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ABSTRACT 

We have previously established two lines of rat for studying the functional of 

aerobic exercise capacity (AEC) and its impact on metabolic health. The two lines, high 

capacity runners (HCR) and low capacity runners (LCR), have been selectively bred for 

high and low intrinsic AEC, respectively. They were started from the same genetically 

heterogeneous population and have now diverged in both AEC and many other 

physiological measures, including weight, body composition, blood pressure, body mass 

index, lung capacity, lipid and glucose metabolism, and natural life span. In order to 

exploit this rat model to understand the biological basis of metabolic traits I conducted 

four related studies. First, I performed a genetic characterization of both pedigrees, with 

~30 generations and >6,000 animals in each, showing that AEC has high heritability in 

both lines, and that the lines have diverged at expected rates. Second, I performed 

gene expression analysis in skeletal muscle with a 2-2-2 design to compare HCR and 

LCR, aged and young, and rest and exhaustion. I found that mitochondrial function is 

the primary differences between the lines; and extracellular matrix components underlie 

the aging effect. Third, I used SNP genotype and whole genome sequencing data to 

identify signatures of selection using three different statistics (runs of homozygosity, 

fixation index, and aberrant allele frequency spectrum), and developed a composite 

score that combined the three signals. I found several pathways (ATP transport and 

fatty acid metabolism) are enriched in regions under differential selection. Fourth, I 

complemented the selection signals with a direct analysis of genotype-phenotype 

relationship in an HCR-LCR intercross F2 cohort (n>600). We have completed breeding 

and phenotyping of F2s for running distance, body weight, percent body fat, muscle 

mass, etc., and have genotyped them for ~625K SNPs using a custom genotyping 

panel that I designed to utilize ancestral informative markers. My preliminary QTL 

results highlight a candidate region on chromosome 18 with three biologically relevant 
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genes, one of which is a potential candidate from the selection signature results. 

Ancestry haplotype-based fine mapping are ongoing and will be integrated with the 

expression results and the selection scan. 
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CHAPTER 1 
 

Introduction 
 
 

1.1 Importance of rat models in studying complex traits 

Despite tremendous progress in medical genetics, our understanding of the genetic 

architecture of complex human diseases remains limited. Population-based association 

studies have led to the discovery of nearly 100 loci for blood lipids (Teslovich et al. 

2010) and >60 loci for Type 2 diabetes (Voight et al. 2010, Morris et al. 2012, Deloukas 

et al. 2013). But together they have only explained 5-10% of observed heritability. 

Gene-environment and gene-gene interactions likely play an important role, but are 

difficult to study in humans. An animal model brings the key advantage of having a 

consistent and controlled environment, and in many cases can accelerate the mapping 

and interpretation of human disease genes (Peltonen and McKusick 2001).  

In humans, intrinsic aerobic exercise capacity (AEC) is measured as maximal work 

performed on a standardized treadmill test; and many studies have shown that it is a 

strong predictor of disease risk, with higher capacities associated with better health and 

stronger resistance to metabolic diseases (Blair et al. 1989, Sandvik et al. 1993, Lakka 

et al. 1994, Blair et al. 1996, Myers et al. 2002, Gulati et al. 2003, Church et al. 2004, 

Sui et al. 2007, Kokkinos et al. 2008). Maximal AEC is also a better predictor of all-

cause mortality than other established risk factors including hypertension, smoking, and 

diabetes (Myers et al. 2002, Leeper et al. 2012). This epidemiological association 
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suggests a causal connection. However, the biological basis for this connection remains 

largely unknown (Pedersen and Saltin 2006, Bray et al. 2009). Aerobic capacity is a 

complex phenotype, affected by both genetic and environmental factors, including diet 

and exercise. However, in studies involving human subjects it is often difficult to resolve 

the relative effects of innate endurance from those due to aerobic training (Kaprio et al. 

1981, Prud'homme et al. 1984, Simoneau et al. 1986, Perusse et al. 1989, Bouchard et 

al. 2000, Bray 2000). To overcome this limitation, an animal model is needed that allows 

in-depth analyses of AEC.   

The rat is an excellent model organism for many reasons. The laboratory rat (Rattus 

norvegicus) has been a key system in basic biological and pharmacological research. A 

large body of literature exists concerning diverse phenotypes of rats, covering its 

cardiovascular, neural, and other physiological functions (Jacob and Kwitek 2002). Rat 

is evolutionally close to human; thus almost all known genes associated with human 

diseases have orthologues in the rat genome (Gibbs et al. 2004). Over 200 inbred 

strains of rats have been produced, many were first selectively bred for ‘‘disease’’ 

alleles (Hedrich et al. 1990). However, inbred lines of rats have the drawback of 

idiosyncratic breeding history, and lack the genetic diversity that characterizes natural 

populations. My Ph.D. research focuses on an outbred rat model, as it mimics the 

complexity of human traits more realistically.  

1.2 Artificial selection for high and low aerobic capacity rats 

Wild rats or heterogeneous stocks (HS) are outbred rat models frequently used in 

research. The HCR-LCR lines described below have an additional advantage in that 

they are derived from eight founder strains, and artificial selection has enriched for 
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functionally relevant and potentially higher-effect alleles in genetically divergent 

backgrounds, making available stronger signals to facilitate gene mapping. The HCR-

LCR model was started with the goal of understanding the genetic and functional basis 

of aerobic exercise capacity (AEC) so that we have an animal model that allows in-

depth analyses of the biology and health impact of intrinsic AEC that are not possible 

with human subjects.  In 1996 Drs. Britton and Koch (both currently at U-M) initiated a 

long-term experiment to create two lines of rats through divergent selection for higher or 

lower intrinsic AEC (Koch and Britton 2001).  Maximal AEC on a speed-ramped 

treadmill running test was adopted as the selection criterion because it provides a 

strong signal corresponding to whole-body energy management and can be measured 

efficiently in many rats, and more objectively than behavioral or emotional traits. The 

two lines, termed high capacity runners (HCR) and low capacity runners (LCR), were 

started from the same founder cohort (N=186) of genetically heterogeneous rats (N:NIH 

stock) originally derived from outcrossing 8 inbred strains (Hansen and Spuhler 1984). 

The highest- (for HCR) or lowest- (for LCR) performing male and female in each family 

were selected as breeders for the next generation, and bred in a rotational pattern to 

minimize inbreeding (details in Chapter 2).   

1.3 Phenotypic Divergence Between HCR and LCR 

One of the original aims for establishing the HCR-LCR lines was to test the 

hypothesis that artificial selection based on intrinsic aerobic capacity would yield models 

that also exhibit contrasts in disease risks. This hypothesis has been proven correct: 

after 28 generations of selection, the HCR and LCR diverged not only for running 

capacity, but also in other physiological measures, including blood pressure, body mass 
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index, lung capacity, lipid and glucose metabolism (reviewed in Koch et al. 2012).  The 

LCR, relative to the HCR, manifest numerous clinically relevant conditions, including 

increased susceptibility to cardiac ventricular fibrillation (Lujan et al. 2006) and hepatic 

steatosis (Thyfault et al. 2009).  At the behavioral level the LCR score higher for 

dysfunctional sleep (Muncey et al. 2010), diminished behavioral strategies for coping 

with stress (Burghardt et al. 2011), and impaired memory and learning (Wikgren et al. 

2012).  In contrast, the HCR have reduced weight gain (Wisloff et al. 2005), increased 

resistance to the deleterious effects of a high fat diet (Noland et al. 2007, Novak et al. 

2010), increased capacity for fatty acid oxidation in skeletal muscle (Lessard et al. 

2009) and liver (Thyfault et al. 2009), and an 28-45% higher lifespan (Koch et al. 2011). 

At generation 10 of selection, HCR and LCR were phenotyped across several 

physiological measures to test if disease features had segregated differentially 

between the lines. Wisloff et al. discovered that adult LCR rats develop cardiovascular 

risks consistent with the metabolic syndrome, including large gains in visceral adiposity, 

increased blood pressure, dyslipidemia, endothelial dysfunction occurring within carotid 

arteries, and insulin resistance (Wisloff et al. 2005). Using HCR and LCR rats from 

generation-18 Kivela et al. (2010) found that gene expression differences related to 

oxidative phosphorylation and fatty acid metabolism in skeletal muscle correlated 

significantly with disease risk phenotypes such as physical activity levels, serum high 

density lipoproteins, and mitochondrial structure.  

1.4 My contribution, using the HCR-LCR model for gene mapping 

In my research, I combined this unique animal model with the latest high-

throughput technologies to perform genetic and genomic analyses of the metabolic 
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phenotypes.  My overall goal is to advance our understanding of the biological 

mechanisms that link AEC to metabolic fitness and related diseases, and I undertook 

four separate projects to accomplish this.  The following chapters of this dissertation 

describe four related projects. 

First, I used available pedigree data to assess the heritability of the AEC trait, as 

well as related metabolic and physiological traits. In addition, I used a panel of 10K SNP 

genotype data to show the genomic divergence between the HCR and LCR lines that 

may underlie the phenotypic divergence. Taken as a whole, my results suggest that the 

HCR-LCR system is a novel model system suitable for studying genome evolution 

under sustained selection, and for dissecting the functional and genetic basis of 

polygenic traits.  This work was published as an article in PLoS One. 

In the next project, I used transcriptomics data from the HCR and LCR in a 3-

factor design to study the effects of, and interplay among, genetic background, exercise, 

and age, and found that each of the three factors--line, age, and exercise--has a main 

effect at the global level, and that the main effects are comparable in magnitude. My 

results support previous reports that HCRs show higher expression than LCRs for 

genes involved in mitochondria function, and my data further show that this difference is 

consistent whether after strenuous exercise and at rest. Further, aging-effect in LCRs 

show more significant enrichment for the extracellular, collagen, and adhesion pathways 

compared to HCRs, suggesting that LCRs' lower innate aerobic capacity underlies their 

faster aging. This work has been submitted for publication in Physiological Genomics. 

For my third project, I genotyped a group of HCR and LCR rats from two different 

times of selection using a custom 800K SNP array and pooled sequencing data, to 
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identify genomic regions under selection. In order to capture different but related 

selection signals, I used scan statistics corresponding to three different local genomic 

properties (ROH, Fst, and AFS) to identify both between-line and temporal signals. I 

further implemented a composite score method that combines the three statistics into 

one score for every gene, and found interesting candidate genes and pathways under 

selection.  This work has been posted as a preprint in bioRxiv. 

Last, I designed a 625K SNP array using the Affymetrix Axiom platform specifically 

for our lines in order to genotype the most informative SNPs in our F2 intercross 

population for QTL mapping. I combined WGS data from the 8 founder inbred lines, and 

pooled WGS from our own HCR-LCR animals to create the panel of SNPs. This 

platform benefits not only our gene mapping efforts, but also the entire rat community. 

My preliminary QTL analysis on the >600 F2 animals uncovered a ~1 Mb QTL region on 

Chromosome 18 with three genes that have biological relevance, which also showed 

potential importance in the transcriptomic and WGS data of the HCR-LCR lines. The 

manuscript describing this work is under preparation. 
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CHAPTER 2 
 

Genetic Analysis of the Rat Pedigrees 
 

2.1 Introduction 

Major advantages of the HCR-LCR system include the fact that the pedigree and 

running phenotype data (n = 11,422) are completely known; and tissue samples for 

most breeding members (n > 1,500) have been archived.  This combination of existing 

data and reagents, combined with over 70 published physiological studies of the two 

lines, represents a valuable resource that allows comprehensive analyses of the effects 

of selection on genomic and phenotypic evolution.   

In this study, I carried out a systematic analysis of the running phenotype and 

related traits over the known pedigree of 28 generations.  I also collected a genome-

wide 10K SNP dataset for a subset of breeding members from three generations (G) 

(n=142 over G5, G14, and G26), and used these data to examine patterns of genomic 

evolution in the two lines as they underwent selection. These analyses provided new 

insights into the genealogical structure, inbreeding patterns, and genetic variability of 

the two lines, and characterized the intercross animals to assess their suitability as a 

mapping population for identifying quantitative trait loci (QTL). 

 

2.2 Materials and Methods 

2.2.1 Ethics Statement 
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This study was approved by the University Committee on Use and Care of Animals, 

Ann Arbor, Michigan (Approval Numbers: #08905 and #03797). The proposed animal 

use procedures are in compliance with University guidelines, and State and Federal 

regulations.   

2.2.2 Rotational Breeding Scheme 

In practice, each line contains at least 13 mating pairs through all generations. From 

each of the produced families, one male and one female are selected as breeders for 

the subsequent generation. For HCR, the male and female with the greatest running 

distance are selected, whereas in LCR, those with the lowest distance are selected. The 

breeders are paired between different families to avoid brother-sister mating, and the 

pairings rotate in successive generations to minimize inbreeding (Nomura and 

Yonezawa 1996). When the 13th rotation is reached, same-family mating is skipped and 

the pairings are reiterated starting again in the same way as rotation 1.  Sometimes, if a 

particular mating fails, or if a family lacks animal of one sex, substitute mating is 

attempted involving a male from another family. In some cases, one male is mated to 

two females.  After G12, female HCR with body weights less than 160 grams were not 

selected to be breeders in order to ensure that fecundity does not diminish as a result of 

selection for better runners. G9-G13 in HCR included three cross-generation matings, 

whose offspring were incorporated into subsequent generations. Further, occasionally 

additional pairs are bred to generate experimental cohorts for study by us or for sharing 

with collaborators, and the progenies in these "analytical families" are not used for 

maintaining the lines, and are not counted in our calculation of the expected inbreeding 
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levels.  They are, however, used to calculate heritability and the distribution of trait 

values.   

One inevitable consequence of this breeding scheme is the mating of first-cousins at 

every half interval.  For example, at G7, every breeding pair, such as 1M-7F (a male 

from Family 1 and a female from Family 7) involves first cousins, because they are from 

1F-7M and 7F-13M matings respectively, in G6, in which 7M and 7F are siblings.  This 

results in a 6% spike in inbreeding values in G8 (Figure 2.1), and such a cyclic pattern 

continues in subsequent generations, resulting in spikes at G14, G20, and G26.  The 

actual pedigree deviates from a perfectly executed breeding scheme due to the 

inclusion of substitute breeders, and the calculated inbreeding coefficient from the 

actual pedigree depart slightly from expectations (Figure 2.1). As some breeding pairs 

were assembled to generate offspring for research use rather than line propagation, the 

"effective breeders" are those that contribute offspring who are also used as breeders, 

and do not include those whose offspring were used only for research but not as 

breeders themselves (Table 2.1).    

2.2.3 Running Phenotype 

Eleven week old animals are subjected to run-to-exhaustion tests without prior 

training, except for brief sessions of treadmill education during the week prior to the 

tests.  The purpose of such education sessions is to familiarize the rats to the 

experimenters and the testing equipment and to ensure that each rat has the ability to 

achieve a minimal level of continual running for 5 minutes at least once, which 

constitutes the threshold performance necessary for inclusion in the actual running tests 

the following week. During education, the rats learn to keep running in order to avoid a 
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mild shock (1.2 mA of current at 3 Hz) induced by the electrified grid located at the back 

of the treadmill.  For all sessions the treadmill is set at a 15-degree upward slope. 

During the run-to-exhaustion test, each rat was evaluated on five consecutive days 

(Mon-Fri) for G0-G16 and on three alternating days (Mon-Wed-Fri) for G17-28.  Each 

trial starts at a velocity of 10 m/min, which increases by 1 m/min every 2 min until the rat 

reaches exhaustion.  Exhaustion point is defined as the third time a rat can no longer 

keep pace with the treadmill and remains on the shock grid for two seconds rather than 

resuming running.  At this point the rat is removed from the treadmill and weighed.  For 

each rat, the best distance out of the multiple trials is taken as the best estimate of its 

intrinsic capacity, and used as the criterion for breeder selection. The vertical work 

during each trial is estimated using the equation: 

work = (running distance) x (body weight) x (sin[15o]) x (9.8m/s2)/1000  

in which the unit for work is joule (J=kg•m2/s2).  The units for running distance and body 

weight are meter and gram, respectively. 

2.2.4 Phenotype Distribution 

To display the phenotype distribution I produced violin plots (as shown in Figures 

2.1, 2.2, and 2.3) using the vioplot function from the Vioplot package in R. To calculate 

the Spearman's rank correlation coefficient (ρ) between maximal running distance and 

average body weight, separately for two sexes within each line, I used the cor and 

cor.test functions in R. The ρ values were calculated for each generation, and averaged 

over G1-G28. 

2.2.5 Inbreeding Coefficient and Heritability  
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I calculated the inbreeding coefficient (F) for each animal in the pedigree using the 

calcInbreeding function from the pedigree package in R (Bastiaansen et al. 2012).  The 

pedigree for earlier generations of NIH:H animals, i.e., those that preceded the founders 

of our lines, was not available. We are therefore limited to calculate the increase of 

inbreeding coefficients from those of the founders, effectively assuming they were 

unrelated, while in fact they were related according to the (unknown) breeding patterns 

in the preceding generations.  To calculate the expected F under random mating, I used 

the equation Fn+1 = Fn+(Nf+Nm)/(8*Nf*Nm)-Fn(Nf+Nm)/(8*Nf*Nm), where the Fn and Fn+1 

are the inbreeding coefficients at the n-th and (n+1)-th generation, respectively, and Nf 

and Nm are the numbers of male and female breeders at the n-th generation (Nf = Nm = 

13 in every generation for a 13 family breeding scheme).  To calculate the expected F 

under perfect adherence to the rotational scheme, I generated an idealized pedigree of 

13 mating pairs of exact mating patterns as intended, and used the pedigree package to 

calculate F for every member of the pedigree. 

