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Abstract 

Mass spectrometry (MS) is one of the main techniques for high throughput 

discovery- and targeted-based proteomics experiments. For years, the most popular 

method for MS data acquisition has been the so-called data dependent acquisition 

(DDA) strategy which primarily selects high abundance peptide species for tandem 

mass spectrum sequencing. In order to reach low abundance peptides, most DDA 

strategies incorporate stochastic data acquisitions to avoid repetitive sequencing of 

same peptide over consecutive scan cycles, therefore resulting in relatively 

irreproducible qualitative and quantitative results for low abundance peptides 

between experiments. Data independent acquisition (DIA), in which peptide 

fragment signals are systematically acquired for all the peptides within a certain 

mass range, is emerging as a promising alternative to address the stochasticity of 

the conventional DDA. DIA by design results in more complex signals, posing a 

major computational challenge for complex sample and high-throughput analysis. 

As a result, targeted extraction which is dependent on pre-existing spectral libraries 

has been the most commonly used approach for automated DIA data analysis. 

However, building spectral libraries requires additional amount of analysis time and 

sample materials which are the major barriers for most proteomics research groups.  

In my dissertation, I develop a computational tool called DIA-Umpire, which is 

comprised of multiple computational and signal processing algorithms to enable 
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untargeted DIA identification and quantification analysis without relying on any 

prior spectral library. In the first study, a signal feature detection algorithm is 

developed to extract and assemble peptide precursor and fragment signals into 

pseudo tandem mass spectra which can be analyzed by the existing DDA untargeted 

analysis tools. This novel step enables direct and untargeted (spectral library-free) 

DIA identification analysis and we show the performance using complex samples 

including human cell lysate and glycoproteomics datasets. In the second study, a 

hybrid approach is developed to further improve the DIA quantification sensitivity 

and reproducibility. The performance of DIA-Umpire quantification approach is 

demonstrated using an affinity-purification mass spectrometry experiment for 

protein-protein interaction analysis. Lastly, in the third study, I improve the DIA-

Umpire pipeline for data obtained from the Orbitrap family of mass spectrometers. 

Using several publicly available datasets, I show that the improved version of DIA-

Umpire is capable of highly sensitive, untargeted and direct (spectral library-free) 

analysis of DIA data for the data generated using Orbitrap family of mass 

spectrometers. The dissertation work addresses the barriers of DIA analysis and 

should facilitate the adoption of DIA strategy for a broad range of discovery 

proteomics applications. 
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Chapter 1 Introduction 

1.1 Mass spectrometry-based proteomics 

Proteomics is the large-scale study of proteins, which includes protein sequence 

analysis, structural proteomics, interaction proteomics, post-translational protein 

modification, and etc. It has been greatly accelerated because of the achievements of 

genomics and mass spectrometry. Genome sequencing provided the blueprint of 

possible gene products which are comprised of the basis of proteomics, has shifted 

proteomics field from purely hypothesis-driven science to discovery science. The 

remarkable breakthrough in ionization techniques, including electrospray 

ionization (ESI) and matrix assisted laser desorption & ionization (MALDI), have 

enabled the detection of larger molecules such as proteins and peptides using mass 

spectrometers. As a result, a combination of liquid chromatography (LC) and mass 

spectrometry (MS), LC-MS, has rapidly evolved as a powerful technology for high-

throughput proteomics analysis in a wide range of discovery-based biological 

applications. The most popular approach for high-throughput proteomics analysis is 

the so-called ‘shotgun proteomics’. In a typical shotgun proteomics experiment, 

proteins are first digested into peptides using a proteolytic enzyme such as trypsin, 

and the resulting peptide samples are separated using LC coupled online to a 

tandem mass spectrometer. As peptides elute from the LC column, they are ionized 

as peptide ions and subjected to a survey scan (MS1) and further to tandem mass 
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spectrometry analysis to obtain MS/MS (also called MS2) spectra. The spectral 

peaks in MS1 spectra, representing mass-to-charge ratio (m/z) and intensities of 

detected peptide ions, only indicate the observed molecular mass of peptide species 

and, are insufficient to uniquely identify them. In order to identify the detailed 

amino acid compositions of peptides, tandem mass spectrometry isolates ionized 

peptides with specific mass-to-charge ratio (m/z) by mass filter and breaks the 

isolated peptide ions into shorter fragments. For an isolated peptide ion signal, also 

called peptide precursor ion, the fragment signals are recorded as an MS/MS 

spectrum. Various computational strategies [1] including de novo sequencing and 

MS/MS database search algorithms can be applied to identify peptide amino acid 

composition given an MS/MS spectrum. Once peptide sequences are identified, 

protein inference strategies can further identify protein identities [1, 2]. 

1.2 Data dependent acquisition 

In a typical LC-MS experiment with a complex proteomics sample, digested 

peptides are separated by LC and ionized into different charged forms, resulting in 

millions of ionized signals in a single LC-MS run (as the example of LC-MS image 

shown in Figure 1-1). The number of potential peptide precursor ions increases 

exponentially if we consider modified peptide species derived from chemical and 

post-translational modifications. With the huge number of ion signals, the current 

mass spectrometers do not have sufficient scan speed to acquire an MS/MS 

spectrum for each one of the precursor signals. As a result, most experiments adopt 

a compromised strategy called data dependent acquisition (DDA) [3]. In DDA, each 
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scan cycle begins with a MS1 survey scan to detect peptide precursor ions. The m/z 

values of the top few most intense peptide precursor ions in the MS1 survey scan 

are then automatically isolated and fragmented by mass spectrometer to acquire 

corresponding MS/MS spectra in the following scans, as the illustration shown in 

Figure 1-2. Dynamic exclusion strategy [4, 5] is often applied with DDA to avoid 

repetitive sampling of same peptide precursor ions over a short period of time to 

increase identification coverage. As mentioned above, the MS/MS spectra can be 

used to identify the peptides and proteins by various computational methods, most 

commonly by MS/MS database search engines. In a single LC-MS run, DDA can 

effectively identify 6,000 - 10,000 proteins. For years, DDA has been the most 

popular approach for high-throughput proteomics experiments.  

 
Figure 1-1 Illustration of LC-MS data and isotope peaks of a peptide precursor. 
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The x-axis is retention time, y-axis is m/z, and each dot represents a possible ion signal with 

the colors indicating its intensity. The image was exported using OpenMS 1.10 [6]. 

Despite the wide use of DDA strategy, its limitations are also well known and 

have been discussed in the literature. Even with a continuously increasing speed of 

data acquisition, the mass spectrometers are not able to reliably isolate and acquire 

high quality MS/MS spectra on all peptides present in a typical proteomics sample. 

Due to the dependency of ion selection on the precursor ion intensity, identification 

of low abundance peptides is more stochastic and less reproducible between 

replicate LC-MS analyses. In addition, the selection of a peptide ion for MS/MS 

sequencing during DDA is not guaranteed to always be at the LC elution peak apex, 

which may reduce the quality of the MS/MS spectrum and make its computational 

interpretation more difficult. These issues also affect the accuracy of protein 

quantification. The spectral-count based quantification strategies, while very robust 

and easy to use, are most affected by the stochastic nature of DDA. When the 

quantification is directly based on the number of acquired and identified MS/MS 

spectra for that protein, robust and sensitive detection of abundance changes across 

different samples for low abundance proteins becomes difficult due to their 

naturally small (and variable) spectral counts [7]. MS1 peak intensity-based 

quantitation approaches allow more sensitive quantification of proteins identified 

by one or several peptides. However, missing quantification remains a problem 

which is also caused by DDA’s stochastic acquisition and not all MS1 peaks have 

MS/MS spectra to identify peptide identity.  
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Figure 1-2 Illustration of the difference between DDA and DIA. 
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In each LC-MS image, the x-axis is retention time and y-axis is m/z. In each scan cycle, the 

solid line represents the MS1 survey scan and the dash lines represent the following MS/MS 

spectra. DDA: Each scan cycle begins with an MS1 survey scan followed by several MS/MS 

scans. MS/MS scans are acquired based on a smaller size of isolation window for a specific 

peptide precursor ion. Because the insufficient scan speed, DDA results in more stochastic 

identification and quantification performance. DIA: Each scan cycle also begins with an MS1 

survey scan. In the following MS2 spectra, DIA uses a wider isolation window size to allow 

systematic acquisition of fragmentation signals across the entire mass and retention time 

ranges. The wider isolation window size used in DIA causes peptide co-fragmentation and 

results in more complex MS/MS spectra.  

1.3 Data independent acquisition 

The alternative to the DDA method are data-independent acquisition (DIA) 

methods [8-18], where the fragment ion information are acquired for all precursor 

ions within a certain range of m/z values. By design, DIA results in more complex 

MS/MS spectra because the signals are from co-fragmentation of multiple co-eluting 

peptides. The early DIA strategies had to use a very large precursor isolation 

window (e.g. the entire reliably measurable m/z range in the case of MSE approach) 

to keep the duty cycle time within the limits established by the peptide LC elution 

peak width [8]. Alternatively, the isolation window could be significantly narrowed 

(e.g. to 1 - 4 Da), but at the expense of splitting the analysis of one sample into 

multiple LC-MS runs each covering a different range of m/z values [11, 15]. In the 

first case, the resulting MS/MS spectra were often too complex to be effectively 

analyzed, whereas in the second case the potential advantages of improved 

sensitivity of peptide identification were negated by the increase in the overall MS 

analysis time. As a result, the number of studies employing the DIA strategies for 
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untargeted (discovery) proteomics has trailed significantly those based on the 

conventional DDA approach. Instead, a variant of DIA – multiple reaction monitoring 

(MRM) [19-21] – has gained a wider use for targeted protein quantification [22]. In 

targeted proteomics applications [21] using MRM, the analysis is restricted to a 

small number of predetermined peptide ions of interest. Selected fragment ions 

corresponding to these peptide ions are measured continuously over a period of 

time. This enables building an extracted ion chromatogram (XIC) specifically for 

these fragment ions, thereby allowing higher sensitivity of detection and better 

quantitation accuracy for selected peptides of interest. 

Recent improvements in MS instrumentation have significantly widened the 

window of opportunity for applying DIA strategies in proteomics studies. Sequential 

Window Acquisition of all THeoretical Mass Spectra (SWATH) [16] is a variant of the 

DIA strategy that takes advantage of the increased scan speed and improved mass 

resolution available on newer instruments such as AB Sciex 5600 TripleTOF and 

Orbitrap mass spectrometers. In SWATH MS DIA (and related workflows [16]) an 

intermediate isolation window size (e.g. 25 Da in SWATH) is used instead of a 

narrow m/z window as in DDA or a very large window as in MSE DIA. By 

sequentially stepping up the m/z windows across the wide mass range (e.g. 400 Da - 

1200 Da), fragments of virtually all peptide ions from this range should be present 

in the corresponding MS/MS spectra (Figure 1-3). Due to the high scan speed 

resulting in a short cycle time (~ 3.4 seconds for AB Sciex 5600), the high resolution 

fragment signals in SWATH MS2 spectra can be viewed as high throughput MRM 
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data. As a result, SWATH has been utilized as an alternative to MRM for targeted 

proteomics quantitation [23-26].  

1.4 Spectral library-dependent DIA targeted analysis 

Initially, DIA was considered as similar to high-throughput MRM and hence 

follows the same workflow as in MRM quantitation analysis. To quantify a target 

protein of interest, extensive prior information is needed to unambiguously locate 

its peptides in an LC-MS run. This information includes the choice of the peptides to 

monitor, their retention times and fragmentation patterns. The prior information is 

usually acquired in a separate analysis using DDA, and summarized in the form of a 

‘transition lists’ or ‘spectral library’. The fragment ion intensities for the target 

peptides in DIA data are then extracted from the data using a targeted extraction 

approach with the help of spectral library. The concept of targeted extraction was 

inspired by MRM analysis and has been adopted by different computational tools for 

DIA analysis including the commercial software PeakView and Spectronaut [27], 

and the open-source packages such as OpenSWATH [28] and Skyline [29].  

To quantify a peptide ion in a DIA file using a spectral library, first the observed 

fragments, also called ‘transitions’, of the peptide ion are extracted from the library. 

Based on the observed fragment m/z values, the XICs of the fragments in the DIA 

MS2 spectra are then built for either the entire retention time range or for a smaller 

window around the peptide ion observed elution time (or calculated by 

computational algorithms) from the library. Each fragment XIC across the retention 

time extraction range is then split into individual peaks (each scattered at different 
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retention time points) by peak detection algorithms, indicating potential retention 

time spots of the targeted peptide ion from the perspective of the single fragment. 

Combining all the detected peaks from all the fragment XICs, the targeted extraction 

tools mentioned above determine a group of co-eluting fragment peaks for the 

targeted peptide ion using the scoring models such as mProphet [30] and DIANA 

[31]. Finally, the fragment intensities from the DIA data are then extracted to 

quantify the peptide. Recent studies have further advanced such targeted extraction 

approaches to various proteomics applications [32-40] including post-translational 

modifications [34, 35], protein-protein interaction [35, 36], immunopeptidome [40]. 

1.5 Drawbacks of spectral library-based targeted approaches 

The applications using spectral library-based DIA approach mentioned above 

require replicate analysis of the same samples using both DDA (to build the spectral 

library) and DIA (to quantify the target proteins). This essentially doubles the 

amount of the sample necessary for complete quantitative analysis as well as the MS 

analysis time. Furthermore, this strategy (as most targeted strategies) relies heavily 

on the precise knowledge of the peptide retention times, and thus ideally involves 

retention time calibration using peptide standards (e.g. iRT peptides) spiked-in each 

analyzed sample. The analysis of DIA data becomes further complicated if the DDA 

experiments used to build the spectral library were done using a different LC 

gradient or LC system, a different MS analyzer, or a different fragmentation method, 

which could lead to deviations in peptide retention times or fragmentation patterns 

between the DDA and DIA runs. In the analysis of complex samples such as human 
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tissues, retention times of some peptides may vary significantly from sample to 

sample depending on the number of co-eluting peptides in each sample. 

1.6 Motivation 

The main motivation behind this dissertation work is to explore and develop 

computational strategies that would allow taking the advantage of the new 

generation of DIA strategies such as SWATH for untargeted protein identification 

and quantitation analysis without any extensive parallel DDA analysis of the same 

samples. As the conceptual workflow in Figure 1-3 shows the conventional 

identification analysis of DDA data often relies on MS/MS database search (Figure 

1-3a). As mentioned, the analysis of DIA data mostly relies on targeted extraction 

using spectral library (Figure 1-3b). Therefore, the first aim of this dissertation 

work is to develop algorithms to transform DIA data into precursor-fragment group 

data (pseudo MS/MS spectra) which is fully compatible with DDA MS/MS database 

search engines (spectrum-centric search) so that one can perform untargeted 

identification analysis directly for DIA data (Figure 1-3c). The second aim of the 

dissertation is to extend the untargeted analysis to a complete DIA analysis 

including quantification analysis. When we consider quantification analysis in an 

experimental setting that includes multiple replicates / samples, retention time 

alignment and “internal spectral library” searching can be developed to further 

reduce missing quantification across multiple LC-MS experiments.  Lastly, the third 

aim of this dissertation work is to further improve the algorithms of the pipeline 
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and show its performance using DIA data obtained from different mass 

spectrometers. 

 
Figure 1-3 Untargeted and targeted data analysis strategies and DIA-Umpire 

hybrid framework 

(a) Conventional analysis of DDA data is based on matching MS/MS spectra against a 

proteome-wide sequence database or a spectral library (spectrum-centric search). Peptides 

(and then proteins) are quantified using MS1 signal intensity or spectral counts (label-free 

quantification) (b) Current methods for DIA analysis are based on targeted data extraction, 

in which peptide ions from a spectral library are queried against experimental data 

(peptide-centric search) to find the best matching fragment ion signals and their intensities 

(MS2 based quantification). (c) DIA-Umpire hybrid workflow performs signal extraction 

from DIA MS1 and MS2 spectra to construct precursor–fragment groups. Each precursor–

fragment group is then analyzed using spectrum-centric searching to identify the peptides, 
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as in (a). Peptide-centric matching is then performed to query unidentified precursor–

fragment groups against a spectral library, as in (b). The spectral library can be built from 

the initial untargeted (spectrum-centric) results using the same DIA data, or can be 

combined (replaced) with an external spectral library built using DDA data. Quantification 

can be done from either MS1 precursor- or MS2 fragment-ion intensities.  
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Chapter 2 Untargeted proteomics identification 
analysis for data independent acquisition data 

The content of this chapter was previously published by the author as a research 

article in Nature Methods [41]. 

2.1 Background 

DIA data presents a potential for more comprehensive proteomics analysis 

because its unbiased acquisition. However, as mentioned in Chapter 1, the common 

approach for DIA analysis is dependent on spectral libraries. The aim of the first 

study is to develop a computational method which can enable untargeted analysis 

(spectral library-free) for DIA proteomics data. We develop a pipeline called DIA-

Umpire that includes a series of optimized signal processing algorithms for 

detection of signal features from DIA MS1 and MS2 spectra. The detected MS1 and 

MS2 features represent all observed peptide precursor and fragment ions, 

respectively. All the detected features are then assembled into precursor-fragment 

groups. This strategy allows untargeted analysis of DIA data by means of converting 

the detected precursor-fragment feature groups into “pseudo” MS/MS spectra. 

These pseudo MS/MS spectra are fully compatible with the conventional DDA 

database search engines and statistical analysis tools for estimating the false 

discovery rates (FDR). This untargeted analysis method was first evaluated using 
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four sets of samples of different complexity consisting of just the UPS (Universal 

Protein Standard) proteins, E. coli lysates, human cell lysates, and a public 

glycoproteomics dataset. We demonstrated that the algorithm can identify proteins 

in DIA data with similar numbers obtained from DDA data. We observed that, in our 

hands, DDA still outperforms DIA slightly for untargeted peptide and proteins 

identification in complex samples, especially in the low abundance range. We also 

performed a detailed comparison between the untargeted and targeted (exemplified 

by OpenSWATH [16]) analysis of DIA data using the complex E. coli and human cell 

lysate samples and the public glycoproteomics dataset. 

2.2 Methods 

2.2.1 Sample preparation UPS2, E. coli, and human datasets 

Proteomics Dynamic Range Standard (UPS2) sample was acquired from Sigma-

Aldrich (St. Louis, MO), the MassPREP E. coli Digest Standard was acquired from 

Waters (Milford, MA) and the MS compatible human protein extract digest was from 

Promega (Madison, WI). The UPS2 samples were reduced with 5 mM TCEP (tris(2-

carboxyethyl)phosphine), alkylated with 50 mM iodoacetamide, and digested 

overnight with 1 µg trypsin (Promega, Madison, WI) in 100 mM Tris pH 8 at 37°C. 

UPS2, E. coli, and human peptides were acidified with formic acid and loaded at 

various concentrations, alone or in combination, onto an in-house made 75 µm x 12 

cm analytical column emitter packed with 3 µm ReproSil-Pur C18-AQ (Dr. Maisch 

HPLC GmbH, Germany). A NanoLC-Ultra 1D plus (Eksigent, Dublin CA) nano-pump 

was used to deliver a 90 minute gradient from 2% to 35% acetonitrile with 0.1% 
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formic acid, followed by a 30 minute wash with 80% acetonitrile prior to re-

equilibration to 2% acetonitrile with 0.1% formic acid. 

2.2.2 Mass spectrometric analysis 

Each sample was analyzed in duplicates (1 ug E. coli lysate, 500 ng Human lysate) 

or in triplicates (UPS2, UPS2 plus E. coli; affinity purified samples previously 

reported [26]) on a TripleTOFTM 5600 instrument (AB SCIEX, Concord, Ontario, 

Canada) once using DDA and once using DIA (SWATH) with an extended ion 

accumulation time of 250 ms for MS1 scans. UPS2 samples were also analyzed using 

SWATH with the previously-reported MS1 survey scan ion accumulation time of 50 

ms [16, 26]. The DDA run consisted of one 250 ms MS1 TOF survey scan covering 

400–1300 Da followed by ten data dependent 100 ms MS/MS scans (1 Da isolation 

window, scan range 100–2000 Da) with precursors excluded for 15 s after being 

selected for fragmentation once (dynamic exclusion option). The SWATH run 

consisted of one 250 ms or 50 ms MS1 TOF survey scan followed by 34 sequential 

MS2 windows of 25 Da covering a mass range of 400–1250 Da at 95 ms per each 

SWATH scan. The DIA run (Thermo Q Exactive Plus) consisted of one MS survey 

scan (17500 resolution, target 3e6, max fill time 50 ms) every 10 scans, and 24 

sequential MS2 windows of 26 amu (17500 resolution, target 5e5, max fill time 80 

ms) covering a mass range from 400–1000 Da. The DDA run (Thermo QE Plus) 

consisted of one MS survey scan (70000 resolution, target 1e6, max fill time 30 ms) 

followed by fifteen MS/MS scans (2 Da isolation, 17500 resolution, target 1e5, max 
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fill time 125 ms), with former precursors excluded for 20 seconds after being 

selected once. 

2.2.3 Glycoproteomics SWATH dataset 

The .wiff raw files of the public glycoproteomics SWATH and DDA datasets [35] 

were downloaded from ProteomeXchange Consortium using the dataset identifier 

PXD000704. 

2.2.4 mzXML File conversion 

All the .wiff raw files from AB SCIEX 5600 TripleTOF were first converted to 

mzML format with the AB MS Data Converter (AB SCIEX version 1.3 beta) using 

“centroid” option, and the resulting mzML files were further converted into mzXML 

format by msconvert.exe from the ProteoWizard package (version 3.0.4462) [42] 

using the default parameters.  

2.2.5 Precursor and fragment ion 2D peak detection in DIA-Umpire 

A two-dimensional feature detection algorithm was developed to locate 

precursor and fragment ion signals in MS1 and MS2 data (Figure 2-1). Feature 

detection analysis starts with the LC elution profile (“peak curve”) detection step. A 

peak curve represents a mass trace continuous in time, and a peak must be present 

in at least three consecutive scans (for data presented in this study, >9 second on 

average). It is stored as three vectors of m/z values MZ = (m1, m2, …, mn), intensities 

INTraw = (i1, i2, … in), and retention times RTraw = (t1, t2, … tn), where n is the number 

of consecutive scans and ti+1>ti. For detected features the algorithm reports m/z 
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value, retention time span (elution start and end times, t1 and tn) and extracted ion 

chromatograms (XICs). 

 
Figure 2-1 DIA-Umpire signal extraction algorithms.  

The feature detection algorithm is applied to DIA MS1 and MS2 spectra to detect all possible 

MS1 peptide precursor ions and MS2 fragment signals. Each detected precursor feature is 

grouped with corresponding co-eluting fragment ion features based on Pearson correlation 

of LC elution peaks and retention times of peak apexes to form precursor-fragments groups. 

These precursor–fragment groups are used to construct pseudo MS/MS spectra (separated 

into different quality tiers based on the quality of detected precursor ion signal) for 

untargeted spectrum-centric database search and identification.  

The m/z value M of a peak curve is calculated as a weighted average (by 

intensity) of detected m/z values in the retention time span,  
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. 

Each peak curve is then smoothed by B-spline interpolation (using the 2nd 

degree basis function). XICs are represented as two vectors of interpolated retention 

times RT = (t1, t2, … tk) and intensities INT = (i1, i2 , … ik), where k is the total number 

of interpolated points per peak (we used 150 points per minute, making k = 150(tn-

t1)). As a peak curve might have multiple maxima, we apply a Continuous Wavelet 

Transform (CWT)-based approach for splitting it into several separate peak curves 

using Mexican-hat wavelet (See Du et al [43] and Tautenhahn et al [44] for 

mathematical details of CWT) . For each unimodal peak curve, the apex intensity is 

determined as Imax = max(INT). 

In MS1 data generated using high-resolution instruments, several isotope peaks 

for each peptide precursor ion can usually be detected (referred to as precursor ion 

features) helping to distinguish true precursor signals from noise. Single peak 

curves detected in MS1 scans are grouped together to form isotopic clusters based 

on RT apex distance and m/z spacing, which should fit the spacing for a given charge 

state (in this study, +2, +3, and +4 only). 

In complex samples, however, the presence of multiple co-eluting peptides 

having similar m/z values results in overlapping signals, leading to multiple 

alternative possibilities for isotope peak grouping (see Figure 2-2 for an illustration). 

In such cases, the algorithm intentionally over predicts the number of precursor ion 

features by first considering the m/z of each peak curve as a possible monoisotope, 
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and then attempting to find heavier isotope peaks for that presumed monoisotopic 

m/z value. In doing so, the algorithm maximizes the sensitivity with respect to 

finding true precursor ion features at the cost of introducing some redundant 

features with incorrectly assigned monoisotopic m/z values.   

