an explosion. The classical examples are

Al2 + Fe2O3 → Al2O3 + 2Fe + 851.5 kJ/mole, (6.1)

Al2 + WO3 → Al2O3 + W + 832.0 kJ/mole. (6.2)

One advantage of thermites is the impressive number of elements, which can be used. Classic

implementation of thermites uses micron scale (1 to 10 microns) granulation, but in recent

years nano-sized granules of high explosives have been increasingly used [299]. These nano-

thermites make interesting dark matter detectors. When a WIMP strikes the metal layer,

the metal may heat up sufficiently to overcome the chemical energy barrier between the

metal and metal-oxide. An explosion results.

Nanoexplosive dark matter detectors have several advantages:

1. They can operate at room temperature;

2. Low energy threshold of 0.5 keV, allowing for study of low mass < 10 GeV WIMPs;

3. Flexibility of materials: One may choose from a variety of elements with high atomic

mass (e.g. Tl or Ta) to maximize the spin-independent scattering rate. Given a variety
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of materials one can also extract information about the mass and cross section of the

WIMPs;

4. One can also select materials with high nuclear spin to maximize spin-dependent in-

teraction rate;

5. Signal is amplified by the chain reaction of explosions;

6. Excellent background rejection due to physical granularity of the detector. Because

the cells containing the nanoparticles are less than a micron in size, the detector has

the resolution to differentiate between WIMP nuclear recoils, which only interact with

one cell of our detectors, and other backgrounds (such as α-particles, β-particles and

γ-rays) which travel through many cells. Thus, if the background has enough energy

to cause the ignition of one cell, then it would ignite multiple cells. In the section

Backgrounds, the typical ranges ( & 10 µm) of α and β particles are shown.

7. Depending on the specifics of the detector design, the possibility of directional sensi-

tivity with nanometer tracking; this possibility will be studied in future work.

To allow for specific calculation we study oxide-based nano-thermites, which consists of

metal spheres with a radius of 5 nm embedded in an oxide. Motivated by their optical,

magnetic and electronic applications, metal nanoparticles have been synthesized using both

liquid and gas phase methods [300] [301]. In situations where the metal nanoparticles are

susceptible to oxidation, the nanoparticles can be coated by a thin layer of an inert metal

[302]. To form a nano-thermite the metal particles must be mixed by an appropriate gel of

oxide [303]. Alternatively, the oxide can be replaced by an appropriate halide [297].

Enough energy deposit in the metal sphere heats it up to the point where there is an

explosion beginning at the interface of the two materials at the edge of the nanoparticle. As a

specific design, we imagine constructing a “cell” which consists of ∼ 106 metal nanoparticles

embedded in an oxide. A full detector will need many of these cells; e.g. to obtain 1 kg of

target material (the metal) there will be ∼ 1014 cells. A WIMP hitting the target will cause

only one of these cells to explode.

More precisely, when a WIMP elastically scatters with a metal nucleus and deposits

energy to the metal, then that energy is converted into a temperature increase. If the tem-

perature increase is big enough to overcome the potential barrier of the thermite reaction,

then the metal will react with the surrounding oxidizer exothermically. In the design using

metal nanoparticles, after the first thermite reaction of one nanoparticle occurs, the exother-

mic heat produced by the thermite will heat up the other metal nanoparticles within the

0.5 µm cell; thus creating a chain reaction which amplifies the signal to a measurable effect.
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Utilizing Eq 6.1 as an example, the amplification factor for the signal is on the order of

104-105. The detection of the cell explosions could be made by sensitive microphones or

spectroscopic studies of the debris.

Figure 6.1 shows a schematic representation of the nano-thermite detector studied here.

On top, the first picture of Figure 6.1 shows an array of cells embedded into an insulat-

ing material. The insulator is used to thermally decouple the cells; so that the reaction

within a cell does not cause the explosion of neighboring cells. The length of each cell is

taken to be 0.5 µm. The spatial scale of the cells enable us to distinguish background from

WIMP/nucleus collisions. Backgrounds composed of α, β and γ particles will traverse multi-

ple cells; whereas a recoiled ion from a WIMP/nucleus collision will only interact with a single

cell. The middle picture in the figure is a magnified view of an individual cell. Inside each cell

there will be more than a few million nanoparticles. The nanoparticles, represented by the

white circles, are embedded into the metal-oxide, shown as the black background. Finally,

the bottom pictures of Figure 6.1 depicts an enlarged section of the cell surrounding a single

nanoparticle of radius 5 nm. There are two pictures at the bottom. Image (a) shows the

simplified model used to make all the calculations in the sections Temperature Increase

and Results. In contrast, image (b) depicts a more realistic design for the nano-thermite

detector. A thin passivation layer is placed around the metal to prevent oxidation of the

metal during the construction of the detector (i.e. before embedding the metal nanoparticle

into the cell). The passivation layer is a metal-oxide coating placed around the nanoparticle

in order to prevent oxygen molecules interacting with the metal. An oxidized metal will not

react chemically with a metal-oxide, since it is no longer favorable to gain oxygen atoms.

Thus, an oxidized metal will not produce a thermite reaction. However, the passivating bar-

rier is lowered if the metal nanoparticle or the passivation layer melts due to the temperature

increase. In a realistic scenario, the synthesis of the nanoparticle embedded into the oxide

would require a passivation layer. It should be noted that the addition of an extra layer

between the metal and the oxide of the cell would produce an additional thermal resistance

at the interfaces. This thermal resistance would cause the metal to hold in heat; and thus,

increase the temperature increase yield after a WIMP/nucleus collision, when compared to

the results presented in this chapter. As well, in some differing implementations, the metal-

oxide of the cell could be comprised of mixed nano-wires [303], which would produce a larger

temperature increase due to a higher effective thermal resistance between the oxide and

the metal. As explained in the section Temperature Increase, the temperature increase

is calculated utilizing the design model of image (a) (i.e. no passivation layer) and zero

thermal resistance between the oxide and the metal nanoparticle. Thus, our calculations

are conservative and underestimate the temperature increase sourced by an elastic collision
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between a WIMP and a metal nucleus.

More generally, many other detector designs may be possible, such as two parallel layers

of the two components. This latter design would allow determination of the direction from

which the WIMP came, as only WIMPs headed first into the metal (rather than first into

the oxide) would initiate an explosion.

The goal of this work is to study the ignition of the explosion when a WIMP hits the metal

nanoparticle. A parallel manuscript [297] studies the nano boom dark matter detectors more

generally, including methods of detection and readout of the explosion; alternate explosives

other than thermites; and other aspects of the problem.

In this chapter we begin by reviewing the relevant particle and astrophysics of direct

detection in section 6.2, and then turn to the viability of a nanothermite detector for WIMPs

in section 6.3 and 6.4. We conclude in section 6.5 For our calculations we consider WIMP

masses of mχ = 10, 100 and 1000 GeV.

6.2 Dark Matter Detection

WIMP direct detection experiments seek to measure the energy deposited when a WIMP

interacts with a nucleus in a detector. If a WIMP of mass mχ scatters elastically from a

nucleus of mass M , it will deposit a recoil energy

Enr = (µ2v2/M)(1− cos θ), (6.3)

where µ ≡ mχM/(mχ + M) is the reduced mass of the WIMP-nucleus system, v is the

speed of the WIMP relative to the nucleus, and θ is the scattering angle in the center of

mass frame. The typical energy transferred to the nucleus in a scattering event is from 0.1

to 50 keV, depending on the WIMP mass and the detector material. Typical count rates

in detectors are less than 1 count per kg of detector per day. Reviews of the dark matter

scattering process and direct detection can be found in Refs. [87,88,282–284]. Over the past

twenty five years a variety of designs have been developed to detect WIMPs. They include

detectors that measure scintillation; ionization; and dilution-refrigerator based calorimeters

which measure the total energy deposed by means of a phonon spectrum. Current detector

masses range in size up to 100 kg. The upcoming generation of detectors will reach one

tonne.

A major concern in all WIMP detectors is backgrounds. To eliminate spurious events

from cosmic rays, the detectors must be placed deep underground ( > 2,000 m of water

equivalent). Yet radioactive backgrounds remain and must be eliminated. Thus the exper-
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imental determination of annual and/or diurnal modulation is a crucial test of the WIMP

origin of any events observed in the detector, as most backgrounds should not exhibit the

same time dependence.