To calculate the narrow-sense heritability (h2), I applied the variance and covariance 

component models as implemented in SOLAR version 4.3.1 (Almasy and Blangero 

1998). I estimated h2 for maximal running distance both over the entire pedigree and for 

four-generation intervals (with one  and three generation overlap) to assess the h2 

variation over time. I also estimated h2 for average body weight and work for the G0-

G28 pedigree, and for additional traits for the F2 intercross.  For the G0-G28 analysis, I 

included sex and operator as covariates; and for the F2 intercross I included sex and 

batch because the breeding was performed in two batches, containing 154 and 491 F2 

animals, respectively. 
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2.2.6 Genotyping and Data Processing 

DNA from 22-25 breeders from both lines in three non-adjacent generations (G5, 

G14, and G26, n=142) was extracted from frozen liver tissue, and genotyped across 

10,846 SNP loci using the Affymetrix Rat Mapping 10K GeneChip. Attempts to extract 

DNA from generations earlier than G5 revealed that many samples in G0 and G4 were 

degraded.  I therefore chose G5 as the earliest generation in our analysis due to its 

assured DNA quality.  In assessing the quality of SNP markers I removed 28 duplicate 

SNPs, 496 SNPs with genotype missing rate >10%, and 137 SNPs with Hardy-

Weinberg Equilibrium test p < 0.001.  These steps led to 10,185 SNPs that formed the 

"Panel-1" markers. As some analyses require a reduced set of SNPs without rare 

variants and without strong linkage disequilibrium, I removed from Panel-1 an addition 

set of 7,284 SNPs selected by trimming SNP pairs in linkage disequilibrium with r2 value 

>0.05 (in windows of 10 SNPs, sliding by 2 SNPs each time), and 572 SNPs with minor 

allele frequency (MAF) <5%.  After these steps, 2,518 SNPs remained and formed the 

"Panel-2" markers. The Panel-2 markers were used in calculations of IBD, AMOVA, and 

genome-wide average heterozygosity. The pairwise Identity-by-State (IBS) matrix was 

estimated in PLINK (Purcell et al. 2007) using the -genome command and Panel-2 

markers. Multidimensional scaling analysis of the IBS matrix was performed in R (R 

Development Core Team 2010). Analysis of molecular variance (AMOVA), as 

implemented in the program Arlequin, was used to calculate the within- and among-

group differentiation (Excoffier et al. 2005).  

I assessed the accuracy of recorded sex for each genotyped animal by calculating 

the average heterozygosity of the X chromosome SNPs.  Male and female animals are 
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confirmed by non-overlapping distributions of ChrX heterozygosity values.  I confirmed 

known sibling pairs among the genotyped animals by plotting pairwise Z0 vs Z1 values 

in R.  Z0 and Z1 values were determined in PLINK using the -genome command. 

2.2.7 Runs of Homozygosity  

Using the 10,185 Panel-1 markers, I identified long runs of homozygosity (ROH), in 

PLINK using the -homozyg command. I defined ROHs as genomic segments with at 

least 4 homozygous markers and having a density of at least 1 SNP per 500Kb. Total 

ROH length in each animal was obtained by summing over all ROH and also reported 

as the fraction of the rat genome (2.75 Gb). 

2.2.8 Genomewide Average Heterozygosity 

Using the Panel-2 markers, I calculated the average heterozygosity in PLINK using 

the -hardy command, and compared across genotyped lines and generations using 

boxplots.  The expected heterozygosity values were calculated using the equation Hn+1 

= Hn(1-((Nf+Nm)/(8*Nf*Nm))), where the Hn and Hn+1 are the heterozygosity at the n-th 

and (n+1)-th generation, respectively, and Nf and Nm are the numbers of male and 

female breeders at the n-th generation, respectively (Nf = Nm = 13 in every generation 

for a 13 family breeding scheme)  (Table 2.1).  

2.2.9 LD calculation 

Pairwise measurements of LD (r2) were calculated for marker pairs within 5 Mb on 

Chromosome 1 using Haploview (Barrett et al. 2005). To show the relationship between 

r2 and inter-marker distance, I calculated average r2 values for groups of marker pairs 

falling in discrete bins of inter-marker distance, in 500Kb increments, and plotted the 

values for G5, G14, and G26 in both HCR and LCR.  
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2.3 Results 

2.3.1 Rotational Breeding and Inbreeding Coefficients  

The protocols of animal maintenance, phenotyping, and rotational breeding have 

been described previously (Koch and Britton 2001) (see also Methods).  I analyzed the 

pedigree data for generations 1-28, involving 5,976 HCRs and 5,446 LCRs. For each 

animal, I calculated its expected inbreeding coefficient (F) by tracing its parental lineage 

and documenting inbreeding loops.  As expected, such pedigree-based estimates of F 

started to rise at G4-G5 and continued to increase over successive generations (Figure 

2.1).  The breeding history included occasional out-of-schedule pairings due to the lack 

of offspring of a certain sex in a given family or the need to substitute for unproductive 

mating pairs (see Methods for more details).  Despite this, the pattern of F increase in 

the actual pedigree largely agrees with the expectation assuming perfect adherence to 

the planned rotation schedule (shown in solid lines in Figure 2.1). The cyclic rise of 

inbreeding coefficient every six generations is expected for 13 breeding pairs, due to the 

inevitable first-cousin paring every half cycle of the rotation (Farid et al. 1987, Windig 

and Kaal 2008) (further explained in Methods).  Importantly, the average increase of 

estimated F is 0.94% and 0.95% per generation for HCR and LCR, respectively.  These 

predictions are slower than the rate expected under random mating (shown in dotted 

lines in Figure 2.1), which increase at 1.51 per generation for both HCR and LCR, 

starting from the first generation.   

2.3.2 Phenotypic Response to Selection and Heritability  

For each animal, I collected phenotype data that include maximal running distance, 

body weight at the time of running trial, and vertical work performed during each run.  All 
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animals were tested at 11-12 weeks of age. While both lines were derived from the 

same base population (indicated in yellow in Figure 2.2), their running performance 

gradually diverged over time.  After 28 generations, the HCRs and LCRs differ by about 

8.3-fold in running distance (9 times of the average within-line standard deviation), 

compared to ~2.8 fold (range of 298 to 840 meters) among eleven inbred lines 

commonly used in research (Barbato et al. 1998).  The HCR continue to respond to 

selection (Figure 2.2, Tables 2.2-2.3), with maximal running distance reaching >2000 m, 

~2.4 fold higher than the best recorded performance among the inbred lines (Barbato et 

al. 1998). The pattern of increase is consistent in both males and females.  Across 

generations, body weight did not diverge significantly between the two lines, with a sex-

averaged weight of 268 g and 215 g in LCR and HCR, respectively, or a 0.8-fold 

difference after 28 generations (Figure 2.3, Tables 2.2-2.3).  In general, females are of 

lighter weight than males. However, as females tend to run longer, the overall vertical 

work is near-equivalent between males and females (1.3-fold difference in HCR, 1.1-

fold difference in LCR) and larger in HCR than LCR by 6.8 fold. 

The narrow-sense heritability (h2) for the logarithm of running distance, which 

measures the proportion of total phenotypic variance explained by additive effects of 

genes, was calculated for each line separately, and was 0.47 ± 0.02 in HCRs and 0.43 

± 0.03 in LCRs when all 28 generations were considered. To evaluate potential change 

in heritability over time, I also calculated h2 over four-generation, partially overlapping, 

intervals and found that while h2 was variable across intervals, it maintained positive 

values, with no sign of abatement in later generations. The within-line h2 for bodyweight 

and vertical work are 0.45 ± 0.06 and 0.37 ± 0.02, respectively, for HCRs, and 0.17 ± 



    

16 
 

0.03 and 0.58 ± 0.02 for LCRs.  These results indicate that although LCRs did not show 

a decrease of running capacity as dramatically as the increase in HCRs, the heritability 

of running performance was comparable in the two lines.  Lower body weight is 

associated with better running capacity, as shown by the negative correlations between 

the two phenotypes for both sexes within each line. For HCRs, the spearman correlation 

is -0.41 ± 0.15 and -0.17 ± 0.16 for males and females, respectively. For LCRs, the 

correlation is -0.19 ± 0.16 and -0.12 ± 0.13 for males and females, respectively. The fact 

that HCRs continued to respond to selection and that both lines maintained within-line 

heritability suggest that all causal genetic variants have not been fixed in either line, 

rather they continue to segregate in both pedigrees.  

2.3.3 Increased Genomic Differentiation Between Lines 

As an initial genetic characterization of the HCR-LCR system, I collected genotype 

data over a genome-wide panel of ~10K single nucleotide polymorphism (SNP) loci for 

142 animals, consisting of 22-25 animals in each of three non-adjacent generations 

(G5, G14, and G26) in both lines (see Methods).  I used the average heterozygosity of 

61 X chromosome markers to infer sex, and found no disagreement with the recorded 

sex of the 142 animals. Documented relatedness was also confirmed by plotting the 

pairwise proportion of not sharing DNA segments due to identity by descent (P(IBD) = 0, 

or Z0) against the proportion of sharing one copy IBD (Z1) using the 2,518 SNPs (SNP 

Panel-2, see Methods). Siblings and non-sibling relatives are separated into distinct 

clusters, indicating that the sample identities reflected in the genotype data are 

consistent with the recorded pedigree. Multidimensional Scaling (MDS) analysis showed 

that at G5, HCRs and LCRs formed two readily separable clusters (Figure 2.4). From 
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G5 to G14 and from G14 to G26, between-lines separation increased, indicating a 

progressively greater differentiation between LCR and HCR.    

To measure the apportionment of total genetic variance into between-line and within-

line components I performed an Analysis of Molecular Variance (AMOVA) (Excoffier et 

al. 1992).  The proportion of variance explained by among population difference, as a 

weighted average over all loci, is increasing over time, from 6.5% at G5, to 15.6% at 

G14, and to 26.5% at G26.  

2.3.4 Decreased Genomic Diversity Within Lines 

I analyzed genetic diversity at the individual level by calculating the average 

heterozygosity (H0) across the 2,518 Panel-2 markers for each animal, and averaging 

within each of the six groups (two lines, at three time points) (Figure 2.5).  At G5, H0 

averaged 0.379 in HCR and 0.372 in LCR.  At G14 it decreased to 0.338 (-10.8%) in 

HCR and 0.327 (-12.1%) in LCR.  At G26 it decreased further to 0.303 (-10.2% from 

G14) in HCR and to 0.296 (-9.4%) in LCR.  Note that the absolute values of H0 are 

influenced by the allele frequencies of the genotyped SNP markers, and it is the relative 

changes of H0 that reflect the altered genomic diversity. The observed rates of decrease 

are slower than in random mating populations. Using the known numbers of effective 

breeders at each generation I calculated the expected H0 at each generation assuming 

random mating, and found that the expected rate of decrease in H0 is on average 1.53 

per generation for both HCR and LCR,. The observed rate of decrease, 0.95% and 

0.97% per generation for HCR and LCR, respectively, is lower by 37-38%, consistent 

with the pedigree-based predictions (Figure 2.1) and confirming that the rotational 
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breeding scheme has successfully reduced inbreeding as predicted (Nomura and 

Yonezawa 1996).  

As the reduction of H0 over time primarily reflects higher levels of inbreeding, a 

majority of the increase of homozygote genotypes should be accounted for by the 

emergence or expansion of long runs of homozygosity (ROH). Using 10,185 SNPs in 

SNP Panel-1 (see Methods), I found that for HCR, ROH covered an average of 46% of 

the genome in G5 animals, and this rate increased to 54.8% in G26. For LCR, ROH 

covered 46.8% of the genome in G5, and 55% in G26. Thus the non-ROH regions 

shrink by 0.73-0.77% per generation in the two lines, accounting for most of the 

decrease of H0. 

2.3.5 Linkage Disequilibrium 

I examined linkage disequilibrium (LD) patterns using the Panel-1 SNPs on 

Chromosome 1 (n = 978).  The LD index r2 decays to 0.3 at ~3 Mb in both HCR and 

LCR (Figure 2.6).  The level of LD is similar between HCR and LCR, showing slightly 

higher r2 in later generations, and is consistent with those reported for the NIH 

Heterogeneous Stock (Johannesson et al. 2009).  These results also suggest that the 

resolution of QTL mapping using HCR-LCR can be as high as 2-3 cM, considerably 

higher than the 20-40 cM resolution of F2 intercross of inbred lines (Flint et al. 2005). 

 

2.4 Discussion 

The HCR-LCR system was initiated in 1996 (Koch and Britton 2001) and reached 

G28 in 2011.  During this time, the two lines have diverged in innate endurance running 

capacity and showed marked differences in body type and metabolic traits.  The HCR 
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animals show a lower weight gain than LCR, in both young and adult rat, and this can 

be partly accounted for by higher spontaneous activity and lower fuel economy during 

activity in HCRs (Novak et al. 2010).  The two lines also diverged for many health 

indicators, with HCR showing a relative resistance to obesity, higher insulin sensitivity, 

lower blood pressure, improved lipid parameters, and enhanced longevity (Wisloff et al. 

2005, Noland et al. 2007, Koch et al. 2011).  These phenotypes are of immense public 

health interest, as prevalence of diabetes, cardiovascular disorders, obesity, and 

metabolic syndrome is rising at an alarming rate and account for a major portion of 

disease burden worldwide (James et al. 2004).  The model system used in this study is 

ideally suited for elucidating the fundamental biology of metabolic health.  

Understanding the genetic architecture and molecular underpinnings of the remarkable 

HCR-LCR differences has the potential to provide new insights into the relationship 

between exercise capacity and metabolic health in humans.   

While previous studies have focused on functional, physiological comparisons 

between HCR and LCR rats, here I conducted the first in-depth pedigree and molecular 

genetic analysis of the two lines. Phenotypic data over the 28-generation pedigree not 

only revealed substantial heritability for the running capacity trait, but also showed that 

the heritability is maintained in later generations, suggesting continued selection.  

I observed continued response to selection in HCR during generations 20-28.  This 

observation is notable because it can be interpreted in two possible scenarios. The first 

is that the aerobic running capacity may be influenced by many interacting QTLs, and 

as variants in some loci become fixed under selection, the previously hidden phenotypic 

effects of other variants can be "released" and come under selection, thereby fueling 
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prolonged responsiveness. This agrees with previous observations in similar systems 

that long-term selection did not exhaust the genetic variation for the selected trait due to 

the gradual shifts in the capacitors of cryptic genetic variation (Queitsch et al. 2002, 

Dworkin et al. 2003).  The second scenario is that the trait may be governed by many 

QTL of small effect, hence the strength of selection (~20% of animals become breeders 

in each generation (see Table 3)) may not have effectively driven the rapid changes of 

allele frequencies. These scenarios are not mutually exclusive, and the observation 

means that not all causal alleles have been differentially fixed in the two lines. Therefore 

we need to consider the possibility that the causal variants may be segregating within 

one or both lines.   

HCRs exhibited accelerated improvement of running capacity during G12-G15 

(Figure 2.2). To identify the cause(s) of this acceleration I examined factors such as 

diet, running protocols, the breeding schedule, and "Operator", i.e., the experimenter or 

a team of experimenters assessing the running phenotype.  The average litter size (i.e., 

fecundity) in the recorded HCR pedigree was not changed significantly during this 

period, hence there was no noticeable change in fertility or the strength of selection (i.e., 

the fraction of animals chosen as breeders). There was no systematic correlation 

between litter size and inbreeding coefficient of the offspring (not shown); and there was 

no documented change in diet, running apparatus, or running protocol. The two lines 

were closely synchronized across all 28 generations. The pedigree-based prediction of 

F was increasing in both HCR and LCR as expected (Figure 2.1).  However, a more 

detailed retrospective analysis of the breeding records found three factors having 

changes overlapping the G12-G15 period. The first is Operator: a team supervised by 
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Operator #3 performed the running tests during G7-G13, while a team supervised by 

Operator #4 performed the tests during G14-G15.  The second factor is the number of 

animals in the pedigree with no entries for running data which accrued mostly from rats 

that "refused" to run. The number of non-compliant rats in both lines gradually increased 

during G7-G13 in both lines, dropped immediately at G14, and remained low for most of 

subsequent generations.  Despite presumed standardization of the running protocol, the 

loss of running data may be Operator dependent in the sense that "refusal to run" is a 

subjective measure.  Third, the fraction of mating pairs that were out-of-schedule 

increased in G12-G14 in HCR, and dropped after G15. The simplest interpretation of 

these co-occurrences is that Operator 3 subjectively determined that a large number of 

animals refused to run. Those who did run showed no improvement over G6-G13.  With 

Operator 4, nearly all animals were able to run, and ran better than previous 

generations. While plausible, this simple scenario does not explain all the observations.  

First, despite being kept and tested under the same conditions as the HCRs, the LCRs 

exhibited no comparable acceleration or deceleration in running capacity. Second, the 

acceleration in HCRs began in G12-G13 with the unexplained emergence in some 

families of one or two exceptional runners, whose running distance were often more 

than twice as long as that of their siblings.  The performance of these runners could not 

be easily explained by Operator. Partly because the exceptional runners tended to be 

selected as breeders, such improved performance spread wider across the cohort in 

G14-G15 and gradually became the norm after G16.  However, there was not a clear-

cut Mendelian segregation pattern in these generations: the pairing of two exceptional 

runners often still produced mediocre offspring.  Among HCR mating pairs in G12-G15 
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there were 13 out-of-schedule pairs, which did not produce more exceptional runners 

than on-schedule pairs (not shown). The location of animal facility changed between 

G15 and G16 for both lines, but this change took place after the acceleration had 

started. Despite these complications, heritability estimates for HCR, calculated for each 

three-generation section of the pedigree and shifted by one generation, did not show 

dramatic changes over the generations.  

The accelerated improvement of running capacity in HCRs during G12-G15 could 

also reflect genetic changes.  However, emergence of a single high-impact de novo 

mutation is unlikely, as prodigious running capacity arose in multiple families 

concurrently. Such a pattern, however, is compatible with a scenario in which causal 

"high" alleles in multiple genes interact in a non-linear fashion. Various combinations of 

the high alleles could have undergone gradual enrichment and in G12-G15, began to 

manifest as improved phenotype when the most favored combinations were formed.  

Future studies, including linkage analysis of these intermediate generations, are needed 

to characterize the genetic changes accompanying the apparent varying tempo of trait 

evolution.  

