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CHAPTER I

Introduction

In this thesis, we will study the arithmetic of the Asai L-function for Hilbert

modular forms over a real quadratic field. This is motivated by a p-adic analog of

the Beilinson conjecture for Hilbert modular surfaces. This p-adic analog, which

is expected to involve p-adic deformations in the weight direction (and is thus not

covered by the general p-adic Beilinson conjecture of Perrin-Riou [30]), does not

seem to be stated anywhere in the literature. The relevant p-adic L-function should

interpolate critical values of the Asai L-function for Hilbert modular forms of non-

parallel weight. Thus we are led to study the arithmetic of the special values of such

L-functions, building on previous work of Shimura. Our main results include two

theorems on rationality of such L-values that refine previous work of Shimura. We

also make some partial progress towards integrality results.

Let F be a real quadratic field and let OF be the ring of integers in F . For

simplicity, we will also assume throughout that F has narrow class number equal

to 1. Let H denote the complex upper half plane and f : H2 → C a holomorphic

Hilbert modular form of weight (k1, k2). We assume that f is a normalized Hecke

eigenform.

It turns out there are two natural L-functions that one can associate with f . One
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such, the standard L-function is defined by

L(f, s) =
∑
a

C(a)N(a)−s,

where the sum is over integral ideals a of OF and the terms C(a) denote the Fourier

coefficients of f . This L-function is the one that appears in the Birch and Swinnerton-

Dyer conjecture for the form f .

Another L-function that one may associate with f is the so-called Asai L-function,

defined by

LAs(f, s) = ζ(2s− k1 − k2 + 2)
∞∑
n=1

C(n)n−s,

where ζ(s) is the Riemann-Zeta function. Note that the sum is over the positive

integers rather than integral ideals of OF . Asai [1] used Rankin’s method to show

that this L-function admits an analytic continuation and a functional equation. The

Asai L-function for forms f of weight (2, 2) is related to the Hasse-Weil zeta function

of Hilbert modular surfaces. Specifically, the L-function L(H2(X), s) for a Hilbert

modular surface is a product of Asai L-functions corresponding to such forms, and

consequently it is the Asai L-function which arises in the statement of Beilinson’s

conjectures for H2 of Hilbert modular surfaces. We will now recall this connection.

Let X be a smooth projective surface over Q. Then for each prime l, H2
ét(X ×Q

Q̄,Ql) is a Gal(Q̄/Q)-module and as l varies these form a compatible system of

finite-dimensional l-adic representations of Gal(Q̄/Q). Let L(2)(X, s) denote the

L-function associated with this compatible system. The (conjectural) functional

equation satisfied by this L-function relates the values L(2)(X, s) with L(2)(X, 3− s).

Then Beilinson’s conjecture (stated in [4]) for the motive H2(X) concerns the special

values L(2)(X, s) for integers s ≥ 2 or equivalently the leading term in the Taylor

expansion at integers s ≤ 1. These special values are expected to be related to
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regulators of elements in certain higher Chow groups attached to X. Precisely,

the higher Chow group (or motivic cohomology) in question that is conjecturally

associated with L(2)(X, j) is the group

H3
M(X,Q(j)) = CHj(X, 2j − 3)⊗Q.

Beilinson then constructs a regulator map

(1.0.1) H3
M(X,Q(j))→ H3

D(X,R(j))

where H∗D(X,R(·)) denotes real Deligne cohomology. The target of the map (1.0.1)

admits a natural Q-structure. The conjecture then says that the map (1.0.1) is an

isomorphism and the difference between the determinant of this Q-structure and the

one induced from (the image of) H3
M(X,Q(j)) is given by the L-value L(2)(X, j), up

to certain elementary factors. In fact, one needs to be a bit more careful for two

reasons. Firstly, one must work not with H3
M(X,Q(j)) but rather with the subspace

of integral elements denoted H3
M(XZ,Q(j)). Secondly, for the point j = 2 there

is a correction factor involving the Neron-Severi group, that is related to the Tate

conjecture for X. We will ignore such subtleties for the moment.

We now specialize to the case of a Hilbert modular surface X. Since such a

surface is not compact, one should consider the intersection cohomology IH2; for the

purposes of the introduction we ignore the issue of noncompactness relegating the

more precise description to Chapter II. For such an X, the representation H2
ét(X ×Q

Q̄,Ql) decomposes according to the action of the Hecke algebra attached to the group

GF = ResF/Q GL2. Let A denote the adeles over Q. The automorphic representations

π of GF (A) that contribute to H2
ét(X ×Q Q̄,Ql) can be classified and the interesting

representations are those where the infinite components are discrete series of weight

2, namely those that correspond to Hilbert modular forms f of parallel weight two.



4

Fixing such a π (and f), let W`(π) denote the π-isotypic component of H2
ét(X ×Q

Q̄,Q`). We write W (π) for the compatible system of Galois representations W`(π).

The key point that connects Beilinson’s conjecture to the Asai L-function is the

following result of Brylinski-Labesse.

Theorem I.1 (Brylinski-Labesse, [9]). There exists a finite set of primes Q such

that

LQ(W (π), s) = LAs
Q (f, s)

where LQ denotes the L-function with Euler factors at primes dividing Q removed.

As a result, Beilinson’s conjecture reduces more or less to a corresponding con-

jecture relating the π-isotypic component of H3
M(X,Q(j)) to special values of the

Asai L-function LAs(f, s). Let us now briefly recall previous work on Beilinson’s

conjecture (and p-adic versions). conjecture:

(A) The original paper of Beilinson [4] treats the case of the Rankin-Selberg L-

function L(f × g, 2) where f and g are classical modular forms of weight two.

This may be viewed as a special case of the setting described above by taking

F to be the quadratic Q-algebra Q×Q instead of a real quadratic field.

(B) An unpublished preprint of Ramakrishnan [35] discusses the case of a Hilbert

modular form of weight (2, 2) at s = 2.

(C) The paper [25] of Guido Kings treats the case of Hilbert modular forms of weight

(2, 2) at s ≥ 3.

More recently, there has been interest in formulating and proving p-adic versions

of Beilinson’s conjecture, in which the regulator is replaced by a p-adic regulator and

the L-function by a p-adic L-function. In the setting of (A) above, this was studied in
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the paper [6] of Bertolini, Darmon and Rotger. The p-adic L-function in question is

that obtained by interpolating (the algebraic parts of) critical values of the Rankin-

Selberg L-functions L(fκ, g, s) where F is a Hida family of forms containing f and

κ is an arithmetic point of F corresponding to a classical modular form fκ of weight

≥ 3. The point is that the original Rankin-Selberg L-function L(f × g, s) has no

critical values since the weights of f and g are equal but the L-function L(fκ × g, s)

is critical at the points 2 ≤ s ≤ k − 1 where k is the weight of fκ. We note that

to define the algebraic part of L(fκ × g, j), one needs to divide it by an appropriate

period. In this case, the period may be taken to be the Petersson inner product

〈fκ, fκ〉 of the form fκ, up to certain elementary factors.

We consider instead the case (B) with a Hilbert modular form f of parallel weight

two. Again, the Asai L-function L(fAs, s) has no critical points. The idea then is

to vary such an f in a Hida family F of forms whose weights are (k, 2). When we

specialize F to a form fκ of weight (k, 2) with k > 2, the Asai L-function L(fAs
κ , s)

is critical in the range 2 ≤ s ≤ k − 1. Thus one may hope to construct a p-adic

L-function by interpolating the algebraic parts of these L-values. However, one runs

into a problem since the transcendental period that one must divide by is no longer

so easy to define. Indeed the form fκ is not a “product” of forms as in the case

F = Q×Q and the period must somehow distinguish one of the two infinite places

of the field F . It turns out that there are two way to do this and thus two periods

that can be defined. We remark that the exact relation between these two periods

is not obvious and is an open question that deserves further study.

Motivated by the above discussion, for the rest of the introduction, we use the

symbol f to denote a Hilbert modular form (for F ) of weight (k, 2), and discuss in

turn the two periods that one can attach to such an f that capture the transcendental
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part of critical values of the Asai L-function of f . The first period is defined by using

the Jacquet-Langlands correspondence. The idea here is due to Shimura (in [?]). One

assumes that there exists a quaternion algebra B over F which is split at one infinite

place and ramified at the other infinite place. In other words, we need to assume

that the representation π is discrete series for at least one finite place. Let τ1, τ2 be

the infinite places of F and B be a quaternion algebra that is split at τ1 and ramified

at τ2. Let πB denote the Jacquet-Langlands transfer of π to B×. Also let fB be a

nonzero vector in πB of weight (k, 0) at infinity. The form fB may be viewed as a

section of an automorphic vector bundle VB on the Shimura curve XB attached to

B×. Now using the fact that XB and VB admit models over Q̄ and even over F , the

form fB can be normalized up to a non-zero element in the field FQ(f) which is

the compositum of F with the field Q(f) generated by the Hecke eigenvalues of f .

In fact, one can also integrally normalize fB at least at good primes using suitable

integral models of XB and VB, as in [24] §1. The first period is then defined to be

the Petersson inner product of fB with respect to a suitable measure.

Q(f,B) := 〈fB, fB〉.

The following theorem is due to Shimura.

Theorem I.2 (Shimura [43], [44]).

LAs(f, k − 1)

πk〈fB, fB〉
=
LAs(f, k − 1)

πkQ(f,B)
lies in Q̄.

Our first main result refines this to

Theorem I.3. (See Chapter VI , Cor. VI.18) Suppose that Q(f) ⊆ F and that

every prime ideal p of F dividing the discriminant of B is split over Q. Then

LAs(f, k − 1)

πkQ(f,B)
lies in Fab,
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where Fab denotes the maximal abelian extension of F .

The proof of this result is obtained by carefully analyzing Shimura’s proof of

algebraicity, which is rather difficult and involves several steps. The brief idea is

as follows. One views B as a quadratic space over F equipped with the quadratic

form given by the reduced norm. Then fB × fB : H2 → C can be viewed as an

automorphic form for the identity component GB of the group GO(B), since GB is

isomorphic to (B××B×)/F×. Shimura defines another automorphic form Ẽk on GB

such that

〈fB × fB, Ẽk〉 ∼ LAs(fB, k − 1)〈fB, fB〉.

Here ∼ denotes equality up to certain well-understood factors. He then shows that

Ẽk is defined over Q̄ which implies 〈fB × fB, Ẽk〉 ∼ C〈fB, fB〉2 with C ∈ Q̄. The

idea then is to refine Shimura’s proof by showing that Ẽk is in fact defined over a

smaller field.

The Hermitian symmetric domain for GB does not have any cusps, so the ratio-

nality properties of Ẽk cannot be studied through q-expansions. Instead the idea

is to evaluate Ẽk at certain CM points and show that the resulting values, suitably

normalized, are rational. Let K be a totally imaginary degree 2 extension of F and

wK ∈ H2 a CM point corresponding to K. One needs to study the value Ẽk(wK)

divided by an appropriate CM period attached to K. Now K itself can be viewed

as a quadratic space over Q of dimension 4. The Shimura variety GO(K) has a

distinguished CM point zK associated with K and one can define an automorphic

form Gk on GO(K) with the property that

Ẽk(wK) ∼ Gk(zK).

The problem then reduces to showing that the form Gk on GO(K) is rational. To
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prove this, one evaluates Gk at CM points zL on GO(K) corresponding to imaginary

quadratic fields L. Finally, one shows that Gk(zL) is related to special values of

Rankin-Selberg type L-function of two forms for GL2 over Q, where the form of

large weight is a theta series lift from L. The algebraicity (and rationality) of critical

values of such L-functions is well understood, and can be used as a first step in the

above sequence of arguments.

While, in principle, the constructions above only require K to be a quadratic

CM extension of F , in practice many simplifications occur if we assume that K is

biquadratic over Q. For example, in this case the group GO(K) may be viewed

as a the orthogonal group of a quaternion algebra BK over Q. Moreover various

constructions involving reflex fields and CM periods are easier to keep track of if K

is biquadratic. To prove the main theorem we therefore first pick a CM field K that

is biquadratic, a subfield L of K that is imaginary quadratic and find a dense set of

points zL on GO(K) such that

(1.0.2) Gk(zL)/πkΩzL ∈ Lab,

for an appropriate CM period ΩzL in C×/L×ab associated with the CM point zL. The

condition that every prime p of F dividing the discriminant of B is split over Q is

used to ensure that one may in fact pick a biquadratic field K that embeds in B.

In order to study p-adic L-functions, it would be useful to have an integrality

result for the Asai L-function. In principle, it seems possible to further refine the

method described above to obtain such an integrality result but the technical details

get complicated. The idea would be to first prove an integrality statement for the

values in (1.0.2) and then leverage that to prove integrality of Gk and eventually

integrality of Ẽk. In Chapter VII, we show the following partial result. For certain

specific points zL we define an integrally normalized period Ω∗zL and a constant ML



9

such that

Theorem I.4.

πkGk(zL)/(Ω∗zL)2k

is p-integral for all p -ML.

The proof of this uses a result from [32] on integrality of certain Rankin-Selberg

L-values. Unfortunately, we are not able to show the theorem above as yet for a

dense set of points zL and so we cannot conclude from this that Gk is p-integral.

Now we discuss another approach to studying the critical values of LAs(f, s), which

is explained in Chapter VIII. This approach uses the original integral representation

of Asai, together with a period that was defined by Harris [16] using rational struc-

tures on coherent cohomology. The period Ωf so obtained does not make use of the

Jacquet-Langlands correspondence to transfer to a quaternion algebra but instead

uses directly a construction on the Hilbert modular surface. The main result (which

we prove only in the case of forms of full level) is then:

Theorem I.5. Let f be a Hilbert modular form of full level and weight (k, `) with

k > `. Then

LAs(f, k − 1)

Ωf

lies in FQ(f)

where Q(f) denotes the field generated by the Hecke eigenvalues of f .

As mentioned before, it would be interesting to compare the periods Q(f,B) and

Ωf . Note that both these periods can be normalized up to elements in FQ(f) and

even up to p-units for good primes p.



CHAPTER II

Hilbert Modular Surfaces and their cohomology

2.1 Classical Definition

Let H denote the complex upper half plane. The classical definition of a Hilbert

modular surface is given as a complex surface that is a quotient of H2. Fix a real

quadratic field F and denote the two embeddings F ↪→ R by τ1, τ2 respectively. These

extend to embeddings τi : SL2(F ) ↪→ SL2(R) (for i = 1, 2) by applying τi to each

entry. We have an action of SL2(R) on H given by fractional linear transformations:

γ(z) =
az + b

cz + d
for γ =

a b

c d

 ∈ SL2(R), z ∈ H.

Combining this with the two embeddings of SL2(F ) gives the action of SL2(F ) on

H2:

γ((z1, z2)) =

(
aτ1z1 + bτ1

cτ1z1 + dτ1
,
aτ2z2 + bτ2

cτ2z2 + dτ2

)

for γ =

a b

c d

 ∈ SL2(F ), (z1, z2) ∈ H2.

Let OF denote the ring of integers in F . Then the image (τ1, τ2) : SL2(OF ) ↪→

SL2(R) × SL2(R) is a discrete subgroup so the quotient SL2(OF )\H2 is a complex

10
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surface. This is the simplest example of a Hilbert modular surface. In general we

can quotient by any arithmetic subgroup of SL2(F ) - that is any Γ ⊂ SL2(F ) such

that Γ ∩ SL2(OF ) has finite index in both Γ and SL2(OF ).