 
Figure 2-2 Examples of co-eluting peptide ions. 
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(a) Two co-eluted peptide ions A and B with the monoisotopic peak A1 of peptide ion A 

overlapped with the third isotope peak B3 of peptide ion B. The peak detection algorithms 

have a difficulty with detecting B3 because it is completely buried by A1 signal. (b) Another, 

more complicated example where co-elution of multiple peptide ions presents an ambiguity 

with the interpretation of different isotope peak groups. To effectively detect as many true 

precursor ions as possible, the signal detection algorithm of DIA-Umpire considers each 

peak curve as a possible monoisotopic peak, and then attempts to find higher isotope peak 

curves for the assumed monoisotopic peak. 

In general, the higher the number of isotope peaks detected for an MS1 feature, 

the more likely it is to be a true precursor ion signal. Thus, the algorithm uses the 

number of isotope peaks as a measure of quality of precursor ion features. Features 

with three or more isotope peaks are labeled as Quality Tier 1 (QT = 1 or Q1) 

precursors, i.e. the precursors that are most likely to represent true precursor 

peptides with the correctly determined monoisotopic m/z values. MS1 features with 

only two detected isotope peaks are labeled as Quality Tier 2 (QT = 2 or Q2). All 

single peaks observed in MS1 scans (i.e. peaks with no isotopic envelope detected) 

are discarded.  

In addition to detection of precursor ion features in MS1 scans, unfragmented 

precursor ions can sometimes be observed in DIA MS2 spectra. This is likely due to 

the collision energy not being universally suitable for complete fragmentation of all 

the precursor ions within a particular DIA isolation window. To take advantage of 

this, all peaks in MS2 spectra having m/z values within the corresponding DIA 

isolation window are considered as potential unfragmented precursors (see Figure 

2-1). Unfragmented precursor ion features are detected as described above for MS1 

data, requiring at least two isotope peaks. These features are added to the precursor 
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list as Quality Tier 3 (QT = 3 or Q3). Note that some peptide precursor ions can be 

detected in both DIA MS1 and MS2 spectra, and their corresponding features thus 

may be included in both Quality Tier 3 and Quality Tier 1 (or 2) sets.  

Fragment ion peak detection in MS2 data is performed similarly, with one 

modification. It is generally more difficult to detect multiple isotope peaks for low 

intensity fragment ions. Relaxed stringency of feature detection for fragment ions 

(compared to MS1 precursor ions feature detection described above) resulted in 

improved sensitivity of peptide identification and reduced the computational time. 

Thus, isotope peak grouping and charge state determination for fragment ions is not 

performed at this stage. Instead, each possible fragment peak is treated 

independently, and isotope detection and charge state determination is performed 

at a later stage (after the precursor–fragment grouping step described below).  

2.2.6 Precursor-fragment grouping  

“Co-elution” is an important characteristic of the data that reveals relationships 

between a precursor ion and its fragments [17]. The algorithm takes advantage of 

this characteristic by calculating the Pearson correlation coefficient and the 

retention time difference of LC elution peak apexes between all detected precursors 

(P) and all possible fragment ions (F) (see Figure 2-1). This pairing is naturally 

restricted to fragment ions in the DIA isolation window corresponding to the m/z 

value of the precursor. For a precursor Pq and a fragment Fr the Pearson correlation 

coefficient Cq,r = corr(Pq, Fr) is computed using the LC profiles (XICs) of 

monoisotopic precursor and fragment ion features. All precursor-fragment pairs are 
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represented as a bipartite graph (see Figure 2-1). In this representation, one 

fragment ion can have multiple precursors and several precursors can share the 

same fragment. 

To better connect precursor ions to their most likely fragment ions, the following 

parameters are calculated based on the correlation scores for each possible Pq, Fr 

pair. First, given a fragment ion Fr, RP(Pq, Fr) score is calculated as the rank of the 

precursor ion Pq based on Pearson correlation Cq,r between that fragment and all 

candidate precursors.  Second, given a precursor ion Pq, RF(Pq, Fr) score is calculated 

as the rank of the fragment Fr based on Pearson correlation between that precursor 

and all possible fragments. For a precursor ion with many co-eluting fragments, a 

higher-ranking fragment is more likely to be derived from it. Similarly, for a 

fragment ion, a higher-ranking precursor ion is more likely to be its true precursor. 

These two metrics, as well as the retention time difference of LC profile apexes, 

ΔT(Pq, Fr), are used to assemble precursor-fragment groups (see Figure 2-1). 

2.2.7 Generation of pseudo MS/MS spectra  

To generate a pseudo MS/MS spectrum for a precursor ion Pq, the algorithm first 

detects the charge state of each fragment peak (if only a single isotope peak is 

detected, charge state +1 is assumed). It then detects all likely complementary y- 

and b-ions in the spectrum (detected as pairs of fragments summing up to the 

precursor peptide mass [45]). For non-complementary ion peaks, only those 

fragments Fr are kept that pass the following set of thresholds:  RF(Pq, Fr) ≤ RFmax , 

RP(Pq, Fr) ≤ RPmax, and ΔT(Pq, Fr)  ≤ ΔTmax. These threshold parameters are 
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implemented as user-specified options in the software, allowing re-evaluation and 

adjustment of the default thresholds (described below), if necessary.  

Charge state and precursor m/z for each pseudo MS/MS spectrum are 

determined by precursor ion features. Fragment ion intensities are computed in 

three steps. For fragment Fr, the intensity is taken as LC apex intensity of the 

corresponding elution peak curve, Ir. Then for each complementary b-, y- fragment 

pair Fr1, Fr2, the intensity of the less intense fragment is boosted to match that of the 

more intense one, Ir1 = Ir2 = max(Ir1, Ir2). At the last step, intensities are adjusted by 

weighting according to the square of correlation with the precursor peak curve, Ir′ = 

Ir×C2q,r. The presence of complementary ions is a positive sign of a connection 

between the precursor and fragment ions, and boosting the intensities of 

complementary ions has been shown to improve the sensitivity of peptide 

identification [46]. Note that this fragment intensity adjustment step can optionally 

be skipped for other applications, e.g. to use a spectral library search engine for 

searching pseudo MS/MS spectra or to build a spectral library from the pseudo 

MS/MS spectra. Also note that the adjusted (boosted) intensities are not used for 

quantitation, only for identification. An example of a pseudo MS/MS spectrum 

(before and after complementary ion boosting), the underlying precursor ion and 

fragment ion elution profiles in DIA MS1 and MS2 data, and the DDA MS/MS 

spectrum for the same peptide are shown in Figure 2-4. 

The performance of the DIA-Umpire algorithm for different combinations of the 

threshold parameters described above was evaluated using a subset of the data. The 
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results are shown in 2.3 and Table 2-1.  When the pseudo MS/MS spectra extracted 

under different settings were searched using X! Tandem, the following threshold 

values resulted in the highest number of identifications (at 1% FDR) and were 

selected as default values in the software: allow the top 25 ranked precursors for 

each fragment (RPmax= 25), the top 300 ranked fragments for each precursor 

(RFmax = 300) and 0.6 minutes apex elution time difference (ΔTmax = 0.6). Note 

that the best performance was achieved by allowing the possibility of an MS2 

fragment to be included in multiple MS/MS spectra (RPmax= 25). Because the 

algorithm takes the square of a peak shape correlation coefficient between the 

precursor and fragment signals as the weighting factors for calculation of adjusted 

fragment intensities in pseudo MS/MS spectra, true high intensity fragments can 

still contribute to the identification of their corresponding peptide even if they have 

a relatively poor correlation with the precursor (e.g., due to ion suppression effects 

affecting either the precursor ion or the fragment ion elution peak shape). The 

overall robustness of the pseudo MS/MS spectrum generation process was also 

evident from similar numbers of peptide ion identifications obtained by searching 

the spectra with three different database search engines (X! Tandem, Comet, and 

MSGF+, detailed results are shown in Table 2-2.  

These results indicate that inclusion of more fragment ions in a pseudo MS/MS 

spectrum does not hamper the identification rate. On the contrary, by doing so the 

algorithm increases the chance of true fragments to be included, thus improving the 

number of confident identifications. An additional analysis was also carried out for E. 

coli and human cell lysate datasets by removing fragments from pseudo MS/MS 
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spectra that were also matched in other pseudo MS/MS spectra identified with high 

confidence. Repeating X! Tandem search with those fragments removed did not 

change the number of identified peptide ions in either dataset. 

2.2.8 Peptide and protein identification using pseudo MS/MS spectra 

In this study, we used X! Tandem [47], Comet [48], and MSGF+ [49] as search 

engines to identify peptides from pseudo MS/MS spectra (however, any database 

search engine developed for searching DDA spectra can be used). Because of the 

similar characteristics of DDA and DIA pseudo MS/MS spectra, all downstream 

analysis of the database search results, including protein inference and estimation of 

posterior probabilities of correct identification and FDR, can also be performed 

using conventional strategies developed for DDA data. Database search output files 

were processed by PeptideProphet [50] via the Trans-Proteomic Pipeline (TPP) [51], 

followed by ProteinProphet [2] analysis to assemble peptides into proteins/protein 

groups and to determine protein probabilities. The final protein and peptide 

identification lists were filtered to achieve a desired FDR (here – 1%) estimated 

using the target-decoy approach [1]. The only modification was to compute 

posterior peptide probabilities by PeptideProphet separately for each of the three 

quality categories of MS/MS spectra (Quality Tiers QT = 1, 2 or 3) because of very 

different ratios of correct vs. incorrect identifications among them (see Figure 2-5).  

Further analysis of the model parameters and the distributions of scores 

reported by PeptideProphet (see Figure 2-5) did not show any evidence indicating 

that pseudo MS/MS spectra extracted using DIA-Umpire behaved any different than 
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conventional DDA spectra with respect to the basic assumptions in PeptideProphet 

or the target-decoy FDR estimation strategy. 

2.2.9 Peptide and protein identification parameters 

For UPS2, E. coli, and human cell lysate datasets, DDA MS/MS spectra and the 

DIA pseudo MS/MS spectra were searched by X! Tandem, Comet, and MSGF+ using 

the following parameters: allow tryptic peptides only, up to one missed cleavage, 

oxidation of methionine and cysteine alkylation as variable modifications. The 

glycoproteomics SWATH dataset was searched by X! Tandem only, with cysteine 

alkylation specified as a fixed modification and with deamidation of asparagine as a 

variable modification. The instrument-specific parameters – the precursor ion mass 

tolerance and the fragment ion mass tolerance – were set to 30 ppm and 40 ppm for 

AB SCIEX 5600 TripleTOF, respectively. In X! Tandem, the analysis was limited to 

140 most intense peaks which gave the best results based on the same subset of the 

data that was used to select the parameters for the DIA-Umpire pseudo MS/MS 

extraction algorithm (see above). However, the search results were not very 

sensitive to the choice of this parameter (which is also evident from the fact that 

similar results were obtained using Comet and MSGF+ search tools that do not 

provide an option to restrict the number of peaks in the spectra). The sequence 

database for the UPS2 experiment was compiled from the UPS sequences (total 50 

sequences: 48 UPS1 proteins and 48 UPS2 proteins, www.sigmaaldrich.com). For 

the E. coli experiments, E. coli proteome sequences (4,431 proteins) were extracted 

from UniProtKB. The non-redundant human protein sequence FASTA file from the 
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UniProt/SwissProt database (release of 09-Jan-2013), appended with common 

contaminant proteins, was used for the human cell lysate experiment and the 

glycoproteomics datasets. For all sequence databases, reversed sequences were 

added as decoys for target-decoy analysis. The initial search results from the search 

engines were first converted into pepXML format, followed by analysis using 

PeptideProphet [50] via the Trans-Proteomic Pipeline (TPP) [51] (v4.7). For DIA 

derived pseudo MS/MS spectra, PeptideProphet was run separately for each of the 

three quality categories of MS/MS spectra (Quality Tiers QT = 1, 2 or 3). The 

iProphet [52] tool was used when merging the search results from all three search 

engines. Unless noted otherwise, peptide ion identification lists for each DDA or DIA 

run were filtered at 1% FDR, estimated by target-decoy approach based on 

PeptideProphet probability for each search engine (or iProphet peptide ion 

probability when using iProphet). 

Protein inference for different analyses was performed as follows. To report the 

numbers of protein identifications for individual DIA/DDA runs (Table 2-2), 

PeptideProphet output files (individual search engine analysis) or iProphet output 

files (when combining the search results) were analyzed by ProteinProphet [2] for 

protein inference. For the comparison between DDA and DIA or between DIA-

Umpire and OpenSWATH results at the protein level, PeptideProphet output files 

(based on X! Tandem results) for both DIA and DDA were processed together by 

ProteinProphet. The final protein lists for each ProteinProphet analysis were 

determined by a 1% FDR threshold, estimated by target–decoy approach. 
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2.2.10 Targeted extraction analysis using OpenSWATH 

The E. coli and human cell lysate experiments from AB SCIEX 5600 TripleTOF 

were also processed with OpenSWATH to identify proteins and peptides using the 

fully targeted approach. The two DDA replicates acquired for each sample were 

used to build the spectral library using SpectraST [53] with the following options: 

best replicate; union; 0 minimum peaks for exclusion; 0 minimum amino acids for 

exclusion. Only the DDA non-decoy identification spectra that passed 1% FDR 

threshold were used for building the library. The probability thresholds were: 

0.6979 for DDA E. coli replicate 1; 0.7877 for DDA E. coli replicate 2; 0.8075 for DDA 

human replicate 1; 0.8233 for DDA human replicate 2. This resulted in a total of 

12,820 and 17,402 peptide ions including decoys represented in the “transition lists” 

used by OpenSWATH for E. coli and human, respectively. For OpenSWATH analysis 

using DIA-derived libraries, the libraries were built with SpectraST using the pseudo 

MS/MS spectra (without complementary b- and y-ion boosting) from peptide ions 

identified by the DIA-Umpire’s untargeted workflow and filtered at an 1% FDR 

threshold (8,757 peptide ions for human and 6,364 for E. coli samples).  
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Figure 2-3 Retention time differences for peptide ions commonly identified 

between DDA replicates.  

(a) E. coli cell lysate data (b) human cell lysate data. 
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OpenSWATH was run using the following parameters: extraction elution time 

window (seconds): 60; minimum transitions: 2; maximum transitions: 6; unique ion 

signature threshold: -1; retention time normalization factor (seconds): 7200 (i.e. the 

whole LC-MS run duration in our case). Our dataset did not contain iRT [54] 

peptides for retention time normalization because all the experiments were 

performed using the same instrumentation setup and the retention times were 

highly reproducible (within one minute) between the DDA/DIA runs (Figure 2-3). 

Peptide ion identification lists were filtered using mProphet [30] at 1% FDR. The 

number of candidate peptide ions used for scoring against the extracted peak 

groups in OpenSWATH analysis was estimated as the number of ions in the DDA-

derived library falling within the corresponding 25 Da SWATH isolation window 

and within the specified retention time tolerance (1 minute). 

2.2.11 DIA-Umpire analysis using reduced database 

In order to demonstrate how search space affects peptide identifications, in 

addition to searching DIA pseudo MS/MS spectra against the proteome-wide 

sequence database (all E. coli or human proteome sequences plus decoys), we also 

used a smaller database of peptide sequences (5,997 and 8,784 sequences for E. coli 

and human cell lysate experiments, respectively) identified from the corresponding 

DDA data. Reverse versions of these sequences were also appended to the database 

for target-decoy analysis. All other search parameters and settings were the same as 

described above. 

2.2.12 Isotopic pattern validation of glycopeptide identifications  
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Identification of N-linked glycopeptides relies on detection of asparagine 

deamidation due to PNGase F treatment which causes a small mass shift (0.984 Da). 

The mass shift is close to the mass difference between the isotope peaks which 

could lead to false identification of a peptide as deamidated if an “M+1” isotope peak 

is mis-recognized as a true monoisotopic peak. In another scenario, if there is a 

noise signal at “M-1” Da of a deamidated ion that is mis-recognized as the 

monoisotopic peak, the deamidated peptide would be mis-identified as an 

unmodified peptide ion. To remove these erroneous identifications, we applied a 

two-step filtering strategy. All confident identifications from DIA-Umpire were first 

grouped if their precursor features shared an isotope peak at same retention time 

(see Figure 2-2 for one such example). We then removed grouped precursor 

features if the observed MS1 isotope peak distribution did not fit the theoretical 

isotope pattern (chi-squared goodness of fit probability < 0.8). This first stage 

filtering was able to remove misidentifications in the second scenario. To remove 

the cases in the first scenario, the precursor masses of peptides identified in each 

group were compared, and only the identification with the smallest mass in the 

group was kept. 

2.2.13  Code and data availability 

The program was developed in the cross-platform Java programming language 

(v1.7) and the executable files along with source codes are publically available at 

http://diaumpire.sourceforge.net/. All the spectrum files (Table A-1) along with DIA-

Umpire results presented in this study have been deposited at the 
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ProteomeXchange Consortium [55] (http://proteomecentral.proteomexchange.org) 

via the PRIDE partner repository with the dataset identifier PXD001587.  

2.3 Results 

2.3.1 DIA-Umpire untargeted identification workflow 

DIA-Umpire incorporates a number of computational algorithms for DIA analysis 

(see 2.2 for detail). It begins with a two dimensional (m/z - retention time) feature 

detection algorithm that discovers all possible precursor and fragment ion signals in 

DIA MS1 and MS2 data, respectively, and also possible unfragmented precursor ions 

in the MS2 data (Figure 2-1). Because DIA usually employs wider isolation m/z 

range (e.g. 25 Da) than DDA, co-eluting peptides are more frequently co-fragmented, 

generating complex MS2 spectra. In order to measure the likelihood that a detected 

fragment signal is derived from a particular precursor peptide ion, the algorithm 

calculates the Pearson correlation coefficient of LC elution peaks and retention time 

differences of LC elution peak apexes between all detected precursor features and 

all co-eluting fragment ions. Reflecting the complex nature of precursor-fragment 

relationships, all precursor-fragment pairs are represented as a bipartite graph 

(Figure 2-1). After filtering by a combination of thresholds, sets of fragment peaks 

are grouped with precursor features and stored as precursor-fragment groups 

(Figure 2-1).  



33 
 

 
Figure 2-4 Example of precursor peptide ion and fragment ion LC elution signals 

and the corresponding pseudo MS/MS spectrum generated by DIA-Umpire.  

(a) Elution profiles for the first 3 isotope peaks of a doubly charged precursor peptide ion 

AMGIM[Oxy]NSFVNDIFER extracted from MS1 data from a DIA (SWATH) run on a AB SCIEX 

5600 instrument. (b) Elution profiles for fragments of this precursor peptide detected in 

the DIA MS2 data. (c) DDA MS/MS spectrum (from a DDA run generated on the same 

instrument and using the same sample) from which the same peptide was identified, with 

matched b- and y- ions highlighted. (d) Pseudo MS/MS spectrum extracted by DIA-Umpire 

from the DIA data (before complementary ion boosting). (e) Same pseudo MS/MS spectrum 

after complementary ion boosting. Note a larger number of b- ions matched in (e) compared 

to (d). (a) and (b) images exported from Skyline. (c), (d), and (e) are exported from TPP 

spectrum browser. 

For direct untargeted analysis, DIA-Umpire generates a pseudo MS/MS spectrum 

(Figure 2-4) for each precursor-fragment group. The pseudo MS/MS spectra can be 
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searched by any conventional DDA MS/MS database search engine. Here we used X! 

Tandem [47] Comet [48], and MSGF+ [49] followed by PeptideProphet [50] or 

iProphet [52] and ProteinProphet [2] analysis. The resulting peptide and protein 

identification lists were filtered using computed peptide and protein probabilities 

controlling the false discovery rate (FDR) via, e.g., the target-decoy approach [1].  

2.3.2 Analysis of experimental and computational parameters used in 

DIA-Umpire 

We first performed the analysis to understand how different parameters used in 

the precursor-fragment group step affects the results of untargeted peptide ion 

identifications. Number of identified peptide ions and proteins for a representative 

SWATH run (250 ms MS1 accumulation time, E. coli cell lysate mixed with UPS2 

proteins sample) identified using different thresholds for precursor-fragment 

grouping. The search was done by X! Tandem search engine, and only DIA pseudo-

MS/MS spectra from Q1 set were used. The numbers of peptide ions and protein 

identifications were filtered by an 1 % FDR threshold. The red-highlighted row is 

the parameter set chosen for this study. RPmax: maximum number of top 

precursors for a fragment ion considered for precursor-fragment grouping. Ranking 

is based on Pearson correlation between that fragment and all candidate precursors. 

RFmax: maximum number of fragments for a precursor feature considered for 

precursor-fragment grouping. ΔTmax: maximum retention time difference of LC 

peak apexes for a fragment to be considered as a precursor's fragment in precursor-

fragment grouping. The results are shown in Table 2-1. It was clear that the 
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parameters did not influence the numbers hugely, and generally including more 

fragments increased the number of identifications even many of low correlated 

fragments are noise peaks. The results indicated that the MS/MS database search 

engine is robust enough against the noise peaks. According to the results, we 

selected the following value as default setting in the software: allow the top 25 

ranked precursors for each fragment (RPmax= 25), the top 300 ranked fragments 

for each precursor (RFmax = 300) and 0.6 minutes apex elution time difference 

(ΔTmax = 0.6). 

Table 2-1 Analysis of precursor-fragment grouping parameters 

RPmax RFmax ΔTmax No. of identified peptide ions No. of identified proteins 

5 100 0.4 2088 391 
5 100 0.5 2086 387 
5 100 0.6 2089 388 
5 300 0.4 2292 423 
5 300 0.5 2282 421 
5 300 0.6 2296 423 

10 100 0.4 2215 407 
10 100 0.5 2214 406 
10 100 0.6 2216 407 
10 300 0.4 2526 459 
10 300 0.5 2542 462 
10 300 0.6 2531 456 
15 100 0.4 2236 391 
15 100 0.5 2209 404 
15 100 0.6 2209 393 
15 300 0.4 2539 458 
15 300 0.5 2548 455 
15 300 0.6 2566 462 
20 100 0.4 2239 391 
20 100 0.5 2213 402 
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20 100 0.6 2213 392 
20 300 0.4 2562 464 
20 300 0.5 2563 466 
20 300 0.6 2559 464 
25 100 0.4 2243 391 
25 100 0.5 2214 404 
25 100 0.6 2214 393 
25 300 0.4 2570 469 
25 300 0.5 2571 469 
25 300 0.6 2573 470 
30 100 0.4 2244 391 
30 100 0.5 2214 404 
30 100 0.6 2214 393 
30 300 0.4 2557 467 
30 300 0.5 2570 468 
30 300 0.6 2566 465 

 

We next analyzed whether the score results obtained between DDA and DIA are 

different. Figure 2-5 shows the model distributions learned by PeptideProphet in 

the analysis of X! Tandem search results from identifications of doubly charged 

peptide ions for one replicate of the human cell lysate data. The learned 

distributions appear to be an accurate fit in both DIA and DDA data, demonstrating 

that the search results obtained using DIA pseudo MS/MS spectra can be 

satisfactory analyzed using PeptideProphet. The overall higher ratio of incorrect vs 

correct identification in the DIA QT=1 vs. DDA data (and similarly in DIA QT=2 vs. 

QT=1 data) simply reflects the higher number of pseudo MS/MS spectra extracted 

from the data compared to DDA data (and similarly, more noise in DIA QT=2 vs 

QT=1 data), which does not affect the accuracy of computed PeptideProphet 

probabilities or the subsequent FDR estimates for DIA data.  
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Figure 2-5 PeptideProphet analysis of X! Tandem search results using DDA and 

DIA pseudo MS/MS data  

The figures shown here are model distributions learned by PeptideProphet in the analysis 

of X! Tandem search results (doubly charged peptide ions) for one replicate of the human 

cell lysate data. Left panels: mass accuracy distributions. Right panels: the distributions of 

the discriminant database search scores (computed from the X! Tandem Expect scores). Red 

and blue curves represent the models learned by PeptideProphet for correct and incorrect 
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identifications, respectively. Also shown are the distributions for the number of missed 

cleavages parameter (nmc) between correct and incorrect identifications. (a) DDA data; (b) 

DIA data, QT=1 pseudo MS/MS spectra; (c) DIA data, QT=2 spectra.  