Taken as a whole, the results presented above suggest that the HCR-LCR system is 

well-suited to serve as a novel model system for studying genome evolution under 

sustained selection and for dissecting the functional and genetic basis of polygenic 

traits.  The model exhibits large phenotypic divergence, sustained heritability for a wide 

range of cardiovascular and metabolic traits, and maintained outbred character. The 

complete pedigree is known, with running phenotype for all animals already collected, 

and tissue sample for most breeders archived. Our system has maintained genetic 
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diversity through rotational breeding, such that networks of interacting QTLs may have 

evolved jointly under selection, making the system particularly suitable for detection of 

interaction QTL (Carlborg et al. 2006).   Animals in both lines carry fine-grained genomic 

mosaics of eight "ancestral" inbred strains, with LD structure on the order of 3 Mb, 

allowing for greater resolution in association analysis (Mott et al. 2000, Valdar et al. 

2003, Valdar et al. 2006).   Combining QTL mapping with the wealth of existing 

knowledge of the HCR-LCR system is expected to allow the identification and 

prioritization of high quality candidate genes that will shed insight into the biology of 

oxidative capacity and metabolic fitness. 
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2.6 Figures 

 
Figure 2.1: Distribution of predicted inbreeding coefficients (F) for G0 to G28. 
 
Shown are "violin-plots" for individual generations for HCR (A) and LCR (B). The widths 
of the ovals indicate the probability density of the data values. The black dots and the 
thick black lines in the ovals denote the median and the 25-75 percentile range, 
respectively. The dotted blue line indicate the expected increase in F under random 
mating given the 13-family breeding scheme, and the solid blue lines indicate the 
expected F under perfect adherence to the rotational breeding scheme. 
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Figure 2.2: Distribution of maximal running distance for generations 0 to 28. 
 
Shown are "violin-plots" for individual generations for females and males combined. The 
yellow oval to the left denotes the founder population (NIH:H, n=153 phenotyped, out of 
186), while green and red ovals are for HCR and LCR, respectively. The blue tick marks 
on the y axis indicate the maximal running distance for eleven inbred lines, which are 
ordered, from top to bottom, as DA (840m), PVG (718m), AUG (699m), SR (533m), 
F344 (469m), ACI (450m), LEW (442m), WKY (414m), BUF (373m), MNS (308m) and 
COP (298m). 
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Figure 2.3: Distribution of body weight for generations 0 to 28 for HCRs 
(A) and LCRs (B).  
 
The yellow oval denotes the founder population (NIH:H, n=153). Most distributions are 
bi-modal, as most females are of lower body weight than most males. The blue tick 
marks on the y axis indicate the body weight for eleven inbred lines. They are ordered, 
from top to bottom, as MNS (279g), LEW (265g), SR (254g), BUF (246g), WKY (210g), 
COP (199g), ACI (193g), F344 (188g), DA (180g), PVG (179g) and AUG (167g). 
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Figure 2.4: Progressive genetic differentiation revealed by 10K SNP genotyping 
data. 
 
Shown is a multidimensional scaling plot (dimensions 1 vs. 2) for 142 genotyped 
animals in two lines and three generations, as indicated by different symbols, showing 
that the two lines formed separate clusters at G5, and diverged further in G14 and G26. 
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Figure 2.5: Decrease of average heterozygosity over time in both lines. 
 
Shown is the boxplot of genomewide average heterozygosity for the genotyped animals 
in two lines and three non-adjacent generations. 
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Figure 2.6: Linkage disequilibrium (LD) decay over distance in HCR (A) and LCR 
(B) for chromosome 1. 
 
The LD index r2, averaged for marker pairs falling in discrete distance bins, were plotted 
against the distance in Mb. LD decays to r=0.3 in about 3 Mb for both HCRs and LCRs. 
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2.7 Tables 

   HCR    LCR  
Gen N† Nb No. Male (Nm) No. Female (Nf) N† Nb No. Male (Nm) No. Female (Nf) 

0 - 26 13 13 - 26 13 13 
1 116 28 14 14 125 26 13 13 
2 137 28 14 14 126 26 13 13 
3 160 28 14 14 167 30 15 15 
4 131 26 13 13 138 26 13 13 
5 151 28 14 14 150 26 13 13 
6 151 30 15 15 155 26 13 13 
7 133 30 15 15 141 26 13 13 
8 185 28 13 15 143 28 14 14 
9 234 30 14 16 198 27 14 13 

10 238 29 13 16 150 27 13 14 
11 202 34 16 18 245 28 14 14 
12 195 30 14 16 202 26 13 13 
13 240 34 16 18 216 28 14 14 
14 222 30 15 15 209 28 14 14 
15 232 32 16 16 231 30 15 15 
16 210 38 19 19 141 30 15 15 
17 283 42 21 21 254 38 19 19 
18 270 46 23 23 246 38 19 19 
19 227 42 20 22 238 45 22 23 
20 248 44 22 22 233 50 25 25 
21 235 50 25 25 226 39 19 20 
22 258 48 24 24 204 50 25 25 
23 227 48 24 24 191 52 26 26 
24 215 44 22 22 172 50 25 25 
25 264 50 25 25 225 44 22 22 
26 297 44 22 22 240 50 25 25 
27 290 - - - 254 - - - 
28 225 - - - 226 - - - 

Total 5976 967 476 491 5446 920 459 461 
 
Table 2.1. Number of phenotyped animals (N) by line and generation, and the 
number of animals chosen as effective breeders (Nb), separately shown for male 
(Nm) and female (Nf). 
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 Male Female 

  
Best Running Distance 

(meters) 
Body Weight 

(grams)  
Best Running Distance 

(meters) 
Body Weight 

(grams) 
Gen n† Mean SD Mean SD n† Mean SD Mean SD 

1 57 529.0 244.3 265.7 27.5 59 564.7 224.3 181.2 20.7 
2 82 495.3 201.9 271.3 29.0 55 652.2 263.0 174.2 16.7 
3 74 630.4 215.1 258.2 29.3 86 721.9 248.5 175.0 18.3 
4 64 611.3 190.2 261.4 25.4 67 784.3 270.4 176.0 15.9 
5 86 661.6 218.0 252.9 26.2 65 812.9 270.0 171.9 14.2 
6 79 769.9 220.0 250.6 28.2 72 916.5 271.1 169.7 13.4 
7 67 722.6 305.7 274.5 34.5 66 1116.2 420.6 174.4 17.9 
8 96 543.7 313.0 263.9 35.4 89 795.8 420.8 174.1 15.7 
9 118 600.0 272.8 257.4 29.3 116 889.2 381.9 172.3 17.0 

10 140 799.0 261.6 257.7 32.6 98 1018.7 308.0 172.3 17.5 
11 92 641.2 281.3 246.2 30.5 110 849.3 314.0 164.5 17.6 
12 90 756.1 348.6 251.3 27.1 105 883.5 528.5 166.4 16.0 
13 134 729.4 386.5 236.8 28.6 106 1024.2 651.6 158.8 19.1 
14 112 1243.2 443.2 220.9 32.2 110 1703.6 602.7 154.9 16.2 
15 122 1667.0 284.5 221.0 28.5 110 2023.8 424.5 152.1 15.1 
16 106 1476.0 253.0 224.1 25.1 104 1475.0 236.9 158.0 17.2 
17 146 1509.2 248.9 227.4 28.1 137 1595.6 264.7 157.4 17.8 
18 149 1540.9 241.1 220.8 29.4 121 1658.5 256.4 156.5 17.5 
19 126 1669.0 271.8 225.7 26.2 101 1787.4 263.0 160.1 15.4 
20 135 1579.2 246.0 233.7 26.0 113 1661.3 233.2 156.6 15.0 
21 115 1834.0 306.7 233.1 27.1 120 1934.1 291.0 160.2 14.6 
22 140 1729.6 250.1 254.2 28.2 118 1902.0 279.5 167.8 16.0 
23 122 1697.3 279.0 254.0 31.0 105 1867.1 290.6 173.5 16.8 
24 110 1649.4 226.5 258.0 25.7 105 1834.2 264.9 173.8 18.5 
25 124 1657.0 279.2 257.7 25.2 140 1913.6 258.5 172.5 15.2 
26 168 1834.9 277.7 251.8 23.1 129 2053.1 357.0 163.5 12.1 
27 145 2000.7 364.3 246.3 26.3 145 2295.2 392.6 163.8 14.8 
28 112 1810.4 269.6 261.4 26.1 113 2108.6 297.5 169.1 14.0 
 
Table 2.2: Summary of cohort size, running distance, and body weight by gender 
and by generation for HCRs. 
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 Male Female 

  
Best Running Distance 

(meters) 
Body Weight 

(grams)  
Best Running Distance 

(meters) 
Body Weight 

(grams) 
Gen n† Mean SD Mean SD n† Mean SD Mean SD 

1 61 372.3 157.1 280.6 29.0 64 421.1 176.7 178.3 17.2 
2 58 268.7 116.4 296.7 31.2 68 333.8 123.6 187.5 12.9 
3 86 309.5 119.5 287.3 34.2 81 325.3 96.2 186.3 17.2 
4 72 302.6 89.2 297.6 27.8 66 366.9 106.0 194.7 16.0 
5 58 252.4 73.0 299.9 38.4 92 326.1 104.9 194.7 19.1 
6 74 281.7 73.0 293.8 31.1 81 333.9 108.8 195.7 19.2 
7 78 263.0 139.2 312.7 29.5 63 356.3 150.3 203.8 17.6 
8 70 157.7 93.4 313.6 24.2 73 259.6 104.8 209.4 23.9 
9 95 171.7 65.3 320.8 39.3 103 260.3 81.8 205.5 20.6 

10 76 167.3 94.4 321.9 25.6 74 245.0 88.5 213.8 18.8 
11 124 156.5 60.9 318.6 38.7 121 217.7 72.4 207.2 20.8 
12 98 182.8 90.6 321.4 36.5 104 267.9 102.8 211.9 21.5 
13 109 150.4 51.6 336.2 31.5 107 215.2 69.5 216.9 16.7 
14 98 205.8 57.8 304.2 32.6 111 266.4 78.4 207.2 20.9 
15 111 240.3 75.9 318.3 40.4 120 318.7 102.7 214.4 21.4 
16 63 303.2 69.3 314.3 29.9 78 370.0 107.3 208.0 28.0 
17 127 318.3 75.6 316.8 35.5 127 367.4 87.2 203.8 19.4 
18 127 282.6 58.2 323.5 32.8 119 374.6 69.3 202.7 18.0 
19 123 281.3 78.4 327.7 32.1 115 363.9 92.0 213.6 19.1 
20 113 272.3 64.0 326.7 29.2 120 330.7 87.3 208.0 19.4 
21 112 291.3 90.4 336.3 30.7 114 356.3 83.8 203.9 19.2 
22 99 328.9 63.6 335.1 30.8 105 389.2 65.8 202.3 16.6 
23 103 248.3 38.0 339.8 32.3 88 322.5 45.7 210.8 17.6 
24 88 238.1 30.1 354.9 24.3 84 308.9 47.0 214.8 19.2 
25 115 228.0 65.2 340.6 33.2 110 346.5 73.3 205.3 17.7 
26 117 201.7 45.1 327.0 50.3 123 305.3 49.4 206.2 19.4 
27 135 217.8 49.6 331.6 31.7 119 309.3 64.1 206.4 14.4 
28 115 191.8 42.9 328.2 31.5 111 278.3 45.8 208.6 16.7 
 
Table 2.3: Summary of cohort size, running distance, and body weight by gender 
and by generation for LCRs. 
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CHAPTER 3 
 

Selection-, Age-, and Exercise-Dependence of Skeletal Muscle Gene Expression  
 

Patterns 
 
 

3.1 Introduction 

Researchers at the University of Michigan recently showed that an increased 

capacity for skeletal muscle fatty acid and branched chain amino acid oxidation 

underlies the higher oxidative capacity in these animals (Overmyer et al., 2014).  As in 

humans, the enhanced oxidative capacity of the HCR compared to the LCR is paralleled 

by increases in lifespan, with the median age of death increasing from 23.5 months for 

LCR to 30.1 months for HCR rats, representing a 28% difference in life expectancy, with 

no significant difference for maximal lifespan between females and males within lines. In 

as early as Generation-7 of selection, HCR displayed significantly greater O2 utilization 

in the skeletal muscles (Howlett et al. 2003). Continued selective breeding up to 

generation 15 resulted in further divergence in O2 utilization as well as O2 delivery in the 

skeletal muscle (Howlett et al. 2009). An initial gene expression analysis of the skeletal 

muscle from HCR and LCR at generation 18 revealed significant differences for genes 

in the pathways of oxidative energy metabolism, including fat metabolism, branched-

chain amino acid metabolism, Krebs cycle, and oxidative phosphorylation (Kivelä et al. 

2010). A subsequent study that looked at gene expression in skeletal muscle of HCR 

and LCR at generation 16 found that HCR up-regulated genes involved in lipid 
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metabolism and fatty acid elongation compared to LCR in exercise-trained rats, while 

the sedentary rats only showed minor differences in gene expression between the two 

lines (Bye et al. 2008). The differences in gene expression were found to be consistent 

with results from proteomic analysis of skeletal muscle mitochondria (Overmyer et al., 

2014) which showed similar pathways enriched in HCR vs. HCR.   

It has long been appreciated that biological regulation, in this case transcript 

levels, are affected by inherited genetic variation, naturally occurring aging process, as 

well as responses to immediate physiological stressors.  These factors often act jointly 

but have not been analyzed simultaneously in a single study.  Here I analyzed the 

transcriptomic profiles of both young and aged female rats from generations 29 and 32, 

and under both resting and exercise conditions, with the goal of identifying pathways 

that could explain the divergence in aerobic capacity, longevity, and adaptation to 

exercise.  

 

3.2 Methods 

3.2.1 Ethics statement 

This study was approved by the University Committee on Use and Care of 

Animals, Ann Arbor, Michigan (Approval Numbers: #08905 and #03797). The proposed 

animal use procedures are in compliance with University guidelines, and State and 

Federal regulations. 

3.2.2 Animals 

I used old (~84-93 weeks of age) and young (~12-20 weeks of age) rats from 

HCR and LCR generations 29 and 32, respectively. The study included eight groups; 
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HCR-Old-Exhausted (H-O-E, n=6), HCR-Old-Rest (H-O-R, n=6), HCR-Young-

Exhausted (H-Y-E, n=6), HCR- Young -Rest (H-Y-R, n=6), LCR-Old-Exhausted (L-O-E, 

n=6), LCR-Old-Rest (L-O-R, n=6), LCR-Young-Exhausted (L-Y-E, n=6), and LCR- 

Young -Rest (L-Y-R, n=6). For the exhausted rats, dissections were performed within 10 

min after the maximal running distance was reached. 

3.2.3 Tissue and RNA extraction 

We extracted skeletal muscle RNA from a total of 48 female animals (n=6 in each 

of the 8 group). Skeletal muscle tissue was obtained from the Extensor digitorum 

longus (EDL). All rats were dissected immediately after sacrificing, and all tissue 

samples were immediately weighed, snap frozen in liquid nitrogen, and stored at -80C. 

Total RNA was extracted from frozen tissue with a Trizol reagent (Invitrogen) and 

purified with an RNAse kit (Ambion). 

3.2.4 Gene expression microarray  

We ran the skeletal muscle RNA on the Affymetrix Rat Gene ST 2.1 array. The 

microarray hybridizations were performed by the DNA sequencing core at the University 

of Michigan according to the manufacturer’s instructions. We used the Affymetrix 

Expression ConsoleTM software to generate gene expression values from individual 

probe intensity (CEL) files. The microarray yielded a total of 19,607 transcript 

expression values.  

3.2.5 Gene expression data analysis 

Data analysis were performed with an R software environment for statistical 

computing (R Development Core Team 2010). The data were normalized with quantile 

normalization. Principal component analysis was performed using the prcomp function. 
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The Euclidean distance between clusters was calculated with the dist function using the 

median expression values of each gene. Statistically significant differences in gene 

expression between test groups were tested using multiple regression with the lm 

function.  

For the main effect analyses, I implemented the regression models: 

exp ~ line + age + exercise 

exp ~ line (for old and exhausted; edge 2) 

exp ~ line (for young and exhausted; edge 4) 

exp ~ line (for old and rest; edge 6) 

exp ~ line (for young and rest; edge 8) 

exp ~ age (for HCR and exhausted; edge 1) 

exp ~ age (for LCR and exhausted; edge 3) 

exp ~ age (for HCR and rest; edge 5) 

exp ~ age (for LCR and rest; edge 7) 

exp ~ exercise (for HCR and old; edge 9) 

exp ~ exercise (for HCR and young; edge10) 

exp ~ exercise (for LCR and old; edge 11) 

exp ~ exercise (for LCR and young; edge 12) 

For the interaction effect analysis, I implemented the regression models: 

exp ~ line + age + line*age (for exhausted; top) 

exp ~ line + age + line*age (for rest; bottom) 

exp ~ line + exercise + line*exercise (for old; left) 

exp ~ line + exercise + line*exercise (for young; right) 
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exp ~ age + exercise + age*exercise (for HCR; back) 

exp ~ age + exercise + age*exercise (for LCR; front) 

3.2.6 Pathway analysis 

Pathway enrichment tests were performed using LRpath (Sartor et al. 2009) for 

all ~20K genes, p-values, and fold-change levels for each of the 12 comparisons. I 

tested for enrichment of Gene Ontology (GO) terms and Kyoto Encyclopaedia of Genes 

and Genomes (KEGG) pathways for the rat. LRpath allows us to perform both 

unidirectional and directional analyses; for unidirectional analysis, LRpath tests for gene 

sets that have significantly higher significance values than expected at random given a 

set of genes and p-values; for directional analysis, LRpath tests up- and down-regulated 

genes simultaneously given a set of genes, p-values, and fold-change between test 

groups to distinguish between up and down regulated gene groups. 