Definition II.1 (Classical, see [46]). A Hilbert modular surface is the complex sur-

face Γ\H2 where Γ is an arithmetic subgroup of SL2(F ) for some real quadratic field

F .

Remark II.2. We can also allow the case where F = Q⊕Q and τ1, τ2 correspond to

projection onto the first, second coordinate respectively and embedding in R. Then

SL2(OF ) = SL2(Z)× SL2(Z) and

SL2(OF )\H2 ∼= SL2(Z)\H × SL2(Z)\H.

In general we could let Γ = Γ1 × Γ2 where each Γi is an arithmetic subgroup of

SL2(Z). Then the ‘Hilbert modular surface’ Γ\H2 is the product of the modular

curves Γi\H for i = 1, 2. Thus we may think of a product of modular curves as a

‘degenerate’ Hilbert modular surface.

2.2 Adelic description

Let G := ResF/Q GL2 /F denote the Weil restriction of GL2 /F to Q (see [47] for

a construction of the Weil restriction). Thus for a Q algebra R, the R points of G

are given by G(R) = GL2(F ⊗ R). Let X = H± × H± where H± = C \ R. Since

G(R) = GL2(R)×GL2(R) we have a natural action of G(R) on X where each copy of

GL2(R) acts on the respective copy of H± by fractional linear transformations. Let

L∞ :=


 a b

−b a

 ∈ GL2(R)


and K∞ = L∞ × L∞ ⊂ G(R). Since GL2(R)/L∞ ∼= H± we have X ∼= G(R)/K∞.
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Let A denote the ring of adeles over Q and Ak denote the ring of adeles over any

number field k. In addition we denote the finite and infinite parts of the adeles with

subscript f and ∞ respectively, so A∞ = R and Af = Ẑ⊗Q.

Then

G(Q)\G(A)/K∞ = G(Q)\(G(R)/K∞ ×G(Af )) = G(Q)\(X×G(Af ))

comes with a continuous right G(Af ) action. For each compact open subgroup

K ⊂ G(Af ) one can construct the space

G(Q)\(X×G(Af ))/K

and these form a directed system as K varies. The theory of canonical models ([38],

[11], [12], [27]) defines a Shimura variety SK over Q, such that

SK(C) = G(Q)\(X×G(Af ))/K.

Given a compact open subgroup K the strong approximation theorem ([31]) im-

plies that there exist x1, . . . , xn ∈ G(Af ) such that

G(A) =
n⊔
i=1

G(Q)xiG(A∞)+K

and {det(xi)} is a complete set of representatives for F× det(G(A∞)+K)\A×F . Here

the + denotes the subgroup of G(A∞) consisting of elements with positive determi-

nant. Then

G(A∞)+/K∞ = (GL2(R)+ ×GL2(R)+)/(L∞ × L∞) = H×H.

Thus each element of G(A) is represented by a class [gxi, z] for g ∈ G(Q), i ∈

{1, . . . , n}, z ∈ G+
∞/K∞ = H2. Then [gxi, z] ∼= [xi, z

′] in G(Q)\G(A)/K∞K if and
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only if g ∈ G(Q) ∩ xiG+
∞Kx

−1
i and gz = z′. Thus the complex points of SK are

naturally isomorphic to
n⊔
i=1

Γi\H2

where

Γi = G(Q) ∩ xiG(A∞)+Kx−1
i .

Thus the Shimura variety SK is a generalization of the classical Hilbert modular

surfaces. Although SK is defined over Q, a given component Γi\H2 may not be.

However there will be a canonical abelian number field kΓi depending only on Γi

such that the component Γi\H2 is defined over kΓi .

2.3 Compactification

In general, a Hilbert modular surface Γ\H2 may not be smooth and it will never

be compact. The singular points arise from points in H2 with non-trivial stabilizer

in Γ so if Γ is torsion-free, Γ\H2 will be smooth.

Similar to the case of modular curves we can add finitely many cusps to compactify

Γ\H2. Consider the map i : F → C2 given by i : a 7→ (aτ1 , aτ2). ThenH2∪i(F )∪{∞}

is compact. The boundary F ∪ {∞} corresponds to P1(F ) and has an action of

GL2(F ) given by

γ([x, y]) = [ax+ by, cx+ dy] for γ =

a b

c d

 ∈ GL2(F ).

Γ\P1(F ) will be finite and these points are the cusps of Γ\H2. The compactification

of SK given by including the cusps is called the Baily-Borel-Satake compactification

and we denote it by S̄K .

The singularities at the cusps can be resolved using the methods described by
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Hirzebruch ([22]) and Ash, Mumford, Rapoport, Tai ([2]) and this is called the

smooth toroidal resolution of S̄K . Take a Hilbert modular surface Γ\H2 and consider

the cusp ∞. For any t > 0 define

Wt = {(z1, z2) ∈ H2 : =(z1)=(z2) > t}.

This is a neighborhood of ∞ in H2. The stabilizer of ∞ in Γ is given by

Γ∞ =


a b

0 a−1

 ∈ Γ

 .

Thus a neighborhood of ∞ in Γ\H2 is given by Γ∞\Wt. Let

A =


1 x

0 1

 ∈ Γ∞

 , N =


y 0

0 y−1

 ∈ Γ∞

 .

Then Γ∞ = A n N . To construct the smooth toroidal compactification we define

an infinite chain of rational curves Σ and an A-action on Σ such that A\Σ is a

finite polygon of rational curves. The resolution adds Σ to N\Wt in such a way

that A\(N\Wt ∪ Σ) is smooth and compact. We denote the Shimura variety of the

toroidal compactification by S̃K and there is a natural map πK : S̃K → S̄K such that

the pre-image of each cusp is a finite chain of rational curves. Harder, Langlands

and Rapoport ([15]) show that S̃K and the map πK can be defined over Q. Let S̄∞K

denote the cusps in S̄K and S̃∞K = π−1
K (S̄∞K ) ⊂ S̃K . It is important to note that the

construction of S̃K is not canonical. However we will soon see that there is a piece

of the cohomology of S̃K that is independent of the choices made in the construction

of S̃K .
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2.4 Cohomology of Hilbert Modular Surfaces, Hecke Operators, and
Hilbert Modular Forms

Since S̃K is defined over Q we have an action of Gal(Q̄/Q) on

Wl := H2
ét(S̃K ×Q Q̄,Ql)

for each prime l. There is a natural map H2
c (SK ×Q Q̄,Ql) → Wl and define IWl

to be the image of this map. Furthermore let W∞
l be the subgroup of consisting of

elements supported in S̃∞K . Harder et al. ([15]) showed that there is a decomposition

Wl = IWl ⊕W∞
l .

Recall that for each cusp s of S̄K , π−1
K (s) is a polygon of rational curves. Let n(s)

denote the number of irreducible components of this polygon. Let Ql(1) denote the

l-adic Galois Tate module and Ql(−1) be its dual. Then

W∞
l =

⊕
s∈S̄∞K

(Ql(−1))⊕n(s).

Let K,L be two compact open subgroups of G(Af ) such that L ⊂ K. Then there

is a natural map R(1) : SL → SK . In general if there exists x ∈ G(Af ) such that

x−1Lx ⊂ K then there is a map R(x) : SL → SK defined by R(x)(γ) = R(1)(γx) for

γ ∈ G(A).

Definition II.3. For any K and x set L := K ∩ xKx−1. Then there is a diagram

SL
R(1)

}}

R(x)

!!
SK SK

which defines a correspondence Tx : SK → SK . This is the Hecke correspondence Tx.

The Hecke algebra over k ⊃ Q is the algebra generated over k by the Tx acting SK

is denoted by HK
k . We will sometimes write simply Hk.



16

Since the Hecke correspondences act on SK and not S̃K , there is an induced action

of the Hecke algebra on IWl, but not W∞
l . This allows us to write IWl⊗Q̄l as a direct

sum over irreducible HQ̄ representations. Let τ be an irreducible HQ̄ representation

τ : HQ̄ → GL(Wl(τ))

where E(τ) is a number field over which τ is defined and Wl(τ) is an E(τ) ⊗ Ql

module. For each τ there is a multiplicity m(τ,K) such that if

W ′
l (τ) = Wl(τ)⊕m(τ,K)

and W̄ ′
l is the extension of W ′

l to E(τ)⊗ Q̄l then

IWl ⊗ Q̄l
∼=
⊕
τ

W̄ ′
l (τ).

The action of Gal(Q̄/Q) on SK induces an action of Gal(Q̄/Q) on W ′
l (τ). Let

IH2
ét(S̃ × Q̄,Ql) := lim

K
IH2

ét(S̃K × Q̄,Ql).

Let Hf

Q̄l
be the algebra generated by all the HK

Q̄l
’s and decompose IH2

ét(S̃ × Q̄,Ql)

by the action of Hf

Q̄l
. There is a result which says

Lemma II.4 (see [34] p. 305). IH2
ét(S̃×Q̄,Ql) decomposes into a sum of components

W̄l(τ)f , each occurring once, such that

W̄l(τ)Kf = W̄ ′
l (τ)

for all K and for each τ there is an compact open subgroup K(τ) such that

W̄l(τ)
K(τ)
f
∼= W̄l(τ).

This induces an action of Gal(Q̄/Q) on Wl(τ).



17

Let π = π∞ × πf be an irreducible, admissible representation of G(A) on Vπ =

Vπ∞ ⊗ Vπf . Then HK
C acts on V K

πf
. If Vπf is defined over a number field and V K

πf
6= 0,

this gives us a representation τ . We say such a τ is associated to π.

Certain representations π come from Hilbert modular forms:

Definition II.5. Given integers k1, k2 and an arithmetic Γ ⊂ SL2(F ) a holomorphic

function f on H×H is a Hilbert modular form of weight (k1, k2) if it satisfies

f(γ(z1, z2)) =
∏
i=1,2

(cτizi + dτi)kif(z1, z2)

for all (z1, z2) ∈ H2, γ =

a b

c d

 ∈ Γ. If k1 = k2 = k, say f has parallel weight k.

Theorem II.6 (Harder, Langlands, Rapoport, [15]). Wl(τ) 6= 0 if and only if τ

is associated to an irreducible admissible representation π of G(A) and π is one-

dimensional or π is cuspidal automorphic of weight 2.

For a definition of ‘cuspidal automorphic of weight 2’ see [36] and [13]. We will

use the following result

Theorem II.7 ([13], 3.10). A cuspidal automorphic weight 2 representation of G(A)

corresponds to a classical holomorphic Hecke eigenform on H×H of parallel weight

2.



CHAPTER III

Beilinson’s Conjecture

3.1 Class Number Formula

Beilinson’s conjecture on regulators are an important generalization of the class

number formula for number fields. For K a number field, the class number formula

states that the Dedekind zeta function of K has a power series expansion ζK(s) =

c
s−1

+ c0 + c1(s− 1) + . . . where

c =
2r1(2π)r2hK regK

wk
√
|DK |

.

Here r1 is the number of real places of K, r2 the number of complex places, hK the

class number, wk the number of roots of unity, DK the discriminant, and regK is the

regulator of K. Let us recall the definition of the regulator map.

Definition III.1. Regulator map for number fields

Let K be a number field with r1 real embeddings τ1, . . . , τr1 and r2 conjugate pairs

of complex embeddings τr1+1, τr1+1, . . . , τr1+r2 , τr1+r2 . Then the group of units in OK

has rank m := r1 + r2 − 1. Let

Y =

{
x = (x0, . . . , xm) ∈ Rm+1 :

m∑
i=0

xi = 0

}
.

Define reg : O×K → Y by

reg : x 7→ (log(|xτ1|), . . . , log(|xτr1+r2 |)).

18
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This map lands in Y because of the product formula and the image reg(O×K) is a

lattice in Y . The regulator of K is defined by

regK := det(reg(O×K)⊕ 〈(1, 1, . . . , 1)〉).

The regulator is expected to be transcendental for all K 6= Q and this is significant

because every other term in the class number formula is algebraic (except for the well

understood powers of π). This is the idea behind Beilinson’s conjecture: find a map of

R-vector spaces whose determinant with respect to a suitable Q-structure calculates

the transcendental part of the special values of L-functions, and that generalize the

regulator above.

3.2 L-functions

Definition III.2. Let V• = {Vl} be a compatible system of finite dimensional l-adic

Gal(Q̄/Q) representations. The L-function of V• is defined by

L(V•, s) =
∏
p

Zp(V•, p
−s)−1

where

Zp(V•, T ) = det(1− FpT |V Ipl )

for some l 6= p. Here Fp denotes the (geometric) Frobenious at p and Ip denotes the

inertia subgroup at p. This is constructed in [11].

3.3 Beilinson’s Conjecture for Surfaces

We will now describe Beilinson’s conjecture for the case of a surface X defined over

Q. Let X̄ = X×Q Q̄. Then the groups H2
ét(X̄,Ql) form a compatible system of finite

dimensional l-adic Galois representations. Thus we can construct the L-function

L(2)(X, s) := L(H2
ét(X̄,Q•), s).
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Beilinson’s conjecture claims that the leading coefficient of this L-function at s = 1

is given by the volume of a regulator map. Part of the domain of the regulator is a

certain higher Chow group on X:

Definition III.3. Let X be a surface over Q and k be a number field. The higher

Chow group CH2(Xk, 1) is generated by finite formal k-rational sums
∑

i(Ci, fi)

where each Ci is a closed irrreducible curve on Xk̄, fi is a function on Xk̄ that is

invertible at the generic point of Ci such that

∑
i

div(fi) = 0

where both sides are viewed as 0-cycles on Xk̄. For g, h rational functions on Xk̄ and

C a curve on Xk̄ define

TameC(g, h) = (−1)ordC(g)ordC(h) g
ordC(h)

hordC(g)
|C .

Quillen ([33]) showed ∑
C

div(TameC(g, h)) = 0

as zero-cycle on Xk̄. Two formal sums of the form
∑

i(Ci, fi) are said to be equivalent

if they differ by a linear combination of elements of the form
∑

j div(TameCj(gj, hj)).

CH2(Xk, 1) is the group of such equivalence classes, rational over k.

The target of the regulator map comes from the cohomology of the analytification

of X:

Definition III.4. Let H ·B denote Betti cohomology and R(j) = (2πi)jR. Let

YR := H1,1(X ×Q C,C) ∩H2
B(X ×Q C,R(1)).

Then Gal(C/R) acts on YR via the action on X ×Q C so we can let Y +
R denote the

invariants of complex conjugation. The regulator will map into Y +
R .
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Let H∗DR(Xk) denote the DeRahm cohomology of Xk and F • the algebraically

defined Hodge filtration on H∗DR. Then there is an exact sequence

0→
∑

σ∈hom(k,C)

(F 2H2
DR(Xk)⊗k,σ C)+ p→ H2

B(X ×Q C,R(1))+ → Y +
R → 0

where the map p is defined by taking the isomorphism

H2
DR(Xk)⊗k,σ C ∼= H2

B(X(C),C)

and projecting by

C = R(1)⊕ R(2)→ R(1).

