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CHAPTER I

Introduction

In this thesis, we will study the arithmetic of the Asai L-function for Hilbert
modular forms over a real quadratic field. This is motivated by a p-adic analog of
the Beilinson conjecture for Hilbert modular surfaces. This p-adic analog, which
is expected to involve p-adic deformations in the weight direction (and is thus not
covered by the general p-adic Beilinson conjecture of Perrin-Riou [30]), does not
seem to be stated anywhere in the literature. The relevant p-adic L-function should
interpolate critical values of the Asai L-function for Hilbert modular forms of non-
parallel weight. Thus we are led to study the arithmetic of the special values of such
L-functions, building on previous work of Shimura. Our main results include two
theorems on rationality of such L-values that refine previous work of Shimura. We
also make some partial progress towards integrality results.

Let F be a real quadratic field and let O be the ring of integers in F. For
simplicity, we will also assume throughout that F' has narrow class number equal
to 1. Let H denote the complex upper half plane and f : H? — C a holomorphic
Hilbert modular form of weight (ki, k2). We assume that f is a normalized Hecke
eigenform.

It turns out there are two natural L-functions that one can associate with f. One



such, the standard L-function is defined by

L(f.s) =) C(a)N(a)™",

where the sum is over integral ideals a of O and the terms C(a) denote the Fourier
coefficients of f. This L-function is the one that appears in the Birch and Swinnerton-
Dyer conjecture for the form f.

Another L-function that one may associate with f is the so-called Asai L-function,

defined by

LM(f,8) = (25 =k — ko +2) > Clu)n ™,

n=1

where ((s) is the Riemann-Zeta function. Note that the sum is over the positive
integers rather than integral ideals of Op. Asai [1] used Rankin’s method to show
that this L-function admits an analytic continuation and a functional equation. The
Asai L-function for forms f of weight (2, 2) is related to the Hasse-Weil zeta function
of Hilbert modular surfaces. Specifically, the L-function L(H?(X),s) for a Hilbert
modular surface is a product of Asai L-functions corresponding to such forms, and
consequently it is the Asai L-function which arises in the statement of Beilinson’s
conjectures for H? of Hilbert modular surfaces. We will now recall this connection.

Let X be a smooth projective surface over Q. Then for each prime [, HZ (X xg
Q, Q) is a Gal(Q/Q)-module and as [ varies these form a compatible system of
finite-dimensional [-adic representations of Gal(Q/Q). Let L®(X,s) denote the
L-function associated with this compatible system. The (conjectural) functional
equation satisfied by this L-function relates the values L® (X, s) with L(®(X,3 —s).
Then Beilinson’s conjecture (stated in [4]) for the motive H*(X) concerns the special
values L'? (X, s) for integers s > 2 or equivalently the leading term in the Taylor

expansion at integers s < 1. These special values are expected to be related to



regulators of elements in certain higher Chow groups attached to X. Precisely,
the higher Chow group (or motivic cohomology) in question that is conjecturally

associated with L(® (X, 5) is the group

H3((X,Q(j)) = CH (X, 2j — 3) ® Q.
Beilinson then constructs a regulator map
(1.0.1) H3(X, Q7)) — Hp(X,R(j))

where H};(X,R(-)) denotes real Deligne cohomology. The target of the map (1.0.1)
admits a natural Q-structure. The conjecture then says that the map (1.0.1) is an
isomorphism and the difference between the determinant of this Q-structure and the
one induced from (the image of) H3,(X,Q(j)) is given by the L-value L® (X, j), up
to certain elementary factors. In fact, one needs to be a bit more careful for two
reasons. Firstly, one must work not with H3,(X, Q(j)) but rather with the subspace
of integral elements denoted H3},(X7,Q(j)). Secondly, for the point j = 2 there
is a correction factor involving the Neron-Severi group, that is related to the Tate
conjecture for X. We will ignore such subtleties for the moment.

We now specialize to the case of a Hilbert modular surface X. Since such a
surface is not compact, one should consider the intersection cohomology I H?; for the
purposes of the introduction we ignore the issue of noncompactness relegating the
more precise description to Chapter I1. For such an X, the representation HZ(X xg
Q, Q;) decomposes according to the action of the Hecke algebra attached to the group
Gr = Resp/g GLy. Let A denote the adeles over Q. The automorphic representations
7 of Gp(A) that contribute to HZ (X xg Q,Q;) can be classified and the interesting
representations are those where the infinite components are discrete series of weight

2, namely those that correspond to Hilbert modular forms f of parallel weight two.



Fixing such a m (and f), let Wy(m) denote the m-isotypic component of HZ(X xg
Q, Q). We write W () for the compatible system of Galois representations Wy().
The key point that connects Beilinson’s conjecture to the Asai L-function is the

following result of Brylinski-Labesse.

Theorem I.1 (Brylinski-Labesse, [9]). There exists a finite set of primes Q such

that

Lo(W(n),s) = Lg*(f, s)
where Lg denotes the L-function with Euler factors at primes dividing () removed.

As a result, Beilinson’s conjecture reduces more or less to a corresponding con-
jecture relating the m-isotypic component of H3,(X,Q(j)) to special values of the
Asai L-function LAS(f,s). Let us now briefly recall previous work on Beilinson’s

conjecture (and p-adic versions). conjecture:

(A) The original paper of Beilinson [4] treats the case of the Rankin-Selberg L-
function L(f X g,2) where f and g are classical modular forms of weight two.
This may be viewed as a special case of the setting described above by taking

F' to be the quadratic Q-algebra Q x Q instead of a real quadratic field.

(B) An unpublished preprint of Ramakrishnan [35] discusses the case of a Hilbert

modular form of weight (2,2) at s = 2.

(C) The paper [25] of Guido Kings treats the case of Hilbert modular forms of weight

(2,2) at s > 3.

More recently, there has been interest in formulating and proving p-adic versions
of Beilinson’s conjecture, in which the regulator is replaced by a p-adic regulator and

the L-function by a p-adic L-function. In the setting of (A) above, this was studied in



the paper [6] of Bertolini, Darmon and Rotger. The p-adic L-function in question is
that obtained by interpolating (the algebraic parts of) critical values of the Rankin-
Selberg L-functions L(f., g,s) where F is a Hida family of forms containing f and
k is an arithmetic point of F corresponding to a classical modular form f, of weight
> 3. The point is that the original Rankin-Selberg L-function L(f X g, s) has no
critical values since the weights of f and g are equal but the L-function L(f, X g, s)
is critical at the points 2 < s < k — 1 where k is the weight of f.. We note that
to define the algebraic part of L(f, X g,j), one needs to divide it by an appropriate
period. In this case, the period may be taken to be the Petersson inner product
(f«, [i) of the form f,, up to certain elementary factors.

We consider instead the case (B) with a Hilbert modular form f of parallel weight
two. Again, the Asai L-function L(f*%, s) has no critical points. The idea then is
to vary such an f in a Hida family F of forms whose weights are (k,2). When we
specialize F to a form f, of weight (k,2) with k > 2, the Asai L-function L(f2%s)
is critical in the range 2 < s < k — 1. Thus one may hope to construct a p-adic
L-function by interpolating the algebraic parts of these L-values. However, one runs
into a problem since the transcendental period that one must divide by is no longer
so easy to define. Indeed the form f, is not a “product” of forms as in the case
F = Q x Q and the period must somehow distinguish one of the two infinite places
of the field F. It turns out that there are two way to do this and thus two periods
that can be defined. We remark that the exact relation between these two periods
is not obvious and is an open question that deserves further study.

Motivated by the above discussion, for the rest of the introduction, we use the
symbol f to denote a Hilbert modular form (for F') of weight (k,2), and discuss in

turn the two periods that one can attach to such an f that capture the transcendental



part of critical values of the Asai L-function of f. The first period is defined by using
the Jacquet-Langlands correspondence. The idea here is due to Shimura (in [?]). One
assumes that there exists a quaternion algebra B over F' which is split at one infinite
place and ramified at the other infinite place. In other words, we need to assume
that the representation 7 is discrete series for at least one finite place. Let 71,7 be
the infinite places of F' and B be a quaternion algebra that is split at 71 and ramified
at 75. Let P denote the Jacquet-Langlands transfer of = to B*. Also let f? be a
nonzero vector in 72 of weight (k,0) at infinity. The form fZ may be viewed as a
section of an automorphic vector bundle Vg on the Shimura curve Xp attached to
B*. Now using the fact that Xz and Vg admit models over Q and even over F, the
form f2 can be normalized up to a non-zero element in the field FQ(f) which is
the compositum of F' with the field Q(f) generated by the Hecke eigenvalues of f.
In fact, one can also integrally normalize f? at least at good primes using suitable
integral models of Xp and Vg, as in [24] §1. The first period is then defined to be

the Petersson inner product of f? with respect to a suitable measure.

Q(f. B) = (", ").
The following theorem is due to Shimura.

Theorem 1.2 (Shimura [43], [44]).

LAS(fak — 1) _ LAS(ka — 1)

oy, wafp) ene

Our first main result refines this to

Theorem 1.3. (See Chapter VI, Cor. VI.18) Suppose that Q(f) C F and that
every prime ideal p of F' dividing the discriminant of B is split over Q. Then

LA(f ke — 1)
m™Q(f, B)

lies in F,y,



where Fy, denotes the maximal abelian extension of F.

The proof of this result is obtained by carefully analyzing Shimura’s proof of
algebraicity, which is rather difficult and involves several steps. The brief idea is
as follows. One views B as a quadratic space over F' equipped with the quadratic
form given by the reduced norm. Then fZ x fB : H? — C can be viewed as an
automorphic form for the identity component Gg of the group GO(B), since Gp is
isomorphic to (B* x B*)/F*. Shimura defines another automorphic form Ej, on Gp
such that

(F2 x5, By ~ LY(f2 k= 1)(F7, f7).
Here ~ denotes equality up to certain well-understood factors. He then shows that
E, is defined over Q which implies (f x B, E},) ~ C(f?, f?)2 with C € Q. The
idea then is to refine Shimura’s proof by showing that Ej, is in fact defined over a
smaller field.

The Hermitian symmetric domain for Gg does not have any cusps, so the ratio-
nality properties of Ey cannot be studied through g-expansions. Instead the idea
is to evaluate Ej at certain CM points and show that the resulting values, suitably
normalized, are rational. Let K be a totally imaginary degree 2 extension of F' and
wg € H? a CM point corresponding to K. One needs to study the value Ek(wK)
divided by an appropriate CM period attached to K. Now K itself can be viewed
as a quadratic space over QQ of dimension 4. The Shimura variety GO(K') has a
distinguished CM point zx associated with K and one can define an automorphic

form Gy on GO(K) with the property that

Ek(w[() ~ Gk(ZK)

The problem then reduces to showing that the form Gy on GO(K) is rational. To



prove this, one evaluates Gy at CM points z;, on GO(K) corresponding to imaginary
quadratic fields L. Finally, one shows that G(zy) is related to special values of
Rankin-Selberg type L-function of two forms for GL, over Q, where the form of
large weight is a theta series lift from L. The algebraicity (and rationality) of critical
values of such L-functions is well understood, and can be used as a first step in the
above sequence of arguments.

While, in principle, the constructions above only require K to be a quadratic
CM extension of F', in practice many simplifications occur if we assume that K is
biquadratic over Q. For example, in this case the group GO(K) may be viewed
as a the orthogonal group of a quaternion algebra By over Q. Moreover various
constructions involving reflex fields and CM periods are easier to keep track of if K
is biquadratic. To prove the main theorem we therefore first pick a CM field K that
is biquadratic, a subfield L of K that is imaginary quadratic and find a dense set of

points z;, on GO(K) such that
(1.0.2) Gr(21)/7"Q., € Lay,

for an appropriate CM period €., in C* /L) associated with the CM point z7. The
condition that every prime p of F' dividing the discriminant of B is split over Q is
used to ensure that one may in fact pick a biquadratic field K that embeds in B.
In order to study p-adic L-functions, it would be useful to have an integrality
result for the Asai L-function. In principle, it seems possible to further refine the
method described above to obtain such an integrality result but the technical details
get complicated. The idea would be to first prove an integrality statement for the
values in (1.0.2) and then leverage that to prove integrality of Gy and eventually
integrality of Ex. In Chapter VII, we show the following partial result. For certain

specific points z7, we define an integrally normalized period €2} and a constant M,



such that

Theorem 1.4.

Wk(;k(ZL)/(fl*

ZL)2k

is p-integral for all p{ M.

The proof of this uses a result from [32] on integrality of certain Rankin-Selberg
L-values. Unfortunately, we are not able to show the theorem above as yet for a
dense set of points z; and so we cannot conclude from this that Gy is p-integral.

Now we discuss another approach to studying the critical values of LA(f, s), which
is explained in Chapter VIII. This approach uses the original integral representation
of Asai, together with a period that was defined by Harris [16] using rational struc-
tures on coherent cohomology. The period €2; so obtained does not make use of the
Jacquet-Langlands correspondence to transfer to a quaternion algebra but instead
uses directly a construction on the Hilbert modular surface. The main result (which

we prove only in the case of forms of full level) is then:

Theorem 1.5. Let f be a Hilbert modular form of full level and weight (k, ) with

k> /(. Then
L(f, k1)

Q; lies in FQ(f)

where Q(f) denotes the field generated by the Hecke eigenvalues of f.
As mentioned before, it would be interesting to compare the periods Q(f, B) and

2y. Note that both these periods can be normalized up to elements in FQ(f) and

even up to p-units for good primes p.