Particle Physics: WIMP/nucleus cross sections:

For a supersymmetric (SUSY) neutralino and many other WIMP candidates, the domi-

nant WIMP-quark couplings in direct detection experiments are the scalar and axial-vector

couplings, which give rise to spin-independent (SI) and spin-dependent (SD) cross-sections

for elastic scattering of a WIMP with a nucleus, respectively. SI scattering is typically taken

to be

σSI =
µ2

µ2
p

A2 σp,SI , (6.4)

where A is the atomic mass of the nucleus, µp is the WIMP-proton reduced mass and σp,SI

is the SI scattering cross section of WIMPs with protons. For large momentum transfer,

this relation is multiplied by a form factor correction to account for the sensitivity to the

spatial structure of the nucleus. Since the SI cross-section grows rapidly with nuclear mass,

direct detection experiments often use heavy nuclei to increase their sensitivity to WIMP

scattering.

Spin-dependent (SD) WIMP-nucleus interactions depend on the spin of the nucleus. Most

nuclei have equal numbers of neutrons and protons so that there is no SD contribution; spe-

cific nuclei must be chosen in experiments to search for nonzero SD couplings. SD scattering

is often of lesser significance than SI scattering in direct detection experiments for the heavy

elements used in most detectors due to the extra A2 coherence factor in the cross section.

Astrophysics: Velocity Structure of the Galactic Halo:

The velocity distribution f(v) of dark matter particles in the Galactic Halo is crucial to

their signals in dark matter detectors (as first stressed by [258]). The dark matter halo in

the local neighbourhood is likely to be composed mainly of a smooth, well mixed (virialised)

component with an average density ρχ ≈ 0.4 GeV/cm3. The simplest model of this smooth

component is the Standard Halo Model, a spherically symmetric nonrotating isothermal

sphere with an isotropic, Maxwellian velocity distribution characterized by an rms velocity

dispersion σv ∼ 290 km/sec; the distribution is truncated at escape velocity vesc ∼ 550

km/sec in the Galactic rest frame, or vesc ∼ 750 km/sec in the laboratory frame (the frame

of the Earth) where the measurements are made. The resultant count rates in direct detection

experiments due to the Standard Halo Model were first discussed in [258].

A key issue for dark matter detectors using nano-explosives is the question of whether

or not a WIMP deposits enough energy in the detector to initiate an explosion. The WIMP

velocity plays a key role, as can be seen in Eq. (6.3). We will study two different WIMP
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velocities. First, we take the typical WIMP speed, which is roughly 300 km/sec in the lab

frame. However, it is possible that, although the typical WIMP is not sufficient to set off

an explosion, there are plenty of high velocity WIMPs on the tail of the distribution that

do cause explosions. In fact many existing dark matter detectors (such as LUX, XENON,

and CDMS) rely on this tail in obtaining results for low mass WIMPs near the threshold of

their sensitivities. Thus, as our second case, we will consider fast WIMPs with speeds of 700

km/sec in the lab frame. Herein, we study both cases for oxide-based nano-thermites; and

aim to extend the study both cases for halide-based nano-thermites in future work.

A related question is the value of the energy recoil, which depends on the scattering angle

(see Eq. (6.3)). The maximum recoil energy takes place for forward scattering with an angle

of θ = π, i.e.

Emax = 2µ2v2/M. (6.5)

In some cases a more typical value of the energy recoil is half of the maximum, but an

accurate calculation including form factors for the detailed interactions with the nucleons

inside the nucleus would be required and is the subject of future work. For our case of 300

km/sec WIMP speed, we assume a characteristic energy of 1/2 the maximum energy recoil;

whereas for the fast WIMPs with 700 km/sec, we assume the maximum energy recoil. In

the future it would be interesting to integrate over the entire WIMP velocity distribution,

with results dependent on the detector material of choice as well as WIMP mass.

Current Experimental Status for Direct Detection:

In the past decade, a host of direct detection experiments using a variety of different

detector materials and designs have reported unexplained nuclear recoil signals which could

be due to WIMPs. Detection of annual modulation has now been claimed by the DAMA and,

more recently, CoGenT experiments. The Italian Dark Matter Experiment, or DAMA [261],

consists of 250 kg of radio pure NaI scintillator situated in the Gran Sasso Tunnel underneath

the Apennine Mountains near Rome, and became the first direct detection experiment to

observe a positive signal. The group now has accumulated 1 ton-yr of data over the past

decade and finds an 8.9 σ annual modulation with the correct phase and spectrum to be

consistent with a dark matter signal. Recently CoGeNT [262], consisting of Germanium,

also claim to see annual modulation of the signal with the correct phase to be consistent

with WIMPs, and together with a third CRESST-II [263] experiment, could be seeing ∼10

GeV WIMPs. The CDMS experiment also has seen a few unexplained events in their Silicon

detectors at low energies [304], that might be compatible with low mass WIMPs. However,

other experiments, notably CDMS-Ge [267,268], SuperCDMS [269], XENON [270] and LUX

[228], have null results that conflict with these positive signals and may rule them out. Many
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direct detection experiments are either currently running or gearing up to do so, and we can

expect more data soon.

The COUPP [305] [306], PICASSO [307], SIMPLE [308], and PICO [309] (a new collab-

oration between the COUPP and PICASSO teams) experiments are the most similar to the

nano explosives proposed here. PICASSO and SIMPLE use superheated droplet detectors

and COUPP uses bubble chambers. These detectors go through a phase transition when hit

by a WIMP; easily visible bubbles form in the bubble chambers. These detectors operate

at room temperature and are sensitive to low mass WIMPs, down to about 15 GeV. The

new PICO collaboration aims for a 3 keV energy threshold, allowing it to study WIMPs of

even lower masses; their limitations are due to gamma-ray backgrounds. One of our goals is

to explore new materials and designs that allow the detector to have even lower threshold

and sensitivity to even lighter WIMPs. Because our targets are nm in size, we have the

resolution to differentiate between WIMP nuclear recoils, which only interact with one cell

of our detectors, and other backgrounds (such as αs and γs) which travel through many cells

and cause multiple ignitions.

In the past few years the cross-sections that have been reached by detectors have improved

by three orders of magnitude; over the next few years another two orders of magnitude

should be reached. The next generation of detectors being built will be one tonne in mass

or directional. A review of the theory and experimental status of dark matter detection can

be found in [288]. One of the goals of using nano explosive DM detectors is to design low

threshold detectors that can test the light mass <10 GeV hypothesis.

6.3 Basic Idea of Nanothermites as WIMP detectors

For a given energy deposit by a WIMP (given in Eq. (6.3), the amount that the nanopar-

ticle heats up is determined by

∆T = ∆E/Cn (6.6)

where the heat capacity of the nanoparticle Cn depends on the material as well as on the

size of the nanoparticle.

It is instructive to see specific examples of Eq [6.6] in order to get an idea of the amount of

temperatures roughly expected to be produced inside the nanoparticle. The specific heat per

volume of Al is cAl = 1.5× 10−5 keV/nm3. The heat capacity for an aluminum nanoparticle

of radius R = 1 nm is CAl
n = cAl 4πR

3

3
= 6.3× 10−5 keV/K. Thus, the expected temperature

increase for an aluminum nanoparticle with an energy of 1 keV deposited by a WIMP

interacting with an aluminum nucleus is ∆T = 1keV
CAln

= 1.59×104 K. The ignition temperature
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for a micron-size Al/Fe2O3 thermite necessary for the reaction to begin is roughly 1, 000 K,

which implies that a nanoparticle with radius (Rn = 1 nm) could produce high enough

temperatures for the thermite reaction to begin and produce an explosion. The low values of

the heat capacity for metal nanoparticles allows for a very large temperature increase. This

is one of the main reasons for pursuing nano-thermites as a possible WIMP detector. In this

work, we aim to improve our previous calculation with Eq [6.6] in order to establish if the

nanoparticle could work as a WIMP detector or not. There are two issues that need to be

considered.