∑
σ∈hom(k,C)(F

2H2
DR(Xk)⊗k,σ C)+ has a Q-structure given by

∑
σ F

2H2
DR(Xk)

+ and

H2
B(X ×Q C,R(1))+ has a Q-structure given by H2

B(X ×Q C,Q(1))+. These induce

a Q-structure on Y +
R and allow us to define the volume of a Q-lattice in Y +

R up to

an element of Q×.

The vector space H1,1(X ×Q C,C) has a pairing 〈·, ·〉 defined by

〈ω1, ω2〉 =

∫
X(C)

ω1 ∧ ω2.

To define reg : CH2(Xk, 1) → Y +
R it is in fact enough to define how reg(β) behaves

under 〈, 〉 for each β ∈ CH2(Xk, 1) (see [34] p.347).

Definition III.5. Let β =
∑

i(Ci, fi) ∈ CH2,1(X) and C ′i = Ci \ div(fi). Then

reg : CH2,1(X)→ Y +
R

is uniquely defined by the property

〈reg(β)σ, ωσ〉 =
1

2πi

∑
i

∫
C′σi (C)

log |fσj | · ωσ|Ci

for each σ : k → C.



22

Let XOk be a proper model for X over Ok. Then Beilinson ([4]) defines a subspace

CH2(XOk , 1) ⊗ Q in CH2(Xk, 1) ⊗ Q. Beilinson’s conjecture concerns the image of

this integral part of the higher Chow group under the regulator map.

The last piece needed to define the regulator is the analogue of the vector (1, 1, . . . , 1)

in the determinant. This is played by the Neron-Severi group NS(X) and reg |NS(X)

is defined as the cycle class map.

Conjecture III.6 (Beilinson’s Conjecture, [4]). Let XOK be a proper model of X,

so that we can define the integral part of the Chow group: CH2(XOK , 1)⊗Q. Then

reg(CH2(XOK , 1) ⊗ Q ⊕ NS(Xk) ⊗ Q) is a Q-lattice of Y +
R and its volume is equal

to the leading coefficient of L(2)(X, s) at s = 1 up to a non-zero rational number.

3.4 Beilinson’s Example

When Beilinson originally made his conjecture, he gave some evidence for it in the

case when X is a product of modular curves. In this case he was able to construct

elements in CH2(XOK , 1) and explicitly compute their image under the regulator

map. These are called Beilinson-Flach elements:

Definition III.7. Let M be a modular curve and X = M ×M . For each modular

unit u on M we can define a Beilinson-Flach element ∆u. Since u is a modular unit

it’s divisor on M can be written as
∑

i ci − c′i where each ci, c
′
i is a cusp on M . Let

αi be a modular unit with divisor ci − c′i for each i. Then the formal sum

Di = ({ci} ×M,αi) + (M × {c′i}, αi)

has divisor (ci, ci)− (c′i, c
′
i). Let ∆ denote the diagonally embedded copy of M in X.

Then the formal sum

∆u = (∆, u)−
∑
i

Di
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has divisor 0 and therefore represents an element of CH2(Xk, 1). This is the Beilinson-

Flach element associated to u. See [4] p.2064 for details and the argument that

∆u ∈ CH2(XOk , 1).

The groups H2(X) (both Betti and étale) decompose as

H2(X) = (H2(M)⊗H0(M))⊕ (H1(M)⊗H1(M))⊕ (H0(M)⊗H1(M))

and we will focus on the H1(M)⊗H1(M) part. H1(M) decomposes into irreducible

components corresponding to weight 2 eigenforms. Let f and g be two such eigen-

forms. Then the component of L(2)(M × M, s) corresponding to (f, g) is in fact

L(f ⊗ g, s), the Rankin-Selberg convolution of f and g (a full explanation of this is

in [4] Ch.2 Sec. 6). Let ωg be the form 2πig(z)dz and

ηah
f :=

f̄ ∗(z)dz̄

〈f ∗, f ∗〉

where f ∗ is the form given by applying complex conjugation to the coefficients of f .

Then the component of Y +
R corresponding to (f, g) is given by ωg ⊗ ηah

f . Beilinson’s

result is:

Theorem III.8 (Beilinson). Let f, g be weight 2 normalised newforms of levels Nf ,

Ng and nebentypus characters χf , χg with χ := χ−1
f χ−1

g non-trivial. Also let N :=

lcm(Nf , Ng). Then there is a modular unit uχ attached to the character χ. We have

L(f ⊗ g, 2)

〈f ∗, f ∗〉
= 16π3N−2τ(χ−1)reg〈∆uχ , ωg ⊗ ηah

f 〉.

Here τ(χ−1) denotes the Gauss sum associated to χ−1.

Note that although our statement here concerns the value of L(f ⊗ g, s) at s = 2

and the statement of Beilinson’s conjecture concerns the value at s = 1, the functional

equation relates the values s↔ 3− s.
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3.5 Ramakrishnan’s results for Hilbert modular surfaces

Ramakrishnan ([34]) was able to prove a result similar to Beilinson’s for the case

of X a Hilbert modular surface. The significant part of this proof lies in finding ele-

ments of CH2(S̃K , 1) because the Beilinson-Flach elements do not exist on a Hilbert

modular surface.

Definition III.9. Given an open compact subgroup K ⊂ G(Af ) there is a modular

curve M that can be diagonally embeded in S̄K by through the diagonal embedding

H̄± → H̄± × H̄±. The Hirzebruch-Zagier cycle C̄g,K on the Hilbert modular surface

S̄K is the image of this diagonal embedding under the Hecke operator Tg.

Definition III.10. A formal sum ∑
i

(Ci, fi)

is called K-admisible if each Ci is a Hirzebruch-Zagier cycle C̄g,K on S̄K , each fi is

a modular unit on Ci and ∑
i

div(fi) = 0

as a 0-cycle on S̄K × Q̄.

Any such sum will also be rational over some number field. For a given Hirzebruch-

Zagier cycle C̄g,K , there is a cycle C̃g,K ∈ S̃K mapping to it under the natural map

S̄K → S̃K . However if we lift the modular units fi to S̃K they may not satisfy∑
i div(fi) = 0 on S̃K . Ramakrishnan ([34], p.352) proves

Lemma III.11. Given any K-admissible k-rational formal sum β =
∑

i(Ci, fi) there

exists a finite formal sum
∑

j(Ej, gj) such that each Ej is a component of a resolution

of a cusp in S̃K, each gj is a Ok-integral function on Ej, and∑
i

div(fi) +
∑
j

div(gj) = 0
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as a 0-cycle on S̃K × k. The formal sum
∑

j(Ej, gj) is defined over Ok and we call

β̃ :=
∑
i

(Ci, fi) +
∑
j

(Ej, gj)

a lift of β.

A lift of a K-admissible sum β will not be unique, but any two lifts will differ by

an integrally defined sum supported on the cusps of S̃K .

Definition III.12. Let R′K(k) be the Q-subspace of CH2,1(S̃K × k)⊗Q generated

by lifts of K-admissible k-rational sums
∑

i(Ci, fi).

If M is an open subgroup of K then there is a natural map pK,M : S̃M → S̃K .

This induces a map pK,M∗ on the corresponding Chow groups.

Definition III.13. Define RK(k) to be the Q-subspace of CH2,1(S̃K × k)⊗Q gen-

erated by {pK,M∗(R′K(k))|M open in K}

Ramakrishnan then shows that RK(k) is integral.

Theorem III.14 (Ramakrishnan, [34] Thm. 12.19). For every character ω of

Gal(Qab/Q), we have regω(RK(ω) ⊕ NS(S̃K , ω)) is a Q(ω)-structure of YR(ω)+.

Furthermore, it’s volume is equal (up to a nonzero element of Q(ω)) to the lead-

ing coefficient at s = 1 of L(2)(S̃K(ω), s)).



CHAPTER IV

p-adic Beilinson Conjecture

4.1 p-adic Rankin-Selberg

Let f be a weight k modular form and g a weight 2 modular form with Nebentypus

characters (see [28] for a definition) χf , χg and levels Nf , Ng respectively. Let

N := lcm(Nf , Ng) and replace χf and χg by the corresponding characters mod N .

Suppose also that χ := χ−1
f χ−1

g is non-trivial and primitive. Let

σm,χ(n) :=
∑
d|n

χ(d)dm

and define the Eisenstein series

Em,χ(z) := 2−1L(χ, 1−m) +
∞∑
n=1

σm−1,χ(n)qn.

In addition let

C(k, j) :=
(−1)k−1−j2k−1(2π)2j−1(iN)k−2jτ(χ−1)

((j − 1)!)2

where τ(χ−1) denotes the Gauss sum attached to χ−1.

Proposition IV.1 (Shimura, see [39] or [5]). Suppose k ≥ 3 and (k + 1)/2 ≤ j ≤

k − 1. Then

L(f ⊗ g, j) = C(k, j)〈f ∗(z), δk−1−j
2j−k E2j−k,χ(z)g(z)〉.
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where f ∗ is the form given by applying complex conjugation to the coefficients of

f , δk−1−j
2j−k is the Shimura-Maass derivative operator, and 〈·, ·〉 denotes the Petersson

inner product.

We need k ≥ 3 because the values j ∈ [(k + 1)/2, k − 1] are exactly the critical

values for L(f ⊗ g, j) that are right of center, and this set will be empty with k < 3.

So when k = 2 there are no critical values. Hida was able to p-adically interpolate

the critical values to obtain a p-adic L-function that is defined at k = 2, j = 2.

Since 〈f ∗, δk−1−j
2j−k E2j−k,χg〉/〈f ∗, f ∗〉 is algebraic, it makes sense to define

Lalg(f ⊗ g, j) := C(k, j)−1L(f ⊗ g, j)
〈f ∗, f ∗〉

=
〈f ∗, δk−1−j

2j−k E2j−k,χg〉
〈f ∗, f ∗〉

∈ Q̄

for k ≥ 3, (k + 1)/2 ≤ j ≤ k − 1.

Let f be a Hida family of ordinary p-adic modular forms with tame level N defined

on a non-empty open subset Uf of Z/(p−1)Z×Zp that is contained in a single residue

class modulo p− 1. Then for each k ∈ Uf ∩Z≥2 and (k+ 1)/2 ≤ j ≤ k− 1 we define

Lp(f , g)(k, j) :=
E(fk, g, j)

E(fk)E∗(fk)
Lalg(fk ⊗ g, j)

where E(fk, g, j), E(fk), and E∗(fk) are certain Euler factors (see [6] for a definition).

Hida ([21]) shows that this extends to a function on all of Uf × Zp. Thus we can

specialize Lp(f , g)(k, j) to k = 2, j = 2 even though the Rankin-Selberg L-function

has no critical values when f and g both have weight 2.

4.2 p-adic Beilinson for a product of modular curves

Perrin-Riou ([30]) has stated a general conjecture which is a p-adic analog of

Beilinson’s conjecture, but it involves p-adic interpolation by varying the cyclotomic

variable of an L-function. Some cases of this have been proven (see [3] and [8]).

In [6], Bertolini, Darmon, and Rotger proved a p-adic analogue of Beilinson’s result
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which lies outside of Perrin-Riou’s conjecture because it involves p-adic interpolation

across varying weights as well. Let Kp be an extension of Qp. The p-adic regulator

may be viewed as a map

regp : CH2(X, 1)→ (Fil1(H2
dR(X/Kp)))

∨

(as described in [29], [14], and [7]).

Let Y denote the open modular curve Y1(N) and X denote the complete modular

curve X1(N). Let E → Y denote the universal elliptic curve over Y . Define L :=

R1π∗(E → Y ) and Lr := SymrL. Lr is a coherent sheaf over X and comes equipped

with the Gauss-Manin connection

∇ : Lr → Lr ⊗ Ω1
X(log cusps)

where Ω1
X(log cusps) is the sheaf of regular differentials on Y with log poles at the

cusps. Let H1
dR(XCp ,Lr,∇) be the de Rahm cohomology of Lr. Let f and g be two

modular forms as in the previous section. Let f ,g be cuspidal eigenforms as in the

previous section. We also assume that f and g are both ordinary at p and have level

N where p - N . This implies ([6], p. 7) that there is a canonical unit root subspace

H1
dR(XCp ,Lr,∇)f,ur ⊂ H1

dR(XCp ,Lr,∇) and a canonical projection onto the unit root

subspace. Let ηah
f be the element of H1

dR(XCp ,Lr,∇) represented by the form

f̄ ∗(z)dz̄

〈f ∗, f ∗〉

where f ∗ is the form given by applying complex conjugation to the Fourier coefficients

of f . Let ηur
f be the projection of ηah

f to the unit root subspace. Let ωg be the element

of Fil1H1
dR(X/Cp) represented by 2πig(z)dz. Then ωg ⊗ ηur

f ∈ Fil1(H2
dR(X/Cp)) and

an analogue of Beilinson’s conjecture is:
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Theorem IV.2 (Bertolini, Darmon, Rotger [6]). Let f , g be weight 2 modular forms

as in the previous section and suppose there is a Hida family f that specializes to f

at 2. Then

Lp(f , g)(2, 2) =
E(f, g, 2)

E(f)E∗(f)
regp(∆uχ)(ωg ⊗ ηur

f ).

4.3 p-adic Asai L-function

We now return to the case where the surface X is a Hilbert modular surface S̃K .

Recall that Wl = H2
ét(S̃K ×Q Q̄,Ql) decomposes as Wl = IWl ⊕W∞

l and the action

of the Hecke algebra HQ̄ on IWl gives a decomposition

IWl ⊗ Q̄l =
⊕
τ

W̄ ′
l (τ)

over irreducible HQ̄ representations. Beilinson’s conjecture concerns the special value

of the L-function

L(2)(S̃K , s) = L(W•, s)

at s = 1. Thus we are led to consider the L-function L(W•(τ), s) for an irreducible

HQ̄ representation τ . The more interesting case is when τ is cuspidal automorphic

of weight 2 and therefore corresponds to a parallel weight 2 Hilbert modular form.

Let d denote the different of F and ω ∈ F be a generator for the inverse different

of F : (ω) = d−1. For simplicity let us take Γ = SL2(OF ) and assume ω >> 0. Let

f : H2 → C be a Hilbert modular form of weight (2, 2) for Γ. It can be shown ([46],

[1]) that f has a Fourier expansion of the form

f(z) =
∑

µ∈OF ,µ>>0

C(µ)e2πiTr(µωz).

Definition IV.3. The Asai L-function of the weight (k, l) Hilbert modular form f

with Fourier expansion

f(z) =
∑

µ∈OF ,µ>>0

C(µ)e2πiTr(µωz)
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is defined to be

LAs(f, s) := ζ(2s− k − l + 2)
∞∑
n=1

C(n)n−s.

This is different from the standard L-function associated to f , which would take

into account all the Fourier coefficients. Instead the Asai L-function only uses the

Fourier coefficients indexed by Z.

Theorem IV.4 (Brylinski-Labesse). Given τ cuspidal automorphic with associated

Hilbert modular form f , there exists a finite set of primes Q such that

LQ(W•(τ), s) = LAs
Q (f, s).

The subscript Q means the Euler factors at primes p|Q are omitted.