CHAPTER II

Hilbert Modular Surfaces and their cohomology

2.1 Classical Definition

Let H denote the complex upper half plane. The classical definition of a Hilbert
modular surface is given as a complex surface that is a quotient of H?. Fix a real
quadratic field ' and denote the two embeddings F' < R by 7y, 7 respectively. These
extend to embeddings 7; : SLy(F) — SLo(R) (for ¢ = 1,2) by applying 7; to each
entry. We have an action of SLy(R) on H given by fractional linear transformations:

az+0b a b

7(z)zcz+df0r7: o € SLy(R), z € H.

Combining this with the two embeddings of SLy(F') gives the action of SLy(F') on

H2:

(e = (

a™z + b a™zy + b
Mz +dn c2zy + d™

a b
for Y= € SLQ(F), (21, 22) S HQ.
c d

Let Of denote the ring of integers in F. Then the image (71, 72) : SLa(Op) —

SLy(R) x SLy(R) is a discrete subgroup so the quotient SLy(Or)\H? is a complex

10
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surface. This is the simplest example of a Hilbert modular surface. In general we
can quotient by any arithmetic subgroup of SLy(F') - that is any I' C SLy(F') such

that I' N SLy(OF) has finite index in both I'" and SLy(OF).

Definition II.1 (Classical, see [46]). A Hilbert modular surface is the complex sur-
face I'\H? where T is an arithmetic subgroup of SLy(F’) for some real quadratic field

F.

Remark 11.2. We can also allow the case where F' = Q & Q and 71, 75 correspond to

projection onto the first, second coordinate respectively and embedding in R. Then

SLy(Op) = SLy(Z) x SLy(Z) and
SLy(Op)\H? =2 SLy(Z)\H x SLy(Z)\H.

In general we could let I' = I'y x I'y where each I'; is an arithmetic subgroup of
SLy(Z). Then the ‘Hilbert modular surface’ T'\H? is the product of the modular
curves I';\H for ¢ = 1,2. Thus we may think of a product of modular curves as a

‘degenerate’ Hilbert modular surface.

2.2 Adelic description

Let G := Resp/g GLy /F denote the Weil restriction of GLy /F' to Q (see [47] for
a construction of the Weil restriction). Thus for a Q algebra R, the R points of G
are given by G(R) = GLy(F ® R). Let X = H* x H* where H* = C \ R. Since
G(R) = GL2(R) x GL2(R) we have a natural action of G(R) on X where each copy of

GLy(R) acts on the respective copy of H* by fractional linear transformations. Let

a b
Loo = S GLQ(R)

-b a

and Ko = Lo X Lo C G(R). Since GLy(R)/ Ly & HE we have X 2 G(R)/ K.
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Let A denote the ring of adeles over Q and A, denote the ring of adeles over any
number field k. In addition we denote the finite and infinite parts of the adeles with
subscript f and oo respectively, so Ay, = R and Ay = 7% Q.

Then

GQ\G(A)/ K = GQN(G(R)/ Koo x G(Ay)) = GIQ\(X x G(Ay))

comes with a continuous right G(Af) action. For each compact open subgroup

K C G(Ay) one can construct the space

GQNX x G(Af))/K

and these form a directed system as K varies. The theory of canonical models ([38],

[11], [12], [27]) defines a Shimura variety Sk over Q, such that
Sk(C) = GQ\(X x G(Ay))/ K.

Given a compact open subgroup K the strong approximation theorem ([31]) im-
plies that there exist zy, ..., 2, € G(Ay) such that

n

G(a) = | |G@uG(AL) K

=1

and {det(x;)} is a complete set of representatives for F'* det(G(A)"K)\AZ. Here
the + denotes the subgroup of G(A.,) consisting of elements with positive determi-

nant. Then
G(Ay)T/Ke = (GLo(R)" X GLy(R)")/(Loo X Loy) = H X H.

Thus each element of G(A) is represented by a class [gx;, 2] for ¢ € G(Q),i €

{1,...,n},z € GL /Ky, = H? Then [gz;, 2] = [z;,2'] in G(Q)\G(A)/K K if and
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only if ¢ € G(Q) N 2;GLKx;' and gz = 2’. Thus the complex points of Sk are
naturally isomorphic to

| |ra\#?

i=1
where

Thus the Shimura variety Sk is a generalization of the classical Hilbert modular
surfaces. Although S is defined over Q, a given component I';\H? may not be.
However there will be a canonical abelian number field kp, depending only on I';

such that the component I';\'H? is defined over kr,.

2.3 Compactification

In general, a Hilbert modular surface I'\#? may not be smooth and it will never
be compact. The singular points arise from points in H? with non-trivial stabilizer
in " so if " is torsion-free, I'\H? will be smooth.

Similar to the case of modular curves we can add finitely many cusps to compactify
['\H?2. Consider themap i : F — C? given by i : a — (a™,a™). Then H2Ui(F)U{oo}
is compact. The boundary F U {oo} corresponds to P!(F') and has an action of

GLo(F') given by

gl = [+ by, e+ dy for v = | © | € GLa(P)
c d
C\P!(F) will be finite and these points are the cusps of I'\H?. The compactification
of Sk given by including the cusps is called the Baily-Borel-Satake compactification
and we denote it by Sk.

The singularities at the cusps can be resolved using the methods described by
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Hirzebruch ([22]) and Ash, Mumford, Rapoport, Tai ([2]) and this is called the
smooth toroidal resolution of Sk. Take a Hilbert modular surface I'\H? and consider

the cusp oco. For any ¢t > 0 define
Wt = {(21,22) € HQ : %<21>%(22) > t}

This is a neighborhood of co in H2. The stabilizer of co in I is given by

I's = el

A= el p,N= €l
0 1 0 y!

Then I'n, = A x N. To construct the smooth toroidal compactification we define
an infinite chain of rational curves ¥ and an A-action on ¥ such that A\Y is a
finite polygon of rational curves. The resolution adds ¥ to N\W; in such a way
that A\(N\W; U ) is smooth and compact. We denote the Shimura variety of the
toroidal compactification by S k and there is a natural map 7y : S « — Sk such that
the pre-image of each cusp is a finite chain of rational curves. Harder, Langlands
and Rapoport ([15]) show that Sy and the map 7x can be defined over Q. Let S5°
denote the cusps in Sk and S%° = 7.'(S%) C Sk. It is important to note that the
construction of Sk is not canonical. However we will soon see that there is a piece

of the cohomology of Sk that is independent of the choices made in the construction

of SK.
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2.4 Cohomology of Hilbert Modular Surfaces, Hecke Operators, and
Hilbert Modular Forms

Since Sk is defined over Q we have an action of Gal(Q/Q) on
W = Hci(SK XQ @,@z)

for each prime [. There is a natural map H2(Sx xg Q,Q;) — W, and define IW,
to be the image of this map. Furthermore let W>° be the subgroup of consisting of

elements supported in S%°. Harder et al. ([15]) showed that there is a decomposition
W, = IW, & Wye.

Recall that for each cusp s of Sk, 7' (s) is a polygon of rational curves. Let n(s)
denote the number of irreducible components of this polygon. Let (1) denote the

l-adic Galois Tate module and @Q;(—1) be its dual. Then

W = @ @)™

seS

Let K, L be two compact open subgroups of G(Ay) such that L C K. Then there
is a natural map R(1) : S, — Sk. In general if there exists x € G(Ay) such that
x7'Lx C K then there is a map R(x) : S; — Sk defined by R(z)(vy) = R(1)(yz) for

v € G(A).

Definition I1.3. For any K and z set L := K NaKxz~'. Then there is a diagram

ST
Ry \R(j)
SK SK
which defines a correspondence T}, : Sk — Sk. This is the Hecke correspondence T.

The Hecke algebra over k O Q is the algebra generated over k by the T, acting Sk

is denoted by HE. We will sometimes write simply Hy.
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Since the Hecke correspondences act on Sk and not Sk, there is an induced action
of the Hecke algebra on IW;, but not W;>. This allows us to write IV ®Q, as a direct

sum over irreducible Hg representations. Let 7 be an irreducible Hg representation
7 Hg — GL(W,(7))

where E(7) is a number field over which 7 is defined and Wi(7) is an E(7) ® Q,

module. For each 7 there is a multiplicity m(r, K) such that if
Wi(r) = Wafr) o)
and W/ is the extension of W/ to E(7) ® Q; then
e Q=P W)
The action of Gal(Q/Q) on Sk induces an action of Gal(Q/Q) on W/(7). Let
TH;(S x Q Qi) := lim THE (Sk x Q, Q).

Let Hél be the algebra generated by all the H(gl’s and decompose [Hgt(g x Q, Q)

by the action of H él. There is a result which says

Lemma I1.4 (see [34] p. 305). TH2,(SxQ,Q,) decomposes into a sum of components

Wi(7)s, each occurring once, such that
Wi(r)§ = Wi(r)
for all K and for each T there is an compact open subgroup K (1) such that

Wir); 7 = Wi(n).

This induces an action of Gal(Q/Q) on W;(7).
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Let m = 7o X 7y be an irreducible, admissible representation of G(A) on V, =
Vi @ Vir,. Then Hé( acts on Vﬁljf . If V., is defined over a number field and wajf #0,
this gives us a representation 7. We say such a 7 is associated to .

Certain representations 7 come from Hilbert modular forms:
Definition I1.5. Given integers ki, ko and an arithmetic I' C SLy(F) a holomorphic
function f on H x H is a Hilbert modular form of weight (ki, ko) if it satisfies

FOr(z1,20)) = T (€24 d™)" f (21, 20)

i=1,2

a b
for all (21, 20) € H?, vy = el. If ky = ky = k, say f has parallel weight k.
c d
Theorem II.6 (Harder, Langlands, Rapoport, [15]). W;(7) # 0 if and only if T

is associated to an irreducible admissible representation m of G(A) and 7 is one-

dimensional or 7 is cuspidal automorphic of weight 2.

For a definition of ‘cuspidal automorphic of weight 2’ see [36] and [13]. We will

use the following result

Theorem I1.7 ([13], 3.10). A cuspidal automorphic weight 2 representation of G(A)
corresponds to a classical holomorphic Hecke eigenform on H X H of parallel weight

2.



CHAPTER III

Beilinson’s Conjecture

3.1 Class Number Formula

Beilinson’s conjecture on regulators are an important generalization of the class
number formula for number fields. For K a number field, the class number formula
states that the Dedekind zeta function of K has a power series expansion (x(s) =

55 +co+c(s—1)+... where

2" (2m)"2 h reg
wk\/|DK| '

Here ry is the number of real places of K, r the number of complex places, hx the

CcC =

class number, wy, the number of roots of unity, Dk the discriminant, and regj is the

regulator of K. Let us recall the definition of the regulator map.

Definition III.1. Regulator map for number fields
Let K be a number field with 7, real embeddings 71, ..., 7., and r, conjugate pairs
of complex embeddings 7, 11, Try 415 - -« » Trytres Tritre- Lhen the group of units in Ok

has rank m :=r; +r9 — 1. Let

Y:{x:(xg,...,xm)ER’”+1:Z$Z-:O},
i=0

Define reg : Ox — Y by
reg : x — (log(|z™|), ..., log(|x™1*2])).

18
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This map lands in Y because of the product formula and the image reg(Oj) is a

lattice in Y. The regulator of K is defined by
regy = det(reg(Ox) & ((1,1,...,1))).

The regulator is expected to be transcendental for all K # Q and this is significant
because every other term in the class number formula is algebraic (except for the well
understood powers of 7). This is the idea behind Beilinson’s conjecture: find a map of
R-vector spaces whose determinant with respect to a suitable Q-structure calculates
the transcendental part of the special values of L-functions, and that generalize the

regulator above.
3.2 L-functions

Definition II1.2. Let V, = {V}} be a compatible system of finite dimensional l-adic

Gal(Q/Q) representations. The L-function of V, is defined by

L(Va,s) =[] Zo(Varp™)"!

where

Zy(Ve, T) = det(1 — F,T1,,1,)
l

for some [ # p. Here F), denotes the (geometric) Frobenious at p and I, denotes the

inertia subgroup at p. This is constructed in [11].

3.3 Beilinson’s Conjecture for Surfaces

We will now describe Beilinson’s conjecture for the case of a surface X defined over
Q. Let X = X xgQ. Then the groups H2 (X, Q;) form a compatible system of finite

dimensional [-adic Galois representations. Thus we can construct the L-function

LO(X, s) == L(HA(X,Qu), 5).
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Beilinson’s conjecture claims that the leading coefficient of this L-function at s = 1
is given by the volume of a regulator map. Part of the domain of the regulator is a

certain higher Chow group on X:

Definition IT1.3. Let X be a surface over Q and £ be a number field. The higher
Chow group CH?*(X},1) is generated by finite formal k-rational sums >,(C;, fi)
where each C; is a closed irrreducible curve on Xj, f; is a function on Xj that is

invertible at the generic point of C; such that

Zdiv(fi) =0

where both sides are viewed as 0-cycles on Xj. For g, h rational functions on Xj and

C a curve on Xj, define

orde (h)

or or g
Tamec(g; h) = (_1> delgjorda(h) hordc(g) c-

Quillen ([33]) showed
Z div(Tamec(g,h)) =0
c
as zero-cycle on Xz. Two formal sums of the form ) .(C;, f;) are said to be equivalent

if they differ by a linear combination of elements of the form ), div(Tamec, (g, ;).