 

3.3 Results 

Our study adopted a 2×2×2 full factorial design to simultaneously examine the 

effects of three factors: HCR-LCR, aging (Old-Young), exercise (Rest-Exhaustion), and 

their interactions. Here “Young" animals are of age 31.1 ± 2.6 weeks and “Old” are 99.4 

± 2.9 weeks. Among the young animals, HCRs and LCRs show 8.5-fold difference in 

their maximal running capacity.  Compared to the young, running performance in old 

animals declined by ~50% in both lines, and the HCR-LCR difference remained at 8.9-

fold. Within each age group in either line there was not a significant correlation between 

age and maximal running distance.  For three factors and two levels each, there are 

eight experimental combinations.  In each combination I measured the skeletal muscle 
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(extensor digitorum longus, EDL) samples of six animals as biological replicates.  

Tissues from "Exhaust" animals were obtained immediately (<10 mins) after the run-to-

exhaustion test.  In all, we measured 19,607 transcripts in 48 samples in a single batch 

of microarray experiments. 

3.3.1 Global patterns 

A principal component analysis (PCA) of the 19,607 measured transcripts 

separates the 48 samples into eight clusters in the PC1-PC2 space; and they 

correspond to the eight known groups, as marked by the colored ellipsoids (Figure 3.1).  

The eight clusters occupy mostly non-overlapping areas in the PC1-PC2 space.  While 

a few of the clusters are close to each other, most are "coherent" and have gaps of 

varying sizes to the nearest cluster.  Thus, at the global level there are observable 

transcriptional effects for all three factors. PC1 is mainly driven by the Old-Young 

differences, while both PC2 and PC3 are driven by HCR-LCR and exercise effects 

(Figure 3.1).   

As a 2×2×2 design can be naturally displayed as a cube, I overlaid a 

hexahedron, i.e., an irregular, "stretched" cube, in Figure 3.1 to connect the median 

expression patterns of the eight groups.  Note that this hexahedron is not a quantitative 

representation of the high-dimension gene expression profiles, nor the between-cluster 

distances in their reduced two-dimensional view, but only a geographic illustration of the 

relationships among the experiment groups.  This representation has six quadrilateral 

faces (or planes) forming three opposing pairs, each representing the two levels of a 

given factor.  For example, the left and right faces represent the Old and Young 

animals, respectively, whereas the top and bottom faces represent Exhaust and Rest 
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groups, respectively.  The stretched cube has eight vertices, representing the centroid 

of the eight experimental groups; and its twelve edges represent the twelve two-way 

contrasts, each representing the main effect of a given factor in one of the four strata 

formed by the other two factors.  In Figure 3.2, I used a three-letter shorthand to 

indicate the eight vertices, where "H" and "L" denote "HCR" and "LCR", respectively, 

"O" and "Y" denote "Old" and "Young", respectively, and "R" and "E" denote "Rest" and 

"Exhaust", respectively.  For example, the upper left vertex of the front face, "L-O-E", is 

for the Old, LCR animals measured at Exhaustion.  The set of four quasiparallel edges 

connecting a pair of opposing faces are shown as arrows of the same color: red for 

HCR-LCR, purple for Old-Young, and black for Rest-Exhaust.  The twelve edges were 

also numbered 1-12 for ease of description.  For example, Edge-2, from L-O-E to H-O-

E, is the HCR-to-LCR difference for Old and Exhausted animals.  This contrast is also 

written as (HCR-LCR|Old, Exhausted) in Figure 3, where "|" is the mathematical 

notation of "conditional on", indicating the specific strata in which the contrast in defined. 

Globally, the eight clusters form a well-proportioned convex cube, indicating that 

each of the three factors has a main effect, that the effects are comparable among the 

line, age, and exercise factors, and that they jointly determine the observed gene 

expression pattern.  Further, the effects are not strictly additive (or independent).  If they 

were, i.e., if there was no interaction among the factors, all six faces would be 

parallelograms, i.e., formed by parallel edges of equal lengths, and the opposing faces 

would form parallel pairs of planes.  If this were the case, with suitable rotation of the 

PC axes the six faces could all be transformed to rectangles.  However, the observed 

hexahedron is not a cuboid: it contains unparalleled faces and unparalleled edges; and 
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in most faces, the opposing edges are of unequal length, indicating that the effect of any 

one factor depends on the specific combination of the levels of the other factors: the 

classic definition of statistical interaction.  My simultaneous analyses of the three factors 

thus revealed both main effects and their interactions, as examined in more detail 

below. 

I calculated the genomic distance along the twelve edges using all 19,607 

transcripts, and in the cube display, varied the line widths to be proportional to the 

genomic distance (Figure 3.2).  This way, a thicker line indicates a larger contrast (or 

distance), thus providing a different, but analogous, visual representation as the 

stretched cube shown in Figure 3.1, where it was the line lengths that represent the 

effect size along individual edges.  Figure 3.2 used the Euclidean distance as line width; 

the numeric values were shown in Figures 3.3.  Alternative distance measures, such as 

the median absolute difference (MAD) between pairs of group centroids, yield similar 

results: the Pearson's correlation coefficient (r) between MAD and Euclidean values is 

0.91 across the 12 conditions.  In the following I will describe the analysis of the three 

factors, one at a time, before describing the analysis of two-factor interactions. 

3.3.2 Between-line differences (HCR vs. LCR) 

For each gene I assessed the HCR-LCR main effect overall, corresponding to 

the transcriptomic differences between the two genetic lines, averaged over Old-Young 

and Rest-Exhaust conditions.  In the geographic representation this corresponds to the 

distance between the center of the HCR face (the back plane of the cube) to the center 

of the LCR face (front plane). The effect size reflects the transcriptomic consequence 

after divergent selection for aerobic running capacity. In all, 2,838 transcripts are 
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significantly difference at Benjamini-Hochberg False Discovery Rate (BH-FDR) < 0.05. 

The pathway analysis of these genes will be described in a later section.  

I next analyzed the HCR-LCR difference separately for each of the four age-

exercise combinations.  Across the four strata, Old-Rest has the largest line contrasts, 

while Young-Rest has the smallest.  This can be interpreted from two perspectives.  

First, the HCR-LCR effect at Rest is age-dependent: the lengths of Edge-6 and Edge-8, 

defined as Euclidean distance over all measured genes, are 36.6 and 29.2, 

respectively, indicating a stronger between-line difference in the Old animals (Figure 

3.3a). In contrast to Rest, this age dependence of line effect is much reduced at 

Exhaustion: the lengths of Edge-4 and Edge-2 are 32.9 and 33.4, respectively, nearly 

the same between the Old and Young animals.  From the second but equivalent 

perspective, the HCR-LCR difference for Young animals depends on the exercise state: 

it is greater at Exhaustion (Edge-4 vs. Edge-8; 32.9 vs. 29.2), but conversely, for Old 

animals the HCR-LCR difference is greater at Rest (Edge-2 vs. Edge-6; 33.4 vs. 36.6).   

3.3.3 Exercise effects (Exhaustion vs. Rest) 

Next, I assessed the Exhausted-Rest main effect averaged over the HCR-LCR 

and Old-Young conditions.  This corresponds to the distance between the center of the 

Exhausted face (top of the cube) to the center of the Rest face (bottom of the cube). 

The effect size reflects the transcriptomic adaptation after an endurance run. In all, 

1,715 transcripts are significantly difference at BH-FDR < 0.05 (Supplementary Table 

1).  The pathway analysis of these genes will be described below.  

I then analyzed the Exhausted-Rest difference separately for each of the four line-age 

combinations.  Across the four strata, HCR-Young has the largest line contrasts 
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whereas LCR-Young has the smallest.  At Young age, the Exhausted-Rest effect is line-

dependent: the lengths of Edge-10 and Edge-12 are 38.0 and 28.4, respectively, 

indicating a stronger exercise difference in the HCR animals (Figure 3.3b), which may 

reflect the longer exercise-related stimulus in the HCR due to the enhanced running 

capacity in the HCRs compared to LCRs. This line-dependence of exercise effect is 

much reduced when measured in Old animals: the lengths of Edge-9 and Edge-11 are 

33.1 and 32.5, respectively.  In an alternative view, the age-dependence of exercise 

effect varies by line: in HCR it is greater for Young animals (Edge-10 vs. Edge-9; 38.0 

vs. 33.1); but conversely, in LCR the exercise difference is greater for Old animals 

(Edge-11 vs. Edge-12; 32.5 vs. 28.4).   

3.3.4 Aging effects (Old vs. Young) 

The Old-Young main effect, averaged over HCR-LCR and Exhausted-Rest 

conditions, corresponds to the distance between the center of the Old face (left plane of 

the cube) to the center of the Young face (right plane). The effect size reflects the 

transcriptomic changes during the aging process. In all, 2,561 genes are significantly 

different at BH-FDR < 0.05 (Supplementary Table 1).  The pathway analysis of these 

genes will be described below.  

Again, I analyzed the Old-Young difference separately for each of the four line-

exercise combinations.  Across the four strata, LCR-Rest has the largest line contrasts 

whereas HCR-Rest has the smallest.  At Rest, the Old-Young effect is line-dependent: 

the lengths of Edge-5 and Edge-7 are 31.0 and 39.1, respectively, indicating a stronger 

age difference in the LCR animals (Figure 3.3c). This line dependence of age effect is 

much reduced when measured at Exhaustion: the lengths of Edge-1 and Edge-3 are 
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32.4 and 33.8, respectively. In an alternative view, the Old-Young difference for HCR is 

slightly greater for Exhausted animals (Edge-1 vs. Edge-5; 32.4 vs. 31.0), but 

conversely, for LCR the age difference is greater for Rest animals (Edge-3 vs. Edge-7; 

33.8 vs. 39.1).   

3.3.5 Pathway analyses of the three factors 

The three overall comparisons, for the main effects of line, age, and exercise, 

respectively, implicated many biological pathways, of which I focus on five most strongly 

affected.  These non-overlapping Gene Ontology pathways are: Mitochondria Part, 

Extracellular Matrix, Collagen Fibril Organization, Focal Adhesion, and Sequence-

Specific DNA Binding Transcription Factor Activity (Table 3,1). Stratified analysis of 

each of the three effects in the four combinations of the other two factors, as shown by 

the twelve edges in Figure 3.1, showed largely consistent patterns as the overall effects 

(Table 3.2 and Figure 3.4).  

For the line effect, HCR consistently shows up-regulated Mitochondria Part 

pathway compared to LCR (Edges-2, 4, 6 and 8) (Figure 3.3a).   

For the age effect, old rats consistently show down-regulation in Extracellular 

Matrix, Collagen Fibril Organization, and Focal Adhesion pathways compared to young 

(Edges-1, 3, 5, 7) (Figure 3.3b). Further, aging in LCR (sides 3 and 7) results in more 

significant enrichment for all three pathways compared to HCR (sides 1 and 5) (Table 

3.2).   

For the exercise effect, exhausted rats consistently show up-regulated 

Sequence-Specific DNA Binding Transcription Factor Activity pathway compared to rats 

at rest (Edges-9, 10, 11, 12) (Figure 3.3c).   
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3.3.6 Interaction effects 

For each face of the cube, I assessed the interaction between two factors while 

keeping one factor constant (front=LCR; back=HCR; top=Exhausted; bottom=Rest; 

left=Old; right=Young), for a total of six analyses. At the threshold of p < 0.001, the 

number of significant genes are 15, 67, 141, 113, 79, and 60 genes for the top, bottom, 

left, right, front, and back analysis, respectively, with the middle two comparisons 

showing the largest effect.  At the threshold of FDR < 0.1 the trend is similar, with 0, 2, 

56, 64, 1, 1 genes in the six comparisons, again with the left-Old and right-Young 

showing the greatest number of significant interactions.  I therefore focused on these 

two "planes" of the cube, asking: what are the patterns of the 141 (or 113) genes among 

the four groups?  That is, what type of non-additive effects are driving the observed 

statistical interactions? 

For the left plane, I extracted the expression data for the 141 genes with p < 

0.001 for the 24 Old animals, and performed unsupervised hierarchical clustering of the 

141-by-24 data matrix (Figure 3.4a).  From left to right are the 24 animals: with the 

exception of animal #15, they are clustered into four known groups: LCR and HCR for 

Rest, and LCR and HCR for Exhaust.  From top to bottom are the 141 genes that 

formed three clusters, with 32, 19, and 90 genes respectively.  The dendrogram is built 

using the standardized data, i.e., each gene is centered across the 24 samples and 

scaled to have the same standard deviation.  The unscaled data, showing in the 

heatmap in the middle panel, showed that some genes have much larger variance than 

other genes.  I used DAVID to test if any pathways are enriched in the three gene 

clusters.  As shown in the right panel, the first and second clusters are enriched for 
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Phosphatidate Phosphatase Activity (p-value=1.3E-2) and Response to Toxin (p-value 

=1.9E-3), respectively.  The heatmap shows that they have higher expression for HCR 

at Exhaustion and, to a lesser extent, LCR at Rest, thus breaking the additive effects of 

Line and Exercise.  It also suggests that for these pathways, the LCR animals at rest 

are "pre-exhausted".  The third cluster, enriched for Cytoskeletal protein binding I (p-

value = 5.5E-3), shows the opposite trend: higher expression in HCR at Rest and LCR 

at Exhaustion, as if the HCR animals have pre-activated these genes even at rest, while 

the LCR's do not activate them until exhausted. 

Similarly, for the right plane, I extracted the data for the 113 genes with p < 0.001 

for the 24 Young animals, and performed unsupervised hierarchical clustering (Figure 

3.4b).  Once again, the 24 animals are perfectly clustered into four known groups, and 

the 113 genes formed four clusters with, from top to bottom, 55, 20, 25, and 13 genes.  

The first and fourth clusters, enriched for Response to protein stimulus (p-value=1.5E-5) 

and Plasma membrane (p-value2.6E-3), respectively, show opposite patterns: with HCR 

at Exhaustion to be different from the other three groups, thus breaking the additive 

effects and driving the interaction.  The second cluster show higher expression levels 

for HCR at rest and LCR at Exhaustion and is enriched for Regulation of RNA metabolic 

process (p-value=5.1E-4). The third cluster show the opposite pattern as Cluster 2, with 

lower expression levels for HCR at rest and LCR at Exhaustion.  It does not have a 

clear pathway enrichment signal. 

          

3.4 Discussion 
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The ability to evaluate three main effects (genetic background, exercise, aging) 

jointly and uncover interactions between them in a rat model is a novel contribution of 

this study. The HCR-LCR difference is driven by mitochondrial pathways during both 

exercise and rest (Table 3.1). According to both the GO Biological Processes and the 

KEGG Pathways, genes involved with mitochondria are associated with substrate 

metabolism and oxidative metabolism, including Branched chain amino acid 

metabolism, Fatty Acid metabolism, Oxidative Phosphorylation and Tricarboxylic Acid 

cycle (TCA) metabolism.  These genes are expressed significantly higher in HCR 

muscle, as has been previously reported (Kivela et al. 2010).  We have recently found 

that the up-regulation of these pathways increases the capacity for non-glucose fuel 

utilization in the HCR and LCR rats, delaying the ‘lactate threshold’ associated with 

glycolysis-mediated ATP production (Overmyer et al., 2014).    

When at rest, the HCR-LCR difference is far greater for old rats than the young 

(Fig. 3.3a).  This reflects a relative slowing of aging in HCR and is entirely consistent 

with the reported longevity difference between HCR and LCR (Koch et al. 2011). 

Interestingly, this age-dependent difference disappears for the exhausted rats. The 

difference between HCR-LCR is the strongest for young rats and at rest, perhaps due to 

their intrinsic expression differences for mitochondrial genes (Table 3.1). The larger 

HCR-LCR difference at exhaustion may be due to the up-regulation of the same 

exercise-related gene sets for both genetic backgrounds. The exhausted-rest difference 

is driven by the transcription activity pathway; with exhausted animals showing up-

regulated transcription activity.  
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Between the exhaustion and rest rats, the difference is greatest for the young 

HCRs, and weakest for young LCRs (Fig. 3.3b). The associated genes are largely 

transcription factors and cofactors that are associated with muscle development or 

known to be responsive to exercise, and similar trends have previously been observed 

in trained human muscles (Cary and Guan 1999).  These gene expression differences 

in HCR and LCR may simply be attributable to exercise duration, as HCRs run on 

average 9-fold longer that LCRs (Ren et al. 2013).  

The old-young difference is driven by the extracellular matrix (ECM), collagen, 

and adhesion pathways in both HCRs and LCRs during both exercise and rest (Table 

3.1). When at rest, the old-young difference is far more prominent for LCRs compared 

to HCRs (Fig. 3.3c). In addition, age-effects in the aging indicator pathways are more 

pronounced in the LCRs compared to the HCRs (Table 3.3). As mammals age, the 

amount of collagen in the muscle increases, which results in muscle stiffness and 

reduced muscle function (Haus et al. 2007). The collagen-related pathways are down-

regulated in the old rats compared to the young rats. This finding is similar to those from 

a previous meta-analysis across humans and rodents for gene expression data among 

aging groups, in which the researchers also found collagen gene sets to be under-

expressed with age, and explain it by reduced collagen deposition with aging (de 

Magalhaes et al. 2009). 
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3.6 Figures 
 

 
 

Figure 3.1: Principal component analysis (PCA) plot (PC1 vs PC2) for 48 rats 
across the expression of ~20K transcripts.  
 
The samples are divided across 8 different groups in a  2×2×2  design to compare HCR 
and LCR, aged and young, and between rest and exhaustion (n=6 each). Groups are 
highlighted using different colored ovals to show clustering, and HCR-LCR are shown 
as squares and triangles, respectively. All of the exhausted animals are red, and 
animals at rest are blue. Old animals are shown as dark red/blue, and young animals 
are shown as light red/blue. Arrows are drawn from each cluster to show the direction of 
each group variable; purple arrows show direction of old-young animals; orange arrows 
show direction of HCR-LCR; black arrows show direction of exhaust-rest. 
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Figure 3.2: Cube depiction of the PCA plot in Figure 3.1.  
 