Thus to give a p-adic analogue of Ramakrishnan’s result requires a p-adic Asai

L-function. As for the case of the Rankin-Selberg convolution L(f ⊗ g, s), the Asai

L-function has no critical values at parallel weight (2, 2). However if f is a Hilbert

modular form with weights (k, 2) with k ≥ 3, LAs(f, j) will be a critical value for

(k+ 1)/2 ≤ j ≤ k− 1. Thus we are led to study the special values LAs(f, k− 1) with

f of weight (k, 2). If these values can be p-adically interpolated then specializing

to k = 2 will give a p-adic analogue of the special value appearing in Beilinson’s

conjecture. Completing this is an open question that deserves further study.



CHAPTER V

Algebraicity of the Asai L-function

5.1 Summary of Shimura’s proof

We begin by giving a rough outline of Shimura’s proof of the algebraicity of the

Asai L-function which is done in three papers ([42], [43], [44]). In this section we

will us ∼ to denote when two quantities are related by a known factor which can be

explicitly calculated and is an algebraic multiple of a power of π. We begin by listing

the the essential objects of the proof (these will be described more precisely later):

1. f - a Hilbert modular form over a real quadratic field F of weight (k, l) with

k > l.

2. B - a quaternion algebra over F that is split at exactly 1 infinite place.

3. fB - the Jacquet-Langlands transfer of f from GL2(F ) to B×. We will assume

that such a transfer exists.

4. Ek - an automorphic form on GO(B) where the quadratic form on B is the

norm form.

5. K - a CM field of degree 4 over Q with totally real subfield F .

6. wK - a CM point on the Shimura variety for GO(B) that corresponds to K.

7. D(K, s) - a series that computes the value of Ek at wK .

31
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8. Gk - an automorphic form on GO(K) where the quadratic form on K is a twist

of the norm form.

9. zK - a CM point on the Shimura variety for GO(K) that corresponds to K.

10. L - an imaginary quadratic field.

11. zL - a CM point on the Shimura variety for GO(K) that corresponds to L.

12. θL - a modular form on GL2(Q) that is a theta series from L.

13. Ω - a modular form on GL2(Q) that will be described later.

In this section 〈·, ·〉 denotes the Petersson inner product on B× or B××B×. The

argument begins by noting that automorphic forms on GO(B) can be restricted to

automorphic forms on B× × B× and showing that the Asai L-function of a HMF f

can be computed as 〈fB×fB, Ẽk|B××B×〉 where Ẽk is a modified version of Ek. Since

this integral representation is an inner product of automorphic forms on a Shimura

variety it gives the algebraicity of LAs(f, s)/〈fB × fB〉 if fB and Ek are algebraic.

fB is chosen to be algebraic, but one must show that Ek is algebraic. The relevant

Shimura curves do not have cusps, so algebraicity is determined by examining values

at CM points and showing these are algebraic up to appropriate CM periods.

The Shimura variety for GO(B) has CM points wK corresponding to certain CM

fields K and the value of Ek at such a CM point is computed by the series D(K, s):

E(wK) ∼ D(K, s0)

for some integer s0. Viewing K as a quadratic space we can take the group GO(K)

and the corresponding Shimura variety will have a CM point zK corresponding to

K. The automorphic form Gk on GO(K) is constructed so that

Gk(zK) ∼ D(K, s0).
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The Shimura variety for GO(K) will also have CM points zL corresponding to imag-

inary quadratic fields L and

Gk(zL) ∼ L(θL ⊗ Ω, s1)

for some integer s1. The algebraicity of LAs(f, s) is then proven by bootstrapping up

from the algebraicity of L(θL ⊗ Ω, s1) (up to a CM period ΩCM,L) as follows:

1. Given K we construct the automorphic form Gk on GO(K) and show that for

infinitely many zL the value Gk(zL)/ΩCM,L ∼ L(θL ⊗ Ω, s1)/ΩCM,L is algebraic.

Thus Gk is algebraic.

2. This implies that

Gk(zK)/ΩCM,K ∼ D(K, s0)/ΩCM,K ∼ Ek(wK)/ΩCM,K

is algebraic for a CM period ΩCM,K depending on K. Doing this for infinitely

many wK shows that Ek is algebraic.

3. The algebraicity of Ek implies the algebraicity of Ẽk. Thus 〈fB × fB, Ẽk〉 is an

algebraic multiple of 〈fB, fB〉2. Since

〈fB, fB〉LAs(f, s2) ∼ 〈fB × fB, Ẽk〉

we get an algebraicity result for

LAs(f, s2)/〈fB, fB〉

.

5.2 Automorphic forms on a quaternion algebra

This section defines automorphic forms on general quaternion algebras as in [44].

Let F be a totally real number field with infinite places τ1, . . . , τn and B a quaternion
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algebra over F that is split at τ1, . . . , τr and ramified at the other infinite places. Fix

an isomorphism

B ⊗Q R→ M2(R)r ×Hn−r

that extends the map F → Rn defined by a 7→ (aτ1 , . . . , aτn). Let G be the Q-rational

algebraic group whose A-points for any Q-algebra A are (B⊗QA)×. Then we define

the adelization GA ∼= (B ⊗Q A)× and the infinite part G∞ ∼= GL2(R)r × (H×)n−r.

Let N denote the norm map N : BA → FA. Let G∞+ denote the identity component

of G∞ and GA+ (resp. GQ+) denote the subgroup of GA (resp. GQ) consisting of

elements with infinite part in G∞+. For γ ∈ GA we denote its infinite part by γ∞

and for 1 ≤ i ≤ n we denote the infinite part at τi by γ(i). This group G∞+ acts on

Hr by

γ(z1, . . . , zr) =

(
a1z1 + b1

c1z1 + d1

, . . . ,
arzr + br
crzr + dr

)
for

γ(i) =

ai bi

ci di

 , (z1, . . . , zr) ∈ Hr.

For such a γ, (z1, . . . , zr) and k =
∑r

i=1 kiτi, ki ∈ Z define

j(γ, z)k :=
r∏
i=1

(cizi + di)
ki |N(γ(i))|−ki/2.

For a C valued function f on Hr define

(f |kγ)(z) = j(γ, z)−kf(γ(z)).

Fix a maximal order OB of B and define

ΓN = {γ ∈ OB : N(γ) = 1, γ − 1 ∈ NOB}.

Definition V.1. A congruence subgroup of GQ+ is a subgroup Γ ⊂ GQ+ such that

ΓN ⊂ Γ and [ΓO×F : ΓNO×F ] <∞ for some N .
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LetAk(Γ) denote the set of meromorphic functions f : Hr → C (also meromorphic

at the cusps) such that f |kγ = f for all γ ∈ Γ. Let Ak denote the union of Ak(Γ) over

all congruence subgroups Γ. Similarly define Mk(Γ), Mk as holomorphic functions

satisfying f |kγ = f . Furthermore define Sk(Γ) (resp. Sk) to be the subset ofMk(Γ)

(resp. Mk) consisting of functions which vanish at the cusps.

Let W0 be an open compact subgroup of G(Af ) and W = W0G∞+.

Definition V.2. LetMk(W ) be the set of all C-valued functions f on GA such that

f(αγw) = f(γ) for all α ∈ GQ, γ ∈ GA, w ∈ W,w∞ = 1

and for every γ ∈ GA with γ∞ = 1 there is an element gγ ∈Mk such that

f(γy) = (gγ|ky)(i)

for all y ∈ G∞+. Here i = (
√
−1, . . . ,

√
−1) ∈ Hr.

Lemma V.3 (see [44] p.574). For any such W there exists an integer h and elements

x1, . . . , xh ∈ GA each with xi∞ = 1 such that

F×A =
h⊔
i=1

N(xi)F
×N(W ).

Let Γi = xiWx−1
i ∩GQ. Then we have a bijection

Mk(W ) ∼=
h∏
i=1

Mk(Γi)

given by f 7→ (f1, . . . , fg) where

f(αN(xi)
−1xiw) = (fi|kw)(i).

In fact GQ\GA/W ∼=
⊔h
i=1 Γi\Hr.

Suppose for each place ν of F , Wν = O×Bν . Then N(W ) ⊂ O×Fν for each finite

place ν and N(W ) ⊂ F×ν+ for each infinite place ν. Thus h divides the narrow class
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number of F . From now on we assume that Wν = O×Bν for each place ν and F has

narrow class number 1. Thus our lemma implies GQ\GA/W has only one component

Γ\Hr in this case (Γ = W ∩GQ).

5.3 The Asai L-function on a quaternion algebra

In this section we describe a variation of the Asai L-function which applies to

automorphic forms over quaternion algebras B that are not GL2.

Let F be a real quadratic field with infinite places τ1, τ2 and B a quaternion

algebra over F that is unramified at τ1 and ramified at τ2. Suppose that F has a

unit of norm −1 and take ν ∈ F to be a totally positive generator of the inverse

different of F . Also assume that F has odd discriminant and narrow class number

1. Since in this case r = 1, k has the form k = k1τ1 with k1 ∈ Z. Let fB be in Sk.

Further assume that fB is an eigenform with eigenvalue χ(a) for the Hecke operator

T (a) (here a runs over fractional ideals in E, but χ() is understood to be 0 if a is

not integral). We define the modified Asai L-function of f

L∗As(fB, s) =
∑

0<b∈Q

χ(bν)(bν)−s.

This L-function satisfies a functional equation with center 3/2. The critical points

right of center are 2, . . . , k/2 when k is even, k > 2. Our main result concerns the

rightmost critical point s = k/2. In the case when B = GL2(F ) this differs from our

previous definition only by the ζ-function factor and the power of ν.

Theorem V.4 (Shimura, [44] Thm. 3.1). Let fB be an eigenform with eigenvalues

χ(a) and weight (k, 0). Then

J(f)(z) :=
∑

0�b∈OF

χ(bν)(bν)(k/2−1)τ1e2πiTr(bνz)

is a weight (k, 2) Hilbert modular form for F .
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In the case where fB has weight k, J(f) will have weight (k, 2) and

(5.3.1) LAs(J(f), s) = νsτ1ζ(2s− k)L∗As(fB, s+ 1− k/2).

Definition V.5. When f is a Hilbert modular form for F that is in the image of the

map J we let fB be an eigenform with J(fB) = f and say fB is the Jacquet-Langlands

transfer of f to B.

This transfer was studied by Jacquet and Langlands in [26] sec. 14 and 16.

5.4 Automorphic Forms on an Orthogonal Group

Let E be Q or a real quadratic number field. Let τ1 denote the unique infinite

place if E = Q and τ1, τ2 denote the two infinite places if E is real quadratic. Let V

be a 4 dimensional vector space over E with a quadratic form S of signature (2, 2)

at τ1. If E is real quadratic we also require S to be positive definite at τ2.

Let Vi = V ⊗τi,ER and Si denote the extension of S to Vi. Consider the quadratic

spaces M2(R) and H (the Hamilton quaternions) over R with the standard quadratic

form

S(x, y) := xyι + yxι.

Here ι denotes the involutiona b

c d


ι

=

 d −b

−c a

 on M2(R)

(a+ bi+ cj + dk)ι = a− bi− cj − dk on H.

There exists isomorphisms of quadratic spaces V1
∼= M2(R) and V2

∼= H.

Let

N = {x ∈ V1 ⊗ C : S1(x, x) = 0, S1(x̄, x) < 0}.
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Under our isomorphism V1
∼= M2(R) we can view N as a subset of M2(C). Suppose

x =

a b

c d

 ∈ N.

Then the condition S1(x, x) = 0 implies det(x) = 0 and the condition S1(x̄, x) < 0

implies <(ād− b̄c) < 0. Thus c 6= 0 and we can write

x =

a′ a′d′

1 d′


where

0 > <(ā′d′ − ā′d̄′) = <(ā′(d′ − d̄′))

<(2iā′=(d′)) = 2=(a′)=(d′).

Thus N has two components corresponding to a′ ∈ H, d′ ∈ H− or a′ ∈ H−, d′ ∈ H

and we can define an isomorphism C×H2 → N onto the a′ ∈ H, d′ ∈ H− component

of N by

ζ × (z1, z2) 7→ ζ ·

z1 −z1z2

1 −z2

 .

Let p : H2 → N denote the map

p : (z1, z2) 7→

z1 −z1z2

1 −z2


so that each element in the a′ ∈ H, d′ ∈ H− component of N is a unique scalar

multiple of a unique element in the image of p.

Let

G(V ) = {α ∈ GL(V,E) : S(αx, αy) = ν(α)S(x, y), ν(α) ∈ E�0}.

Then G(V ) acts on M2(C) through our isomorphism V1⊗C ∼= M2(C). Let G+(V )

be the subgroup of G(V ) that preserves the components of N. For any α ∈ G+(V )
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and z ∈ H2 there is a unique µ(α, z) ∈ C, αz ∈ H2 such that

αp(z) = µ(α, z) · p(αz).

This defines an action of G+(V ) on H2 and an automorphy factor µ : G+(V )×H2 →

C.

For k ∈ Z, f a function on H2 and α ∈ G+(V ) we define

(f||kα)(z) = µ(α, z)−k|N(α)|kτ1/2f(αz).

Definition V.6. Then we say a function f on H2 is a weight k automorphic form

for a congruence subgroup Γ ⊂ G+(V ) if f||kα = f for all α ∈ Γ.

We now present two examples of these automorphic forms. In the case where

E = Q we pick a congruence subgroup X in V and a modular form Ω with q-

expansion coefficients ω(a) for a ∈ Z and define a C-valued function Gk on H2 × C

by

Gk(z, s;X) :=
∑
x∈X

ω(−S[x])S(x, p(z))−k|S(x, p(z))|−2s.

In the case where E = F a real quadratic field we denote the extension of S to V1

by S1 and for x ∈ F we denote by x1 it’s image in V1. We can then take a congruence

subgroup X of B and a modular form Ω (with q-expansion coefficients ω) and define

Ek(z, s;X) :=
∑
x∈X

ω(−TrF/Q(S[x]))S1(x1, p(z))−k|S1(x1, p(z))|−2s.

Although Shimura studied these automorphic forms in general, for Ek we will only

be interested in the case where the modular form Ω is constant and equal to 1. In

this case ω(a) = 1 for a = 0 and otherwise ω(a) = 0 so we can also write
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Ek(z, s;X) :=
∑

x∈X|TrF/Q(−S[x])=0

S1(x1, p(z))−k|S1(x1, p(z))|−2s.

5.5 Integral representation

Let w ∈ H and denote by dµ(w) the measure y−2dxdy on H where w = x + iy.

For fB, gB automorphic forms of level k with respect to the congruence subgroup

Γ ⊂ B×+ , let 〈·, ·〉 denote the Petersson inner product

〈fB, gB〉 = µ(Γ\H)−1

∫
Γ\H

fB(w)gB(w)=(w)kdµ(w).

Let ε ∈ F be a totally positive unite such that ν = ε/
√
D. Also choose δ ∈ B

such that N(δ) = −ε. Let

O∨F := {a ∈ F : TrF/Q(ab) ∈ Z for all b ∈ OF}.

Further define

A(w,w′, s) := π−sΓ(k + s)=(w)s=(w′)s,

X0 := {b ∈ B : N(b) ∈ O∨F},

and

Ẽk(w,w
′, s) := π−|k|Ek((w, δw̄

′), s;X0)j(δ, w̄′)−k|j(δ, w′)|−2s.