The first complication arises from the fact that the metal nanoparticle will not retain

the temperature increase for an infinite amount of time and will dissipate heat following

the dynamics of the heat transfer equation. The question of whether the thermite reaction

will begin or not needs to be addressed by studying the heat transfer equation in order to

establish the amount of time the nanoparticle stays heated. Then the Arrhenius Equation

approximates the reaction rate given a specific chemical reaction, size of the nanoparticle

and temperature. This reaction rate is multiplied by the timescale determined from the heat

transfer equation to estimate the probability of a nanoparticle exploding. The Arrhenius

equation allows us to estimate the quantum efficiency of detonation, the probability that a

detonation would occur following a nucleus recoil event.

The second complication considered is the distance traveled by the recoiling nucleus. It

is expected that sometimes the recoiling nucleus will escape the metal nanoparticle after

interacting with the WIMP. The escaping nucleus will not depose all of its energy into the

nanoparticle. The range at which the recoiling nucleus stops needs to be understood in

order to approximate correctly the amount of energy deposed into the metal nanoparticle.

Calculations to address these two complications; utilizing the heat transfer equation, the

reaction rate and stopping distance for the recoiling nucleus in order to establish the viability

of nano-thermites as WIMP detectors; will be done in later sections below.

We may ask what temperature increase is required to initiate an explosion. Here we

describe the basic idea, and continue in detail in the next section. We treat the system as

a phase transition with a barrier that must be overcome in order for the thermite reaction

to take place. The ability to use nano-thermites for dark matter detection is pulled in

two contrary directions. On the one hand, the material must be chosen so that it does

not spontaneously explode due to thermal fluctuations. We may require no spontaneous

explosion for at least one year; this requirement determines the barrier height for the chemical

reaction. The required barrier height can be quite significant and is particularly restrictive

for a detector operating at room temperature. Yet, on the other hand, we would like the

most sensitive possible detectors to incoming WIMPs. Ideally the materials with the smallest
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required temperature increase (due to a WIMP hit) would detect the most WIMPs. We’ve

seen that typical WIMP interactions deposit 0.1-50 keV’s of energy. Given the barrier height

required to avoid spontaneous combustion, temperature increases of >1000 K are required

for the thermite reaction to take place at room temperature. We will see that heavy WIMPs

with masses above 100 GeV (or for some materials above 1 TeV) are able to deposit enough

energy (>10 keV) to cause ignition at room temperature for the detector geometry considered

here (other more favorable geometries are considered in a companion manuscript [297].

It is also possible to operate at cryogenic temperatures, such as 77 K using liquid ni-

trogen or 4.2 K using liquid helium as coolants. At these lower temperatures, the thermal

fluctuations that produce spontaneous ignition are less effective, and we may choose a ma-

terial with a lower barrier height for the phase transition without spontaneous detonation.

In this case the detector can react to lower temperature increases ∼ 50 K, corresponding

to lower energy thresholds, for some materials as low as ∼ 0.5 keV. Some of the explosives

that are designed to operate at 4.2 K may not be stable at room temperature. To realize

such explosives we need to develop cryogenic methods of mixing metal nanoparticles and

oxides. When operating cryogenically, the nano explosive WIMP detector can detect <10

GeV WIMPs better than any previous dark matter detector.

We can see the advantages of using nano-thermites, rather than larger micron-sized ones:

1. Only when the objects are nano-sized is their specific heat small enough to allow

operating at room temperature. Smaller detector elements have smaller Cn and thus,

for the same energy deposited by a WIMP, larger temperature increase (see Eq.(6.6)).

For nano-sized thermites the temperature increase due to WIMP interactions is large

enough to cause an explosion; whereas for micron-sized thermites the temperature

increase would be too low.

2. Low energy threshold of 0.5 keV, allowing for study of low mass < 10GeV WIMPs,

can be achieved when:

(a) operating at cryogenic temperatures;

(b) using chemically active metals with low melting temperatures such as: gallium,

rubidium, caesium, indium, tin, lead or bismuth;

(c) employing F-based (fluorine-based) nano-thermites (e.g. Al + WF6);

(d) considering more advance models other than nanoparticles embedded in an oxide.

The possibility of reaching lower energy thresholds through the implementation of

cryogenic temperatures will be further discussed. A detailed discussion for the design
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concepts (b)-(d) is beyond the scope of this work and will be discussed in forthcoming

studies.

3. Only when the detector elements have a size smaller than the track range of background

can one use new methods of background rejection. The track lengths of recoiling

nuclei are ∼ 50 nm, which is much smaller than the typical range of an α particle

(approximately 10 µm) emitted by radioactive decay. In nanothermites, a WIMP will

make one and only one cell explode, while other background particles will cause many

cells to explode. In contrast, currently employed detectors with a physical granularity

greater than approximately 10 µm will not be able to make this differentiation.

4. Directional detectors are possible, not with spherical nanoparticles, but with asym-

metric detector designs that may be the study of future work. Here the goal is to

obtain the direction that the WIMP came from; for the case of forward scattering this

is the same as the direction of the nuclear recoil. Directionality would prove WIMP

detection with much less statistics, with only ∼ 100 WIMPs required; in addition one

would learn about the structure of the dark matter Halo. For directional sensitivity,

the detector resolution must be smaller than the size of the track range of recoiling

nuclei in order to measure the particles’ track. If the resolution is micron-sized, while

the track length is nanometers, then of course the track will be impossible to follow.

Thus nano-scale detectors in principle have the capability to obtain nanometer track

resolution. The spherical nanoparticles studied here do not have directional sensitivity

but other designs may.

6.3.1 Activation Energy and Ignition Temperature

We take the rate of the thermite reaction Γ(T ) at temperature T to be represented by

the Arrhenius Equation

Γ(T ) = ANe−
Ta
T , (6.7)

where N is the number of interacting sites where a metal nucleus could chemically interact

with the oxide, and A is the Arrhenius prefactor which is unique for each reaction but

can be approximated by the vibrational frequency at the interface of the reactants. The

vibrational frequency of a crystal is roughly 1013 Hz. A survey of published values for the

Arrhenius prefactor A experimentally measured for solid decomposition reactions showed a

slight predominace of A values between 1011 Hz - 1013 Hz [310, 311]. We will approximate

A ∼= 1013 Hz, but wish to note that differences in the Arrhenius prefactor of order 102 will not

change our future results of the desired ignition and activation temperatures dramatically
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(less than an order of magnitude) due to the dominance of the exponential term. The

Arrhenius equation Eq 6.7 will allow us to calculate the probability of ignition of the nano-

thermite following a transient temperature increase.

Now we turn to computing two important temperatures: one characterizing the barrier

height of the phase transition and the other, the ignition temperature needed for a thermite

reaction to take place. We will find that each of these temperatures must exceed a minimal

value: the temperature characterizing the barrier height must be high enough to prevent

spontaneous explosion even when no WIMP has hit the detector, and the ignition tempera-

ture Tn sets a minimum value needed in order for an explosion due to a WIMP interaction to

take place. These two conditions are important considerations when choosing a metal and

oxide to make up the oxide-based thermite we will use in DM detectors.

The first condition: The barrier height is characterized by the “activation energy”

Ea ≡ kbTa (where kb is the Boltzmann constant) and its corresponding “activation temper-

ature” Ta. As mentioned above, the barrier height is determined by requiring the thermite

to be stable at room temperature TR = 300 K to thermal fluctuations for at least one year,

i.e., we require Γ(TR) × 1 year < 1. Even though the latter requirement is a conservative

estimate, we will later show that a nano-thermite dark matter detector could meet such a

constraining stipulation. In adapting Eq.(6.7) to the requirement Γ(TR) × 1 year < 1 and

computing the prefactor N , we must add up all metal nuclei that could chemically interact

with the metal-oxide and possibly produce an explosion within the entire detector.

As mentioned previously, each cell has a radius R ∼ 500 nm. Since the typical size

for the lattice constant L, which measures the separation between nuclei in the metal, is

a few angstroms (L ∼ 5 Å), the number of sites per nanoparticle of radius Rn = 5nm is

Nn = 4π
(
Rn
L

)2
= 1.3 × 103. Thus, the total number of interacting sites Ndet found in a

detector of total mass Mdet is given by Ndet = Mdet

ρnVn
Nn where ρn and Vn are the density and

volume of a single nanoparticle. To obtain a numerical value we will take Mdet = 1 kg. To

be as conservative as possible, we will take the lowest metal density for all the elements we

consider: Aluminum. Then we find Ndet
∼= 9.2× 1023 and set N = Ndet in Eq.(6.7). Now we

can impose the condition of having a stable detector at room temperature that will not have

any thermite reaction in the absence of a dark matter interaction for a running time of 1 yr:

Γdet(TR)×1 yr = Ae
− Ta
TRNdet(1 yr) ≤ 1

Ta ≥ 3.1× 104 K (6.8)

Thus, in searching through all possible thermite elements for possible use as DM detectors,
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we should choose those with thermite activation temperature Ta greater than 3.1×104 K. We

note that because of additional methods of background rejections such as annual modulation,

we could select a detector to be less stable to thermal fluctuations (e.g. Γ(TR)× 1 day < 1).