CH?(Xg, 1) is the group of such equivalence classes, rational over k.

The target of the regulator map comes from the cohomology of the analytification

of X:

Definition ITI.4. Let Hp denote Betti cohomology and R(j) = (27i)’R. Let
Yg = H" (X xgC,C) N H3(X xg C,R(1)).

Then Gal(C/R) acts on Yg via the action on X xg C so we can let Y3 denote the

invariants of complex conjugation. The regulator will map into Yg .



21

Let H{g(X%) denote the DeRahm cohomology of X and F* the algebraically

defined Hodge filtration on Hjyz. Then there is an exact sequence

0= > (FPHpp(Xi) @ro C)F B HH(X xg C,R(1))Y = Y5 =0

o€hom(k,C)

where the map p is defined by taking the isomorphism
Hpp(Xk) ®k,0 C = Hp(X(C),C)

and projecting by

C =R(1) ®R(2) — R(1).

> ochom(e.c) F2Hpr(Xk) @k C)* has a Q-structure given by >, F?Hpp(X;)* and
H%(X xg C,R(1))" has a Q-structure given by Hz(X xg C,Q(1))". These induce
a Q-structure on Yy~ and allow us to define the volume of a Q-lattice in Yz" up to

an element of Q*.

The vector space H'(X xg C,C) has a pairing (-, -) defined by

(wy,wa) = / wy A ws.
X(C)

To define reg : CH?(Xy, 1) — Y it is in fact enough to define how reg(3) behaves

under (,) for each 8 € CH?*(Xy, 1) (see [34] p.347).

Definition IIL.5. Let 8 =Y ,(C;, fi) € CH*'(X) and C! = C; \ div(f;). Then
reg : CH*'(X) — Y5

is uniquely defined by the property

g g 1 g g
e ) =5 30 [ woslf7) el

for each o : k — C.
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Let X, be a proper model for X over Oy. Then Beilinson ([4]) defines a subspace
CH*(Xo,,1) ® Q in CH*(X},1) ® Q. Beilinson’s conjecture concerns the image of
this integral part of the higher Chow group under the regulator map.

The last piece needed to define the regulator is the analogue of the vector (1,1,...,1)
in the determinant. This is played by the Neron-Severi group N.S(X) and reg |yg(x)

is defined as the cycle class map.

Conjecture ITI.6 (Beilinson’s Conjecture, [4]). Let Xo, be a proper model of X,
so that we can define the integral part of the Chow group: CH*(Xp,.,1) ® Q. Then
reg(CH?*(Xo,,1) ® Q& NS(Xy) ® Q) is a Q-lattice of Y and its volume is equal

to the leading coefficient of L®) (X, s) at s = 1 up to a non-zero rational number.

3.4 Beilinson’s Example

When Beilinson originally made his conjecture, he gave some evidence for it in the
case when X is a product of modular curves. In this case he was able to construct
elements in CH?(Xo,,1) and explicitly compute their image under the regulator

map. These are called Beilinson-Flach elements:

Definition III.7. Let M be a modular curve and X = M x M. For each modular
unit v on M we can define a Beilinson-Flach element A,. Since u is a modular unit
it’s divisor on M can be written as ) . ¢; — ¢, where each ¢;, ¢ is a cusp on M. Let

a; be a modular unit with divisor ¢; — ¢, for each i. Then the formal sum
Di = ({C’L} X M7 @i) + (M X {Cg}aai)

has divisor (¢;, ¢;) — (¢, ¢;). Let A denote the diagonally embedded copy of M in X.

1)1

Then the formal sum

Ay =(Au)=> D



23

has divisor 0 and therefore represents an element of C H?(Xj, 1). This is the Beilinson-
Flach element associated to w. See [4] p.2064 for details and the argument that

A, € CH*(Xo,,1).

The groups H?(X) (both Betti and étale) decompose as
H*(X) = (H*(M) @ H(M)) & (H'(M) @ H'(M)) & (H"(M) ® H'(M))

and we will focus on the H*(M)® H'(M) part. H*(M) decomposes into irreducible
components corresponding to weight 2 eigenforms. Let f and g be two such eigen-
forms. Then the component of L (M x M, s) corresponding to (f,g) is in fact
L(f ® g, s), the Rankin-Selberg convolution of f and g (a full explanation of this is

in [4] Ch.2 Sec. 6). Let w, be the form 27mig(z)dz and

where f* is the form given by applying complex conjugation to the coefficients of f.
Then the component of Y3 corresponding to (f, g) is given by w, ® n?h. Beilinson’s

result is:

Theorem III.8 (Beilinson). Let f, g be weight 2 normalised newforms of levels Ny,

1

Ny and nebentypus characters x5, xq with x = Xflx; non-trivial. Also let N :=

lem(Ny, Ny). Then there is a modular unit u, attached to the character x. We have

L(f®g,2)

=16 N 27 (x Vreg(Ay. , w, @ nh).
Y (X7 )reg{Bu, ; wg ® 1f")

Here 7(x™') denotes the Gauss sum associated to x'.

Note that although our statement here concerns the value of L(f ® g,s) at s = 2
and the statement of Beilinson’s conjecture concerns the value at s = 1, the functional

equation relates the values s <+ 3 — s.



24

3.5 Ramakrishnan’s results for Hilbert modular surfaces

Ramakrishnan ([34]) was able to prove a result similar to Beilinson’s for the case
of X a Hilbert modular surface. The significant part of this proof lies in finding ele-
ments of C'H?(Sk, 1) because the Beilinson-Flach elements do not exist on a Hilbert

modular surface.

Definition III.9. Given an open compact subgroup K C G(Ay) there is a modular
curve M that can be diagonally embeded in Sk by through the diagonal embedding
HE — H*E x H*E. The Hirzebruch-Zagier cycle C”g,K on the Hilbert modular surface

Sk is the image of this diagonal embedding under the Hecke operator 7.

Definition ITI1.10. A formal sum

> (Ci fi)

7

is called K-admisible if each C; is a Hirzebruch-Zagier cycle C’g, x on Sk, each f; is
a modular unit on C; and

> div(fi) =0
as a 0-cycle on Sk x Q.

Any such sum will also be rational over some number field. For a given Hirzebruch-
Zagier cycle Cy ¢, there is a cycle C’mK € Sk mapping to it under the natural map
Sk — Sk. However if we lift the modular units f; to Sk they may not satisfy

S, div(f;) = 0 on Sk. Ramakrishnan ([34], p.352) proves

Lemma III.11. Given any K-admissible k-rational formal sum 5 =" .(C;, fi) there
exists a finite formal sum Zj(Ej, gj) such that each E; is a component of a resolution

of a cusp in Sk, each gj s a Op-integral function on E;, and

> div(fi)+ 3 din(g;) =0
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as a 0-cycle on Sk x k. The formal sum Zj(Ej,gj) is defined over Oy and we call

B = Z(Ci»fi> + Z(Ej79j)

()

a lift of 5.

A lift of a K-admissible sum § will not be unique, but any two lifts will differ by

an integrally defined sum supported on the cusps of Sk.

Definition I11.12. Let 9%/ (k) be the Q-subspace of CH>'(Sk x k) ® Q generated

by lifts of K-admissible k-rational sums ) .(C;, fi).

If M is an open subgroup of K then there is a natural map pg s : Sy — Sk.

This induces a map pg .« on the corresponding Chow groups.

Definition IT1.13. Define Rk (k) to be the Q-subspace of CH>'(Sk x k) ® Q gen-

erated by {px a«(R(k))|M open in K}
Ramakrishnan then shows that Ry (k) is integral.

Theorem II1.14 (Ramakrishnan, [34] Thm. 12.19). For every character w of
Gal(Q®/Q), we have reg”(Ri(w) ® NS(Sk,w)) is a Qw)-structure of Yi(w)".
Furthermore, it’s volume is equal (up to a nonzero element of Q(w)) to the lead-

ing coefficient at s = 1 of L (Sk(w), 5)).



CHAPTER IV

p-adic Beilinson Conjecture

4.1 p-adic Rankin-Selberg

Let f be a weight £ modular form and ¢ a weight 2 modular form with Nebentypus
characters (see [28] for a definition) xs, X, and levels Ny, N, respectively. Let
N :=lem(Ny, Ny) and replace x¢ and x, by the corresponding characters mod N.
Suppose also that y := X;IX; is non-trivial and primitive. Let

O (n) = x(d)d
dn

and define the Eisenstein series

In addition let

( 1)k; 1—g2k 1(27T)2] 1( N)k QJT(X—l)

Ok.5) = G =D

where 7(x™!) denotes the Gauss sum attached to x~'.

Proposition IV.1 (Shimura, see [39] or [5]). Suppose k > 3 and (k+1)/2 < j <
k—1. Then

L(f ®g.,7) = C(k, 5)(f(2), 8% Bajorx (2)9(2)).

26
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where f* is the form given by applying complex conjugation to the coefficients of
f, 55;1,? is the Shimura-Maass derivative operator, and (-,-) denotes the Petersson

mner product.

We need k > 3 because the values j € [(k + 1)/2,k — 1] are exactly the critical
values for L(f ® g, 7) that are right of center, and this set will be empty with k£ < 3.
So when k = 2 there are no critical values. Hida was able to p-adically interpolate
the critical values to obtain a p-adic L-function that is defined at k = 2,5 = 2.

Since (f*, 5§;f;jE2j_k7xg>/<f*, f*) is algebraic, it makes sense to define

alg N A L(f®g.5) (0 Bykng)

for k>3,(k+1)/2<j<k-1.
Let f be a Hida family of ordinary p-adic modular forms with tame level N defined
on a non-empty open subset Ug of Z/(p—1)Z x Z, that is contained in a single residue

class modulo p — 1. Then for each k € UsNZ>s and (k+1)/2 < j < k—1 we define

 E(fe)E(fr)

where E(fr, 9,7), E(fx), and E*(fi) are certain Euler factors (see [6] for a definition).

Lp(f>g)(k>.]) Lalg(fk®gvj)

Hida ([21]) shows that this extends to a function on all of Us x Z,. Thus we can
specialize L,(f, g)(k,j) to k = 2,j = 2 even though the Rankin-Selberg L-function

has no critical values when f and g both have weight 2.

4.2 p-adic Beilinson for a product of modular curves

Perrin-Riou ([30]) has stated a general conjecture which is a p-adic analog of
Beilinson’s conjecture, but it involves p-adic interpolation by varying the cyclotomic
variable of an L-function. Some cases of this have been proven (see [3] and [8]).

In [6], Bertolini, Darmon, and Rotger proved a p-adic analogue of Beilinson’s result
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which lies outside of Perrin-Riou’s conjecture because it involves p-adic interpolation
across varying weights as well. Let K, be an extension of Q,. The p-adic regulator

may be viewed as a map
reg, : CH*(X, 1) = (Fil' (H2y(X/K,)))"

(as described in [29], [14], and [7]).

Let Y denote the open modular curve Y; (V) and X denote the complete modular
curve X1(N). Let &€ — Y denote the universal elliptic curve over Y. Define £ :=
Rm, (€ = Y)and L, := Sym"L. L, is a coherent sheaf over X and comes equipped

with the Gauss-Manin connection
V:L, — L, ®Q%(log cusps)

where Q% (log cusps) is the sheaf of regular differentials on Y with log poles at the
cusps. Let Hig(Xc,, Ly, V) be the de Rahm cohomology of £,. Let f and g be two
modular forms as in the previous section. Let f,g be cuspidal eigenforms as in the
previous section. We also assume that f and g are both ordinary at p and have level
N where p t N. This implies ([6], p. 7) that there is a canonical unit root subspace
Hln(Xc,, L, V)" C Hip(Xc,, £, V) and a canonical projection onto the unit root

subspace. Let n?h be the element of H éR(XC,,, L., V) represented by the form

where f* is the form given by applying complex conjugation to the Fourier coefficients
of f. Let n}" be the projection of n?h to the unit root subspace. Let w, be the element
of Fil' H}, (X/C,) represented by 2mig(z)dz. Then w, @ n} € Fil'(H3;(X/C,)) and

an analogue of Beilinson’s conjecture is:
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Theorem IV.2 (Bertolini, Darmon, Rotger [6]). Let f, g be weight 2 modular forms
as in the previous section and suppose there is a Hida family £ that specializes to f
at 2. Then

Ly(f.g)(2,2) = S0 2>) regy (A ) (w0y ® 7).

E(NES

4.3 p-adic Asai L-function

We now return to the case where the surface X is a Hilbert modular surface Sk.
Recall that W; = Hézt(gK X0 Q,Q;) decomposes as W; = IW; ® W and the action
of the Hecke algebra Hg on I'W; gives a decomposition

IW,@Q = EBVT/Z/(T)
over irreducible Hg representations. Beilinson’s conjecture concerns the special value
of the L-function
@) (Sk, s) = L(W., s)
at s = 1. Thus we are led to consider the L-function L(W,(7), s) for an irreducible
Hg representation 7. The more interesting case is when 7 is cuspidal automorphic
of weight 2 and therefore corresponds to a parallel weight 2 Hilbert modular form.

