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“Give thanks to the LORD, for he is good. His love endures forever.

Give thanks to the God of gods. His love endures forever.

Give thanks to the Lord of lords: His love endures forever.

to him who alone does great wonders, His love endures forever.”

(Psalm 136:1-4)
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To my mother.
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ABSTRACT

Multidisciplinary Optimization Approach for Design and Operation of Constrained
and Complex-shaped Space Systems

by

Dae Young Lee

Chair: James W. Cutler

With the increasing trend of the space community to develop their own space

systems, there is a growing interest in small satellite technology. The design of a

small satellite is often challenging since they are constrained by mass, volume, and

power. To mitigate the effects of these constraints, designers often adopt deployable

configurations on the spacecraft that result in an interesting and difficult optimization

problem. The resulting optimization problem is challenging due to the computational

complexity caused by the large number of design variables and the model complexity

created by the deployables. Adding to these complexities, there is a lack of integra-

tion of the design optimization systems into operational optimization, and the utility

maximization of spacecraft in orbit.

The methodology developed in this research enables satellite Multidisciplinary

Design Optimization (MDO) that is extendable to on-orbit operation. Optimiza-

tion of on-orbit operations is possible with MDO since the model predictive con-

troller developed in this dissertation guarantees the achievement of the on-ground

xv



design behavior in orbit. To enable the design optimization of highly constrained and

complex-shaped space systems, the spherical coordinate analysis technique, called the

“Attitude Sphere”, is extended and merged with an additional engineering tools such

as Open Graphics Library (OpenGL). OpenGL’s graphic acceleration facilitates the

accurate estimation of the shadow-degraded photovoltaic cell area. This technique

is applied to the design optimization of the satellite Electric Power System (EPS)

and the design result shows that the amount of photovoltaic power generation can

be increased more than 9%. Based on this initial methodology, the goal of this effort

is extended from Single Discipline Optimization (SDO) to Multidisciplinary Opti-

mization (MDO), which includes the design and also operation of the EPS, Attitude

Determination and Control System (ADCS), and communication system. Since this

MDO problem involves over ten thousand design variables and one million state vari-

ables, the Modular Analysis and Unified Derivatives (MAUD) framework is used to

automatically compute the derivatives required for gradient-based optimization.

The geometry optimization satisfies the conditions of the ground development

phase; however, the operation optimization may not be as successful as expected in

orbit due to disturbances. To address this issue, for the ADCS operations, controllers

based on Model Predictive Control (MPC) that are effective for constraint handling

were developed and implemented. For the ADCS MPC controller, variational me-

chanics based on the 3D rotation group, denoted as SO(3), were developed. All the

suggested design and operation methodologies are applied to a mission, the CubeSat

investigating Atmospheric Density Response to Extreme driving (CADRE), which is

space weather mission scheduled for operation in 2016. This application demonstrates

the usefulness and capability of the methodology to enhance CADRE’s capabilities,

and its ability to be applied to a variety of missions.
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CHAPTER I

Introduction

1.1 Motivation

There is a growing trend among many scientists, engineers, and entrepreneurs

from the space community to develop their own space systems based on small satellite

technology. Between 2000 and 2013, the number of small satellite projects increased,

and the data in Fig. 1.1 presents this trend clearly. While in 2000, there were only

5 projects but, in 2006, this increased to 20 projects and drastically multiplied to 80

in 2013 [1].

This increase in missions is also accompanied by an increase in the variety of mis-
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Figure 1.1: CubeSat-class missions launched in each year [1].
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sions such as a scientific experiment, a demonstration for advanced technology, and

a precursor mission for a future space project. This variety has led to a growing de-

mand for enhanced performance in the areas of pointing accuracy, power generation,

and data downloading. Take as an example, the need for increased pointing accu-

racy; we can compare the pointing requirements between projects in 2010 and 2015

that were completed at the University of Michigan. In 2010, the first NSF-funded

satellite, Radio Aurora eXplorer 2 (RAX-2), needed only magnetic north pointing

within the Northern Hemisphere, which can easily be satisfied with the installation of

a permanent magnet and hysteresis strips for the dissipation of the satellite’s angular

momentum. However, because of its payload, the recently built CubeSat investigat-

ing Atmospheric Density Response to Extreme driving (CADRE) requires 1 degree

pointing accuracy with its orbital velocity vector, which can only be achieved with

an active Attitude Determination and Control System (ADCS) that was implmented

with three axis reaction wheels and magnetorquers.

Another good example of the demand for enhanced performance of recent mis-

sions is the extended photovoltaic power generation requirement. We can understand

this demand by comparing the same satellite projects. RAX-2 only needed approxi-

mately 5W of photovoltaic power, while CADRE requires almost 10W of photovoltaic

power. CADRE’s large power generation requirement is satisfied by implementing a

configuration with 4 deployable panels as presented in Fig. 1.2(b). This example

demonstrates that a primary effort of space system engineers involves finding ways

to increase the amount of photovoltaic power generation in space and, as a singular

method, they implemented a deployable panel configuration such as the International

Space Station (ISS), NASA’s solar sail project Nanosail-D (Fig. 1.2(c)), and Delfi-

N3xt (Fig. 1.2(d)).

The trend indicates that many recent spacecraft projects are adopting deployable

1Nanosail-D : http://phys.org/news/2011-01-first-ever-solar-momentous.html,
Delfi-N3xt : http://space.skyrocket.de/doc_sdat/delfi-next.htm
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(a) RAX2 (b) CADRE (c) Nanosail-D (d) Delfi-N3xt

Figure 1.2: Various designs of small satellites1

panel configurations but, despite their effectiveness, they introduce complexity and

constraints into the system. For example, if we want to increase the power generation

by installing more deployable photovoltaic panels, we need to analyze the shadow of

each panel, which can hinder the power generation of other panels. Without this anal-

ysis, we cannot guarantee sufficient power generation with the installed photovoltaic

panels [6]. The deployable panels can also cause unexpected dynamics disturbances

and degradation of pointing accuracy. Given these challenges of deployable space

system design, the design small satellites with this technology is more difficult and

poses interesting problems compared to the normal spacecraft design. To resolve

these challenges, the following question is addressed in this dissertation:

How can we maximize the capability and performance of a complex-

shaped space system with constraints?

This dissertation uses a multidisciplinary approach to answer this question.

1.2 Literature review

As mentioned in the motivation section, in addition to satisfying requirements in

performance, space systems certainly benefit from maximizing their resource utility

3



efficiency and performance. In this section, we review the literature that describes how

optimization technology has been applied to the space system design process. The

related research can be categorized into two groups. The first group approaches the

space system design optimization problem from the perspective of a single discipline,

while the second group employs multidisciplinary approaches. The most interesting

approaches can be found in the latter, where operation optimization of the space

system has been unified with the design optimization process. Based on this initial

work, this dissertation focuses on multidisciplinary optimization and the on-orbit

controller development. After reviewing two main research groups, the unification of

the design and the operation optimization in the space system is investigated.

1.2.1 Single Discipline Optimization

Single Discipline Optimization (SDO) is the analysis and optimization of an en-

gineering system with focus on a single part of the system or in a single discipline

[7]. One typical characteristic of SDO is the usage of gradient-free optimization with

indifferentiable design variables that originate from detailed modeling. The detailed

and complex modeling often includes discrete or indifferentiable variables that cannot

be handled with gradient-based optimization. These variables can only be handled

with gradient-free optimization such as Genetic Algorithm (GA) or Particle Swarm

Optimization (PSO). Hence, many single discipline optimization researches focus on

gradient-free optimization.

Another characteristic is that most SDO applications have a small number of

design variables because the gradient-free optimizer cannot handle a large number of

design variables. Even with the gradient-based optimization, the number of design

variables is less than 100 due to the limited characteristic posed by ‘single’ discipline.

The following are representative SDO examples.

Boudjemai et al. [8] designed small satellite structural topologies with minimum

4



compliance, minimum weight, and optimal compliant mechanisms. They performed

geometry modeling with Finite Element Analysis (FEA) and adopted different types

of mesh under launch loads environment to determine the maximum stresses acting

on the elements of the structure. Then, they solved this optimization problem with

an enhanced GA to acquire more efficiency and robustness.

Muraoka et al. [9], in order to minimize heater power consumption and maximize

temperature margins, suggested an optimization strategy applicable to the configura-

tion of radiator and solar absorbers in a spacecraft thermal design. As a solver, they

implemented a Generalized Extremal Optimization (GEO) algorithm, which has also

been applied to the inverse design of a spacecraft thermal control system suggested

by Galski et al. [10]. This GEO has only one free parameter to adjust, does not make

use of derivatives, and can combine continuous, discrete or integer variables.

Hull et al. [11] defined the spacecraft radiator design problem and solved it with

GA. They defined a driving temperature as an input and heat loss as an output and

added the appropriate modeling of the space environment to capture its effect on

the radiator. After them, in [12], an efficient multi-objective optimization method is

proposed by Kim et al. for node-based spacecraft radiator design. The optimization

problem is formulated to minimize the number of radiator nodes and temperature

margins of unit boxes and is solved with a GA.

Jain et al. [13] optimized the power management of a small satellite which is pop-

ular due to the restricted photovoltaic power generation amount of every small space-

craft. Their optimizer used GA but can evaluate the fitness on Field-Programmable

Gate Array (FPGA) in real time. Thus, the limited power supply capability of a

small satellite was overcome, and its load scheduling was successfully optimized.

Khoddam et al. [14] developed AUTO LISP code for CAD which calculate the

optimized layout of different modules. Their small satellite used a gravity gradient

passive stabilization system. To dampen transient oscillations, the Moment Of In-

5



ertia (MOI) calculation was important and their AUTO LISP code automatically

calculated MOI and checked the stability.

Richie et al. [15] optimized the size of a miniature control moment gyroscope for

a practical space mission. By analyzing attitude and energy storage requirements of

a small satellite, their design problem can be converted to a constrained nonlinear

programming problem which uses a performance index constructed from subsystem

design margins. They solved the problem using a reduced-order, gradient-based solver

software code, and it is a rare example of the gradient-based optimizer implementation

in SDO problems because most of this SDO application include indifferentiable design

variable which is not easy to solve with a gradient-based optimizer.

Zhang et al. [16] optimized the layout of the satellite subsystems with the inte-

grated GA/PSO and Quasi-Principal Component Analysis (QPCA).

The review result confirms that most of SDO literature have implemented GA

and other non-gradient based optimization methods, which have small numbers of

the design variables. This also indicates that, if we want to include a large number

of the design variables in design optimization problem, a novel approach is necessary.

However, SDO is still a very effective tool to satellite engineers who focus on the

subsystem design with restricted requirements.

1.2.2 Multidisciplinary Optimization

MDO is a rapidly growing field with applications to a variety of aerospace prob-

lems. Many aerospace system designers have applied multidisciplinary approaches

to their system design projects [17]. However, most MDO efforts have focused on

the design of aircraft structures and space launch vehicles, and very little work has

considered the MDO application to the space system with complex constraints, such

as a small satellite. For the remainder of this section, we cover the application of

MDO within the field of space systems design and also check applicability to a highly
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constrained system with a complex-shape problem.

The first identified MDO application to space systems was a launch vehicle design

done by Olds et al. [18]. Others have applied MDO to launch vehiclea as well

[19, 20, 21, 22, 23, 24, 25] where the applicatoin of MDO was extended to space

system engineering. Satellite design with MDO was first applied by Matossian to the

design of an Earth-observing satellite mission [26]. Spacecraft design-related research

was continued by Mosher [27], Riddle [28], and Bearden [29], who focused on the

development of space system engineering tools. The first reason why they focused

on the system engineering tool development is that the increased complexity of the

design problem necessitates an organized and structured solving procedure and the

other reason is the engineering tool makes the evaluation of the optimization results

easy by including various models and their simulation environments. The developed

space system engineering tools for MDO applications are as follows.

George et al. [30] developed the Multidisciplinary Integrated Design Assistant for

Spacecraft (MIDAS), which is a graphical programming language specifically for space

mission design which allows the satellite engineer graphically to connect the data flow

of the system. Disciplines and software modules can be added or removed to support

the multidisciplinary design capability. After a system is constructed within MIDAS,

operator can evaluate the system’s cost and mass and, if the evaluation result is

unsatisfactory, the designer can alter the spacecraft modules and evaluate again.

Fukunaga et al.[31] built the Optimization ASsIStant (OASIS), a system tool that

can provide the optimized spacecraft with minimal human effort. They also proposed

the use of a set of generic, metaheuristic optimization algorithms (e.g., genetic al-

gorithms, simulated annealing), which are configured for a particular optimization

problem by an adaptive problem solver based on artificial intelligence and machine

learning techniques. These algorithms are interfaced to MIDAS such that they drive

desgin variable selection rather than a human-in-the-loop directing the simulator.
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OASIS provides the design variable values with which MIDAS then calculates sys-

tem performance. Several satellites are successfully designed with OASIS by using a

brute-force search method over the design space.

Mosher et al. [32, 33] suggested a tool for conceptual spacecraft design, Spacecraft

Concept Optimization and Utility Tool (SCOUT), that uses a set of design-estimating

and cost-estimating relationships that are coupled with genetic algorithm optimiza-

tion. Exploring a greater number of feasible options is possible using SCOUT’s au-

tomated search which also allows the selection of counterintuitive solutions. The

solution from SCOUT is compared and verified with the actual design of the Near

Earth Asteroid Rendezvous spacecraft.

In [34], Stump et al. developed the Advanced Trade Space Visualizer (ATSV) that

facilitates design by using a shopping paradigm to support trade space exploration.

ATSV allows a decision-maker to form a preference and use this preference to select a

satellite. The test data of ATSV generated using a conceptual model of a Mars space

probe, with rules based on Mars Odyssey mission and the final design was presented

with 3D modeling.

Ravanbakhsh et al. [35, 36] introduced a structural design-sizing tool containing

the primary structures properties and system level variables. The search of the design

space is performed with a GA multiobjective optimizer and the Pareto-optimal results

could be acquired based on minimum total mass of satellite and maximum mass

budget for the payload.

Barnhart et al. [37] implemented a Spacecraft Portal for Integrated Design in

Real-time project (SPIDR), a systems-engineering-based framework for satellite de-

sign with an artificial-intelligence-based optimization algorithm that incorporates

user-defined rules and constraints. SPIDR brings together astronautics experience

of building and launching satellites on various missions with techniques from arti-

ficial intelligence and software engineering to enable rapid design-to-integration of
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space vehicles. SPIDR is intended to broaden the design process, which includes

levels of integration, and incorporate a real-world database.

Apart from the above system engineering tool developments, the following re-

searchers have devoted themselves to the development of a novel MDO methodology

itself for space systems. For example, in [38], Taylor et al. provided an evaluation of

optimization techniques which are applied to increasingly complex spacecraft design

problems. They found that traditional optimizers such as dynamic programming can

guarantee an optimum, but require enumeration with exponential growth of the vari-

ables. So, they had found a commercial optimizer that was insensitive to additional

variables and provided high-quality solutions.

Jilla et al. [39] developed the constructing process of multiobjective, multidis-

ciplinary design optimization systems. In this methodology, they formulated and

solved distributed satellite system conceptual design problems and applied two new

multi-objective variants of the simulated annealing algorithm. It was applied to the

Distributed Satellite Systems (DSS) problem and found the architecture for NASA’s

Terrestrial Planet Finder (TPF) mission that maximizes the total number of images

taken by the telescope while minimizing life-cycle cost.

Jafarsalehi et al. [40] focused on the development of an efficient distributed Col-

laborative Optimization (CO) method for small satellite missions. GA were used at

the system level while gradient-based techniques were utilized at the discipline level.

The results showed that a distributed CO framework using GA has the same level of

accuracy as with the conventional all-at-once approaches, while providing a potential

approach for solving complex satellite design problems.

From these MDO literature review, we can see that many researchers started

with the development of a system engineering tool that considers multiple disciplines.

After the development, they tried to apply the mathematical optimization technique

to improve the spacecraft design because they agree on MDO as a potentially powerful
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tool for spacecraft design. In addition, we can see that the recent MDO researches

are definitely considering small satellite as their application [37, 39, 40].

By adopting MDO, space system design becomes more realistic but more complex

with various disciplines. In addition, these review confirm that the operation in orbit

is difficult to be considered at the ground development stage. The research number

related with a large-scale optimization problem also suggest that this problem is a

difficult topic to solve because of computational price.

1.2.3 Operation including Optimization

In reviewing the literature on the space system optimization and especially MDO

materials, the approach suggested by Spangelo et al. [41, 42] is particularly interest-

ing. They developed models and algorithms for solving single-satellite, multi-ground

station communication scheduling problems, with the objective of maximizing the

total amount of data downloaded from space. They assumed a highly constrained

space system with limited on-board power generation, attitude and orbit control,

energy and data storage, and computational resources. To model the optimization

problem, an under-constrained mixed integer program (MIP) is implemented and the

constraints of the problem are tightened by an iterative algorithm. The most inter-

esting aspect of their research is that they included the ground station operation over

time in the optimization problem, making it more challenging.

Motivated by their idea, in this dissertation, the design and the operation of

the satellite is unified in our MDO problem. However, unlike Spangelo’s work, the

suggested MDO methodology separate the multiple Ground Station (GS) operation

from the problem. Instead of the GS operation, the proposed MDO includes the

satellite subsystem operations that require the development of operation controllers.
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1.3 Approach

Based on the literature review, a multidisciplinary optimization based approach

is proposed to explore the question of how to maximize the performance of a con-

strained and complex-shaped space system. This approach extends the traditional

system design by merging geometric design with operation of the spacecraft. As a first

step, the space system design with SDO was performed and a result on photovoltaic

panel design is obtained. By adopting data and models from the SDO, design opti-

mization and operation optimization can be performed in the MDO. Working jointly

with the MDO Laboratory at the University of Michigan, the solution of this MDO

problem was developed. The MDO solution then shows that operation optimization

in orbit can improve satellite performance drastically. As a result, a constrained

control solution is developed to apply the operation optimization results in orbit.