DIA-Umpire relies on precursor signal features to be detected to generate 

corresponding pseudo MS/MS spectra. Therefore it is important to understand how 

MS1 signal quality would affect the performance of DIA-Umpire’s untargeted 

identification. In addition to the standard MS1 accumulation time (50 ms) proposed 

by the original SWATH method [16], we also conducted experiment with 250 ms 

MS1 accumulation time to see if it improves DIA-Umpire’s performance. The results 

are shown in Figure 2-6. The numbers shown are non-redundant contributions to 

the total number of peptide ion identifications in each replicate / condition from 

pseudo MS/MS spectra from three different quality tiers: QT = 1 (white bar), 2 

(grey), and 3 (dark grey). The QT = 1 category represents pseudo MS/MS spectra 

that are linked to high quality MS1 precursor features (3 or more detected isotope 

peaks), QT = 2 represent lower abundance precursors (2 detected isotope peaks 

only), and QT = 3 represents unfragmented precursors which were detected in DIA 

MS2 scans. 
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Figure 2-6 Effect of MS1 survey scan ion accumulation time on peptide identification using DIA-Umpire.  

Experiments to assess the identification performance of DIA-Umpire on data generated using different MS1 ion accumulation 

times in DIA (SWATH) analysis using AB SCIEX 5600 instrument were carried out using two samples: UPS1 proteins, and UPS2 

mixture spiked in with E. coli background. Two settings (50 ms and 250 ms MS1 ion accumulation times) were tested. 
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In a low complexity UPS1 sample, the dominant majority of peptide ions were 

identified from QT =1 spectra. Even with the using short MS1 accumulation time (50 

ms), 92–93% of the peptides ions were identified from the QT = 1 spectral subset 

(this fraction increased slightly, to 94–96%, with the longer 250 ms accumulation 

time). Note that inclusion of unfragmented precursors detected in DIA MS2 data (QT 

= 3 subset) in the analysis contributed 4–6% of the total peptide ion identifications 

in UPS1 samples. In the more complex UPS2 plus E. coli samples, the effect of the 

accumulation time on the quality of MS1 signal was more pronounced. The longer 

DIA MS1 survey scan ion accumulation time resulted in more high quality (QT = 1) 

precursor peptide features detected, and thus more peptides identified from pseudo 

MS/MS spectra in the QT = 1 subset (81–85% for 250 ms vs. 59–64 % for 50 ms). 

Congruently, QT = 2 and QT = 3 spectral subsets contributed higher percentages to 

the total number of peptide ion identifications when using 50 ms accumulation time 

setting. The overall number of identifications (from all 3 QT sets) has improved with 

250 ms vs. 50 ms acquisition time (~10%). Overall, this analysis indicates that 

longer MS1 accumulation time provides an advantage to DIA-Umpire algorithm with 

respect to the total number of identified peptide ions, especially peptide ions 

identified with a high quality MS1 precursor ion signals. 

2.3.3 Untargeted protein identification using DIA-Umpire 

We first evaluated the performance of DIA-Umpire for untargeted protein 

identification using samples ranging from low complexity (48 Universal Protein 

Standard (UPS) proteins) to high complexity (E. coli and human cell lysates) by 
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performing parallel DDA and DIA runs in at least duplicates on an AB SCIEX 

TripleTOF 5600. Based on the results shown above, we acquired DIA data using 250 

ms ion accumulation time for MS1 survey scans instead of the 50 ms SWATH setting 

used in earlier reports [16], which improved the MS1 signal quality and detectability 

of precursor ion signals in complex samples (See results in Figure 2-6). Three 

replicate runs were acquired for each sample / condition.  

Table 2-2 Numbers of protein and peptide ion identifications from DDA MS/MS 

and DIA pseudo MS/MS spectra 

The number of identifications obtained using three different search engines (X!Tandem, 

Comet, and MSGF+), as well as using all three search engines combined and analyzed by 

iProphet. 

Sample Acquisition Replicate File Search 
engine 

No. of 
proteins 

No. 
peptide 

ions 

UPS2 

DDA 

1 18185_REP2_4pm
ol_UPS2_IDA_1 

X!Tandem 29 760 
Comet 26 330 
MSGF+ 31 559 

Combined 30 858 

2 18187_REP2_4pm
ol_UPS2_IDA_2 

X!Tandem 29 756 
Comet 26 333 
MSGF+ 31 543 

Combined 30 835 

DIA 

1 
18186_REP2_4pm
ol_UPS2_SWATH_

1 

X!Tandem 30 822 
Comet 26 365 
MSGF+ 32 737 

Combined 32 1220 

2 
18188_REP2_4pm
ol_UPS2_SWATH_

2 

X!Tandem 31 794 
Comet 26 376 
MSGF+ 33 665 

Combined 34 1527 

E. coli DDA 1 
18483_REP3_1ug_
Ecoli_NewStock2_I

DA_1 

X!Tandem 924 5821 
Comet 975 5564 
MSGF+ 1023 5858 

Combined 1025 6532 
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2 
18485_REP3_1ug_
Ecoli_NewStock2_I

DA_2 

X!Tandem 935 5460 
Comet 973 5522 
MSGF+ 994 5774 

Combined 1020 6463 

DIA 

1 
18484_REP3_1ug_
Ecoli_NewStock2_

SWATH_1 

X!Tandem 748 5313 
Comet 833 5198 
MSGF+ 849 5235 

Combined 928 6903 

2 
18486_REP3_1ug_
Ecoli_NewStock2_

SWATH_2 

X!Tandem 774 5455 
Comet 855 5217 
MSGF+ 857 5374 

Combined 928 6982 

Human 

DDA 

1 
18299_REP2_500
ng_HumanLysate_

IDA_1 

X!Tandem 1450 7499 
Comet 1476 7512 
MSGF+ 1423 7230 

Combined 1586 9364 

2 
18301_REP2_500
ng_HumanLysate_

IDA_2 

X!Tandem 1430 7089 
Comet 1509 7348 
MSGF+ 1461 7099 

Combined 1578 9063 

DIA 

1 
18300_REP2_500
ng_HumanLysate_

SWATH_1 

X!Tandem 1245 6934 
Comet 1346 7438 
MSGF+ 1242 6945 

Combined 1448 9430 

2 
18302_REP2_500
ng_HumanLysate_

SWATH_2 

X!Tandem 1340 7344 
Comet 1269 7033 
MSGF+ 1277 7158 

Combined 1457 9813 

Database search results were processed using PeptideProphet and ProteinProphet (and 
iProphet when combining multiple search engines) and filtered to achieve 1% FDR at 
peptide ion or protein level. 

 

We identified close numbers of peptide ions and proteins in the DDA and DIA 

runs for all samples and search engines tested (Figure 2-7a; Table 2-2). As shown in 

Table 2-2 for DDA data, combining DIA pseudo MS/MS search results from multiple 

search engines with iProphet [52] led to a consistent increase in the number of 
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peptide ions and proteins identified at a given FDR (Table 2-2). However, for the 

sake of clarity and because single search engine analyses are still prevalent in the 

field, the remainder of the study, unless noted otherwise, is based on peptide and 

protein identifications using X! Tandem only (Figure 2-7a). 
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Figure 2-7 Untargeted peptide and protein identification using DDA and DIA data 

from UPS2, E. coli, and human cell lysate samples.  

(a) The number of peptide ions and proteins identified by X! Tandem search engine at 1% 

FDR in DDA and in DIA (SWATH) data from UPS2, E. coli, and human cell lysate samples. (b) 

The number of peptide ions and protein identifications (X! Tandem) in each replicate of the 

UPS2 sample DDA and DIA data plotted separately for proteins of different abundance (in 

UPS2 samples 48 proteins span 5 orders of magnitude of abundance ranging from 0.5 to 

50,000 fmoles with 8 proteins in each abundance range). 

In low complexity UPS2 samples (48 proteins spanning 5 orders of magnitude in 

abundance), DIA and DDA identified similar numbers of peptide ions and proteins, 

with DIA identifying more peptide ions than DDA for higher abundance proteins 

(Figure 2-7b), and with the identification success depending on the abundance of 

each protein in the sample. In complex samples, such as human cell lysates (Figure 

2-8a), DDA slightly outperformed DIA at both peptide ion (9,272 vs. 8,757) and 

protein levels (1,645 vs. 1,465). Interestingly, the overlap between the peptide ions 

identified with high confidence (1% FDR) by both methods was relatively low (42% 

compared to 78% overlap at the protein level). While some of these differences 

were simply due to a detected peptide ion not passing the 1% FDR threshold in one 

or the other approach, DIA was also able to identify peptide ions where no MS/MS 

spectrum was acquired in DDA (2,326 peptide ions). The lack of an acquired MS/MS 

spectrum in DDA was observed even for some high intensity ions, possibly due to a 

combination of dynamic exclusion settings and co-elution of a different (more 

abundant) peptide. On the other hand, DDA was more successful in identifying 

peptide ions for which the pseudo MS/MS spectra extracted by DIA-Umpire from 

DIA data did not contain enough fragment ions, many of which were of low intensity 
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(Figure 2-8b, c). The loss of fragment ions in DIA can be attributed to a number of 

factors, including suppression of fragment ions by higher intensity species in the 

same DIA window, which is further compounded by computational challenges such 

as the imperfect de-multiplexing of co-eluting peptide ions. Similar results and 

trends were observed when the results from all three search engines were 

combined (Figure A-1), and in the E. coli dataset (Figure A-3 and Figure A-4).  

 
Figure 2-8 Comparative analysis of peptide identifications from DDA and DIA data 

from human cell lysate samples.  

(a) The numbers of proteins and peptide ions identified at 1% FDR by X! Tandem search 

engine in DDA and in DIA (SWATH) data. Left: the number of protein identifications. Right: 

the number of peptide ion identifications (9,272 peptide ions identified from DDA data, 
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8,757 from DIA, 12,660 in total). Of the peptide ions identified by DIA and not DDA at 1% 

FDR (3,388), the majority were not identified by DDA because no MS/MS spectrum was 

acquired (2,326). Of the peptide ions identified from DDA data and not from DIA at 1% FDR 

(3,903), DIA-Umpire was able to detect precursor features for 3,338 of these peptide ions. 

(b) Fraction of fragment ions matched in pseudo MS/MS spectra extracted from DIA data as 

a function of MS1 peptide ion intensity in DDA data. Data points (peptide ions) and the 

summary density plots (“Frequencies”) are colored according to the two categories of 

peptide ions: those identified from DIA data at 1% FDR (high scoring in DIA, blue), and 

unidentified in DIA (orange; these ions were found in DIA data as described in Online 

Methods). (c) Comparison between DDA and DIA in terms of fraction of fragments matched 

among the two categories of peptide ions described in (b), showing that peptide ions 

identified with confidence from DDA but not from DIA have fewer matched fragments. 

2.3.4 Comparison between untargeted and targeted DIA analysis  

To investigate the differences between the untargeted approach described above 

and targeted data extraction strategies previously applied to SWATH data, we 

processed the human and E. coli datasets using OpenSWATH [28]. We used 

SpectraST [53] to build spectral libraries by taking the union of DDA-identified 

spectra (9,272 peptide ions) from two replicates of human cell lysate data, and 

adding the same number of shuffled decoy spectra. In these data, OpenSWATH 

detected 7,372 peptide ions at 1% FDR according to mProphet [30] (Figure 2-9a). In 

comparison, the untargeted analysis using DIA-Umpire (i.e. searching against the 

whole proteome database) identified 8,757 peptide ions at the same FDR. 

OpenSWATH had a better overlap with the identifications from the target library 

than DIA-Umpire, 79% vs. 58% (Figure 2-9).  
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Figure 2-9 Comparison between untargeted DIA-Umpire analysis and 

OpenSWATH targeted extraction: effect of the search space. Human cell lysate data  

(a) The pseudo MS/MS spectra extracted using DIA-Umpire were searched against two 

sequence databases: “Whole proteome” contains all proteins in the human proteome (plus 

decoy proteins); “Library peptide” database contains only the sequences of the DDA 

identified peptides (i.e. it is built using the same peptides as the spectral library used for 
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targeted extraction with OpenSWATH). (b) Venn diagram of peptide ion identifications 

among the three analyses. (c) Venn diagram of protein identifications among the three 

analyses (Whole proteome sequence database was used for DIA-Umpire). 

It is clear that the total search space between OpenSWATH (spectral library) and 

DIA-Umpire (whole proteome sequences) are significantly different. Therefore we 

then further compared the total search spaces between the two approaches and 

performed a “reduced search space” analysis to see if it improves DIA-Umpire’s 

overlap to OpenSWATH and DDA identifications. The total numbers of candidate 

peptide ions considered for scoring of pseudo MS/MS spectra extracted by DIA-

Umpire during database search against “Whole proteome” or “Library peptide” 

databases were estimated using the following parameters: 30 ppm precursor mass 

tolerance; peptide sequence length: 4 - 50 amino acids; one missed cleavage allowed; 

charge state considered: 2+, 3+, or 4+; m/z range: 350 - 1200 Da; variable 

modifications: oxidation of methionine, cysteine alkylation, conversion of 

pyroglutamate from glutamine or glutamic acid, and n-terminal acetylation 

(allowing less than six modifications on the same peptide). For OpenSWATH 

analysis, the following parameters were used to estimate number of candidate 

fragment groups in the experimental SWATH MS2 data considered for each target 

library peptide: mass range of the corresponding SWATH m/z isolation (25 Da wide) 

and ± 1 minute retention time window. The use of the precursor ion m/z value from 

MS1 or MS2 unfragmented precursors as a constraint during database search was 

the primary factor contributing to the significant reduction in the number of 

candidate peptide ions considered for scoring against each spectrum (from 

68,344,142 peptides in the whole proteome database to 4,960 searched ions per 
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spectrum on average, i.e. 13,779 fold reduction). Because targeted data extraction in 

OpenSWATH used the retention time of the peptide and wide (25 Da) m/z SWATH 

selection window (but not the precursor peptide m/z) for constraining the “search 

space”, the reduction in the number of candidates was less significant (from 18,544 

peptide ions in the library to 31 ions per ± 1 minute retention time slice of the 

corresponding 25 Da MS2 SWATH scan, i.e. 598 fold reduction). The order of 

magnitude difference in the search space reduction in DIA-Umpire/’Whole 

proteome’ analysis (compared to OpenSWATH/Library analysis) explains why DIA-

Umpire untargeted analysis performed well. DIA-Umpire/Whole proteome and 

OpenSWATH/Library identified a comparable number of peptide ions, but the two 

methods had only a moderate overlap.  

OpenSWATH identified larger fraction of peptides in the library, 79% (i.e. (4,914 

+ 2,458 = 7,372) / 9,272) vs. 58% (i.e. (4914 + 455 = 5,369) / 9,272)) for DIA-

Umpire. At the same time, DIA-Umpire was able to identify a large number of 

peptide ions not present in the library. DIA-Umpire / ’Library peptide’ analysis had 

an effective search space similar to that of OpenSWATH, resulting in even closer 

performance (and better overlap) between the two methods: the overlap between 

the DIA-Umpire identified peptides and the DDA-identified peptides improved to 

69% (or (5,678 + 738) / 9,272 peptide ions). Similar results were obtained for E. coli 

samples (Figure A-4). The use of the entire database however provided us with the 

opportunity to identify peptide ions not present in the DDA-constructed library.  
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Furthermore, when we built the spectral library for OpenSWATH from the 

pseudo MS/MS spectra confidently identified by DIA-Umpire (8,757 peptide ions for 

the human cell lysate dataset), OpenSWATH confidently identified 8,650 (98.8%) of 

the library peptides, providing additional validation of the peptides identified using 

untargeted DIA-Umpire approach. We observed similar results (96.2% confirmation 

rate) for E. coli samples. The small percentage of peptide ions not identified by 

OpenSWATH was in part due to OpenSWATH’s internal filtering of spectra from the 

input library.  

2.3.5 Comparison between untargeted and targeted DIA analysis using 

an SWATH N-glycopeptide dataset 

We further assessed the performance of untargeted DIA-Umpire approach on a 

publicly available SWATH N-glycopeptide dataset [35] from prostate cancer, which 

was already processed by the authors with OpenSWATH using a spectral reference 

library containing deamidated asparagine peptides built from a large number of 

DDA runs. Identifications from DIA-Umpire were further filtered by isotopic 

distribution of precursor signal (See 2.2.12). The number of identified peptide ions 

and ambiguous identifications for each DIA run is shown in Figure 2-10.   
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Figure 2-10 Number of peptide ion identifications and ambiguous identifications 

filtered by isotope pattern for each DIA run. 

Red: The total number of identifications for each DIA file. Blue: The number of 

ambiguous identifications found by isotope pattern filtering. 

At 1% FDR (mProphet computed m_score < 0.01 for OpenSWATH), DIA-Umpire 

and OpenSWATH identified 1,821 and 1,383 deamidated asparagine peptide 

sequences (2,933 and 1,537 peptide ions) respectively (Figure 2-11). Among the 

additional identifications introduced by DIA-Umpire, more than 80% had a N-

glycosylation (NX-S/T) motif, indicating high site specificity of the additional 

identifications (non-consensus identifications could be due to standard deamidation 

of non-glycosylated peptides, as we have not restricted our analysis to a library 

enriched in glycosylation sites, in contrast to the OpenSWATH library). 
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Figure 2-11 Deamidated peptide identifications 

The number of peptide ions and unique peptide sequences from DIA-Umpire and 

OpenSWATH targeted search. Glycoproteomics data from Liu et al [35]). Upper panel: all 

peptides. Lower panel: peptides containing the NX(S/T) motif expected to be significantly 

enriched in these data. 

An additional drawback of other targeted extraction approaches (e.g. 

OpenSWATH) for DIA analysis is that they have difficulties resolving ambiguities for 

peptide ions that share many MS2 fragments (e.g. unmodified and post-

translationally modified peptides co-fragmenting in the same isolation window), 

especially since the exact precursor mass is not used for scoring. Although retention 

times of different modified / unmodified peptide species can help resolve the 

ambiguity [28], how different modifications influence retention time remains an 
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open problem for computational prediction [56]. If both species exist in the library 

and only one of them is present in the sample, library spectra from both species 

might match the same fragment peak groups in the queried DIA MS2 data. Although 

the correct one should get a higher matching score, the score of the incorrect one is 

likely to be better than any decoy peptide and thus also deemed a confident 

identification. In the glycoproteomics application presented above, identification of 

N-linked glycopeptides depends on detection of asparagine deamidation in peptides 

due to PNGase F treatment, which causes only a small mass shift (0.984 Da), 

resulting in both modified and unmodified peptides often being co-fragmented. 

Therefore, we searched the OpenSWATH data for identifications of both deamidated 

and non-deamidated species reported as highly confident (m_score < 0.01), at same 

retention time (within 1 second), and of the same charge state. We present 

examples (Figure 2-12, and Figure A-5 - Figure A-8 for additional examples) in 

which OpenSWATH was not able to distinguish deamidated peptide ions from 

unmodified peptide ions (we manually checked these by using the exact precursor 

mass). More specifically, two separate identifications with different modification 

site compositions (with one and two deamidations; modification site shown in red) 

were reported by OpenSWATH. In contrast, DIA-Umpire constructs pseudo MS/MS 

spectra according to detected high mass accuracy precursor features, enabling 

better differentiation of peptide species. 
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Figure 2-12 Example of an ambiguous identification involving the deamidated 

peptide NTTFNVESTK by OpenSWATH targeted search 
The two identifications both had an extremely small m_score (from mProphet), i.e. they 

both were reported as high confidence identifications. The two identifications had identical 

retention times. The MS1 signal image shown above suggests there is only one peptide 

eluting at RT = 36.9 minutes (precursor m/z of 571.27 Da). DIA-Umpire reported only one 

(singly deamidated) form, further supported by the presence of NXS/T motif covering the 

reported site. This example demonstrates that the knowledge of the precursor mass can be 

very valuable for differentiating between different modification forms of the same peptide 

sequence in DIA experiments.  Similar examples are shown from Figure A-5 to Figure A-8. 

2.4  Discussion 

We demonstrated in this study that by using untargeted identification analysis 

workflow in DIA-Umpire we could identify a comparable number of peptides and 
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proteins from DIA and DDA data. However, we have also observed the 

complementary nature of these two data acquisition strategies. As both the DDA and 

DIA technologies and the underlying instrumentation are rapidly improving, future 

work should include a comprehensive comparative analysis of different workflows 

as they are applied to a variety of biological problems. DIA has a significant potential 

for further improvements, including removal of interferences by tuning and 

optimizing the DIA isolation window size to achieve a better balance between the 

scan cycle time and the level of co-fragmentation interferences, which should 

further boost the identification sensitivity of DIA-Umpire algorithm for low 

abundance ions. Importantly, DIA-Umpire is compatible with different DIA strategy 

variants, including implementations in different instruments. The highly flexible 

design of the DIA-Umpire computational framework allows us to quickly adopt the 

algorithms to take advantage of the new strategies and technological improvements. 

Given previous reports discussing advantages of targeted data extraction 

strategies for DIA data, one may wonder why our untargeted DIA data analysis 

workflow would perform so well. First, we note that the targeted (peptide-centric 

matching) and untargeted (spectrum-centric matching) DIA data analysis strategies 

are not fundamentally different. Both approaches are trying to find the best matches 

between records in a sequence database or a spectral library and the signal in 

acquired experimental data (precursor and fragment ion features) that are 

statistically significant (i.e. scoring significantly higher than random matches). The 

main difference between the two is the search space, i.e. the total number of 

possible peptide ions (including decoys) that are considered as possible matches to 
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the experimental signal. In peptide-centric matching of the targeted data extraction 

using tools such as OpenSWATH, the peptide “search space” is typically much 

smaller (i.e. peptides present in the spectral library vs. the entire protein sequence 

database), and the “search space” within the experimental data is restricted by 

knowledge of the peptide retention time contained in the spectral library. In the 

untargeted, spectrum-centric strategy of DIA-Umpire, pseudo MS/MS spectra 

extracted from experimental DIA data are searched against a much larger peptide 

sequence database. However, as with the conventional DDA MS/MS database search, 

the actual peptide search space for each pseudo MS/MS spectrum is very efficiently 

reduced using the precise knowledge of the precursor m/z value, therefore enabling 

sensitive, untargeted identification analysis for DIA data. 

2.5 Contributions 

The results presented in this chapter could not have been done without the efforts 

of the great collaboration. I am grateful and fortunate to have such a great team to 

participate the project.  

Chih-Chiang Tsou: developed the algorithms, implemented the software, designed 

experiments, analyzed the data, and wrote the manuscript draft.  

Dmitry Avtonomov: assisted with the OpenSWATH analysis and contributed to the 

algorithm and software development and reviewed the manuscript. 

Brett Larsen: acquired mass spectrometry data, designed experiments, analyzed 

data and provided inputs for manuscript. 



57 
 

Monika Tucholska: acquired mass spectrometry data. 

Hyungwon Choi: assisted with SAINT scoring and contributed to the development of 

protein quantification strategies. 

Anne-Claude Gingras: designed experiments, analyzed data, supervised the project, 

and wrote the manuscript. 

Alexey I Nesvizhskii: conceived the project, developed the algorithm, designed 

experiments, analyzed the data, supervised the project, and wrote the manuscript. 



58 
 

Chapter 3 Hybrid DIA quantification workflow using 
DIA-derived internal library 

The content of this chapter was previously published by the author as a research 

article in Nature Methods [41]. 

3.1 Introduction 

Quantitative proteomics experiments using mass spectrometry are often 

conducted with multiple biological and also technical replicates in order to estimate 

biological and technical variations for the downstream statistical analysis [57, 58]. 

In a typical label-free quantitative experiment using DDA with multiple LC-MS runs, 

a peptide ion identified in one replicate LC-MS run does not necessarily guarantee 

that it could be confidently identified in another replicate run. Such irreproducibility 

is attributed mainly by two factors. First is the stochastic precursor ion selection of 

DDA for MS/MS acquisition. A peptide ion with a good MS/MS identification in one 

LC-MS run may not have any MS/MS spectrum acquired in another run. Second, the 

variations of signal quality between LC-MS runs could also affect the identification 

reproducibility. A peptide ion having a confident identification in an LC-MS run may 

have a slightly poorer spectrum in another LC-MS run. Therefore the poorer 

spectrum may score just below the FDR threshold and be considered as an 

unconfident identification in the run. DIA addresses the issue of stochastic MS/MS 
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acquisition, but it is still not immune to the variations of signal quality between LC-

MS runs. The missing identifications, i.e. missing quantifications, make the statistical 

analysis less reliable and could mislead the biological interpretations. To alleviate 

the problem, label-free quantitative analysis obtained from DDA experiments 

performs a retention time alignment process to map peptide identifications 

between LC-MS runs based on detected MS1 precursor features. Several label-free 

quantification tools such as MaxQuant [59], OpenMS [60], and IDEAL-Q [61] have 

built-in retention time alignment algorithm in the quantification software tool.  