Nevertheless, our previous result is very robust because of the exponential nature of the

Arrhenius equation (i.e. the same calculation of the activation temperature for any varying

conditions under the assumed simple nanoparticle/oxide model will not vary much from this

result Eq[6.8]).

The second condition: Now we can proceed to find the ignition temperature Tn needed

for a signal to be seen in our detector. We want to find the minimal temperature increase

required by the energy deposited in a WIMP interaction that can lead to an explosion.

When a WIMP hits a nucleus inside a metal nanoparticle with radius Rn = 5 nm, the

nucleus typically traverses the entire nanoparticle (or even somewhat farther). We may take

the entire nanoparticle to be heated by some temperature Tn. However, this value of the

temperature does not last more than nanoseconds. In the next section we will solve the

heat transfer equation to estimate the diffusion timescale of the heat out of the nanoparti-

cle. Shortly after a characteristic timescale known as the “conduction time” tc, the metal

nanoparticle is no longer hot enough to induce ignition. Thus the appropriate timescale

with which to multiply the rate in Eq.(6.7) is this conduction time. To successfully have

an exploding nanoparticle operating at some temperature Tn, we thus require Γ(Tn)tc > 1.

We will see below that the conduction time is given by tc = R2
n

α
, where Rn is the radius

of the metal nanoparticle and α is the thermal diffusivity of the metal. The biggest metal

thermal diffusivity studied will be on the order of α ∼ 10−4 m2s−1; thus the shortest time-

scale considered will be tmaxc ∼ 2.5× 10−13 s. However, if the passivation layer is introduced

between the metal nanoparticle and oxide, then the conduction time may be order of mag-

nitudes longer. In our detector model, we are interested in the explosion of a single metal

nanoparticle embedded in an oxide. Thus, we take N to be the number of sites on a single

nanoparticle, N = Nn.

The ignition temperature Tn is now given by considering the following inequality:

Γnano(Tn)tmaxc = Ae−
Ta
TnNnt

max
c ≥ 1

Tn ≥ 3.8× 103 K (6.9)

The last inequality follows from taking the lowest value of the activation energy allowed by

Eq.(6.8), Ta = 3.1 × 104 K. Thus, in order to have a detector that can (a) run for a full

year without any spontaneous thermite reactions and (b) detect signals when a dark matter
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particle interacts with the nanoparticle, the ideal thermite reaction for the detector is one

with an activation temperature Ta ≥ 3.1×104 K and an ignition temperature Tn ≥ 3.8×103

K. The value for the ignition temperature needed for the nano-thermite to ignite is different

from values quoted in literature due to the difference in time and size scale. In order to

find the ignition temperature of a given thermite, experimentalist usually heat the bulk of

the materials for prolonged periods of times when compared to the conduction time (on the

order of seconds-minutes). As an example, if we substitute tmaxc → 1 sec, then the resulting

ignition temperature T ′n is closer to experimental results for thermite ignition temperatures:

T ′n = 836 K. For this reason, the minimum temperature needed for a single nano-particle

to ignite due to a recoiling metal nucleus under our assumed simple model is higher than

expected.

Note that the ignition temperature is also a function of the activation energy, so that an

increase in the activation energy increases the ignition temperature. As well, the activation

and ignition temperatures were calculated after alleviating the condition of having no signals

sourced by thermal fluctuations for a year (the first condition) to 1 per day (1 per hour):

Ta = 2.9 × 104 K (2.8 × 104 K) and Tn = 3.6 × 103 K (3.5 × 103 K). This calculation was

done in order to gain perspective under our assumed simple model into how the activation

and ignition temperatures change as a function of the stability timescale of the detector.

It should also be mentioned that the ignition temperature might be higher than the

melting temperature of the metal and/or oxide. The change in phase of the metal would

change the previous calculation by increasing the amount of sites able to interact chemically;

and thus, lowering the ignition temperature. In order to be consistent and conservative in

our calculation, we will adopt Tn = 3.8 × 103 K as our ignition temperature in all future

comparisons. Nevertheless, it is possible to have a different detector design that lowers the

ignition temperature needed without sacrificing the stability of the nanothermite detector to

thermal fluctuations. Our previous calculations have been done under the assumption that

the explosion of one nanoparticle of radius Rn = 5 nm initiates the chain reaction throughout

the cell, which is interpreted as a signal. However, it is possible to conceive a detector in

which two or more smaller metal nanoparticles (e.g. Rn = 2 nm) need to ignite in order

to initiate the chain reaction throughout the cell. This multi-particle ignition mechanism

suppresses activation of the nano-thermite cell due to thermal fluctuations and permits a

lower ignition temperature (i.e. energy threshold). The specific design aspects for the multi-

particle ignition detector is currently being pursued, but is beyond the scope of this work

and will be discussed in future work. There are many different implementations of the nano-

thermite detector that are worth pursuing in more detail. We concentrate on the simple

model of a metal nano-particle embedded in an oxide. The minimum ignition temperature
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adopted for future comparison will be the conservative estimate of Tn = 3.8× 103 K.

Now that we have calculated the ignition temperature needed, in the next section we will

study which metals have the necessary thermal and physical properties to reach the required

ignition temperature T ≥ Tn and explode when struck by a WIMP. We will consider a variety

of WIMP masses, mχ = 10, 100 and 1000 GeV.

6.3.2 Temperature Increase

We proceed now to calculate the temperature increase given to a nanoparticle by a WIMP

collision with a nucleus in the metal. While Eq.[6.6] gives a rough idea of the temperature

increase, here we will compute this quantity more carefully. A metal nucleus recoiling from

a WIMP interaction moves a certain distance before stopping. The amount of energy per

length lost by the metal nucleus as it traverses through the metal nanoparticle and/or oxide

is given by the stopping power (Si,j = −dE
dx

). Consequently, the range (stopping distance) is

given by

rf =

∫ E0

0

dx

dE
dE =

∫ E0

0

dE

Si,j
, (6.10)

where E0 is the initial energy of the metal nucleus and Si,j is the total stopping power given

by Lindhard (1961) theory [278] when considering a nucleus of type i moving through a

medium of type j. Lindhard theory is valid for heavy ions with a few keV of energy. A

different theory, Bethe-Bloch, needs to be used when considering backgrounds like α or β

particles, since they have larger energies (usually a couple of MeVs) and a small charge

(Z = 1 or 2). The stopping power of backgrounds will be discussed in a later section.

The total stopping power for a slowly moving heavy ion can be separated into the elec-

tronic Sei,j and nuclear Sνi,j components, such that Si,j = Sνi,j + Sei,j. Utilizing Lindhard’s

equations [278], we can approximate both stopping powers as:

Sνi,j = 2.8× 10−15nj
ZiZj

(Z
2/3
i + Z

2/3
j )1/2

Mi

Mi +Mj

(eV − cm2), (6.11)

Sei,j = 1.2× 10−16njZ
1/6
i

ZiZj

(Z
2/3
i + Z

2/3
j )3/2

√
E

Mi

(eV 1/2 − cm2). (6.12)

In the equations for the nuclear and electronic stopping power, the subscripts {i, j} cor-

respond to the parameters of the scattered nucleus and the medium respectively, Z is the

atomic number, nj is the atomic number density of the medium and M is the atomic mass

measured in atomic mass units.