Let 0 denote the different of F' and w € F' be a generator for the inverse different
of F: (w) = 9~!. For simplicity let us take I' = SLy(Or) and assume w >> 0. Let
f:H? — C be a Hilbert modular form of weight (2,2) for T'. It can be shown ([46],

[1]) that f has a Fourier expansion of the form

fe)= Y e,

PEO R, u>>0

Definition IV.3. The Asai L-function of the weight (k,!) Hilbert modular form f

with Fourier expansion

fE)= Y Cluenm

pneO0p,u>>0
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is defined to be

LA(f,s) ==C(2s —k—1+2) Y _ C(n)n"*.

This is different from the standard L-function associated to f, which would take
into account all the Fourier coefficients. Instead the Asai L-function only uses the

Fourier coefficients indexed by Z.

Theorem IV.4 (Brylinski-Labesse). Given 7 cuspidal automorphic with associated

Hilbert modular form f, there exists a finite set of primes Q) such that
Lo(Wa(7),8) = Lg*(f,s).

The subscript Q means the Euler factors at primes p|Q are omitted.

Thus to give a p-adic analogue of Ramakrishnan’s result requires a p-adic Asai
L-function. As for the case of the Rankin-Selberg convolution L(f ® g, s), the Asai
L-function has no critical values at parallel weight (2,2). However if f is a Hilbert
modular form with weights (k,2) with k& > 3, L2(f, j) will be a critical value for
(k+1)/2 < j < k—1. Thus we are led to study the special values L**(f, k — 1) with
f of weight (k,2). If these values can be p-adically interpolated then specializing
to k = 2 will give a p-adic analogue of the special value appearing in Beilinson’s

conjecture. Completing this is an open question that deserves further study.



CHAPTER V

Algebraicity of the Asai L-function

5.1 Summary of Shimura’s proof

We begin by giving a rough outline of Shimura’s proof of the algebraicity of the
Asai L-function which is done in three papers ([42], [43], [44]). In this section we
will us ~ to denote when two quantities are related by a known factor which can be
explicitly calculated and is an algebraic multiple of a power of m. We begin by listing

the the essential objects of the proof (these will be described more precisely later):

1. f - a Hilbert modular form over a real quadratic field F' of weight (k,[) with

k> 1.
2. B - a quaternion algebra over F' that is split at exactly 1 infinite place.

3. fP - the Jacquet-Langlands transfer of f from GLy(F) to B*. We will assume

that such a transfer exists.

4. Ey - an automorphic form on GO(B) where the quadratic form on B is the

norm form.
5. K - a CM field of degree 4 over QQ with totally real subfield F'.
6. wg - a CM point on the Shimura variety for GO(B) that corresponds to K.

7. D(K,s) - a series that computes the value of Ej at wg.

31
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8. Gy, - an automorphic form on GO(K') where the quadratic form on K is a twist

of the norm form.
9. zx - a CM point on the Shimura variety for GO(K') that corresponds to K.
10. L - an imaginary quadratic field.
11. zy, - a CM point on the Shimura variety for GO(K) that corresponds to L.
12. 01, - a modular form on GLy(Q) that is a theta series from L.
13. Q - a modular form on GLy(Q) that will be described later.

In this section (-, -) denotes the Petersson inner product on B* or B* x B*. The
argument begins by noting that automorphic forms on GO(B) can be restricted to
automorphic forms on B* x B* and showing that the Asai L-function of a HMF f
can be computed as (fZ x fB, Ey|gxxpx) where Ej, is a modified version of Ej,. Since
this integral representation is an inner product of automorphic forms on a Shimura
variety it gives the algebraicity of LAS(f,s)/(fP x fB) if fB and Ej are algebraic.
fB is chosen to be algebraic, but one must show that £}, is algebraic. The relevant
Shimura curves do not have cusps, so algebraicity is determined by examining values
at CM points and showing these are algebraic up to appropriate CM periods.

The Shimura variety for GO(B) has CM points wg corresponding to certain CM

fields K and the value of Ej, at such a CM point is computed by the series D(K, s):
E(wk) ~ D(K, so)

for some integer sg. Viewing K as a quadratic space we can take the group GO(K)
and the corresponding Shimura variety will have a CM point zx corresponding to

K. The automorphic form Gy on GO(K) is constructed so that

Gr(zx) ~ D(K, so).
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The Shimura variety for GO(K) will also have CM points z;, corresponding to imag-

inary quadratic fields L and
Gr(zr) ~ L(0r ® Q, 1)

for some integer s;. The algebraicity of L*%(f, s) is then proven by bootstrapping up

from the algebraicity of L(6, ® Q,s1) (up to a CM period Qe ) as follows:

1. Given K we construct the automorphic form Gy on GO(K') and show that for
infinitely many z;, the value Gy (21)/Qcm, ~ L(0r ® Q, 51)/Qcn, 1 is algebraic.

Thus G, is algebraic.
2. This implies that
Gr(zk)/Qemx ~ D(K, 50)/Qomx ~ Ex(wi)/Qom i

is algebraic for a CM period Qcm x depending on K. Doing this for infinitely

many wg shows that Fj is algebraic.

3. The algebraicity of Ej, implies the algebraicity of Ej. Thus (f® x £, E}) is an

algebraic multiple of (fZ, fP)2. Since
(PP FPVEA(fs2) ~ (FP [P Ex)
we get an algebraicity result for

LA (f,52)[{f7, 17)

5.2 Automorphic forms on a quaternion algebra

This section defines automorphic forms on general quaternion algebras as in [44].

Let F' be a totally real number field with infinite places 7, ..., 7, and B a quaternion
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algebra over F' that is split at 71, ..., 7. and ramified at the other infinite places. Fix

an isomorphism

B®gR — My(R)" x H"™"

that extends the map F' — R"™ defined by a +— (a™,...,a™). Let G be the Q-rational
algebraic group whose A-points for any Q-algebra A are (B ®g A)*. Then we define
the adelization G = (B ®g A)* and the infinite part Goo = GLo(R)" x (H*)"".
Let N denote the norm map N : By — Fj. Let G denote the identity component
of G and Gy, (resp. Ggy) denote the subgroup of G, (resp. Gg) consisting of
elements with infinite part in G... For v € G, we denote its infinite part by 7.

and for 1 < i < n we denote the infinite part at 7; by 7). This group G acts on

H"™ by
( ) a1z1 + by a,z, + b,
2y 2p) = e
RASE 121 +dy crzy +d,
for
. a; b
’y(l) = 7(217"'727‘) S A
C; dz

For such a v, (21,...,2,) and k =Y _._, k;7;, k; € Z define

T

i, 2)" = H(cizi + d;)"i

=1

N

For a C valued function f on H" define
(Flen)(z) = 3(, 2) T F(4(2)).
Fix a maximal order Og of B and define
I'y={y€0Op:N(y)=1,7—1€ NOg}.

Definition V.1. A congruence subgroup of Goy is a subgroup I' C Goy such that

I'y CT and IOy : TyOf] < 0o for some N.
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Let A (T") denote the set of meromorphic functions f : H" — C (also meromorphic
at the cusps) such that f|yy = f for all v € I'. Let A denote the union of A (I") over
all congruence subgroups I'. Similarly define My(I"), M, as holomorphic functions
satisfying f|ry = f. Furthermore define Si(I") (resp. Sk) to be the subset of M (I)
(resp. My,) consisting of functions which vanish at the cusps.

Let Wy be an open compact subgroup of G(Ay) and W = WG .

Definition V.2. Let M (W) be the set of all C-valued functions f on G such that
flayw) = () for all @ € Gg, v € Ga,w € W, ws =1
and for every v € G with 7, =1 there is an element g, € M}, such that

f(vy) = (9+xy) ()

forall y € Gooy. Herei= (v/—1,...,/—1) € H".

Lemma V.3 (see [44] p.574). For any such W there exists an integer h and elements

r1,...,xn € Gy each with x;oo = 1 such that

Ff =] | N(z) F*N(W).

=1

Let Ty = 2;Wa;' N Gg. Then we have a bijection
h
M (W) = [ Mi(T)
i=1
giwen by £ — (f1,..., f,;) where
f(aN (z:) " ww) = (filsw)().
In fact Go\Ga/W = | |'_ T\ H".

Suppose for each place v of F', W, = Of,. Then N(W) C Oy, for each finite

place v and N(W) C F) for each infinite place v. Thus h divides the narrow class
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number of F. From now on we assume that W, = O}, for each place v and F has
narrow class number 1. Thus our lemma implies Go\G4/W has only one component

I'\'H" in this case (I' = W N Gg).

5.3 The Asai L-function on a quaternion algebra

In this section we describe a variation of the Asai L-function which applies to
automorphic forms over quaternion algebras B that are not GL,.

Let F' be a real quadratic field with infinite places 71,7 and B a quaternion
algebra over F' that is unramified at 7 and ramified at 7. Suppose that F' has a
unit of norm —1 and take v € F to be a totally positive generator of the inverse
different of F'. Also assume that F' has odd discriminant and narrow class number
1. Since in this case r = 1, k has the form k = k;7y with k; € Z. Let fZ be in S;.
Further assume that f? is an eigenform with eigenvalue x(a) for the Hecke operator
T'(a) (here a runs over fractional ideals in E, but x() is understood to be 0 if a is
not integral). We define the modified Asai L-function of f

LA(f5s) = D x(bv)(bv) .

0<beQ

This L-function satisfies a functional equation with center 3/2. The critical points
right of center are 2,...,k/2 when k is even, k£ > 2. Our main result concerns the
rightmost critical point s = k/2. In the case when B = GLy(F') this differs from our

previous definition only by the (-function factor and the power of v.
Theorem V.4 (Shimura, [44] Thm. 3.1). Let fZ be an eigenform with eigenvalues
x(a) and weight (k,0). Then

T()(z) =3 x(bw)(by)E/2Dm g2riTrbr:)

0<beOF

is a weight (k,2) Hilbert modular form for F.
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In the case where f? has weight k, J(f) will have weight (k,2) and
(5.3.1) LA(I(f),s) = v ¢(2s — B)L*™(fP s +1 — k/2).

Definition V.5. When f is a Hilbert modular form for F' that is in the image of the
map J we let [P be an eigenform with J(f?) = f and say f? is the Jacquet-Langlands

transfer of f to B.

This transfer was studied by Jacquet and Langlands in [26] sec. 14 and 16.

5.4 Automorphic Forms on an Orthogonal Group

Let E be Q or a real quadratic number field. Let 7; denote the unique infinite
place if £ = Q and 7y, 75 denote the two infinite places if E is real quadratic. Let V'
be a 4 dimensional vector space over E with a quadratic form S of signature (2, 2)
at 7. If E is real quadratic we also require S to be positive definite at 7.

Let V; =V ®,, gR and S, denote the extension of S to V;. Consider the quadratic
spaces My(R) and H (the Hamilton quaternions) over R with the standard quadratic
form

S(x,y) == zy" + ya".

Here ¢ denotes the involution

= on M2 (R)

(a+bi+cj+dk) =a—bi—cj—dkon H.

There exists isomorphisms of quadratic spaces V; = My(R) and V, = H.
Let

N={reV®C: Si(r,z)=0,5(z ) <0}
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Under our isomorphism V; = My(R) we can view I as a subset of My(C). Suppose

a b
T = e N
c d
Then the condition Si(x,z) = 0 implies det(z) = 0 and the condition S1(Z,z) < 0

implies R(ad — be) < 0. Thus ¢ # 0 and we can write

where

0> R(a'd —ad)=R@(d —d))
R(2ia'I(d)) = 23 (a')S(d").
Thus D has two components corresponding to @' € H,d € H™ or o’ € H™,d € H

and we can define an isomorphism C x H? — 0 onto the a’ € H,d € H~ component

of M by
Z1 —R1%k2
¢ X (21,2) (-
1 —Z9
Let p : H? — 91 denote the map
Z1 —R1%k2
pi(21,22)
1 —Z9

so that each element in the ' € H,d" € H~ component of 9 is a unique scalar
multiple of a unique element in the image of p.

Let
G(V)={aeGL(V,E) : S(az,ay) = v(a)S(x,y),v(a) € Fso}.

Then G(V') acts on My(C) through our isomorphism V; ® C = My(C). Let G4 (V)

be the subgroup of G(V') that preserves the components of 9. For any oo € G (V)



39

and z € H? there is a unique u(a, 2) € C, az € H? such that

ap(z) = p(a, 2) - plaz).

This defines an action of G (V') on H? and an automorphy factor p : G, (V) x H?* —
C.

For k € Z, § a function on H? and o € G (V) we define

(fllea)(2) = ple, 2) FIN ()7 2f(acz).

Definition V.6. Then we say a function f on H? is a weight k automorphic form

for a congruence subgroup I' C G (V) if f||ra = f for all « € T".

We now present two examples of these automorphic forms. In the case where
E = Q we pick a congruence subgroup X in V and a modular form € with ¢-
expansion coefficients w(a) for a € Z and define a C-valued function G}, on H? x C
by

Gz, 8 X) = ) w(=S[2])S(z,p(2)) S (2, p(2))] 7.

zeX

In the case where ' = F' a real quadratic field we denote the extension of S to V;
by S7 and for x € F' we denote by x; it’s image in V;. We can then take a congruence

subgroup X of B and a modular form € (with g-expansion coefficients w) and define

Ex(z,8,X) := Z w(—Trpg(S[x]))S (21, p(2)) %Sy (21, p(2))] 7.

rzeX

Although Shimura studied these automorphic forms in general, for Fj, we will only
be interested in the case where the modular form € is constant and equal to 1. In

this case w(a) =1 for a = 0 and otherwise w(a) = 0 so we can also write
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Ey(z,8X) = Z 51($1,P(Z))_k|51($1,P(Z))|_28-

z€X| Trp o(—S[z])=0
5.5 Integral representation
Let w € H and denote by du(w) the measure y~2dxdy on H where w = x + iy.