Many challenges such as complex shadows of deployables, multiple discipline devel-

opment, a large number of design variables, computational complexity and on-orbit

implementation are resolved by the approach proposed by this dissertation.

1.3.1 Single Discipline Optimization

SDO is performed to build and verify a discipline for photovoltaic power genera-

tion. This SDO application itself is helpful for the design of various satellite missions

and the developed discipline is also implemented in the following MDO approach.

The objective functions of the SDO are related to the amount of photovoltaic power

generation, which is essential to the mission capability estimation. This problem is

difficult due to the complex shadow casting of the deployable panels and the solution

is described with detail in Chapter II.

The main concept of the solution is to map the Sun’s movement on a body-

fixed frame of the spacecraft, called the attitude sphere, and to search for the shadow

database with this spherical coordinate mapping. This attitude sphere, the spacecraft
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body-centered spherical coordinate system, is merged with orbit dynamics to map

the Sun movement. After that, a spherical shadow database is built with the help of

OpenGL, which rapidly calculates the exposure of photovoltaic cells to each position

of the Sun. The deployable panel angle is also included as a index of the shadow

database and can be determined through search of the Sun mapping database.

1.3.2 Multidisciplinary Optimization

Preliminary tasks such as complex shadow and antenna radiation pattern model-

ing can be completed by an individual SDO effort. SDO analysis also provides insight

for whih variables are more effective as design variables for the optimization. This

serves as a foundation for combining related disciplines into a larger, mutlidisciplinary

optimization problem. Due to the multidisciplinary characteristic, this optimization

includes a tremendous number of design variables resulting in great computation com-

plexity. For example, with the ADCS and Electric Power System (EPS) design, there

are more than 20,000 design variables. In collaboration with the MDO Laboratory at

the University of Michigan, we found that this problem can be solved with a Modular

Analysis and Unified Derivatives (MAUD) method which is based on gradient-based

optimization. This work highlighted the additional capabilities of optimization when

applied to the operation of the satellite as well. However, additional control capabil-

ities are needed for this to be implemented on-orbit.

1.3.3 Operation optimization

There are two possible methods for application of these optimization to on-orbit

operations. One method is to uploaded optimization results from ground-based pro-

cessing to the satellite in orbit. This requires periodic execution on the ground with

open-loop control; the algorithm cannot be adapted in real time to on-orbit distur-

bances or anomalies. The second metho is to automate operation with a controller
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that can satisfy the ground optimization results. In this dissertation, the automated

operation with constrained control algorithm is proposed.

Constrained-based control is developed for the attitude determination and control

system. Prior MDO results showed that drastic increase of the downloaded data is

possible for spacecraft by applying an optimized attitude profile in orbit. To achieve

the design goals, a constrained-based controller is required. For example, when the GS

is visible to a spacecraft, the spacecraft can be rotated towards the GS to enhance

the communication link. Similar logic can be applied to the spacecraft’s relative

motion to the Sun to maximize power generation. However, if the ground station

appears in the Line Of Sight (LOS) of the spacecraft or if the star tracker camera is

exposed to the Sun, different attitude operations are required. To satisfy the above

constraints with detailed operations, we have developed and implemented a nonlinear

model predictive attitude controller, which is capable of various constraints. For this

ADCS controller, variational mechanics based on the 3D rotation group, denoted as

SO(3), were applied.

Initial MDO results also suggest that power regulator operation is required to

maximize the efficiency of the spacecraft EPS. This spacecraft EPS is typically con-

structed with a combination of photovoltaic arrays and batteries, and Xiong et al.

[43] suggest a combination of the buck and bi-direction converter. The EPS they

suggest demonstrates good power generating and battery charging performance in

the ground application that can be extended by the application of the novel Model

Predictive Control (MPC) algorithm to attain peak power tracking for photovoltaic

arrays and protection from overcharging the battery at the same time[44]. However,

this research is quite a large topic and is left for future research.
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1.4 Research Contributions

The main contributions of this dissertation are the development of a systemic

multidisciplinary approach for the design and operation optimization of space systems

and the specific application of this approach to a novel space mission called CADRE.

To achieve the main goal, in each chapter we established the sub-problem, which is

essential for the main solution, and the following research contributions are made in

each problem.

• To maximize photovoltaic power generation of a complex-shaped spacecraft,

– A rapid and accurate calculator is developed for determining the self-

shadowing area of a complex-shaped spacecraft that is based on OpenGL.

– A simulator is developed based on this shadow calculator to evaluate var-

ious power-related objective functions, which is more precise than other

simulators in handling complex shadowing.

– The process to configure photovoltaic panels of complex-shaped space sys-

tems are established, which is applicable to systems such as ISS or a Cube-

Sat with deployable panels.

• To apply MDO to design and operation of a small satellite,

– A gradient-based multidisciplinary optimization approach is developed.

– Disciplines including orbit dynamics, attitude dynamics, photovoltaic power,

battery, thermal, and communication are modified for the optimization

framework.

– The satellite MDO problem with a large number of design variables is

formulated and solved for the CADRE mission.

• To develop a attitude operation controller for a spacecraft with Reaction Wheel

Assembly (RWA),
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– A Nonlinear Model Predictive Control (NMPC) approach to the con-

strained attitude control of spacecraft is developed.

– A discrete-time Lie Group Variational Integrator (LGVI) model of space-

craft with the reaction wheel assembly is implemented in the underlying

Lie group structure of SO(3) which has consistency in geometric mechanics

and control formalism.

– The numerical solution to the NMPC optimization problem was obtained

using necessary conditions for optimality and a single shooting method to

solve the resulting two point boundary value problem.

By resolving each problem, the multidisciplinary approach for the design and the

operation of a complex-shaped space system is completed and applied to CADRE, a

satellite funded by the National Science Foundation (NSF) to study space weather.

1.5 Dissertation Outline

The remainder of the dissertation is outlined as follows. Chapter II introduces a

photovoltaic power generation discipline and a developed simulation system that uses

a spacecraft-body-fixed spherical coordinate system. This chapter also presents exam-

ple cases with various objective functions and with the complex geometry of a satellite

that causes self-induced shadowing. Chapter III implements this photovoltaic power

discipline into the gradient-based multidisciplinary optimization (MDO), which also

involves five other disciplines. The developed method is applied to CADRE and suc-

cessful optimization is confirmed with a 40% increase in the download data amount.

Motivated by optimally allocated attitude operation effects on the target performance,

Chapter IV extends the results from Chapter III to the development of a novel atti-

tude controller, of which the objective is to perform operational decisions of the MDO.

Thus, a nonlinear model predictive controller is introduced for constrained attitude
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maneuvering of a spacecraft actuated by a reaction wheel assembly in Chapter IV.

Finally, the dissertation is summarized and insights for future work are provided in

Chapter V.
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CHAPTER II

Maximizing Photovoltaic Power Generation of a

Space-Dart Configured Satellite

2.1 Introduction

Optimizing power generation on a satellite is an important stage in design. It is,

however, difficult due to complex spacecraft geometries, varying operational modes,

and orbital parameter variation. For example, complex spacecraft geometries such as

deployable panels allow for more photovoltaic arrays on orbit. However, they result in

complex shadow-induced power reduction that is difficult to model. Different satellite

operational modes such as the downlinking of data or payload operation often require

different satellite orientations, which can have a large impact on power generation.

Additionally, orbital variations due to perturbation forces create a dynamic illumina-

tion cycle that exists on the order of hours to months. As an example, consider power

optimization onboard the ISS where multiple photovoltaic panel arrays and complex

structures produce dynamic shadows. 1

Power generation and optimal photovoltaic panel orientations are particularly

important for small satellites which have restricted size, mass, and surface area for

panel mounting. The majority of small satellites are low Earth orbiting. They are

1Topcoder, ISS longeron optimization competition (http://www.topcoder.com/iss/longeron/)
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Figure 2.1: Geometry model examples of small satellites.

impacted by frequent encounters with Earth’s shadow and a highly dynamic, time-

varying direction from the satellite to the Sun. In particular, the growing community

of CubeSat builders has operational limitations and constraints by power, and is

thus developing novel photovoltaic panel configurations [45, 46, 47]. See Fig. 2.1 for

example configurations. However, there are currently no techniques or algorithms for

optimizing these panel configurations for particular missions and orbit scenarios.

A prominent CubeSat configuration that could benefit from the optimization of

photovoltaic panel orientations is the space-dart [45, 48], a 3U with four deployable

photovoltaic panels (see Fig. 2.2). The four extendable panels are typically covered

with photovoltaic cells and deployed at a fixed angle throughout the mission. The

attitude of this configuration is defined with respect to the Local Vertical / Local

Horizontal (LVLH) frame where the (−)z axis of the satellite is aligned with the

velocity vector. In this space-dart configuration, self shadowing is prevalent from a

variety of viewing angles. Shadow-based power reduction is, thus, a complex function

of the panel angle and the direction to the Sun in the satellite body fixed frame,

which is also a function of the orbit parameters and the attitude.

There is currently no known formulation or modeling framework found in the

literature to solve the power generation estimation problem of the complex-shaped
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Figure 2.2: Configuration of the geometry, frame, and design variables of CADRE.

spacecraft. Some next-generation missions have additional, complex panels without

a rigorous methodology for optimization [47]. Anigstein et al. [49] proposed an

analytical decision method for panel angle which assumes that a satellite body does

not generate a shadow impacting the panels. This assumption may be valid for larger

satellites that can sufficiently deploy and separate the panels from the spacecraft

body. However, this method is typically not applicable to small satellites due to mass

and volume constraints. In other work, Gaddy [50] developed a computation method

for the projected area of photovoltaic panels, which takes into account the spacecraft

body shadow. It, however, does not include self-induced shadowing by other panels.

Therefore, a key element of this work is the inclusion of shadow management for

complex satellite configurations.

In this chapter, we develop an algorithm to find the optimal panel angles that

maximize power generation. Specific contributions include the following:

• Development of an extendable methodology that search for the maximum power

generation geometry of satellites.

• Development of a technique for assessing shadow-induced power reduction for
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complex satellite geometries.

• Application and assessment of power optimization to the space-dart configura-

tion.

In Section 2.2, the power generation of a space-dart configured satellite is defined

as an optimization problem. In Section 2.3, an analytic approach and simulation

architecture for solving these problems are presented. In Section 2.4, various sim-

ulation results for an example mission are given to prove the effectiveness of the

described methodology. The example mission, CADRE, is a 3U CubeSat designed to

explore Earth’s thermosphere. CADRE has the shape similar to the space-dart con-

figuration.2 Optimal angles to maximize power generation of a space-dart configured

satellite are also presented and discussed in Section 2.4.

2.2 Problem Definition

In this section, the notation and details of the optimization problem are intro-

duced. The design variable x is a vector that contains a subset of the variables that

a designer selects to control power system performance. The objective function is

defined as J . Three unique, potentially interesting objective functions are defined.

The parameters p are additional values used in determining the objective function

J . Throughout the rest of the chapter, the space-dart configured satellite, as shown

in Fig. 2.2, is used as a motivating example while describing x, J , and p in detail.

2.2.1 Design Variables

Design variables are spacecraft features that engineers select for a particular mis-

sion. There are many design variables that impact the spacecraft power generation.

2Note that while the space-dart configuration provides potential drag-based stabilization,
CADRE contains reactions wheels and magnetorquers to provide attitude control.
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Example variables include the number of photovoltaic cells, their location, photo-

voltaic cell type, battery size, photovoltaic panel deployment angles, and satellite

orientation.

This work focuses on the optimization of power generation. Hence several sim-

plifying assumptions are made. First, energy storage constraints are not considered.

It is assumed there is sufficient battery capacity available to store any surplus en-

ergy collected. Second, while photovoltaic cell efficiency is directly proportional to

power generation, it equally impacts all configurations. It is thus not considered as

a design variable. Third, temperature effects on cell efficiency are ignored. Adequate

thermal management is assumed so that desired average temperature is maintained.

Future extensions will include advanced thermal modeling as it directly impacts cell

efficiency. Fourth, the entire surface area is covered with photovoltaic cells. This

maximizes power generation; however, it does not convey mission specifics such as

antenna placement or requirements of other external sensors. In later sections, it is

shown how cell position can be evaluated for individual power generation and which

cells are primary power contributors.

With these assumptions and the space-dart configuration, two primary design

variables are used as shown in Fig. 2.2. The first variable xα is the deployment

angle of the four photovoltaic panels, or specifically the angle between the deployed

photovoltaic panel and the long z axis of the satellite. The second variable xβ is the

roll angle of the satellite, or specifically the angle between the y axis of the satellite

and the zenith. Nadir and zenith locations are shown in Fig. 2.2. The unit vectors,

îB, ĵB and k̂B, correspond to the body-fixed frame’s x, y, and z axes, respectively.

The space-dart is typically flown with the −z axis pointing in the ram direction,

that is, the direction of the velocity vector ~vb/o of the satellite. We assume the four

deployable panels have the same deployment angle of xα, which remains constant

after launch and deployment. The design variable vector is given in Eq. (2.1) with
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Figure 2.3: Two cases of the design variable xβ.

constrained values. The two options for xβ are presented in Fig. 2.3, where the

satellite is flying in either a horizontal or a rolled configuration. Only these two

configurations are considered since they easily support two simplified patch antenna

placement configurations; at a 0◦ roll angle, a patch antenna placed on the nadir face

will point nadir and provide higher gain to stations below the satellite. A 45◦ roll

angle supports two patch antennas placed on the nadir decks which provides greater

antenna coverage. 3 The design variables are summarized as

x = {(xα, xβ) | xα ∈ [0, 90] , xβ ∈ {0, 45}} . (2.1)

2.2.2 Parameters

Parameters are quantities that affect the objective function J , but are not under

adjustable in the designs. They are thus not variable in the optimization. In this

3Antenna placement and orientation are other interesting design variables to optimize but are
beyond the scope of this chapter.
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problem, the parameter vector p involves both spacecraft and orbit related elements,

p = [pSC , porbit] .

There are many parameters that govern power generation of a satellite such as

the location dcell, the total number Ncell, and the efficiency εcell of the photovoltaic

cells.

pSC = [dcell, Ncell, εcell, Nreg, Cbatt, Nbatt, ... ] .

Location specific parameters are encapsulated in our assumption that CADRE is

a space-dart with cells deployed on every possible surface. Additional parameters

describe the conversion of photovoltaic power to stored energy and the distribution

of power to the satellite. These parameters are simplified by assuming that the

battery system is capable of storing all generated power and that the efficiencies

of various components are independent. Hence pSC can be combined into a single

system efficiency εcell. Parameters are extracted from the orbital environment of the

satellite since the orbit of the satellite strongly influences the incidence angle of the

Sun on the photovoltaic panels. For example, consider two different configurations of

sun-synchronous orbits such as dawn-dusk and noon-midnight orbits; the first orbit

is illuminated continuously while the second sees an eclipse every orbit.

An orbit can be defined using the six classical Keplerian orbital elements: semi-

major axis a, eccentricity e, Right Ascension of the Ascending Node (RAAN) (or Ω),

inclination i, argument of perigee ω, and true anomaly ν. In a later section, it is shown

that many of the elements, which vary over time due to orbital perturbations, do not

need to be explicity parameterized as their effects average out over long simulations.

The primary parameters are the right ascension of the ascending node and inclination,

porbit = [e, a, i, Ω, ω, υ]⇒ [i, Ω] .
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In later sections, the sensitivity of the design variables to these orbital parameters is

assessed.

2.2.3 Objective Functions

The goal of optimization is to maximize the objective function,

max
x
J (x, p) . (2.2)

In this work, several objective functions are identified to highlight different aspects

of the time-varying nature of power generation.

The first objective function is the total energy gathered during the mission, where

the goal is to maximize total energy collected. Let J be the total energy collected

by the spacecraft over a particular time interval T ,

J (x,p) =

T∫
0

Psolar (x,p, t)dt, (2.3)

where Psolar (x,p, t) is the power generation of the spacecraft at a particular instant

in time t, for given values of x with parameters p.

A second objective function is the minimum average power per orbit, where the

goal is to maximize the minimum power generated per orbit over a given time period.

This enables designers to guarantee a minimum average power generation over the

time period of interest. The objective function is given in Eq. (2.4),

J (x,p) = min

 1

To

n·To∫
(n−1)·To

Psolar (x,p, t) dt

 ,
n = 1, 2, · · · , nmax ∈ I,

(2.4)

where n is the orbit number, To is the orbit period, and nmax is the total number of
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orbits, respectively. As an example, a 500 km orbit simulated for one year has a To of

5,668 seconds and nmax is approximately 5,563. Designers can use this average power

to baseline power budgets and operational modes.

A third objective function is the variance of average power during an orbit. Let

the objective of the variance be defined as

J (x,p) =
nmax∑
n=1

Pbatt − 1

To

n·To∫
(n−1)·To

Psolar (x,p, t)dt


2

, (2.5)

where Pbatt is the power supplied by the battery when generated power is less than

the power required by the satellite. This is useful for limiting the discharge cycles on

battery systems, which extends their operational lifetime.

In the rest of this chapter, the total generated energy, Eq. (2.3), is used as the

objective function, and others are saved for future work.

2.3 Methodology and Simulator

Due to the complexity and time-varying nature of photovoltaic panel illumina-

tion, a simulation system was developed that models a spacecraft and assesses power

generation through a variety of user-defined parameters. The goal of this simulation

system is to determine optimal design variables, xα and xβ, given a particular objec-

tive function and set of parameters. The simulation system and methodology can be

extended to include other arbitrary satellite configurations and orbits. Future work

may extend the system to real-time variable selection to enable active optimization

of movable photovoltaic panel orientations.

The architecture of the simulator is shown in Fig. 2.4. First, a model of the

satellite is created with the space-dart configurations. Second, orbital parameters

are used to calculate the spacecraft position and attitude in an inertial reference
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Figure 2.4: Input/output relationships between subsystems of the simulation.

frame over a particular time frame. A vector from the spacecraft to the Sun is then

calculated over the time frame and converted to a local, body-fixed reference frame

attached to the spacecraft and represented in spherical coordinates. In this body-fixed

frame, the Sun appears to rotate around the spacecraft, which simplifies shadow and

power calculations. Next, this Sun position vector is used to determine illuminated

and shadowed regions of the spacecraft body, and this is represented in a satellite

body-fixed spherical frame (denoted as S) called the ‘attitude sphere’ [51]. Finally,

power and energy are calculated and an objective function is evaluated over the given

time frame. Details of the simulator and methodology are given below.