In the second study, we extend DIA-Umpire’s untargeted identification analysis 

further to quantification analysis. To address the missing identification issue, we 

developed a novel targeted re-extraction strategy which is based on DIA peptide ion 

retention time alignment and an internal spectral library matching. For 

quantification analysis based on MS2 fragment signals, we develop fragment and 

peptide ion selection algorithms to select high quality fragments and peptides for 

protein quantification. We use the datasets presented in the first study to show the 

improvements of the targeted re-extraction and the performance of the 

quantification. Furthermore, we perform a complete DIA quantification analysis on a 

public AP-SWATH dataset (Lambert et al [26]) to show that DIA-Umpire’s 

quantification analysis can sensitively capture protein-protein interaction profile 

and achieve comparable results without using a pre-existing spectral library. 

3.2  Methods 

3.2.1 Data processing for datasets 
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The UPS and human datasets were the same as used in Chapter 2. The AP-

SWATH dataset was downloaded from http://prohits-web.lunenfeld.ca/. All the 

raw .wiff files were converted into mzXML format. DIA data were processed by DIA-

Umpire to generate pseudo MS/MS spectra, and all DDA and DIA pseudo MS/MS 

spectra were searched by database search engines using the same parameters as 

described in Chapter 2. For the AP-SWATH dataset, ProteinProphet analysis was 

performed by taking all PeptideProphet output files (X! Tandem results) from all 

SWATH runs, i.e. EIF4A2 and MEPCE bait data (biological triplicates for each bait) 

and the three GFP negative controls. The final protein lists for each ProteinProphet 

analysis were determined using an 1% FDR threshold, estimated by target–decoy 

approach. 

3.2.2 Quantification in DDA data 

We used elution apex intensity of the MS1 precursor feature when performing 

peptide quantification for DDA MS1 data. For each MS/MS spectrum identified in a 

DDA experiment, all precursor features observed in the MS1 data with close 

monoisotopic m/z (same precursor m/z tolerance as used in the database search), 

close retention time (within ±1 minute), and same charge state were considered as 

candidates. Among these candidates, the MS1 feature with the closest retention time 

was considered as the precursor ion for the identified MS/MS spectrum. As with DIA 

MS1 data in DIA-Umpire, peptide ion intensity and its retention time in DDA MS1 

were determined from the intensity and the retention time at the LC apex of the 

monoisotopic peak.  

http://prohits-web.lunenfeld.ca/
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3.2.3 Comparison of ion intensities between DDA and DIA  

To compare the fragment ions observed for the same peptide in DDA and in DIA 

experiments, the compomics-utilities library [62] was used to generate theoretical 

peptide fragments. To find the signal of a peptide ion which was only identified in 

either DDA or DIA data, the retention time observed for that ion in the run where it 

was identified was used to detect the corresponding peptide ion feature in the other 

run. This was done without the need for retention time alignment between the runs 

because of the excellent retention time and ion intensity reproducibility between 

DDA and DIA runs on the same samples (see Figure B-1). An MS1 precursor feature 

m/z window of ±30 ppm and a retention time window of ±1 minute were used. For 

DDA data, the highest intensity candidate was selected among multiple possible 

ones. For DIA data, the best candidate (precursor-fragment group) was selected 

based on the number of matched fragments between the corresponding pseudo 

MS/MS spectrum and the DDA identified peptide sequence. The number of matched 

fragments was calculated as follows: for each DDA MS/MS spectrum, or pseudo 

MS/MS spectrum in DIA, only the top 140 highest intensity peaks were considered. 

The mass tolerance for peak matching was set to 40 ppm for AB SCIEX 5600 

TripleTOF. The analysis was restricted to b- and y-fragment ions only. A peak in an 

experimental spectrum was allowed to be matched to only one theoretical fragment. 

The number of matched fragments for each spectrum was counted and then 

normalized by the total number of theoretical fragments for that peptide. 

3.2.4 Targeted extraction using internal spectral libraries 
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The targeted extraction module of DIA-Umpire (peptide-centric matching) was 

developed as an optional second step in the DIA-Umpire workflow to increase the 

quantification coverage across multiple samples. Given a set of peptides identified 

by the initial untargeted database search, the algorithm builds an internal consensus 

spectral library using confident identifications from all DIA runs. In addition, DIA 

runs are aligned in retention time using commonly identified peptides between the 

DIA runs as pivot points for non-linear regression [61]. For a peptide ion not 

identified in a particular DIA run in the untargeted way, DIA-Umpire calculates its 

retention time (via retention time alignment) and m/z (via mass calibration model, 

described below), and performs targeted data re-extraction. This is achieved by 

matching the library spectrum of that peptide ion against precursor-fragment 

groups previously extracted from the experimental data within a narrow retention 

time window (in this work, ±1 minute of the calculated retention time) and a 

narrow precursor mass window (±30 ppm of the calibrated precursor mass). The 

details of this targeted data extraction algorithm are described below.  

3.2.4.1 Internal spectral library generation 

A consensus spectral library is built using confident identifications (here, 1% 

FDR at the peptide level) from the initial untargeted analysis of the DIA data. First, 

for each confident pseudo MS/MS spectrum match, the matched fragment 

intensities are normalized to the most intense matched fragment. For a peptide ion 

which has multiple spectra identified across samples, the intensity of a fragment in 

the consensus spectrum is computed as the average fragment intensity across all 
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corresponding identified spectra. Decoy spectra are created by the “shuffle-and-

reposition” method [63], and such a decoy is generated for each peptide ion in a 

consensus spectral library.   

3.2.5 Retention time prediction and mass calibration for target 

peptide ions 

DIA-Umpire adopts a previously described [61] nonlinear regression-based 

method for retention time calculation and a mass calibration model [64] for 

adjusting precursor m/z values of a peptide ion in a DIA run. To generate the 

retention time model for a pair of DIA-runs, retention times of commonly identified 

peptide ions from the initial untargeted identifications are used and a non-linear 

regression model is built based on these retention times. For mass calibration, mass 

errors are represented as a function of the retention time, and a non-linear LOWESS 

regression is done for calculation of peptide ion mass errors given the peptide 

retention time in a DIA run.  

3.2.6 Peptide-centric matching targeted re-extraction 

To find the best matching precursor-fragment group for a peptide ion from a 

spectral library, all precursor-fragment groups within the range of ± 30 ppm (user-

defined parameter) of the calculated precursor m/z and ± 1 minute of calculated 

retention time are considered as candidates. A library spectrum S is denoted as  

S = {�𝐼𝐼1S,𝑀𝑀1
S�, �𝐼𝐼2S,𝑀𝑀2

S�, … , �𝐼𝐼NSS ,𝑀𝑀NS
S �} 
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where NS is the number of fragment peaks in the spectrum, and IrS and MrS are the 

intensity and the theoretical m/z value, respectively, of each fragment Fr that 

belongs to spectrum S. A precursor-fragment group G is represented as  

G = {�𝐼𝐼1G,𝑀𝑀1
G,𝐶𝐶1G�, �𝐼𝐼2G,𝑀𝑀2

G,𝐶𝐶2G�, … , �𝐼𝐼NGG ,𝑀𝑀NG
G ,𝐶𝐶NGG �} 

where NG is the number of fragment peaks, IrG and MrG are the intensity and m/z 

value, respectively, of each fragment Fr that belongs to precursor-fragment group G, 

and CrG is the Pearson correlation coefficient between the fragment Fr and the 

precursor anchoring group G. Given a library spectrum S and a precursor-fragment 

group G, matched fragment peaks from the precursor-fragment group are extracted 

using a predefined mass tolerance (e.g. ± 40 ppm for AB SCIEX 5600 instrument). 

The algorithm then calculates five sub-scores for the match between S and G. In 

addition to the number of matched fragments (L), it calculates a spectral similarity 

score as follows. Consider an intensity vector INTG-S = (I1G, I2G, …, INSG) of length NS, 

with IrG taken as the intensity of the fragment peak Fr in G that matches to a 

fragment in S, and as zero if no fragment peak can be found in G within the specified 

mass tolerance window around MrS. The spectral similarity is then calculated by 

Pearson correlation between the vector INTG-S and the library spectrum intensity 

vector (I1S, I2S, …, INSS).  

Three more scores, Mass Error Score (MES), Intensity Score (IS), and Correlation 

Score (CS), are calculated using matched fragments Fj only as follows:  

MES = 1 −
∑ PPM(𝑀𝑀𝑗𝑗

G,𝑀𝑀𝑗𝑗S)𝐿𝐿
𝑗𝑗=1

40𝐿𝐿
, where PPM(𝑚𝑚𝑎𝑎,𝑚𝑚𝑏𝑏) =

|𝑚𝑚𝑎𝑎 −𝑚𝑚𝑏𝑏| × 2 × 106

𝑚𝑚𝑎𝑎 + 𝑚𝑚𝑏𝑏
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IS =
∑ �𝐼𝐼𝑗𝑗G�𝐿𝐿
𝑗𝑗=1

𝐿𝐿
 

CS =
∑ �𝐶𝐶𝑗𝑗G�𝐿𝐿
𝑗𝑗=1

𝐿𝐿
 

The final match score (U-score) between S and G is calculated as a linear 

combination of these five sub-scores, with the score weights determined using the 

linear discriminant analysis (LDA) [30]. For LDA model training, 50% of all matches 

in which S is a decoy spectrum are randomly selected and labeled as negative 

training data (the other 50% are held away from the training; these can be used at 

the final stage to assess the quality of the model fitted using the mixture modeling 

algorithm described below). Positively labeled training dataset is composed of likely 

true matches, i.e. matches between S and G that were identified with high scores at 

the initial untargeted identification stage.    

3.2.7 Targeted re-extraction U-score probability and FDR  

The U-score is computed for all targets considered in a particular DIA run. 

Targets are defined here as peptide ions represented in the spectral library (created, 

as described above, from all DIA runs in the experiment) that were not identified in 

that particular DIA run by the untargeted search. The U-score distribution for these 

target matches computed as described above is assumed to be a bimodal 

distribution representing populations of correct and false matches (see Figure 3-8c). 

In the first study, this distribution is modeled as a mixture of two normal 

distributions and is de-convoluted using the expectation maximization (EM) 
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algorithm[50]. The probability that a match is correct, given the U-score U, is 

determined as 

𝑃𝑃(Correct|𝑈𝑈) =
𝜋𝜋1𝑓𝑓1(𝑈𝑈)

𝜋𝜋0𝑓𝑓0(𝑈𝑈) + 𝜋𝜋1𝑓𝑓1(𝑈𝑈)
 

Here f1(U) and f0(U) are Gaussian density functions (from the mixture model above) 

for correct and false matches, respectively. The parameters of the distributions and 

their mixing weights, π0 and π1, are determined directly from the data using the EM.  

FDR can then be estimated using computed probabilities [1, 50]. In this study, a 

probability threshold of 0.99 (estimated FDR of less than 1% in these data) was 

applied as the final filter.  

3.2.8 Quantification in DIA data using DIA-Umpire 

The quantification module of DIA-Umpire computes peptide and protein 

intensities estimated either from MS1 precursor ion intensities or from MS2 

fragment ion intensities. We use the LC apex intensity of the smoothed MS1 

monoisotopic peak to determine the MS1 precursor ion intensity. For MS2 fragment 

ion intensity, we use the raw LC apex intensity of the fragment signal. The MS2 

fragment-based intensity for a protein can be computed by summing the intensities 

of all matched fragments of all identified peptide ions from that protein (or only 

using selected peptide ions and fragments, as described below). In rare cases, the 

same peptide ion is identified from multiple precursor ion features (i.e. at different 

retention times). Such peptides are excluded by default (optionally, such peptide 

ions can be used for quantification by selecting the precursor ion feature with the 
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highest MS1 intensity). When computing protein-level intensities, the analysis can 

be based on all peptides or based only on peptides unique to a particular protein 

group (e.g. with ProteinProphet computed group weight above 0.9; default option).    

For fragment-based quantification, DIA-Umpire computes two protein intensity 

measures. The MS2 iBAQ intensity is computed for each protein by summing the 

intensities of all matched fragments from all identified peptide ions divided by the 

number of expected tryptic peptides (similar to the iBAQ score [65] commonly used 

for DDA MS1 intensity data). This intensity measure can be computed for all 

proteins identified in the dataset. In addition, DIA-Umpire also computes a protein 

intensity measure using selected fragments and peptide ions consistently identified 

across multiple samples within the whole dataset, as described below. 

3.2.8.1 Fragment selection 

For a peptide ion which is identified in Npep DIA runs within the experiment, only 

fragments detected in more than MinFreq × Npep DIA runs are kept. For each 

remaining fragment Fr, the fragment quality score 

FQ𝑟𝑟 =  ∑ 𝐶𝐶𝑟𝑟
𝑗𝑗 × 𝐼𝐼𝑟𝑟

𝑗𝑗Npep
𝑗𝑗=1 , 

is calculated using the Pearson correlation Crj between fragment Fr and its 

precursor peak in DIA run j, and the apex intensity of a fragment Fr in DIA run j, Irj. 

For a peptide ion, its top TF best (i.e. with highest QF scores) fragments (e.g. TF =6, 

denoted as Top6fra option) are selected for quantification. Peptide ion intensity in a 

DIA run is then determined by summing the intensities of all selected fragments.  
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Note that Teo et al recently proposed a downstream statistical analysis tool for 

DIA data called mapDIA [58], which includes a more sophisticated fragment 

selection based on fragment quantification profile correlation. The output file of 

DIA-Umpire output file is fully compatible with mapDIA to perform the downstream 

statistical analysis.  

3.2.8.2 Peptide ion selection  

To select peptide ions for protein quantification, only peptide ions identified in 

more than MinFreq × Nprot  runs are kept,  where Nprot is the number of DIA runs in 

which the protein was identified. The peptide ion intensity in each DIA run is 

computed using the intensities of its fragments selected as described above (e.g. 

“Top6fra” option). The peptide ion quality score is then computed as a sum of 

peptide ion intensities across all runs in the dataset. The protein intensity in then 

calculated in each DIA run by summing the intensities of the top TP highest quality 

peptide ions (e.g. TP =6, denoted as “Top6pep” option).  

The thresholds described above were implemented as input parameter options. 

The following parameters were selected in this work based on the analysis of 

variability between two replicate human cell lysate runs: TP = 6, TF = 6, and MinFreq 

= 0.5 (denoted as “Top6pep/Top6fra Freq>0.5”). Note that this selection procedure 

may lead to a loss of a small number of identified proteins that cannot be quantified 

due to lack of reproducible peptide ions passing the filters described above. Out of 

1,653 proteins identified in both replicates of the human cell lysate data, only 12 

were not quantified by the “Top6pep/Top6fra Freq > 0.5” approach.   
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3.2.9 MS1-based quantification  

DIA-Umpire also reports two MS1-based quantification scores. The MS1 iBAQ 

protein intensity is computed as previously described [65], with peptide ion 

intensities determined at the apex of the LC elution monoisotopic peak. Note that 

MS1-based peptide quantification is only available for peptide ions identified from 

QT = 1 or 2 category pseudo MS/MS spectra (no MS1 feature is detected for QT = 3 

spectra). In the human cell lysate data, 1,324 out of 1,353 proteins were quantified 

by MS1 iBAQ in both replicates. In addition, DIA-Umpire reports a second MS1 

quantification score computed as a sum of intensities of top TP peptide ions, 

selecting peptide ions for quantification in a similar manner as described above for 

MS2-based quantification (e.g. top 6 most intense peptide ions, with an additional 

MinFreq  = 0.5 filter:  “Top6pep, Freq > 0.5” option). 

To demonstrate the importance of selecting the most reliable peptide ions and 

fragments across all samples for quantification, we also implemented a selection 

procedure applied independently within each DIA run (“MS1 Top3pep (indep. 

selection)”; “MS2 Top3pep/Top2fra (indep. selection)”), which produced 

significantly worse results.  

3.2.10 SAINT interaction scoring for AP-SWATH interactome dataset 

AP-SWATH interactome dataset was processed using the entire DIA-Umpire 

pipeline including feature detection, untargeted identification, targeted re-

extraction, peptide ion and fragment selection, and protein quantification. Protein 

and peptide identifications were filtered at 1% and 5% FDRs, respectively. Missing 
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identifications across replicates and samples were re-extracted by the peptide-

centric matching with a 0.99 probability threshold as the filter. For protein 

quantitation, we used the “Top6pep/Top6fra, Freq > 0.5” approach to determine 

protein intensity using only peptides unique to a particular protein group 

(ProteinProphet computed group weights above 0.9). Protein quantification data 

from EIF4A2 and MEPCE bait experiments with GFP negative controls were 

analyzed using SAINT (intensity model; v2.3.4) [66] to determine high confidence 

protein-protein interactions (here, SAINT probability above 0.95). 

3.2.11 Data availability 

All the spectrum files of the datasets (Table A-1) along with DIA-Umpire results 

presented in this study have been deposited at the ProteomeXchange Consortium 

[55] (http://proteomecentral.proteomexchange.org) via the PRIDE partner 

repository with the dataset identifier PXD001587.  

3.3 Results 

3.3.1 DIA-Umpire’s hybrid targeted re-extraction workflow 

DIA-Umpire pipeline includes a targeted quantification workflow in which the 

library is generated based on untargeted identifications directly from DIA data as 

described in Chapter 2. As the workflow shown in Figure 3-1, a targeted re-

extraction approach that queries unidentified precursor-fragment groups against an 

internal spectral library built from untargeted database search results, allowing 

more consistent quantification of peptide ions across multiple experiments is 
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developed in DIA-Umpire pipeline. Exact retention time is known for peptides 

identified in a given experiment, and the commonly identified peptides are used to 

perform retention time alignment across all the runs, negating the need for external 

retention time calibration peptides, e.g. iRT peptides. An additional advantage of 

this approach over previously-described targeted extraction strategies [16, 18, 26, 

28] is that the precursor peptide m/z value is used to constrain the search space, 

enabling to distinguish between peptides with multiple shared fragments (e.g. 

modified and unmodified peptides).  

 
Figure 3-1 DIA-Umpire targeted re-extraction using internal library 

3.3.2 Targeted extraction and protein quantification 
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Accuracy and coverage of protein quantification is of critical importance for 

downstream analysis of proteomic data. Following the initial untargeted analysis, 

DIA-Umpire fills in the missing peptide ion intensities across samples by creating an 

internal spectral library from all the identified peptides, followed by re-extraction of 

quantitative information across all precursor–fragment groups, including those 

which were not identified in the untargeted manner in some samples (Figure 3-1). 

In the human cell lysate data, targeted re-extraction improved the number of 

peptide ions and proteins identified across both replicate runs (estimated FDR less 

than 1%), with the overlap between the replicates at the peptide ion and protein 

levels increasing from 63% to 80% and from 84% to 93%, respectively, compared 

to the initial untargeted identification results (Figure 3-2).   

 
Figure 3-2 Increased identification coverage after targeted re-extraction in DIA-

Umpire. Human cell lysate DIA data.  
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(a) Venn diagram of peptide ion identifications in two replicates of human cell lysate DIA 

(SWATH) data from untargeted X! Tandem search; (b) the number of peptide ions identified 

in both replicates increased after targeted re-extraction; (c) same as (a) at the protein level; 

(d) same as (b) at the protein level. 

The same human cell lysate data was used to investigate the quantification 

performance of the algorithm. DIA-Umpire computes two iBAQ [65] protein 

abundance measures (from MS1 and MS2 data) as well as “Top N peptides” (MS1) 

[17] and “Top N peptides/ Top M fragments” (MS2) [67] metrics (Figure 3-3 and 

Figure 3-4). 



74 
 

 
Figure 3-3 MS1-based protein quantification in DIA human cell lysate data.  

(a) “MS1 iBAQ” intensity; (b) “MS1 Top3pep (indep. selection)”: protein intensity estimated 

by summing the top three most intense peptide ions, independently in each DIA run; (c) 

“MS1 Top3pep, Freq>0.5”: same as (b), with an additional requirement that the selected 

peptides are identified in more than 50% of the runs (Freq > 0.5) in which the 

corresponding protein was identified; (d) “MS1 Top6pep, Freq>0.5”: same as (c), but using 

six most intense peptides. Note that selection of consistently identified peptide ions (Freq > 

0.5 filter) significantly improves the reproducibility of protein intensities between the 

replicates. 
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Figure 3-4 MS2-based protein quantification in DIA human cell lysate data.  

(a) “MS2 iBAQ” intensity; (b) “MS2 Top3pep/Top2fra (indep. selection)”: protein intensity 

estimated by summing the top three most intense peptide ions. Peptide ion intensities are 

estimated by summing the intensities of their top 2 most intense matched fragments. 

Protein intensities are computed independently for each DIA run; (c) “MS2 

Top3pep/Top2fra”: same as (b), but using peptide ions and fragments having the highest 

overall intensity across all runs (here, highest summed intensity across the two replicates); 

(d) same as (c), but using six selected peptide ions and fragments, with an additional 

requirement that the selected peptides and fragments are identified in more than 50% of 

the runs (Freq > 0.5) in which the corresponding protein (peptide selection step) or peptide 
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(fragment selection step) was identified. Note that selection of consistently identified 

peptide ions and fragments (Freq > 0.5 filter) significantly improves the reproducibility of 

protein intensities between the replicates. 

 

 
Figure 3-5 Comparison between MS1 and MS2-based protein quantification. 

Human cell lysate data. 

MS1-based intensities are computed using the ‘Top6pep, Freq>0.5’ method. MS2-based 

protein intensities are computed using the “Top6pep/Top6fra, Freq>0.5” method. 

Using the reproducibility of protein quantification across the two replicate runs 

as a benchmark measure, the MS2-based method with a stringent peptide and 

fragment selection procedure (“MS2 Top6pep/Top6fra, Freq > 0.5”) outperformed 

the other methods considered (Figure 3-4). A similar MS1-based quantification 

metric (“MS1 Top6pep, Freq > 0.5”) performed almost equally well, but with fewer 

(1,310 vs. 1,341) proteins quantified across both replicates (Figure 3-3). A good 

agreement was observed between these two (MS1 and MS2-based) abundance 

measures (Figure 3-5), further demonstrating the reliability of the feature detection 

and quantification algorithms in DIA-Umpire. In UPS2 standard protein sample, both 
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MS1 and MS2 quantification recovered the expected trend of differential abundance, 

suggesting that these measures are suitable for estimation of absolute protein 

abundances (Figure 3-6). 

 
Figure 3-6 Protein quantification results in the UPS2 standard protein sample. 

In UPS2 samples, protein concentrations are known and span five orders of magnitude (8 

proteins in each of the five abundance bins; no proteins were quantified in the lowest 

abundance bin in this study). Proteins were quantified using four quantification methods. 

(a)“MS1 iBAQ” intensity; (b)“MS2 iBAQ” intensity; (c)“MS1 Top6pep, Freq>0.5”: protein 

intensity estimated by summing the top six most intense peptide ions which are 

consistently identified (Freq > 0.5 filter); (d)“MS2 Top6pep/Top6fra, Freq>0.5” : protein 
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intensity estimated by summing the top six most intense peptide ions with an additional 

requirement that the selected peptides and fragments are identified in more than 50% of 

the runs (Freq > 0.5) in which the corresponding protein (peptide selection step) or peptide 

(fragment selection step) was identified. 

3.3.3 Application of DIA-Umpire to interactome data  

A popular application of MS based proteomics is interactome analysis which 

involves in most cases the use of quantitative MS to monitor the relative abundance 

of a given protein in a bait purification experiment in comparison to negative 

controls. The coupling of affinity purification (AP) with targeted extraction 

strategies for SWATH analysis (AP-SWATH) was previously described [25, 26]. At 

the same time, a large number of scoring tools have been previously developed to 

assist identification of true interaction partners over background contaminants in 

DDA data [68], including Significance Analysis of INTeractome (SAINT) that 

performs such scoring using either spectral counts [69] or MS1 [66] intensity data. 

We reasoned that AP-SWATH data would provide a good test case for a complete 

analytical pipeline by demonstrating that DIA-Umpire in combination with SAINT 

can detect true interactors from DIA data, without the need for spectral libraries. We 

analyzed a dataset consisting of three biological replicates of the baits EIF4A2 and 

MEPCE and the negative GFP control analyzed by DIA [26] (Fig. 5a).  
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Figure 3-7 Application of the entire DIA-Umpire workflow to an AP-SWATH 

interactome data set.  