In this case S1,1 pertains to a metal nucleus moving through the metal nanoparticle and
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S1,2 is the stopping power of a metal nucleus moving through the outside medium. We will

neglect any geometric factors and assume that all of the energy of the recoiling nucleus will

be deposited into the nanoparticle if rf ≤ 2Rn. If rf > 2Rn then only a fraction of the

recoiling energy will be deposited into the nanoparticle. In the latter case, when the ion

escapes the metal nanoparticle, the energy deposited into the nanoparticle ∆E = Ei − Ef
can be found by solving for the final energy Ef in the following equation:

2Rn =

∫ E0

Ef

dE

S1,1

. (6.13)

The effective amount of energy deposited into the nanoparticle, Eeff , is given by

Eeff =

E0 if rf ≤ 2Rn

∆E otherwise.
(6.14)

It is this quantity that determines the temperature increase of the metal nanoparticle. We

take the entire nanoparticle to be heated uniformly by this amount of energy. The initial

temperature increase of the nanoparticle is then given by a modified version of Eq.(6.6),

∆T0 = Eeff/Cn. (6.15)

Let us assume that the detector is operating at some uniform background temperature Tun.

For example, it might be at room temperature TR. Then the entire nanoparticle is initially

heated by the WIMP interaction to

T0 = Tun + ∆T0. (6.16)

In time, the temperature increase of the nanoparticle due to the WIMP interaction

dissipates. We will now solve the heat transfer equation in order to follow the evolution

of the temperature profile T (r, t). This allows us to calculate the temperature near a single

nanoparticle as a function of time in order to establish the characteristic time scale for how

long the metal particle remains heated, and give us its temperature at the time of dissipation.

The goal is to determine whether the temperature found at the interface is greater than the

ignition temperature assumed for our model Tn ≥ 3, 800 K, in which case the nano-thermite

in question could plausibly work as a WIMP detectors.

The heat transfer equation is solved for a single sphere of radius Rn embedded into a

semi-infinite medium with different thermal properties. The heat diffusion of a sphere to a

surrounding medium has been analytically calculated by A. Brown (1965) [312]. Our calcu-
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lation assumes zero thermal resistance at the interface. Thus, the calculated temperature

increase may be much lower than in the real system, since a finite resistance will contain

the heat inside the nanoparticle. In the following calculation, we will study the temperature

increase ∆T (r, t) = T (r, t) − Tun profile as a function of radial distance (r) and time (t).

Specifically, the heat transfer equation

∂tT1 = α1∇2T1 for r ≤ Rn

∂tT2 = α2∇2T2 for r > Rn

is solved given the thermal conductivity (ki) and thermal diffusivity (αi) of the sphere and

medium. The subscript “1” pertains to the sphere, whereas the subscript “2” is given to the

medium parameters. The following initial conditions (IC) and boundary conditions (BC)

are chosen in order to solve the heat transfer equation:

T1 = T0 − Tun ≡ ∆T0 and T2 = 0 at t = 0

T1 = finite at r = 0 (6.17)

T1 = T2 and k1
dT1

dr
= k2

dT2

dr
at r = Rn.

The boundary condition found in the last line implies that there is no thermal resistance

and no heat source at the interface.

Following (Brown 1965) [312], we find that the temperature is given by

T1

∆T0

(r, t) =
2QRn

πr

∫ ∞
0

(sinu− u cosu) sin
(
ur
b

)
exp(−u2 α1

R2
n
t)

(u cosu+ L sinu)2 + (Qu sinu)2
du (6.18)

T2

∆T0

(r, t) =
2Rn

πr

∫ ∞
0

(sinu− u cosu)F (u) exp(−u2 α1

R2
n
t)

(u cosu+ L sinu)2 + (Qu sinu)2

du

u
, (6.19)

where

F (u) = (u cosu+ L sinu) sin

(
u(r −Rn)

σRn

)
+Qu sinu cos

(
u(r −Rn)

σRn

)
(6.20)

σ =

√
α2

α1

Q =
k2

k1

σ L =
k2 − k1

k1

. (6.21)

It can be seen from the solution above that there is a natural time-scale tc that arises from

solving the heat eaquation; tc = R2
n

α1
. This time-scale, which will be referred to as conduction

time, gives a modest estimate as to how long does the metal nanoparticle stay heated.
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Figure [6.2] shows how the temperature diffuses from the nanoparticle to the medium at

times t = 0.5tc, tc, 5tc. Thus, one can approximate the amount of time that the nanoparticle

stays at a high temperature by tc. The temperature found at the interface (r = Rn) measured

at a time t = tc is the relevant temperature value that needs to be compared to the ignition

temperature Tn in order to determine if the thermite reaction will ignite. The temperature

increase at the interface (r=Rn) is given by:

∆T (Rn, t) = T (Rn, t)− Tun (6.22)

=
2Q

π

α1Eff
k1

∫ ∞
0

du
sin(u)(sin(u)− u cos(u)) exp(−u2 α1

R2
nano

t)

(u cos(u) + L sin(u))2 + (Qu sin(u))2
(6.23)

so that

∆T (Rn, tc) =
2Q

π

α1Eeff
k1

∫ ∞
0

sin(u)(sin(u)− u cos(u)) exp(−u2)

(u cos(u) + L sin(u))2 + (Qu sin(u))2
du. (6.24)

In the previous equations for ∆T , we have explicitly made the substitution ∆T0 =
Eeff
c1ρ1V

and

definition ∆T (Rn, t) ≡ T1(Rn, t) = T2(Rn, t).

As can be easily appreciated, there are many physical parameters that can influence

the temperature. To reduce the number of parameters we need to study, we will make the

following simplifying assumptions.

We will use the semi-empirical mass formula to approximately relate the atomic number

to the atomic mass:

Zi = 0.5
Mi

amu

1 + 7.7× 10−3
(
Mi

amu

)2/3
. (6.25)

Thus we eliminate Z1 as a free parameter in the calculation of the of the stopping power in

Eq (6.11-6.12), and consequently the effective energy in Eq (6.14).

The thermal diffusivity will be simplified by taking advantage of the relation α = k
cρ

and

the Dulong-Petit Law which states that the heat capacity of a solid in crystalline form is

given by c = 24.9amu
M

J
gK
. Thus, the thermal diffusivity is approximated by

αi =
ki
ρi

(
1

24.9amu
Mi

)
. (6.26)

It should be noted that the Dulong-Petit Law overestimates the heat capacity for light atoms

bonded strongly to each other at room temperature such as beryllium, and for most solids

kept at cryogenic temperatures (i.e. 4.2 K or 77 K). In both cases, the overestimation of the
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heat capacity will give a smaller thermal diffusivity, which as a consequence gives a smaller

∆T in Eq [6.24]. Thus, use of the Dulong-Petit is a conservative assumption that leads to a

calculated temperature increase smaller than reality.

Taking into account Eq 6.25 and Eq 6.26, the number of parameters is reduced to five:

density (ρ), thermal conductivity (k) and atomic mass (M) of the metal, the WIMP velocity

(v), and the WIMP mass (mχ). Now that we can calculate the temperature increase as a

function of the 5 chosen parameters (ρ, k, M, v, mχ), we can study which metal would pro-

duce a high enough temperature to overcome the ignition temperature needed. Note, that

the calculation for the temperature increase is independent of the assumed ignition temper-

ature Tn. Thus, we can select the optimal metals from our calculations of the temperature

increase, and perform future experiments to confirm the viability of the nano-thermite as a

dark matter detector.

6.4 Results

The equation for the temperature increase gives the temperature profile for a sphere of a

given material surrounded by a medium of another material. Specifically, Eq [6.24] will be

used in order to calculate the temperature increase expected for a metal sphere embedded

into a specific oxide; copper (II)-oxide. Thermite reactions work by putting two metals of

very different reactivity together and letting the more reactive (in a chemical sense) steal

the oxygen from the least reactive. Specifically, we choose copper (II) oxide (CuO) as the

material for the medium due to the low reactivity of copper. Then any metal more chemically

reactive than copper will create a thermite reaction when exposed to CuO at a temperature

greater than the ignition temperature Tn. The fact that copper is one of the least reactive

metals allows us to consider a large family of metals to use as nanoparticles. Another very

promising metal-oxide is tungsten trioxide (WO3). Like copper, tungsten is also a very low

reactive metal. The study of which metal-oxide would work best is beyond the scope of this

work and warrants further examination.

We wish to calculate the temperature increase caused by a WIMP/metal-nucleus elastic

collision at the interface of the metal nanoparticle with copper (II) oxide for a couple of

metal targets in order to identify potential metals that could produce enough temperature

to create a thermite reaction. Four different metals are chosen as test metals: aluminum,

ytterbium, thallium and tantalum. Figure [6.3] shows the reason for this choice of metals.