For B, ¢? automorphic forms of level k& with respect to the congruence subgroup

I' C B, let (-,-) denote the Petersson inner product

(. g") = u(T\H) / T )30 )

Let € € F be a totally positive unite such that v = ¢/v/D. Also choose § € B

such that N () = —e. Let
Of :={a € F: Trpjg(ab) € Z for all b € Op}.
Further define
A(w,w',s) =7 °T(k + )3 (w)*I(w')?,
Xo:={be€ B:N() € O}},

and

Ek<w7 U}/, S) = Wﬁ'k'Ek((u}J 511—/)7 S XO)]((S? w/)ik’j((s? w/) |728'
Shimura proves

Theorem V.7 ([44], sec. 6).

o Flw)A(w,w', s)E(w, w', s)3(w)*dp(w)

= (=20)F(4n) TR FTITIT(R 4 s — 1) LAS(FP K /2 — 5) fB(w!).
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Setting s = 0 and taking the Petersson inner product against fZ(w') we get

/ FE () 5 (') A(w, w', 0) Ey (w, v, 0)S(w)* S(w')* dpa(w)dp(w')
(P\)2
= (=20)"(4m)" T Tk = 1)L (F7, k/2) (7, fP)u(D\H).

Proposition V.8.

/ B(w) fB(w)A(w, ', O)E’k(w, w’,0)S(w) S (w' ) dp(w)dp(w")
(T\H)?

= C(f7, fP)*u(T\H)*
with C' algebraic.

Proof. This will be shown in Section 5.10 as a consequence of the algebraicity of

Er(w,w',0). O

We also note that u(I'\H) is a rational multiple of 7, so the proposition and

theorem together imply

Theorem V.9 (Shimura [44] Thm. 3.3).

L*AS(fB,/C/Q) B
g €@

5.6 CM Points on the orthogonal Shimura variety

Let V' be a quadratic space over ¥ where E is a real quadratic field or Q. Let Y
be an F-algebra which is a direct sum of CM fields over FE and copies of £ and let p
denote the unique positive involution of Y. Let Jy denote the set of homomorphisms
Y — C. Suppose we have an embedding h : Y — End(V, F) that maps the identity

to the identity and satisfies

S(h(a)z,y) = S(x, h(a")y).
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If we set
Y :={yeY yy =1}
then h maps Y into G(S). We also assume h(Y™") is contained in G (5).
Then since the closure of h(Y™) is compact it has a fixed point z in 3 and we refer
to points of this type as CM points.
The CM point gives us a representation 1 : Y — C which is the unique one
satisfying ¥ (a) = p(h(a),w) for a € Y.

We now recall Proposition 5.4 from [42]:

Proposition V.10. There ezists an element v € V' such that V- = h(Y)v and for

any such choice of v there is a unique element § € Y such that
S(h(a)v, h(b)v) = Try,g(dab’)
for all a,b € Y. This § satisfies 6 = 6; 6% < 0; 6 > 0 for all o € Jy not equal to

Y or Pp.

5.7 Evaluating F;, at CM Points

Using the notation from the previous section, take wx a CM point associated to
Y of the form Y = K @ F' & F where K is a CM field of degree 2 over F. Define
W CV by W:= h(F @ F)v (this is the v described in proposition V.10 satisfying
h(Y)v = V). Thus V is spanned by W and h(K)v so each element of V' can be

written as h(a)v + x with a € K, € W. But then
S(h(a)v + z, h(b)l) + y) = TrK/E((sOabp> + S,(l'7 y)

for a,b € K and z,y € W where S’ denotes the restriction of S to W and dy is the

projection of the ¢ from V.10 to K. Let u := p(wg) which Shimura shows ([42],
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page 328, 5.10) satisfies S1(W,u) = 0. Thus Sy(h(b)vy + y1,u) = S(vy, h(V?)u) =

b?¥ S (vy,u). Setting d := S(vi,u) we see that

S1(h(b)vr + y1, p(w))*[S(h(b)vr + y1, p(w))| >
— d—k‘dl—Zsb—kpzp’btp'—Qs‘
Thus we can write
Ey(wk, s; Xo) = Z d7"|d| "2 a= ¥ a¥ |72,
h(a)v+yeXo:Tri /g(—d0aar)+Tr g q(—S'[y])=0
Now suppose that X, decomposes as h(X;)v+ X, for congruence subsets X; C K,
Xo € W. We can define a modular form

Q(2) == > eg(Tree(S'y)2).

yeXs

For  to be well-defined we need to verify that S’[y] is totally positive, but S is
positive definite at 75 so S’ must be positive there and S is negative definite on h(X7)
by the proposition so S; must be positive definite on X5. This makes (z) a weight
2 modular form for GLy(Q). Writing the g-expansion of Q(z) = ° ., w(a)eg(az)
we have

w(a) = #{y € Xz : Trpo(S'y]) = a}.
Therefore

En(wg,0; X)) =d7* Z w(Trg q(—dpaa’))a "7

aceXy

We now define the functions D(s) which will correspond to the values of Fj at

CM points.

Definition V.11. Let K/Q be a degree 4 CM field, X a congruence subset X C K,

and take a modular form G(z) = Y, ., g(n)eg(nz). Choose an embedding ¢ : K —
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C and an element 7 in the totally real subfield of K satisfying n® > 0 and 1 negative

at all places other than ¢ and p¢. Then

Di(s) =Y g(Trgsq(nbb”))b 2 (b?| =,

beX

Choosing K as the field corresponding to a CM point, X; for the congruence

subset X, Q(z) for G(z), ¢ for ¢, and —dy for n we see that

(5.7.1) d*Dy(0) = d7* Z (Trejg(—€aa’))a™ " = Ey(wi, 0; Xo).

ac X

Note that Proposition 9.1 in [42] shows Dy/(s) converges absolutely at s = 0 for k > 6.

5.8 Relating D(s) and G

The next step is to relate the values Dy (0) to the values of various Gi’s at CM
points. Recall that our construction of Gy began with V' (a 4 dimensional QQ vector
space) with quadratic form S of signature (2,2). In the previous section we had a
degree 4 CM field K and the definition of D, involved summing over elements in X7,
a congruence subset of K. We construct Gy by taking the modular form to be H(z)
and the quadratic space to be K viewed as a Q-vector space with quadratic form

given by:

S(a,b) = — TrK/Q(5Oabp),

where 6y = 67 € K and there is a place 1) : K — C such that §¢ is negative and &,
is positive at every place of K other than ¢ and ¥p. So we can take Jy and v as in
the previous section.

The Shimura variety for GO(K) has an obvious CM point zx given by the regular

representation of K, that is

h: K — Endg(K),h(k) : a — ak for all a € K.
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Applying Proposition V.10 it is clear that we can take v = 1 and § = —e. Thus
implies that a¥? = S(a, p(w)) Thus we can write

Di(0) = Y o'(=Slal)S(a, p(zx)) ™.

ace Xy

But this is the value of G}, at the CM point zx so

5.9 Evaluating G at CM Points

Take G, X7 as in the previous section. Consider a CM point z;, corresponding to
amap h:Y = L& Q& Q — End(K,Q) where L is an imaginary quadratic field.
We now proceed to evaluate Gi(zr, s; X1) as we did with E.

Proposition V.10 implies there is an v € K such that hA(Y)v = K and setting

M :=h(Q& Q)v C K we have
S(h’(a)v + 7, h(b)U + y) = TrL/Q(_(Slabp) + Sl(xa y)

for a,b € L and x,y € M where S’ is the restriction of S to M and ¢; is the
projection of § from Prop V.10. Letting u := p(z;) we have S(M,u) = 0 and
S(h(b)v + y,u) = b*?S(v,u) for some character ¢ of L. So we can set e := S(v,u)

and get

Gilzr,s:X1) = Y W (Trpjg(—doaa?) — S'[a]))e*[e] > a=*%|a¥| 2.
h(b)v+reX

Just as before we suppose X; decomposes as h(X3)v + X, for congruence subsets
X3 C Land Xy, C M. S’ is totally positive so it makes sense to define a modular

form

H(z) =) eq(5'a]2)

reXy
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which has weight one. We can then look at the g-expansion

V(z) = Zw a)eg(az)

a€Z

where

W(a) =) wla—Sx]).

r€Xy

Since (z) was a weight 2 modular form and H(z) is weight 1, {'(z) is a weight 3
modular form. Therefore

G (ZL,O X1 —k Z 251bbp kp(j)'

beXs

Define

2) =) bHeq(—26,bb"2)

beXs

which is a modular form of weight £ 4+ 1. Then

D, 0k, k) =D w'(a < > bk¢> a*

a€Z beX3:—251bbP=a

= W/ (=26,0b7)b4(=26,007) F = (=261) FeF (21, 0; X7).
beX3

Hence

(5.9.1) Gr(z1,0; X1) = (=26)* e *D(XY, 04, k).

5.10 Proof of proposition V.8

Given a CM field M and two a characters ny,7, : M — C, Shimura ([42], Thm.
1.1) a period pas(n1,m2) € C*/Q* (we will explicitly define a refinement of it in the
next chapter). Let V' be a quadratic space over a totally real field F and let w be
a CM point for GO(V) coming from a map h : Y — Endg(V) with Y = M or

Y =M& FE&E. V.10 associates an embedding n : M — C with w. Define

Qw = pM(nv 77)2
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Similarly, if z is a CM point for B} corresponding to an embedding K — B we
have an infinite place ¢ : KC defined by ¢(a) = j(a, z) and define the period €2, =
Pr (), ®).

Let Uy be the union over all congruence subgroups I' € G (V) of all weight k

automorphic forms for I.

Definition V.12. U, (Q) is the set of § € Uy such that for every CM point w as

above where § is holomorphic we have

f(w)/%, € Q.

Lemma V.13 (Shimura, [42] Thm. 6.5). For every k and every point w' € H? there

exists a T € U, (Q) such that T is holomorphic at w' and T'(w') # 0.
Such a 7' is called a rational uniformizer.

Proof of Prop. V.8. Returning to the setting of the previous section, we had shown
Gr(zr,0; X1) = (=26))"e™*D(Y, 0, k).

Proposition 9.5 of [42] shows D(€, 0k, k)/7"Q% € Q. Let T be a weight k rational
uniformizer for the point zx of section 5.8. Then the function Gi(z,0;X;)/T(z)
takes values in Q at every point zz as in section 5.9. By [42] p.357 these z; are
dense in H%. The function Gy(z,0; X;)/T(z) is an automorphic function (a weight 0
automorphic form) on H?. Such a function is algebraic on a dense set of CM points
then it is algebraic at every CM point. Thus Gy /7% € U,,.

This, along with equations 5.7.1 and 5.8.1, implies that Ey(wg, 0; Xo) /7%, € Q.
In the next chapter we will prove Q, = €, and therefore Ek(wK,O)/QwK e Q.
There is an infinite set of pairs of CM points w,w’ € H for B} each with CM field

K, such that the point wx = (w,w’) is a CM point corresponding to K and satisfies
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Quye = Q2,8 (this will be proved in the next chapter). The points wg of this form

are dense in H? and this implies Ej(w,w’,0) can be written as a linear combination
Alw, w' O)E;.C w,w',0) chf,

with ¢;; € Q and f;, f; normalized eigenforms for B} (see [44] lemma 4.1). Set

fi=fBso (fP, f;)=0foralli##1.
Then

/ B () 5 (') Alw, w', 0) Ey (w, w', 0)S(w)* S(w')* dpa(w)dp(w')
(T\})

= c11(f, f>2M(F\H)27

which completes the proof.

5.11 An Example

Since the strategy above is rather involved, we now work out an example similar
o (but not the same) as the case considered in the previous sections. We will
now compute an explicit example of the value of G at a CM point as described
in the previous section. We take V = Q* (with standard basis vy, vs,vs,v4) and
S = diag(s, $2,83,—1) where s; > 0 for i = 1,2 and s3 < 0. Let L = Q(()
the imaginary quadratic field where (? = —s3. Set Y = L ® Q & Q and define

h:Y — Endg(V) by

C1

Co
h(a 4 b, c1,c0) =

b a
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This corresponds to a CM point w. We identify Vg with My(R) by
V1 5 , V2 = 4/ E
01 1 0

(¥ —_— v, -
3 9 y U4 9

10 0 -1

We can calculate
2 11
u=p(w) = | ——vs + V2ivy >

—S3 .
1 4

One choice for the v in proposition V.10 is v = vy + vg + v3.
Thus S(v,u) = ,/_%35(7}3,'03) = —v/—2s3. We can also calculate M = h(Q @&
Q)v = Qui + Quy and h(L)v = Quz + Quy. In particular h(a + b)v = avs + bC%v,.

We can also calculate that for a + b(,c+ d( € L
s
S(hla+bC)v, he+ dO)w) = Trujg (Fa+b0)(c — dC))

so if we let € be as in the previous section € = —s3/2. Thus (—2¢)ke™* = (—1)’“5’:2/22_"3/2

and we are left with

(—1)Fs5/

Gilw, 0: X1) =

L(Y ® 04, k).