2.3.1 Modeling Photovoltaic Array Configuration

First, a three dimensional model of the photovoltaic panels is created. The space-

dart configuration of the photovoltaic arrays (also called strings) and their placement

on panels is shown in Fig. 2.5. There are twelve strings on eight panels. Four strings

are located on body-mounted panels and labeled according to the axis that is normal

to the panel plane. The +x and −x panels are along the x axis, the +y and −y

panels are along the y axis, and there are no photovoltaic panels on the +z and −z
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Figure 2.5: Name of each panel and identification index of cells.

panels along the z axis. The four deployable panels are labeled a, b, u, v, and each

have two strings, one on each side of the panel. A negative sign indicates the array

is on the inside which faces the z axis. A positive sign indicates the array is on the

outside which faces away from the z axis. Each array has seven photovoltaic cells

which are numbered 1 to 7 . This model enables individual cells on specific panels

to be addressed and specifically modeled during illumination calculations, as will be

shown later.

2.3.2 Calculation of Sun Position

Given the photovoltaic array model, the next step is to calculate the sun position

vector over time and express it in the local vehicle frame. This enables calculation of

array illumination and power generation over time.

Let the vector from the Earth to the Sun be denoted as ~rs/o. This vector can
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be resolved in different frames, where the notation ~x|I is the vector resolved in the

Earth-centered inertial frame (I), and ~x|B is the vector resolved in the satellite body-

fixed Cartesian frame (B). Similarly, the vector from the Earth to the Sun resolved

in I frame can be denoted as ~rs/o
∣∣
I
. With the same notation, the Sun position vector

resolved in the B frame is expressed with the notation ~rs/o
∣∣
B

.

Given the orbit parameters, an orbit propagator (based on Newtonian dynamics

with Earth oblateness effects) is used to calculate the satellite position vector, ~rb/o
∣∣
I
.

Eq. (2.6) below is used to calculate the position vector from the satellite to the

Sun(~rs/b) in the I frame.

~rs/o
∣∣
I
(t)− ~rb/o

∣∣
I
(t) = ~rs/b

∣∣
I
(t). (2.6)

Here, point o is the origin of I frame and is located at the Earth’s center, while point

b is the origin of B frame and is located at the center of the +z face of the satellite.

In order to facilitate shadow and eclipse calculations, the Sun vector from the

satellite body center ~rs/b is expressed in the B frame using the orientation matrix

OB/I , as given in Eq. (2.7).

~rs/b
∣∣
B

(t) = OB/I(t) ~rs/b
∣∣
I

(t). (2.7)

OB/I is the orientation of the frame B relative to the frame I. It is a function of time

as the spacecraft’s orientation relative to the inertial frame will change during the

course of an orbit.

OB/I is calculated with

OB/I(xβ , t) = OB/O(xβ)OO/I(t), (2.8)
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where,

OB/O(xβ) =


cos (xβ) sin (xβ) 0

− sin (xβ) cos (xβ) 0

0 0 1

 , (2.9)

OO/I(t) =

[
îo

∣∣∣
I
(t) ĵo

∣∣∣
I
(t) k̂o

∣∣∣
I
(t)

]T
. (2.10)

The vectors îo, ĵo, k̂o are the basis vectors of the LVLH frame and are defined by the

unit position vector (r̂b/o) and velocity vector (v̂b/o) of the satellite as follows,

k̂o = −v̂b/o, ĵo = r̂b/o × k̂o, îo = ĵo × k̂o. (2.11)

Next, the following process is used to transform the sun vector in the body frame,

~rs/b
∣∣
B

, to a spherical, unit-vector representation, r̂s/b
∣∣
S
. This body-fixed spherical

frame, S, is called the attitude sphere, and it has been used to optimize directional

sensors on a satellite [51]. The attitude sphere is adopted here to optimize the fixed

angle of the photovoltaic panels and is shown in Fig. 2.6.

In S, the inclination angle from the z-axis is θ, while the azimuth angle around

the z-axis as measured from the x-axis is ϕ. The mapping from Cartesian to spherical

coordinates of the Sun vector (~rs/b
∣∣
B

) is defined as follows,

~rs/b
∣∣
B

(t) 7→ ~rs/b
∣∣
S

(t), (2.12)

~rs/b
∣∣
B

(t) = [x(t), y(t), z(t)] ,

~rs/b
∣∣
S

(t) = [θ(t), ϕ(t), ρ(t)] ,

x(t) = ρ(t) sin θ(t) cosϕ(t),

y(t) = ρ(t) sin θ(t) sinϕ(t),
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Figure 2.6: The Sun position in the body-fixed spherical frame S.

z(t) = ρ(t) cos θ(t),

ρ(t) =
√
x(t)2 + y(t)2 + z(t)2.

Next, ~rs/b
∣∣
S

is converted to a unit vector, r̂s/b
∣∣
S

since only the direction is consid-

ered at this time, 4

r̂s/b
∣∣
S

= {(θ, ϕ, 1) |θ ∈ [0◦, 180◦] , ϕ ∈ [0◦, 360◦)} .

Fig. 2.7 plots the example motion of the Sun in the S frame for a year time horizon.

The left portion of the figure is the attitude sphere where color intensity is propor-

tional to the total time in the Sun at the given angle. On the right, the sphere is

mapped to two dimensions, inclination and azimuth, again with color proportional to

4We assume solar illumination is constant over the given time interval.
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Figure 2.7: Sun angle mapping onto the attitude sphere (Left) and the azimuth-
inclination plane (Right) for an example orbit : i = 60◦, Ω = 90◦ over a
one year simulation.

total time in the sun during the simulation. There are distinct regions of greater sun

exposure, and there are also regions which experience no exposure to the sun (such as

the nadir-pointing face). These plots provide insight into where photovoltaic panels

would be most and least effective.

2.3.3 Calculation of Photovoltaic Array Illumination, Power, and Energy

Given a distribution of Sun position over the attitude sphere of a satellite, a

technique is now needed to assess the photovoltaic array illumination for each point

of the sphere. This will enable power and energy generation to be calculated. This is

particularly difficult due to the complex geometries of the space-dart, and an analytic

solution was not found. Thus, a numeric technique and tool were developed that use

the graphic capabilities of the OpenGL, an API for rendering 2D and 3D graphics

[52].

A tool was developed that creates a rendered scene in OpenGL using a CAD

model of the spacecraft. The CAD model captures the spacecraft geometry as well as

the deployable panel angle, xα. In the scene, each cell is modeled and colored white

while the background and everything else that is not a cell are colored black.
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An orthographic camera is placed facing the spacecraft along the vector to the Sun,

r̂s/b
∣∣
S
, which represents a particular location on the attitude sphere. The cells visible

to the camera are the ones that are illuminated when the Sun is in this position.

The orthographic nature of the camera produces a 2D rendering of the 3D CAD

model. This effectively implements the dot product between the Sun vector and

the photovoltaic face needed for power calculation. Fidelity of the rendering and

illumination calculation is increased by increasing the number of pixels in the scene.

Pixels are converted to area depending on pixel density and CAD dimensions.

The camera position, which represents the Sun angle, is then moved through 4π

steradians to calculate illumination for each possible Sun position, that is, the angles

θ and ϕ are varied throughout their range in the attitude sphere. Step size can

be varied to meet geometric complexity and fidelity requirements. For each cell on

each panel, the illumination value is calculated for each Sun position. A graphical

representation of this calculation is shown in Fig. 2.8. The color bar maps the ratio

of increased illumination area which varies from 0.0 to 1.0 (blue to red, respectively).

This ratio includes shadow effects of other panels and the cosine area decrease due to

non-orthogonal illumination angles. Fig. 2.8(a) provides an example of these shadow

effects as the deployed panels shade a particular cell at certain angles.

The effective area of illumination for each cell is then combined into a total area

value of photovoltaic illumination for each Sun position. The total illumination area

Atotal is calculated as follows,

Atotal (xα, ϕ(t), θ(t)) =
84∑
i=1

Ai (xα, ϕ(t), θ(t)) . (2.13)

where i is the photovoltaic cell number. The Atotal calculations for several example

configurations are presented in Fig. 2.9.

With this illumination area Atotal, it is possible to calculate instantaneous power
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0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.00

Illuminated Area

 2m

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

Azimuth(φ)Inclination(θ)

0 

60

120

180  

360

240

120

0

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

Azimuth(φ)Inclination(θ)

0 

60

120

180  

360

240

120

0

 2m

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

Azimuth(φ)Inclination(θ)

0 

60

120

180  

360

240

120

0

 2m 2m

0x  40x  90x 

Figure 2.9: The total illuminated area of the photovoltaic cells as a function of Sun
position in the body-fixed, spherical coordinate system.

33



generation Psolar and total energy collection J , both of which are needed for assessing

the objective function.

Psolar (x,p, t) = S0εcellAtotal (x,porbit, t)

= S0εcellAtotal (xα, ϕ(t), θ(t)) .

(2.14)

S0 is the solar constant. Via the method above, the Atotal calculations were reduced

to be a time-varying function of the design variables.

Energy J is calculated from the integration of Psolar over a given time horizon T ,

J (x,p) =

T∫
0

Psolar (x,p, t)dt

=

T∫
0

S0εcellAtotal (x,pSC , t)dt

=

T∫
0

S0εcellAtotal ([xα, xβ] ,pSC , t) dt

=

T∫
0

S0εcellAtotal (xα, ϕ(t), θ(t)) dt.

(2.15)

2.3.4 Simulator Overview

The simulator consists of two main modules, and is built in a MATLAB/Simulink

TM framework. The first module generates and calculates the Sun-exposed area of

each angle with respect to incident Sun angle. A simplified CAD model of the satellite

is loaded into MATLAB for processing. The OpenGL module in MATLAB is used

to calculate the sun exposed area for each Sun angle. Data is stored for use by the

second module.

The second module simulates power generation with Simulink. The module models

the orbit and attitude dynamics, the frame conversion and the power generation. To
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accelerate simulation speed, C++ auto coding function is used. The simulation can

be adapted for different missions by changing the input photovoltaic panel CAD file

and panel configuration.

2.4 Simulations

With this methodology, simulations were performed to select optimal design vari-

able values in relation to various parameters for the CADRE mission. A simulation

period of one year was used as it is a typical mission life time for small, Low Earth

Orbit (LEO) satellites and because it provides full coverage of seasonal effects. For

future simulations of shorter term missions launched into lower altitudes, a shorter

simulation time period is recommended. Starting the simulation at different times

can account for launches during different seasons. Design variables were restricted to

the following cases to simplify assessment while providing meaningful, practical data.

(xα, xβ) ∈ {(0◦, 0◦), (90◦, 0◦), (0◦, 45◦), (90◦, 45◦)}.

Orbital parameters were also simplified, and this process is described below in Section

2.4.1. Simulation outputs included the orbital average, maximum, and minimum

power plots over the full time horizon as well as short-term, six hour simulations to

provide insight into smaller scale power generation features. Given the simplification

of the design variable options, a brute force simulation was employed to simulate all

possible configurations in the design space of xα and xβ
5. Each of the simulation

scenarios and resulting data are described below with a deeper discussion of results

in Section 2.5.2.

5Each case of simulations took 3 to 5 minutes for one year simulations with MATLAB on Windows
7 3.40GHz PC.

35



2.4.1 Simplification of Orbital Parameters

The impact of orbital parameters on Sun angles and power generation is complex.

The satellite orientation and the orbital parameters define the geometric relationship

between the Sun and the satellite, which is the angle between the vector to the Sun

and the photovoltaic panels. Complexity is compounded in that most small satellites

are launched as secondary payloads which eliminates the mission’s ability to pick an

optimal orbit. Thus, since an optimal orbit cannot typically be selected, a technique

for design optimization given a particular orbital scenario is useful.

While the model and simulator support an exhaustive and potentially time inten-

sive search of various orbital parameters, some simplifications are possible for typical

LEO small satellites. This is relevant to our example mission, CADRE, which seeks

a high inclination (greater than 60◦) and altitude less than 700 km. First, a circular

orbit is assumed. In a review of recent LEO launches 6 7, it was found that more

than 81% of the satellites had an eccentricity less than 0.01. This simplifies analysis

by enabling removal of the argument of perigee (ω) since circular orbits do not have

a defined perigee.

Inclination (i) and the right ascension of the ascending of the node (Ω) determine

the orientation of the orbital plane relative to an inertial reference frame, and thus

are important in determining angles from the satellite to the Sun. Inclination is

included and varied throughout the simulations. Ω is somewhat difficult to consider

as it couples with i to produce sun-synchronous orbits. The year long simulations

average out the time-varying effects of Ω and sun-synchronous orbits are treated as

special, specific examples. The semi major axis (a) determines time in eclipse, and

must be considered directly as a simulator parameter.

The impact of Ω and i for lower inclination orbits on power generation is shown

6Michael’s List of Cubesat Satellite Missions, http://mtech.dk/thomsen/space/cubesat.php
7Radio Amateur Satellite Corporation, http://www.amsat.org/amsat/ftp/keps/current/amsat.all
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Figure 2.10: The precession rate, Ω̇, at different inclinations, and the average power
generation in these differing orbits.

in Fig. 2.10. The top portion of the figure plots the orbital precession speed as a

function of i. For inclinations less than 81◦ at this altitude, RAAN will vary over

360◦ during a one year simulation period. The impact of this precession on power

generation is shown in the lower four plots of Fig. 2.10. A specific simulation was

run on CADRE with the panel angle at (90◦) and the roll angle at (45◦). Four plots

of data are shown with i fixed at 20◦, 40◦, 60◦ and 80◦ and RAAN varied over 360◦.

In contrast, the precession rate for high inclination orbits is relatively slow, which

dramatically impacts photovoltaic power generation. In this work, we model these

high inclination orbits as sun-synchronous, and various sun-synchronous orbits with

different RAAN values are evaluated.

During the following simulations, S0, the photovoltaic power flux density, is as-
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Figure 2.11: Overview of different sun-synchronous orbits.

sumed to be 1367 W/m2 [53], and constant during the simulations. It does vary

approximately ±3.5% depending on season [54]. However the simulations are over a

year, therefore a yearly average is used. If the mission life time is targeting specific

period shorter than 3 month, a more accurate model of S0 can be used. Photovoltaic

cells are assumed to have an efficiency of 28%.

2.4.2 Sun-synchronous Orbits

The first set of simulations considers circular, sun-synchronous orbits at an alti-

tude of 700 km and an inclination of 98.33◦. Fig. 2.11 provides an overview of a

sun-synchronous orbit (not to scale). This orbit precesses at the same rate that the

Earth rotates around the Sun. Thus, the orbital plane maintains near constant β an-

gle (the angle of the orbital plane with respect to the Sun [55]) throughout the year

and, even with the effect of the obliquity (23.4◦), the yearly variation is relatively

small compared to other orbits. In the simulations, RAAN was varied to produce

noon-midnight and the dawn-dusk orbits. These are good examples with which to

begin because the geometry is simplified, the angle from the Sun to the orbital plane
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is nearly constant, and it is easier to intuitively understand the results.

2.4.2.1 Noon-Midnight Orbit Case

The simulation results of the noon-midnight orbit with variations in the design

variables are presented in Fig. 2.12. The four plots of the figure have constant roll

angle along a row and constant panel deployment angle along a column. The first

observation is that the average and maximum power values throughout the orbit

have variations (0.1-10%) over the year. These are due to seasonal effects imparted

by the Earth’s obliquity. Second, a 90◦ panel deployment angle produces more power,

approximately twice as much, than a 0◦ panel deployment angle. With a 90◦ panel

deployment angle, four faces of the panels are simultaneously illuminated, see 4 of

Fig. 2.12(b) while in the 0◦ angle case, at most only two full panels are exposed.

For the roll angle, xβ, an angle of 45◦ produces greater power than 0◦. At 45◦,

there is an approximately 1.4 times (2 · cos 45◦) increase in photovoltaic panel area

along the z-axis of the satellite, which results in increased power generation. The

impact of this increase is greater for a panel angle of 0◦ since the cells are oriented

along the z axis. For the 90◦ panel deployment angle, the majority of the surface area

from the deployed panels is in the x-y plane, thus, in this case, the roll angle does

not contribute significantly to the orbit average.

In summary, for the noon-midnight sun-synchronous orbit, maximum power gen-

eration occurs when xα = 90◦ and xβ = 45◦.

2.4.2.2 ‘Dawn-Dusk’ Orbit Case

The simulation results of the ‘Dawn-Dusk’ Orbit are presented in Fig. 2.13. Note

that with the selected orbit altitude of 700 km, seasonal periods of eclipse occur

due to the Earth’s obliquity. Altitudes greater than approximately 1000 km will see

continuous illumination throughout the year.

39



0 50 100 150 200 250 300 350
0 

5 

10

15

20

W
a
tt

(W
)

time(day)

 

 

Orbit Max Power

Orbit Min Power

0 2 4 6
0 

5 

10

15

20

time(hour)

 

 

Power generation

Orbit average Power

1 

2 

3 

1 

2 

3 

(a) xα = 0◦, xβ = 0◦.

0 50 100 150 200 250 300 350
0 

5 

10

15

20

W
a
tt

(W
)

time(day)

 

 

Orbit Max Power

Orbit Min Power

0 2 4 6
0 

5 

10

15

20

time(hour)

 

 

Power generation

Orbit average Power

4 

5 

6 4 

5 

6 

(b) xα = 90◦, xβ = 0◦.
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(c) xα = 0◦, xβ = 45◦.
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Figure 2.12: One year simulation of Noon-Midnight orbit and 6 hour simulation of
the 40th day with a diagram of CADRE attitude to the Sun.
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(b) xα = 90◦, xβ = 0◦.
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(c) xα = 0◦, xβ = 45◦.
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Figure 2.13: One year simulation of ‘Dawn-Dusk’ orbit and 6 hour simulation of the
40th day with a diagram of CADRE attitude to the Sun.
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Roll angle results are similar to the noon-midnight orbit simulations. With a 45◦

roll angle, there is an increase in photovoltaic cell surface area along the z-axis of the

satellite, and the increase is relatively greater when the panel deployment angle is at

0◦. For this panel deployment angle, results are the opposite with respect to the noon-

midnight case since the Sun never illuminates along the z-axis, only perpendicular

to the z-axis. Panels deployed at 90◦ are only ever slightly illuminated since sun-

synchronous orbits never have a β angle equal to 90◦. Variations in the dawn-dusk

simulations are seasonal and primarily generated by β angle variation.