The first argument is the fact that their densities range from one of the lightest elements in

the periodic table, aluminum, to one of the densest active metals, tantalum.

In order to study which metals would work best for the nanoboom detector under different
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limits of the WIMP/nucleus interaction, the analysis is divided into two distinct sections.

The two differing cases are: I) typical recoil energy, Emax
2
, is deposited to the metal nucleus

at the mean speed for galactic WIMPs in the lab frame (v = 300 km/s), and II) a very

energetic WIMP with a velocity close to the escape velocity (v = 700 km/s) deposits the

maximum energy , Emax, to the metal nucleus. For each case, the temperature increase at

the interface is calculated for each of the four metals and assuming a WIMP mass of either

mχ = 10 GeV, 100 GeV, 1000 GeV. Given a mass for the WIMP and a specific consideration

of the recoil energy, either case (I) or (II), then the temperature increase ∆T calculated for

the metal nanoparticle is dependent on three further parameters: the density (ρ) and thermal

conductivity (k) of the metal and the mass of the metal nucleus (M). The plot shown in

Figure [6.3] gives ∆T assuming a WIMP mass of mχ = 1000 GeV, a recoil energy Emax
2

with

speed v = 300 km/s and four different densities: ρ = 2.7, 6.9, 11.85 and 16.69 g/cm3, which

are the densities of aluminum, ytterbium, thallium and tantalum respectively. The reason

for choosing Ytterbium, Thallium and Tantalum is due to their relatively large mass (mY b =

173.05 amu, mT l = 204.35 amu and mTa = 180.95 amu), which gives a higher temperature

increase. Figure [6.3] shows that for a 1000 GeV WIMP ∆T increases for metals with a

higher thermal conductivity and mass. The fact that a large thermal conductivity produces

a higher temperature is seen clearly in the boundary condition. Looking at Equation 6.17

one can see that if k1 � k2 then dT1
dr
|r=b → 0, which is the boundary condition found for an

insulator. The difference in thermal conductivity between the metal and the oxide induces

a phonon spectrum mismatch at the interface, which creates an effective thermal resistance.

This implies that materials with a very large thermal conductivity compared to CuO will

retain the heat inside, and consequently have a higher temperature at the interface. The

recoil energy grows as the difference between the mass of the metal nucleus and WIMP mass

decrease, because the term µ2

M
in the equation for Emax is maximized for M = mχ. Thus,

the temperature output produced by the WIMP/metal-nucleus interaction will increase as

the mass of the metal increases for very heavy WIMPs (mχ ≥ 300 GeV) and gets closer to

the WIMP mass. In contrast, the temperature increase for low mass WIMPs (i.e. mχ = 10

GeV) will be greatest for metals with low atomic mass (e.g. aluminum), closest to the mass

of the WIMP.

Aluminum is a low atomic mass metal with a high thermal conductivity, which are

helpful characteristics for the study of low mass WIMPs. Furthermore, Al27 is an attractive

target for the study of spin-dependent WIMP/nucleus interactions. As well, aluminum is

a popular metal fuel in thermite reactions. Aluminum based thermite reactions have been

heavily studied within the scientific community and used in industry for a long time. By

considering aluminum as one of our metal targets, we gain perspective as to what type of
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Element Name Aluminum Ytterbium Thallium Tantalum

ρ [g/cm3] 2.7 6.9 11.85 16.69
M [amu] 26.98 173.05 204.38 180.95

k [W/(mK)] 237 38.5 46.1 57.5
∆T300(mχ = 10 GeV ) [K] 190 37 26 22
∆T300(mχ = 100 GeV ) [K] 483 1,605* 1,260* 992
∆T300(mχ = 1000 GeV ) [K] 510 2,155* 3,222* 3,272
∆T700(mχ = 10 GeV ) [K] 504 407 288 245
∆T700(mχ = 100 GeV ) [K] 749 2,282* 3,360* 3,465*
∆T700(mχ = 1000 GeV ) [K] 832 2,767* 4,078* 4,221*

Table 6.1: This table gives the temperature increase for the four chosen metals when inter-
acting with WIMPs of differing mass with a recoil energy given by one of the two considered
cases. The temperature is given in kelvins. The subscript 300 (700) of ∆T specifies if the
recoil energy considered was from Case I (Case II). For comparison, the superscript “*” in-
dicates a temperature increase higher than the melting temperature of its respective metal.
The total temperature at which the metal heats up is given by adding room temperature
to the resulting temperature increase: Ttotal = ∆T + 300 K. The total temperature Ttotal is
then compared to Tig = 3.8× 104 K in order to establish which metals would work as nano-
thermite detectors at room temperature. Only thallium and tantalum could work at room
temperature. Nevertheless, aluminum and ytterbium are possible metals for a nano-thermite
detector operating at cryogenic temperatures.

thermite reaction should be studied in order to make the nanoboom detector work.

The table shows the results for the total temperature increase found for the chosen four

metals when interacting with WIMPs of differing mass with a recoil energy given by one of

the two cases considered. The relevant parameters of copper (II) oxide needed to calculate

the temperature increase are: density (ρ = 6.315 g/cm3), thermal conductivity (k = 17

W/(mK)) and heat capacity (c = 0.53 J/(Kg)) [313] [314]. The subscript 300 or 700 of

∆T specifies if the recoil energy considered was a typical elastic collision with Enr = Emax
2

at a speed of 300 km/s, or if the collision was very energetic with Enr = Emax at a speed

close to the escape velocity, v = 700 km/s, respectively. For comparison, the superscript “*”

indicates a temperature increase higher than the melting temperature of its respective metal.

The total temperature at which the metal heats up is given by adding room temperature to

the resulting temperature increase: Ttotal = ∆T + 300 K. In order to establish which metals

would work as nano-thermite WIMP detectors, we then compare the total temperature Ttotal

to the ignition temperature Tig = 3.8× 104 K.

The results show that ytterbium has the highest temperature increase of the four metals

when considering Case I and WIMPs of mass mχ = 100 GeV. Ytterbium increases to a

temperature of ∆T300 = 1, 605 K whenever a typical collision happens between a WIMP of
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mass mχ = 100 GeV (i.e. Case I). Ytterbium is the best metal out of the studied four in

Case I for a WIMP of mass mχ = 100 GeV, because the term µ2/M in the equation for

Emax Eq [6.5] is maximized for ytterbium. Note that tantalum and thallium have a higher

temperature when considering Case II and a WIMP mass mχ ≥ 100 GeV, because they

are much denser metals than ytterbium. Thus, the stopping distance of a metal nucleus

moving through thallium and tantalum would be shorter than in ytterbium. This implies

that thallium and tantalum recoiling nuclei would deposit a higher fraction of its total energy

into the nanoparticle.

The calculations show that a tantalum metal nanoparticle at room temperature could

get hotter than T = ∆T + 300 K ≥ 3.8× 103 K when considering highly energetic collisions

(Enr = Emax, mχ ≥ 100 GeV and v = 700 km/s). Thus, metal nanoparticles composed of

tantalum could serve as a WIMP detector operating at room temperature for mχ ≥ 100 GeV.

Similarly, a nano-thermite composed of thallium metal nanoparticles could detect WIMPs

with mass mχ ≥ 1000 GeV. In contrast, the table also shows that aluminum has a consistent

temperature increase for a larger range of WIMP mass. Specifically, if aluminum were to

be a metal with an ignition temperature TAln ≥ 190 K, then aluminum nanoparticles could

work to measure light WIMPs. Aluminum has a higher temperature increase for low mass

WIMPs compared to ytterbium, thallium and tantalum, because it has the highest thermal

conductivity and lowest mass difference to a 10 GeV WIMP. According to Eq [6.24], Case II

WIMP/metal elastic collision can produce ∆T ≥ 190 K for WIMPs with mass mχ ≥ 3 GeV.

It should be noted that a detector composed of Al/CuO and with an ignition temperature

of TAln = 190 K has an energy threshold of about 2keV. Such a detector can be made stable

if it operates at cryogenic temperatures.