Both Q" and 6, depend on the congruence subgroup X;. Let us first assume that
X1 = Zvy + Zvy + Zvs + Zvy. This splits up as h(X3)v + Xy where Xy = Zvy + Zvs
and h(X3)v = Zvz + Zvy. Thus a +b( € L is in X3 if and only if a € Z and b(? € Z.
But

ac€Zand b(® €7 — a—f-bCE%Z[C]

so X3 = (1/¢)Z[¢]. Thus

Or(z) = Y Deg(sshb’z) = Y (FiFeq(bi’z).

bEX3 beZ(]
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If Z[¢] has class number 1 then this is (7% times the theta series associated to a

Hecke character.



CHAPTER VI

Rationality of the Asai L-function I

6.1 Rational version of Shimura’s Period

Let K be a CM-field with totally real subfield F' and ® a CM-type of K. Define
Jxk be the set of embeddings K — C and [k the free Z-module on Jg. Furthermore

define

19 = { Z ¢;T € I @ ¢; + ¢;p 1s independent of 7'} .

Te€JK
Let [F : Q] = n (although we will actually only use the case n < 2). There exists

some a € K such that S(a?) > 0 for every ¢ € ®. If ® = > 7; then w := (a™, ..., a™)
defines a point in H". Let f, g be Hilbert modular forms on any congruence subgroup
of weights
(k1y ook, ke + ki, . k) and (Kq, ... k)

respectively such that f(w)g(w) # 0 and both f and g are defined over Q.
Proposition VI.1 (Shimura, [45] Thm. 7.10 and Thm. 9.6). Let K¢ be the reflex
field of K at ®. Then every Hilbert modular function defined over Qg takes values
in Kog at w. If [K : Q] =2 then Ko, = ®,ab and if [K : Q] =4 and K is cyclic

Galois or biquadratic then Ko o C Kap.

Restricting to the cases where Kg o, C Ky, the period pg (7., @) is defined by
pr (7, @) = f(w)/g(w) mod Kj.

o1
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This is independent of the choice of f and g because if fj, gy were other choices,
then fgo/gfo is a Hilbert modular function and therefore f(w)/g(w) = fo(w)/go(w)
mod K ;.

Suppose another choice of a is made. Let ag define the point wy € H™. Suppose

ap = Aa+ B for A, B € Op. Then by looking at the g-expansion of f(Az) we see

1 B
that f(Az) is defined over Q. Let v = . The g-expansion further shows

0 1
that f(v(Az)) = wf(Az) where w is a root of unity. Thus f(vy(Az)) is Qgp-rational

and f(v(Aw)) = f(wy). Since f(v(Az))/f(z) is a Qgp-rational automorphic function,
flwo)/f(w) = f(v(Aw))/f(w) € K,. The same holds for g and so any choice of a
in Opa+ O gives the same period. But any two choices a1, as will lie in Opa + Op
for some a and thus our period is well-defined.

We now extend pg to a bilinear map pg : Ix x I — C*/K},. First, if 7 ¢ ®,
then 7 € ®p and we define pg (7, ®) = pip(7,Pp)~'. Now pi(7, ) makes sense for
any 7 € Jg and ® a CM type. The CM types of K generate I% and in the case
(K : Q] =2, I is free module generated by the CM types. In the case [K : Q] = 4

let Ji = {11, 72, 71p, T2p} and
Q) =71+ T, Po=71 +T2p

O3 =T11p+ T2, Py =T1p+ T2p

be the CM types of K. Then
Iy 22Dy, ..., 04/ (P1 + Py — Dy — Dy).
For any 7 € Jx we have

Pr (7, P1)px (7, @4) = pr (7, P2)pi (7, P3) = 1
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and so

Pr (T, ®1)pK (T, Py)

=1.
P (T, P2)pi (T, P3)

Thus in both the cases [K : Q] = 2 or 4 we can extend the definition of px linearly

to Ji x I%. We further define

p(r.7) = Vox(r. 7 — 7p)

which extends pg to Jx X Ix. We then extend pg linearly in the first variable to

I x I. This now satisfies

pr (@, B) = px(ay, By) for 4 an automorphism of K, and

p(a, Bp) = pr(ap, B) = pr(a, B) 7.

Proposition VI.2. Let L be an imaginary quadratic field and K a biquadratic CM
field over L. Let 1 be an infinite place of L and 1, ¢ the places of K that restrict

to Yy on L. Then

pL(wb ¢1) = pK(q/}7 ’¢ + ¢)

up to an element in K.

Proof. Let F' be the totally real subfield of K and f, g be Hilbert modular forms on
SLy(F) of weights (k + 1,1), (k,1) respectively. Let a € L such that a¥* € H. Then
a¥ = a® € H. Therefore f(a¥,a?)/g(a?,a®) = px (1,1 + ¢) by definition.

Let f and g denote the restriction of f and ¢ respectively to the diagonally
embedded H € H2. Then f and g are modular forms on SLy(Q) of weights k + 1+ 1

and k + [ respectively. In addition

fla™) = fa™,a™) = f(a”,a?)
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and similarly for g. Thus

pr(1, 1) = f(a™)/g(a") = pr (1, ¥ + ¢).

6.2 Rankin-Selberg Convolution and the Rational Period

Let L be an imaginary quadratic field and set p(L) = pr(m, 1) = pr(pm, p71)-
Here py, is our new version of Shimura’s period which is an element of C*/L),. We
will show that, for certain modular forms f and g, the special values of the Rankin-
Selberg convolution L-function L(f, g, s) is an Lg-rational multiple of p(L).

The modular form f that we consider is determined by a congruence subset X of
L, an integer k, a constant ¢ < 0, ¢ € Q and an infinite place @ of L. Recall that

eg(x) = exp(2mix). f is then defined by

f(z) = Z a*eg(caa’z).

aeX

f is a weight £ + 1 modular form. Let g be any modular form of weight | < k and

=k mod 2. Let f and g have g-expansions

f(z) = Za(n)e@(nz), g(z) = Zb(n)e@(nz).

We consider the Dirichlet series

D(f,qg,s8) = Za(n)b(n)n‘s.

Theorem VI.3 (Shimura, [41] Thm. 5.6). Let g be a weight 2k modular form defined

over Ly, and w € L such that w¥ € H and q(w?) # 0. Then

D(f.9:k) _, 5

Thq(w?)
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From the definition of p(L) we can see that q(w?) = p(L)?* so

(6.2.1) Dif.gk) )

Wkp(L)2k

6.3 Rationality of G at CM points

Write G(z) for the function Gg(z,0; X;) which is a weight & automorphic form
for the orthogonal group GO(K) of K viewed as a quadratic space over Q. Recall
that K is a biquadratic CM field with totally real subfield F' and the quadratic form
on K is defined by

S(a,b) = — Trg/g(doad”)

where g € F has Npjg(dg) < 0. The resulting Shimura variety has a specific
CM point zx and a dense set of CM points z; corresponding to embeddings h :
L®QdQ — End(K,Q). The CM point zx is described in section 5.8 and we will
describe the points z;, later in this section.

Given a CM point z; we have an embedding ¢ : L — C defined by
o(a) = p(h*(a), zp) for all a € L".

Define the period 2., to be pr(¢,¢)?. Similarly for the CM point zx we have an

embedding ¢ : K — C defined by
¥(a) = p(h*(a), zk) for all a € K*.
and we take the period €., to be px (W, ).

Lemma VL.4. For each zp, Gi(z1) /7" € L.

Proof. We have explicitly calculated

Gk(ZL) = CD(Q/, Qk, k’)
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where ¢ € Qg, ' is a modular form with rational coefficients and 6 is a weight
k + 1 theta series defined by
Or(z) = Z a*eq(—26,aa’z)
aEX;;

for some congruence subset X3 of L. Our result 6.2.1 implies

D(Y, 0k, k)

€ L.
’ﬂ'kQI;L ab

]

We know restrict to the case when K is biquadratic. Recall that the quadratic
form on K is given by

S(a,b) = — Trg (dpad’)
for some 0y = §f € K such that 5(1)# is negative and (5{? is positive if ¢ # ¥, ¥p.

Lemma V1.5. There is a quaternion algebra By over Q such that the quadratic space
associated to Bg is isomorphic to a scalar multiple of the quadratic space associated

to K. Here the quadratic form on B is given by
Spy(a,b) = ab’ + ba’.

Proof. Let F = Q(V/d) (the totally real subspace of K) and K = F(y/—c) where
d,c € Qand d,c¢ > 0. Let o = a + bv/d. Then in the basis {1,v/d, /—¢, v/—cd} for

K, S is given by
—4a —4bd 0 0

—4bd —4ad 0 0

0 0 —4ca —4cbd

0 0 —4ebd  —4cad
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When a # 0 this can be diagonalized by taking the basis {1, v/d— M \/—c, V—c(vd—

MY to get

2 2

: b b
S = diag(—4a, —4ad(1 — ?d% —4ac, —4acd(1 — ?d))’

Let ¢g = —d(1 — Z—zd) and take the quaternion algebra By = Q(i, j) where i* = ¢,
j? = —c. Then

Sg, = diag(1l, —cy, ¢, —cco) = —4a - S.
The case with a = 0 is similar. O

There is a natural map Bj; x By — GO(Bk) where the element (5,v) € Bj x By

m n
acts by a — Say'. Given v = € Ms(R) and z, 2’ € ‘H we have
p q

—zz mztn _ mztn ./
mon z zz _ (pZ+Q) pz+q pz+q
P q 1 -7 1 -7
z —z2 qg -n 2 —pmzin

— (v +q) v
/+b
1 -2 —-p m 1 ”;ZZ,H”

Thus the map By x By — GO(By) satisfies
(8:7)(z,2") = (Bz,77)

and
p((8,7): (2,27) = (B, 2)i (7, 2)-
We now describe a dense set {z} of CM points for GO(Bg). Here we make an
identification Bx ®@g C = My(C). Let L = Q(y/—c) which is an imaginary quadratic

subfield of K. Then there is an embedding i : L — By given by

a+bv—c— a+bjforabeQ.
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This gives us a CM point w € H for the Shimura curve associated to By by taking
the fixed point of i(L*) C B*. Such a CM point gives us an embedding n: L — C

defined by

Consider the point (z,z) € H2.

Lemma VI.6. (z,2) is a CM point for GO(Bg) and its associated period satisfies
Q) = Q2.

Proof. The embedding i allows us to write B = i(L) @ (L)« with i(a)a = «ai(a”) for

all @ € L. Define an homomorphism h: L & Q & Q — End(Bg, Q) by
h(1,-1,1) s i(a) +i(b)a — —i(a”) +i(b)a

h(1,1,—1) s i(a) +i(b)a — i(a)” +i(b)c
h(c,1,1) ri(a) + i(b)a — i(a) +i(c)i(b)a

for a,b € L, c € L*. For ¢ € L* we have
h(e)? 2y e i(e)yi(c).
Thus (z, z) is the fixed point of h*(L) and
pu(h*(c), (z,2)) =n(c) for c € L*.

By definition Q. .y = pr(n,2n) = Q2. O
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Corollary VI.7. Let z, 2" € ‘H such that z is a CM point coming from an embedding
L — By and 2’ is a CM point from a conjugate embedding L — Bg. Then (z,2') is
a CM point for GO(B) and

oy = L.

Proof. Let © : L — Bk be the embedding corresponding to z and j : L — Bk the
embedding corresponding to 2z’ wher j is defined by j(a) = Bi(a)B~'. Then we can
take b’ : L ® Q ® Q — End(Bg, Q) to be h'((a,b,c))(y) = h((a,b,c))(y3)3~" where
(a,b,c) € L® Q@ Q and h is as defined in the previous proof. This A’ will have

(z,2') as a fixed point and the same argument shows that
Q(Z, Z/) = QZQZ/
O

Let K; = Q(v/—¢), K3 = Q(v/—cd) be the two imaginary quadratic subfields of

K.

Lemma VI.8. There exist embeddings Q(v/—c) — By, Q(v/—c) — Bk correspond-
ing to CM points z,zy € H such that the CM point zx for GO(Bg) coming from

the regular representation of K satisfies zx = (21, 22).
Proof. Choose an isomorphism Bx @ R = My(R) by

1oy [0 Ja

1= 4

0 1 Ja 0
0 —c \/Cco 0

Jj ko
ve 0 0 —y/cco
Recall that the action of GO(B) on H? is defined via the embedding H? — Bx ® C

z —z2

given by (z,2') — . Then it can be explicitly calculated that the action
1 =2
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of an element a € Q(y/—c) acts by a rotation on the coordinate 2. This defines an
embedding i : Q(v/—c) — By with a fixed point 2z, € H such that for a € Q(v/—c)
the image of a in GO(By) is given by action on the right by i(a). Each element of
Q(v/—cd) maps into the connected component of GO(Bg) and commutes with each
element of Q(v/—c) so the action of Q(v/—cd) must be given by rotations in the z
coordinate (Q(v/—cd) must act trivially on z or 2 and if it didn’t act trivially on 2’
then mapping the connected component of GO(By) to By X Bj and projecting onto
the second coordinate would induce an isomorphism Q(v/—cd) = Q(v/—c)). This

gives an embedding Q(v/—cd) € By with fixed point z; € H and zx = (21,29). 0O

Lemma VI1.9.