In summary, for the ‘Dawn-Dusk’ sun-synchronous orbit, maximum power gener-

ation occurs when xα = 0◦ and xβ = 45◦.

2.4.3 Non-Sun-Synchronous Orbits

Another class of orbits potentially applicable to CADRE are high inclination, but

non-sun-synchronous orbits. An altitude of 500 km is selected and inclinations of

67◦ and 82◦ are simulated. The simulations are over a one year time horizon and

minimum, maximum, and average power numbers are summarized below in Fig. 2.14

and Fig. 2.15.

2.4.3.1 Case 1 : Inclination 67◦ Orbit

Strong seasonal effects in power generation are evident in this orbit, as shown in

Fig. 2.14. There are distinct variations in average, maximum, and minimum power

generation values for all configurations of the design variables. As the orbit precesses

at a rate not synchronized with the Earth’s rotation around the Sun, these variations

occur.

For the perpendicular panel deployment angle, xα = 90◦, there are strong varia-

tions in maximum power generation where some periods produce twice as much power

as others. Interestingly, periods of full illumination produce less average power due to
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(a) xα = 0◦, xβ = 0◦.
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(b) xα = 90◦, xβ = 0◦.
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(c) xα = 0◦, xβ = 45◦.
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(d) xα = 90◦, xβ = 45◦.

Figure 2.14: One year simulation of 67◦ inclination orbit and 6 hour simulation of
sample days with different design variable values.
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the deployed photovoltaic panels seeing less direct sunlight. Roll angle, xβ, impacts

power generation 18 - 26%.

For the parallel panel deployment angle, xα = 0◦, again there are strong variations

in maximum and minimum power, and the average power can vary by over 50%.

Maximum peak and average power occurs during the periods of full illumination.

Roll angle, xβ, impacts power generation 7 - 25%.

2.4.3.2 Case 2 : Inclination 82◦ Orbit

In the 82◦ inclination orbit simulation, seasonal variations occur similar to the 67◦

case, but the variations are slower due to the slower variation in β angle. For example,

three full illumination time periods, shown by the white colored gaps between 80-100

days, 170-190 days, and 250-270 days occur at similar times for both the 82◦ and 67◦

inclination orbits, but have a longer duration in the 82◦ inclination orbit. The trends

in power generation are similar to the previous orbit example.

2.5 Discussion - Optimal Angles

With an extension to the simulations and initial results from above, optimal angles

for the CADRE mission are determined below for potential orbit candidates. Given

that CADRE, as a CubeSat, will fly as a secondary payload, orbital parameters are

not firmly established, and thus a range of angles for a variety of orbits are useful to

the design engineers. The final angles will be set and implemented once the orbit is

known.

Optimal angles for several orbits using the first objective function, maximum

energy (or maximum average power), are determined below. This objective function is

used since we expect CADRE to be power limited due to payload and communication

power requirements. Two roll angles are used, xβ ∈ (0◦, 45◦), and the deployment

panel angle, xα, is varied from 0◦ to 90◦. The results are plotted in 3D figures and
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(a) xα = 0◦, xβ = 0◦.
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(b) xα = 90◦, xβ = 0◦.
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(c) xα = 0◦, xβ = 45◦.
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(d) xα = 90◦, xβ = 45◦.

Figure 2.15: One year simulation of 82◦ inclination orbit and 6 hour simulation of
sample days with different design variable values.
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a projection to 2D contour lines in Fig. 2.16 and 2.17 for sun-synchronous and non-

synchronous orbits, respectively.

2.5.1 Sun-synchronous Orbits

Multiple year-long simulations were run with varying panel deployment angles, roll

angles, and RAANs while the orbital altitude was fixed at 700 km. The simulated

launch date was 20 March 2014, which is a spring equinox. In sun-synchronous orbits,

RAAN varies by approximately 1◦ and thus determines the β angle. β is constant

as the varying RAAN rate matches the orbital period of the Earth around the Sun.

Thus, for a given orbit determined by the RAAN, Fig. 2.16 plots the average power

for varying deployment and roll angles at a constant β angle. Note that average power

numbers are given in the plot and text below since power is more typically used by

our design teams. The average power multiplied by one year will provide total energy

generated.

Peak power production occurs in the dawn-dusk orbits, as expected since they

contain the largest illumination time periods. The peak points are denoted by red

triangles in Fig. 2.16. For a roll angle of 0◦, peak power is 11.98 W at xα = 27◦. At a

roll angle of 45◦, peak power is 13.86 W at xα = 21◦. Also, the interesting example of

noon-midnight orbits are marked with blue squares. The deep valley and peaks of the

plots are expected due to the constant β angle. The lack of variability in β limits the

coverage of illumination of the satellite; only a limited range of the attitude sphere

receives light. Thus, only a limited number of angles see maximum illumination.

Roll angle has an impact on energy generation, up to 15.6% for the dawn-dusk

orbits and 9.6% for the noon-midnight orbits. This is primarily due to the increased

illumination of the body-mounted panels.
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Figure 2.16: Average power generation of sun-synchronous orbits with varying
RAANs and photovoltaic panel angle.
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Figure 2.17: Average power generation of non-sun-synchronous orbits with varying
inclinations and photovoltaic panel angles.
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2.5.2 Non-Synchronous Orbits

Similar exhaustive simulations were run for non-synchronous orbits with varying

panel deployment and roll angles. However, the orbit inclination was changed rather

than RAAN. RAAN is time-varying (the orbit is precessing) at a rate that alters the

β angle throughout the year-long simulations. Thus, the RAAN impact is averaged

out. The orbital altitude is fixed at 700 km and the inclination is varied from 0◦ to

90◦. Results of the simulations are plotted in Fig. 2.17. These plots are distinctly

different in that they lack the strong peaks of Fig. 2.16.

The general trend is that higher panel deployment angles produce more power

for these lower inclination orbits. As the orbit precesses in a non-sun-synchronous

manner, the β angle changes and the satellite is illuminated from additional angles;

there is increased coverage of the attitude sphere. Higher panel deployment angles

create diversity and higher illumination area, see Fig. 9. Peak power points for each

inclination are identified by circles in Fig. 2.17. The effect of the roll angle on the

power generation is smaller than in sun-synchronous orbit cases, and a 45◦ roll has

better power generation.

2.6 Conclusion

We have developed a methodology and simulation environment for calculating

power generation on satellites with complex photovoltaic panel geometries and for

optimizing design variables that impact the power system. Several objective functions

for optimizing power systems are identified: maximizing total energy, maximizing the

minimum average power per orbit, and minimizing the variance in power generation.

The developed simulation system is capable of identifying panel deployment and

satellite roll angles to maximize total energy collected.

There are two key features of the system: the ability to quickly assess self-induced
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shadowing and the ability to calculate sun angles in a body-fixed frame local to the

satellite. Self-induced shadow is calculated using a CAD model of the system and

OpenGL, a framework for advanced computer graphics. For a given sun angle, the

illumination of photovoltaic cells is calculated and mapped to a body-fixed frame

called the attitude sphere. Thus, for each potential direction to the Sun, a map of

all photovoltaic cells that are illuminated is known. Orbital and attitude dynamics

simulators are then used to calculate angles between the satellite and the Sun. These

again are mapped to the attitude sphere and weighted according to occurrence during

the simulation time period. These two outputs, shadow mapping and sun angle

directions, provide fast calculations of power and energy generation capabilties of the

satellite.

This system was applied to determine optimal design parameters for a common

small satellite configuration, the space-dart. The space-dart is a 3U CubeSat with de-

ployed photovoltaic panels, and resembles a dart or a shuttlecock. In particular, we

used a space weather science mission referred to as CADRE that is in development at

the University of Michigan. CADRE is power limited and its deployed photovoltaic

panels create complex shadow geometries. Multiple simulations were performed for

various roll angles of the satellite, panel deployment angles, and orbit scenarios. Close

attention was given to sun-synchronous effects. The results show that power gener-

ation of a space-dart configuration can vary more than 40 percentage due to orbit

geometries and the photovoltaic panel angle configurations. For a sun-synchronous,

dawn-dusk orbit at 700 km, we estimated a peak average power generation of 13.86

W . For a non-synchronous orbit, the estimated peak average power was 9.6 W . These

techniques can be applied to a variety of photovoltaic panel design problems where

the sun angle to the panels and the panel orientation are dynamic.

An additional lesson learned in this effort is the strong coupling between satellite

attitude and power generation. While this conclusion is somewhat obvious, the model
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and solution together with simulation complexity demonstrates the need for a frame-

work that captures the multiple dimensions of the full space system. As shown in the

next chapter, additional disciplines such as thermal and communication are primary

drivers in the highly coupled, small satellite systems. Thus, in the next chapter, we

develop the capability to handle multdisciplinary optimization capable of using fast

and accurate gradient-based optimizers.
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CHAPTER III

Multidisciplinary Design and Operation

Optimization of Small Satellite

3.1 Introduction

The complexity of power and attitude control optimization is evident in the ad-

vanced science mission, CADRE, which is in development at the Michigan eXplo-

ration Laboratory (MXL). CADRE’s primary mission is to fly the Wind Ion Neutral

Composition Suite (WINCS) payload, an instrument for measuring the composition

and energy of neutral winds and inos in the thermosphere [48]. WINCS requires a

considerable amount of power and data download capability while remaining in a

specific attitude orientation for science operation. The simultaneous maximization of

the power generation and data transmission under this attitude requirement must be

considered in the system design process.

Motivated by this problem and the results of Spangel et al.[41], a novel approach to

multidisciplinary design and operation optimization of a small satellite is developed.

The problem of this section considers the satellite’s operations regarding attitude

rotation, communication, power, and photovoltaic array regulation, while the problem

in [41] only considers GS operations, scheduling and the power of a satellite. The

operation of the satellite during its mission period increases the total number of the
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design variables to thousands. In addition, these operation variables are coupled with

each other and also coupled with the geometry design variables such as the deployable

photovoltaic panel angle and the antenna direction.

A large-scale MDO methodology which unifies the design and operation optimiza-

tion of a spacecraft is adopted to the proposed problem [2]. The large number of

disciplines and variables of the suggested problem are handled with gradient-based

optimization, which performs better than gradient-free methods in large-scale opti-

mization problems [56]. Sequential Quadratic Programming (SQP) and sparse linear

algebra routines are also implemented to reduce the memory usage and computa-

tion time caused by the large number of variables. The gradient-based solver can

find a solution faster if analytic derivatives are provided, so, to compute the analytic

derivatives at a cost nearly independent of the number of design variables, the adjoint

method developed by Martins [57] has been also implemented.

The structure of this chapter is as follows. First, the CADRE MDO problem

is defined and constructed. Second, all disciplines used in the MDO problem are

explained in detail. After that, the optimization results are presented and followed

by a detailed analysis in the discussion section. As a conclusion, the method to apply

the optimization results in orbit is summarized.

3.2 MDO Problem Definition

In this section, an objective function, design variables, and constraints of the MDO

problem for our space system are introduced.

The objective function of our MDO problem is the total amount of downloaded

data. This objective function is selected for its relevance to recent missions for which

a method to maximize this quantity was highly desirable [58, 41].

The space system MDO problem includes many design variables such as deployable

panel angle, installation of the photovoltaic or radiator cell, electric power distribu-
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tion, antenna install angle and etc., which are closely coupled. For example, CADRE

has four deployable panels and their angle needs to be decided upon. The amount

of photovoltaic power generation depends on this panel angle setting which affects

the mutual shadow casting between the body panels and the deployable panels. The

complex shadows make specific photovoltaic cell positions less effective in power gen-

eration, so, a radiator cell can be installed instead of installing a photovoltaic cell,

which is also a design variable that needs to be decided on. The installation of the

radiator cell can reduce the temperature of the satellite body and deployable panel,

which affects the efficiency of photovoltaic power generation and battery charging.

The amount of data the communication system can send to the ground station is

dependent on the amount of power this system has available to use. In general, the

more power provided by the photovoltaic array and battery, the more data can be

transmitted. Furthermore, if the ground station antenna is aligned with the satellite

antenna, more data can be transferred with less power. However, to align satellite

antenna, attitude operation is required and, sometimes, the actuator power spent in

aligning the antenna is more than the power used by communicating without the

alignment. To decide the value of various design variables suggested here, many
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(b) CADRE rotation angle.

Figure 3.1: Angle definitions of CADRE.
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disciplines and their coupling need to be considered.

In addition, the operation profile can also be an important design variable in the

space system MDO problem. So, CADRE’s attitude operation profile over time is

included in the MDO problem because attitude operation can help increase power

generation and cool down the panel temperature when necessary. It may also help

increase the antenna transmission gain by pointing the antenna to the ground station.

The attitude operation and the geometric design must be optimized simultaneously

since different operations require different geometry configurations. If the panel angles

are optimized without the attitude operation in orbit, then the panel angles may not

be optimal with the attitude operation in orbit. Another operation profile included

in this MDO problem is the operation of the electric power system. CADRE requires

optimal distribution of the power to the communication system and ADCS, so we

make the optimizer decide the distribution of the power and also decide the optimal

regulation operation of the photovoltaic array. The operation of the power system

makes the number of resulting design variables reach tens of thousands, and also

makes the MDO problem almost impossible to solve.

The space system MDO problem also includes many constraints such as the re-

quired attitude, battery depth-of-discharge (DOD) and others. For example, the atti-

tude of WINCS, as introduced in the previous section, also requires the −z axis to be

parallel with the orbit velocity vector, which only allows the satellite rotate around

the roll axis (see Fig. 3.1). Along with the attitude constraints, battery constraints

such as charge/discharge rate and the depth-of-discharge limit are also important. If

the depth-of-discharge limit is violated often, we can lose mission lifetime due to the

battery lifetime loss.

To design such a complex space system with constraints, the relation between the

disciplines need to be defined with the stated variables as shown in Fig. 3.2.
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Figure 3.2: XDSM diagram for CADRE optimization [2].

3.3 Discipline Models

CADRE design problem includes orbit dynamics, attitude dynamics, photovoltaic

power system, battery, thermal, and communication disciplines and each discipline is

explained with the detailed description in the following section. Model parameters

and numerical values that are implemented in this section are summarized in Table

3.1.

3.3.1 Orbit Dynamics

The equation of motion representing orbit dynamics can be divided into the cal-

culation of the satellite position and the Sun position.

3.3.1.1 Satellite Position

The satellite position vector from Earth is computed in the Earth-centered inertial

frame. The two body orbit motion with the Earth oblateness effect are assumed and

the Earth oblateness effect can be expressed by including the J2, J3, and J4 coefficients

in the Eq. (3.1).
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(3.1)

where ~r = ~rb/e
∣∣
I

= [rx ry rz]
T and r =

√
r2
x + r2

y + r2
z . The lower-case subscripts

such as b, e represent the specific point which denote the satellite body and the Earth

center respectively. ~rb/e implies the vector pointing from the Earths origin to the

satellites origin. The upper-case subscripts with the right bar indicate the reference

frames of the vector and ~r|I means the vector ~r resolved in the Earth-centered inertial

frame. These J2, J3, and J4 terms affect the orbit plane rotation (precession) and the

deployable panel angle design with precession is more complex than the design without

precession because the Sun incident angle to orbit plane(β angle) varies depending

on the orbit inclination.

3.3.1.2 Sun Position

1. Sun

To be able to estimate the Sun vector, the relationship between the Earth and

the Sun has to be identified. It is well-known that the Earth revolves around

the Sun but it is more convenient to describe the relationship from the Earth’s

point of view, as illustrated in the Fig. 3.3. The elevation, εS of the Sun

from the Earths equator varies by ±23◦. Kristiansen [3] proposed the following

relationship to calculate the solar elevation:

εs =
23π

180
sin

(
2π

365
ts

)
, (3.2)

where ts is the time elapsed since the first day of spring. It is assumed that

orbit time is 365 days (a year) and that the Earth’s orbit is circular because
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Figure 3.3: Sun elevation in an imaginary orbit around the earth [3].

this error has little affect on a constant parameter of solar pressure estimation.

The Sun’s position, λS, in this imaginary orbit around the Sun, is given by :

λs =
2π

365
ts. (3.3)

Knowing the elevation, εS, and the Sun’s position in relation to the Earth, it is

possible to calculate a vector pointing to the Sun. The calculation, starts with

Figure 3.4: Sun position in imaginary orbit around Earth [3].
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the initial position given on the first day of spring (vernal equinox),

r̂0
s/e

∣∣
I

=

[
1 0 0

]T
. (3.4)

Here, the lowercase subscript s/e implies the direction from the Earth to the

Sun. Both the Sun’s elevation and position describe its imaginary rotation

around the Earth. The position vector can be calculated as rotations:

r̂s/e
∣∣
I

=


cos(εs) cos(λs)

sin(λs)

sin(εs) cos(λs)

 . (3.5)

Here, r̂ means the normalized unit vector. Using the inertial to body rotation

matrix, the Sun’s position in the body frame is computed, which is then con-

verted into spherical coordinate values, azimuth and elevation, shown in Fig.

2.6. The equations for this conversion to spherical coordinates are introduced

in the section 2.3.2.