Shimura proves

Theorem V.7 ([44], sec. 6).∫
Γ\H

f(w)A(w,w′, s)Ẽk(w,w
′, s)=(w)kdµ(w)

= (−2i)k(4π)1−s−kεk+s−1Γ(k + s− 1)L∗As(fB, k/2− s)fB(w′).
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Setting s = 0 and taking the Petersson inner product against fB(w′) we get∫
(Γ\H)2

fB(w)fB(w′)A(w,w′, 0)Ẽk(w,w
′, 0)=(w)k=(w′)kdµ(w)dµ(w′)

= (−2i)k(4π)1−kεk−1Γ(k − 1)L∗As(fB, k/2)〈fB, fB〉µ(Γ\H).

Proposition V.8.∫
(Γ\H)2

fB(w)fB(w′)A(w,w′, 0)Ẽk(w,w
′, 0)=(w)k=(w′)kdµ(w)dµ(w′)

= C〈fB, fB〉2µ(Γ\H)2

with C algebraic.

Proof. This will be shown in Section 5.10 as a consequence of the algebraicity of

Ẽk(w,w
′, 0).

We also note that µ(Γ\H) is a rational multiple of π, so the proposition and

theorem together imply

Theorem V.9 (Shimura [44] Thm. 3.3).

L∗As(fB, k/2)

πk〈fB, fB〉
∈ Q̄.

5.6 CM Points on the orthogonal Shimura variety

Let V be a quadratic space over E where E is a real quadratic field or Q. Let Y

be an E-algebra which is a direct sum of CM fields over E and copies of E and let ρ

denote the unique positive involution of Y . Let JY denote the set of homomorphisms

Y → C. Suppose we have an embedding h : Y → End(V,E) that maps the identity

to the identity and satisfies

S(h(a)x, y) = S(x, h(aρ)y).
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If we set

Y u := {y ∈ Y : yyρ = 1}

then h maps Y u into G(S). We also assume h(Y u) is contained in G+(S).

Then since the closure of h(Y u) is compact it has a fixed point z in Z and we refer

to points of this type as CM points.

The CM point gives us a representation ψ : Y → C which is the unique one

satisfying ψ(a) = µ(h(a), w) for a ∈ Y u.

We now recall Proposition 5.4 from [42]:

Proposition V.10. There exists an element v ∈ V such that V = h(Y )v and for

any such choice of v there is a unique element δ ∈ Y such that

S(h(a)v, h(b)v) = TrY/E(δabρ)

for all a, b ∈ Y . This δ satisfies δρ = δ; δψ < 0; δα > 0 for all α ∈ JY not equal to

ψ or ψρ.

5.7 Evaluating Ek at CM Points

Using the notation from the previous section, take wK a CM point associated to

Y of the form Y = K ⊕ F ⊕ F where K is a CM field of degree 2 over F . Define

W ⊂ V by W := h(F ⊕ F )v (this is the v described in proposition V.10 satisfying

h(Y )v = V ). Thus V is spanned by W and h(K)v so each element of V can be

written as h(a)v + x with a ∈ K, x ∈ W . But then

S(h(a)v + x, h(b)v + y) = TrK/E(δ0ab
ρ) + S ′(x, y)

for a, b ∈ K and x, y ∈ W where S ′ denotes the restriction of S to W and δ0 is the

projection of the δ from V.10 to K. Let u := p(wK) which Shimura shows ([42],
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page 328, 5.10) satisfies S1(W,u) = 0. Thus S1(h(b)v1 + y1, u) = S(v1, h(bρ)u) =

bρψS(v1, u). Setting d := S(v1, u) we see that

S1(h(b)v1 + y1, p(w))−k|S(h(b)v1 + y1, p(w))|−2s

= d−k|d|−2sb−kρψ|bψ|−2s.

Thus we can write

Ek(wK , s;X0) =
∑

h(a)v+y∈X0:TrK/Q(−δ0aaρ)+TrE/Q(−S′[y])=0

d−k|d|−s2a−kρψ|aψ|−2s.

Now suppose that X0 decomposes as h(X1)v+X2 for congruence subsets X1 ⊂ K,

X2 ⊂ W . We can define a modular form

Ω(z) :=
∑
y∈X2

eQ(TrE/Q(S ′[y])z).

For Ω to be well-defined we need to verify that S ′[y] is totally positive, but S is

positive definite at τ2 so S ′ must be positive there and S1 is negative definite on h(X1)

by the proposition so S1 must be positive definite on X2. This makes Ω(z) a weight

2 modular form for GL2(Q). Writing the q-expansion of Ω(z) =
∑

a∈Z ω(a)eQ(az)

we have

ω(a) = #{y ∈ X2 : TrE/Q(S ′[y]) = a}.

Therefore

Ek(wK , 0;X0) = d−k
∑
a∈X1

ω(TrK/Q(−δ0aa
ρ))a−kρψ.

We now define the functions D(s) which will correspond to the values of Ek at

CM points.

Definition V.11. Let K/Q be a degree 4 CM field, X a congruence subset X ⊂ K,

and take a modular form G(z) =
∑

n∈Z g(n)eQ(nz). Choose an embedding φ : K →
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C and an element η in the totally real subfield of K satisfying ηφ > 0 and η negative

at all places other than φ and ρφ. Then

Dk(s) :=
∑
b∈X

g(TrK/Q(ηbbρ))b−kρφ|bφ|−2s.

Choosing K as the field corresponding to a CM point, X1 for the congruence

subset X, Ω(z) for G(z), ψ for φ, and −δ0 for η we see that

(5.7.1) d−kDk(0) = d−k
∑
a∈X1

ω′(TrK/Q(−εaaρ))a−kρψ = Ek(wK , 0;X0).

Note that Proposition 9.1 in [42] shows Dk(s) converges absolutely at s = 0 for k ≥ 6.

5.8 Relating D(s) and Gk

The next step is to relate the values Dk(0) to the values of various Gk’s at CM

points. Recall that our construction of Gk began with V (a 4 dimensional Q vector

space) with quadratic form S of signature (2, 2). In the previous section we had a

degree 4 CM field K and the definition of Dk involved summing over elements in X1,

a congruence subset of K. We construct Gk by taking the modular form to be H(z)

and the quadratic space to be K viewed as a Q-vector space with quadratic form

given by:

S(a, b) = −TrK/Q(δ0ab
ρ),

where δ0 = δρ0 ∈ K and there is a place ψ : K → C such that δψ0 is negative and δ0

is positive at every place of K other than ψ and ψρ. So we can take δ0 and ψ as in

the previous section.

The Shimura variety for GO(K) has an obvious CM point zK given by the regular

representation of K, that is

h : K 7→ EndQ(K), h(k) : a 7→ ak for all a ∈ K.
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Applying Proposition V.10 it is clear that we can take v = 1 and δ = −ε. Thus

implies that aψρ = S(a, p(w)) Thus we can write

Dk(0) =
∑
a∈X1

ω′(−S[a])S(a, p(zK))−k.

But this is the value of Gk at the CM point zK so

(5.8.1) Gk(zK , 0;X1) = Dk(0).

5.9 Evaluating Gk at CM Points

Take Gk, X1 as in the previous section. Consider a CM point zL corresponding to

a map h : Y = L ⊕ Q ⊕ Q → End(K,Q) where L is an imaginary quadratic field.

We now proceed to evaluate Gk(zL, s;X1) as we did with Ek.

Proposition V.10 implies there is an v ∈ K such that h(Y )v = K and setting

M := h(Q⊕Q)v ⊂ K we have

S(h(a)v + x, h(b)v + y) = TrL/Q(−δ1ab
ρ) + S ′(x, y)

for a, b ∈ L and x, y ∈ M where S ′ is the restriction of S to M and δ1 is the

projection of δ from Prop V.10. Letting u := p(zL) we have S(M,u) = 0 and

S(h(b)v + y, u) = bρφS(v, u) for some character φ of L. So we can set e := S(v, u)

and get

Gk(zL, s;X1) =
∑

h(b)v+x∈X1

ω′(TrL/Q(−δ0aa
ρ)− S ′[x]))e−k|e|−2sa−kρφ|aψ|−2s.

Just as before we suppose X1 decomposes as h(X3)v+X4 for congruence subsets

X3 ⊂ L and X4 ⊂ M . S ′ is totally positive so it makes sense to define a modular

form

H(z) :=
∑
x∈X4

eQ(S ′[x]z)
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which has weight one. We can then look at the q-expansion

Ω′(z) = H(z)Ω(z) =
∑
a∈Z

ω′(a)eQ(az)

where

ω′(a) =
∑
x∈X4

ω(a− S ′[x]).

Since Ω(z) was a weight 2 modular form and H(z) is weight 1, Ω′(z) is a weight 3

modular form. Therefore

Gk(zL, 0;X1) = e−k
∑
b∈X3

ω′′(−2δ1bb
ρ)b−kρφ.

Define

θk(z) =
∑
b∈X3

bkφeQ(−2δ1bb
ρz)

which is a modular form of weight k + 1. Then

D(Ω′, θk, k) =
∑
a∈Z

ω′(a)

( ∑
b∈X3:−2δ1bbρ=a

bkφ

)
a−k

=
∑
b∈X3

ω′(−2δ1bb
ρ)bkφ(−2δ1bb

ρ)−k = (−2δ1)−kekGk(zL, 0;X1).

Hence

(5.9.1) Gk(zL, 0;X1) = (−2δ1)ke−kD(Ω′, θk, k).

5.10 Proof of proposition V.8

Given a CM field M and two a characters η1, η2 : M → C, Shimura ([42], Thm.

1.1) a period pM(η1, η2) ∈ C×/Q̄× (we will explicitly define a refinement of it in the

next chapter). Let V be a quadratic space over a totally real field E and let w be

a CM point for GO(V ) coming from a map h : Y → EndE(V ) with Y = M or

Y = M ⊕ E ⊕ E. V.10 associates an embedding η : M → C with w. Define

Ωw := pM(η, η)2.
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Similarly, if z is a CM point for B×+ corresponding to an embedding K ↪→ B we

have an infinite place φ : KC defined by φ(a) = j(a, z) and define the period Ωz =

pK(φ, φ).

Let Uk be the union over all congruence subgroups Γ ⊂ G+(V ) of all weight k

automorphic forms for Γ.

Definition V.12. Uk(Q̄) is the set of f ∈ Uk such that for every CM point w as

above where f is holomorphic we have

f(w)/Ωk
w ∈ Q̄.

Lemma V.13 (Shimura, [42] Thm. 6.5). For every k and every point w′ ∈ H2 there

exists a T ∈ Uk(Q̄) such that T is holomorphic at w′ and T (w′) 6= 0.

Such a T is called a rational uniformizer.

Proof of Prop. V.8. Returning to the setting of the previous section, we had shown

Gk(zL, 0;X1) = (−2δ1)ke−kD(Ω′, θk, k).

Proposition 9.5 of [42] shows D(Ω′, θk, k)/πkΩk
zL
∈ Q̄. Let T be a weight k rational

uniformizer for the point zK of section 5.8. Then the function Gk(z, 0;X1)/T (z)

takes values in Q̄ at every point zL as in section 5.9. By [42] p.357 these zL are

dense in H2. The function Gk(z, 0;X1)/T (z) is an automorphic function (a weight 0

automorphic form) on H2. Such a function is algebraic on a dense set of CM points

then it is algebraic at every CM point. Thus Gk/π
k ∈ Uk.

This, along with equations 5.7.1 and 5.8.1, implies that Ek(wK , 0;X0)/πkΩzK ∈ Q̄.

In the next chapter we will prove ΩzK = ΩwK and therefore Ẽk(wK , 0)/ΩwK ∈ Q̄.

There is an infinite set of pairs of CM points w,w′ ∈ H for B×+ each with CM field

K, such that the point wK = (w,w′) is a CM point corresponding to K and satisfies
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ΩwK = ΩwΩw′ (this will be proved in the next chapter). The points wK of this form

are dense in H2 and this implies Ẽk(w,w
′, 0) can be written as a linear combination

A(w,w′, 0)Ẽk(w,w
′, 0) =

∑
i,j

cijfi(w)fj(w
′)

with cij ∈ Q̄ and fi, fj normalized eigenforms for B×+ (see [44] lemma 4.1). Set

f1 = fB so 〈fB, fi〉 = 0 for all i 6= 1.

Then∫
(Γ\H)2

fB(w)fB(w′)A(w,w′, 0)Ẽk(w,w
′, 0)=(w)k=(w′)kdµ(w)dµ(w′)

= c1,1〈f, f〉2µ(Γ\H)2,

which completes the proof.

5.11 An Example

Since the strategy above is rather involved, we now work out an example similar

to (but not the same) as the case considered in the previous sections. We will

now compute an explicit example of the value of Gk at a CM point as described

in the previous section. We take V = Q4 (with standard basis v1, v2, v3, v4) and

S = diag(s1, s2, s3,−1) where si > 0 for i = 1, 2 and s3 < 0. Let L = Q(ζ)

the imaginary quadratic field where ζ2 = −s3. Set Y = L ⊕ Q ⊕ Q and define

h : Y → EndQ(V ) by

h(a+ bζ, c1, c2) =



c1

c2

a b

ζ2b a


.
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This corresponds to a CM point w. We identify VR with M2(R) by

v1 7→
√
s1

2

1 0

0 1

 , v2 7→
√
s2

2

0 −1

1 0



v3 7→
√
−s3

2

0 1

1 0

 , v4 7→
√

1

2

1 0

0 −1

 .

We can calculate

u = p(w) =

√
2

−s3

v3 +
√

2iv4 7→

i 1

1 i

 .

One choice for the v in proposition V.10 is v = v1 + v2 + v3.

Thus S(v, u) =
√

2
−s3S(v3, v3) = −

√
−2s3. We can also calculate M = h(Q ⊕

Q)v = Qv1 + Qv2 and h(L)v = Qv3 + Qv4. In particular h(a + bζ)v = av3 + bζ2v4.

We can also calculate that for a+ bζ, c+ dζ ∈ L

S(h(a+ bζ)v, h(c+ dζ)v) = TrL/Q

(s3

2
(a+ bζ)(c− dζ)

)
so if we let ε be as in the previous section ε = −s3/2. Thus (−2ε)ke−k = (−1)ks

k/2
3 2−k/2

and we are left with

Gk(w, 0;X1) =
(−1)ks

k/2
3

2k/2
L(Ω′′ ⊗ θk, k).

Both Ω′′ and θk depend on the congruence subgroup X1. Let us first assume that

X1 = Zv1 + Zv2 + Zv3 + Zv4. This splits up as h(X3)v +X4 where X4 = Zv1 + Zv2

and h(X3)v = Zv3 +Zv4. Thus a+ bζ ∈ L is in X3 if and only if a ∈ Z and bζ2 ∈ Z.

But

a ∈ Z and bζ2 ∈ Z ⇐⇒ a+ bζ ∈ 1

ζ
Z[ζ]

so X3 = (1/ζ)Z[ζ]. Thus

θk(z) =
∑
b∈X3

bkeQ(s3bb
ρz) =

∑
b∈Z[ζ]

ζ−kbkeQ(bbρz).
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If Z[ζ] has class number 1 then this is ζ−k times the theta series associated to a

Hecke character.



CHAPTER VI

Rationality of the Asai L-function I

6.1 Rational version of Shimura’s Period

Let K be a CM-field with totally real subfield F and Φ a CM-type of K. Define

JK be the set of embeddings K → C and IK the free Z-module on JK . Furthermore

define

I0
K =

{∑
τ∈JK

cττ ∈ IK : cτ + cτρ is independent of τ

}
.