Q. =00,

2K

Proof. Let 11,19 be the infinite places of K, Ky given by restricting the place i of
K. Let ¢ be the other place of K that restricts to ¢;. Then ¢ # 1p and ¢p restricts

to 5. Then Proposition VI.2 shows

P, (U1, Y1) = prc (¥, ¥ + @), and pr, (Va,12) = pr (¥, ¥ + ¢p).
Thus
Pr, (U1, V1) pre, (U2, 02) = pr (¥, ¢ + @)pr (¥, + ¢p)
= px (¢, w)sz(w, O)pr (¥, op) = pr (¥, ¢)2-

]

Lemma VI.10. Let zy € H be a CM point for By.. There is a weight k automorphic
form T on B} that is non-zero at 2y and satisfies T'(2)/QF € My, for each CM point

z where M s the imaginary quadratic field associated to z.
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Proof. From the definition of €2, as a ratio of values of usual modular forms, we see
that €2, is a period of CM elliptic curve defined over M,;,, with complex multiplication
by M. The result then follows from observing that the Shimura curve associated with
By is also a solution to a moduli problem (abelian surfaces with multiplication by
Bg) and for a CM point z on this curve attached to an imaginary quadratic field

M, the corresponding abelian surface is isogenous to a product of two elliptic curves

over M, with CM by M. O

Lemma VI.11. There is a weight k automorphic form T on GO(Bg) which is non-
zero at zg and satisfies T(zx) /Q% € Kap. Furthermore, for each zp, T(z,)/QF €

Kap.

Proof. Let z1,z9 € H such that zx(z1,22). Let T1,7T5 be weight k forms on Bj
that do not vanish at zj, z5 respectively (as given in the previous lemma). Then

T :=T; x T; has the desired properties by Corollary VI.7 and Lemma VI.9. ]

Proposition VI.12.

Gk(ZK>/7TkQI;K € Ky

Proof. Gy /m*T is an automorphic function on GO(K). Since both T'(z,)/QF and
Gr(z)/m" Q% are in Ky, for every zj, we know that Gy (z) /7T (1) € K for every
21, such that T'(z1) # 0. Since these 2, are dense in H? we can conclude that Gy, /7T

is defined over K, which implies Gy.(z2x)/7*T(2x) € Ka. Then

7T’“Q’§K T (2k) Q’;K ab-
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6.4 Rationality of £

Let F' be a real quadratic field and B a quaternion algebra over F' which is split

at one infinite place.

Lemma VI.13. Let K be a biquadratic CM field over F' and with an embedding
K < B. There is a dense set W of CM points (w,w') € H? corresponding to

embeddings h: K ® F & F' — End(B, F') and they satisfy Q(w,w) = Q-
Proof. The proof is the same as that of Lemma VI.7. m

For a field K, C R C C let Uy (', R) be the space of weight k automorphic forms

f for T' C B* such that f(w)/QF € R for every CM point w € W. We assume that

k is even.
Lemma VI.14. U, (', R) = Uy (', Kw) ®k,, R-

Proof. We give a sketch of the argument. It suffices to show that a form f on B*
of weight (k,0) is K,p-rational if and only if for all CM points w as above (attached
to K), we have f(w)/QF € K,,. The proof is similar to that of Lemma VI.10 but
somewhat more involved. Let X5 denote the Shimura variety attached to B*. In this
case, Xp is not itself a moduli space in a natural way. However, it is closely related
to a Shimura variety that is a moduli space. Namely, let V' = B, considered as a
K-vector space via the embedding K — B. In fact, V may be naturally equipped
with a K-hermitian form; let G = GUg (V') denote the unitary similitude group and
X the Shimura variety attached to G. Since G = (B* x K*)/F*, there is a natural
map B* — G which induces an embedding of Shimura varieties Xg — X, that is
defined over K. Thus f can be considered as a form on X by extension by zero.

Now, X is a moduli space of abelian varieties A with multiplication by K. Note that
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the embedding K — Endg(A) gives an action of K on H'(A) and one requires that

the induced action of
(6.4.1) KC=CxC

on H'(A,C) is of the form (n@®np, @), where the two factors in the decomposition
(6.4.1) correspond to the embeddings 7,1 : K — C. This follows from the fact that
the unitary group U(V') at infinity is given by

U(V)(R) =U(1,1) x U(2,0).
Now, a CM point on X attached to K then corresponds to a product of abelian
surfaces A; x As where A; and A; have CM by K and have CM types

n+y, np+y

respectively. Since the reflex field of such a CM point is K itself (as K is biquadratic),
and such CM poiints are dense in X, we find that f is rational if and only if its values
at all such points are K, rational after dividing by an appropriate power of a period
of a suitable differential form on A; x A,. This period is

pr(n,n+v0) prnp,np+¥) = pr(n,n+¢) - pr(n,n+¥p) = pr(n,n)?* = 02,

which completes the proof. O
Lemma VI.15. Let R D K. Let f be a function on H? such that

flaw, puw') = j(a, w)*5(8,w")* f(w, w')
for all a,f € T a congruence subgroup of B* and f(w,w')/Q,Qw € R for all
(w,w") € W. Furthermore let h; € Up(R) for i = 1,...,t form a basis of Ux(R).

Then there are unique forms g; € Up(R) such that

flw,w') = Zgi(w)hi(w') for all w,w' € H.
i=1
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Proof. Same as Lemma 4.1 of [44]. O
Equations 5.7.1 and 5.8.1 show that
Ey(wi, 0; X) = cGy(zk, 0; X1)

with ¢ € K. The point wx was constructed so that the embeddings K — C associ-

ated with zx and wg are the same. Thus

Qe =y
Therefore
g € K
wi

Choose a I' € B* such that f% € Uy(T', Ky) and
Ex(aw, fu',0; X) = j(a, w)*j(8, w')* Ex(w,w',0; X)

for all a, 3 € I'. Let fi,..., f; be an orthogonal basis for Uy (', Ky) with f; = f8

and let § € B. Then the lemma allows us to write
¢
T Ep(w,w',0; Xo) = Zfi(w)gi(w')
i=1

with each g; € Uy (T, Kup).
Recall our definition:

Ek (w7 ’U)/, 0) = W_kj((s, w/>_kEk (’U), 511—/7 07 XO)

with § € B such that N(§) = —dy. Let M C C be a real extension of F' that splits B.
Then we can choose the isomorphism B; = My(R) such that each element of B has
coordinates in My(M). If K C B is a quadratic extension of F' then B splits over K.

Thus for w € H is a CM point corresponding to K we can choose the isomorphism

B; = My(R) having coordinates in My(K') and then j(6,w’) = j(0, @) € K.
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Define h;(w') = j(5,w') *g;(6w’) for each 1 < i < t. Then g; € Up(T, Ky)
implies h; € Uy (T, Kup). Thus (f2 hy)/(fB, [P) € K,Q(f) where Q(f) is the field

generated by the eigenvalues of fZ. Furthermore,

r- fBa h
(17 % £7.B) = (7%, £ g o
This gives us the rationality result
B B F
(6.4.2) <f<ff;+3>2’f> € KuQ(f):

But this holds for any biquadratic K’ C B over F. A biquadratic CM field K/F
embeds in B if and only if K is not split at each finite place where B is ramified. For
every finite place v of F' with v over p in Q such B is ramified at v we assume v/p
is split. There are finitely many places where B is ramified and thus infinitely many
biquadratic CM fields K/F that embed in B. We now use a result of Shimura to
further restrict the field to Fy,. For (a) an ideal of F' (note we have already assumed
F has class number 1), and M a number field over F' let C'(M, (a)) denote the class
field of M corresponding to (a) and all the infinite places. Let 9(M/F') denote the

different of M relative to F.

Theorem VI.16 (Shimura [37] Lemma 1.4). Let L and M be finite extensions of F

and (a) an ideal in F. Let Ly be the Galois closure of L over F and assume

(6.4.3) o(M/F) is prime to (a)d(Lo/F)

(6.4.4) M and C(Ly, (a)) are linearly disjoint over F'
Then C(F, (a)) = C(M, (a) N C(L, (a)).
We now further assume that Q(f?) C F. Fix K; to be a biquadratic CM field

over F such that equation 6.4.2 holds. Then in fact % lies in C'(K7y, (a)) for
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some a € F. We now show that there exists a biguadratic CM field K5, over F' such
that 6.4.3 and 6.4.4 hold with L = K; and M = K5 and 6.4.2 holds for K = K,.
As described, the conditions on K5 for 6.4.2 to hold are purely local and requiring
6.4.3 also adds only local conditions on K5. Now as long as K5 is not contained in
C (K, (a)) 6.4.4 will be satisfied and thus we have infinitely many choices of Ky such
that C'(F, (a)) = C(Ky, (a)) N C(Ky, (a)).

For any such Kj let E = C(Ky, (a)) N K24. Then % € E. Suppose we
also chose K, to be split at all the primes dividing a. We will show this implies
E C C(Ky,(a)). For each local unit u =1 mod *(a) of Ks, u is actually given by a

local unit in F' at some prime dividing a. This implies u is a norm from E because

it is already a norm from C(K7, (a)). Thus E C C(Ks, (a)) and therefore
O(KD (CL)) N K2,ab C C(Klv (a)> n O(K27 (CL)) = C(F7 (Cl)) - Fab~

Combining this with V.7 we have

Theorem VI.17. For Q(f?) C F,

L*25(f7, k/2)

(B, By e

Using 5.3.1 we get the corollary

Corollary VI.18. For Q(f?) C F,

LA(I(f5)k — 1)

T2h=2(fB {B) € Fap-




CHAPTER VII

Integrality

In this chapter we take a first step toward an integrality result for the Asai L-
function. We will show that for certain CM points w there is a period €2 associated
with the CM field of w such that the automorphic form Gj evaluated at w is a
p-integral multiple of Q2% /7k+L,

Let F =Q(VA), L=Q(/-B), K = FL with A,B€ Z, A,B >0 and (A, B) =

1. Assume also that A= B =1 mod 4 so that

1+VA
2

Or = (1, ), O = (1,vV—B),0x = OrOy.

(The last equality holds because F' and L have relatively prime discriminants.) We

make K into a quadratic space of signature (2,2) with associated bilinear form
S(x,y) = Tr/o(VAzg).

We will consider an example of the automorphic form Gy (defined in Section 5.4)
where K is the quadratic space, X = Og, k is odd, and € is a weight 2 modular

form. That is

Gi(z,8) = ) w(=S])S(w,p(2)) S (z, p(2))| 7.

€0k

67
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Let o = “YA ¢ K =/ ~B € K 50 Og = Z + Za + Zf + Zaf. In the basis

{1, v, B, a5}, the matrix of S is given by

0 24 0 0
24 2A 0 0

0 O 0 2AB

0 0 2AB 2AB

This can be diagonalized by changing to the basis {«, a8, — af,1 — a} where S
becomes

S = diag(24,2AB, —2AB, —2A).

Fix this as the basis for Ox. We can now construct Shimura’s example of a CM

point coming from Y = L & Q & Q by defining

c 0 0 O

0d 0 0
h:LeQ&Q— End(K,Q),h: (x+vV—By,c,d) —

00 =z vy

0 0 —By «x

Applying proposition V.10, we can take the vector v = (1,1,0,1) which satisfies

h(L & Q@ Q)v = K. This choice of v gives us the embedding L — K
1= h((1,0,0)v=1—a,vV=B — h((~/=B,0,0))v = 8 — af.
We set M := h(Q®Q)v = Qa+Qap as before and see that for a,b € L and z,y € M
S(h(a)v + z, h(b)v + y) = Trpg(daa’) + S'(z, y)

with 6 = —A.
Next we compute the fixed point w of h(Y™"). It is easy to see that A(Y™) acts on

the point (0,0,+/—1/B,1) € K ® C by scalar multiplication, so the point u := p(w)
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is in the line generated by (0,0, /—1/B,1). To properly normalize, we need to look
at the map p which comes from the isomorphism K ® R = My(R). We can choose

this isomorphism to be defined by

10 0
a VA ,af — VAB
01 -1 0
1 0 01
8—aB— VAB d—a— VA
0 -1 1 0

Under this isomorphism we see that (0,0, /—1/B,1) maps to
V—A VA i1
VA —/—A 1 —i

Thus the proper normalization is v = (0,0, /—1/AB,+/1/A). This allows us to

compute

e:=S(v,u) = —2VA.

The ring of integers in K satisfies Ox = h(Op)v+ Xo with Xy = Za+Zap C M.

Thus our previous evaluation of G, at CM points (Equation 5.9.1) shows that
(7.0.1) Gr(w,0; Ox) = A¥>D(QH, by, k)

where
H(z):= Z eg(S'x]z)

and

Or(2) == Z V¥ eq(2Abb 2).

beOyp,

The modular form H(z) can also be written as

H(z) = ) eq(24bz).

beOy,
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We now follow Prasanna ([32]) to show that the value D(QH, 0y, k) is integral.
Let —d be the discriminant of L, so 2H has level NC'd with N, C, d pairwise coprime.
Define

E = Ey_snca(z,$,11) Z nL(n)(mNCdz + n) *3|\mNCdz + n| ™2,

(m,n)

where 7y is the quadratic character associated to L and the sum is over all (m,n) €

Z? excluding (m,n) = (0,0). Then
D(QH, 0. k) = gw“l(QHE, 0°) Lvca(1,n) "

where Lycq is the L-function with Euler factors at NCd removed, ¢ is given by

applying complex conjugation to the coefficients of 6, and

However our 6, has real coefficients so 0y = 6;. Furthermore L(1,7,)/7 is rational
with numerator 2h(L) where h(L) is the class number of K and

p—
LNCd 1 'f]L H nL 1 77L)-
p|NCd

Thus

D(QH, 0y, k) = com™(QHE, ;)

with ¢y algebraic and p-integral for all p > k, pt h(L) [, ycq2(a — 1)(g +1).