(a) DIA-Umpire interatome analysis workflow. TPP, Trans-Proteomic Pipeline. (b) The 

distribution of scores (U-score) computed by the targeted re-extraction algorithm of DIA-

Umpire. Data shown are from one biological replicate of an MEPCE AP-SWATH run. The 

observed distribution was modeled with the mixture modeling approach (blue curve, false 

identification model; red curve, correct identifications) to compute the posterior probability 

for each match. Peptide ions with a computed probability greater than 0.99 were 

considered confidently identified and contributed, together with the peptide ions identified 

at the initial, untargeted identification stage, to protein quantification for their 

corresponding proteins. (c) The numbers of proteins identified in one, two or all three 

biological replicates for each experiment after the initial, untargeted search and after 
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targeted data re-extraction. (d) High reproducibility of protein intensities between two 

MEPCE AP-SWATH biological replicates computed by DIA-Umpire with the ‘MS2 

Top6pep/Top6fra, Freq > 0.5’ quantification approach. rep, replicate. 

 
Figure 3-8 Distributions of scores computed by the targeted re-extraction 

algorithm of DIA-Umpire. AP-SWATH dataset, MEPCE bait (biological replicate 3).  

(a) Distributions of the five sub-scores for peptide ions from the positive set (“Identified 

features”, i.e. precursor-fragment group to spectrum matches that were confidently 

identified by the untargeted spectrum-centric search) and from the negative set (precursor-

fragment groups matching to decoy spectra); (b) Linear discriminant analysis is used to 

train the weights in the linear combination used to combine the individual sub-scores to 

compute a single discriminant score (U-score). Shown are the resulting U-score histograms 

for positive and negative matches in the training set. (c) The final distribution of U-scores 

for all non-decoy matches. The observed distribution is model as a mixture of two 

underlying distributions representing high scoring, correct matches (red curve) and low 

scoring, incorrect matches (blue curve). The parameters of the distributions are learned 

using the expectation maximization mixture modeling algorithm. The posterior probability 

of a correct match is computed for a given non-decoy spectrum to precursor-fragments 
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group match from the ratio of learned distributions among correct and incorrect matches. 

By default, peptide ions with a computed probability above 0.99 are considered confidently 

identified and contribute, together with the peptide ions identified at the initial untargeted 

identification stage, to protein quantification for their corresponding protein.   

In the first step, we processed DIA data through DIA-Umpire in an untargeted 

manner, leading to identification and quantification of 3,900 - 4,900 peptide ions 

(600 - 700 proteins) in each AP-SWATH run. As expected, using targeted re-

extraction with a stringent 0.99 peptide-centric identification probability threshold 

(Figure 3-8), we could identify and quantify additional peptide ions (1,300 - 2,300) 

and proteins (60 - 100) in each AP-SWATH run (Figure 3-9). Importantly, targeted 

re-extraction reduced the stochasticity issue, with an increase (by 19 - 23%) in the 

number of proteins quantified across all three replicates for the same bait (Figure 

3-7c). Protein abundances were estimated using the “MS2 Top6pep/Top6fra, 

Freq>0.5” approach, with an excellent quantification reproducibility observed 

across the biological replicates for each bait and the GFP controls (Figure B-2).  

Using SAINT [66] we recovered 45 significant interactors (SAINT probability 

above 0.95) for the EIF4A2 bait, a translation initiation factor implicated in the 

association of mRNAs to the ribosome. These proteins included 19 associated 

translation initiation factors (specifically the multi-subunit factors eIF3 and eIF4), 

the poly(A) binding protein which binds eIF4 and, as expected, several RNA 

helicases and RNA-binding proteins that are likely recruited via the mRNA.  The 

ubiquitin protease USP10 (previously reported as an interaction partner for the 

eIF4A2 direct interactor eIF4G1) and casein kinase II subunits (which interact with 
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eIF3) were also detected, alongside a known eIF4A inhibitor, PDCD4 [70]. A similar 

result was observed for the MEPCE bait – a protein that methylates the cap of the 

7SK snRNA, leading to its stabilization [71]: 54 proteins were confidently scored as 

interactors, including well-characterized partners such as CDK9, Cyclin T, HEXIM1, 

METTL16, LARP7, SART1 and 3, several splicing components, and multiple 

components of the large, but not small, ribosomal subunit [26, 70, 71]. In summary, 

DIA-Umpire allows sensitive protein identification from DIA data, extraction of 

accurate quantitative information with less missing data, and is fully compatible 

with the existing interaction scoring methods such as SAINT, leading to the recovery 

of biologically-meaningful interactions. 

 
Figure 3-9 The numbers of identified proteins and peptide ions via untargeted 

spectrum-centric search and targeted re-extraction matching.  

The numbers of identified peptide ions and proteins from the initial untargeted (spectrum-

centric search) analysis using DIA-Umpire (blue bars) shown separately for 3 biological 

replicates (Biorep1…Biorep3) of the two bait proteins (EIF4A2 and MEPCE) and the GFP 

negative controls.  Also shown (red bars) the numbers of additional peptide ions and 
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proteins identified by the targeted re-extraction using the spectral library internally 

generated from the initial search results. 

3.4 Discussion 

In the second study we developed a targeted re-extraction approach for DIA 

quantification analysis. The targeted re-extraction searches DIA-Umpire 

preprocessed DIA data against an internal spectral library built from the initial 

identifications obtained by untargeted database search. We showed that using this 

hybrid approach, DIA-Umpire is able to perform more consistent identification and 

quantification across multiple DIA runs. In addition, we showed that such 

reproducible and reliable quantification is possible using both DIA MS1 and MS2 

data with accurate protein quantification. We applied the whole DIA-Umpire 

pipeline to a publicly available AP-SWATH interatome DIA study data to show that 

the pipeline can capture sensitive protein-protein interaction profile without a need 

of prior spectral library for complete DIA analysis. 

DIA-Umpire provides a complete pipeline for high throughput analysis of DIA 

data. The highly flexible design of the DIA-Umpire computational framework 

(importantly, with a full support for MS1 feature detection and quantification) 

should allow us to quickly adapt the algorithms to take advantage of new 

approaches and technological improvements, including emerging hybrid DIA/DDA 

strategies [72]. Finally, the pseudo MS/MS spectra generated by DIA-Umpire can be 

used to build spectral libraries for use with external tools, e.g. for visualization of 

spectra and precursor and fragment chromatograms in Skyline [29], or for targeted 
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quantification using OpenSWATH, enabling an alternative solution to targeted re-

extraction of quantitative information. 
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The results presented in this chapter could not have been finished without the 

efforts of the great collaboration. I am grateful and fortunate to have such a great 
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Brett Larsen: acquired mass spectrometry data, designed experiments, analyzed 

data and provided inputs for manuscript. 

Monika Tucholska: acquired mass spectrometry data. 

Hyungwon Choi: assisted with SAINT scoring and contributed to the development of 

protein quantification strategies. 

Anne-Claude Gingras: designed experiments, analyzed data, supervised the project, 

and wrote the manuscript. 

Alexey I Nesvizhskii: conceived the project, developed the algorithm, designed 

experiments, analyzed the data, supervised the project, and wrote the manuscript. 
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Chapter 4 Improved DIA-Umpire pipeline for 
Untargeted, spectral library-free analysis of Orbitrap 

DIA data 

The content of this chapter has been submitted to the special Issue of PROTEOMICS 

"Applications of targeted proteomics: from SRM to SWATH MS". 

4.1 Introduction 

Data independent acquisition (DIA) mass spectrometry is emerging as a 

promising alternative to data dependent acquisition (DDA) for quantitative 

proteomics analysis (for a recent review, see [73]), and is now available on most 

instrument platforms. As described in the previous chapters, DIA data is most 

commonly analyzed using spectral library-dependent tools such as OpenSWATH 

[28], Spectronaut [27], PeakView, and Skyline [29]. Ideally, a sample-specific 

spectral library is built from DDA experiments acquired in parallel with DIA data 

from the same or similar samples using same liquid chromatography system and 

same mass spectrometer. As we discussed, building a sample-specific spectral 

library requires additional sample materials and MS instrument time costs for the 

parallel DDA experiments. There have been continuing efforts to build 

comprehensive and publicly available spectral libraries based on a very huge 

number of DDA experiments on specific samples, e.g. the global spectral libraries 

deposited at SWATHAtlas repository (http://www.swathatlas.org/) which currently 

http://www.swathatlas.org/
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includes the global spectral libraries for different organisms [36, 74, 75], tissue-

specific library [39], and human immunopeptidomes [40]. Therefore, alternatively 

one could use the global library instead of creating a sample-specific library for the 

DIA analysis. 

In contrast to the spectral library-dependent tools, the alternative workflow, 

DIA-Umpire [41] is able to perform untargeted and direct (i.e. spectral library-free) 

analysis of DIA data using the existing MS/MS database search engines (e.g. X! 

Tandem [76], Comet [48], MSGF+ [77]) and peptide-spectrum match (PSM) 

statistical validation tools (PeptideProphet [50], Percolator [78], PeptideShaker 

[79]). We demonstrated that reliable quantification can be obtained from both 

fragment ion intensities and from MS1 data, and the targeted re-extraction 

workflow using internal spectral library allows more consistent identification and 

quantification analysis.  

Because most of the recent studies used DIA (SWATH-MS) data generated using 

AB Sciex 5600 instruments, in this study we sought to test and improve the 

performance of DIA-Umpire using data generated using the Orbitrap family of mass 

spectrometers (Thermo Fisher Scientific) which also support acquisition of  

SWATH-like DIA data and other DIA variants [27, 80, 81] on the Orbitrap mass 

spectrometers. The Orbitrap mass analyzer, available in both Q Exactive and Fusion 

instruments, enables acquisition of tandem mass spectra with high mass accuracy 

and scan rate – the main prerequisites for successful interrogation of complex 

samples using DIA data [27, 80, 81]. Here we present DIA-Umpire v2, the new 
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version of the software that enables analysis of complex DIA datasets generated 

using Orbitrap instruments without the need for a pre-existing spectral library. We 

describe the improvements made in the algorithms of DIA-Umpire, including the 

introduction of signal isotope pattern and fractional mass filters, the new targeted 

re-extraction scoring function, and the semi-parametric mixture modeling for 

computing the probabilities of correct identifications of peptide signals in DIA data 

using targeted re-extraction. Using the two series of Q Exactive DIA and DDA 

datasets published by Bruderer et al. [27], and a series of human HeLa cell line 

experiments on an Orbitrap Fusion mass spectrometer performed as part of this 

work we show that DIA-Umpire v2 enables highly sensitive analysis of DIA data. We 

also extend the improved targeted re-extraction module in DIA-Umpire v2 for 

external library search. We show that the external library search approach allows 

retention time alignment between DIA run and external spectral libraries without 

iRT peptides and the improved semi-parametric mixture modeling is able accurately 

calculate posterior probabilities for different libraries. 

4.2 Methods 

4.2.1 Q Exactive datasets 

The raw files for two sets of Q Exactive DIA and DDA data described in [27] were 

downloaded from PeptideAtlas (http://www.peptideatlas.org; PASS00589). The 

first set was generated using HEK-293 cell lysates and the second set using human 

liver microtissue samples. All samples were analyzed using both DDA and DIA. 
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4.2.2 Orbitrap Fusion datasets 

The MS system, Orbitrap Fusion Tribrid mass spectrometer (Thermo Scientific, 

San Jose, CA), was coupled with an Ultimate 3000 RSLCnano system (Thermo Fisher 

Scientific). 1ug HeLa cell predigested using trypsin (Thermo Scientific, San Jose, CA) 

were directly loaded onto self-packed column. The 3 um ReproSil-Pur C18-AQ 

particles (Dr Maisch, Ammerbuch, Germany) were packed into a 30 cm self-pulled 

column with a 100 um inner diameter and 7 um opening to prepare an analytical 

column using “stone-arch” frit. The mobile phases consisted of (A) 0.1% formic acid 

and (B) 0.1% formic acid and acetonitrile. Peptides were separated through a 

gradient of up to 85% buffer B over 135 minutes at flow rate of 500 nL/min. The MS 

instrument was operated in the positive ion mode, with an electrospray through a 

heated ion transfer tube (250 °C), followed by a stacked ring ion guide (RF-lens) 

evacuated by a rotary vane pump to ~2 Torr. Full scan MS spectra were acquired in 

the Orbitrap mass analyzer (m/z range: 400−1250) with the resolution set to 60,000. 

Full scan target was 3e5 with a maximum fill time of 50 ms. All data were acquired 

in profile mode using positive polarity. MS/MS spectra of both DDA and DIA data 

were acquired in the Orbitrap as well with a resolution of 15,000 and higher-

collisional dissociation (HCD) MS/MS fragmentation.  

For DDA data, up to top 15 most intense ions were selected for MS/MS for each 

scan cycle. Target value for fragment scans was set at 1e5 with a maximum fill time 

of 35 ms and intensity threshold was kept at 2e4. Isolation width was set at 1.4 Th. 
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Two sets of independent DDA experiments (labeled DDA1 and DDA2) were acquired, 

each containing three replicate runs.   

DIA experiments were run using different isolation window settings. A total of 

five DIA settings with 25, 20, 15, 10, and 5 Da SWATH-type fixed size isolation 

windows (resulting in 2.7, 3.3, 3.9, 6.2, and 13 seconds cycle time, respectively) 

were used to acquire the data. For each DIA experiment, the target value for 

fragment scans was set at 1e5 with a maximum fill time of 50 ms. Three replicates 

were acquired for each DIA experiment with one of the specified window sizes.    

4.2.3 Definition of datasets 

All DDA and DIA experiments were processed independently. False discovery 

rate (FDR) estimations at peptide ion or protein level, DIA internal library 

generation, and master protein list generation were done for each dataset 

separately. These datasets were defined as follows. The Q Exactive DIA (or DDA) 

datasets are referred to as ‘HEK-293 DDA’, ‘HEK-293 DIA’, ‘Microtissue DDA’, and 

‘Microtissue DIA’ datasets. For Orbitrap Fusion DIA data, three replicates for each 

isolation window size setting were considered as part of the same dataset, referred 

to as ‘DIA 5Da’, ‘DIA 10Da’, ‘DIA 15Da’, ‘DIA 20Da’ and ‘DIA 25Da’. The two 

independent sets of DDA data (each consisting of three replicates) were labeled 

‘DDA1’ and ‘DDA2’ datasets.  

4.2.4 DIA-Umpire pseudo MS/MS extraction 
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All .raw files were converted into mzXML format using msconvert.exe [82] with 

vendor (Xcalibur) peak picking option to generate centroid spectra. The DIA mzXML 

files were first processed by the signal extraction (SE) module of DIA-Umpire to 

generate pseudo MS/MS spectra in MGF format. For detection of precursor ion 

signal, the following parameters were used: 10 ppm mass tolerance for Orbitrap 

Fusion datasets and 15 ppm for Q Exactive datasets, charge state range from 1+ to 

5+ for precursor ion detection in MS1 scans, and 2+ to 5+ for unfragmented 

precursor ion detection in MS2 scans. For detection of fragment ions in MS2 scans, 

20 ppm mass tolerances for Orbitrap Fusion datasets and 25 ppm for Q Exactive 

datasets were used. Signal-to-noise ratio for both precursor and fragment signals 

was set to 1.1. The maximum retention time range was set to two minutes, and 

maximum of two consecutive gaps was allowed for detection of single m/z trace 

signals. Because the signal quality of the centroid spectra generated using Xcalibur 

library via msconvert.exe was deemed to be sufficiently high, no additional 

background detection and noise removal was used in DIA-Umpire_SE module. 

Because the MS2 scans in the resulting mzXML files contained isolation window 

ranges there was no need to specify isolation setting in the parameter file of DIA-

Umpire_SE module. 

4.2.5 Filtering of detected features using fractional mass and isotope 

peak pattern  

The first step of DIA-Umpire analysis is extraction of precursor and fragment ion 

signals by the feature detection algorithm. DIA-Umpire v2 implements two new 
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filters, the fractional mass filter and the isotopic pattern filter, to remove detected 

precursor ion and fragment features that are less likely to be true features.  

Fractional mass filters have been used in a number of applications previously 

[83-85]. We adopted the fractional mass boundary equations described in Toumi et 

al [85] which was derived for human tryptic peptides. In order to allow modified 

peptides in the analysis, we extended the allowed fractional mass range by 2×d 

(d=0.1 used in this study). For each detected precursor ion or fragment ion feature 

with neutral mass M, the fractional mass D(M) is calculated as  

𝐷𝐷(𝑀𝑀) = 𝑀𝑀 − ⌊𝑀𝑀⌋ 

The upper and lower bounds (the range of allowed fractional masses) of the 

fractional mass filter are derived according to the following equations, respectively: 

𝐻𝐻(𝑀𝑀) = 𝐷𝐷 (0.00052738 × 𝑀𝑀 + 0.066015 + 𝑑𝑑) 

𝐿𝐿(𝑀𝑀) = 𝐷𝐷(0.00042565 × 𝑀𝑀 + 0.0003821 − 𝑑𝑑) 

Finally, the binary classifier B(M) based on the fractional mass (1: accepted; 0: 

rejected) is determined as follows:  

𝐵𝐵(𝑀𝑀) = �
1,      𝑖𝑖𝑖𝑖 𝐻𝐻(𝑀𝑀) ≥ 𝐷𝐷(𝑀𝑀) ≥ 𝐿𝐿(𝑀𝑀)

1,      𝑖𝑖𝑖𝑖 𝐻𝐻(𝑀𝑀) < 𝐿𝐿(𝑀𝑀) ∧ [𝐷𝐷(𝑀𝑀) ≤ 𝐻𝐻(𝑀𝑀) ∨ 𝐷𝐷(𝑀𝑀) ≥ 𝐿𝐿(𝑀𝑀)]
0,   otherwise
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Figure 4-1 Theoretical intensity ratios of ith isotope peak over monoisotopic peak.  

Theoretical intensity ratios of ith isotope peak over monoisotopic peak. Grey dots represent 

isotope peak intensity ratio between ith isotope peak vs. monoisotopic peak for tryptic 

peptides generated from human proteome sequences. In each plot, the grey dots were 

partitioned into 100 Da mass bins and mean and standard deviation (SD) for each bin were 

calculated. The black dash lines are the mean values of each 100 Da mass bin, and red solid 

lines represent the boundary for each bin calculated by mean ± 3.3 standard deviations. 

Second, an isotope pattern filter has been introduced to remove precursor 

features showing a poor fit between the observed and the theoretical isotope peak 

distributions. Theoretical isotope peak intensity ratios given peptide molecular 
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weights calculated from all human tryptic peptides. The isotope peak ratios up to 

the 10th isotope peak were established in DIA-Umpire by generating 9 scatter plots 

(Figure 4-1).  

To determine the boundary of the theoretical isotope ratios, the mean (μ) and 

standard deviation (σ) of each 100 Da bin in each plot were calculated. The 99.8% 

(±3.3×σ) confidence intervals were then selected to represent the boundaries for 

each bin (plotted in Figure 4-1). For a possible peak feature detected with peak 

intensities I = (I1, I2, …, In) and neutral mass M, the observed peak ratios O = (O2, …, 

On), Oi = Ii / I1, were calculated, where n is the number of isotope peaks. Then the 

mean μi and the standard deviation σi of the closet mass bin for M from ith scatter 

plot (corresponding to ith isotope ratio) were extracted, and the boundary (Hi, Li) of 

the expected peak ratio was calculated as follows: Hi = μi + 3.3×σi and Li=μi -3.3×σi. 

Then the isotope pattern fitness probability score between the observed peak ratio 

and the theoretical peptide isotope distribution was estimated as 1 − 𝐶𝐶(𝑋𝑋2,𝑛𝑛 − 1), 

where 𝐶𝐶(𝑋𝑋2,𝑛𝑛 − 1) is the standard Chi-Squared probability cumulative distribution 

function, and 𝑋𝑋2 is Chi-Squared value calculated as follows: 

𝑋𝑋2 = �
(𝑂𝑂𝑖𝑖 − 𝐸𝐸𝑖𝑖)2

𝐸𝐸𝑖𝑖2

𝑛𝑛

𝑖𝑖=2

 

𝐸𝐸𝑖𝑖 = �
𝑂𝑂𝑖𝑖, 𝑖𝑖𝑖𝑖 𝑂𝑂𝑖𝑖 ≥ 𝐿𝐿𝑖𝑖  𝑎𝑎𝑎𝑎𝑎𝑎  𝑂𝑂𝑖𝑖 ≤ 𝐻𝐻𝑖𝑖

𝐻𝐻𝑖𝑖, 𝑖𝑖𝑖𝑖  𝑂𝑂𝑖𝑖 > 𝐻𝐻𝑖𝑖
𝐿𝐿𝑖𝑖, 𝑖𝑖𝑖𝑖  𝑂𝑂𝑖𝑖 < 𝐿𝐿𝑖𝑖
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In this study, all detected features with isotope pattern fitness probability score 

below 0.3 were removed. 

4.2.6 DDA and DIA (pseudo) MS/MS database search 

The DDA and DIA pseudo MS/MS spectra extracted using DIA-Umpire were 

searched using X! Tandem, Comet and MSGF+ search engines using the following 

parameters: allowing tryptic peptides only, up to one missed cleavage, methionine 

oxidation specified as variable modification, and cysteine carbamidomethylation as 

static modification. The precursor ion mass tolerance and the fragment ion mass 

tolerance were set, respectively, to 10 ppm and 20 ppm for Orbitrap Fusion data and 

to 15 ppm and 25 ppm, respectively, for Q Exactive data. The data were searched 

against a non-redundant human protein sequence FASTA file extracted from the 

UniProtKB/Swiss-Prot database (release date: June 19, 2015), appended with the 

corresponding reversed sequences as decoys for target-decoy analysis. The output 

files from each search engines were further analyzed by PeptideProphet, and the 

results were combined using iProphet [52] followed by ProteinProphet [2]. 

4.2.7 FDR estimation independently for each DDA/DIA run 

The false discovery rate (FDR) for peptide ion (i.e. unique combination of 

peptide sequence, charge state, modification and modification site parameters) and 

protein identifications was first estimated independently for each individual run. 

For each individual run (e.g. Orbitrap Fusion DIA 5Da window, Replicate 1; denoted 

as ‘DIA 5DA R1’), FDR at the peptide ion level was estimated by sorting the 
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identifications using the iProphet computed peptide ion probability followed by the 

selection of the probability threshold corresponding to 1% FDR based on the target-

decoy strategy [1]. The number of peptide ions at 1% FDR determined 

independently for each run (column “Peptide ion IDs (1% FDR run level)”) are 

shown in Table C-1 (Q Exactive HEK-293 data), Table C-2 (Q Exactive liver 

microtissue data), and Table C-3 (Orbitrap Fusion data). At the protein level, protein 

groups assembled by ProteinProphet for each run independently were sorted using 

the maximum peptide ion iProphet probability taken as the protein-level score, 

followed by target-decoy based FDR estimation. The numbers of protein groups 

determined independently for each run at 1% FDR are also shown in Table C-1, 

Table C-2, and Table C-3 (column “Protein IDs (1% FDR run level)”). 

4.2.8 FDR for peptide ion identifications in DDA data at the dataset 

level 

In addition to estimating FDR at individual run level, FDR for DDA data was also 

estimated at the dataset level. In the dataset level FDR strategy, the list of peptide 

ions was filtered to achieve 1% FDR for the entire dataset (e.g. Orbitrap Fusion 

‘DDA1’ dataset consisting of the three replicate runs ‘DDA1 R1’, ‘DDA1 R2’, and 

‘DDA1 R3’). If the peptide ion passed the desired FDR threshold (here 1%) at the 

dataset level, then all identifications of that peptide ion in each individual run within 

the same dataset were counted as identified in that run. Such a filtering strategy is 

useful for reducing the number of missing values in each individual run (which is 

important for achieving more complete quantification matrix across the dataset), 
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while maintaining the desired FDR at the dataset level. It also allows more fair 

comparison of DDA numbers with DIA numbers after the second, targeted re-

extraction step using the spectral library build from all identified spectra in the 

dataset (see below). The number of peptide ion identifications for each DDA runs 

determined using the dataset level FDR strategy is shown Table C-1, Table C-2, and 

Table C-3 (column “Peptide ion IDs (1% FDR dataset level)”). 

4.2.9 FDR for protein identifications in DDA data at the dataset level 

To estimate protein FDR for DDA data at the dataset level, ProteinProphet [2] 

was used to assemble protein groups for each dataset taking pepXML files for all 

replicate runs from the same dataset as input. Protein FDR was estimated by the 

target-decoy approach based on the maximum peptide ion probability across the 

files within a dataset. At 1% FDR, a master protein list for each dataset was first 

generated. For each protein (representing a protein group) in the master list, that 

protein was considered identified in an individual run if it had at least one peptide 

ion identified in that run that was in the dataset level 1% FDR filtered list. The 

number of protein identifications for individual DDA runs counted using the dataset 

level FDR strategy is shown Table C-1, Table C-2, and Table C-3 (column “Protein 

IDs (1% FDR dataset level)”). 