Each group is represented by their abbreviated names (HCR/LCR = H/L, old/young = 
O/Y, exhaust/rest = E/R). The arrow color scheme is the same as Figure 1. (A) The 
numbers beside each arrow represents the Euclidean distance calculated using all 
~20K transcripts, with larger numbers representing more distant groups in terms of 
skeletal muscle transcriptome. (B) The numbers on each arrow represent the denotation 
of the analysis (between 1-12) that will be referred to in the manuscript, and the 
thickness of each arrow represents the Euclidean distance for each side. 
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Figure 3.3: Euclidean distances between each sample group.  
 
(a) shown are the cube depiction and Euclidean distances focused on the effects of 
genetic background: differences between HCR and LCR (sides 2, 4, 6, and 8); (b) 
shown are the cube depiction and Euclidean distances focused on the effects of 
exercise: differences between exhaustion and rest (sides 9, 10, 11, and 12); (c) shown 
are the cube depiction and Euclidean distances focused on the effects of aging: old vs 
young (sides 1, 3, 5, and 7). 
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Figure 3.4: Heatmap of significantly (p<0.001) differentially expressed genes for 
for the interaction effects represented by the left and right faces of the cube from 
Figure 3.2  
 
shown is the heatmap of the 141 significant genes for old animals on the left face of the 
cube (a) and  the 113 significant genes for young animals on the right face of the cube. 
Each row shows the expression of a single gene across all samples, and the 24 
samples for each face are ordered by group (shown at the bottom) across the columns. 
The genes are grouped into clusters based on hierarchical cluster. The heatmap is 
colored in a blue-red spectrum, with low expression shown in dark blue and high 
expression shown in dark red. The top enriched pathway of the sub-clusters of genes 
for each face are shown at the right. 
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3.7 Tables 
 

 
 
Table 3.1: -log(p-values) for the major pathway groups in the overall main effects 
of the three factors.  
 
A heatmap is used to show the difference in significance levels; with green denoting 
greater significance and red denoting less significance. 
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Table 3.2: -log(p-values) for the major pathway groups in each main effect 
analysis.  
 
A heatmap is used to show the difference in significance levels; with green denoting 
greater significance and red denoting less significance. 
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Table 3.3: Directions of the major pathway groups.  
 
Green arrows denote that the pathway was up-regulated for the control group compared 
to the test group in each analysis, and vice versa for red arrows (control groups are 
HCR, old, and exhaust; test groups are LCR, young, and rest). The thickness of the 
arrow indicates the significance of the pathway for the respective analysis; with a thicker 
arrow representing smaller p-values. 
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CHAPTER 4 
 

High-Density SNP Array and Genome Sequencing Reveal Signatures of Selection  
 

in a Divergent Selection Rat Model for Aerobic Running Capacity 
 

4.1 Introduction 

After 32 generations of selection, the two lines differed by ~9-fold in AEC, and 

diverged in many other metabolic phenotypes and health indicators. Nearly 100 papers 

have been published on the "downstream" physiology of the HCR/LCR model, but the 

genetic basis of these remarkable phenotypic differences has not been established. I 

hypothesize that divergent trait selection in these two lines of rats may have resulted in 

selective sweeps with fixation/near fixation of variants that underlie the running capacity 

and associated metabolic and physiological traits.  In this study, I used SNP genotyping 

and pooled whole-genome sequencing data from rats in both lines (HCR and LCR) and 

two non-adjacent generations (5 and 26) to identify signatures of selection. I 

implemented three different statistics as well as a composite score that combines the 

signals from the three statistics in an attempt to uncover swept genes/pathways. The 

test statistics I selected included 1) runs of homozygosity (ROH), which captures long 

stretches of homozygous variants that could be due to the "hitchhiking" effect near a 

region under positive selection; 2) fixation index (Fst), which captures increased genetic 

differentiation due to divergent selection (although it could also be due to random 

genetic drift); and 3) aberrant allele frequency spectrum (AFS), with which a region 
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under selection may show a local AFS that departs from the genome-wide AFS. 

Previous studies have proposed several methods of combining multiple selective sweep 

signals into a composite signal to improve the detection of true signatures of selection 

(Grossman et al. 2010, Utsunomiya et al. 2013, Randhawa et al. 2014). The basic 

rationale, as stated in Grossman et al., is that “If each signature provides distinct 

information about selective sweeps, combining the signals should have greater power 

for localizing the source of selection than any single test.” My method follows the same 

rationale.  

Using the three related but unique test statistics, I identified gene sets and 

genomic windows that significantly diverged between time points during selection or 

between the two lines, and interpreted their potential roles in relation to the trait under 

selection as well as the other traits that diverged. The results therefore provide useful 

insight into the underlying genetic basis of intrinsic oxidative capacity and other 

metabolic and physiological phenotypes in our HCR-LCR rat model. 

 

4.2 Methods 

4.2.1 Study overview  

The protocols of animal maintenance, phenotyping, and rotational breeding have 

been described previously (Koch and Britton 2001). The characterization of genetic 

structure, heritability, and linkage equilibrium using both pedigree and genotype data 

have also been published (Ren et al. 2013)(Chapter 2). This study was approved by the 

University Committee on Use and Care of Animals, Ann Arbor, Michigan (Approval 
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Numbers: #08905 and #03797). The proposed animal use procedures are in 

compliance with University guidelines, and State and Federal regulations.  

4.2.2 Direction of comparisons 

 In this study, I focused on four sample groups, separated by line (HCR-LCR) and 

selection time (G5 and G26). Because I am interested in finding signatures of positive 

selection, the direction of comparisons is always HCR-minus-LCR and G26-minus-G5. 

Furthermore. HCR-LCR analyses will be referred to as ‘between-line’, while the G26-G5 

analyses will be referred to as ‘temporal’. Given that our method is based on a two-

tailed analysis, both directions have meaning. For example, strong positive selection 

signature in the HCR-LCR analysis would indicate positive selection that occurred in the 

HCR line, but not in the LCR. These would include the genomic regions under selective 

pressure as a consequence of the artificial selection for higher AEC. Inversely, strong 

negative selection signature in the HCR-LCR analysis would indicate positive selection 

that occurred uniquely in the LCR line. We currently do not know how to interpret these 

genomic regions, but it is possible that the LCR line experienced positive selection 

events not experienced by the HCR.  

4.2.3 Genotyping data collection and quality control 

I collected genotype data for four groups of rats, representing 10-12 breeders 

each from the two lines in two non-adjacent generations (G5 and G26, total n=45). 

Genomic DNA was extracted from frozen liver tissue, and genotyped across 803,484 

SNP loci using a custom 800K rat SNP array (Baud et al. 2014). Attempts to extract 

DNA from generations earlier than G5 revealed that many samples in G0 and G4 were 

degraded. I therefore chose G5 as the earliest generation in our analysis due to its 
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assured DNA quality. During QC I removed 21,295 SNPs with genotype missing rate 

>10%. This step led to 782,189 “pass QC” SNPs, which were used in calculations of 

runs of homozygosity (ROH) and fixation index (Fst), described below.  

4.2.4 Pooled whole-genome sequencing (WGS) and quality control 

DNA for four sample groups, containing 10 female breeders each from the two 

lines and in two non-adjacent generations (G5 and G26, total n=40), was extracted from 

frozen liver tissue and sequenced for the whole-genome in four pools using the Illumina 

Hiseq system at the U-M DNA Sequencing Core. The reads were mapped to the rat 

reference genome RGSC-3.4 using the read alignment software Burrows-Wheeler 

Alignment tool (BWA) (Li and Durbin 2009). The average read depth for the four pools 

were 8.4 for HCR G5, 9.9 for HCR G26, 9.9 for LCR G5, and 9.2 for LCR G26. I made 

joint variant calls using Genome Analysis Toolkit (GATK) and obtained 8,909,190 single 

nucleotide variants (SNV) representing alternative alleles observed in at least one of the 

four pools (McKenna et al. 2010). I removed variants in each pool with read depth less 

than half of the pool-average. This step led to high-quality genotypes at 6,806,440 sites 

for HCR G5, 7,533,943 sites for HCR G26, 7,430,142 for LCR G5, and 7,218,598 for 

LCR G26. In all, there are 5,101,259 SNV sites with high-quality genotypes in all four 

pools, and these sites were used in the identification of genomic regions with aberrant 

allele frequency spectrum. 

4.2.5 Identification of long runs of homozygosity (ROH) 

ROHs for each group (HCR G5, HCR G26, LCR G5, LCR G26) were identified 

via PLINK using the pass-QC markers and the following parameters: 
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--homozyg-window-snp 50  --homozyg-window-missing 5 --homozyg-window-het 1 --

homozyg-window-threshold .001 --homozyg-snp 25 --homozyg-kb 500 

The first parameter means that the search is by sliding a moving window of 50 

SNPs across the genome to detect long contiguous runs of homozygous genotypes. An 

occasional genotyping error or missing genotype occurring in an otherwise-unbroken 

homozygous segment could result in the under-calling of ROHs. To address this, I 

allowed five missing calls and one heterozygous call per window, as described by the 

second and third parameters. Each SNP is then assigned an ROH status (yes/no) 

based on the proportion of all the 50-SNP windows that overlap this SNP and that are 

called homozygous, which I have set to be 0.001. While the above parameters describe 

how to define sliding windows as ROH or not, the ROH windows are then merged into 

longer ROH segments, with the next two parameters used to set the thresholds for the 

minimum number of SNPs (25) and minimum length (500 kb) needed to be called an 

ROH segment. ROH windows that failed to meet these two thresholds would still be 

considered not an ROH. Note that given the SNP density of the array (about 290 SNPs 

per 1000 Kb), the 500 Kb threshold to be called an ROH is dominant over the 25 SNP 

threshold for all four groups. 

After finding ROHs for each animal, I calculate the ROH frequency for each of 

the four groups across the entire genome , then I assigned an ROH score to each 

Refseq gene based on the average frequency of ROHs segments that overlapped its 

position for each group (a score of 1 indicates 100% of the individuals within that group 

have an ROH across that position). This is based on an un-weighted average of all 

ROH segments that overlap any part of the gene. I then calculated ΔROH for temporal 
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(G5 vs G26) and between-line (HCR vs LCR) comparisons, for a total of four analyses.  

The ΔROH value for every gene was ranked, and the fractional rank was transformed 

into a z-score via the inverse normal distribution. The z scores are used in constructing 

the composite scores described below.  

4.2.6 Fixation index (Fst) 

Fst is a measure of genetic differentiation between two groups.  It is constructed 

as the squared allele frequency difference between the two groups divided by a scaling 

factor, such that its range is from 0 (no differentiation) to 1 (complete differentiation, i.e., 

the two groups are fixed for different alleles). The formula for calculating Fst for each 

SNP is : 

Fst = (x-y)^2/(4*avg*(1-avg)) 

where x and y are the allele frequencies of the two groups being compared, and avg is 

the average of x and y (Wright 1965). I calculated Fst for every SNP for temporal (G5 vs 

G26) and between-line (HCR vs LCR) comparisons , for a total of four analyses(an 

example is shown in Figure 4.1). I then assigned a score to each 1 Mb window as the 

80th percentile of the Fst values of the SNPs in that window (about 290 SNPs per 

window). I then assigned an Fst value to each gene based on the unweighted average 

Fst of the windows that overlapped its position.  The per-gene Fst values are transformed 

as described below when constructing the composite scores. 

4.2.7 Aberrant allele frequency spectrum (AFS) 

AFS analysis requires fully ascertained variant sets; that is, all variants in a 

region as discovered by sequencing. For this reason, genotyping data that focus on pre-

selected panels of SNPs are not suitable for characterizing AFS.  To identify genomic 
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regions with aberrant AFS I collected pooled WGS data, and used the observed 

alternative allele fraction in the pool as the surrogate of the allele frequency in each of 

the four groups.  The difference between a local AFS, in my case defined in 1 Mb 

windows, and the genomewide AFS, is quantified in a parametric test described by 

Nielsen and colleagues, implemented in the program SweepFinder (Nielsen et al. 

2005). When a new beneficial mutation increases in frequency in a population because 

of positive selection, the standing genetic variation in its neighboring region on the same 

chromosome will also increase in frequency (i.e., selective sweep). The pattern of allele 

frequencies will be skewed. Sweepfinder tests whether a local AFS differs from the 

spectrum of the whole genome by calculating a maximum composite likelihood ratio 

(CLR) for each window.  The CLR is the ratio of the likelihood of a selective sweep to 

the likelihood of no sweep given the observed AFS in a window and the genome-wide 

AFS. It outputs the CLR statistic as well as the parameter alpha (the strength of the 

sweep). After calculating the CLR for each of the four sequenced pools (an example is 

shown in Figure 4.1), I calculated ΔCLR for temporal (G5 vs G26) and between-line 

(HCR vs LCR) comparisons, for a total of four analyses, and then transformed the 

ΔCLR as described below when constructing the composite scores.  

4.2.8 Composite score  

The main challenge of detecting signatures of positive selection is that random 

genetic drift could also lead to apparent peaks in certain genomic regions in ΔROH, Fst, 

and ΔCLR values.  As these statistics capture different aspects of the true signal, a 

composite score that combines the three statistics is more likely to highlight true 

signatures of selection above the background effects of genetic drift. In other words, 
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regions concordant across the three test statistics will show a high composite score, 

whereas those with conflicting signals may show reduced composite score that is closer 

to the genome-wide average. Several strategies for constructing such a composite 

score have been described previously in similar studies (Grossman et al. 2010, 

Utsunomiya et al. 2013). In my case, each of the constituent statistics had its distinct, 

non-normal distribution, I need to transform them individually to ensure that (1) the three 

statistics have comparable contributions to the composite score - if the variance of one 

statistics is far larger than those of the other two, it will dominate the final composite 

score, and (2) the specificity of a scan statistics, as reflected by how frequent and how 

strong the peaks are, should preferably be preserved as much as possible.   

I developed a novel composite score that involves transforming the three 

statistics with different strategies.  

• For ΔROH, the original scores are symmetrically distributed around 0, with a 

prominent peak in the middle (Figure 4.2a), and both tails are meaningful in that 

they capture the increase and decrease of ROH, respectively, in the comparison.  

I converted the fractional rank for every gene into a z-score based on the formula 

z = Φ-1(r) where Φ-1( ) is the inverse normal cumulative distribution function and r 

is the fractional rank, defined as n/(N+1), where n is the rank of the gene and N is 

the total number of genes. The resulting z score is a standard normal distribution, 

N(0,1), as shown in Figure 4.2b. The directionality is preserved after the 

transformation as shown by the scatterplot (Figure 4.2c)  

• For ΔCLR, the distribution is symmetrical around zero, with extremely strong 

outlier values(Figure 4.2d).  To perform rank-based inverse normal 
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transformation as above would have dampened the contribution of these strong 

peaks. To allow the peaks to make suitably large contributions to the composite 

score I decided to apply a cubic-root (x1/3) transformation.  The resulting score, 

shown in Figure 4.2e, preserved the specificity of the strongest ΔCLRs. The 

directionality is preserved, and the majority of the observations fall near zero 

after the transformation (Figure 4.2f) 

• For Fst, the original scores are all positive, where a larger score indicates a 

greater population differentiation, but it does not tell which population has 

experienced more changes.  Further, the Fst 's fall in the range of (0, 0.33), and 

need to be scaled up to make comparable contributions as the other two scores 

(Figure 4.2g).  To convert the one-tailed distribution into two-tailed, symmetrical 

distribution I attributed a sign to each Fst by borrowing information from the other 

statistics.  Specifically, the assigned sign is equal to the sign of the summation of 

the other two transformed statistics: Z-score and ΔCLR1/3.  I then scaled up the 

score by a factor of 10 in order to bring the three statistics to comparable scales 

of variability (Figure 4.2h). Given that about half of the Fst values flipped signs, 

the scatterplot between the raw and transformed values is mirrored on the y-axis 

(Figure 4.2i). 

Finally, the composite score is the simple average of the three transformed 

scores. When a pseudo-p-value is needed in pathway analysis using LRPath (described 

below) I converted the composite score to the fractional rank. 

4.2.9 Pathway analysis 
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Pathway enrichment analysis was performed using LRpath for all genes, using 

the composite scores and their associated pseudo p-values. I tested for enrichment of 

Gene Ontology (GO) terms (across 18,083 terms) and Kyoto Encyclopedia of Genes 

and Genomes (KEGG) pathways (across 225 terms). The analysis was done on 

September 30, 2015. (Note that around June 2015 the GO annotation was updated and 

the results became different. Future updates are expected to cause further changes of 

the pathway analysis results.  The stability of gene annotation is a nuisance in this case, 

but also an opportunity for the same data to return new pathway results in the future.) 

For a moderate correction for testing thousands of pathways I reported those that 

satisfied the per-pathway p-value < 0.001 for both temporal and between-line analyses.  

4.2.10 Visualization of enriched pathways  

 In many comparisons there are too many pathways that turn out to be apparently 

enriched and they become difficult to summarize.  To facilitate the interpretation of the 

pathway analysis results in terms of the most salient biological signals, I needed to 

consolidate the top pathways into clusters of biologically related clusters, and this can 

be done by evaluating how any two pathways share more or fewer genes.   

To visualize the clustering of significant pathways from LRpath in an organized 

manner while incorporating the overlap among gene sets, I used the Cytoscape plugin 

EnrichmentMap (Merico et al. 2010). For each LRPath result I selected pathways 

passing the p-value threshold of 0.1 to build cluster maps, and defined two pathways as 

connected if they share >20% of genes between them (i.e., overlap coefficient > 0.2).  In 

the cluster plots produced by EnrichmentMap, each node represents a pathway, and 

each green line links a pair of pathways with >20% overlap of their constituent genes. 
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Red nodes indicate pathways showing positive selection signatures, while blue nodes 

indicate negative selection.  The map of all the pairwise connections often reveals 

heavily connected nodes – pathways that are connected to many other pathways, thus 

forming the center, or "hub", of the clusters.  These clusters are highlighted by ovals; 

and by annotating the individual clusters we can capture the main biological signals in a 

given LRPath result file. Currently there is no formal method to summarize all the 

pathway terms represented by a cluster as they often include very diverse concepts.  I 

decided to apply a WordCloud algorithm (Oesper et al. 2011) that returns the most 

commonly used words among the pathway names in each cluster, though the resultant 

phrases often do not have biological meaning. 