6.4.1 Cryogenic Detector

Operating the detector at cryogenic temperatures could increase its sensitivity in mea-

suring low mass WIMPs. We will consider configuring the detector at two different cryogenic

temperatures: TR = 77 K and 4.2 K. Lowering the temperature at which the detector works

allows us to consider thermite reaction with more favorable activation and ignition temper-

atures. As well, a cryogenic detector opens the possibility of using halide-based thermites

or other decomposition reactions. Herein, we discuss the possibility of an oxide-based nano-

thermite dark matter detector working at cryogenic temperatures.

Thus, following the same argument used to get equation Eq[6.8] and Eq[6.9], we would

need a much less increase in temperature in order to start the thermite reaction. Considering

temperatures of 77 K and 4.2 K as the original temperature for the detector, then the ignition
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temperature will be T 77
n ≥ 980 K and T 4.2

n ≥ 51 K respectively. This is specially helpful for

detectors of WIMP mass 10 GeV, which had a lower temperature increase. This variant on

the original design is very promising, since it affects equally any material used as the metal

and allows us to work with a larger family of thermite reactions. It is important to note

that a cryogenic detector with a very low activation temperature would make the detector

unstable at room temperature. Thus, the materials would also need to be synthesized at

cryogenic temperatures. Neverthless, a thermite detector working at cryogenic temperatures

will be stable even when considering very low activation temperatures; on the order of

T 77
a ≥ 7, 900 K and T 4.2

a ≥ 411 K for detector temperatures of 77 K (liquid nitrogen) and

4.2 K (liquid helium) respectively. Specifically, an Al/CuO nano-thermite detector with an

ignition temperature of T 4.2
n ≥ 51 K permits an energy threshold of 0.5 keV. Only experiments

would determine the actual ignition temperature of an Al/CuO nanothermite. Fortunately,

the ignition temperature of thermites is proportional to the size of the nanoparticle (i.e. a

smaller nanoparticle has a lower ignition temperature), and other similar metals/oxide to

Al/CuO could be used in order to achieve a ignition temperature close to 50K [315]. The

latter consideration is beyond the scope of this study.

6.4.2 Background

Any WIMP detector is vulnerable to background coming from the cosmic rays or radiation

from its components. Cosmic Rays can be minimized by putting the detector deep inside

a mine underground. Nevertheless, background will still be present due to radiation decay

inside the detector, which are mostly due to natural impurities of the materials. The energy

deposed per unit length of the background onto the detector can be calculated by using

Bethe-Bloch theory. The Bethe-Bloch equation, in contrast to the Lindhard equation, is

used for relativistic ionizing particles like alphas and betas. The stopping power of alphas

and betas can be found utilizing the ASTAR and ESTAR programs [ [294], [316]]. Since

the stopping power is linearly proportional to the density of the medium, we calculate the

stopping power for alphas and betas moving in the densest material (Platinum) common to

both programs.

Excellent background rejection can be achieved because of the nanoscale granularity of

the detector. Single charged particles have a very long range. Alpha particles, for example,

have a much longer range in the detector than do recoiling nuclei, which can be used to get

rid of background due to alphas. The energy loss of particles moving through the detector

cells is dE/dx ∼ Z2/β2. For helium Z2 = 4 (near the end of the range the ion will pick

up electrons and dE/dx increases, but for the most part one can take Z = 2 for helium).
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Z is much higher for nuclear recoils due to WIMP interactions, causing faster energy loss;

thus the nuclei stop within a single cell. The WIMP makes only one cell explode: the chain

reaction initiated by one exploding metal nanoparticle is restricted to nanoparticles within

only one cell, which is thermally isolated from neighboring cells by an insulating material.

On the other hand, the range of the α-particles, usually on the order of 10 µm or greater,

is longer than size of one cell, and therefore make about 20 cells explode at once. Thus the

nanoscale granularity is key for background rejection.

Alpha particles produced in a radioactive decay usually have energies around 5 MeV.

Utilizing ASTAR, the stopping power of an alpha particle moving through platinum with an

energy of 5 MeV is Sα = 5.02 keV/(10 nm). Alphas have a large enough stopping power to

produce a signal in a nano-thermite detector composed of a highly dense metal and energy

threshold Eth < 5 keV. Fortunately, the range of alpha particles is much larger than that of

heavy ions. Rejection of alpha particle signals can be made due to the nanometer granularity

of our detector. Specifically, the typical range of a heavy ion is around 50 nm; whereas, an

alpha particle moving through a material would typically travel approximately 10 µm or

more. As an illustrative example, the stopping distance for a 5 MeV alpha particle moving

through Al2O3 (SiO2) is 13.76 µm (20 µm). Since each cell has a size of 0.5 µm, then a

heavy ion would only explode 1 cell; and an alpha particle would explode 20 or more cells.

Signals produced by alpha particles can be rejected by eliminating all exploded cell clusters.

The energy range of beta particles is wide, ranging from a few keV to hundreds of MeVs.

This occurs, because the energy of the radioactive decay is usually shared between an electron

and a neutrino. Specifically, the biggest stopping power for a beta particle moving through

platinum in the range of energies 10 keV < E < 100 MeV(found at energy E = 100 MeV)

is Sβ = 0.33 keV/(10 nm). A nano-thermite detector will produce a signal if one or more

nanoparticles ignite and initiate a chain reaction within the cell. Thus, if our detector has an

energy threshold greater than Eth > 0.5 keV, then beta particles will not produce a signal in

our detector. It should be noted that the range of beta particles is much longer than alpha

particles. Thus, assuming that a beta particle can deposit enough energy to the nanoparticle

to make an explosion and/or the detector has a lower energy threshold of Eth < 0.5 keV;

then the same method of rejecting signals originated by alpha particles could be used to

identify explosions caused by beta particles. The signal produced by a beta particle (if any)

would explode many cells, much more than alpha particles. This result would hold true also

if we considered other metals with a lighter density, since the quoted stopping power is from

one of the densest metals in the periodic table. Another source of background are gammas,

which are highly energetic photons.

Even though gamma particles are electrically neutral, they can create photo electrons
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through the photoelectric effect and the Compton effect. Either of those interactions will

eject an electron at relativistic speeds, turning it into a beta particle that will ionize many

more atoms. Typical energies for gamma particles produced in a radioactive decay range

from a few hundred keV to 10 MeV. ESTAR can be employed to learn the behavior of the

electrons produced by the interaction of an atom with a gamma ray. By the same argument

found for beta particles above, gammas will not produce a signal in a nano-thermite WIMP

detector with energy threshold Eth > 0.5 keV. The nanometer granularity of the nano-

thermite detector is such that background from beta and gamma particles do not produce

any signal (assuming an Eth > 0.5 keV), and signals originated by alpha particles can be

discarded due to the large number of cells exploded.

6.5 Summary

We have studied the ignition properties of nanoscale explosives as a novel type of dark

matter detector. Other design concepts may be employed for the nanothermite dark matter

detector, which could obtain lower energy thresholds and/or measure directionality of the

recoiling nucleus sourced by a WIMP/nucleus interaction. We focused on two-component

nanothermite explosives consisting of a metal and an oxide. As a specific example, we

considered metal nanoparticles of 5 nm radius embedded in a gel of oxide, with millions

of these nanoparticles constituting one “cell” isolated from other cells. A large number of

cells adds up to a total of 1 kg detector mass. A WIMP striking a metal nucleus in the

nanoparticle, deposits energy that may be enough to initiate a reaction at the interface

between the two layers.

We calculated the temperature increase of a metal nanoparticle due to a WIMP interac-

tion and compared it to the ignition temperature required for the nanoparticle to explode.

We computed the range of the nuclear recoil using the Lindhard formula; if the recoiling nu-

cleus did not stop inside the nanoparticle, we considered only the fraction of the energy that

was deposited inside the metal nanoparticle itself. This energy fraction was then converted

to a temperature increase. We needed to know how long the nanoparticle remained hot in

order to determine whether an explosion was set off. This timescale was obtained from the

heat transfer equation. All assumptions made during the calculations were chosen in the

spirit of being as conservative as possible. We then compared the temperature increase to

the ignition temperature required to set off a nanothermite explosion. This ignition temper-

ature varies for different thermite materials, and was computed by requiring two conditions

to be met: (i) for each of the thermites we considered, there should be no spontaneous com-

bustion of any of the metal nanoparticles for at least a time period of one year, and (ii) the
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temperature increase from a WIMP interaction must be sufficiently high to overcome an ac-

tivation barrier and allow the thermite reaction to proceed. We searched through a variety

of thermite materials to find those whose temperature increases from WIMP interactions

would exceed their ignition temperatures for an explosion. We found aluminum, ytterbium,

thallium and tantalum to be particularly suited to discover WIMPs via the explosion they

would induce. We note that our model assumed that both the metal and oxide interact as

solids. However, if the metal changes physical state into a gas due to a correspondingly high

temperature increase, then the nano-thermite reaction rate may drastically increase.