Let [F : Q] = n (although we will actually only use the case n ≤ 2). There exists

some a ∈ K such that =(aφ) > 0 for every φ ∈ Φ. If Φ =
∑
τi then w := (aτ1 , . . . , aτn)

defines a point in Hn. Let f, g be Hilbert modular forms on any congruence subgroup

of weights

(k1, . . . , kr−1, kr + 1, kr+1, . . . , kn) and (k1, . . . , kn)

respectively such that f(w)g(w) 6= 0 and both f and g are defined over Qab.

Proposition VI.1 (Shimura, [45] Thm. 7.10 and Thm. 9.6). Let KΦ be the reflex

field of K at Φ. Then every Hilbert modular function defined over Qab takes values

in KΦ,ab at w. If [K : Q] = 2 then Kab = Φ, ab and if [K : Q] = 4 and K is cyclic

Galois or biquadratic then KΦ,ab ⊂ Kab.

Restricting to the cases where KΦ,ab ⊂ Kab, the period pK(τr,Φ) is defined by

pK(τr,Φ) = f(w)/g(w) mod K×ab.

51
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This is independent of the choice of f and g because if f0, g0 were other choices,

then fg0/gf0 is a Hilbert modular function and therefore f(w)/g(w) ≡ f0(w)/g0(w)

mod K×ab.

Suppose another choice of a is made. Let a0 define the point w0 ∈ Hn. Suppose

a0 = Aa + B for A,B ∈ OF . Then by looking at the q-expansion of f(Az) we see

that f(Az) is defined over Qab. Let γ =

1 B

0 1

. The q-expansion further shows

that f(γ(Az)) = ωf(Az) where ω is a root of unity. Thus f(γ(Az)) is Qab-rational

and f(γ(Aw)) = f(w0). Since f(γ(Az))/f(z) is a Qab-rational automorphic function,

f(w0)/f(w) = f(γ(Aw))/f(w) ∈ K×ab. The same holds for g and so any choice of a

in OFa+OF gives the same period. But any two choices a1, a2 will lie in OFa+OF

for some a and thus our period is well-defined.

We now extend pK to a bilinear map pK : IK × IK → C×/K×ab. First, if τ /∈ Φ,

then τ ∈ Φρ and we define pK(τ,Φ) = pk(τ,Φρ)−1. Now pk(τ,Φ) makes sense for

any τ ∈ JK and Φ a CM type. The CM types of K generate I0
K and in the case

[K : Q] = 2, I0
K is free module generated by the CM types. In the case [K : Q] = 4

let JK = {τ1, τ2, τ1ρ, τ2ρ} and

Φ1 = τ1 + τ2, Φ2 = τ1 + τ2ρ

Φ3 = τ1ρ+ τ2, Φ4 = τ1ρ+ τ2ρ

be the CM types of K. Then

I0
K
∼= Z[Φ1, . . . ,Φ4]/(Φ1 + Φ4 − Φ2 − Φ3).

For any τ ∈ JK we have

pK(τ,Φ1)pK(τ,Φ4) = pK(τ,Φ2)pK(τ,Φ3) = 1
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and so

pK(τ,Φ1)pK(τ,Φ4)

pK(τ,Φ2)pK(τ,Φ3)
= 1.

Thus in both the cases [K : Q] = 2 or 4 we can extend the definition of pK linearly

to JK × I0
K . We further define

pK(τ, τ ′) :=
√
pK(τ, τ ′ − τ ′ρ)

which extends pK to JK × IK . We then extend pK linearly in the first variable to

IK × IK . This now satisfies

pK(α, β) = pK(αγ, βγ) for γ an automorphism of K, and

pK(α, βρ) = pK(αρ, β) = pK(α, β)−1.

Proposition VI.2. Let L be an imaginary quadratic field and K a biquadratic CM

field over L. Let ψ1 be an infinite place of L and ψ, φ the places of K that restrict

to ψ1 on L. Then

pL(ψ1, ψ1) = pK(ψ, ψ + φ)

up to an element in K×ab.

Proof. Let F be the totally real subfield of K and f , g be Hilbert modular forms on

SL2(F ) of weights (k + 1, l), (k, l) respectively. Let α ∈ L such that αψ1 ∈ H. Then

αψ = αφ ∈ H. Therefore f(αψ, αφ)/g(αψ, αφ) = pK(ψ, ψ + φ) by definition.

Let f̄ and ḡ denote the restriction of f and g respectively to the diagonally

embedded H ∈ H2. Then f̄ and ḡ are modular forms on SL2(Q) of weights k+ l+ 1

and k + l respectively. In addition

f̄(αψ1) = f(αψ1 , αψ1) = f(αψ, αφ)
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and similarly for g. Thus

pL(ψ1, ψ1) = f̄(αψ1)/ḡ(αψ1) = pK(ψ, ψ + φ).

6.2 Rankin-Selberg Convolution and the Rational Period

Let L be an imaginary quadratic field and set p(L) = pL(τ1, τ1) = pL(ρτ1, ρτ1).

Here pL is our new version of Shimura’s period which is an element of C×/L×ab. We

will show that, for certain modular forms f and g, the special values of the Rankin-

Selberg convolution L-function L(f, g, s) is an Lab-rational multiple of p(L).

The modular form f that we consider is determined by a congruence subset X of

L, an integer k, a constant c < 0, c ∈ Q and an infinite place ψ of L. Recall that

eQ(x) = exp(2πix). f is then defined by

f(z) :=
∑
a∈X

akψeQ(caaρz).

f is a weight k + 1 modular form. Let g be any modular form of weight l < k and

l ≡ k mod 2. Let f and g have q-expansions

f(z) =
∑

a(n)eQ(nz), g(z) =
∑

b(n)eQ(nz).

We consider the Dirichlet series

D(f, g, s) =
∑

a(n)b(n)n−s.

Theorem VI.3 (Shimura, [41] Thm. 5.6). Let q be a weight 2k modular form defined

over Lab and w ∈ L such that wψ ∈ H and q(wψ) 6= 0. Then

D(f, g, k)

πkq(wψ)
∈ Lab.



55

From the definition of p(L) we can see that q(wψ) = p(L)2k so

(6.2.1)
D(f, g, k)

πkp(L)2k
∈ Lab.

6.3 Rationality of Gk at CM points

Write Gk(z) for the function Gk(z, 0;X1) which is a weight k automorphic form

for the orthogonal group GO(K) of K viewed as a quadratic space over Q. Recall

that K is a biquadratic CM field with totally real subfield F and the quadratic form

on K is defined by

S(a, b) = −TrK/Q(δ0ab
ρ)

where δ0 ∈ F has NF/Q(δ0) < 0. The resulting Shimura variety has a specific

CM point zK and a dense set of CM points zL corresponding to embeddings h :

L⊕Q⊕Q→ End(K,Q). The CM point zK is described in section 5.8 and we will

describe the points zL later in this section.

Given a CM point zL we have an embedding ψ : L→ C defined by

φ(a) = µ(hu(a), zL) for all a ∈ Lu.

Define the period ΩzL to be pL(φ, φ)2. Similarly for the CM point zK we have an

embedding ψ : K → C defined by

ψ(a) = µ(hu(a), zK) for all a ∈ Ku.

and we take the period ΩzK to be pK(ψ, ψ)2.

Lemma VI.4. For each zL, Gk(zL)/πkΩk
zL
∈ Lab.

Proof. We have explicitly calculated

Gk(zL) = cD(Ω′, θk, k)
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where c ∈ Qab, Ω′ is a modular form with rational coefficients and θk is a weight

k + 1 theta series defined by

θk(z) =
∑
a∈X3

akφeQ(−2δ1aa
ρz)

for some congruence subset X3 of L. Our result 6.2.1 implies

D(Ω′, θk, k)

πkΩk
zL

∈ Lab.

We know restrict to the case when K is biquadratic. Recall that the quadratic

form on K is given by

S(a, b) = −TrK(δ0ab
ρ)

for some δ0 = δρ0 ∈ K such that δψ0 is negative and δφ0 is positive if φ 6= ψ, ψρ.

Lemma VI.5. There is a quaternion algebra BK over Q such that the quadratic space

associated to BK is isomorphic to a scalar multiple of the quadratic space associated

to K. Here the quadratic form on B is given by

SBK (a, b) = abρ + baρ.

Proof. Let F = Q(
√
d) (the totally real subspace of K) and K = F (

√
−c) where

d, c ∈ Q and d, c > 0. Let δ0 = a + b
√
d. Then in the basis {1,

√
d,
√
−c,
√
−cd} for

K, S is given by

S =



−4a −4bd 0 0

−4bd −4ad 0 0

0 0 −4ca −4cbd

0 0 −4cbd −4cad


.
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When a 6= 0 this can be diagonalized by taking the basis {1,
√
d− bd

a
,
√
−c,
√
−c(
√
d−

bd
a

)} to get

S = diag(−4a,−4ad(1− b2

a2
d),−4ac,−4acd(1− b2

a2
d)).

Let c0 = −d(1 − b2

a2
d) and take the quaternion algebra BK = Q(i, j) where i2 = c0,

j2 = −c. Then

SBK = diag(1,−c0, c,−cc0) = −4a · S.

The case with a = 0 is similar.

There is a natural map B×K×B
×
K → GO(BK) where the element (β, γ) ∈ B×K×B

×
K

acts by α 7→ βαγι. Given γ =

m n

p q

 ∈ M2(R) and z, z′ ∈ H we have

m n

p q


z −zz′

1 −z′

 = (pz + q)

mz+n
pz+q

−mz+n
pz+q

z′

1 −z′


and z −zz′

1 −z′


 q −n

−p m

 = (pz′ + q)

z −zmz′+npz′+q

1 mz′+bn
pz′+q

 .

Thus the map B×K ×B
×
K → GO(BK) satisfies

(β, γ)(z, z′) = (βz, γz′)

and

µ((β, γ), (z, z′)) = j(β, z)j(γ, z′).

We now describe a dense set {zL} of CM points for GO(BK). Here we make an

identification BK ⊗R C ∼= M2(C). Let L = Q(
√
−c) which is an imaginary quadratic

subfield of K. Then there is an embedding i : L ↪→ BK given by

a+ b
√
−c 7→ a+ bj for a, b ∈ Q.
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This gives us a CM point w ∈ H for the Shimura curve associated to B×K by taking

the fixed point of i(L×) ⊂ B×. Such a CM point gives us an embedding η : L → C

defined by

i(a)

z
1

 = aη

z
1

 .

This then defines the period Ωz:

Ωz := pL(η, η).

Consider the point (z, z) ∈ H2.

Lemma VI.6. (z, z) is a CM point for GO(BK) and its associated period satisfies

Ω(z,z) = Ω2
z.

Proof. The embedding i allows us to write B = i(L)⊕ i(L)α with i(a)α = αi(aρ) for

all a ∈ L. Define an homomorphism h : L⊕Q⊕Q→ End(BK ,Q) by

h(1,−1, 1) : i(a) + i(b)α 7→ −i(aρ) + i(b)α

h(1, 1,−1) : i(a) + i(b)α 7→ i(a)ρ + i(b)α

h(c, 1, 1) : i(a) + i(b)α 7→ i(a) + i(c)i(b)α

for a, b ∈ L, c ∈ Lu. For c ∈ Lu we have

hu(c)2 : γ 7→ i(c)γi(cρ).

Thus (z, z) is the fixed point of hu(L) and

µ(hu(c), (z, z)) = η(c) for c ∈ Lu.

By definition Ω(z,z) = pL(η, 2η) = Ω2
z.
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Corollary VI.7. Let z, z′ ∈ H such that z is a CM point coming from an embedding

L→ BK and z′ is a CM point from a conjugate embedding L→ BK. Then (z, z′) is

a CM point for GO(B) and

Ω(z,z′) = ΩzΩz′ .

Proof. Let i : L → BK be the embedding corresponding to z and j : L → BK the

embedding corresponding to z′ wher j is defined by j(a) = βi(a)β−1. Then we can

take h′ : L⊕Q⊕Q→ End(BK ,Q) to be h′((a, b, c))(γ) = h((a, b, c))(γβ)β−1 where

(a, b, c) ∈ L ⊕ Q ⊕ Q and h is as defined in the previous proof. This h′ will have

(z, z′) as a fixed point and the same argument shows that

Ω(z, z′) = ΩzΩz′ .

Let K1 = Q(
√
−c), K2 = Q(

√
−cd) be the two imaginary quadratic subfields of

K.

Lemma VI.8. There exist embeddings Q(
√
−c) ↪→ BK, Q(

√
−c) ↪→ BK correspond-

ing to CM points z1, z2 ∈ H such that the CM point zK for GO(BK) coming from

the regular representation of K satisfies zK = (z1, z2).

Proof. Choose an isomorphism BK ⊗ R ∼= M2(R) by

1 7→

1 0

0 1

 , i 7→

 0
√
c0

√
c0 0

 ,

j 7→

 0 −
√
c

√
c 0

 , k 7→

√cc0 0

0 −√cc0

 .

Recall that the action of GO(B) on H2 is defined via the embedding H2 → BK ⊗C

given by (z, z′) 7→

z −zz′
1 −z′

. Then it can be explicitly calculated that the action
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of an element a ∈ Q(
√
−c) acts by a rotation on the coordinate z′. This defines an

embedding i : Q(
√
−c) → BK with a fixed point z2 ∈ H such that for a ∈ Q(

√
−c)

the image of a in GO(BK) is given by action on the right by i(a). Each element of

Q(
√
−cd) maps into the connected component of GO(BK) and commutes with each

element of Q(
√
−c) so the action of Q(

√
−cd) must be given by rotations in the z

coordinate (Q(
√
−cd) must act trivially on z or z′ and if it didn’t act trivially on z′

then mapping the connected component of GO(BK) to B×K×QB
×
K and projecting onto

the second coordinate would induce an isomorphism Q(
√
−cd) ∼= Q(

√
−c)). This

gives an embedding Q(
√
−cd) ∈ BK with fixed point z1 ∈ H and zK = (z1, z2).

Lemma VI.9.

ΩzK = Ωz1Ωz2 .

Proof. Let ψ1, ψ2 be the infinite places of K1, K2 given by restricting the place ψ of

K. Let φ be the other place of K that restricts to ψ1. Then φ 6= ψρ and φρ restricts

to ψ2. Then Proposition VI.2 shows

pK1(ψ1, ψ1) = pK(ψ, ψ + φ), and pK2(ψ2, ψ2) = pK(ψ, ψ + φρ).

Thus

pK1(ψ1, ψ1)pK2(ψ2, ψ2) = pK(ψ, ψ + φ)pK(ψ, ψ + φρ)

= pK(ψ, ψ)2pK(ψ, φ)pK(ψ, φρ) = pK(ψ, ψ)2.

Lemma VI.10. Let z0 ∈ H be a CM point for B×K. There is a weight k automorphic

form T on B×K that is non-zero at z0 and satisfies T (z)/Ωk
z ∈Mab for each CM point

z where M is the imaginary quadratic field associated to z.
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Proof. From the definition of Ωz as a ratio of values of usual modular forms, we see

that Ωz is a period of CM elliptic curve defined over Mab, with complex multiplication

by M . The result then follows from observing that the Shimura curve associated with

B×K is also a solution to a moduli problem (abelian surfaces with multiplication by

BK) and for a CM point z on this curve attached to an imaginary quadratic field

M , the corresponding abelian surface is isogenous to a product of two elliptic curves

over Mab with CM by M .