 

4.3 Results 

4.3.1 Runs of homozygosity (ROH) 

Given that significant selective sweeps could result in long stretches of 

homozygous variants, I called ROH for the two lines and two distant generations (HCR-

LCR, Generations (G) 5 and 26) in PLINK using the 782K pass-QC SNPs.  Going from 

G5 to G26, the average number of ROH per animal did not change noticeably for HCR 

(383 to 382) or LCR (371 to 391); but the average length of ROH per animal increased 

from 3.4 to 4.3 Mb for HCR (by ~26%) and from 3.6 to 4.3 Mb for LCR (~20%) (Figure 

4.3). In parallel, the average number of SNPs per ROH also increased by ~28% for 

HCR (981 to 1,252) and by ~19% for LCR (1,035 to 1,229) (Figure 4.4). Reflecting the 

lengthening of ROH runs, the average genome coverage by ROH per animal increased 

from 48% to 60% for HCR, and 49% to 60% for LCR; and the average gap length 
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between ROHs decreased by ~25% for HCR (3.2 to 2.4 Mb) and by ~27% for LCR (3.3 

to 2.4 Mb) (Figure 4.5). I calculated ROH frequencies for each of the four groups of 

samples, and ΔROH for each of the four pairwise comparisons.  Lastly, the ΔROH 

values were assigned to individual Refseq genes based on their genome coordinates. 

4.3.2 Fixation index (Fst) 

Given that divergent selection often results in frequency divergence for functional 

alleles, I calculated Fst for every SNP to determine between-line allele frequency 

changes at both time points and within-line allele frequency change between time 

points, for 782K pass-QC SNPs. The average between-line Fst increased from 0.04 at 

G5 to 0.08 at G26, while the temporal Fst is ~0.05 in both lines (Figure 4.6). After 

calculating Fst for each of the four pairwise comparisons and summarize to 1 Mb 

windows I assigned Fst values to Refseq genes. 

4.3.3 Aberrant allele frequency spectrum (AFS) 

Given that the AFS in a region under selection may depart from that of the 

genomewide average, I calculated the composite likelihood ratio (CLR) for every 1Mb 

window across the genome to determine the likelihood of a selective sweep given the 

local AFS, using the high quality SNVs called from the whole-genome sequence data 

for the four DNA pools. The average CLR increased from G5 to G26 for both lines (9.9 

to 23.7 for HCR and 9.1 to 19.9 for LCR), suggesting that more regions under selection 

became apparent in later generations (Figure 4.8). After calculating ΔCLR for each of 

the four pairwise comparisons for 1 Mb windows I assigned ΔCLR values to individual 

Refseq genes. 

4.3.4 Correlations among the three scan statistics 



    

68 
 

 I calculated the Spearman's rank correlation coefficient (ρ) between each pair of 

post-transformation test statistics using per-gene values to evaluate the level of 

concordance among the three signals.  I repeated the calculation for each of the four 

pairwise analyses, using ~16,000 genes with non-missing values in all three statistics.   

For HCR G26-G5, the correlations for ΔROH- Fst, ΔROH-ΔCLR, and Fst -ΔCLR are 

0.61, 0.17, and 0.52, respectively (Figure 4.8). For LCR G26-G5, the correlations for 

ΔROH- Fst, ΔROH-ΔCLR, and Fst -ΔCLR are 0.65, 0.22, and 0.55, respectively (Figure 

4.9). For G5 HCR-LCR, the correlations for ΔROH- Fst, ΔROH-ΔCLR, and Fst -ΔCLR are 

0.59, 0.07, and 0.47, respectively (Figure 4.10). For G26 HCR-LCR, the correlations for 

ΔROH- Fst, ΔROH-ΔCLR, and Fst -ΔCLR are 0.66, 0.36, and 0.63, respectively (Figure 

4.11). Thus the recurring trend is that ΔROH and Fst have consistently high levels of 

concordance, followed by ΔCLR and Fst.  However, the concordance between ΔCLR  

and ΔROH is low.  This confirms that the three statistics are related, but each also 

represents unique signatures of selection. 

4.3.5 Overlap of top ranked genes among the three statistics 

 To examine the genes that are highlighted in more than one statistic, I extracted 

the top 10% of the genes from each of the statistics and looked for overlap. This 

resulted in 137 genes for HCR G26-G5, 67 genes for LCR G26-G5, 79 genes for G5 

HCR-LCR, and 176 genes for G26 HCR-LCR. I then evaluated pathway signals in these 

gene sets by using DAVID (Huang et al. 2007), and observed no significant pathways. 

In an effort to improve the power of detecting significant pathways by integrating the 

three statistics systematically, I developed a composite score to represent concordant 

selection signatures. 
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4.3.6 Composite selection signature  

I calculated the composite score to combine the three statistics described above.  

The composite scores for the four comparisons are shown in Figures 4.12.  Because 

the tracks do not have a natural threshold for "significance", we do not have a cutoff 

threshold to determine candidate genes, but given the strong phenotypic response to 

selection at as early as G5 (Chapter 2), I expect that the genes with large HCR-LCR 

difference in G5 are also among the top ranked HCR-LCR genes in G26. Indeed, of the 

100 genes with the highest HCR-LCR composite scores in G5, 12 also appeared 

among the 100 genes with the highest HCR-LCR composite scores in G26 (Table 4.3). 

These 12 genes fall under three shared top peaks between G5 and G26 between-line 

composite analyses on Chromosomes 9, 16, and 18 (Figures 4.12c & 4.12d). Of 

particular interest are FN1 (Fibronectin 1), which functions in cellular adhesion and 

extracellular matrix stability and PRELID2 (PRELI Domain Containing 2), which 

functions in phospholipid transport. These are of particular interest because I have 

previously found that cellular adhesion and extracellular matrix stability are two of the 

primary biological pathways differentially regulated in transcriptomic data between HCR-

LCR as both lines age, with LCR showing greater down-regulation in both pathways as 

a consequence of aging (Chapter 3). Phospholipid transport is interesting because 

Overmyer et al. previously found that the HCR-LCR lines differ in their fuel preference 

and utilization, specifically in lipids and fatty acids (Overmyer et al. 2015).   

I then applied the composite scores through pathway analysis. The LRPath 

algorithm returned enrichment p values for >4,000 pathways terms and I analyzed the 

results in two ways. First, I focused on the individual pathways passing p < 0.001.  In 
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the H26-H5  temporal analyses, the top three most significantly pathways are related to 

muscle contraction, including regulation of actin filament depolymerization, myosin 

filament, and actin filament depolymerization. These are followed by other muscle-

related pathways with slightly lower levels of significance, including negative regulation 

of actin filament depolymerization, actin cytoskeleton, and actin filament capping.  In the 

L26-L5 temporal analysis there are six pathways satisfying P < 0.001 and with 

increased composite score at G26 (Table 4.2), implicating various "signaling" functions, 

such as termination of signal transduction, apoptotic signaling, and G-protein coupled 

receptor signaling.  Further, the HCR-LCR comparison at G5 returned 13 pathways 

(Table 4.4), and at G26 returned 7 pathways (Table 4.5). As is often the case in this 

type of analysis, the names of the top 3-6 pathways may not converge on 1-2 coherent 

functional themes.  In Table 4.4, for example, we noted that regions with higher 

composite scores in HCR than LCR are enriched for genes in the homophilic cell 

adhesion pathway, echoing the aging effects found in gene expression data (Chapter 

3), but other pathways are difficult to interpret. Likewise, Table 4.5 showed that one of 

the top ranked pathways is for regulation of glycogen metabolic process, which seems 

relevant to the metabolic differences between the two lines (Overmyer et al. 2015). I 

would like to note that there are 7 significant pathways in G5 and 4 significant pathways 

in G26 that are down-direction, which indicate that these pathways show signatures of 

selection in LCR compared to HCR (Tables 4.4 & 4.5). Despite their significance, 

neither group of down-direction pathways appear to have any clear biological 

interpretation. 
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One of the difficulties in interpreting LRpath results is in choosing the level of 

interpretation: over four thousand pathways are provided in the output, each 

accompanied by significance levels and direction, and many of which are redundant 

pathways, i.e., they share the same genes with varying degrees of overlap. While in the 

above I examined the "significant" pathways defined at P < 0.001, my second approach 

is to visualize the relationship of a more relaxed set of "top" pathways, defined at P < 

0.1, while taking into account the overlap of genes among the pathways. This is done by 

displaying the larger number of pathways meeting P < 0.1 using EnrichmentMap (see 

Methods).  

For the temporal analysis in HCRs, there were 45 pathways and they formed 

many clusters (Figure 4.13).  Two clusters on the upper right, shown in red, contain 

pathways that are enriched with genes with higher score in G26 than G5, with the most 

frequently observed words of phospholipid-dephosphorylation and transport-acid-anion, 

respectively (Figure 4.13). Note that these names attached to the clusters do not have 

inherent meaning as they come from the word frequency analysis (by the WordCloud 

algorithm), thus these names can only serve as provisional labels of the clusters.  How 

to properly annotate the functional theme for a given cluster in a formal, automated way 

remains a challenge. By manual annotation I determined that the phospholipid-

dephosphorylation cluster mainly contains the pathways involved in phospholipid and 

fatty acid metabolism, while the transport-acid-anion cluster contains pathways involved 

in amino acid transport and metabolism. The most significant pathways related to 

muscle function shown in Table 4.1 is no longer apparent in this analysis involving a 

larger number of less significant pathways.  Several other clusters in Figure 4.13 
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showed opposite direction: they contain pathways enriched with genes with higher 

score in G5 than G26.  Such reduced effect of selection in later generations is difficult to 

interpret.   

For the temporal analysis of LCRs, there were 34 pathways at P < 0.1 and their 

clusters are shown in Figure 4.14.  Protein kinase and microtubule organization are the 

major clusters enriched with genes with higher score in G26 than G5.  Other clusters 

are difficult to interpret. 

The HCR-LCR comparison at G5 revealed multiple clusters (in red) containing 

pathways enriched with genes with higher scores in HCR than LCR, showing frequently 

observed words as cytoskeletal-protein-binding, activity-transmembrane, activity-

phosphatidylinositol-phospholipase, and growth-factor-binding (Figure 4.15). By manual 

annotation I found that the cytoskeletal-protein-binding cluster contains pathways 

involved in actin/myosin binding and muscle contraction; the activity-transmembrane-

cluster contains pathways involved in ATPase activity and ATP transport; the activity-

phosphatidylinositol-phospholipase cluster contains pathways involved in phospholipid 

and fatty acid metabolism; and the growth-factor-binding cluster contains pathways 

involved in cellular adhesion and extracellular matrix integrity. The blue clusters contain 

pathways enriched with genes with higher scores in LCR than HCR, and include 

frequently observed words such as channel activity and phosphatase activity (Figure 

4.15). I found that the channel activity cluster contains pathways involved in calcium and 

sodium channel activity; and the phosphatase activity cluster contains pathways 

involved in protein phosphatase activity. 
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The HCR-LCR comparison at G26 (Figure 4.16) showed two clusters of 

pathways with stronger selection in HCR, with words of phospholipid-dephosphorylation 

and transport-acid-anion, which resembles the same groups of pathways seen in the 

HCR G26-G5 temporal comparison (Figures 4.13). The blue clusters include words 

such as regulation process and positive regulation growth development (Figure 4.16). I 

found that the regulation process cluster contains pathways involved in the regulation of 

metabolic processes; and the positive regulation growth development cluster contains 

pathways involved in cellular growth and proliferation. 

4.4 Discussion 

In this study I attempted to identify genomic regions under selection in the HCR-

LCR rat model using high-density, whole-genome datasets. I identified genes and 

pathways under differential selection by line and by time. The majority of the increase in 

homozygosity between G5 and G26 in both lines is due to lengthening ROHs. The Fst 

analysis shows that the genome average of HCR-LCR differentiation increased by 2-

fold from G5 and G26. The AFS analysis shows that the genome wide CLR increased in 

both lines from G5 to G26, indicating the increase in aberrant local AFS and increased 

regions experiencing the impact of selective events.  

The composite score I developed is an efficient and robust function that takes 

into account of the different distribution properties of the constituent test statistics. The 

composite signatures uncovered several physiological pathways, including those  

function in muscle contraction that seem to be selected in the HCR between G5 and 

G26, and this observation, if confirmed, offers a potential mechanistic link to the 

increased exercise capacity in the HCRs. In addition, the composite results provided 
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further evidence for the importance of the aging-dependent adhesion pathways in the 

G5 HCR-LCR analysis.  

Physical exercise is a stressful event for all complex animals. To sustain muscle 

contraction during exercise, the demand for adenosine triphosphate (ATP) can increase 

1,000-fold compared to the resting state (Baker et al. 2010). In addition, cells must be 

able to have structural stability in the extracellular matrix to sustain the physiological 

stress. Taken as a whole, our study suggests that 1) genes in cellular integrity, 

actin/myosin binding and muscle contraction actin/myosin binding and muscle 

contraction pathways were swept in HCRs as a consequence of the increased 

physiological stress beyond the amount that any of the eight inbred rat founder strains 

can cope with, and 2) genes involved in ATP-production and amino acid/lipid 

metabolism pathways were affected by selection and this led the HCRs to utilize 

multiple fuel sources to generate ATP and delay exhaustion compared to LCR during 

exercise. 
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4.5 Figures 

Figure 4.1: Example tracks of the three statistics across Chromosome 1 for HCR 
G5 and G26. 
 
(TOP) Frequency of ROH intervals across Chromosome 1 for HCRs G5 (green) and 
G26 (black). Region highlighted in red oval would be a potential top candidate as a 
temporal selection signature, where the G26 group all possess a long ROH across the 
region, while the G5 group does not. (MIDDLE) Fst values per SNP across Chromosome 
1 for HCRs temporal comparison (G5-G26). ). Region highlighted in red oval would be a 
potential top candidate as a temporal selection signature, where the G5 and G26 
groups have high levels of population differentiation across a long interval. (BOTTOM) 
CLR values for 1 Mb windows across Chromosome 1 for HCRs G5 (green) and G26 
(black). Region highlighted in red oval would be a potential top candidate as a temporal 
selection signature, where the G26 group show highly aberrant local AFS, while the G5 
group does not.  
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Figure 4.2: Raw and transformed density plots of the three statistics. 
 
Shown are the raw values (a,d,g), transformed values (b,e,h), and scatterplots between 
the raw and transformed values (c,f,i) for ΔROH (a,b,c), ΔCLR (d,e,f), and Fst (g,h,i).  
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Figure 4.3: Distribution of ROH lengths across (a) HCR and (b) LCR groups.  
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Figure 4.4: Distribution of number of SNPs per ROH for (a) HCR and (b) LCR 
groups.  
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Figure 4.5: Distribution of gap length between ROHs for (a) HCR and (b) LCR 
groups.  
 



    

80 
 

a 

 

b 

 

Figure 4.6: Distribution of Fst values for (a) temporal and (b) between-line 
comparisons.  
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Figure 4.7: Distribution of log(CLR) values per 1 Mb window for (a) HCR and (b) 
LCR groups.  
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Figure 4.8 Scatterplot and correlation between test statistic scores among HCR 
G26-G5 comparisons for overlapping genes, and histograms for each respective 
statistic. 
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Figure 4.9 Scatterplot and correlation between test statistic scores among LCR 
G26-G5 comparisons for overlapping genes, and histograms for each respective 
statistic. 
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Figure 4.10 Scatterplot and correlation between test statistic scores among G5 
HCR-LCR comparisons for overlapping genes, and histograms for each 
respective statistic. 
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Figure 4.11 Scatterplot and correlation between test statistic scores among G26 
HCR-LCR comparisons for overlapping genes, and histograms for each 
respective statistic. 
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Figure 4.12: Manhattan plot of Composite Scores of Every Gene for HCR G26-G5 
(a), LCR G26-G5 (b), G5 HCR-LCR (c), and G26 HCR-LCR (d) 
 
Shown are the composite scores for every gene across all 20 autosomes. Adjacent 
chromosomes are colored differently for separation.  
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Figure 4.13: EnrichmentMap output for HCR G26-G5 LRpath results from the 
composite analysis. 
 