Excellent background rejection can be achieved because of the nanoscale granularity of

the detector. The WIMP makes only one cell explode: the chain reaction initiated by

one exploding metal nanoparticle is restricted to nanoparticles within only one cell, which

is thermally isolated from neighboring cells by an insulating material. The range of the α-

particles on the other hand is longer than size of one cell, on the order of 10 µm, and therefore

makes approximately 20 or more cells explode at once. Thus the nanoscale granularity is key

for background rejection. Betas and gammas, on the other hand, rarely set off an explosion

at all.

We found a number of thermites that would serve as efficient WIMP detectors. Using

a single model, we found that if the detector operates at room temperature, WIMPs with

masses above 100 GeV (or for some materials above 1 TeV) could be detected; they deposit

enough energy (>10 keV) to cause an explosion. When operating cryogenically at liquid

nitrogen or liquid helium temperatures, the nano explosive WIMP detector can detect energy

deposits as low as 0.5 keV, making the nano explosive detector sensitive to very light <10

GeV WIMPs. Even with the conservative model presented in this chapter, our calculations

suggest that oxide-based nano-thermites would work as a dark matter detector. We look

forward to experiments which will establish accurately the minimal energy deposition by a

recoiling nucleus necessary for a nano-thermite combustion.
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Figure 6.1: This figure depicts a schematic view of the nano-thermite detector studied. An
array of cells of length 0.5 µm is embedded into an insulator, which thermally decouples
the cells from each other. Each cell contains more than a few million metal nanoparticles
embedded into a metal-oxide. Two different images are depicted at the bottom of the
figure: (a )shows the design model used for all calculations, and (b) represents a more
realistic depiction of the nano-thermite detector. The dissimilarity between both images
is the addition of a passivation layer in image (b). A passivation layer is a metal-oxide
coating placed around the nanoparticle in order to prevent oxygen molecules interacting
with the metal. An oxidized metal will not react chemically with a metal-oxide, since it is no
longer favorable to gain oxygen atoms. Thus, an oxidized metal will not produce a thermite
reaction. The passivation layer covering the metal nanoparticle would be required in the
synthesis of the detector; since it would prevent oxidation of the metal nanoparticle during
construction of the detector (i.e. before embedding the nanoparticle into the cell). As well,
in some differing implementations, the metal-oxide of the cell could be comprised of mixed
nano-wires [303], which would produce a larger temperature increase due to a higher effective
thermal resistance between the oxide and the metal. Image (a) represents a simplified design
model, which enabled analytic results in later sections.
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Figure 6.2: This figure shows the change in temperature ∆T after a WIMP/nucleus collision
with maximum energy Emax and speed of v = 700 km/s. The different plots represent ∆T
at times t = 0.5 tc, t = tc and t = 5 tc as a function of the distance from the center of the
metal nanoparticle. The nanoparticle significantly cools shortly after the conduction time,

tc = R2
n

α
. This feature is general to all materials considered. The rapid cooling at times

greater than tc is due to the exponential term in Eq [6.23]. Thus, tc serves as a very good
estimate for the total time the nanoparticle is heated.
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Figure 6.3: These contour plots shows the temperature increase ∆T as a function of
atomic mass M and thermal conductivity k of the metal used, given the densities: ρ =
2.7 (Al), 6.9 (Yb), 11.85 (Tl), and 16.69 (Ta) g/cm3. The chosen densities correspond to
the metals: Aluminum, Ytterbium, Thallium and Tantalum, respectively. The red dots on
each contour plot shows where each metal lies. The reason for showing these graphs, even
though they span an unreal parameter space of density, thermal conductivity and atomic
mass, is to show the general trend of the temperature output as a function of ρ, k and M .
The hope is that the reader can familiarize himself/herself with this trend and, if interested,
possibly explore a new set of metals as potential candidates for a nano-thermite WIMP
detector.
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Appendix A

Gravitational Wave signal after

Reheating

In this section we will consider the effects of having a non-instantaneous reheating epoch

after the first order phase transition on the gravitational wave energy spectrum. We begin

by rewriting Eqn. [2.28 and 2.29] as

fpeak0 = fpeak
(
a∗
aR

)(
aR
a0

)
, (A.1)

h2Ωpeak
0 = h2Ωpeak

(
a∗
aR

)4(
aR
a0

)4

, (A.2)

where a∗ = a(t∗) is the scale factor at the end of the phase transition, aR = a(tR) is the scale

factor at the end of reheating and a0 is the scale factor today. Distinct reheating models

will give different values for ( a∗
aR

), since the duration and equation of state of the Universe

depends on the details of the model.

During the reheating phase the homogeneous inflaton decays into lighter particles that

will ultimately thermalize and acquire a black body spectrum at a temperature TR. Once the

Universe reaches thermal equilibrium, then the Hubble parameter at that time is given by

H2
R = (8π/3)(ρR/M

2
pl), where Mpl = 1.22×1019 GeV is the Planck mass, ρR = (gRπ

2/30)T 4
R,

and gR is the total number of relativistic degrees of freedom at temperature TR. In future

calculations we will approximate gR ∼= 100, although it could be a factor of 10 lower if we

consider reheating to end at the beginning of Big Bang Nucleosynthesis.

The duration and expansion history of the reheating phase, before the Universe reaches

thermal equilibrium, is sensitive to the details and parameters of the reheating model. The

reheating epoch has been studied in the context of first order phase transitions by [83–85].In

particular, the Universe could have differing values for the equation of state during the
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reheating phase: w = 0 similar to a matter dominated Universe or w = 1/3 like in a

radiation dominated Universe, among others. Thus, we write the Hubble parameter at the

time of thermal equilibrium as

HR = H∗

(
a∗
aR

) 3(1+w)
2

; (A.3)

where w is the equation of state of the Universe during the reheating epoch.

Furthermore, the scale factor at temperature TR is given by

aR
a0

=

(
g0

gR

)1/3
T0

TR
=

(
g

1/3
0

g
1/12
R

)(
8π3

90

)1/4
T0√
HRMpl

. (A.4)

Combining Eq[A.1 and A.2] with equations [A.4 and A.3], the dependence of fpeak0 and

h2Ωpeak
0 on {ε, χ,w} becomes clear. The peak frequency and GW energy density per critical

density today are given by

fpeak0 = 9.35× 10−8 ε1/4

1GeV

1

χ

(
a∗
aR

) 1−3w
4

Hz (A.5)

h2Ωpeak
0 (χ) = 5.9× 10−8h2χ2

(
a∗
aR

)1−3w

(A.6)

Note that the factor
(
a∗
aR

)1−3w

, which depends on the reheating parameters, equals to

unity if w = 1/3. In other words, the peak frequency and GW energy density measured today

are unaffected by the details of the reheating model if the Universe had an equation of state

similar to radiation domination right after the phase transition ended. In contrast, if the

Universe had an equation of state w = 0 during the reheating epoch, then the peak frequency

and GW energy density decrease by (a∗/aR)1/4 and (a∗/aR) respectively. Specifically, if we

take the overly conservative bound that reheating lasted until the beginning of Big Bang

Nucleosynthesis and w = 0, then the GW energy density decrease by a factor of (10−13 −
10−17). This would make detection at Adv. LIGO impossible. Nevertheless, we would like to

emphasize that this is an extreme case. The work of R. Watkins and L. Widrow suggest that

reheating after a first order phase transition could be very efficient; comparable to slow-roll

inflationary models.
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Appendix B

Parameters and Vacuum

Metastability

Fig. B.1 presents contour plots of the scanned parameters in the mA-tan β plane. The

approximate check for vacuum metastability from Eq. 4.15 is shown in Fig. B.2. It is seen

that the desired condition is satisfied (corresponding to the plotted ratio being less than 1)

in most of the parameter space not ruled out by the 8 TeV LHC A/H → τ+τ− bound.
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Figure B.1: Contours of various input parameter values in the scan region. See text for
details.
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