4.2.10 Generation of the spectral library for targeted re-extraction 

in DIA data 

The analysis of DIA data using DIA-Umpire includes an additional targeted data 

extraction step using the internal spectral library build from the peptides identified 
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using the initial, untargeted analysis. In each DIA dataset, all peptide ion 

identifications passing 1% dataset-level FDR (estimated as described above for DDA 

data) were taken as input into the DIA-Umpire target re-extraction module (DIA-

Umpire_Quant.jar) to generate an internal spectral library and perform targeted re-

extraction analysis [41] to further reduce missing quantifications for each DIA 

dataset. For building consensus spectra in the internal spectral library, an option 

has been added in DIA-Umpire v2 to use the fragment selection algorithm described 

in Tsou et al [41]. With this option enabled, the consensus spectrum for each 

peptide ion is created using the TopN best fragments selected across all runs within 

the dataset (top six fragments in this study). The algorithms for building consensus 

spectra, retention time prediction, and mass calibration in DIA-Umpire v2 remained 

the same as described in Tsou et al [41].  

4.2.11 Targeted re-extraction scoring function 

Several components of the scoring function for the targeted re-extraction step 

were revised, and thus described here in more details. A precursor-fragment group 

G generated by DIA-Umpire, and a library spectrum S, represented as 

S = {�𝐼𝐼1S,𝑀𝑀1
S�, �𝐼𝐼2S,𝑀𝑀2

S�, … , �𝐼𝐼NSS ,𝑀𝑀NS
S �} 

G = {�𝐼𝐼1G,𝑀𝑀1
G,𝐶𝐶1G,𝑇𝑇1G�, �𝐼𝐼2G,𝑀𝑀2

G,𝐶𝐶2G,𝑇𝑇2G�, … , �𝐼𝐼NGG ,𝑀𝑀NG
G ,𝐶𝐶NGG ,𝑇𝑇NGG �} 

where NS and NG are the numbers of fragment peaks in the library spectrum and in 

the precursor-fragment group, respectively (NS ≤ 6 in this study). IrS and MrS are the 

intensity and the theoretical m/z value, respectively, of a fragment r that belongs to 
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the library spectrum S. Similarly, IrG and MrG are the intensity and m/z value, 

respectively, of a fragment r that belongs to the precursor-fragment group G. CrG and 

TrG are the Pearson correlation coefficient and peak apex retention time difference, 

respectively, between the peak profiles of a fragment r and the precursor anchoring 

group G. All negative Pearson correlation coefficients were set to 0. A matching 

intensity vector INTG-S = (I1G, I2G, …, INSG) of length NS, with IrG taken as the intensity 

of the fragment peak r in G that matches to a fragment in S, and as zero if no 

fragment peak can be found in G within the specified mass tolerance (in ppm units) 

window DM around MrS. Thus, INTG-S contains L non-zero values, where L is the total 

number of matched fragments between G and S. The following nine sub-scores are 

calculated during the spectral matching: 

1. Spectral Similarity Score (SSS), in DIA-Umpire v2 calculated as the dot 

product [86] between the vector INTG-S and the library spectrum intensity 

vector (I1S, I2S, …, INSS). 

2. Mass Error Score (MES): 

MES = 1 −
∑ PPM(𝑀𝑀𝑗𝑗

G,𝑀𝑀𝑗𝑗S)𝐿𝐿
𝑗𝑗=1

DM × 𝐿𝐿
 

PPM(𝑚𝑚𝑎𝑎,𝑚𝑚𝑏𝑏) =
|𝑚𝑚𝑎𝑎 −𝑚𝑚𝑏𝑏| × 2 × 106

𝑚𝑚𝑎𝑎 + 𝑚𝑚𝑏𝑏
 

3. Correlation Score (CS): 

CS =
∑ 𝐶𝐶𝑗𝑗G𝐿𝐿
𝑗𝑗=1

𝐿𝐿
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The scores described above are essentially the same as described in the original 

DIA-Umpire manuscript, except that SSS is computed using the dot product instead 

of the Pearson correlation. In addition, the following six new scores are introduced: 

4. Apex Delta Score (ADS):  

ADS =
∑ �𝑇𝑇𝑗𝑗G�𝐿𝐿
𝑗𝑗=1

𝐿𝐿
 

5. Weighted Number of matched Fragments (WNF): 

WNF = � 𝐶𝐶𝑗𝑗G × (1 −
PPM(𝑀𝑀𝑗𝑗

G,𝑀𝑀𝑗𝑗S)
DM

𝐿𝐿

𝑗𝑗=1
) 

6. Retention time difference between the predicted retention time and the 

observed monoisotopic peak apex of the precursor peptide anchoring 

precursor-fragment group G. 

7. Precursor isotope peak correlation score, computed as the Pearson 

correlation coefficient between the monoisotopic peak elution profile and 

the second isotope peak profile of the precursor anchoring group G (set to 

zero if the correlation is negative). 

8. Precursor isotope pattern fitness probability score, calculated as 

described above.  

9. Difference between the experimental mass of the precursor anchoring 

group G and the theoretical mass of the peptide ion in the internal library. 
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The final match score (U-score) between S and G is calculated as a linear 

combination of all the nine sub-scores described above. The linear combination 

coefficients were trained as described for DIA-Umpire previously [41]. 

4.2.12 Posterior probabilities of correct identification at the 

targeted re-extraction step  

The probability calculation in DIA-Umpire v2 has been revised to implement a 

more robust semi-parametric mixture modeling. For each library spectrum S, let U 

be the best final match score (U-score described above) of all candidates in the 

searched range for S. The observed distribution of scores for all spectra in a 

particular run searched at the targeted extraction step, f(U), is a joint distribution of 

correct and incorrect identifications, i.e. 𝑓𝑓(𝑈𝑈) = 𝜋𝜋0𝑓𝑓0(𝑈𝑈) + 𝜋𝜋1𝑓𝑓1(𝑈𝑈), where 𝑓𝑓0 and 

𝑓𝑓1are the respective distributions of incorrect and correct identifications, and 𝜋𝜋0 and 

𝜋𝜋1 are the priors (proportions of true and false matches), where 𝜋𝜋0 + 𝜋𝜋1 = 1. To 

estimate the distributions 𝑓𝑓0  and 𝑓𝑓1 , DIA-Umpire v2 implements the semi-

parametric density estimation similar to that of Robin et al [87], which has been 

described for PSM validation by Choi et al [88] and implemented in PeptideProphet 

(‘P’ option) and in iProphet. The idea behind the semi-parametric mixture modeling 

is to use decoy identifications (that are known to be false) to first represent 𝑓𝑓0, and 

𝑓𝑓1 can then be deconvoluted using the expectation maximization (EM) algorithm 

with a modified kernel density estimation. The first step of this mixture modeling is 

to estimate 𝜋𝜋0 to avoid the over-fitting problem (maximum likelihood will be always 

at the point when 𝜋𝜋1equals to 1 [87]) in the EM algorithm.  𝜋𝜋0 = 𝐹𝐹(𝑞𝑞)
𝐹𝐹𝑑𝑑(𝑞𝑞)�  , where 
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𝐹𝐹(. ) and 𝐹𝐹𝑑𝑑(. ) are respective CDFs of empirical distributions of target and decoy 

identifications, and q is the mean score of decoys. The priors 𝜋𝜋0 and 𝜋𝜋1 estimated 

this way are then fixed throughout the EM algorithm. The kernel density estimation 

of distributions 𝑓𝑓(𝑈𝑈) and 𝑓𝑓0(𝑈𝑈) are obtained by the following equations: 

𝑓𝑓(𝑈𝑈|ℎ) =
1
𝑛𝑛ℎ

�𝐾𝐾(
𝑈𝑈 − 𝑈𝑈𝑖𝑖
ℎ

)
𝑛𝑛

𝑖𝑖=1

 

𝑓𝑓0(𝑈𝑈|ℎ) =
1
𝑛𝑛𝑑𝑑ℎ

�𝐾𝐾(
𝑈𝑈 − 𝑈𝑈𝑖𝑖
ℎ

)
𝑛𝑛𝑑𝑑

𝑖𝑖=1

 

where K is the Gaussian density function, and n and nd are the numbers of 

identifications from all target library spectra and decoy spectra, respectively. The 

bandwidth parameter h is estimated using the Silverman's rule of thumb [89]. The 

initial estimation of 𝑓𝑓1(𝑈𝑈) is done by the DIA-Umpire’s original Gaussian mixture 

modeling approach [41]. In the E-step of the EM mixture modeling algorithm, the 

probability p(Ui) of score Ui for spectrum Si is calculated as  

𝑝𝑝(𝑈𝑈𝑖𝑖) =
𝜋𝜋1𝑓𝑓1(𝑈𝑈𝑖𝑖)
𝑓𝑓(𝑈𝑈𝑖𝑖)

 

Then in the M-step the kernel density estimation of correct distribution is 

updated as 

𝑓𝑓1(𝑈𝑈) =
∑ [𝑝𝑝(𝑈𝑈𝑖𝑖) × 𝐾𝐾 �𝑈𝑈 − 𝑈𝑈𝑖𝑖

ℎ �]𝑛𝑛
𝑖𝑖=1

ℎ ∑ 𝑝𝑝(𝑈𝑈𝑖𝑖)𝑛𝑛
𝑖𝑖=1

�  
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The EM algorithm iterates until the difference of log-likelihoods between two 

consecutive iterations is less than 0.00001 of the initial log-likelihood or the EM 

algorithm has reached 50 iterations. Once the EM algorithm is finished, the final 𝜋𝜋0 

and 𝜋𝜋1 are updated by the following equations: 

𝜋𝜋1 =
1
𝑛𝑛
�𝑝𝑝(𝑈𝑈𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 

𝜋𝜋0 = 1 −  𝜋𝜋1 

Given a U-score Ui, the final probability is calculated as described above the 

updated priors.  

4.2.13 Combing untargeted and targeted re-extraction 

identification results 

DIA-Umpire v2 exports additional identifications obtained at the targeted re-

extraction step into separate pepXML files. In order to be able to estimate FDR with 

inclusion of these additional identifications, decoy identifications and their 

probabilities are exported as well. Note that, for consistency, DIA-Umpire prints the 

corresponding reversed sequences in the resulting targeted re-extraction pepXML 

files for all decoy identifications, even though the actual spectra representing those 

decoys in the internal library were obtained using the shuffling approach. For each 

identification obtained at the targeted re-extraction step, DIA-Umpire v2 prints the 

U-score probability calculated as described above (which are labeled as iProphet 

probability in the generated pepXML files). These steps allow the protein inference 
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algorithm of ProteinProphet to combine the results (pepXML files), including decoy 

identifications, from the initial untargeted database search step with the results 

generated using targeted re-extraction using the internal spectral library (see 

below).  

4.2.14 FDR for peptide ion identifications in DIA data at the dataset 

level 

As with DDA data, in addition to estimating FDR at individual run level, FDR for 

DIA data was also estimated at the dataset level. The list of peptide ions identified at 

the untargeted step was filtered to achieve 1% FDR for the entire dataset (e.g. 

Orbitrap Fusion ‘DIA 5 Da’ dataset consisting of the three replicate runs ‘DIA 5Da 

R1’, ‘DIA 5Da R1’, and ‘DIA 5Da R3’). If the peptide ion passed the desired FDR 

threshold (here 1%) at the dataset level, then all identifications of that peptide ion 

in each individual run within the same dataset were counted as identified in that run. 

Peptides that were not identified in a particular run based on the untargeted 

analysis alone, but that were detected in that run using targeted re-extraction with a 

high probability (here, 0.99 or higher), were also counted as identified. It should be 

noted that inclusion of identifications from the targeted re-extraction step does not 

change the dataset level FDR, set to 1%. The number of peptide ion identifications 

for each DIA run is shown in Table C-1, Table C-2, and Table C-3 (column “Peptide 

ion IDs (1% dataset level FDR)”). 

4.2.15 FDR for protein identifications in DIA data at the dataset level 
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For estimating protein FDR at the dataset level for DIA data (after targeted re-

extraction), ProteinProphet [2] was run for each dataset independently taking all 

pepXML from the untargeted (database search) step and from the targeted re-

extraction step as input. FDR was then estimated using the target-decoy approach [1] 

based on the maximum peptide ion probability (iProphet probability from the 

untargeted database search step or the probability based on U-score from the 

targeted re-extraction step, also labeled as iProphet probability in the pepXML files 

as explained above). A master protein list corresponding to 1% FDR for each dataset 

was first generated. A protein in the master list was then considered identified in an 

individual run if it had at least one peptide ion identified in that run that was 

included in the 1% FDR set at the dataset level, or if there was a peptide ion 

identified with probability 0.99 or higher at the targeted re-extraction step. The 

number of protein identifications obtained this way is shown in Table C-1, Table C-2, 

and Table C-3(column “Protein IDs (1% dataset level FDR)”). 

4.2.16 Targeted re-extraction analysis using external libraries 

The targeted re-extraction module in DIA-Umpire v2 is also compatible with 

external library search. As described above, the purpose of the internal library 

search is to reduce the number of missing identifications for individual DIA runs, 

and it does not increase the total number of peptide ion identifications for the entire 

dataset. If there is an external spectral library which contains additional peptide 

ions, using the sensitive targeted re-extraction scoring, additional peptides could be 

identified. In this study, we used the Q Exactive HEK-293 dataset to test the 
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performance of external library search. We used the DDA sample-specific library 

(built from HEK-293 parallel DDA experiments), which was published with the 

original paper [27], and a human combined assay library (Human-CAL) [36] 

deposited at SWATHAtlas repository (phl004_canonical_s64_osw_decoys.TraML). 

The targeted re-extraction module of DIA-Umpire requires decoy spectra for semi-

parametric mixture modeling and posterior probability calculation. But the DDA 

sample-specific library which the authors provided with the original manuscript did 

not contain decoy spectra. Therefore we used the “shuffle-and-reposition” method 

[63] to generate a decoy spectrum for each peptide ion for the DDA sample-specific 

library (29,243 peptide ions). For the Human-CAL library, because it contains decoy 

spectra generated by OpenSWATH pipeline, we directly used the decoy spectra 

provided in the TraML file. 

The workflow of DIA-Umpire external library search is shown in Figure 4-2. For 

each DIA run, a peptide ion from an external library is classified as an “identified 

peptide ion” if it was confidently identified either by database search (in 1% FDR set 

at the dataset level) or by internal library search (U-score probability equal or 

higher than 0.99), otherwise the peptide ion is classified as a “target peptide ion”. 

First, all the identified peptide ions are used to build a retention time alignment 

model using the nonlinear regression approach described previously [41]. The 

retention time alignment model represents the retention time mapping from 

normalized retention time scale in the external library to the observed retention 

time scale in the particular DIA run. For each target peptide ion, a predicted 

retention time and a corresponding prediction variance in the DIA run are 
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calculated by the retention time alignment model given the normalized retention 

time of the target peptide ion in the external library (for examples of retention time 

alignment model, please see Figure 4-10B and Figure 4-10D). All the precursor-

fragment groups within the retention time range (RT width determined by the 

prediction variance) and the precursor m/z range (15 p.p.m) are scored against the 

library spectrum of the target peptide ion. The calculated U-scores of all target 

peptide ions are then deconvoluted by the semi-parametric mixture modeling to 

compute posterior probabilities of true identifications. In this study we used 0.99 as 

the probability threshold to determine confident identifications from the external 

library searches. 

 
Figure 4-2 Workflow of DIA-Umpire external library search 

4.2.17 Data availability 
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All Orbitrap Fusion mass spectrometry data files and DIA-Umpire results for all 

the datasets presented in this paper have been deposited at the ProteomeXchange 

Consortium (http://proteomecentral.proteomexchange.org/) via the PRIDE partner 

repository with the data set identifier PXD003179.  

4.3 Results 

4.3.1 Improved feature detection using fractional mass and isotope 

pattern filters  

The DIA-Umpire workflow relies on detection of precursor and fragment ion 

signals by the feature detection algorithm. The sensitivity of the feature detection 

algorithm is a key factor for successful extraction of pseudo MS/MS spectra and 

subsequent untargeted peptide identification using database search. To increase the 

number of identifications, minimal filtering criteria can be applied to extract as 

many features as possible. In doing so, false (noise) features do not always 

negatively affect the results because MS/MS database search with FDR filtering can 

effectively eliminate randomly assembled pseudo MS/MS spectra. However, it is not 

always practical to consider all possible features because the overall computation 

costs (time and memory usage) increase with the number of features extracted from 

the data. In large datasets, this could become an issue, especially for the processing 

steps of DIA-Umpire’s precursor-fragment grouping algorithm and for MS/MS 

database searching. Therefore, one challenge for the untargeted feature detection 

approach of DIA-Umpire is to find a reasonable balance between the number of 

missed signals and the total computation costs. To address this issue, we introduced 



108 
 

two new filters in DIA-Umpire v2 to remove detected precursor ion and fragment 

features that are less likely to be true peptide features (see 4.2 for details).  

We first investigated the effects of the feature detection filters using two DIA 

runs, one from the Orbitrap Fusion 10 Da isolation window width dataset generated 

as part of this work, and the other from the publicly available HEK-293 Q Exactive 

DIA dataset. We processed these two DIA runs through DIA-Umpire signal 

extraction module without any filtering to maximize the number of detected 

precursor features. The pseudo MS/MS spectra extracted by DIA-Umpire were then 

searched using X! Tandem, Comet, and MSGF+ search engines, and the results from 

all three search engines were further combined by iProphet analysis. Peptide ion 

identifications were filtered to achieve 1% peptide ion level FDR (see 4.2 for details 

regarding MS/MS database search and FDR calculations). All confidently identified 

peptide ion were linked to the corresponding detected precursor features. 
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Figure 4-3 Effects of feature detection filtering.  

(A) The fractional mass of detected precursor features from the first replicate of the 

Orbitrap Fusion DIA 10 Da dataset. The grey and red dots represent unidentified and 

identified features, respectively. Blue regions are the valid regions of the fractional mass 
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filter. (B) Same as (A), results for the first replicate of HEK-293 Q Exactive dataset. (C) The 

number of identified precursor features at different isotope pattern fitness probability 

thresholds, the Orbitrap Fusion data. (D) Same as (C), the Q Exactive data. (E) The results of 

applying the isotope pattern filter alone or combination with the fractional mass filter, the 

Orbitrap Fusion data. (F) Same as (E), the Q Exactive data. 

In total, there were 416,607 and 812,944 precursor features detected in the 

Orbitrap Fusion and Q Exactive runs, respectively. Of these, only 33,173 (7.9%) and 

17,759 (2.1%) features were identified at 1% FDR threshold, respectively, in these 

two datasets. Figure 4-3A and Figure 4-3B plot the fractional masses of the 

identified and unidentified features in different mass ranges for the two DIA runs, 

with the valid fractional mass regions (d=0.1) highlighted in blue. Clearly, the 

fractional masses of almost all of the identified features were in the valid fractional 

mass regions. We then applied the fractional mass filter, which effectively removed 

86,845 (22.6%) and 215,509 (27%) of the unidentified features for the Orbitrap 

Fusion and the Q Exactive run, respectively, at a loss of only 0.13% and 0.45% of 

true identifications for the Orbitrap Fusion run and the Q Exactive run, respectively. 

As for the isotope pattern filter, Figure 4-3C and Figure 4-3D show the numbers 

of identified precursor features remained at different isotope pattern probability 

thresholds. The majority of the identified features had an isotope pattern 

probability of 0.8 or higher (95.6 % for the Orbitrap run and 96.9 % for the Q 

Exactive run). However, there were a small number of identified peptide ions which 

had extremely low isotope pattern probabilities. Some of these cases may be due to 

co-elution with other high abundance peptide ion signals, whereas others could be 

false identifications. Overall, the isotope pattern probability threshold was found to 
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be useful for achieving the right balance between the identification sensitivity and 

the computational cost.  

By combining the two filters, the fractional mass filter and the isotope pattern 

filter, it becomes possible to effectively reduce the number of extracted features 

without a significant reduction in the number of identified peptides. Figure 4-3E and 

Figure 4-3F show the receiver operating characteristic (ROC) curves of the detected 

features for the two DIA runs. Based on this analysis, and for the remainder of this 

study, we applied the fractional mass filter with d=0.1 and the isotope pattern 

probability threshold of 0.3. These parameters were also selected as the default 

settings in DIA-Umpire v2.  

4.3.2  Q Exactive DIA datasets 

We first evaluated the performance of DIA-Umpire untargeted identification 

analysis workflow using the complete Q Exactive DIA datasets published by 

Bruderer et al [32], including the HEK-293 cells and the human microtissue datasets 

(see 4.2). In the original publication, the authors used a conventional spectral 

library-based targeted extraction workflow using Spectronaut software. To build 

the spectral library, parallel DDA experiments were conducted using the same 

samples. Because DIA-Umpire allows library-free analysis, in this study we did not 

use the DDA-derived spectral library. Instead, the DDA data were used for 

comparing the number of identifications obtained using DIA and DDA strategies.  
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The DIA data were first processed using DIA-Umpire v2 signal extraction module 

(DIA_Umpire_SE.jar) to generate pseudo MS/MS spectra (see 4.2 for details). The 

spectra were searched using X! Tandem, Comet, and MSGF+ search engines. The 

results from the individual search engines were combined using iProphet, and 

protein lists were assembled using ProteinProphet. The corresponding DDA data 

were processed in a similar way. The results (peptide ion and protein identifications) 

were filtered at 1% FDR independently for each run (see 4.2, Table C-1 for HEK-293 

cells, and Table C-2 for liver microtissue data). One average, the numbers of peptide 

ions identified per run at 1% FDR was slightly higher in DIA compared to DDA data 

(Table C-1 and Table C-2, columns “Peptide ion IDs (1% FDR run level)”). The 

number of proteins identified per run was comparable between DIA and DDA in 

HEK-293 data, and slightly less in DIA data than DDA data in the liver microtissue 

dataset (Table C-1 and Table C-2, “Protein IDs (1% FDR run level)” column).  
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Figure 4-4 Identification numbers and reproducibility in the Q Exactive DIA and 

DDA datasets.  

(A) The number of peptide ion identifications at individual run level in different datasets; 

(B) The coverage of peptide ion identifications (identification reproducibility across the 

dataset); (C) Same as (A), protein level; (D) Same as (B), protein level.  

After the untargeted identification step, the DIA-Umpire’s targeted re-extraction 

module was used to generate internal spectral libraries (from the spectra identified 

at 1% FDR at the dataset level), followed by targeted re-extraction with internal 
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library to reduce the number of missing identifications across the replicates of the 

same dataset. Figure 3 shows that, after targeted re-extraction and with the data 

filtered at 1% FDR at the dataset level (see 4.2), DIA clearly outperformed DDA with 

respect to the number of peptide ions (Figure 4-4A) and proteins (Figure 4-4C) 

identified on average per run in both HEK-293 and liver microtissue datasets 

(individual run numbers are shown in Table C-1 and Table C-2, columns “Peptide 

ion IDs (1% FDR dataset level)” and “Protein IDs (1% FDR dataset level)”). Note that, 

for fair comparison, the number of identifications per run in DDA was counted after 

dataset level filtering as well.  

Importantly, DIA data resulted in better identification coverage across different 

runs within the same dataset. Identification coverage for an individual run is defined 

here as the fraction of the total number of identifications in the dataset identified at 

1% FDR (dataset level) that were detected in that run. The identification coverage 

was in the range of 63-79% at the peptide ion level and 82-91% at the protein level 

in DIA data, compared to 38-54% at the peptide ion level and 69-81% at the protein 

level in DDA data (Figure 4-4B and Figure 4-4D). These results were consistent with 

the original findings by Bruderer et al [27] for these data that demonstrated a very 

high completeness (i.e. low number of missing quantification values across different 

runs) that could be achieved using DIA.  
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Figure 4-5 Number of identifications as function of FDR in the Q Exactive datasets. 

(A) Peptide ion identifications, HEK-293 Q Exactive DIA and DDA data. (B) Protein 

identifications, HEK-293 Q Exactive DIA and DDA data. (C) Same as (A), liver microtissue Q 

Exactive DIA and DDA data. (D) Same as (B), liver microtissue Q Exactive DIA and DDA data. 