 

 

 

 



    

88 
 

 

Figure 4.14: EnrichmentMap output for LCR G26-G5 LRpath results from the 
composite analysis. 
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Figure 4.15: EnrichmentMap output for G5 HCR-LCR LRpath results from the 
composite analysis. 
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Figure 4.16: EnrichmentMap output for G26 HCR-LCR LRpath results from the 
composite analysis. 
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4.6 Tables 

Name P-Value Direction 

regulation of actin filament depolymerization 4.44E-06 up 

myosin filament 6.47E-06 up 

actin filament depolymerization 7.30E-06 up 

regulation of protein depolymerization 2.08E-05 up 

regulation of protein complex disassembly 3.15E-05 up 

photoreceptor activity 3.73E-05 up 

zymogen granule 1.31E-04 up 

suckling behavior 3.71E-04 up 

cellular response to estradiol stimulus 4.48E-04 up 

zymogen granule membrane 4.70E-04 up 

negative regulation of protein complex disassembly 5.66E-04 up 

negative regulation of actin filament depolymerization 6.11E-04 up 
actin cytoskeleton 6.56E-04 up 

actin filament capping 6.69E-04 up 
cytoplasmic part 6.80E-04 up 

cellular response to estrogen stimulus 7.70E-04 up 
protein depolymerization 8.20E-04 up 

endocardial cushion morphogenesis 8.84E-04 up 
protein complex disassembly 8.93E-04 up 

prostate glandular acinus development 9.15E-04 up 
 

Table 4.1: Significant (p<0.0001) LRpath pathway results for composite HCR G26-
G5 analysis  
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Name P-Value Direction 

termination of signal transduction 1.16E-04 up 

positive regulation of apoptotic signaling pathway 1.50E-04 up 

termination of G-protein coupled receptor signaling pathway 2.65E-04 up 

prepulse inhibition 3.05E-04 up 

protein serine/threonine kinase activity 3.43E-04 up 

calmodulin-dependent protein kinase activity 5.72E-04 up 
 
Table 4.2: Significant (p<0.0001) LRpath pathway results for composite LCR G26-
G5 analysis  
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Gene Name Chromosome Start (Mb) End (Mb) H5-L5 
Rank 

H26-L26 
Rank 

SPAG16 Sperm Associated Antigen 16 9 68.8532 69.7383 70 71 

VWC2L 
Von Willebrand Factor C 

Domain Containing Protein 2-
Like 

9 69.7389 69.9447 37 99 

BARD1 BRCA1 associated RING 
domain 1 9 70.1202 70.1986 100 44 

ATIC 

5-Aminoimidazole-4-
Carboxamide Ribonucleotide 

Formyltransferase/IMP 
Cyclohydrolase 

9 70.6767 70.6969 5 9 

FN1 Fibronectin 1 9 70.7022 70.7712 81 93 

MREG Melanoregulin  9 71.3036 71.3580 37 28 

XRCC5 X-ray repair cross-
complementing protein 5 9 71.4725 71.5819 48 37 

IGFBP2 Insulin-Like Growth Factor 
Binding Protein 2 9 71.9669 71.9942 97 47 

SPATA4 Spermatogenesis Associated 4 16 0.7230 0.7323 25 32 

PRELID2 PRELI Domain Containing 2 18 35.0600 35.1542 22 96 

GRXCR2 Glutaredoxin, Cysteine Rich 2 18 35.1796 35.1941 28 68 

SH3RF2 SH3 Domain Containing Ring 
Finger 2 18 35.2429 35.3445 55 19 

 
Table 4.3: 12 overlapping genes between the top 100 genes from the G5 and G26 
HCR-LCR composite analyses  
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Name P-Value Direction 

translation factor activity, nucleic acid binding 2.24E-04 up 

hyperosmotic salinity response 2.51E-04 down 

ion channel complex 2.98E-04 down 

DNA replication initiation 4.08E-04 up 

negative regulation of cytokine-mediated signaling pathway 4.73E-04 down 

calcium ion binding 4.82E-04 up 

homophilic cell adhesion 5.37E-04 up 

One carbon pool by folate 6.59E-04 down 

endoplasmic reticulum-Golgi intermediate compartment 7.09E-04 up 

transcription factor TFIID complex 7.82E-04 up 

mitochondrial DNA metabolic process 8.54E-04 down 

mitochondrial genome maintenance 8.82E-04 down 

regulation of membrane potential 9.52E-04 down 

 
Table 4.4: Significant (p<0.0001) LRpath pathway results for composite G5 HCR-
LCR analysis  
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Name P-Value Direction 

protein O-linked glycosylation 1.78E-04 up 

cell aging 4.17E-04 down 

ketone biosynthetic process 6.20E-04 down 
regulation of glycogen metabolic process 6.52E-04 up 

inorganic anion transport 6.88E-04 up 

phototransduction, visible light 8.98E-04 down 

calcium ion binding 9.72E-04 down 
 
Table 4.5: Significant (p<0.0001) LRpath pathway results for composite G26 HCR-
LCR analysis  
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CHAPTER 5 
 

F2-Based QTL Mapping 
 

5.1 Introduction 

After ~30 generations, the HCR and LCR rats have diverged in both phenotypes 

and genotypes (Chapter 2).  If I were to perform a direct HCR-versus-LCR genetic 

comparison, numerous loci, distributed throughput the genome, would be apparently 

associated with every trait that is different between the two lines as a result of 

"population stratification", whereby the true functional variants "driven apart" by 

selection would have been hidden amidst a far larger number of neutral differences 

that have accumulated in the two lines due to random genetic drift.  In order to uncover 

the causal loci, we have crossed HCR and LCR for two generations to create a mapping 

population of >600 F2 animals that carry random genomic mosaics of the HCR and LCR 

grandparent genomes, such that most neutral variants are no longer linked to the 

functional alleles at causal loci and will no longer co-segregate (i.e., be linked with) the 

phenotypes.  Such a "Mendelian Randomization" process makes it possible to identify 

quantitative trait loci (QTLs) by linkage or association analysis.  

  Several previous studies have successfully utilized intercross F2 populations of 

divergently selected outbred animals to map causative genetics variants, including 

studies of divergently selected body weight in chickens (Wahlberg et al. 2009), 

tameness/aggressiveness in rats (Albert et al. 2009), and alcohol preference in rats 
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(Foroud et al. 2000, Bice et al. 2009). My study will follow the general analytical 

strategies developed in these previous studies, while exploiting new approaches that 

could account for the complex pedigree structure present in our lines. 

 

5.2 Materials and Methods 

5.2.1 “F2” intercross and phenotyping 

We performed the F2 intercross in two batches. For the first batch, we randomly 

selected 4 males and 4 females from 8 different families in G26 of each line to form 8 

HCR-LCR reciprocal pairs, which generated 79 F1 rats (with litter size ranging from 4 to 

11).  All F1's were phenotyped for maximal running distance, total run time, and vertical 

work done. From the F1's, 20 males and 20 females were randomly selected to form 

pairs between different F1 families (i.e., avoiding brother-sister mating), ranging from 2 

to 6 animals per F1 family. These 20 mating pairs generated 154 F2 rats. For the 

second batch, we selected 9 males and 9 females from G28 of each line to form 18 

mating pairs, which generated 163 F1 rats, of which 97 were phenotyped for the 

maximal running distance trait. Out of the 97 phenotyped F1 animals, 43 males and 43 

females were selected across the 18 families with a comparable representation of the 

four HCR/LCR parentage combinations, as the following: 11 pairs of HCR-mom male 

with HCR-mom female, 12 pairs of HCR-mom male with LCR-mom female, 10 pairs of 

LCR-mom male with HCR-mom female, and 10 pairs of LCR-mom male with LCR-mom 

female.  This generated 491 F2 rats. The two batches together yielded 645 F2 rats. 

Phenotyping for running performance (described later and in Figure 5.1) and vertical 

work followed the same protocols as described in Chapter 2. Additionally, for all 491 F2 
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animals in the second batch we measured lean mass (g), fat mass (g), fluid mass (g) , 

fasting blood glucose (mg/dL), heart mass (g), and EDL muscle mass (g) at 16-20 

weeks of age. Body composition measures (lean, fat, and fluid mass) were determined 

via NMR using an Optics Minispec LF90 II instrument (Bruker Optics, Billerica, MA, 

USA) following previously published protocols. Blood glucose after a 4-hour fast was 

determined using the Accu-Chek Aviva system (Roche Diagnostics, 

Basel, Switzerland). At the time of dissection, heart and EDL muscles were weighed 

immediately upon harvesting. Heritability for all measured phenotypes was calculated 

using SOLAR (Almasy and Blangero 1998). 

5.2.2 SNP content design for the Affymetrix Axiom genotyping array  

I designed a custom panel of ~700K SNPs to be used for genotyping on the 

Affymetrix Axiom platform. My goal was to select the most informative SNPs for tracking 

genomic segments in the HCR-LCR rats, both for the segregation of linked markers in 

the F2-intercross population and for identifying ancestral segments originating from the 

eight original inbred founders. To start, we combined DNA variants discovered in two 

whole-genome sequencing (WGS) datasets.  First, we sequenced four DNA pools as 

described in Chapter 4, for n=10 animals each (five of each sex), representing HCR and 

LCR rats from generations (G) 5 and 26.  I aligned the reads to the rat reference 

genome sequence rn34 (Gibbs et al. 2004) using BWA (Li and Durbin 2009)  and 

detected variants using the GATK Unified Genotyper (DePristo et al. 2011). At the 

average read depth ~37X (9.25X per pool) I discovered ~9 million single nucleotide 

variants (SNVs).  Applying quality control criteria to the four pools separately I 

developed four lists of high-confidence variant sites, one for each pool, containing from 
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6.81 to 7.53 million SNVs.  Second, I accessed publicly available SOLiD WGS 

sequencing data for the eight founder lines (Baud et al. 2014, Baud et al. 2014), 

previosuly sequenced using liver-derived genomic DNA from one animal per line.  I 

downloaded the variant site list containing >6.4 million SNVs from 

(https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-2332/) on 5/20/2013. The file 

is named HS_Rats_SNPs.txt, and includes variant calls for the eight founder lines that 

were mapped to the rn34 genome build – the same as used in analyzing the pooled 

sequencing data described above . By selecting SNVs not monomorphic across the 

eight lines and not heterozygous in any of the eight lines I obtained a list of ~6.23 million 

SNVs. These five lists had an overlap of 2,399,171 SNVs.  

In order to increase ancestry informativeness I kept SNVs with the minor allele 

that appeared only once or twice among the eight founders.  This reduced the list to 

1,484,806 SNVs. To place a higher value on coding variants, I extracted coding variants 

from the five variant lists described above and from a previously designed high-density 

Affymetrix SNP genotyping array called RATDIV (Baud et al. 2013). By adding 41,667 

coding SNVs back to the master list I increased the SNV count to 1,526,473.   

After receiving our target SNV list, the Affymetrix team scored the feasibility 

of designing a genotyping assay for each submitted SNV, while allowing a higher 

selection priority for a subset of user-designated high-value SNVs.  I submitted the 

master list of 1,526,473 SNVs, while designating a high-value subset of 862,284 SNVs 

with the following overlapping categories: 9,703 exonic SNVs, 846,701 that appeared in 

only one of the eight founders, and 20,341 SNVs with opposing alleles fixed in the HCR 

and LCR pools, i.e., those with a large HCR-LCR differentiation. The bioinformatics 
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team at Affymetrix evaluated all the submitted variants and classified them as 

Recommended, Not Recommended, and Neutral.  To create the final panel I included 

all of the 601,477 Recommended SNVs. At this point the design can accommodate 

another ~100K SNVs, and I selected 105,980 additional SNVs from the Neutral 

catagory that are exonic (3,442), with allele count of one out of eight founders (4,403), 

or with oppositely fixed alleles (98,170, selected out of 177,638 such variants by their 

rank in the feasibility score).  The final list included 707,457 SNVs, of which 625,291 

were eventually accommodated on the chip when the probe space were assigned.  The 

625,291 SNVs were mostly chosen by their feasibility scores. The distribution of these 

SNVs in the rat genome is not uniform due to the variable density of available variants 

as discovered by WGS (Figure 5.2).  As a result, gaps of >10Mb exist on Chr 2, 4, 6, 19, 

and X, with the largest gap of >60Mb on Chr 4 (Figure 5.3).  These coverage gaps do 

not cause major concerns because these genomic regions do not seem to contain many 

variants and thus are less likely to be involved in artificial selection and QTL mapping. 

5.2.3 Sample selection for genotyping 

 We genotyped a total of 672 samples across seven 96-well plates. Plate 1 

included 17 batch 1 F1 samples and 79 F2 samples. This subset of F1 samples were 

genotyped to perform parent-child relatedness quality control, but since they do not 

represent all the F1's, they are not used in a linkage analysis. Plates 2-6 were all F2 

samples (96*5 =480). Plate 7 included 63 F2 samples  and 33 non-intercross HCR-LCR 

samples that need to be genotyped for another project. The non-intercross samples 

were genotyped previously and can be used to test genotype concordance between the 

new design and the RATDIV 800K SNP array. Genotyping experiments were performed 
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in one batch at the U-M DNA Genotyping and Sequencing Core using standard 

instruments, protocols, and reagents provided by Affymetrix. 

5.2.4 Genotype data QC 

To perform quality control on the SNP genotype data, I ran the Best Practices 

Workflow in the Affymetrix Axiom Analysis Suite version 1.1. The Affymetrix software 

first performs sample quality control by removing samples with <97% SNP call rate (4 

F2 samples were removed in this step), followed by SNP quality control by classifying 

all of the SNPs into six groups based on the raw data clustering patterns and the 

resulting genotype calling quality; “PolyHighResolution” are SNPs with 3 distinct 

genotype clusters (n= 381,883); “NoMinorHom” are SNPs with only 2 distinct genotype 

clusters (n=70,465); “MonoHighResolution” are SNPs with only 1 genotype cluster (n= 

100,198); “Off-Target Variant” are SNPs with 4 clusters, potentially due to 1) samples 

with genetic mismatch that do now allow hybridization, 2) 3rd/4th allele, or 3) indels (n= 

5,091); “CallRateBelowThreshold” are SNPs that fell below 97% call rate (n= 21,918); 

“Other” are SNPs that fall into a catch-all category (could indicate much lower quality 

probes) (n= 45,736). 

Since our rat system has a typical haplotype length of > 2 Mb (Chapter 2), there 

are enough SNPs in the highest quality group for association analysis. I therefore only 

extracted the SNPs in the “PolyHighResolution” class, which produce high-confidence 

genotype calls with three distinguishable genotype clusters. I then filtered the data using 

PLINK, first removing SNPs with per-SNP missing rate > 0.1 (geno 0.1), then removing 

samples with per-sample genotype missing rate > 0.03 (mind 0.03). These criteria 

removed 0 SNPs and 0 samples, yielding a final data set of 381,883 SNPs and 668 

samples.  To confirm that the genetic relatedness of the genotyped samples is 
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consistent with the known breeding scheme, I used PLINK to calculate the rate that a 

given pair of animals sharing zero (Z0) or one allele (Z1) across all the genotyped loci.  

This is done for all pairs of animals for the two batches separately.  The Z0-Z1 plots are 

used to infer genetic relatedness.  

5.2.5 QTL mapping  

 Using the final dataset of 616 F2 samples and 381,883 SNPs I performed 

association analysis for the running phenotype using three methods, (1) a conventional, 

single-SNP linear regression model, (2) the same method but using family ID (for the 63 

F2 families) as a covariate, and (3) a single-SNP mixed-model association algorithm 

that accounts for the actual F2 population structure (EMMAX) (Kang et al. 2010). 

For EMMAX, I first calculated the kinship matrix for all pairs of animals using the 

genotype data, and then performed the association for the maximal running distance 

phenotype. In addition to association analysis, EMMAX also implements restricted 

maximum likelihood (REML) to calculate narrow-sense heritability. 

 

5.3 Results 

5.3.1 "F2" Intercross of HCR-LCR 

To create a QTL mapping population with randomly mixed HLR-LCR genomes, we 

performed "F2" intercross experiments using 28 HCR-LCR pairs and obtained 242 F1 

animals (described in Methods).  From the phenotyped F1 population we set up 63 

mating pairs and produced 645 F2 animals.  The term "F1" or “F2” is applied loosely in 

this context because our crosses were not based on inbred lines.  We use F0, F1, and 

F2 to denote the generations.  
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The running phenotype of F1 animals fell in an intermediate range between that of 

their HCR and LCR parents; and the F2 animals exhibited larger variations than F1 

(Figure 5.1). This pattern is consistent with a model in which most neutral alleles no 

longer co-segregate with the phenotypes; and at functional loci (i.e., those responsible 

for the phenotypic differences between HCRs and LCRs), F1's tend to be heterozygous 

and F2's carry a wider assortment of genotypes that include both heterozygotes and 

homozygotes.  

 The Castle-Wright estimator of the effective number of QTLs is calculated as 4-10 

using the trait value distributions of our F1 and F2 animals (Castle 1921, Wright 1968).  

Caution should be taken as the calculation is based on simplifying assumptions such as 

unlinked loci of equal effects that have no interaction.  Only the actual linkage or 

association studies can reveal the number and impact of QTL underlying the trait in 

question.  

Importantly, the h2 of the maximal running distance in the F0-F2 pedigree remained 

high, calculated by SOLAR to be 0.60 ± 0.05 (Almasy and Blangero 1998). This is 

comparable to the h2 estimate from the actual genotype data over all SNPs using 

EMMAX, which is 0.55. The h2 for vertical work calculated using SOLAR is also high 

(0.61 ± 0.05), while the h2 for average body weight is much lower (0.03 ± 0.04).  In 

addition, we phenotyped five other physiological measures in a subset of F2 animals, 

including heart/body mass ratio (n=380), extensor digitorum longus (EDL) mass/body 

mass ratio (n=387), percent body fat (n=490), percent lean body mass (n=490), and 

fasting glucose level (n=490). Using SOLAR, we observed strong heritability values for 

the first three phenotypes, and lower values for the last two (lean body mass and fasting 
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glucose level): 0.42 ± 0.11, 0.36 ± 0.10, 0.48 ± 0.10, 0.16 ± 0.07, and 0.18 ± 0.07, 

respectively. These results indicate that the running capacity and related traits are 

clearly influenced by genetic factors, confirming that it is feasible to use the F2's as a 

mapping population in genetic analysis. 

5.3.2 Genotyping data collection and QC 

The Best Practices Workflow from the Affymetrix software removed four 

individuals with low call rate (<97%) among our samples, all of which were F2 samples 

from Plate 1, leaving us with 668 total samples. Next, extracting just the 

“PolyHighResolution” class of SNPs left us with 381,883 SNPs. To clean up the data 

further for QTL mapping, I used PLINK to remove SNPs with genotyping rate < 90% 

(geno 0.1) and then remove samples with genotyping rate < 97% (mind 0.03). It turns 

out that neither filter removed any SNP or sample, confirming the stringency of the 

Affymetrix filtering.  After extracting only the F2 animals I was left with 616 samples for 

downstream analysis.  

To confirm the expected relatedness, I separated the two intercross batches and 

created Z0-Z1 plots for all pairs of animals (Figure 5.4). In Batch 1 there was a clear 

separation of the parent-child pairs, sib pairs, and second-to-higher degree (2+) relative 

pairs.  For Batch 2 we did not genotype any F1 parents, and still saw a clear separation 

of the sib pairs and the 2+ relative pairs.  This result verified that the study maintained 

accurate sample tracking and the genotype data are reliable.   