Lemma VI.11. There is a weight k automorphic form T on GO(BK) which is non-

zero at zK and satisfies T (zK)/Ωk
zK
∈ Kab. Furthermore, for each zL, T (zL)/Ωk

zL
∈

Kab.

Proof. Let z1, z2 ∈ H such that zK(z1, z2). Let T1, T2 be weight k forms on B×K

that do not vanish at z1, z2 respectively (as given in the previous lemma). Then

T := T1 × T2 has the desired properties by Corollary VI.7 and Lemma VI.9.

Proposition VI.12.

Gk(zK)/πkΩk
zK
∈ Kab.

Proof. Gk/π
kT is an automorphic function on GO(K). Since both T (zL)/Ωk

zL
and

Gk(zL)/πkΩk
zL

are in Kab for every zL we know that Gk(zL)/πkT (zL) ∈ Kab for every

zL such that T (zL) 6= 0. Since these zL are dense in H2 we can conclude that Gk/π
kT

is defined over Kab which implies Gk(zK)/πkT (zK) ∈ Kab. Then

Gk(zK)

πkΩk
zK

=
Gk(zK)

πkT (zK)

T (zK)

Ωk
zK

∈ Kab.
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6.4 Rationality of Ek

Let F be a real quadratic field and B a quaternion algebra over F which is split

at one infinite place.

Lemma VI.13. Let K be a biquadratic CM field over F and with an embedding

K ↪→ B. There is a dense set W of CM points (w,w′) ∈ H2 corresponding to

embeddings h : K ⊕ F ⊕ F → End(B,F ) and they satisfy Ω(w,w′) = ΩwΩw′.

Proof. The proof is the same as that of Lemma VI.7.

For a field Kab ⊂ R ⊂ C let Uk(Γ, R) be the space of weight k automorphic forms

f for Γ ⊂ B× such that f(w)/Ωk
w ∈ R for every CM point w ∈ W . We assume that

k is even.

Lemma VI.14. Uk(Γ, R) = Uk(Γ, Kab)⊗Kab R.

Proof. We give a sketch of the argument. It suffices to show that a form f on B×

of weight (k, 0) is Kab-rational if and only if for all CM points w as above (attached

to K), we have f(w)/Ωk
w ∈ Kab. The proof is similar to that of Lemma VI.10 but

somewhat more involved. Let XB denote the Shimura variety attached to B×. In this

case, XB is not itself a moduli space in a natural way. However, it is closely related

to a Shimura variety that is a moduli space. Namely, let V = B, considered as a

K-vector space via the embedding K ↪→ B. In fact, V may be naturally equipped

with a K-hermitian form; let G = GUK(V ) denote the unitary similitude group and

X the Shimura variety attached to G. Since G = (B××K×)/F×, there is a natural

map B× → G which induces an embedding of Shimura varieties XB → X, that is

defined over K. Thus f can be considered as a form on X by extension by zero.

Now, X is a moduli space of abelian varieties A with multiplication by K. Note that
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the embedding K → EndQ(A) gives an action of K on H1(A) and one requires that

the induced action of

(6.4.1) K ⊗ C = C× C

on H1(A,C) is of the form (η⊕ηρ, ψ⊕ψ), where the two factors in the decomposition

(6.4.1) correspond to the embeddings η, ψ : K → C. This follows from the fact that

the unitary group U(V ) at infinity is given by

U(V )(R) = U(1, 1)× U(2, 0).

Now, a CM point on X attached to K then corresponds to a product of abelian

surfaces A1 × A2 where A1 and A2 have CM by K and have CM types

η + ψ, ηρ+ ψ

respectively. Since the reflex field of such a CM point is K itself (as K is biquadratic),

and such CM poiints are dense in X, we find that f is rational if and only if its values

at all such points are Kab rational after dividing by an appropriate power of a period

of a suitable differential form on A1 × A2. This period is

pK(η, η + ψ) · pK(ηρ, ηρ+ ψ) = pK(η, η + ψ) · pK(η, η + ψρ) = pK(η, η)2 = Ω2
w,

which completes the proof.

Lemma VI.15. Let R ⊃ Kab. Let f be a function on H2 such that

f(αw, βw′) = j(α,w)kj(β, w′)kf(w,w′)

for all α, β ∈ Γ a congruence subgroup of B× and f(w,w′)/ΩwΩw′ ∈ R for all

(w,w′) ∈ W . Furthermore let hi ∈ Uk(R) for i = 1, . . . , t form a basis of Uk(R).

Then there are unique forms gi ∈ Uk(R) such that

f(w,w′) =
t∑
i=1

gi(w)hi(w
′) for all w,w′ ∈ H.
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Proof. Same as Lemma 4.1 of [44].

Equations 5.7.1 and 5.8.1 show that

Ek(wK , 0;X) = cGk(zK , 0;X1)

with c ∈ K. The point wK was constructed so that the embeddings K → C associ-

ated with zK and wK are the same. Thus

ΩwK = ΩzK .

Therefore

Ek(wK , 0;X)

πkΩk
wK

∈ Kab.

Choose a Γ ⊂ B× such that fB ∈ Uk(Γ, Kab) and

Ek(αw, βw
′, 0;X) = j(α,w)kj(β, w′)kEk(w,w

′, 0;X)

for all α, β ∈ Γ. Let f1, . . . , ft be an orthogonal basis for Uk(Γ, Kab) with f1 = fB

and let δ ∈ B. Then the lemma allows us to write

π−kEk(w,w
′, 0;X0) =

t∑
i=1

fi(w)gi(w
′)

with each gi ∈ Uk(Γ, Kab).

Recall our definition:

Ẽk(w,w
′, 0) := π−kj(δ, w̄′)−kEk(w, δw̄

′, 0;X0)

with δ ∈ B such that N(δ) = −δ0. Let M ⊂ C be a real extension of F that splits B.

Then we can choose the isomorphism B1
∼= M2(R) such that each element of B has

coordinates in M2(M). If K ⊂ B is a quadratic extension of F then B splits over K.

Thus for w ∈ H is a CM point corresponding to K we can choose the isomorphism

B1
∼= M2(R) having coordinates in M2(K) and then j(δ, w′) = j(δ, w̄′) ∈ K.
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Define hi(w
′) = j(δ, w′)−kgi(δw̄′) for each 1 ≤ i ≤ t. Then gi ∈ Uk(Γ, Kab)

implies hi ∈ Uk(Γ, Kab). Thus 〈fB, h1〉/〈fB, fB〉 ∈ KabQ(f) where Q(f) is the field

generated by the eigenvalues of fB. Furthermore,

〈fB × fB, Ẽk〉 = 〈fB, fB〉2 〈f
B, h1〉

〈fB, fB〉
.

This gives us the rationality result

(6.4.2)
〈fB × fB, Ẽk〉
〈fB, fB〉2

∈ KabQ(f).

But this holds for any biquadratic K ⊂ B over F . A biquadratic CM field K/F

embeds in B if and only if K is not split at each finite place where B is ramified. For

every finite place v of F with v over p in Q such B is ramified at v we assume v/p

is split. There are finitely many places where B is ramified and thus infinitely many

biquadratic CM fields K/F that embed in B. We now use a result of Shimura to

further restrict the field to Fab. For (a) an ideal of F (note we have already assumed

F has class number 1), and M a number field over F let C(M, (a)) denote the class

field of M corresponding to (a) and all the infinite places. Let d(M/F ) denote the

different of M relative to F .

Theorem VI.16 (Shimura [37] Lemma 1.4). Let L and M be finite extensions of F

and (a) an ideal in F . Let L0 be the Galois closure of L over F and assume

(6.4.3) d(M/F ) is prime to (a)d(L0/F )

(6.4.4) M and C(L0, (a)) are linearly disjoint over F

Then C(F, (a)) = C(M, (a)) ∩ C(L, (a)).

We now further assume that Q(fB) ⊆ F . Fix K1 to be a biquadratic CM field

over F such that equation 6.4.2 holds. Then in fact 〈f
B×fB ,Ẽk〉
〈fB ,fB〉2 lies in C(K1, (a)) for



66

some a ∈ F . We now show that there exists a biguadratic CM field K2 over F such

that 6.4.3 and 6.4.4 hold with L = K1 and M = K2 and 6.4.2 holds for K = K2.

As described, the conditions on K2 for 6.4.2 to hold are purely local and requiring

6.4.3 also adds only local conditions on K2. Now as long as K2 is not contained in

C(K1, (a)) 6.4.4 will be satisfied and thus we have infinitely many choices of K2 such

that C(F, (a)) = C(K1, (a)) ∩ C(K2, (a)).

For any such K2 let E = C(K1, (a)) ∩K2,ab. Then 〈fB×fB ,Ẽk〉
〈fB ,fB〉2 ∈ E. Suppose we

also chose K2 to be split at all the primes dividing a. We will show this implies

E ⊂ C(K2, (a)). For each local unit u ≡ 1 mod ∗(a) of K2, u is actually given by a

local unit in F at some prime dividing a. This implies u is a norm from E because

it is already a norm from C(K1, (a)). Thus E ⊂ C(K2, (a)) and therefore

C(K1, (a)) ∩K2,ab ⊂ C(K1, (a)) ∩ C(K2, (a)) = C(F, (a)) ⊂ Fab.

Combining this with V.7 we have

Theorem VI.17. For Q(fB) ⊂ F ,

L∗As(fB, k/2)

πk〈fB, fB〉
∈ Fab.

Using 5.3.1 we get the corollary

Corollary VI.18. For Q(fB) ⊂ F ,

LAs(J(fB), k − 1)

π2k−2〈fB, fB〉
∈ Fab.



CHAPTER VII

Integrality

In this chapter we take a first step toward an integrality result for the Asai L-

function. We will show that for certain CM points w there is a period Ω associated

with the CM field of w such that the automorphic form Gk evaluated at w is a

p-integral multiple of Ω2k/πk+1.

Let F = Q(
√
A), L = Q(

√
−B), K = FL with A,B ∈ Z, A,B > 0 and (A,B) =

1. Assume also that A ≡ B ≡ 1 mod 4 so that

OF = 〈1, 1 +
√
A

2
〉,OL = 〈1,

√
−B〉,OK = OFOL.

(The last equality holds because F and L have relatively prime discriminants.) We

make K into a quadratic space of signature (2, 2) with associated bilinear form

S(x, y) = TrK/Q(
√
Axȳ).

We will consider an example of the automorphic form Gk (defined in Section 5.4)

where K is the quadratic space, X = OK , k is odd, and Ω is a weight 2 modular

form. That is

Gk(z, s) =
∑
x∈OK

ω(−S[x])S(x, p(z))−k|S(x, p(z))|−2s.

67
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Let α = 1+
√
A

2
∈ K, β =

√
−B ∈ K so OK = Z + Zα + Zβ + Zαβ. In the basis

{1, α, β, αβ}, the matrix of S is given by

S =



0 2A 0 0

2A 2A 0 0

0 0 0 2AB

0 0 2AB 2AB


This can be diagonalized by changing to the basis {α, αβ, β − αβ, 1 − α} where S

becomes

S = diag(2A, 2AB,−2AB,−2A).

Fix this as the basis for OK . We can now construct Shimura’s example of a CM

point coming from Y = L⊕Q⊕Q by defining

h : L⊕Q⊕Q→ End(K,Q), h : (x+
√
−By, c, d) 7→



c 0 0 0

0 d 0 0

0 0 x y

0 0 −By x


.

Applying proposition V.10, we can take the vector v = (1, 1, 0, 1) which satisfies

h(L⊕Q⊕Q)v = K. This choice of v gives us the embedding L ↪→ K

1 7→ h((1, 0, 0))v = 1− α,
√
−B 7→ h((

√
−B, 0, 0))v = β − αβ.

We set M := h(Q⊕Q)v = Qα+Qαβ as before and see that for a, b ∈ L and x, y ∈M

S(h(a)v + x, h(b)v + y) = TrL/Q(δaaρ) + S ′(x, y)

with δ = −A.

Next we compute the fixed point w of h(Y u). It is easy to see that h(Y u) acts on

the point (0, 0,
√
−1/B, 1) ∈ K ⊗C by scalar multiplication, so the point u := p(w)
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is in the line generated by (0, 0,
√
−1/B, 1). To properly normalize, we need to look

at the map p which comes from the isomorphism K ⊗ R ∼= M2(R). We can choose

this isomorphism to be defined by

α 7→
√
A

1 0

0 1

 , αβ 7→
√
AB

 0 1

−1 0

 .

β − αβ 7→
√
AB

1 0

0 −1

 , 1− α 7→
√
A

0 1

1 0

 .

Under this isomorphism we see that (0, 0,
√
−1/B, 1) maps to√−A √

A

√
A −

√
−A

 =
√
A

i 1

1 −i

 .

Thus the proper normalization is u = (0, 0,
√
−1/AB,

√
1/A). This allows us to

compute

e := S(v, u) = −2
√
A.

The ring of integers in K satisfies OK = h(OL)v+X2 with X2 = Zα+Zαβ ⊂M .

Thus our previous evaluation of Gk at CM points (Equation 5.9.1) shows that

(7.0.1) Gk(w, 0;OK) = Ak/2D(ΩH, θk, k)

where

H(z) :=
∑
x∈X2

eQ(S ′[x]z)

and

θk(z) :=
∑
b∈OL

bkψeQ(2Abbρz).

The modular form H(z) can also be written as

H(z) =
∑
b∈OL

eQ(2Abbρz).
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We now follow Prasanna ([32]) to show that the value D(ΩH, θk, k) is integral.

Let −d be the discriminant of L, so ΩH has level NCd with N,C, d pairwise coprime.

Define

E := Ek−3,NCd(z, s, ηL) =
∑
(m,n)

ηL(n)(mNCdz + n)−k+3|mNCdz + n|−2s.

where ηK is the quadratic character associated to L and the sum is over all (m,n) ∈

Z2 excluding (m,n) = (0, 0). Then

D(ΩH, θk, k) =
c

2
πk+1〈ΩHE, θρk〉LNCd(1, ηL)−1

where LNCd is the L-function with Euler factors at NCd removed, θρk is given by

applying complex conjugation to the coefficients of θk and

c =
4kNCd

3(k − 1)!

∏
p|NCd

p+ 1

p
.

However our θk has real coefficients so θk = θρk. Furthermore L(1, ηL)/π is rational

with numerator 2h(L) where h(L) is the class number of K and

LNCd(1, ηL) =
∏
p|NCd

p− ηL(p)

p
L(1, ηL).

Thus

D(ΩH, θk, k) = c0π
k〈ΩHE, θk〉

with c0 algebraic and p-integral for all p > k, p - h(L)
∏

q|NCd q(q − 1)(q + 1).

Let χ1, . . . , χh(L) be the distinct characters of the ideal class group of L which are

trivial on principal ideals. Let λ be a Hecke character of L that satisfies λ((b)) = bkψ

for each b ∈ OL. Let λi be the twist of λ by χi. Then assuming ±1 are the only

roots of unity in L, we have

θk(z) =
2

h(L)

h(L)∑
i=1

θλi(2Az).
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Thus

(7.0.2) D(ΩH, θk, k) = πk
h(L)∑
i=1

ci〈ΩHE, θλi(2Az)〉

with each ci algebraic and p-integral for all p > k, p - h(K)
∏

q|2NAd q(q − 1)(q + 1).