2. Eclipse [2, 59]

The eclipse of the Sun can be calculated by computing, d, between the position

vectors from the Earth center to satellite and the unit position vector from the

Earth center to the Sun in the ECI frame, i.e.,

d = ~rb/e · r̂s/e. (3.6)

If this value is positive, the satellite is located between the Sun and the Earth,

so the satellite is not in the eclipse. However, if the value is negative, we need

to check if the satellite is located in the cylindrical shadow of the Earth as in

the Fig. 3.5. To check this relation, the norm of the cross product, c, between
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the same vectors is required,

c =
∥∥~rb/e × r̂s/e∥∥2

. (3.7)

If d < 0, and c is greater than the Earth’s radius, Re, we can assume that

the satellite is receiving sunlight. The line-of-sight to the Sun, LOSs, is 0 if

the satellite is in the eclipse and 1 otherwise. To convert this binary function

to a continuous one, the penumbra area which smoothly transitions to zero is

assumed. The penumbra area is very small in the Lower Earth Orbit (LEO),

but it is exaggerated to avoid numerical difficulties in solving the optimization

problem. A cubic function is constructed between c = αRe and c = Re and the

value of α represents how smooth our transition function is. For this analysis,

the value of α is set to 0.9. The entire procedure used to compute LOSs is

60



illustrated in Fig. 3.5 and the equations are as follows.

η =
c− αRe

Re − αRe

, (3.8)

LOSs =



1, d > 0

1, c > Re

3η2 − 2η3, αRe < c < Re

0, c < αRe


. (3.9)

The proposed technique make LOSs variable continuous and differentiable and

this model can be justified by physical characteristics of a light such as diffrac-

tion and refraction. As we can experience from the sunset on the beach, the

satellite also enters the eclipse region with some transition.

3.3.2 Attitude Dynamics

Based on the payload requirements and its mounting direction we can define in-

termediate frame that we will refer to here as the rolled body-fixed frame, denoted by

R. The axes of the rolled body-fixed frame are denoted îR, ĵR, and k̂R. Orientation

matrices are represented with the letter O, and OR/I represents the rotation from the

Earth-centered inertial frame to the rolled body-fixed frame,

k̂R = −v̂b/e, ĵR = r̂b/e, and îR = ĵR × k̂R, (3.10)

OR/I =

[
îR ĵR k̂R

]T
. (3.11)

Here, note that the direction of the vector ĵR is defined to be parallel to the Earth-to-

body vector. This intermediate frame is the one that results from rotating the inertial

frame to ensure that the −k̂Bdirection is parallel to CADRE’s velocity vector, and a

second rotation implements the roll design variable γ. The rotation matrix for the
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rolled frame to body-fixed frame is defined as

OB/R =


cos γ sin γ 0

− sin γ cos γ 0

0 0 1

 . (3.12)

Using these matrices, we can calculate OB/I and, the angular velocity,

−~ω×B = ȮB/IOB/I
T , (3.13)

where ȮB/I is computed using the center difference formula. Then we can calculate

the total angular momentum as

~L = JB~ωB + JRW~ωRW ,

where the subscript RW means the value is related to the reaction wheel. By applying

derivatives, the following relation is obtained,

~̇L = JB ~̇ωB + ~ωB × JB~ωB + JRW ~̇ωRW + ~ωB × JRW~ωRW = 0. (3.14)

From Eq. (3.14), the Euler’s equations can be derived in terms of the reaction wheel’s

angular velocity and torque, i.e.,

~τRW = JB ~̇ωB + ~ωB × JB~ωB,

~̇ωRW = −JRW−1 [~τRW + ~ωB × JRW~ωRW ] ,

~τm = −~τRW − ~ωB × JRW~ωRW .

(3.15)

From Eq. (3.15), by selecting the design variable γ, we can calculate the required

torques and the rotating speed of the reaction wheel assembly. Here, the mass moment

62



Figure 3.6: Reaction-wheel model compared with manufacturer-provided data for
three torques [4].

of inertia matrices for the satellite and reaction wheels are given respectively,

JB = diag

[
0.018 0.018 0.006

]
kgm2,

JRW = diag

[
28 28 28

]
× 10−6kgm2.

An equation for the reaction wheel’s current draw is constructed in terms of its

angular velocity and required torque as in

I = (aω + bτ)2 + I0, (3.16)

where the values of a, b, and I0 are presented in Table 3.1. The related parameters

are estimated based on the manufacturer’s data, which are presented in Fig. 3.6.

For the power calculation, the 4V constant voltage is assumed for the reaction wheel
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motor.

3.3.3 Photovoltaic Power System

3.3.3.1 Photovoltaic cell illumination

CADRE is assumed to have 12 photovoltaic arrays with 7 cells in each array. For

the detailed panel and cell configuration, see Fig. 2.5 and Fig. 3.1. The photovoltaic

cell illumination is based on the model explained in Chapter II and computed using

OpenGL and a CAD model of the geometry. However, this model is discontinuous

and difficult to incorporate into the framework developed by Hwang et al. [2]. Thus,

data is processed with the B-spline multi-dimensional interpolant to approximate the

illuminated areas in terms of the three parameters such as the azimuth, the elevation

of the Sun, and the deployable panel angle. The cell illumination information is

used to simulate the photovoltaic power generation and the thermal status of the

deployable and the body panels of the satellite.

3.3.3.2 Photovoltaic cell power generation

One photovoltaic array is assumed to be constructed with the 7 cells which are

connected in series, so their output voltages are added to compute the total voltage

from the array. Each cell has a unique I-V curve which depends on its exposed

area and temperature. The I-V curve model includes the cell illumination and the

temperature as parameter and their relation in given by [60],

I = Isc − Isat
[
exp

{
V +RsI

VT

}
− 1

]
− V +RsI

Rsh

,

Isc = LOSs
Aexp
AT

Isc0 ,

VT =
nkT

q
.

(3.17)
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Figure 3.7: I-V curve of the photovoltaic cell with bypass diode assumption [4].

Here Isc0 is the short-circuit current assuming full exposure of the cell, n is the ideality

factor, k is the Boltzmann constant, q is the charge of an electron, Isat is the saturation

current, Rs is the series resistance, Rsh is the shunt resistance, AT is the total area of

cell, and Aexp is the exposed area to the Sun. Rs is assumed to be small and neglected

and the bypass diode is assumed to be installed on each cell. Then we can derive

piece-wise function for voltage versus current relation,

Isc − Isat
[
exp

(
V

VT

)
− 1

]
− V

Rsh

− I = 0, I 6 Isc,

V (I) = V0 tanh

[
−VTRsh

V0 (IsatRsh + VT )
(I − Isc)

]
, I > Isc.

(3.18)

The bypass diode affects when the array has partial shadow and, by adding the voltage

output of the each model, we can imitate the partial shadow effects on the array.
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3.3.4 Battery

This discipline estimates the State Of Charge (SOC) of the battery, which can be

computed by integrating the following equation.

˙SOC =
Pbat
VbatQ

,

where Q is the nominal discharge capacity of the battery, Pbat is the input power at

any given time instant to the battery, and Vbat is the voltage output of the battery.

We can compute the power at any given time instant as,

Pbat = Psol − PRW − Pcomm − P0. (3.19)

Here, the battery power is assumed to be the sum of all loads. Psol is the generated

power by photovoltaic cell arrays, PRW is the consumed power that is used by the

reaction wheel assembly, Pcomm is the consumed power that is used by communication

subsystem, and P0 is a 2-W constant power that is used by the scientific instruments

and actuator to counteract the disturbance torques. The SOC of the battery increases

as power is sent to the battery from the photovoltaic arrays and decreases as power

is extracted from the battery. The battery voltage output based on SOC is modeled

as,

Vbat (SOC) =

(
3 +

eSOC − 1

e− 1

)(
2− eλ

T−T0
T0

)
. (3.20)

This equation differs from the data provided by the manufacturer as shown in Fig.

3.8. However, the major difference is restricted to the low SOC range of the battery

that can be avoided by the optimizer by imposing appropriate constraints thereby

maintaining the solution within the model validity range.
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Figure 3.8: Battery-discharge curve model compared with manufacturers data at two
temperatures [4].

3.3.5 Thermal

Thermal modeling is coupled with the efficiency of the photovoltaic power system,

the battery output voltage, and even with the satellite attitude operation. By rotating

the satellite relative to the Sun, the illuminated cell area is changed and the total

energy influx is also affected. If the satellite temperature can be manipulated with

the roll angle operation, the photovoltaic array can generate more power without

excessive heating. The temperature within four deployable panels or the body block

is assumed to be uniform. To calculate the thermal flux of each block, both heating

and radiation from each of the 84 cells are considered and the Stefan-Boltzmann law
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is applied. The nonlinear ODE of thermal model is as followings,

Ṫ =
Q̇in − Q̇out + Q̇comm

m · cv
,

Q̇in = αqsolAexpLOSs,

Q̇out = ε

(
2π5k4

15c2h3

)
T 4AT ,

Q̇comm = (1− ηp)Pcomm,

(3.21)

wherem is the mass of the cell, cv is the specific heat capacity, α is the absorptivity,

ε is the emissivity of the cell, k is the Boltzmann constant, h is Planck’s constant, c

is the speed of light, AT is the total area of the cell, and Aexp is the exposed area for

the cell. During the communication process, we assumed that power amplifies data

transmission with an efficiency but remaining power is dissipated as heat. Based on

this assumption, ηp is assumed as 20% and Q̇comm is calculated.

In some cases, installing a radiator can generate more power than installing the

cells, due to the temperature characteristic of the photovoltaic array.

To add this to the optimization problem without adding a discrete variable, we

linearly interpolate the cell and radiator properties and allow the optimizer the choose

any ξ ∈ [0, 1] where ξ = 0 is a radiator, ξ = 1 is a cell, and intermediate values

represent some weighted average of the two.

3.3.6 Communication

To estimate the downloaded data amount, the data bit rate and the connection

time need to be calculated. If the data bit rate is getting larger, we can download

more data but, to increase this rate, more power or more antenna gain or less distance

to the ground station is required. We can also achieve the larger data bit rate by

decreasing signal-to-noise ratio (SNR) of the system but this change may make the

radio connection to the ground station unstable. Thus, SNR is fixed to a minimum
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acceptable value to maintain a secure connection and we use other variables as our

design parameters. The power can be a design variable and the roll angle operation

can also be a design variable because rotating the satellite to the ground station (GS)

direction can increase the antenna gain. Here is the equation for the data bit rate,

Br =
c2GrLl

16π2f 2kTs (SNR)

ηpPcommGt

S2
LOSc.

Here, c is the speed of light, Gr is a constant representing receiver gain, Ll is a

system line loss factor, f is the frequency, k is the Boltzmann constant, Ts is the

system noise temperature, Pcomm is the power used to amplify the signal, Gt is the

satellite antenna transmitter gain, and S is the distance between the ground station

and the satellite, respectively. The same ηp value used in the thermal discipline is also

implemented here. The LOSc variable is computed based on the dot product between

the normalized Earth-to-ground station vector and the Earth-to-body vector in the

inertial frame. The discontinuous function is smoothed, in this case by assuming that

the line-of-sight (LOS) variable gradually increases as the satellite comes over the

horizon. This is illustrated in Fig. 3.9.

To deploy a more realistic Gt, the antenna gain pattern analysis needs to be done

with Ansys-HFSSTM. This tool supports antenna design with 3D far field gain plot

as in Fig. 3.10.

3.4 Optimization

3.4.1 Approach to MDO Problem

To solve the CADRE MDO problem, we need to consider many technical chal-

lenges. In this dissertation, to solve each of the technical challenges of the large-scale

MDO problem, we have adopted the following approach developed by Hwang et al.

[2, 4]. First, to handle the large number of design variables, gradient-based optimiza-
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Figure 3.9: Illustration of the communication line-of-sight variable.

tion is adopted, because the gradient-free optimizers such as GA and PSO cannot find

the solution of the problems with hundreds or thousands of design variables [61]. By

applying an adjoint method for computing derivatives, the gradient-based optimiza-

tion can search the solution to the large-scale MDO problem at a cost that is almost

independent of the number of design variables [57]. As a solver, SNOPT [62] with the

pyOpt interface [61] is implemented due to the efficiency of SNOPT for large-scale,

sparse nonlinear constrained problems.

Since our optimization has a large number of design variables, the adjoint deriva-

tive calculation method must be used, but it requires a linear solution for each con-

straint [2]. Moreover, the battery discipline requires four inequality constraints at

each time instance maximum charge rate, maximum discharge rate, minimum state

of charge, and maximum state of charge-resulting in tens of thousands of constraints

[4]. To reduce the number of constraints, the Kreisselmeier-Steinhauser (KS) function

[63] aggregates the constraints over all the time instances into a single criterion. Con-

straint aggregation with KS functions has been shown to work well in combination
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Figure 3.10: The antenna design and gain pattern acquired with Ansys-HFSSTM.

with the adjoint method in optimization problems [64, 65, 66]. The KS function is

given by

KS (x) = fimax (x) +
1

ρ
ln
∑
i

eρ(fi(x)−fimax (x)), (3.22)

where fi is the ith function in the vector of functions we wish to aggregate, imax is

the index of the function with the largest value at x, and ρ is a parameter that is

problem-dependent. The optimization problems solved in this chapter use ρ = 50, a

value that was found through numerical tests.

Another difficulty that the CADRE MDO problem includes is that each discipline

has a different time scale. For example, CADRE’s power and communication system

simulation requires a time-resolution of a minute over at least 12 hours of the satellite’s

operation. However, orbit simulations require a one year simulation to model the orbit

perturbation and the Sun elevation. To capture the characteristics of all disciplines,

we need to run a long simulation with a short time-resolution which also increases the

operation variables. Thus, the simulation time resolution is set to six 12-hour blocks
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and distributed uniformly over the year. The orbit and communication characteristics

are captured within the 12-hour blocks, and the orbit characteristics are captured by

simulating half a day every two months.

3.4.2 Optimization Problems

As introduced in the previous section, to include the characteristics of a whole

year, 6 days are selected bimonthly and a 12-hour simulation is performed on each

day. Thus, constraints such as the battery charge rate, discharge rate, and minimum

and maximum SOC are separately applied for each of the 6 days and the equality

of the SOC is applied at the beginning and end of each 12-hour simulation. Various

types of the variables are included in the problem. For example, deployable panel

angle and antenna angle can be handled with scalar variables, installation of a cell

or a radiator can be handled with 84 binary variables, and the roll angle variations,

photovoltaic regulator setpoint current, and communication power can be treated as

profile variables over time. Each profile variable is discretized with the number of

points used in the time integration (1500 points), which are represented using fourth-

order B-splines with 300 control points. The optimization problem is summarized in

Table 3.1 and solved with SNOPT [62].

3.4.3 Optimization Results

To evaluate the effectiveness of the optimization, three different optimization prob-

lems are solved. The first is a baseline optimization that is the same as the original

optimization problem in Table 3.1 except the deployable angle, antenna angle, and

attitude roll profile. The second optimization includes the deployable panel and an-

tenna angles which affect the satellite geometry. The third optimization adds both

the geometric design and attitude operation variables to the baseline optimization of

Table 3.1.
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Table 3.1: Discipline model parameters [4].
Orbit Dynamics

Gravitational parameter µ 398600.44 km3s−2

Earth’s radius Re 6378.137 km
Orbit perturbation coefficients J2 1.08264× 10−3

J3 −2.51× 10−6

J4 −1.60× 10−6

Attitude Dynamics

Model coefficients a 4.9× 10−4 A1/2s/rad

b 4.5× 102 A1/2/(Nm)
I0 0.017 A

Temperature
Mass m 0.4 (fin), 2.0 (body) kg
Specific heat capacity cv 0.6 (fin), 2.0 (body) kJ/kg K
Absorptivity α 0.9 (cell), 0.2 (radiator)
Emissivity ε 0.87 (cell), 0.88 (radiator)

Boltzmann constant k 1.3806488× 10−23 m2kg/(s2K)
Speed of light c 2.99792458× 108 m/s
Plancks constant h 6.62606957× 1034 m2kg/s
Total cell area AT 2.66× 10−3 m2

Solar constant qsol 1.36× 103 W/m2

Communication efficiency ηP 0.2
photovoltaic Power
Diode voltage V0 -0.6 V
Max. short-circuit current Isc0 0.453 A
Saturation current Isat 2.809× 10−12 A
Diode factor n 1.35 V
Charge of an electron q 1.60217657× 1019 C
Shunt resistance Rsh 40 Ω
Energy Storage
Nominal capacity Q 2900 mAh
Temperature decay coeff. λ ln(1/(1.1)5)
Reference temperature T0 293 K
Max. discharge rate Imin -10 A
Max. charge rate Imax 5 A
Communication
Receiver gain Gr 12.9 dB
Line loss factor Ll -2.0 dB
Transmission frequency f 437 MHz
System noise temperature Ts 500 K
Minimum acceptable SNR SNR 5.0 dB
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Table 3.2: Optimization problem configuration [4].
Variable/function Description Quantity

maximize
6∑
i=1

Di Data downloaded

with respect to 0 ≤ Isetpt ≤ 0.4 photovoltaic panel current 300× 12× 6
0 ≤ γ ≤ π/2 Roll-angle profile 300× 6
0 ≤ Pcomm ≤ 25 Communication power 300× 6
0 ≤ cellInstd ≤ 1 Cell vs. radiator 84
0 ≤ panelAngle ≤ π/2 Panel angle 1
0 ≤ antAngle ≤ π Antenna angle 1
0.2 ≤ SOCi ≤ 1 Initial state of charge 6

Total design variables number 25292

subject to Ib Ibat − 5 ≤ 0 Battery charge 6
−10− Ibat ≤ 0 Battery discharge 6
0.2− SOC ≤ 0 Battery capacity 6
SOC − 1 ≤ 0 Battery capacity 6
SOCf − SOCi = 0 SOC periodicity 6

Total constraints number 30

Table 3.3: Optimal design result for three problems [4].
Panel angle Antenna angle Data download

Baseline optimization 45◦ 0◦ 2122 Gb/yr
Geometry optimization 63.8◦ −45◦ 2991 Gb/yr
Geometry with attitude optimization 64.4◦ −45◦ 3758 Gb/yr

The results in Table 3.3 suggest that the geometric design optimization can in-

crease the data download amount by around 40%. In addition, they also suggest that

including attitude operation in the optimization problem can yield an additional 40%

by the data download increase. For all the problems, the optimizer chooses to install

the solar cell instead of the radiator for all 84 cells.