Let x1, ..., Xn(r) be the distinct characters of the ideal class group of L which are
trivial on principal ideals. Let A be a Hecke character of L that satisfies A((b)) = b*¥
for each b € Op. Let \; be the twist of A by ;. Then assuming +1 are the only

roots of unity in L, we have

9 h(L)
= — (2A2).
WD) ;QAZ( 2)
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Thus
h(L)

(7.0.2) D(QH, 0y, k) = 7> " c:(QHE, 0,(242))
=1

with each ¢; algebraic and p-integral for all p > k, p f h(K) [[jon 40 9(¢ — 1)(g + 1)

Proposition VII.1. Let 0 be an integral newform of level d, g an integral form of
level Nd and C an integer with (C,d) = 1. Then 7**+1{g,0(Cz))/Q* is p-integral

for all pt M where M := quc q(g+1) and Q is the period defined in Section 2.5.3
of [32].
Proof. In [32] this is proven (p.942) in the case where C' = 1. The same argument

applies here, except that there it is shown in equation 22 that (0;(d'z),0)/(0,0) is p

integral for p { M and we need this result for
(0:(d'2),0(C=))/(0,0)

where T is a subset of primes dividing NC', P is the product of primes dividing NC'
that are not in T, d'|P, T; C T, 6; is 6 with the Euler factor (1 — a,g™*)~" removed
for ¢ € T; and (1 — B,¢*)~" removed for g € T'\ T;.

Let p be a prime in 7T; and 61@ ) be the form given by putting the Euler factor
(1 — app~®)~! back in. Then 60;(z) = Hl(p)(z) - ozp9§p) (pz). Shimura ([39], Lemma 3)

shows that

(O(pd'2),0(C2)) = p~'— P92y g(c2)

14 o fBp~F1t
= ). 0(C2)
when (p,d') = (p,C) = 1. Thus
di),002) = (1= 222 ) o102)

1+ —1 _ 2, —k—1 _ —k—1
- ), 00)
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If p|C, (p,d’) =1 then

, 1
(0(pd'2),0(Cz)) = p
So in this case

(0:(d'2),0(C2)) = (0(d'2), 0(C2) = 5 (07 (d'2), 0(C/p)2)).
Similar results hold for primes p € T'\ T; with «, replaced with ,. Thus we can
iterate this step for each prime in 7" to write (0;(d'z),0(Cz)) as a linear combination

(0:(d'2),0(C2)) = b (0(d'2),0(c'z))

d|C

with each coefficient b being p-integral for all p {1 M.

Shimura’s lemma can be used again to compute

a(p)
0(d | | | | 6,0
(6(d'z p||d~p TT oy Qd,c,p’f+1< >
R Hd// p+ ) 2‘d/c/ pk+1 <0 0>

Therefore (0;(d'z),0(Cz)) is a p-integral multiple of (6,60) for p + M which is the

necessary generalization of equation 22 of [32].

Combining this with equations 7.0.1 and 7.0.2 we have

Theorem VII.2.
7rk+1Gk(w, 0; OK)
)2k

is p-integral for all pf h(K) I [ onaq9(a — 1)(g +1).




CHAPTER VIII

Rationality of the Asai L-function II

8.1 Asai’s Integral Representation

In this chapter we prove a different rationality result for the Asai L-function.
Work of Harris allows us to define a period €2 associated with the Hilbert modular
form f of weight (ki,ks) and we show LA(f k; — 1)/Q € FQ(f) under certain
conditions. This gives a smaller field of rationality than our earlier result, but there
is no obvious interpretation of €1y as a Petersson inner product.

Let F = Q(v/D) be a real quadratic field with ring of integers Op. Let 9 denote
the different of F' and w € F be a generator for the inverse different of F': (w) =07
Take I' = SLy(OF) and let f : (H*)? — C be a Hilbert modular form of weight (k, )
for I' with k& > [. For each e = (e1, e3) with e; = 1 let H. denote the component of
H* containing (eyi, exi). For a € F, let sgna denote the pair sgna = (e, e5) where
e;=1ifa™ >0 and ¢; = —1 if a™ < 0. In addition let Op, = {a € F : sgna = e}.
We also assume that F' has odd discriminant and that F' has a unit of norm —1. Let
¢ be a unit such that ¢/v/D is totally positive.

Then f has a Fourier expansion of the form

f@) = Y Cpetn D)

pneOp,u>>0
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on the H? component (see [1]). We want to study the Asai L-function

LA(f,s) =C(2s —k—142)>_ C(n)n".

Let d : H — H x H be defined by d : w — (¢ "w, e ?w). We define g(w) : H — C

to be the composition g = f od. Also define the completed L-function
G*(s) = D¥2(47m) T (s)T(s — 1 + 1) LA(f, s).

Definition VIIL.1. Let R be a set of representatives for SLy(Z) modulo upper

triangular matrices and A an even integer > 0. Define the Eisenstein series EY to be

Ej(w,s) =Y (cw+d)ew +d| 7.

YER

This is independent of the choice of R. Furthermore define

Ex(w,s):=202s + NEj(w,s) = > (cw+d)ew +d|7>.
(0,0)#(c,d)€Z2

a b
Note that for v = € SLy(Z), g(w) satisfies

c d

g(yw) = |ew + d|*(cw + d) " g(w).
Therefore g(w)Ej_j(w,s + 1 — k)y*“tdxdy is an SLy(Z) invariant form on H (where
w =z +1iy).

Definition VIII.2.



(0]

Proof. We first note that g(w) has a Fourier expansion
ZC 27rz le—y@ﬁ;)/\/ﬁ'

Let w = x 4 iy with z,y € R. If p € Z then p"w — p™w = 2ipy and if u ¢ Z

then p™w — u™w = Aiy + Cv/Dx for some nonzero integral C'. Therefore

/;0 g(w)dx = g C(n)e *™v.

0 1
/ ys—l/ d?[fdy—/ s 16—47rny/\/5dy
y=0 =
:Z n)D*?(47n)~ S/ w e du = D*/*(4m) " ZC’
! 0

Therefore

e’ 1
/ Gy B (25— ky + 1)dady — / / v g(2)dedy
SL2(Z)\H 0 0

= D*/?(4m)~ ZC

Thus

Replacing E* with E gives

/ gy E_(w,s —k +1) =
Lo (Z)\H
2D (4m) T (s)¢(25 — k —1+2) Y _ C(n)n~
Thus if we multiply the integral by I'(s — [ + 1) we get
J(s—k+1)= / gw)y* 'T(s =1+ 1) Ep_y(2,8 — k+1)
SLa(Z)\

D2 (4m) =T (s)T(s — L+ 1) L*(f, 5) = G*(s).
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Asai was able to use this integral representation of LA%(f,s) to prove analytic
continuation and a functional equation. This method follows the steps of Rankin and

Selberg: if f; and f; are modular forms for SLy(Z) of weights k and [ respectively,

then the same argument with g(w) := fi(w)fi(w) gives an integral representation

of L(f1 ® fo,s). Here f* denotes the modular form given by applying complex

[e.e]

conjugation to the coefficients of f Explicitly, let fi(z) = > 07, a,e®™* and f, =

> o bn€®™ "% and define
o0

D(f,qg,s) = Zanbnn_s.

n=1
Theorem VIIL.4 ([39], Thm. 2). Let f; be a cusp form of weight k, fo a form of
weight 1, and both of level 1. Assume also that k > 1. Then

kfl,ﬂ.k

D(fi, fa kb —1) = 1)

<f*7 gEI:7Z<Z7 0)>
8.2 Rationality with Harris’ Period

Shimura used the integral representation of the Rankin-Selberg convolution L-

function to get the following rationality result:

Theorem VIIL5 ([39], Thm. 3). Let fi, fo be as in the previous theorem and
further assume that fi is a normalized newform. Let Qf and Qy, be the number

fields generated by the coefficients of fi and fo respectively. Then

D(f1, fo. k= 1)
m(f1, i)

Let G = Respjg GL2(F), and g = Lie(G(R)). We identify G(R) = GLy(R)? via

S QlefQ'

the two infinite places of F' and let K C G(R) correspond to the copy of SO(2)? in
GLy(R)%. Then under the standard action of G(R)™ on H? the stabilizer of (4,1) is

Za(R)KZ. There is a decomposition

gc = Lie(Zg)(c b too,(C > p+ Dp



(s

under the action of Ad(KJ) where p* naturally maps to the holomorphic tangent
space to H? at (7,4) and p~ maps to the anti-holomorphic tangent space. p* decom-
poses as
P =pi Bps

compatibly with the decomposition G(R) = GLy(R)? and similarly for p~. Then a
Hilbert modular form f viewed as an automorphic form on G(Q)\G(A) will satisfy
R(p~)f = 0 where R(-) is the right regular action of the universal enveloping algebra
of gc. Let k = (ki1,k2) be a pair of integers both even. For K an open compact
subgroup of G(Ay) Harris constructs an F-rational line bundle & on the Hilbert
modular variety Sk whose global sections are canonically isomorphic to Hilbert mod-
ular forms of weight & ([16] p.159). For a toroidal compactification Sk of Sk there
are two extensions of & to S . the subcanonical and canonical extensions which
are denoted by £ and £ respectively and defined in [17], [18], [19]. Harris further

defines in [17] a cohomology theory H*(& ) which can be realized as

H9(Exp) = lim Im[H(Sk, E) — H(Sk, EY)]

where the limit is taken over all K.

Let I be a subset of the infinite places of F. Then define k(I) to be the pair of
integers that agrees with k at the places outside of I and replaces k; with 2 — k;
at the places in I. If f is a Hilbert modular form, define f7() to be the function
obtained by precomposing f with complex conjugation at the places in I.

Let (m, H;) be a irreducible cuspidal automorphic representation of G(A) gener-
ated by the Hilbert modular form f of weight k. For I as before let H! be the subset
of H, consisting of functions ¢ € H, satisfying R(p; )¢ =0 fori € I and R(p; )¢ =0

for 2 not in /. Then we have
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Lemma VIIL.6. [16] 1.4.3 Let |I| be the cardinality of I. There is a natural embed-
ding
H; — HII‘(E&())

of G(AY)-modules. Furthermore the image of HE is an FQ(r)-rational subspace of

HI(&,0) where Q(r) is the field of definition of .

-1 0
Define J (I) to be the element (7 (1)1, J(I)2) € G(R) such that J(I); =
0 1
10
if i € I and J(I) = otherwise. For ¢ a function on G(Q)\G(A) let
01

¢7W(g) = (9T (I)). Then Hi = {¢p7" : ¢ € HY}.

Let f be a Hilbert modular form for F' of weight k = (ki, ko) with ky > ko,
ki = ks = 0 mod 2. Furthermore assume f is an eigenform in the space of the
representation 7 and that f is defined over FQ(rx). Choose I = {o3}. Then f7()
may be viewed as an element in H'(Ey(r)0)) where k(I) = (k1,2 — ks).

There are two FQ(r)-rational structures on HZ. The first is induced by the
rational embedding H! — HI(&,,) and denoted by HL(FQ(r)). The second is
defined applying the operator J(I) to H!(FQ(r)) and is denoted “HI(FQ(x)).

Harris shows that these two rational structures are related by a constant:
Lemma VIIL7 ([16] Lemma 1.4.5). There is a number v'(w) € C*, defined up to
multiplication by an element of FQ(m)* such that

() - HE(FQ(r)) = “HA(FQ(r)).

Define the period Q; to be v!(7) so that f7D/Q; is an FQ(r)-rational element
of H'(Eyr)0). Asai had shown that LAS(f, s) may be calculated by restricting f7@)

to the embedded modular curve and integrating against an Eisenstein series. That
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is the embedding d : H — H x H defined in 8.1 induces an embedding M; — Sk

where M, is the modular curve corresponding to the open compact subgroup

L= K N SLy(Af) C SLy(Ay).

The line bundle &)y on the Hilbert modular surface Sk restricts to the line

bundle £, —k,0) on the modular curve My. On M, there is a pairing
HY (Eoh-1o0) ® H(Ehy—k20)) — C.

This pairing is actually a Tate twist of the Serre duality pairing and is therefore
rational over Q (see [16], p. 165). So when we pair the rationally defined Eisenstein
series Ej(w, s) with the restriction of f7()/Q; the result is FQ(r)-rational. Thus

we tautologically get rationality of LAS(f, ky — 1)/Q:
Theorem VIII.8. Let f be a eigenform of weights ki, ko with k1 = ko =0 mod 2

and ki > ky. Let Q(f) be the field of definition of f. Then

L*(f, k1 — 1)/ € FQ(f).

The relation between the period ; and the Petersson inner product (f%, f?)
used in the previous chapters deserves further study. The ratio (fZ, f%)/Q; lies in

Q but it would be interesting to study its rationality (and integrality) properties.
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