Proposition VII.1. Let θ be an integral newform of level d, g an integral form of

level Nd and C an integer with (C, d) = 1. Then π2k+1〈g, θ(Cz)〉/Ω2k is p-integral

for all p -M where M :=
∏

q|NC q(q+ 1) and Ω is the period defined in Section 2.3.3

of [32].

Proof. In [32] this is proven (p.942) in the case where C = 1. The same argument

applies here, except that there it is shown in equation 22 that 〈θi(d′z), θ〉/〈θ, θ〉 is p

integral for p -M and we need this result for

〈θi(d′z), θ(Cz)〉/〈θ, θ〉

where T is a subset of primes dividing NC, P is the product of primes dividing NC

that are not in T , d′|P , Ti ⊂ T , θi is θ with the Euler factor (1− αqq−s)−1 removed

for q ∈ Ti and (1− βqq−s)−1 removed for q ∈ T \ Ti.

Let p be a prime in Ti and θ
(p)
i be the form given by putting the Euler factor

(1 − αpp−s)−1 back in. Then θi(z) = θ
(p)
i (z) − αpθ(p)

i (pz). Shimura ([39], Lemma 3)

shows that

〈θ(pd′z), θ(Cz)〉 = p−k−1 a(p)

1 + αpβpp−k−1
〈θ(dz), θ(Cz)〉

= p−k−1 a(p)

1 + p−1
〈θ(d′z), θ(Cz)〉

when (p, d′) = (p, C) = 1. Thus

〈θi(d′z), θ(Cz)〉 =

(
1− αpp

−k−1a(p)

1 + p−1

)
〈θ(p)
i (d′z), θ(Cz)〉

=
1 + p−1 − α2

pp
−k−1 − αpβpp−k−1

1 + p−1
〈θ(p)
i (d′z), θ(Cz)〉
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=
1− α2

pp
−k−1

1 + p−1
〈θ(p)
i (d′z), θ(Cz)〉

=
pk − α2

p

pk(p+ 1)
〈θ(p)
i (d′z), θ(Cz)〉.

If p|C, (p, d′) = 1 then

〈θ(pd′z), θ(Cz)〉 =
1

pk+1
〈θ(d′z), θ((C/p)z)〉.

So in this case

〈θi(d′z), θ(Cz)〉 = 〈θ(p)
i (d′z), θ(Cz)〉 − αp

pk+1
〈θ(p)
i (d′z), θ((C/p)z)〉.

Similar results hold for primes p ∈ T \ Ti with αp replaced with βp. Thus we can

iterate this step for each prime in T to write 〈θi(d′z), θ(Cz)〉 as a linear combination

〈θi(d′z), θ(Cz)〉 =
∑
c′|C

bc′〈θ(d′z), θ(c′z)〉

with each coefficient bc′ being p-integral for all p -M .

Shimura’s lemma can be used again to compute

〈θ(d′z), θ(c′z)〉 =
∏
p||d′c′

p−k−1 a(p)

1 + αpβpp−k−1

∏
p2|d′c′

1

pk+1
〈θ, θ〉

=
∏
p||d′c′

a(p)

pk(p+ 1)

∏
p2|d′c′

1

pk+1
〈θ, θ〉.

Therefore 〈θi(d′z), θ(Cz)〉 is a p-integral multiple of 〈θ, θ〉 for p - M which is the

necessary generalization of equation 22 of [32].

Combining this with equations 7.0.1 and 7.0.2 we have

Theorem VII.2.

πk+1Gk(w, 0;OK)

Ω2k

is p-integral for all p - h(K)
∏

q|2NAd q(q − 1)(q + 1).



CHAPTER VIII

Rationality of the Asai L-function II

8.1 Asai’s Integral Representation

In this chapter we prove a different rationality result for the Asai L-function.

Work of Harris allows us to define a period Ωf associated with the Hilbert modular

form f of weight (k1, k2) and we show LAs(f, k1 − 1)/Ωf ∈ FQ(f) under certain

conditions. This gives a smaller field of rationality than our earlier result, but there

is no obvious interpretation of Ωf as a Petersson inner product.

Let F = Q(
√
D) be a real quadratic field with ring of integers OF . Let d denote

the different of F and ω ∈ F be a generator for the inverse different of F : (ω) = d−1.

Take Γ = SL2(OF ) and let f : (H±)2 → C be a Hilbert modular form of weight (k, l)

for Γ with k > l. For each e = (e1, e2) with ei = ±1 let He denote the component of

H± containing (e1i, e2i). For a ∈ F , let sgn a denote the pair sgn a = (e1, e2) where

ei = 1 if aτi > 0 and ei = −1 if aτi < 0. In addition let OF,e = {a ∈ F : sgn a = e}.

We also assume that F has odd discriminant and that F has a unit of norm −1. Let

ε be a unit such that ε/
√
D is totally positive.

Then f has a Fourier expansion of the form

f(z) =
∑

µ∈OF ,µ>>0

C(µ)e2πiTr(µεz/
√
D)
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on the H2 component (see [1]). We want to study the Asai L-function

LAs(f, s) = ζ(2s− k − l + 2)
∞∑
n=1

C(n)n−s.

Let d : H → H×H be defined by d : w 7→ (ε−τ1w, ε−τ2w̄). We define g(w) : H → C

to be the composition g = f ◦ d. Also define the completed L-function

G∗(s) = Ds/2(4π)−sΓ(s)Γ(s− l + 1)LAs(f, s).

Definition VIII.1. Let R be a set of representatives for SL2(Z) modulo upper

triangular matrices and λ an even integer ≥ 0. Define the Eisenstein series E∗λ to be

E∗λ(w, s) :=
∑
γ∈R

(cw + d)−λ|cw + d|−2s.

This is independent of the choice of R. Furthermore define

Ẽλ(w, s) := 2ζ(2s+ λ)E∗λ(w, s) =
∑

(0,0) 6=(c,d)∈Z2

(cw + d)−λ|cw + d|−2s.

Note that for γ =

a b

c d

 ∈ SL2(Z), g(w) satisfies

g(γw) = |cw + d|2k(cw + d)l−kg(w).

Therefore g(w)Ek−l(w, s+ 1− k)ys−1dxdy is an SL2(Z) invariant form on H (where

w = x+ iy).

Definition VIII.2.

J(s) :=

∫
SL2(Z)\H

g(w)Ek−l(w, s+ 1− k)ys−1.

Proposition VIII.3.

G∗(s) = J(s− k + 1).
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Proof. We first note that g(w) has a Fourier expansion

g(w) =
∑
µ

C(µ)e2πi(µτ1w−µτ2 w̄)/
√
D.

Let w = x + iy with x, y ∈ R. If µ ∈ Z then µτ1w − µτ2w̄ = 2iµy and if µ /∈ Z

then µτ1w − µτ2w̄ = Aiy + C
√
Dx for some nonzero integral C. Therefore∫ 1

x=0

g(w)dx =
∞∑
n=1

C(n)e−4πny.

Thus ∫ ∞
y=0

ys−1

∫ 1

x=0

g(w)dxdy =

∫ ∞
0

∞∑
n=1

C(n)ys−1e−4πny/
√
Ddy

=
∞∑
n=1

C(n)Ds/2(4πn)−s
∫ ∞

0

us−1e−udu = Ds/2(4π)−sΓ(s)
∞∑
n=1

C(n)n−s.

Therefore∫
SL2(Z)\H

g(w)ys−1E∗k−l(z, s− k1 + 1)dxdy =

∫ ∞
0

∫ 1

0

ys−1g(z)dxdy

= Ds/2(4π)−sΓ(s)
∑
n

C(n)n−s.

Replacing E∗ with E gives∫
SL2(Z)\H

g(w)ys−1Ek−l(w, s− k + 1) =

2Ds/2(4π)−sΓ(s)ζ(2s− k − l + 2)
∑
n

C(n)n−s.

Thus if we multiply the integral by Γ(s− l + 1) we get

J(s− k + 1) =

∫
SL2(Z)\H

g(w)ys−1Γ(s− l + 1)Ek−l(z, s− k + 1)

Ds/2(4π)−sΓ(s)Γ(s− l + 1)LAs(f, s) = G∗(s).
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Asai was able to use this integral representation of LAs(f, s) to prove analytic

continuation and a functional equation. This method follows the steps of Rankin and

Selberg: if f1 and f2 are modular forms for SL2(Z) of weights k and l respectively,

then the same argument with g(w) := f1(w)f ∗2 (w) gives an integral representation

of L(f1 ⊗ f2, s). Here f ∗ denotes the modular form given by applying complex

conjugation to the coefficients of f Explicitly, let f1(z) =
∑∞

n=0 ane
2πinz and f2 =∑∞

n=0 bne
2πinz and define

D(f, g, s) :=
∞∑
n=1

anbnn
−s.

Theorem VIII.4 ([39], Thm. 2). Let f1 be a cusp form of weight k, f2 a form of

weight l, and both of level 1. Assume also that k > l. Then

D(f1, f2, k − 1) =
4k−1πk

3Γ(k − 1)
〈f ∗, gE∗k−l(z, 0)〉.

8.2 Rationality with Harris’ Period

Shimura used the integral representation of the Rankin-Selberg convolution L-

function to get the following rationality result:

Theorem VIII.5 ([39], Thm. 3). Let f1, f2 be as in the previous theorem and

further assume that f1 is a normalized newform. Let Qf1 and Qf2 be the number

fields generated by the coefficients of f1 and f2 respectively. Then

D(f1, f2, k − 1)

πk〈f1, f1〉
∈ Qf1Qf2 .

Let G = ResF/Q GL2(F ), and g = Lie(G(R)). We identify G(R) ∼= GL2(R)2 via

the two infinite places of F and let K+
∞ ⊂ G(R) correspond to the copy of SO(2)2 in

GL2(R)2. Then under the standard action of G(R)+ on H2 the stabilizer of (i, i) is

ZG(R)K+
∞. There is a decomposition

gC = Lie(ZG)C ⊕ t∞,C ⊕ p+ ⊕ p−
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under the action of Ad(K+
∞) where p+ naturally maps to the holomorphic tangent

space to H2 at (i, i) and p− maps to the anti-holomorphic tangent space. p+ decom-

poses as

p+ = p+
1 ⊕ p+

2

compatibly with the decomposition G(R) ∼= GL2(R)2 and similarly for p−. Then a

Hilbert modular form f viewed as an automorphic form on G(Q)\G(A) will satisfy

R(p−)f = 0 where R(·) is the right regular action of the universal enveloping algebra

of gC. Let k = (k1, k2) be a pair of integers both even. For K an open compact

subgroup of G(Af ) Harris constructs an F -rational line bundle Ek,0 on the Hilbert

modular variety SK whose global sections are canonically isomorphic to Hilbert mod-

ular forms of weight k ([16] p.159). For a toroidal compactification S̃K of SK there

are two extensions of Ek,0 to S̃K : the subcanonical and canonical extensions which

are denoted by E sub
k,0 and Ecan

k,0 respectively and defined in [17], [18], [19]. Harris further

defines in [17] a cohomology theory H̄∗(Ek,0) which can be realized as

H̄q(Ek,0) = lim
→
Im[Hq(S̃K , E sub

k,0 )→ Hq(S̃K , Ecan
k,0 )]

where the limit is taken over all K.

Let I be a subset of the infinite places of F . Then define k(I) to be the pair of

integers that agrees with k at the places outside of I and replaces ki with 2 − ki

at the places in I. If f is a Hilbert modular form, define fJ (I) to be the function

obtained by precomposing f with complex conjugation at the places in I.

Let (π,Hπ) be a irreducible cuspidal automorphic representation of G(A) gener-

ated by the Hilbert modular form f of weight k. For I as before let HI
π be the subset

of Hπ consisting of functions φ ∈ Hπ satisfying R(p+
i )φ = 0 for i ∈ I and R(p−i )φ = 0

for i not in I. Then we have
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Lemma VIII.6. [16] 1.4.3 Let |I| be the cardinality of I. There is a natural embed-

ding

HI
π ↪→ H̄ |I|(Ek,0)

of G(Af )-modules. Furthermore the image of HI
π is an FQ(π)-rational subspace of

H̄ |I|(Ek,0) where Q(π) is the field of definition of π.

Define J (I) to be the element (J (I)1,J (I)2) ∈ G(R) such that J (I)i =

−1 0

0 1


if i ∈ I and J (I) =

1 0

0 1

 otherwise. For φ a function on G(Q)\G(A) let

φJ (I)(g) = φ(gJ (I)). Then HI
π = {φJ (I) : φ ∈ H∅π}.

Let f be a Hilbert modular form for F of weight k = (k1, k2) with k1 > k2,

k1 ≡ k2 ≡ 0 mod 2. Furthermore assume f is an eigenform in the space of the

representation π and that f is defined over FQ(π). Choose I = {σ2}. Then fJ (I)

may be viewed as an element in H1(E(k(I),0)) where k(I) = (k1, 2− k2).

There are two FQ(π)-rational structures on HI
π. The first is induced by the

rational embedding HI
π ↪→ H̄ |I|(Ek,0) and denoted by HI

π(FQ(π)). The second is

defined applying the operator J (I) to H∅π(FQ(π)) and is denoted LHI
π(FQ(π)).

Harris shows that these two rational structures are related by a constant:

Lemma VIII.7 ([16] Lemma 1.4.5). There is a number νI(π) ∈ C×, defined up to

multiplication by an element of FQ(π)× such that

νI(π) ·HI
π(FQ(π)) = LHI

π(FQ(π)).

Define the period Ωf to be νI(π) so that fJ (I)/Ωf is an FQ(π)-rational element

of H1(Ek(I),0). Asai had shown that LAs(f, s) may be calculated by restricting fJ (I)

to the embedded modular curve and integrating against an Eisenstein series. That
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is the embedding d : H → H × H defined in 8.1 induces an embedding ML → SK

where ML is the modular curve corresponding to the open compact subgroup

L =

e 0

0 1

K

e−1 0

0 1

 ∩ SL2(Af ) ⊂ SL2(Af ).

The line bundle Ek(I),0) on the Hilbert modular surface SK restricts to the line

bundle E(2+k1−k2,0) on the modular curve ML. On ML there is a pairing

H̄1(E(2+k1−k2,0))⊗ H̄0(E(k1−k2,0))→ C.

This pairing is actually a Tate twist of the Serre duality pairing and is therefore

rational over Q (see [16], p. 165). So when we pair the rationally defined Eisenstein

series Eλ(w, s) with the restriction of fJ (I)/Ωf the result is FQ(π)-rational. Thus

we tautologically get rationality of LAs(f, k1 − 1)/Ωf :

Theorem VIII.8. Let f be a eigenform of weights k1, k2 with k1 ≡ k2 ≡ 0 mod 2

and k1 > k2. Let Q(f) be the field of definition of f . Then

LAs(f, k1 − 1)/Ωf ∈ FQ(f).

The relation between the period Ωf and the Petersson inner product 〈fB, fB〉

used in the previous chapters deserves further study. The ratio 〈fB, fB〉/Ωf lies in

Q̄ but it would be interesting to study its rationality (and integrality) properties.
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