Fig. 3.11 shows how the developed MDO affects the downloaded data increase and

their distribution every 2 months. Fig. 3.12 and 3.13 shows the overall optimization

results with the comparison of the three optimization problems. The following anal-

ysis is based on the first and the second row of Fig. 3.12. All months show that the

geometry optimization with attitude operation provide more downloaded data than
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Figure 3.11: Division of total data downloaded over the six simulations for the three
optimization problems [4].

the baseline optimization. However, the baseline optimization sometimes has a larger

downloaded data than the geometry optimization without attitude operation and it

can be shown in month 7. This indicate that the fixed roll angle optimization cannot

always guarantee the maximization of the download data due to the long mission

lifetime and its orbit variation. The month 3, 9 and 11 plots show, with attitude

operation, the satellite can be connected with the ground station even at a pass that

cannot be connected when we do not use the attitude operation. We can see the

baseline optimization has no connection with GS at the first GS LOS, but other

optimization cases have connected with GS (note the green color line). The month 9

plots shows the attitude operation could be very effective if the specific orbital condi-
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tion is satisfied. See the download difference between the geometry only optimization

and geometry and attitude operation optimization.

The communication power plots show that the optimizer allocates power to the

transmitter only during the ground-station passes, as expected, but the peaks of

the spikes are limited by the available SOC and the discharge constraint. The SOC

plots show that the additional power generated by the optimization is used for a

gradual build-up of energy between data transmissions, enabling short and rapid

power discharges for high-bit-rate data transmissions.

In Fig. 3.13, from the total power graph of the first row, we can see the larger

increase from the baseline optimization to the geometry optimization but a rather

smaller increase from the geometry optimization to the geometry and attitude opera-

tion optimization. The second row of Fig. 3.13 shows that the geometry and attitude

operation optimization has a smaller variation in the generated current plot (espe-

cially on month 7) than the baseline optimization. This information indicates that

the deployable angle has a suppressing effect on the variation and gives the satellite

good exposure to the Sun, which can be also seen in the third row of graphs. However,

on the attitude operation side, the optimizer is more focused on chasing the ground

station instead of generating more power by chasing the Sun. The exposed area graph

of month 7 clearly presents this interest of the optimizer.

In the fourth row, the body temperature looks weakly dependent on the attitude

operation and it also has a small effect on the photovoltaic power generation.

The battery-current plots show that the communication power is limited by the

battery-discharge constraint for many of the ground-station passes, while the remain-

der are energy-limited.
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3.4.4 Discussion

The MDO results show that the optimized operations of the attitude and photo-

voltaic power system can improve the satellite performance. To apply the acquired

optimization results in orbit, the data transfer from the ground to orbit must be per-

formed with the radio communication. The proposed MDO results of the previous

section only cover about 3 days (6×12 hours) of operation information for the space-

craft in orbit. Thus, the same size MDO problem must be solved and the solution

uploaded to the satellite every 3 days. However, the data uploading can be hindered

by the ground station’s or satellite’s status and the satellite memory storage often

malfunctions due to the harsh space environment. To address these case, an opera-

tion controller, which executes the ground optimization results in orbit, is required.

For the development of the operation controller, the MDO operation results must be

analyzed and adopted in the controller. In this section, the attitude operation and the

photovoltaic array setpoint operation are analyzed based on the optimization results

of Fig. 3.12 and 3.13 and the development process for the operation controllers is

proposed.

3.4.4.1 The characteristics of the attitude operation optimization results

Fig. 3.14 shows how the optimizer selects the operation variables when the ground

station or the Sun appears in the satellite’s LOS. As presented in the roll angle graph

of Fig. 3.14, for the movement of the Sun, the satellite roll draws a sinusoidal curve.

This sinusoidal motion indicates that the satellite tracks the Sun’s movement with

a specific angle. Similarly, if the ground station appears in the satellite’s LOS, the

optimizer stops tracking the Sun and makes the satellite antenna track the GS. These

roll operation responses can be analyzed based on the relation with the objective

function. Because the objective of the optimization is dominated by the downloaded

data amount, the roll motion at the 1 and 2 of Fig. 3.14 shows the change of a
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Figure 3.14: The attitude operation optimization effects on the communication [4].

tracking target.

The interesting point is, if the satellite goes into the eclipse, the optimizer rotates

the satellite back to 0◦ roll angle, which is shown in the 3 and the 4 in Fig 3.14. This

reaction looks related to the power consumption of the reaction wheel. By returning

back to the original roll attitude, the angular momentum of RWA, which is elevated

for the attitude change, is restored to its original angular momentum. The level of

the angular momentum of RWA is connected to the required electric power of RWA

and, by restoring the angular momentum, the power consumption is reduced.

Based on the analysis, several characteristics of the attitude operation optimiza-

tion can be discovered. First, the satellite needs to roll to track the GS or the Sun.

If both targets appear within the satellite’s LOS, the GS tracking is prioritized. Sec-

ond, if the GS and the Sun are located out of sight, the satellite needs to roll back

to the parking attitude to reduce the angular momentum of RWA, which is related

to the electric power consumption. By applying these rules to the attitude operation

controller, we can make the satellite perform better in the orbit.
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(a) With the setpoint operation optimization [4].

1 2 43

(b) With the peak power tracker assumption.

Figure 3.15: photovoltaic power generation plots.
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3.4.4.2 The effectiveness of the photovoltaic array operation optimization

The power amount acquired from the photovoltaic array can be manipulated with

the power regulator current setpoint. If the regulator draws too much current from

the photovoltaic array with a higher current setpoint than required, the voltage drop-

down happens on the photovoltaic array, which reduces the power generation amount

of the photovoltaic array. Many peak power tracker algorithms that are used in the

photovoltaic power regulator maximize the power generation amount by searching

for proper current setpoint. In our MDO problem, we make the optimizer choose the

current setpoint of each photovoltaic array regulator and the results are presented in

Fig. 3.15(a). This optimization result can be compared with the peak power tracker

results that are presented in Fig. 3.15(b). By comparing both graphs, we can see the

optimized power generation is quite similar with the power generation with a peak

power tracker. In particular, the power generation trend between the same circled

numbers in Fig. 3.15 are very close with each other. For instance, the graphs with

1 and 3 in Figs. 3.15(a) and 3.15(b) are almost identical. However, the 2 and

4 in Figs. 3.15(a) and 3.15(b) are slightly different. The differences in the power

operation optimization (Fig. 3.15(a)) are mostly caused by the additional disciplines

of the MDO problem. For example, the 4 of Fig. 3.15(a) is different from the 4

of Fig. 3.15(b). The overall trend of the the 4 of Fig. 3.15(b) is quite flat but the

trend of 4 of Fig. 3.15(a) is rather dynamic because the latter considers the battery

discipline and power generation is limited when the battery is fully charged. When

the power is exhausted by the communication with GS, more power is generated,

which can confirm this trend in the first part of the 4 of Fig. 3.15(a). However,

if the power is enough, the optimizer does not maximize the power generation and

it can be seen in the latter half of the 4 . The difference between the both 2 of

Fig. 3.15(a) and Fig. 3.15(b) might be related to the thermal discipline. If the

photovoltaic array’s temperature is lowered by passing the eclipse, the efficiency of
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the array is also lowered and the power generation amount can be reduced. However,

more exact analysis is left for future work.

From the comparison, we can assume that the photovoltaic array setpoint opera-

tion optimization is close with a peak power tracker operation. Thus, the MDO result

can be guaranteed to work in orbit by installing the peak power tracker algorithm on

each photovoltaic array regulator.

3.4.5 Convexity analysis on the attitude sphere

When the gradient-based optimization method is implemented, the convexity of

the objective function needs to be considered to verify the locality of the optimization

solution. In the proposed problem, the convexity of the objective function is not

guaranteed due to following reasons.

• Some disciplines such as photovoltaic power generation and thermal (Eq. (3.17)

and (3.21) ) have high non-linearity.

• The photovoltaic cell illumination output based on the roll angle variation (Fig.

2.9) shows the existence of multiple local minima in the discipline.

• LOS time from the Ann Arbor ground station to the satellite for 1 year is

mapped on the attitude sphere and presented in Fig. 3.16. The LOS time of

Fig.3.16(a) is directly related with the objective function (the amount of the

download data). The satellite roll angle parameters are the design variables of

the problem and coupled with the azimuth value the graph. As we can see,

local minima exist in 3.16 and the objective function is non-convex.

Thus, the global optimum is also not guaranteed but the local optimum is enough for

the system design.
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(a) LOS time mapping. (b) Analysis Diagram.

Figure 3.16: GS LOS time mapping on the attitude sphere and Analysis Diagram
(Ann Arbor, 1 year).

3.5 Conclusion

This chapter formulated and solved a large-scale MDO problem for the CADRE

small satellite mission, which inclued the geometric design and the attitude and power

operation of the mission. The problem was constructed with six disciplines, more

than 35,000 design variables that represent 12 hours of the satellite’s operation at six

uniformly selected days over the year. To solve the problem, the MAUD framework[2,

4], which implements gradient-based optimization, was implemented and extended.

During the effort, it was also found that changing the launch parameters changed the

values of the objective function and the design variables, suggesting that this tool

could be used to evaluate launch options and to optimize the design to a particular

launch opportunity. We have demonstrated that considering all the major disciplines,
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time scales, and design variables simultaneously for the small-satellite problem is

feasible through a rigorous multidisciplinary approach. This approach provides a

system-level perspective of the problem with sufficient depth to capture high-level

trade-offs and reveal insights that are perhaps not obvious at the discipline level. The

solution is divisible into a geometric solution that is useful for the ground development

of the satellite and an operational solution to be implemented on-orbit.

While the ground-based design work is part of typical design efforts, the on-

orbit constrained operation requires further research and development. The following

chapter presents our work in this effort to provide a constraint-based controller for

satellite operations.
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CHAPTER IV

Computational Nonlinear Model Predictive

Control on SO(3) for Spacecraft with Reaction

Wheel Assembly

4.1 Introduction

In recent years, increasing demand for downsized and more agile spacecraft has led

to a need for control techniques that ensure safe and reliable spacecraft operation at

the limits of performance. These techniques must take system constraints into account

while maximizing performance. One such technique is MPC [67], which solves a con-

strained optimization problem in order to obtain a stabilizing, constraint-admissible

control law. When MPC is based on linear models, the optimization problem be-

comes a constrained quadratic programming problem, which can be solved quickly

using processing power that is available on-board; for this reason, MPC based on

linear models is often used when fast computations are desired. For examples of such

an approach to spacecraft attitude control, see [68, 69, 70, 71, 72]. MPC based on

nonlinear models is called NMPC. If the constrained system is nonlinear, then the

use the nonlinear model in the NMPC scheme leads to more realistic predictions and,

therefore, to potentially better performance over linear MPC. Since the NMPC opti-

mization cannot be expressed as a quadratic programming problem, other methods
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are needed in order to quickly solve for the NMPC control. In this work, we present

an NMPC algorithm for use in constrained spacecraft attitude control.

Constrained spacecraft attitude control refers to the control of spacecraft attitude

in the presence of state and control constraints, which include constraints on the actu-

ation mechanisms, the spacecraft orientation, its angular velocity, etc. For instance,

reaction wheels used as attitude control actuators in many spacecraft can generate

limited torque and have maximum angular speed limits and the violation of actuator

constraints can cause instability or the loss of pointing accuracy. Star trackers used for

on-board attitude determination induce exclusion-zone constraints since star trackers

cannot measure the spacecraft attitude when the Sun or the Earth is within the cam-

era angle, and since long exposure to the Sun can damage the camera sensor. Various

approaches to handle actuator constraints have been proposed in [73, 74, 75, 76],

while exclusion-zone constraints have been treated in [77, 78, 79, 80, 81, 82]. For

example, attitude control problems with exclusion-zone constraints were addressed in

the framework of the open-loop attitude planning and commanding in [80, 82] and

exploiting feedback control in [77, 81].

As stated previously, in this chapter we use an NMPC approach to enforce the

above constraints. The NMPC scheme has previously been developed in [83] for space-

craft attitude, whose dynamics evolve on SO(3), and whose control inputs are external

torques. The NMPC scheme from [83] is different from other NMPC approaches be-

cause the prediction model is obtained through the LGVI, an integration scheme

that, unlike standard integration schemes such as Runge-Kutta, preserves conserved

quantities of motion and therefore leads to a more accurate prediction model. The

dynamics obtained via the LGVI evolve on Lie groups, of which SO(3) is an example.

The NMPC approach of [83] uses the LGVI spacecraft attitude prediction model in

order to enforce system constraints. Note that the work in [83] has been generalized

to systems whose dynamics evolve on general matrix Lie groups. In [84], the authors
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have developed a numerical solver for the NMPC problem of [83]. The solver is based

on [85] and uses exterior penalty function for constraint handling. This paper is an

extension of the approach in [84, 83] to the case of spacecraft with RWA.

With terminal set constraints, global closed-loop stability results have been ob-

tained. The extension to spacecraft with RWA is significant as the ordinary RWA-free

case is complicated by the need to consider reaction wheel speeds and the angular mo-

mentum exchange between the wheels and the spacecraft bus in the dynamic model of

the spacecraft, and in formulating and solving NMPC problem numerically. Moreover,

from a practical standpoint, the case of spacecraft with reaction wheels is important.

Reaction wheels are used in many spacecraft and, unlike thrusters, reaction wheels

can be used for precise pointing and attitude tracking while not consuming any fuel.

The use of NMPC based on an LGVI model is pursued since, despite a potentially

higher computational cost, it exploits a more realistic model model of the spacecraft

dynamics which can provide an increased constrained domain of attraction. As in [84],

the indirect single shooting method is applied to the nonlinear root finding problem

resulting from the necessary conditions for optimality, which is warm-started from

the solution at the previous time instant. Our implementation also exploits sensi-

tivity derivative expressions obtained from the necessary conditions for optimality,

derived using variational calculus techniques on Lie groups. The constraints are han-

dled using an exterior penalty function based approach; such an implementation is

advantageous to handle state-constraint infeasibility that may occur during real oper-

ation due to disturbances or model mismatch, and does not introduce extra variables

that an implementation with slack variables may entail. While these approaches are

similar to [84], modifications had to be made in the reaction wheel case to treat ex-

tra states due to reaction wheels. This chapter is organized as follows. In Section

4.2, discrete dynamics on SO(3) are introduced for the spacecraft. In Section 4.3, a

nonlinear model predictive control problem is defined and converted to an optimal
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control problem over a prediction horizon. The constraints are augmented to the cost

using exterior penalty functions. In Section 4.4, we present our computational solver.

To demonstrate the effectiveness of the proposed algorithm, simulation results are

presented in Section 4.5. Our submitted conference paper [86] includes preliminary

results. As compared to [86], this effort contains details and derivations not presented

in [86], including the treatment of a practical spacecraft configuration with four reac-

tion wheels. We also present the comparison of the MPC problem formulations and

numerical solution procedure in the case of the spacecraft with RWA and spacecraft

with external moments.

4.2 Discrete Dynamics of a Spacecraft on SO(3)

In this section, we present the discrete-time rigid body equations of motion for a

satellite with and without a reaction wheel assembly. In both cases, the dynamics

have been obtained by using the LGVI. The equations of motion for a spacecraft with

external control moments, derived in [87], are given by,

Rk+1 = RkFk, (4.1a)

Πk+1 = F T
k Πk + hMk + huk, (4.1b)

hΠ×k = FkJd − JdFk. (4.1c)

In the above, h is the sampling time; the matrices Rk and Fk are rotation matrices

and elements of SO(3), where Rk is the spacecraft orientation and Fk = Rk+1R
T
k

is the difference in orientation between samples; Πk ∈ R3 is the spacecraft total

angular momentum and Mk ∈ R3 is the vector of external disturbances which result

from gravity gradients, aerodynamic drag, solar pressure, etc.; uk ∈ R3 is the control

torque, which is used to stabilize the spacecraft attitude; the positive definite matrix

Jd is the nonstandard moment of inertia matrix and is related to the standard inertia
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matrix J by the equation,

Jd =
1

2
tr(J)I3 − J. (4.2)

Next, we consider a spacecraft with RWA but without external control torques.

A spacecraft with RWA controls its attitude by adjusting the angular velocity of its

reaction wheels in order to induce a counter-rotation of the spacecraft. Accordingly,

the LGVI equations of motion for a spacecraft with RWA differ from (4.1) because the

actuation mechanisms apply a torque about the reaction wheels instead of applying

a torque directly to the spacecraft. Following the derivations in [88], we obtain the

following equations of motion,

Rk+1 = RkFk, (4.3a)

Πk+1 = F T
k Πk + hMk, (4.3b)

hΠ×k = FkAk − ATkFk, (4.3c)

which are similar to those in (4.1), along with equations of motion relating to the

reaction wheel assembly,

Ak = Jd +
1

2

n∑
i=1

(Ji∆θi,ksi)
×, (4.4a)

πi,k+1 = πi,k + hτi,k, (4.4b)

hπi,k = Ji

(
∆θi,k −

1

2
tr(Fks

×
i )

)
. (4.4c)

In the above, n is the number of reaction wheels in the spacecraft with i ranging

from 1 to n. The scalar πi,k is the angular momentum of the i-th wheel about the

si axis, where si is a unit vector with origin at the spacecraft center of mass; ∆θi,k

is the difference in rotation wheel position between samples; τi,k is the control torque

applied to the i-th wheel; the parameter Ji > 0 is the moment of inertia of the i-th
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Figure 4.1: Two different RWA configurations and their spin axes

wheel’s about its spin axis. For illustration, in Fig. 4.1(b) we provide two examples

of RWAs with 3 and 4 reaction wheels.

4.3 Nonlinear Model Predictive Control Problem Formula-

tion for a Spacecraft on SO(3)

In this section, we present an NPMC scheme for constrained control of the space-

craft dynamics, subject to the equations of motion in (4.1) or (4.3)-(4.4), which have

been introduced in the previous section. The NMPC scheme is based on the NMPC

framework introduced in [83, 89] and uses the computationally fast solver which is

similar to the one presented in [84] for determining the control input.