5.3.3 QTL Mapping by association analysis 

 I performed a conventional, single-SNP linear regression analysis, followed by 

two methods to adjust for the impact of familial relatedness among the F2 samples: first, 
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using F2 family ID as a covariate, and second, using a single-SNP mixed-model. The 

initial linear model produced more significant p-values than both adjustment methods 

(Figures 5.5).  The logarithm of p-values are highly correlated between the initial 

analysis and EMMAX analysis (ρ=0.38), and less correlated between the analysis with 

family ID as a covariate and EMMAX analysis (ρ =0.24) (Figure 5.6). The QQ-plot 

shows that this is due to heavily inflated p-values from the linear model, presumably due 

to not accounting for familial structure (Figure 5.7). Both of the linear regression 

analyses, with and without accounting for population structure, produced the same top 

SNP (Chr6: 94,770,157, genome build rn5), which falls under an intergenic region on 

Chromosome 6 (Figure 5.8).  This SNP is not likely a true positive because it is not in 

LD with any of the adjacent SNPs and therefore not supported by other associated SNP 

in the vicinity. 

In the EMMAX results, Chromosome 18p12 has a region of significant 

association (Figure 5.9). This region of ~1 Mb contains four genes; Desmocollin 3 

(Dsc3), Desmocollin  2 (Dsc2), Desmoglein 4 (Dsg4), and Kelch-Like Family Member 14 

(Klhl14). To test if there are additional association signals in the 18p12 associated 

region, I performed a conditional analysis by using the top SNP (Chr18: 12,529,014 

genome build rn5) as a covariate and re-running EMMAX. This resulted in the 

disappearance of all the association signals in 18p12, although the same false-positive 

SNP on Chromosome 6 described above remains significant (Figure 5.10).   

Three of the genes in the QTL region, Dsc3, Dsc2, Dsg4 have direct roles in cell-

cell adhesion and desmosome formation (Kljuic et al. 2003, Whittock and Bower 2003, 

Oshiro et al. 2005, Chen et al. 2008, Resnik et al. 2011, Fang et al. 2014). I therefore 
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further interrogated these candidates in the pooled WGS data from Chapter 4. I zoomed 

into the gene regions from the start and end sites for these three genes in the four 

sequenced pools (HCR G26, LCR G26, HCR G5, LCR G5), to look for 1) oppositely 

fixed alleles and 2) coding variants. In Dsc3 (chr18:11,831,071-11,865,107, genome 

build rn5) there were 81 SNVs, including 3 synonymous coding variants and 1 non-

synonymous coding variant (Figure 5.11). Interestingly, for the non-synonymous coding 

variant (Chr18:11,864,899, genome build rn5), the both lines at G5 are fixed or nearly 

fixed for the reference allele; however at G26, about half of HCRs have the alternative 

allele, while the LCRs are all fixed for the reference allele. For this variant, the reference 

allele is a ‘T’, while the alternative allele is a ‘C’, and it is only conserved in mice. The 

alternative allele results in a missense mutation; changing a Leucine (CTC) to a Proline 

(CCC), and is annotated as having MODERATE impact by Variant Effector Predictor 

(McLaren et al. 2010). In Dsc2 (chr18: 11,902,185-11,933,989, genome build rn5) there 

were 126 SNVs, including 3 synonymous coding variants and 2 non-synonymous 

coding variant (Figure 5.12). The 2 non-synonymous coding variants (Chr18: 

11,916,469 & Chr18: 11,924,343 genome build rn5) did not show much allelic 

differences between the two lines across time points. In Dsg4 (chr18: 12,173,507-

12,209,833, genome build rn5) there were 52 SNVs, with no coding variants discovered 

by sequencing (Figure 5.13). None of these three genes are significantly differentially 

expressed between HCR-LCR in the transcriptomic data (Chapter 3) for the main effect, 

although Dsc3 is mildly differentially expressed for Edge 4 (HCR-LCR for Young 

Exhausted animals) (p-value= 0.04, fold-change = 1.2). 
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5.4 Discussion 

The strong heritability for the running phenotype in the HCR and LCR lines as 

reported in Chapter 2 is recapitulated in the F0-F1-F2 population, suggesting that 

causal variants not only continue to segregate in both HCRs and LCRs but also persist 

in the F2 population.  This observation provided direct evidence that the trait under 

selection is highly heritable, and provided justification for intercross-based QTL 

mapping. In addition, the heritability for weight, vertical work, heart/body ratio, EDL/body 

ratio, and percent body fat suggests that the model can be used for simultaneous QTL 

mapping for multiple traits. 

In the F2 generation of the intercross, the running distance distribution is wider than 

in F1, but did not reach the full range seen in F0.  The fact that none of the F2 animals 

performed as well as their HCR grandparents, and very few performed as poorly as 

their LCR grandparents, strongly suggests that multiple genetic loci are involved.    

Single-SNP association analysis using EMMAX identified a cluster of significant SNPs 

in an 1 Mb region on 18p12 (Figure 5.7b). Interestingly, Desmocollin 3 (Dsc3), 

Desmocollin  2 (Dsc2), and Desmoglein 4 (Dsg4) have direct roles in cell-cell adhesion 

and desmosome formation (Kljuic et al. 2003, Whittock and Bower 2003, Oshiro et al. 

2005, Chen et al. 2008, Resnik et al. 2011, Fang et al. 2014). In addition, I also found a 

non-synonymous variant in Dsc3 with increased alternative allele frequency in HCRs at 

G26, but not in LCRs, which remain fixed for the reference allele (Chapter 4, and Figure 

5.11). Dsc3 also showed higher expression in young HCR compared to young LCR 

after exercise (Chapter 3). These factors make Dsc3 an appealing candidate to further 

characterize. 
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Desmosomes are intercellular junctions that provide strong adhesion between 

muscle cells and are important in resisting mechanical stress, thus their primary function 

is maintaining proper cell and tissue integrity (Garrod and Chidgey 2008). These genes 

could be one of the primary drivers that conferred the incredible running performance in 

the high runners via increased tissue integrity in both skeletal and cardiac muscles. 

Interestingly, in a recent study of the DNA sequencing data of supercentenarians (110 

years or older), one supercentenarian was found to possess a pathogenic mutation in 

Dsc2 that disrupts a splice site (Gierman et al. 2014). It’s not clear at this time how my 

QTL hits is related to the link between aerobic exercise capacity and the metabolic, 

physiological, and longevity phenotypes that diverged between HCR and LCR.  At the 

time of writing this chapter, I have completed the initial steps for QTL mapping in the f2 

population, and have shown several promising candidates that need to be refined, 

validated, and further interrogated for potential mechanism. 
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5.6 Figures  

 
 

Figure 5.1: Distribution of running performance for animals of the F2 intercross 
experiment. 
 
Shown are boxplots of the best running distance by generation and by sex. 
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Figure 5.2: Coverage of the ~625K SNPs. 
 
Show is the coverage across the Chromosomes 1-20 and Chromosome X (x-axis) by 
our custom SNP array. Y-axis represents the position across the chromosomes in Mb. 
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Figure 5.3: Intermarker distance (in Mb, y-axis) for each chromosome (x-axis) for 
the ~625K SNPs. 
 
There are a few >10Mb SNP gaps on Chromosomes 2, 4, 6, 19, and X. The large gap 
on Chromosome 4 (>60Mb) is in a gene/polymorphism desert. 
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Figure 5.4: Z0-Z1 relatedness plot for all pairwise comparisons among (a) batch 1 
and (b) batch 2 samples.  
 
In batch 1, we genotyped 17 F1 samples, which serve to check for parent-child 
relatedness. 
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Figure 5.5: GWAS results for linear model (a), linear model with family ID as 
covariate (b), and EMMAX (b) across 381K SNPs in 616 F2 samples for the 
maximal running distance trait. 
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Figure 5.6: Scatterplot of GWAS results for linear model (x-axis) without 
covariates (a) and with family ID as covariate (b) versus EMMAX (y-axis) across 
381K SNPs in 616 F2 samples for the maximal running distance trait. 
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Figure 5.7: QQ-plot of GWAS p-values for linear model (green), linear model with 
family ID as covariate (blue), and EMMAX (black) across 381K SNPs in 616 F2 
samples for the maximal running distance trait. 
 
For the EMMAX QQ-plot, the 84 SNPs in the Chromosome 18 QTL region are shown in 
orange. 
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Figure 5.8: Manhattan zoom plot of 5 Mb up- and down-stream from the most 
significant SNP (Chr6: 94770157). 
 
The EMMAX conditional analysis (a) using the original top SNP (Chr18:12,529,014) as 
a covariate resulted in the SNP on Chromosome 6 to become the most significant 
signature. This is the same top SNP as for the linear model with (b) and without family 
id as covariate (c). 
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Figure 5.9: Manhattan zoom plot of 5 Mb up- and down-stream from the most 
significant SNP (Chr18: 12529014) with genes within the region below. 
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Figure 5.10: (a) Conditional GWAS results and (b) QQ-plot for EMMAX across 
381K SNPs in 616 F2 samples for the maximal running distance trait with the top 
SNP (Chr18: 12529014) added as covariate. 
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Figure 5.11: Pooled WGS allele counts for the four groups (n=10 each) from 
Chapter 4 across the Dsc3 gene. 
 
The four groups sequenced are represented in each of the four tracks. Each column 
represents the allele count frequency of a single SNV; red represents the proportion of 
reference alleles and blue represents the proportion of alternative alleles out of each 
group. The arrows below indicate the synonymous (green) and nonsynonymous 
(orange) coding variants, while the rest are intronic variants. 
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Figure 5.12: Pooled WGS allele counts for the four groups (n=10 each) from 
Chapter 4 across the Dsc2  gene. 
 
The four groups sequenced are represented in each of the four tracks. Each column 
represents the allele count frequency of a single SNV; red represents the proportion of 
reference alleles and blue represents the proportion of alternative alleles out of each 
group. The arrows below indicate the synonymous (green) and nonsynonymous 
(orange) coding variants, while the rest are intronic variants. 
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Figure 5.13: Pooled WGS allele counts for the four groups (n=10 each) from 
Chapter 4 across the Dsg4  gene. 
 
The four groups sequenced are represented in each of the four tracks. Each column 
represents the allele count frequency of a single SNV; red represents the proportion of 
reference alleles and blue represents the proportion of alternative alleles out of each 
group. There were no coding variants identified by sequencing in this gene. 
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CHAPTER 6 
 

Conclusions and Future Directions 
 

6.1 Genetic analysis of the pedigrees 

While previous studies of HCR/LCR focused on various aspects of their 

physiology, I conducted the first in-depth genetic analysis and have published the 

results in an article in PLoS One. During the course of 30+ generations of selection the 

HCRs continue to respond to selection with increased performance. The narrow-sense 

heritability (h2) for maximal running distance is 0.47 ± 0.02 in HCRs and 0.43 ± 0.03 in 

LCRs.  These results suggest that causal DNA variants have not been fixed in either 

line, rather they continue to segregate in both pedigrees.  As an initial molecular genetic 

characterization, we collected genotype data over a genome-wide panel of ~10K single 

nucleotide polymorphism (SNP) loci for animals in three non-adjacent generations (G5, 

G14, and G26) in both lines.  These data show that at G5, HCRs and LCRs formed two 

clearly separable clusters, and the two clusters diverged progressively further in G14 

and G26. The SNP data also show that genomewide heterozygosity decreased over 

time, confirming the expected increase of inbreeding levels.  However, the rate of 

increase of inbreeding is slower than random mating, in agreement with the expected 

benefit of our rotational breeding scheme.  A majority of the increase of homozygote 

genotypes is accounted for by the emergence or expansion of long runs of 

homozygosity (ROH).  Some of these ROH may arise due to selection, while others 
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reflect random genetic drift.  In Chapter 3 I apply ROH as one of the criteria to screen 

for candidate regions under selection. Taken as a whole, these results suggest that the 

HCR-LCR system is a novel model system suitable for studying genome evolution 

under sustained selection, and for dissecting the functional and genetic basis of 

polygenic traits.  

6.2 Selection-, age-, and exercise-dependence of skeletal muscle gene expression 
patterns 
 

Aerobic capacity in humans is strongly associated with longevity.  Similarly, the 

median lifespan is 23.5 months in LCRs and 30.1 months in HCRs, a 28% difference (a 

second study showed a 45% difference).  It has long been appreciated that biological 

regulation is affected by inherited genetic variation, naturally occurring aging process, 

as well as responses to immediate physiological stressors. These factors act jointly but 

have not been analyzed simultaneously in a single study.  I therefore designed a three-

factor study, comparing microarray-based gene expression data for both young and old 

animals, in both HCR and LCR, using tissue collected both at rest and at exhaustion 

after exercise. This 2-2-2 design consists of a total of eight groups (n=6 each). A 

principal component analysis (PCA) of the 19,607 measured transcripts shows that the 

48 samples fall into eight clusters in the PC1-PC2 space; and they correspond to the 

eight known groups.  Thus, at the global level each of the three factors--line, age, and 

exercise--has a main effect. I analyzed the main effects for each factor both globally 

and, in stratified analyses, in each of the four subgroups formed by the combination of 

the other two factors.  For example, I documented the HCR-LCR differences in an 

overall comparison involving all HCR and all LCR animals, but also in four stratified 

comparisons involving the old-rest, old-exhausted, young-rest, and young-exhausted 
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animals.  The differences among the four strata reflect the interaction effects among the 

factors.  I analyzed both the main effects and the interaction effects at two levels: 

individual genes and the functional pathways.   

My findings support previous reports that HCRs show higher expression than 

LCRs in genes involved in mitochondria function, and my data further show that this 

difference is consistent whether after strenuous exercise or at rest. In addition, I found 

that old rats consistently show lower expression than young rats in genes involved in 

extracellular matrix, collagen, and cell adhesion, in both HCRs and LCRs and both after 

exercise and at rest.  Further, aging-effect in LCRs show more significant enrichment for 

all three pathways compared to HCRs, suggesting that LCRs' lower innate aerobic 

capacity underlies their faster aging.  For the exercise effect, exhausted rats 

consistently show up-regulation in transcription factor activity compared to rats at rest. 

These and additional results for interaction effects have been submitted to Physiological 

Genomics. 

6.3 High-density SNP array and genome sequencing reveal signatures of 
selection 
 

To identify genomic regions under selection I combined multiple scan statistics, 

comparing genomic patterns both among different generations and between the two 

lines. To increase the density of genomic coverage over the 10K SNP data I collected 

genotype data using a ~800K SNP panel and analyzed 45 animals (10-12 in each line in 

G5 and G26). I calculated the fixation index (Fst) in 1Mb windows, and detected long 

runs of homozygosity, using both results to identify regions that are highly differentiated 

between the two lines and two time points. In addition, I performed whole-genome 

sequencing on four pools of DNA samples (for HCR/LCR, G5/G26), and estimated 
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allele frequencies across ~6 million variant sites. Using the between-pool difference in 

allele frequency spectrum (AFS) in 1 Mb windows I also uncovered another set of 

signatures of selection. In an effort to combine the selection signatures, I implemented a 

composite score method that transforms each of the statistics independently in order to 

preserve the concordant selection signals. The composite score analysis revealed 

several candidate genes and pathways that will be combined with the multi-omics 

results in Chapters 3 and 5 to identify the causal mechanisms linking AEC and 

metabolic health. The manuscript for this chapter is posted to Biorxiv.  

6.4 F2-based QTL mapping 

As HCR and LCR have evolved separately, a direct between-line comparison 

would be dominated by the effect of population stratification. To create a QTL mapping 

population with randomized genomes, we performed HCR-LCR intercross and obtained 

242 F1 and 645 F2 animals. The running phenotype of F1 fell in an intermediate range 

between that of their HCR and LCR parents, and the F2 animals exhibited larger 

variations than the F1 rats. Importantly, the h2 of the maximal running distance in this 

population remained high, at 0.60 ± 0.05. In addition, other related metabolic and 

physiological traits also showed strong heritability. I have designed a custom genotyping 

array with 625K most informative SNPs based on genome sequencing data of the eight 

founder lines and our pooled sequencing data.  I have genotyped >600 F2 animals and 

obtained preliminary association results, highlighting, among others, a 1 Mb region on 

chromosome 18 with three candidate genes with plausible biological relevance for the 

metabolic phenotype. Combining the multi-omics data from Chapters 3-5 unveils Dsc3 

as a particularly interesting candidate with implications in all three projects. 
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6.5 Next steps for causal gene identification 

 Chapter 5 of my dissertation served to establish the basis of using the HCR-LCR 

model system for gene mapping in an F2 intercross. We now have access to a 625K 

SNP genotyping array filled with informative ancestral informative markers for our 

specific genetic background.   A potential problem with our current QTL mapping 

approach is the mapping resolution. To address this, we will take advantage of 

ancestral haplotype mapping by using the HAPPY method (Mott et al. 2000, Valdar et 

al. 2006).  Given that our HCR-LCR lines were derived from the HS rats, which were 

derived from eight original inbred strains of rats, every animal can have up to eight 

unique ancestral haplotypes. By analyzing the association between the eight ancestral 

haplotypes and the observed phenotypes we can take advantage of the historical 

recombination events over the ~30 generations since the founding of HS and >28 

generations of divergent selection.  Our preliminary data show that LD in the HCR-LCR 

lines decreased to r<0.3 at about 3 Mb, suggesting that the mapping resolution can be 

as high as 2-3 cM (Johannesson et al. 2009, Ren et al. 2013). HAPPY was successfully 

applied to HS lines (Solberg et al. 2006, Valdar et al. 2006), and subsequently adopted 

for QTL fine mapping in projects similar to mine, involving F2 crosses of divergently 

selected outbred mice for an alcohol preference phenotype (Foroud et al. 2000, Bice et 

al. 2009). 

Once we have identified specific genes with strong confidence as causal factors 

in the HCR-LCR system, we plan to test the impact of these genes in a transgenic 

model system. The knock-ins/outs can be done in inbred background strains, or in 

outbred animals multiple times to average across individual backgrounds.  
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