However, we also observed that the total number of peptide ion identifications 

per dataset (vs. individual run numbers discussed above) was higher in DDA than in 

DIA data, especially in the very low FDR range (below 1%). This is evident from 

Figure 4-5, which plots the ROC curves for the total number of peptide ion and 
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protein identifications for each dataset. DIA data identified approximately 15% less 

peptide ions at 1% FDR in both datasets. At the protein level, the numbers were 

similar in the HEK-293 data, and DIA identified approximately 5% less proteins than 

DDA in the liver microtissue dataset. This shows that, using the spectral library-free 

workflow of DIA-Umpire, the main advantage of DIA versus DDA data remains to be 

better identification coverage (and thus quantification completeness) across the 

dataset, whereas DDA still provides a slight advantage in the total depth of the 

analysis. Note that the total number of peptide ions (and proteins) that can be 

quantified in DIA data using conventional targeted extraction methods is always less 

than that in DDA data since the extraction is limited to peptides present in the target 

spectral library built from the DDA data.   

The original analysis of these data using targeted, spectral library-based 

software Spectronaut reported in [27] claimed almost no missing values (i.e. close to 

100% identification coverage), compared to ~90% identification coverage (at the 

protein level) obtained here using DIA-Umpire. The original manuscript lacks 

sufficient details regarding FDR estimation in Spectronaut, and thus it is possible 

that such a high level of quantification completeness is achieved in part due to 

quantification of background (noise) signals instead of reporting them as missing 

values. Nevertheless, DIA-Umpire does have a limitation in that it relies on the 

detection of precursor ion signals. Peptides with MS1 precursor ion signals that not 

good enough to be detected using untargeted feature detection, but whose 

fragments have sufficiently strong signals in DIA MS2 spectra, are more likely to be 

identified using targeted extraction approaches based on fragment ion profiles 
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alone. Although DIA-Umpire attempts to reduce the number of missing 

identification using targeted re-extraction as a second step, DIA-Umpire queries 

internal library spectra directly against the processed precursor-fragment groups, 

and not against the full raw data. Thus, the targeted re-extraction step of DIA-

Umpire is still limited by the completeness of precursor-fragment signals assembled 

from detected MS1 and MS2 features. However, the untargeted identification 

workflow of DIA-Umpire is compatible with other targeted re-extraction and 

quantification analysis tools. When it is desirable to achieve as few missing 

identifications as possible, a spectral library can be built from DIA-Umpire-derived 

identifications to be used with targeted extraction tools like for more sensitive 

identification and quantification analysis. Although not discussed further in this 

manuscript, the use of DIA-Umpire results as input for targeted extraction analysis 

is already supported in the widely used tool Skyline.  

4.3.3 Orbitrap Fusion DIA datasets 

We next investigated the performance of DIA-Umpire on data from another 

advanced mass spectrometer from the Orbitrap family of instruments, Thermo 

Orbitrap Fusion, which brings high resolution, high mass accuracy, and high scan 

speed capabilities all together in a single instrument. It is capable of acquiring 

MS/MS spectra in either ion trap or in the Orbitrap, allowing implementation of 

conventional DDA, SWATH-like DIA, and several DDA/DIA workflows such as 

pSMART [81]. Here, we conducted five SWATH-like DIA experiments with different 

isolation windows of fixed widths (5, 10, 15, 20, and 25 Da), and two DDA 
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experiments for comparison. Three replicate runs were performed for each 

experiment (see 4.2 for experimental details).  

We processed the DIA and DDA data using same search parameters and FDR 

estimation as described above for Q Exactive data. Figure 4-6A and Figure 4-6C 

show the summary of peptide ion and protein identification numbers, respectively, 

for the DIA and DDA datasets (detailed numbers are shown in Table C-3). There 

were 30,000 - 32,000 peptide ions corresponding to 4,300 - 4,400 proteins 

identified by DDA per run (at 1% dataset level FDR). The best of DIA datasets 

identified similar or slightly higher number of peptide ions (33,000 - 34,000), 

corresponding to 4,000 - 4,200 proteins (slightly lower than DDA). Note that the 

experiments were conducted with only 135 minutes liquid chromatography (LC) 

gradient time and without any fractionation step – impressive numbers for both 

DDA and DIA. Similar to what was observed for Q Exactive dataset above, DIA 

allowed better identification coverage across the runs from the same dataset (Figure 

4-6B and Figure 4-6D).  
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Figure 4-6 Identification numbers and reproducibility in the Orbitrap Fusion DIA 

and DDA datasets. 

(A) The number of peptide ion identifications at individual run level in different datasets. (B) 

The coverage of peptide ion identifications (identification reproducibility across the 
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dataset). (C) Same as (A), protein level. (D) Same as (B), protein level. (E) The number of 

peptide ion identifications as a function of FDR (dataset level, three replicates combined). (F) 

Same as (E), at the protein level. 

In DIA data using Orbitrap Fusion, decreasing the isolation window widths from 

25 Da (the window size used frequently to acquire SWATH-MS data on AB Sciex 

5600 instruments) resulted in higher numbers of identifications per run. The best 

performance was observed at 10 Da isolation width, and the number of 

identification dropped slightly (more at the peptide ion than protein level) with 5 Da 

setting. At the same time, the identification reproducibility (identification coverage) 

was generally better for larger window sizes. Using smaller isolation windows 

reduces the number of co-fragmented peptides and therefore alleviates the 

difficulties of de-convoluting DIA MS/MS spectra using the approach of DIA-Umpire. 

However, using smaller isolation widths increases the number of required MS/MS 

scans to cover the same precursor m/z range, and therefore increases the cycle time. 

For example, narrowing the isolation window size from 10 Da to 5 Da, under the 

instrument settings used in this work, increased the cycle time from 6.2 to 13 

seconds. Longer cycle times result in fewer measurement points acquired per 

peptide elution peak, making the measurement of peak shape correlation between 

precursor and fragment signals less reliable. This, in turn, makes it more difficult to 

detect low abundance and short eluting peptide ions (see Figure 4-7), thus lowering 

the identifications reproducibility (Figure 4-6B and Figure 4-6D).  
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Figure 4-7 Elution time duration of peptide ions in the first replicate of DIA 10 Da 

Orbitrap Fusion dataset.  

Grey: Histogram of identified peptide ion elution durations in the DIA run; Dark Blue: 

Histogram of the peptide ion elution durations which were identified in the replicate of DIA 

10 Da dataset but not identified in any of DIA 5 Da replicates. 

Investigating the total number of identifications per dataset (i.e. combining 

triplicate runs for each dataset) between DIA and DDA at various FDR levels data in 

more details, DDA had more peptide ions identified in the very low FDR range 

(below 0.5% FDR) than DIA with any window size (Figure 4-6E), even though the 

DIA numbers (5 and 10 Da windows) exceeded those of DDA in the FDR range of 

approximately 1% or higher. It is well known that, due to error rate inflation when 

going from peptide to protein level [1], achieving a certain low protein level FDR 

(e.g. 1%) requires peptide identifications passing lower than that FDR value at the 

peptide ion level. This explains why the number of protein identifications at 1% 

protein FDR was higher in DDA data (Figure 4-6F), even though the opposite was 

observed at 1% FDR at the peptide ion level. The reason why in DDA data there 

were more peptide ion identifications with very high confidence (FDR below 1%) is 

that MS/MS spectra acquired using DDA with a tighter isolation width of 1.4 Da 
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were on average less noisy and contained more peptide-specific fragment ions than 

pseudo MS/MS spectra de-convoluted using DIA-Umpire.  

4.3.4 Performance of semi-parametric mixture modeling   

DIA-Umpire v2 implements an improved scoring function and a more robust 

strategy based on semi-parametric mixture modeling with kernel density estimation 

(replacing a parametric Gaussian mixture model) for computing posterior 

probabilities of true identifications (see 4.2 for details). We illustrate these 

improvements here by performing a comparison with the results obtained using 

DIA-Umpire v1.25 [41] on the Orbitrap Fusion and Q Exactive DIA datasets. Figure 

4-8 shows an example of U-score histograms and mixture modeling results obtained 

using the two versions for a single DIA run from the Q Exactive microtissue dataset. 

The results from all the other DIA runs used in this work, including Orbitrap Fusion 

data, as the result from an example DIA run shown in Figure 4-8 shows a wider 

distribution of high scoring (i.e. potentially correct) identifications, while keeping 

the width of the decoy distribution unaffected. This results in a better 

discrimination between the correct and incorrect (decoy) identifications in these 

data. Combining the new scoring and the semi-parametric mixture modeling, DIA-

Umpire v2 can extract more identification at different FDR ranges, especially in Q 

Exactive data.  
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Figure 4-8 Score histograms and mixture modeling  
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(A) Score histograms and parametric Gaussian mixture modeling result obtained using DIA-

Umpire v1.25. (B) Score histograms and semi-parametric mixture modeling result obtained 

using DIA-Umpire v2. (C) The number of targeted re-extraction identifications as a function 

of FDR obtained using DIA-Umpire v1.25 and v2. Data for one representative run from the 

Orbitrap HEK-293 Q Exactive dataset. 

In addition, the flexible mixture modeling by the semi-parametric kernel density 

estimation provides a better fit for the correct distribution than that achievable 

under parametric (e.g. Gaussian shapes) assumptions. This ensures that the 

computed probabilities of correct identifications are more accurate [88]. This is a 

particularly important feature for the external library searches shown next, e.g. for 

combining the results of targeted extraction using the internal library built by DIA-

Umpire with that using external DDA libraries. We also believe it is a preferred 

strategy of modeling the distributions of scores compared to that implemented in 

mProphet and currently used in targeted extraction tools such as OpenSWATH and 

Skyline.  

4.3.5 Performance of external library searches 

We performed DIA-Umpire external library searches on the Q Exactive HEK-293 

DIA dataset. There were 34,475 peptide ion identifications and 3,827 proteins from 

DIA-Umpire untargeted identification analysis (See 4.2.6 for details, the numbers 

were determined by 1% FDR for both peptide ion and protein numbers at dataset 

level). The two external libraries, the sample-specific DDA spectral library [27] has 

29,243 peptide ions and the Human-CAL library contains 205,320 peptide ions. The 

overlaps between the three sets of peptide ions are shown in Figure 4-9A. DIA-
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Umpire identified majority of the peptide ions which were identified by DDA 

experiments. Among the 4,994 peptide ions which were identified only from DIA-

Umpire’s untargeted identification analysis, 2,242 (corresponding to 2,091 peptide 

sequences) of them have unique sequences which were not present in the two 

external libraries, and 1,471 of the remaining peptide ions have unique modified 

peptide species (peptide sequence plus modification type and site), and 1,281 

peptide ions were due to the different charge states detected by DIA-Umpire’s 

untargeted analysis. Note that among these 1,281 peptide ions, 67% of them were 

singly charged ions which are often ignored by DDA. This analysis again shows that 

the DIA-Umpire untargeted analysis is able to identify new peptides even compared 

with the global spectral library like Human-CAL.  

After searching DIA data against external libraries, DIA-Umpire additionally 

identified 2,911 (2,222 + 689, see Figure 4-9B) peptide ions from the DDA sample-

specific library, and 10,879 (8,126 + 2,753, see Figure 4-9C) peptide ions from the 

Human-CAL external library. Combining these two external library searches, we 

were able to identify in total 46,495 peptide ions (Figure 4-9D) which correspond to 

4,540 proteins identified (determined by 1% protein FDR). 
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Figure 4-9 Venn diagrams of peptide ion identifications from DIA-Umpire analysis 

(A) Overlaps between peptide ion identifications from DIA-Umpire untargeted analysis, 

DDA sample-specific library, and Human-CAL library; (B) After the DIA-Umpire external 

library search against DDA sample-specific library, additional 2,911 (689 + 2,222) peptide 

ions were considered confident identifications (equal or above 0.99 U-score probability); (C) 

After the DIA-Umpire external library search against Human-CAL library, additional 10,879 

(2,753 + 8,126) peptide ions were considered confident identifications (equal or above 0.99 

U-score probability); (D) Overlaps of peptide ion identifications after combining the two 

external library searches. 
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It is clear that the two external libraries are very different in terms of the 

number of peptide ions (29,243 vs. 205,320 peptide ions). In addition, the DDA 

experiments for building the two libraries were generated from different mass 

spectrometers and LC systems. The U-score histograms and the retention time 

alignment models of DIA-Umpire reflected these differences, as the examples shown 

in Figure 4-10. Figure 4-10A and Figure 4-10B are the U-score histogram and the 

retention time alignment model, respectively, obtained from the DDA sample-

specific library search for one representative DIA file. Figure 4-10C and Figure 

4-10D are the result figures obtained from the Human-CAL library search for the 

same DIA file. The two different U-score histograms (Figure 4-10A and Figure 4-10C) 

show that a higher proportion of target peptide ions from DDA sample-specific 

library were considered present (higher U-scores) in the DIA run, but most target 

peptide ions from Human-CAL library were not present in the DIA run (U-scores are 

similar to that of decoy hits). It is clear that the flexible semi-parametric mixture 

modeling was able to effectively deconvolute the U-score histograms to accurately 

calculate posterior probabilities for both scenarios. In addition, because there were 

sufficient peptide ions identified from the DIA-Umpire untargeted analysis, 

therefore the robust retention time alignment models (Figure 4-10B and Figure 

4-10D) can be built without using the iRT peptides. 
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Figure 4-10 U-score histograms and retention time alignment for the two external 

library searches 

The results shown in this figure were derived by a DIA run in HEK-293 Q Exactive dataset. 

(A) Score histograms and parametric Gaussian mixture modeling result obtained from DDA 

sample-specific library search; (B) Retention time alignment model obtained from DDA 

sample-specific library search; (C) Score histograms and parametric Gaussian mixture 

modeling result obtained from Human-CAL library search; (D) Retention time alignment 

model obtained from Human-CAL library search. 
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4.4 Discussion 

In this study, we presented DIA-Umpire v2 and demonstrated that it is capable of 

untargeted complex proteome analysis using DIA data generated on Thermo 

Orbitrap mass spectrometers. In addition, the targeted re-extraction module is able 

to perform external library search. Using publicly available Q Exactive DIA data, and 

Orbitrap Fusion data acquired as part of this work, we showed that the DIA datasets 

achieved similar identification numbers and better identification reproducibility 

across samples and replicates than DDA data. With the smaller number of missing 

quantification values, DIA data should provide improved statistical power for the 

post-quantification analysis, e.g. using tools such as mapDIA [90]. Importantly, the 

workflow of DIA-Umpire does not require a spectral library, which should facilitate 

the adoption of DIA strategy for a broad range of discovery proteomics applications. 

DIA-Umpire is fully compatible to many existing DDA-type analysis pipelines, so the 

users can continue using the database search engines and post-processing tools they 

are familiar with to analyze the pseudo MS/MS spectra extracted using DIA-Umpire 

from DIA data.  

DIA-Umpire’s untargeted approach provides an alternative way to process DIA 

data. Unlike other targeted extraction software tools, DIA-Umpire extracts peptide 

precursor and fragment signals without any hypothesis or prior knowledge about 

the content of the samples. The untargeted detection has an advantage of finding 

new peptide ion signals in DIA data that may not be present even in a 

comprehensive spectral build from DDA data. One limitation of the untargeted DIA-
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Umpire strategy is that it relies on good signal quality of precursor ions, most 

notably the MS1 signal quality. The challenge is more apparent for low abundance 

signals present at the noise level, where it becomes difficult to distinguish true 

signals from the noise. Although maximizing the sensitivity of feature detection (i.e. 

extracting as many features as possible) generally also maximizes the identification 

numbers, such a strategy is not always practical due to increase in the analysis time. 

To address this, we introduced in DIA-Umpire v2 two feature quality filters, the 

fractional mass and peak isotope pattern filters, which aim to increase the 

specificity of the feature detection process. Furthermore, because DIA-Umpire-

derived identifications are compatible with other existing DIA targeted extraction 

tools such as Skyline, one can generate a DIA-derived spectral library to perform 

targeted extraction and quantification using those tools, potentially maximizing the 

amount of quantitative information that can be extracted from the data.  

Experiments conducted using an Orbitrap Fusion instrument as part of this work 

demonstrated the high quality of DIA data with respect to the number of 

identifications and the identification reproducibility. Future work should also 

explore the accuracy of peptide and protein quantification that can be extracted 

from these data, either using the fragment ion intensities from MS2 data or MS1 

precursor ion intensities (as both quantification options are supported in DIA-

Umpire). It should also be noted that the quality of MS1 signal and good 

chromatography are very important for DIA-Umpire analysis, as these factors 

ensure accurate detection of precursor features and assembly of precursor-

fragments groups. Evaluation of the Orbitrap Fusion data acquired using different 
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window sizes showed noticeable differences in the numbers of identified peptides 

and proteins, with an overall preference for a 10 Da window size. However more 

comprehensive and consistent evaluation of different instrument settings should be 

performed in the future work. Finally, the analysis presented here was primarily 

concerned with the untargeted, spectral-library free workflow of DIA-Umpire. Thus, 

evaluation of the performance of targeted extraction tools on DIA data generated on 

an Orbitrap Fusion instrument, or comparison between different computational 

strategies for the analysis DIA data goes beyond the scope of this work. Nevertheless, 

we hope that the data generated as part of this work, which we make available via 

the ProteomeXchange consortium database (PXD003179), can be used for that 

purpose in the future.  

4.5 Contributions 

The results presented in this chapter could not have been done without the efforts 

of the great collaboration. I am grateful and fortunate to have them for the project.  

Chih-Chiang Tsou: developed the algorithms, implemented the software, designed 

experiments, analyzed the data, and wrote the manuscript draft.  

Chia-Feng Tsai: acquired mass spectrometry data, designed experiments, and 

provided inputs for manuscript. 

Alexey I Nesvizhskii: provided inputs for algorithm development, supervised the 

project, and wrote the manuscript. 
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Chapter 5 Conclusions and future directions 

The dissertation work presented a comprehensive computational platform 

called DIA-Umpire for proteomics data acquired by data-independent acquisition 

(DIA). Because of the challenges of DIA data analysis (See Chapter 1), spectral 

library-dependent approaches were most commonly used for DIA proteomics data 

analysis. As the drawbacks were discussed in 1.5, building a spectral library 

requires large amount of samples and huge MS analysis time on parallel DDA 

experiments. Therefore, there is a need for new developments of computational 

approaches which allow untargeted analysis for proteomics data acquired by DIA 

without a spectral library. 

In Chapter 2, a signal feature detection algorithm was developed to extract 

meaningful peptide precursor and fragment signal features from DIA data to enable 

sensitive peptide and protein identifications. This workflow is fully compatible with 

most currently existing DDA-based peptide and protein identification tools, 

including database and spectral library search engines as well as FDR estimation 

methods. It allows identification of peptides directly from DIA data in an untargeted 

manner, i.e. without the need for building sample-specific spectral libraries using 

parallel DDA runs or relying on pre-existing libraries that may not accurately 

represent the peptides in the samples under investigation. We showed that this 
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direct, untargeted workflow was able to identify similar number of identifications 

compared to the conventional DDA approach. 

In Chapter 3, a targeted re-extraction approach for quantification analysis was 

developed and integrated into DIA-Umpire pipeline. It searches the DIA-Umpire 

preprocessed DIA data against an internal spectral library built from the initial 

identifications from database search for a dataset. Using this hybrid approach, DIA-

Umpire is able to perform more consistent identification and quantification across 

multiple DIA runs. In addition, we showed that such reproducible and reliable 

quantification is possible using both DIA MS1 and MS2 data with accurate protein 

quantification. The whole DIA-Umpire pipeline was further demonstrated to be able 

to capture sensitive protein-protein interaction profile without a prior spectral 

library for complete DIA analysis. 

In Chapter 4, several algorithms were further improved, including the feature 

detection algorithm, the targeted re-extraction scoring, and the mixture modeling 

for posterior probability calculation. In addition, we showed that the pipeline is 

capable of untargeted complex proteome analysis using DIA data generated from 

Thermo Orbitrap mass spectrometers and is compatible with external library 

searches. Using publicly available Q Exactive DIA data, and Orbitrap Fusion data 

acquired as part of this work, we showed that the DIA datasets achieved similar 

identification numbers and better identification reproducibilities across samples 

and replicates than DDA data. With the smaller number of missing quantification 
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values, DIA data should provide improved statistical power for the post-

quantification analysis. 

In summary, DIA-Umpire provides comprehensive analysis including 

identification and quantification for proteomics data acquired using DIA. It accepts 

standard spectral data formats and supports various mass spectrometers. Most 

importantly, the workflow of DIA-Umpire does not require a spectral library, which 

should facilitate the adoption of DIA strategy for a broad range of discovery 

proteomics applications. DIA-Umpire is fully compatible with many existing DDA-

type analysis pipelines, so the users can continue using the database search engines 

and post-processing tools they are familiar with to analyze the pseudo MS/MS 

spectra extracted using DIA-Umpire from DIA data. All the work presented in this 

dissertation is integrated as an open-source software package and written in Java 

programming language (v1.7) which can be executed in almost all operating 

systems including Windows, Linux and Mac OS. Example data and tutorial 

documents are publically available at http://diaumpire.sourceforge.net, and the 

source code is licensed under Apache 2.0 and available at 

https://github.com/cctsou/DIA-Umpire.   

After the introduction of DIA-Umpire, the untargeted, spectral library-free 

approaches have been an emerging trend for DIA analysis. In contrast to DIA-

Umpire which mainly focuses on single DIA run processing, Group-DIA [91] 

combines elution signal profiles of the same peptide ion across multiple DIA runs by 

retention time alignment to enhance the quality of precursor-fragment pairs. The 

http://diaumpire.sourceforge.net/
https://github.com/cctsou/DIA-Umpire
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authors showed that using this strategy Group-DIA was able to achieve better 

performance of untargeted identification and more reliable quantification compared 

to DIA-Umpire and OpenSWATH. Another newly published DIA analysis tool, 

MSPLIT-DIA [92], assumes peptide multiplicity in a single DIA MS2 spectrum, 

therefore allowing multiple peptide ions from spectral library to be identified by a 

single multiplexed DIA MS2 spectra. Using a DIA-specific scoring based on score 

profile which is similar to the concept proposed by Weisbrod et al [93], MSPLIT-DIA 

was shown to be a more sensitive DIA identification analysis tool compared to other 

competitors. MSPLIT-DIA is a spectral library-dependent method, although it was 

described as an untargeted identification approach as long as a global spectral 

library is provided, e.g. the comprehensive human SWATH combined assay library 

(Human-CAL) [35] mentioned in Chapter 4. Note that all spectral library-dependent 

tools described in 1.5 can be considered as untargeted analysis tool by such 

definition.  

DIA-Umpire requires precursor ion signals to be detected to generate pseudo 

MS/MS spectra. The accurate mass of detected precursor signal is critical to restrict 

search space of peptide precursor masses. Most of the spectral library-dependent 

tools, such as OpenSWATH and MSPLIT-DIA, do not rely on precursor signals to 

restrict the precursor mass search space. Instead, they use isolation window m/z 

range to roughly restrict the search space (e.g. 25 Da in the standard SWATH). The 

advantage of not relying on precursor signals is that it allows identifications of low 

abundance peptide ions whose precursor signals may be too weak to be reliably 

detected by feature detection algorithm. On the other hand, however, as the 
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examples shown in Figure 2-12, false identifications of modified peptide species can 

easily reach statistically significant scores because they have similar spectral 

(fragmentation) pattern with unmodified peptide species (or other different 

modification forms). We believe that the presence of precursor signal is a key to 

unambiguously distinguish peptide ion from its different modified or unmodified 

peptide species. Nevertheless, it is still important to further investigate how to 

unambiguously identify those low abundance peptide ions which do not have 

reliable precursor signals but do have fairly good fragment signals in DIA MS2 

spectra. The future directions of this dissertation work could include modifying the 

feature detection algorithm described in 2.2.5 to detect and group fragment signals 

without requirements of parent precursor signals. The grouped fragment signals 

can be further classified into different signal quality tiers determined by the 

presence of possible precursor signals. For the quality tier of fragment groups 

where no reliable precursor signal is detected, a new scoring or a new target-decoy 

strategy needs to be specifically developed to make sure the identifications are 

reliable and not misidentified because of modified versions of other peptide species. 

The future directions shall also include more rigorous assessments on quantification 

performance of DIA-Umpire. OpenSWATH [28] was published with a Gold Standard 

(SGS) peptide dataset which includes ~300 peptides with various concentrations. 

Using the SGS dataset, we would be able to test quantification performance and also 

further understand the identification limit of DIA-Umpire.   