For a spacecraft with external control torque, whose dynamics are given in (4.1),

the controller determines the control input by solving the following optimization prob-
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lem,

min
{uj|k}N−1

j=0

J 1
d = K1

d(RN |k,ΠN |k) +
N−1∑
k=0

C1
d(Rj|k,Πj|k, uj|k), (4.5a)

subject to hΠ×j|k = Fj|kJd − JdF T
j|k, (4.5b)

Rj+1|k = Rj|kFj|k, (4.5c)

Πj+1|k = F T
j|kΠj|k + hMj|k + huj|k, (4.5d)

H1
` (Rj|k,Πj|k, uj|k) ≤ 0, ` = 1, . . . ,m. (4.5e)

In the above, the dynamics in (4.1) have been included as equality constraints. Other,

inequality constraints have been introduced in (4.5e). These inequality constraints

can include pointing, exclusion-zone constraints, constraints on the available torque,

and so on. Note that m is the number of inequality constraints considered. In the

NMPC law, the control input uk to (4.1) is set to the first element of the control

sequence {u∗j|k}
N−1
j=0 solving (4.5), i.e.,

uk = u∗0|k. (4.6)

As in [89], we assume that Kd and Cd are real-valued positive semi-definite cost

functions with the property that K1
d(I3×3, 03×1) = 0 and C1

d(I3×3, 03×1, 03×1) = 0, that

H1
` (I3×3, 03×1, 03×1) < 0, and that the functions H1

` are sufficiently differentiable. We

note that in [89], terminal conditions are imposed to guarantee recursive feasibility

and stability. These constraints can, however, degrade closed-loop response and are

not used in the present paper; instead the constraints are treated as soft, and we rely

on simulation-based verification of stability properties.

For the dynamics (4.3)-(4.4) relating to a spacecraft with RWA, the NMPC opti-
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mization problem is given by,

min
{τj|k}N−1

j=0

J 2
d = K2

d(RN |k,ΠN |k, πN |k) +
N−1∑
k=0

C2
d(Rj|k,Πj|k, πj|k, τj|k), (4.7a)

subject to hΠ×j|k = Fj|kAj|k − ATj|kF T
j|k, (4.7b)

Rj+1|k = Rj|kFj|k, (4.7c)

Πj+1|k = F T
j|kΠj|k + hMj|k, (4.7d)

πj+1|k = πj|k + hτj|k, (4.7e)

H2
` (Rj|k,Πj|k, πj|k, τj|k) ≤ 0, ` = 1, . . . ,m. (4.7f)

The treatment of this optimization problem is analogous to that of (4.5), with the

functions K2
d , C2

d , and H2
` satisfying properties analogous to those of K1

d , C1
d , and

H1
` , respectively.

In order to handle situations in which constraints may become infeasible, we relax

(4.5e) and (4.7f) and treat them as soft. Then the numerical solution is based on the

necessary conditions for optimality for augmented cost functionals of J 1
d,a and J 2

d,a.

The augmented cost functional corresponding to the cost functional J 1
d,a is given by,

J 1
d,a = K1

d(RN ,ΠN) +
N−1∑
k=0

C1
d(Rk,Πk, uk) +

N−1∑
k=0

〈
λ1
k, (log(R−1

k Rk+1)− log(Fk))
−×〉

+
N−1∑
k=0

〈
λ2
k, (Πk+1 − F T

k Πk − hMk − hBuk)
〉

+
N−1∑
k=0

m∑
`=1

µ`φ`(H
1
` (Rk,Πk, uk)), (4.8)

where we have introduced the Lagrange multipliers λ1
k, λ

2
k ∈ R3, the exterior penalty

functions φ`, ` = 1, . . . ,m, and scalar weighting factors µ` > 0, ` = 1, . . . ,m. The
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augmented cost functional corresponding to J 2
d,a is given by,

J 2
d,a = K2

d(RN ,ΠN , πN) +
N−1∑
k=0

C2
d(Rk,Πk, πk, τk)

+
N−1∑
k=0

〈
λ1
k, (log(R−1

k Rk+1)− log(Fk))
−×〉+

N−1∑
k=0

〈
λ2
k, (Πk+1 − F T

k Πk − hMk)
〉

+
N−1∑
k=0

〈
λ3
k, (πk+1 − πk − hτk+1)

〉
+

N−1∑
k=0

m∑
`=0

µ`φ`(H
2
` (Rk,Πk, πk, τk)), (4.9)

where λ3
k ∈ R3 is a Lagrange multiplier.

4.4 Description of the Numerical Solver

The numerical solver is based on solving the necessary conditions for optimality.

In deriving the necessary conditions, we follow the approach in [84] and use discrete-

time variational calculus. The necessary conditions are given by,

hΠ×k = FkAk − ATkF T
k , (4.10a)

Rk+1 = RkFk, (4.10b)

Πk+1 = F T
k Πk + hMk, (4.10c)

πk+1 = πk + hτk, (4.10d)
λ1
k

λ2
k

λ3
k

 =


Ak+1

T Ck+1
T 03×n

Bk+1
T Dk+1

T 03×n

Ek+1
T Gk+1

T In×n



λ1
k+1

λ2
k+1

λ3
k+1

−

Hk+1

Lk+1

Pk+1

 , (4.10e)

hλ3
k = DτkCd +

m∑
`=1

µ`Dτk (φ` ◦H`) , (4.10f)
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where,

Ak = Fk
T ,

Bk = h


{tr [FkAk] I3×3 − FkAk}Fk−

1

4

{
tr [Fk] I3×3 − FkT

}
S (Jw)ST

{
tr [Fk] I3×3 − FkT

}

−1

,

Ck = hMk,

Dk = Fk
T +

(
Fk

TΠk

)×Bk,
Ek = −Bk

(
1

2

{
tr [Fk] I3×3 − FkT

}
S
)
,

Gk =
(
Fk

TΠk

)×Ek,
Hk =

((
RT
k

(
DRk

C2
d

))
A

)−×
+

m∑
`=1

µ`
((
RT
k (DRk

(φ` ◦H`))
)
A

)−×
,

Lk = DΠk
C2
d +

m∑
`=1

µ`DΠk
(φ` ◦H`) ,

Pk = DπkC
2
d +

m∑
`=1

µ`Dπk (φ` ◦H`) .

In the above equations, S ∈ R3×n, the reaction wheel configuration matrix, and

Jw ∈ Rn×n, the rotational inertia matrix of RWA, are defined by,

S =

[
s1 · · · sn

]
, (4.11)

Jw =


J1 0 0

0
. . . 0

0 0 Jn

 . (4.12)

The details of the derivation are available in the appendix.

To solve the two-point boundary value problem (4.10), the indirect single shooting

method is used where the goal is to determine the initial values of the Lagrange

multipliers and we follow a similar approach to [84, 85].
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The sensitivity derivatives for (4.10b)-(4.10d) are given by,


ζk+1

δΠk+1

δπk+1

 =


Ak Bk Ek

Ck Dk Ek

0n×3 0n×3 In×n



ζk

δΠk

δπk

+


03×n

03×n

hIn×n

 δτk, (4.13)

while the sensitivity derivatives for (4.10e) are given by,


δλ1

k+1

δλ2
k+1

δλ3
k+1

 = Sk



ζk+1

δΠk+1

δπk+1

δτk

δλ1
k

δλ2
k

δλ3
k



, (4.14)

where Sk is a (6 +n)× (12 + 3n) matrix. Expressing δτk in terms of τk and δλ3
k, from

(4.13)-(4.14), we obtain,



ζk+1

δΠk+1

δπk+1

δλ1
k+1

δλ2
k+1

δλ3
k+1


= Tk



ζk

δΠk

δπk

δλ1
k

δλ2
k

δλ3
k


, (4.15)
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where Tk is an (12 + 2n)× (12 + 2n) matrix. Therefore, from (4.15) we obtain,



ζN

δΠN

δπN

δλ1
N

δλ2
N

δλ3
N


=

(
N−1∏
k=0

Tk

)


ζ0

δΠ0

δπ0

δλ1
0

δλ2
0

δλ3
0


. (4.16)

To determine the initial values of the Lagrange multipliers, we employ the indirect

single shooting method, the iterations of which have the following form,

λ
(p+1)
0 = λ

(p)
0 − γ

[
δE(p)

δλ
(p)
0

]−1

E(p), (4.17)

where the superscripts represent the iteration number, the step size γ is a scalar

satisfying 0 < γ ≤ 1, and E(p) and δE(p) are given below,

E(p) =


λ

1(p)
N−1 + ((RT

N(DRN
K1
d))A)−×(p)

λ
2(p)
N−1 +DΠN

K
1(p)
d

λ
3(p)
N−1 +DπNK

1(p)
d

 ,

δE(p) =


δλ

1(p)
N−1 + ((δRT

N(DRN
K2
d) +RT

N(δDRN
K2
d))A)−×(p)

δλ
2(p)
N−1 + δDΠN

K
2(p)
d

δλ
3(p)
N−1 + δDπNK

2(p)
d

 .

The numerical solver is summarized in Fig. 4.2. During each sampling period, the

solver determines the Lagrange multipliers so that the terminal boundary conditions

are satisfied. During the initialization step ( 1 in Fig. 4.2), the initial value of (4.17)

is set to the solution from the previous sampling time. The numerical solver then

updates the values of the Lagrange multipliers using the necessary conditions for
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Figure 4.2: The logic diagram of the developed computational solver.

optimality in 2 . The shooting method proceeds through the steps in 4 , 5 , and 6 ,

until the termination criterion is satisfied in 3 for ε = 10−5. Note that the parameter

γ is initially set at 1; if after 50 iterations, i.e., p = 50, (4.17) has not converged, then

the algorithm sets γ = 0.1.

Remark 1. Our solution to the NMPC problem is based on the exterior penalty func-

tion approach and the indirect single shooting method which is straightforward in

terms of computational implementation when the equations of motion are formu-

lated based on LGVI. Other techniques, such as multiple shooting, interior point or

sequential quadratic programming, may also be of interest for future applications.

4.5 Simulations and Discussion

In this section, we report simulation results for three cases. The first case cor-

responds to a spacecraft with external control moments with equations of motion

given in (4.1) and the other two cases correspond to spacecraft with the two different

reaction wheel configurations that were presented in Fig. 4.1(b).
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Table 4.1: Summary of cost functions and inequality constraints
Spacecraft with external control moments Spacecraft with RWA

K1
d =

1

2
‖P

1
2

1 (RN − I3×3)‖2
F

+
1

2
ΠT
NP2ΠN ,

C1
d =

h

2
‖Q

1
2
1 (Rk − I3×3)‖2

F

+
h

2
ΠT
NQ2ΠN

+
h

2
uTkQ3uk,

H1
1 =‖uk‖∞ − α,

H1
2 =β − vTRT

kw.

K2
d =

1

2
‖P

1
2

1 (RN − I3×3)‖2
F

+
1

2
(ΠN − SπN)TP2(ΠN − SπN),

C2
d =

h

2
‖Q

1
2
1 (Rk − I3×3)‖2

F

+
h

2
(Πk − Sπk)TQ2(Πk − Sπk)

+
h

2
τTk Q3τk,

H2
1 =‖τk‖∞ − α,

H2
2 =β − vTRT

kw,

H2
3 =‖πk‖∞ − χ.

4.5.1 Cost Functions and Inequality Constraints

The cost functions K1,2
d and C1,2

d and constraint functions H1,2
` corresponding

to the three simulations are presented in Table 4.1. The matrices P1, P2, Q1, Q2,

and Q3 are symmetric positive-definite cost matrices. The constraints prescribed

by H1,2
1 correspond to the maximum available control torque uk or τk, where uk =

[u1,k u2,k u3,k]
T and τk = [τ1,k · · · τn,k]T . The constraint H1,2

2 corresponds to an

inclusion/exclusion-zone constraint, where the cosine of the angle between the unit

vectors Rkv and w must be greater than β. The final constraint that we consider is

H2
3 , which is the maximum limit on the allowable rotation wheel angular momenta

πk, where πk = [π1,k · · · πn,k]T ; the limit is denoted by χ.

The penalty functions φ` are differentiable and defined through,

φ` ◦H1,2
` = hmax{0, H1,2

` }
2, ` = 1, 2, 3. (4.18)
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4.5.2 Simulation Results

We consider a spacecraft with a moment of inertia matrix J = diag(1.0, 1.0, 0.8)

kg-m2. We set the integration time step to h = 0.4s, and we set the prediction horizon

for the MPC algorithm to N = 5. The weighting matrices are chosen as,

P1 = P2 = Q1 = Q2 = 0.01I3×3. (4.19)

In some of the subsequent figures, the attitude maneuver is plotted on the 2-sphere

S2, where the vectors corresponding to the first, second and third column of R0 are

plotted in dashed-red, dashed-green and dashed-blue, respectively. Similarly, the

paths that are traced by the ends of the vectors corresponding to the first, second

and third column of Rk are plotted in red, green and blue, respectively.

In the following, simulation results are reported for the cases of spacecraft with 3

and 4 reaction wheels.

4.5.2.1 Spacecraft with RWA of 3 wheels

We begin by considering a spacecraft with RWA corresponding to the 3-wheel

configuration,

S =

[
s1 s2 s3

]
=


1 0 0

0 1 0

0 0 1

 .

Simulations of spacecraft attitude maneuvering are performed with and without con-

straints on the reaction wheel torque H1, the exclusion/inclusion zone H2, and the

reaction wheel maximum angular momentum H3. The constraint parameters are

given by α = 0.01, β1 = cos(170◦), v = [1 0 0]T , w = −[0.8851 0.3888 0.2558]T , and

χ = 0.05. The penalty weights are chosen so that they are small enough to allow for

100



the solver to quickly converge, but large enough to ensure that the constraints are

reasonably enforced. Their values are given by µ1 = 107, µ2 = 103, and µ3 = 104,

which have been determined by running multiple simulations.

The initial conditions have been chosen judiciously in order to ensure that the

constraints become active during the simulation. The initial conditions for the atti-

tude, the angular momentum of the spacecraft body, and the angular momentum of

each reaction wheel are given by,

R0 = exp(ζ×), Π0 = 0, π0 =

[
0.008 0.000 −0.015

]T
, (4.20)

where ζ =

[
0.5 0.5 0.5

]T
. The inertia values of the reaction wheels are J1 = J2 =

J3 = 0.01 and Q3 = I3×3. Both the constraint-free and constrained simulations are

presented in Fig. 4.3.

Referring to the subplots of Fig. 4.3, we can see that the constraint-free simulation

is stabilizing but violates the exclusion zone constraint in 1 , the torque constraints

in 3 and 4 , and the angular momentum constraints in 5 and 6 . In the constrained

simulation, all of these constraints are tightly enforced.

4.5.2.2 Spacecraft with RWA of 4 wheels

In the next case, we consider the 4-reaction wheel configuration corresponding to,

S =

[
s1 s2 s3 s4

]
=


1 0 0 0.5774

0 1 0 0.5774

0 0 1 0.5774

 .

The constraint parameters have been changed to α = 0.02, β = cos(170◦), v = [1 0 0]T ,

w = −[0.9624 − 0.2017 0.1818]T , and χ = 0.04. In this case, the torque constraint

from the previous case was found to be too stringent as the solver was unable to
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simultaneously satisfy all constraints, so a larger value of α had to be considered. The

other constraints were changed in order to modify the simulation scenario. The initial

conditions are the same as in the previous case, except that the angular momentum of

each reaction wheel has been modified in order to ensure the activation of the angular

momentum constraint. The new initial conditions are given as follows,

π0 =

[
0.010 0.000 0.005 −0.020

]T
.

The inertia values of the reaction wheels are given by J1 = J2 = J3 = J4 = 0.01.

The Q3 = I4×4 is used. The constraint-free and constrained simulation results are

presented in Fig. 4.4.

Referring to the subplots of Fig. 4.4, we can see that, while the exclusion zone

constraint is violated in 1 , it is enforced by the NMPC control law in 2 . Furthermore,

we can see that the torque constraints are activated by control jumps in 3 and

4 . These control torque jumps occur in order to prevent the violation of the zone

constraint and we note that, if the jump is deemed to be too large, its magnitude can

be reduced by increasing the length of the prediction horizon N . In the next example,

we consider the use of a longer prediction horizon.

4.5.2.3 Spacecraft with external control moments

A simulation of the spacecraft with external moments is performed with and

without constraints only on the external moments and the exclusion/inclusion zone.

As in the previous cases, we set the same integration time step at h = 0.4 sec, but

the prediction horizon for the NMPC algorithm is now increased to N = 10, allowing

us to investigate the effect of a longer prediction horizon. The torque constraint

constrain parameter is chosen to be α = 0.05, and the penalty weights are chosen to

be µ1 = 104 and µ2 = 5. In the longer prediction horizon case, even with a weight
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lower than in the shorter horizon case, the controller can find a solution which satisfies

the constraints. The initial conditions of the attitude, the body angular velocity, and

the zone constraint are the same as those for the first simulation, corresponding to

the 3-wheel case of the spacecraft with RWA.

The simulations results are presented in Fig. 4.5.

The subplots 1 and 2 in Fig. 4.5 show that the zone constraint can be satisfied

by using the NMPC law, while 3 , 4 , and 5 show the satisfaction of the external

moment constraint.

With the longer prediction horizon, the stabilization time and the overshoot in

the attitude responses are shorter than in the previous simulations. This observation

corresponds to simulations performed on the the 3- and 4-wheel RWA configurations

with longer prediction horizons. In general, a longer prediction horizon N corresponds

to a shorter stabilization time and smaller overshoot, but the NMPC computation

takes longer to converge, especially in the complex case where there are many con-

straints. Two examples of the spacecraft with RWA have a shorter prediction horizon

(5 steps) than the example of the spacecraft with external moments (10 steps). This

is because we want to show that the suggested algorithm is capable of handling 3

different constraint categories simultaneously. When the spacecraft with RWA has

a zone constraint only, the longer prediction horizon works well and also yields re-

sults similar to those of the example of the spacecraft with external moments. The

longer prediction horizon reduces the overshoot and stabilization time, but if there

exists different constraint categories in the problem, a shorter horizon can effectively

prevent the simultaneous violation of multiple constraints.

4.5.3 Domain of Attraction

We now investigate the closed-loop domain of attraction of our NMPC algorithm

by simulating 13,357 rest-to-rest orientation maneuvers for the spacecraft with RWA
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Figure 4.6: The domain of attractions of the linearization based MPC controllers [5].

subject to maximum wheel torque constraints, but with state constraints turned off,

i.e., H1,2
2 = H1,2

3 ≡ 0.

Below, we list all combinations of 3-2-1 Euler angle parametrizations correspond-

ing to the at-rest initial conditions that the algorithm is able to stabilize to the desired

equilibrium Rk = I3×3. All other state initial conditions are set to 0.

• Roll : −90◦, −80◦, −70◦, · · · , 80◦, 90◦ (19 cases)

• Pitch : −90◦, −80◦, −70◦, · · · , 80◦, 90◦ (19 cases)

• Yaw : 0◦, 10◦, 20◦, · · · , 350◦, 360◦ (37 cases)

Guiggiani also proposed this domain of attraction analysis in [5]. He has selected

the domain of initial conditions for which the controller is able to drive the state

trajectories to a target set ( 0◦ roll, pitch, and yaw angle ) within radius 0.05 rad. A

standard MPC tracking problem and a modified one based on the linearization are

compared and Fig. 4.6 shows his results. The proposed NMPC controller’s domain of

attraction is wider than the one of the linearized controller’s, while is computationally

expensive.
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4.5.4 Computation time

In Fig. 4.7, we report the computation times corresponding to 8 different simula-

tions of 3-RWA example. Fig. 4.7(a) is the calculation results only with the actuator

maximum torque constraints (H2
1 ) and Fig. 4.7(b) is the calculation results with the

zone constraints (H2
2 ) which used in the first 3-RWA example. When there is a con-

T
im
e(
se
c)

steps

1

T
im
e(
se
c)

(a) With control constraint

T
im
e(
se
c)

steps

2

T
im
e(
se
c)

(b) With attitude constraint

Figure 4.7: The calculation time comparison of 4-RWA spacecraft on the Intel Xenon
3.5GHz, 32GB RAM machine, with MATLAB.

trol constraint, the 5 horizon case (indicated by 1 ) satisfies this computation time

requirement but, when there is an attitude constraint, the 10 horizon case (indicated

by 2 ) satisfies the requirement.

4.6 Conclusions

In this chapter, we presented an NMPC approach to the constrained attitude con-

trol of spacecraft. The work extends the solver of [84] to the case of spacecraft with
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RWA. The work is distinguished by exploiting discrete-time LGVI models which re-

spect the underlying Lie group structure of SO(3) and is consistent with the geometric

mechanics and control formalism. The numerical solution to the NMPC optimization

problem was obtained using necessary conditions for optimality, and a single shoot-

ing method to solve the resulting two point boundary value problem. The sensitivity

derivatives were derived to be used in the solution process. Our simulation results

showed that this approach is able to achieve well-behaved closed-loop responses with

large domain of attraction while satisfying a variety of constraints. Thus, we have

developed a constrained-based controller that is capable of implementing the opimti-

zation operational scenarios of the MDO effort in the prior the chapter.
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CHAPTER V

Conclusions and Future Work

To maximize the performance of a complex space system, this dissertation pro-

poses a multidisciplinary optimization (MDO) approach that unifies design and op-

eration. Applying MDO to space system design and operation is a challenging task

that requires the underlying disciplines to be developed and analyzed first. Thus, the

Single Discipline Optimization (SDO) of the photovoltaic power system is performed

and its discipline is modeled because of its influence on many other disciplines such

as attitude control and communication.

From the photovoltaic power SDO, we developed two key benefits useful for the

MDO problem of a complex-shaped space system. The first is the ability to quickly

assess self-induced shadowing using a CAD model and OpenGL. The second is the

ability to calculate the Suns angles in a body-fixed spherical frame with the help

of orbital and attitude dynamics simulators. These two advantages enable the fast

calculation of power generation of the complex-shaped satellite, which is essential for

MDO.

This baseline model enables the application of the MDO approach to the design

and operation of a constrained space system. However, moving from SDO to MDO

poses a significant challenge. The unified optimization of the system design and op-

eration increases the number of design variables drastically, which creates a difficult
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problem to solve. To solve the problem, the large-scale multidisciplinary design op-

timization framework developed by Hwang et al. is implemented in the developed

approach. Our MDO problem includes six extendable disciplines and more than thou-

sands of operation variables. Despite this complexity, the optimization results show

that both the geometry and operation optimization each increase the output of the

objective function (total amount of the downloaded data) as much as 40%.

This dissertation also proposes ways to apply the ground optimization results

to the on-orbit attitude operation of a satellite. To accomplish this, a Nonlinear

Model Predictive Control (NMPC) approach to the constrained attitude control of

spacecraft is developed. The NMPC controller exploits a discrete-time LGVI model

which respects the underlying Lie group structure of SO(3). The necessary conditions

for optimality are derived and a single shooting method is implemented to solve the

resulting two-point boundary value problem.

The design methodology introduced in this dissertation can be applied to any

satellite design and the process is summarized as follows. First, the satellite shadow

analysis of the attitude sphere using both OpenGL and a CAD model is required as

described in Chapter II. Next, the attitude requirements of the mission need to be de-

fined with actuator hardware specifications. The embedding of the attitude operation

must be organized, as discussed in Chapter III. Third, satellite engineers can develop

the required disciplines or, alternately, adopt the disciplines of this dissertation to

include the interested discipline to the MDO. After developing the disciplines, the

MDO of the satellite can be performed using Modular Analysis and Unified Deriva-

tives (MAUD), as in Chapter III. The satellite geometry can be finalized by the

optimization results, but the attitude operation optimization can only be finalized

with the development of the attitude controller. There are two ways to develop the

attitude operation controller. One is to set the optimization results as the desired

value of a controller, and the other is to change the results as the form of constraints.
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If attitude operation optimization results can be converted to the desired attitude, any

attitude control algorithm can be implemented for the ADCS development. However,

the operation results require being changed to the constraints form, and the NMPC

attitude controller suggested in Chapter IV needs to be adopted as a main control

algorithm. By finishing the above steps, it is possible to design a highly constrained

space system with maximum performance.

The complexity and the long computation time of the proposed MDO problem

requires expensive computational price. In addition, the approximated operation in

orbit and the gap with the ground design results also degrade the effectiveness of the

MDO. However, the proposed methodology guarantees the improved performance of

the objective function and evaluates the satisfaction of the mission requirement.

This methodology has been applied to the design of a small satellite called CADRE

as a example, which is funded by the NSF to study space weather and is scheduled

to deploy in 2016.

The methodology of this dissertation is applicable to small satellite technology

of which future is unlimited and promising. Small satellite technology is currently

applied in science, surveillance, remote site communications, scanning of unattended

sensors, high-resolution Earth observations, and environmental monitoring [90]. By

applying this multidisciplinary approach, the small satellite will extend its application

area and achieve better performance as defined by the objective function. Many

research opportunities and interesting applications exist to further explore the MDO

approach developed in this dissertation. Some of these are described here.

• Constrained spacecraft attitude control with NMPC

The NMPC approach for the constrained attitude control of spacecraft with a

Reaction Wheel Assembly (RWA) can be extended to different dynamic system

applications such as a spacecraft with a Control Moment Gyroscope (CMG). It

is because both devices, RWA and CMG, use their own angular momentum to
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control a spacecraft. NMPC can be also extended to different implementations

of optimization solvers as a replacement for the single shooting method widely

used in current research.

• Constrained power regulator control of a spacecraft EPS with NMPC

Since MPC approaches show good performance on the constrained control [91],

it can be effectively applied to the photovoltaic-battery power system control

of the spacecraft. For the photovoltaic array and the battery stack, the power

generation model and the simulator suggested in this dissertation can provide

a good developing environment.

• Developing and extending applications of the multidisciplinary design

and operation optimization

The design of satellites and their operation is a complex task that involves a large

number of variables and multiple engineering disciplines. Given the encouraging

results of this dissertation, the application of this MDO methodology can be

extended to various system designs, such as electrified vehicles or unmanned air

vehicles.

• High-altitude wireless network based on the balloon or the small

satellite fleet

Recent reports indicate that Google and Facebook are also considering and re-

searching high-altitude balloons and small satellites as a part of their future

networking infrastructure. High-altitude balloons and small satellite fleets will

be interesting targets of MPC and MDO approaches. For instance, both ap-

plications require power control with photovoltaic arrays and a battery stack.

They also require attitude control for pointing, to which MPC control can be

effectively applied. In addition, fleet design and construction with minimal

resources could be other useful applications of MDO technology.
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APPENDIX A

Derivation of the necessary conditions of

optimality and terminal condition for RWA

Spacecraft

The variations of Rk, Fk, Πk, and πk are given as follows,

Rk,ε = Rk exp
(
εζ×k
)
,

Fk,ε = Fk exp
(
εξ×k
)
,

Πk,ε = Πk + εδΠk,

πk,ε = πk + εδπk,

where ζk, ξk ∈ R3.

Note that ζ0 = ξ0 = δΠ0 = δπ0 = 0. The infinitesimal variations of Rk, Fk, Πk,
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and πk are given by,

δRk =
d

dε

∣∣∣∣
ε=0

Rk,ε = Rkζ
×
k ,

δFk =
d

dε

∣∣∣∣
ε=0

Fk,ε = Fkξ
×
k ,

δΠk =
d

dε

∣∣∣∣
ε=0

Πk,ε = δΠk,

δπk =
d

dε

∣∣∣∣
ε=0

πk,ε = δπk.

A few facts are required to proceed further.

Fact 1 ([85]). ζk, ζk+1, and ξk satisfy,

ζk+1 = F T
k ζk + ξk.

Proposition 1. ξk, δΠk, and δπk satisfy,

ξk = BkδΠk + Ekδπk,

where,

Bk = h


{tr [FkAk] I3×3 − FkAk}Fk

−1

4

{
tr [Fk] I3×3 − FkT

}
S (Jw)ST

{
tr [Fk] I3×3 − FkT

}

−1

,

Ek = −Bk
(

1

2

{
tr [Fk] I3×3 − FkT

}
S
)
.
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Proof. We begin with the following,

hδπik = Ji

(
δ∆θik −

1

2
tr
[
δFksi

×])
= Ji

(
δ∆θik −

1

2
tr
[
Fkξ

×
k si
×])

= Ji

(
δ∆θik −

1

2
tr
[
ξ×k si

×Fk
])

= Ji

(
δ∆θik −

1

2
tr
[
ξ×k ((Mik)S + (Mik)A)

])
= Ji

(
δ∆θik −

1

2
tr
[
ξ×k (Mik)A

])
= Ji

(
δ∆θik −

1

2
tr
[
ξ×k γik

×])
= Ji

(
δ∆θik + ξk

Tγik
)
,

where,

Mik = si
×Fk = (Mik)S + (Mik)A,

(Mik)A =
si
×Fk − (si

×Fk)
T

2
=
si
×Fk + Fk

T (si
×)

2
= γ×ik ,

γik =
1

2
{tr [Fk] I3×3 − Fk} si.

By using the matrices S and Jw, we obtain,

hδπk = Jw

(
δ∆θk +

1

2
ST{tr [Fk] I3×3 − Fk}T ξk

)
,

which leads to,

δ∆θk = h (Jw)−1 δπk −
1

2
ST{tr [Fk] I3×3 − Fk}T ξk.

Since,

h(δΠk)
× = δFkAk − AkT δFkT + FkδAk − δAkTFkT , (A.1)
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using the following properties,

δAk =
1

2

n∑
i=1

si
×(Jiδ∆θik),

FkδAk − δAkTFkT =

(
1

2

n∑
i=1

si
×(Jiδ∆θik)

)
F T
k + Fk

(
1

2

n∑
i=1

si
×(Jiδ∆θik)

)

=

({
tr
[
F T
k

]
I3×3 − F T

k

}(1

2

n∑
i=1

si(Jiδ∆θik)

))×

=

(
1

2

{
tr
[
F T
k

]
I3×3 − F T

k

}
SJwδ∆θk

)×
,

we can re-write (A.1) as follows,

h(δΠk)
× = Fkξ

×
kAk − ATk ξ×k

T
F T
k + FkδAk − δATkF T

k

= Fkξ
×
kAk + ATk ξ

×
kF

T
k +

(
1

2

{
tr
[
Fk

T
]
I3×3 − FkT

}
SJwδ∆θk

)×
= (Fkξk)

×FkAk + ATkF
T
k (Fkξk)

× +

(
1

2

{
tr
[
Fk

T
]
I3×3 − FkT

}
SJwδ∆θk

)×
=

(
{tr [FkAk] I3×3 − FkAk}Fkξk +

1

2

{
tr
[
Fk

T
]
I3×3 − FkT

}
SJwδ∆θk

)×
.

Applying the inverse of the cross map to both sides of the above equation, we obtain,

δΠk =
1

h
{tr [FkAk] I3×3 − FkAk}Fkξk +

1

2h

{
tr
[
Fk

T
]
I3×3 − FkT

}
SJwδ∆θk

=
1

h
{tr [FkAk] I3×3 − FkAk}Fkξk

+
1

2h

{
tr
[
Fk

T
]
I3×3 − FkT

}
S
(
hδπk −

1

2
JwST{tr [Fk] I3×3 − Fk}T ξk

)

=
1

h


{tr [FkAk] I3×3 − FkAk}Fk

−1

4

{
tr [Fk] I3×3 − FkT

}
S (Jw)ST

{
tr [Fk] I3×3 − FkT

}
 ξk

+
1

2

{
tr [Fk] I3×3 − FkT

}
Sδπk.

The result follows from the expressions for δΠk and δπk.
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Fact 2 ([85]). δMk =Mkζk, where Mk ∈ R3×3.

Fact 3 ([92]). 〈〈DRk
F , Rkη

×
k 〉〉 = 〈((RT

k (DRk
F))A)−×, ηk〉.

With the above facts, the variation of the augmented cost functional can be written

as follows,

δJ 2
d,a =

〈((
RT
N

(
DRN

K2
d

))
A

)−×
, ζN

〉
+
〈
DΠN

K2
d , δΠN

〉
+
〈
DπNK

2
d , δπN

〉
+

N−1∑
k=1

〈((
RT
k

(
DRk

C2
d

))
A

)−×
, ζk

〉
+

N−1∑
k=1

〈
DΠk

C2
d , δΠk

〉
+

N−1∑
k=1

〈
DπkC

2
d , δπk

〉
+

N−1∑
k=1

〈
DτkC

2
d , δτk

〉
+

N−1∑
k=0

〈
λ1
k,
(
ζk+1 − F T

k ζk − ξk
)〉

+
N−1∑
k=0
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λ2
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(
δΠk+1 −

(
Fkξ

×
k

)T
Πk − FkT δΠk − hMkζk

)〉
+

N−1∑
k=0

〈
λ3
k, (δπk+1 − δπk − hδτk)

〉
+
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k=0
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m∑
`=1

µ`
((
RT
k

(
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(
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`

)))
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`
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〉
.
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It can be summarized as following equation.

δJ 2
d,a =

〈((
RT
N

(
DRN

K2
d

))
A
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, ζN
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.

Then,
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δJ 2
d,a =
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2
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〉
,

where the analogue of integration by parts in the discrete-time setting is used along

with the facts that the variations ζk, δΠk and δπk vanish at k = 0. Since δJ 2
d,a = 0

should vanish for variations of ζk, δΠk, δπk, and δτk, we have completed the derivation

of the necessary conditions given in (4.10).
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APPENDIX B

Publications

Journal Article

[1] Dae Young Lee, Rohit Gupta, Uroš V. Kalabić, Stefano Di Cairano, Anthony

M. Bloch, James W. Cutler, and Iliya V. Kolmanovsky, Computational Non-

linear Model Predictive Control on SO(3) for Spacecraft with Reaction Wheel

Assembly, Journal of Guidance Control and Dynamics, Under Review, 2016.

[2] Dae Young Lee, James W. Cutler, Joe Mancewicz, and Aaron J. Ridley, Max-

imizing Photovoltaic Power Generation of a Space-dart Configured Satellite,

Acta Astronautica, Vol. 111, pp.283-299, 2015.

[3] John T. Hwang, Dae Young Lee, James W. Cutler, and Joaquim R. R. A. Mar-

tins, Large-Scale Multidisciplinary Optimization of a Small Satellites Design

and Operation, Journal of Spacecraft and Rockets, Vol. 51, No. 5, pp.1648-1663,

2014.
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Conference Article

[1] Dae Young Lee, Rohit Gupta, Uroš V. Kalabić, Stefano Di Cairano, Anthony

M. Bloch, James W. Cutler, and Ilya V. Kolmanovsky, Constrained Attitude

Maneuvering of a Spacecraft with Reaction Wheel Assembly by Nonlinear Model

Predictive Control, 2016 American Control Conference, Boston, MA, Accepted,

2016.

[2] Dae Young Lee, Hyeongjun Park, and James W. Cutler, Development of Cube-

Sat Attitude Determination and Control System with Hybrid Control Strategy

and its Simulator on SO(3), 26th AASAIAA Space Flight Mechanics Meeting,

Napa, CA, February, 2016.

[3] John T. Hwang, Dae Young Lee, James W. Cutler, and Joaquim R. R. A. Mar-

tins, Large-Scale MDO of a Small Satellite using a Novel Framework for the

Solution of Coupled Systems and their Derivatives, 54th AIAA/ASME/ASCE/

AHS/ASC Structures, Structural Dynamics, and Materials Conference, Boston,

MA, April, 2014.

[4] Dae Young Lee, John C. Springmann, Sara C. Spangelo, and James W. Cut-

ler, Satellite Dynamics Simulator Development Using Lie Group Variational

Integrator, AIAA Modeling and Simulation Technologies Conference, Portland,

Oregon, Aug. 8-11, 2011.
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