The key feature of DIA data is the full MS2 fragment map for all peptide ions 

across entire LC range. This feature creates challenges for analysis but more 
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importantly it opens up a lot of opportunities and allows one to analyze DIA data in 

different ways, as evidenced by the two newly published DIA tools [91, 92] which 

take advantage the additional information to improve DIA identification analysis. In 

the near future, as the new mass spectrometers continue to improve sensitivity and 

scan rate, more technological developments such as new DIA variants are expected 

to be on the horizon. The continuous development of novel algorithms and 

computational tools for addressing the new challenges derived from the 

forthcoming DIA methods are essential and will remain a major trend in 

computational mass spectrometry.  
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Appendix A Supplementary materials for Chapter 2 

 
Figure A-1 Untargeted peptide identification using DDA and DIA data from human 

cell lysate samples using three search engines combined.   



139 
 

DIA pseudo MS/MS spectra were searched using X! Tandem, Comet, and MSGF+, and 

combined using iProphet. Protein and peptide ion identifications were then filtered at 1 % 

FDR using target-decoy approach. (a) The numbers of proteins and peptide ions identified 

at 1% FDR in DDA and in DIA data. Left: number of protein identifications in each 

experiment (1,831 proteins identified from DDA data, 1,692 from DIA, 1,964 in total). Right: 

Total number of peptide ion identifications from two replicates (10,822 peptide ions 

identified from DDA data, 10,922 from DIA, 14,997 in total). Compared to using X! Tandem 

only (main text, Figure 4) when the results from all three search engines were combined the 

number of identifications increased in both DDA (by 17% and 11% for peptide ions and 

proteins, respectively) and in DIA data (by 25% and 16% for peptide ions and proteins, 

respectively). However, the overlap between the DIA and DDA identified peptide ions and 

proteins increased only slightly, to 45% and 79%. Of the peptide ions identified by DIA and 

not DDA at 1% FDR (total 4,175 peptide ions), the majority of the remaining peptide ions 

were not identified by DDA because no MS/MS was acquired (2,742). (b) Percent of 

fragments ions matched in pseudo MS/MS spectra extracted from DIA data as a function of 

the MS1 peptide ion identity in DDA data. Data points (peptide ions) and the summary 

density plots are labeled according to the three categories of peptide ions: ions identified 

from DIA data at 1% FDR (“Identified in DIA”; blue), and unidentified in DIA (orange; these 

ions were located in DIA data as described in Online Methods). (c) Comparison between 

DDA and DIA in terms of numbers of fragments matched among two categories of peptide 

ions, showing that peptide ions identified with confidence from DDA but not DIA have fewer 

fragment ions that could be matched. 
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Figure A-2 Untargeted peptide identification using DDA and DIA data from E. coli 

cell lysate samples with X! Tandem search engine. 

Results for E. coli data were similar to those obtained for human cell lysate data (see Figure 

2-8). 
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Figure A-3 Untargeted peptide identification using DDA and DIA data from E. coli 

cell lysate samples with three search engines combined.  

Results for E. coli data were similar to those obtained for human cell lysate when using X! 

Tandem, Comet, and MSGF+ (combined using iProphet; see Figure A-1). 
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Figure A-4 Comparison between untargeted DIA-Umpire analysis and 

OpenSWATH targeted extraction: effect of the search space. E. coli cell lysate data. 

Results similar to those presented from human cell lysate were obtained for E. coli data. 
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Figure A-5 Example of an ambiguous identification of the deamidated peptide 

NSPLDEENLTQENQDR by OpenSWATH targeted search. 

Two separate identifications (in unmodified form and in a deamidated form; the site of the 

modification is shown in red) were reported by OpenSWATH. The two identifications both 

had an extremely small m_score (from mProphet), i.e. they both were reported as high 

confidence identifications. The two identifications had identical retention times. The MS1 

signal image shown above suggests there is only one peptide eluting at RT = 47.98 minutes 

(precursor m/z of 951.42 Da). DIA-Umpire reported only one (unmodified) form. 
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Figure A-6 Example of an ambiguous identification of the peptide DIENFNSTQK by 

OpenSWATH targeted search.  

Two separate identifications with different modification site compositions (with one and 

two deamidations; modification site shown in red) were reported by OpenSWATH. The two 

identifications both had a small m_score (from mProphet), i.e. they both were reported as 

high confidence identifications. The two identifications had almost identical retention times 

(within 0.02 minute). The MS1 signal image shown above suggests there is only one peptide 

eluting at RT = 37.4 minutes (precursor m/z of 598.77 Da). DIA-Umpire reported only one 

(singly deamidated) form, further supported by the presence of NXS/T motif covering the 

reported site. 
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Figure A-7 Example of an ambiguous identification involving the deamidated 

peptide TGNGLFLSEGLK.  

Two separate identifications were reported (in unmodified and in deamidated form) by 

OpenSWATH. The two identifications both had an extremely small m_score (from 

mProphet), i.e. they both were reported as high confidence identifications. The two 

identifications had identical retention times. The MS1 signal image shown above suggests 

there is only one peptide eluting at RT = 67.6 minutes (precursor m/z of 618.33 Da), which 

was identified by DIA-Umpire as unmodified peptide. In addition, DIA-Umpire identified the 

deamidated form of the peptide at retention time of 69.99 minutes (also marked on the MS1 

signal image). 
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Figure A-8 Example of an ambiguous identification of the deamidated peptide 

VAPEEHPTLLTEAPLNPK by OpenSWATH targeted search.  

Two separate identifications (in unmodified form and in a deamidated form; the site of the 

modification is shown in red) were reported by OpenSWATH. The two identifications both 

had an extremely small m_score (from mProphet), i.e. they both were reported as high 

confidence identifications. The two identifications had almost identical retention times. The 

MS1 signal image shown above suggests there is only one peptide eluting at RT = 63.58 

minutes (precursor m/z of 652.68 Da). DIA-Umpire reported only one (unmodified) form. 
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Table A-1 List of the raw files deposited at ProteomeXchange. 

UPS1 and UPS2 are Universal Protein Standards samples from Sigma; E. coli predigested lysate is from Waters; human predigested 

lysate is from Promega; the affinity-purified samples EIF4A2, MEPCE and the GFP negative control were described in Lambert et 

al., Nature Methods, 2013.  The acquisition method (DDA or DIA/SWATH) is listed, along with the MS1 accumulation time (UPS2 

plus E. coli samples). The "ProHits sample ID" refers to the unique identifier for the sample in the Lunenfeld-Tanenbaum LIMS, in 

project 94. 

Short name Sample Instrumen
t  

Acquisit
ion 

DIA 
MS1 

params 
Raw file name (in MassIVE) 

ProHits 
sample 

ID 

UPS1_DIA_5
0ms_MS1 

UPS 1 standard (The raw files' 
name were mislabeled, the 

corrected name is 
" Swath_UPS1_40fm-repX") 

TripleTOF 
5600 DIA 50 ms 

Swath_UPS1_40fm_Ecoli_1ug-rep1  17276 
Swath_UPS1_40fm_Ecoli_1ug-rep2 17277 
Swath_UPS1_40fm_Ecoli_1ug-rep3 17278 

UPS1_DIA_2
50ms_MS1 

UPS 1 standard (The raw files' 
name were mislabeled, the 

corrected name is 
"LongSwath_UPS1_40fm-repX") 

TripleTOF 
5600 DIA 250 ms 

LongSwath_UPS1_40fm_Ecoli_1ug-rep1  17279 
LongSwath_UPS1_40fm_Ecoli_1ug-rep2 17280 
LongSwath_UPS1_40fm_Ecoli_1ug-rep3 17281 

UPS2_Ecoli_
DIA_50ms_

MS1 
UPS2 in E. coli lysate TripleTOF 

5600 DIA 50 ms 
Swath_UPS2_5pm_Ecoli_1ug-rep1 17238  
Swath_UPS2_5pm_Ecoli_1ug-rep2 17239 
Swath_UPS2_5pm_Ecoli_1ug-rep3  17240  

UPS2_Ecoli_
DIA_250ms_

MS1 
UPS2 in E. coli lysate TripleTOF 

5600 DIA 250 ms 
LongSwath_UPS2_5pm_Ecoli_1ug-rep1  17241 
LongSwath_UPS2_5pm_Ecoli_1ug-rep2 17242 
LongSwath_UPS2_5pm_Ecoli_1ug-rep3  17243 

UPS2_DDA UPS2 standard TripleTOF 
5600 DDA N/A 

18185_REP2_4pmol_UPS2_IDA_1 18185 
18187_REP2_4pmol_UPS2_IDA_2 18187 

UPS2_DIA_2
50ms_MS1 UPS2 standard TripleTOF 

5600 DIA 250 ms 
18186_REP2_4pmol_UPS2_SWATH_1 18186 
18188_REP2_4pmol_UPS2_SWATH_2 18188 

Ecoli_DDA E. coli lysate (Waters) TripleTOF 
5600 DDA N/A 

18483_REP3_1ug_Ecoli_NewStock2_IDA_1 18483 
18485_REP3_1ug_Ecoli_NewStock2_IDA_2 18485 

Ecoli_DIA_2 E. coli lysate (Waters) TripleTOF DIA 250 ms 18484_REP3_1ug_Ecoli_NewStock2_SWATH 18484 



148 
 

50ms_MS1 5600 _1 
18486_REP3_1ug_Ecoli_NewStock2_SWATH

_2 18486 

Human_DD
A Human lysate (Promega) TripleTOF 

5600 DDA N/A 
18299_REP2_500ng_HumanLysate_IDA_1 18299 
18301_REP2_500ng_HumanLysate_IDA_2 18301 

Human_DIA
_250ms_MS

1 
Human lysate (Promega) TripleTOF 

5600 DIA 250 ms 

18300_REP2_500ng_HumanLysate_SWATH
_1 18300 

18302_REP2_500ng_HumanLysate_SWATH
_2 18302 

APMS_EIF4
A2_DDA Purification of EIF4A2 TripleTOF 

5600 DDA N/A 
IDA_EIF4aJune7_Biorep1 17571 
IDA_EIF4aJune7_Biorep2 17572 
IDA_EIF4aJune7_Biorep3 17573 

APMS_EIF4
A2_DIA_250

ms_MS1 
Purification of EIF4A2 TripleTOF 

5600 DIA 250 ms 
LongSwath_EIF4aJune7_Biorep1 17577 
LongSwath_EIF4aJune7_Biorep2 17578 
LongSwath_EIF4aJune7_Biorep3 17579 

APMS_GFP_
DDA Purification of GFP (control) TripleTOF 

5600 DDA N/A 
IDA_GFPJune7_Biorep1 17327 
IDA_GFPJune7_Biorep2 17328 
IDA_GFPJune7_Biorep3 17329 

APMS_GFP_
DIA_250ms_

MS1 
Purification of GFP (control) TripleTOF 

5600 DIA 250 ms 
LongSwath_GFPJune7_Biorep1 17333 
LongSwath_GFPJune7_Biorep2 17334 
LongSwath_GFPJune7_Biorep3 17335 

APMS_MEP
CE_DDA Purification of MEPCE TripleTOF 

5600 DDA N/A 
IDA_MEPCEJune7_Biorep1 17315 
IDA_MEPCEJune7_Biorep2 17316 
IDA_MEPCEJune7_Biorep3 17317 

APMS_MEP
CE_DIA_250

ms_MS1 
Purification of MEPCE TripleTOF 

5600 DIA 250 ms 
LongSwath_MEPCEJune7_Biorep1 17321 
LongSwath_MEPCEJune7_Biorep2 17322 
LongSwath_MEPCEJune7_Biorep3 17323 

Human_QE_
DDA Human lysate (Promega) Q Exactive 

Plus DDA N/A 140120_Lysate90min_38 20135 

Human_QE_
DIA Human lysate (Promega) Q Exactive 

Plus DIA N/A 140120_Lysate_90min_DIA_53 20136 



149 
 

Appendix B Supplementary materials for Chapter 3 

 
Figure B-1 Assessment of retention time and MS1 intensity reproducibility of 

identified peptide ions between DDA and DIA (SWATH) experiments. 

Human cell lysate data. (a) LC retention time (LC peak apex) for peptide ions identified in 

both DDA and DIA experiments. (b) MS1 intensities (monoisotopic peak intensities at LC 

peak apex) of peptide ions identified commonly by DDA and DIA. (c) Reproducibility of DIA 

MS1 peptide ion intensities between two replicates of DIA data. (d) Reproducibility of DIA 
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MS2 fragment ion intensities (at the reconstructed LC peak apex) of peptide ions between 

two DIA replicates. Only matched b- and y-ion fragments were considered. Ion and fragment 

intensities are shown on log2 scale.  
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Figure B-2 Protein quantification in AP-SWATH data. 

Protein intensities are computed using the “MS2 Top6pep/Top6fra, Freq>0.5’ approach. 

Each dot represents computed protein intensities for the same protein in two different 

biological replicates for the same bait (or GFP control). 
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Appendix C Supplementary materials for Chapter 4 

Table C-1 Detailed identification results of HEK-293 Q Exactive dataset 

Peptide ion IDs (1% Run level FDR): The number of peptide ion identifications determined 

at 1% individual run level FDR threshold for each run. Peptide ion IDs (1% Dataset level 

FDR): The number of peptide ion identifications at 1% dataset level FDR threshold for each 

run. For DIA datasets, the numbers include the additional IDs from targeted re-extraction 

(with a 0.99 probability threshold). Peptide ion ID coverage (Dataset level): Percent of 

peptide ion identifications from the 1% Dataset level FDR peptide ion list that were 

identified in that particular run. Protein IDs (1% Run level FDR): The number of protein 

identifications at 1% individual run level FDR threshold for each run. Protein IDs (1% 

Dataset level FDR): The number of protein identifications at 1% Dataset level FDR threshold 

for each run. Protein ID coverage (Dataset level): Percent of protein identifications from the 

1% Dataset level FDR protein master list identified in that particular run.  

 

Peptide 
ion IDs 

(1% Run 
level FDR) 

Peptide 
ion IDs 

(1% 
Dataset 

level FDR) 

Peptide ion 
ID coverage 

(Dataset 
level) 

Protein 
IDs (1% 

Run level 
FDR) 

Protein 
IDs (1% 
Dataset 

level FDR) 

Protein ID 
coverage 
(Dataset 

level) 

S1_R1_DIA 19,945 24,216 70.2% 2,774 3,359 88.3% 
S1_R2_DIA 19,836 24,440 70.9% 2,818 3,365 88.5% 
S1_R3_DIA 19,075 23,413 67.9% 2,670 3,320 87.3% 
S2_R1_DIA 20,271 24,592 71.3% 2,790 3,402 89.5% 
S2_R2_DIA 19,548 24,277 70.4% 2,672 3,329 87.6% 
S2_R3_DIA 18,650 23,621 68.5% 2,656 3,284 86.4% 
S3_R1_DIA 19,673 23,881 69.3% 2,774 3,346 88.0% 
S3_R2_DIA 19,386 24,336 70.6% 2,724 3,402 89.5% 
S3_R3_DIA 18,693 24,098 69.9% 2,575 3,322 87.4% 
S4_R1_DIA 20,491 24,614 71.4% 2,831 3,413 89.8% 
S4_R2_DIA 19,748 24,702 71.7% 2,786 3,415 89.8% 
S4_R3_DIA 18,662 23,863 69.2% 2,657 3,288 86.5% 
S5_R1_DIA 20,864 24,913 72.3% 2,812 3,409 89.7% 
S5_R2_DIA 19,749 24,258 70.4% 2,636 3,332 87.6% 
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S5_R3_DIA 17,611 24,093 69.9% 2,538 3,344 88.0% 
S6_R1_DIA 20,037 23,844 69.2% 2,727 3,349 88.1% 
S6_R2_DIA 19,893 24,297 70.5% 2,679 3,373 88.7% 
S6_R3_DIA 17,831 23,295 67.6% 2,519 3,253 85.6% 
S7_R1_DIA 20,279 24,484 71.0% 2,726 3,351 88.1% 
S7_R2_DIA 18,703 23,765 68.9% 2,580 3,308 87.0% 
S7_R3_DIA 18,292 23,173 67.2% 2,473 3,229 84.9% 
S8_R1_DIA 19,710 23,733 68.8% 2,633 3,283 86.3% 
S8_R2_DIA 19,270 23,328 67.7% 2,571 3,265 85.9% 
S8_R3_DIA 16,343 21,827 63.3% 2,344 3,118 82.0% 
S1_R1_DDA 17,823 18,194 46.2% 2,692 2,930 77.1% 
S1_R2_DDA 17,459 17,821 45.3% 2,712 2,931 77.1% 
S1_R3_DDA 17,109 17,446 44.3% 2,670 2,870 75.5% 
S2_R1_DDA 17,625 17,952 45.6% 2,638 2,912 76.6% 
S2_R2_DDA 17,074 17,440 44.3% 2,585 2,885 75.9% 
S2_R3_DDA 16,608 16,972 43.1% 2,595 2,834 74.6% 
S3_R1_DDA 17,319 17,599 44.7% 2,639 2,885 75.9% 
S3_R2_DDA 17,938 18,134 46.1% 2,726 2,945 77.5% 
S3_R3_DDA 16,536 17,057 43.3% 2,570 2,868 75.5% 
S4_R1_DDA 18,543 18,776 47.7% 2,782 2,996 78.8% 
S4_R2_DDA 18,231 18,316 46.5% 2,756 2,932 77.1% 
S4_R3_DDA 16,496 16,959 43.1% 2,556 2,805 73.8% 
S5_R1_DDA 17,938 18,276 46.4% 2,708 2,930 77.1% 
S5_R2_DDA 17,162 17,390 44.2% 2,567 2,785 73.3% 
S5_R3_DDA 16,703 16,944 43.0% 2,618 2,801 73.7% 
S6_R1_DDA 17,645 18,088 45.9% 2,611 2,905 76.4% 
S6_R2_DDA 18,030 18,243 46.3% 2,692 2,865 75.4% 
S6_R3_DDA 15,940 16,388 41.6% 2,476 2,747 72.3% 
S7_R1_DDA 17,539 17,951 45.6% 2,623 2,882 75.8% 
S7_R2_DDA 17,688 17,891 45.4% 2,675 2,879 75.7% 
S7_R3_DDA 16,283 16,847 42.8% 2,508 2,793 73.5% 
S8_R1_DDA 17,893 18,021 45.8% 2,690 2,879 75.7% 
S8_R2_DDA 17,198 17,414 44.2% 2,555 2,820 74.2% 
S8_R3_DDA 14,813 15,262 38.8% 2,410 2,658 69.9% 
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Table C-2 Detailed identification results of the microtissue Q Exactive dataset 

Peptide ion IDs (1% Run level FDR): The number of peptide ion identifications determined 

at 1% individual run level FDR threshold for each run. Peptide ion IDs (1% Dataset level 

FDR): The number of peptide ion identifications at 1% dataset level FDR threshold for each 

run. For DIA datasets, the numbers include the additional IDs from targeted re-extraction 

(with a 0.99 probability threshold). Peptide ion ID coverage (Dataset level): Percent of 

peptide ion identifications from the 1% Dataset level FDR peptide ion list that were 

identified in that particular run. Protein IDs (1% Run level FDR): The number of protein 

identifications at 1% individual run level FDR threshold for each run. Protein IDs (1% 

Dataset level FDR): The number of protein identifications at 1% Dataset level FDR threshold 

for each run. Protein ID coverage (Dataset level): Percent of protein identifications from the 

1% Dataset level FDR protein master list identified in that particular run.  

File 

Peptide ion 
IDs (1% 

Run level 
FDR) 

Peptide ion 
IDs (1% 
Dataset 

level FDR) 

Peptide 
ion ID 

coverage 
(Dataset 

level) 

Protein 
IDs (1% 

Run level 
FDR) 

Protein 
IDs (1% 
Dataset 

level 
FDR) 

Protein 
ID 

coverage 
(Dataset 

level) 
S1_DIA_R1 16,678 20,060 74.9% 1,889 2,341 88.6% 
S1_DIA_R2 17,254 20,160 75.3% 1,921 2,333 88.3% 
S1_DIA_R3 17,339 19,994 74.7% 1,921 2,355 89.2% 
S3_DIA_R1 16,550 20,408 76.2% 1,828 2,341 88.6% 
S3_DIA_R2 16,945 20,612 77.0% 1,891 2,368 89.7% 
S3_DIA_R3 16,791 20,191 75.4% 1,881 2,332 88.3% 
S4_DIA_R1 16,639 20,030 74.8% 1,818 2,293 86.8% 
S4_DIA_R2 17,561 21,038 78.6% 1,893 2,393 90.6% 
S4_DIA_R3 17,633 20,644 77.1% 1,900 2,369 89.7% 
S7_DIA_R1 17,841 21,264 79.4% 1,970 2,396 90.7% 
S7_DIA_R2 18,093 21,227 79.3% 1,996 2,412 91.3% 
S7_DIA_R3 17,778 20,574 76.9% 1,926 2,375 89.9% 
S9_DIA_R1 17,068 19,810 74.0% 1,896 2,318 87.8% 
S9_DIA_R2 17,507 20,227 75.6% 1,896 2,365 89.5% 
S9_DIA_R3 17,380 20,307 75.9% 1,969 2,356 89.2% 

pool_DDA_R1 16,514 16,607 53.0% 2,156 2,253 81.1% 
pool_DDA_R2 17,027 16,979 54.2% 2,150 2,255 81.2% 

S1_DDA 12,529 13,195 42.1% 1,787 2,014 72.5% 
S3_DDA 15,966 16,034 51.2% 2,115 2,206 79.4% 
S7_DDA 16,846 16,857 53.8% 2,187 2,258 81.3% 
S9_DDA 15,941 16,093 51.4% 2,121 2,229 80.2% 
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Table C-3 Detailed identification results of Orbitrap Fusion dataset 

Peptide ion IDs (1% Run level FDR): The number of peptide ion identifications determined 

at 1% individual run level FDR threshold for each run. Peptide ion IDs (1% Dataset level 

FDR): The number of peptide ion identifications at 1% dataset level FDR threshold for each 

run. For DIA datasets, the numbers include the additional IDs from targeted re-extraction 

(with a 0.99 probability threshold). Peptide ion ID coverage (Dataset level): Percent of 

peptide ion identifications from the 1% Dataset level FDR peptide ion list that were 

identified in that particular run. Protein IDs (1% Run level FDR): The number of protein 

identifications at 1% individual run level FDR threshold for each run. Protein IDs (1% 

Dataset level FDR): The number of protein identifications at 1% Dataset level FDR threshold 

for each run. Protein ID coverage (Dataset level): Percent of protein identifications from the 

1% Dataset level FDR protein master list identified in that particular run.  

File 

Peptide 
ion IDs 

(1% Run 
level FDR) 

Peptide 
ion IDs 

(1% 
Dataset 

level FDR) 

Peptide ion 
ID coverage 

(Dataset 
level) 

Protein 
IDs (1% 

Run level 
FDR) 

Protein 
IDs (1% 
Dataset 

level FDR) 

Protein ID 
coverage 
(Dataset 

level) 

DIA 5Da R1 28,719 30,336 76.6% 3,846 4,066 92.3% 
DIA 5Da R2 29,434 31,014 78.3% 3,854 4,101 93.1% 
DIA 5Da R3 29,341 30,604 77.3% 3,858 4,101 93.1% 

DIA 10Da R1 31,941 34,117 82.6% 3,691 4,082 93.2% 
DIA 10Da R2 33,159 34,946 84.6% 4,009 4,220 96.3% 
DIA 10Da R3 33,449 34,818 84.3% 3,962 4,190 95.6% 
DIA 15Da R1 29,862 31,419 86.2% 3,545 3,788 95.7% 
DIA 15Da R2 29,953 31,494 86.4% 3,598 3,797 95.9% 
DIA 15Da R3 29,783 31,514 86.5% 3,616 3,818 96.4% 
DIA 20Da R1 26,964 28,606 86.0% 3,342 3,547 96.1% 
DIA 20Da R2 26,605 28,419 85.5% 3,348 3,530 95.6% 
DIA 20Da R3 26,739 28,605 86.0% 3,330 3,532 95.7% 
DIA 25Da R1 23,924 25,926 85.9% 3,125 3,373 96.0% 
DIA 25Da R2 23,880 25,956 86.0% 3,052 3,367 95.8% 
DIA 25Da R3 24,199 26,033 86.3% 3,101 3,385 96.3% 

DDA1 R1 31,851 32,011 79.2% 4,256 4,378 91.6% 
DDA1 R2 31,732 31,944 79.0% 4,257 4,409 92.3% 
DDA1 R3 32,003 32,143 79.5% 4,314 4,413 92.3% 
DDA2 R1 29,623 30,075 71.8% 4,102 4,284 90.6% 
DDA2 R2 29,813 30,186 72.1% 4,123 4,310 91.1% 
DDA2 R3 30,813 30,847 73.7% 4,227 4,319 91.3% 
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