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P R E F A C E

We live in an exciting time for physical cosmology. The ΛCDM model, one of several
viable alternatives two decades ago, has now solidified as the standard cosmological
model. It has been well-constrained and well-tested, passing a wide variety of new and
more stringent cosmological tests. Even with all of this recent progress, ongoing surveys
of unprecedented size, like DES and BOSS, along with future programs like DESI, LSST,
JWST, Euclid, and WFIRST, will bring improvement by orders of magnitude still, allowing
us to robustly test ΛCDM and its possible extensions. These observations, already planned
well into the next decade, will bring new challenges in data management and analysis
and require new theoretical insights and more powerful simulations. If we can rise to the
challenge, we will have many new results, and probably some exciting surprises, to look
forward to in the coming years.

This dissertation is based on work carried out at the University of Michigan from 2011–
2016, all of which has been previously published in peer-reviewed journals. Chapter 2
is based on Ruiz et al. [1]. My overall contribution to that study was roughly 40% and
included Figs. 2.1, 2.3, 2.4, 2.5, 2.6, and 2.11. Chapters 3–5 are based, respectively, on
Shafer et al. [2], Shafer et al. [3], and Shafer [4]. Chapter 6 is based on Huterer et al. [5].
My contribution was roughly 30% and included Fig. 6.1.
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CHAPTER 1

Introduction

1.1 Modern Cosmology from the Cosmological Principle

Cosmology is the subfield of astrophysics concerned with the properties of the universe as a
whole, and it has ancient roots. For thousands of years, cultures throughout the world have
sought to understand and explain the universe in the context of their world view. Through
a mixture of creation stories and other philosophies, often inspired by and tied to careful
observations of the night sky, people have tried to answer the big questions: Where did we
come from? What else is out there? How does it all work? Descriptions of the universe
were as numerous and diverse as the cultures that created them.

On the other hand, only very recently has cosmology become an established science.
The existence of distant galaxies was not accepted by the scientific community until the
early-to-mid 20th century. Even after our basic cosmological picture was established, mea-
surements were so uncertain that determinations of certain key parameters, such as the
Hubble expansion constant and the age of the universe, varied by factors of two. Only in
the last decade or two have we been able to turn cosmology into a precise science; however,
the result is that we are now able to determine many of these important parameters with
percent-level measurement uncertainties.

Cosmology can be modeled in a surprisingly simple framework. On small scales, the
heterogeneity of the universe is apparent. In our Solar System, dense planets and asteroids
move along stable orbits, leaving a near vacuum everywhere else. On galactic scales, we
find dense galaxies and galaxy clusters in some regions and voids elsewhere. On even larger
scales, however, we can map the enormous filaments of large-scale structure that carry us to
the edge of the observable universe. On these scales (&100 Mpc), we can often rely on the
(testable) assumptions of homogeneity and isotropy. Homogeneity is the statement that the
universe is the same everywhere, while isotropy is the statement that there is no preferred
direction. They are consequences of the cosmological principle, which asserts that on the
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largest scales, all properties of the universe are the same for all observers.
From these conditions, we can write down a compatible spacetime metric in the frame-

work of general relativity (see e.g. [6]). We choose one which allows the spatial coordinates
to scale (equally) with time and which allows for space to have uniform intrinsic curvature,
which can be realized in one of three ways, as dictated by the value of the constant k. The
possibilities for k are positive curvature (spherical geometry, closed universe), zero cur-
vature (flat geometry, critical universe), or negative curvature (hyperbolic geometry, open
universe). One can show that the appropriate metric is

ds2 = −dt2 + a(t)2

[
1

1− kr2
dr2 + r2

(
dθ2 + sin2 θ dφ2

)]
, (1.1)

where we have set the speed of light c = 1. This is the famous Friedmann-Lemaı̂tre–
Robertson-Walker (FLRW) metric. From this interval, one can immediately deduce the
corresponding metric tensor gµν and compute the Christoffel symbols, the Riemann tensor,
the Ricci tensor Rµν , and the Ricci scalar R. The resulting Einstein tensor is given by

Gµν = Rµν −
1

2
gµνR

= diag
[

3 (k + ȧ2)

a2
, − Z

1− kr2
, −r2 Z , −r2 sin2 θ Z

]
, (1.2)

where Z ≡ 2aä+ȧ2+k. For consistency, we should apply the assumptions of homogeneity
and isotropy to the stress-energy tensor. With the assumption of a perfect fluid — one with
no shear stresses, heat conduction, or viscosity, the stress-energy tensor is simply

Tµν = (ρ+ p)UµUν + p gµν = diag
[
ρ ,

p a2

1− kr2
, p a2r2 , p a2r2 sin2 θ

]
, (1.3)

where ρ is the fluid’s energy density, p is its pressure, and Uµ = (1, 0, 0, 0) is the four-
velocity. We can now solve the Einstein field equations Gµν = 8πG Tµν using the above.
The equation for the 00 component immediately produces the following result:(

ȧ

a

)2

=
8πG

3
ρ− k

a2
. (1.4)
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The tensor trace gives a second independent result:

gνµ Gµν = 8πG gνµ Tµν

−R = 8πG T νν

− 6

a2

(
aä+ ȧ2 + k

)
= 8πG (−ρ+ 3p) (1.5)

ä

a
= −4πG

3
(ρ+ 3p) . (1.6)

Eq. (1.6) follows from using Eq. (1.4) to rewrite Eq. (1.5). There are, in general, 10 inde-
pendent field equations to solve, but our assumptions (symmetries) leave only four nontriv-
ial equations, two of which are redundant. Although there are no more independent results,
it is possible and often useful to combine the above two equations and write down a third.
If we multiply Eq. (1.4) by a2, take its time derivative, and substitute for ä/a in Eq. (1.6),
we obtain:

ρ̇ = −3
ȧ

a
(ρ+ p) . (1.7)

Often these equations are collectively referred to as the Friedmann equations, but Eq. (1.4)
is often called the Friedmann equation, with Eq. (1.6) called the acceleration equation and
Eq. (1.7) called the fluid equation, an expression of conservation of energy. The quantity
a is the scale factor, and it is the (time-dependent) factor that translates between comoving
distance and physical distance, where comoving distance (also called coordinate distance)
is unchanged by any expansion or contraction of the universe. Comoving distance coincides
with physical distance at the value a = 1.

1.2 The Cosmological Constant and Simple Cosmologies

Einstein, motivated by his expectation of a steady-state universe, added a term Λ gµν to the
Einstein tensor, where Λ is called the cosmological constant. Today, it is widely accepted
that the universe is expanding and not in a steady state; however, the possibility of a cos-
mological constant is intriguing. In fact, if one simply writes the constant term on the other
side of the equation, Gµν = 8πG Tµν − Λ gµν , it has the appearance of a vacuum energy

density, since it contributes to the stress-energy tensor Tµν . With the cosmological constant
included, Eq. (1.4) becomes (

ȧ

a

)2

=
8πG

3
ρ− k

a2
+

Λ

3
, (1.8)
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while Eq. (1.7) is unchanged.
To understand the effect of a so-called vacuum energy, we will first study the Friedmann

equations in more detail. Let us rewrite Eq. (1.8) in a more useful form. The important thing
to remember is that ρ represents the total energy density of the homogeneous universe. But
the universe does not contain only one type of fluid. It contains both matter (ordinary
baryonic matter and non-baryonic cold dark matter) and radiation (hot, relativistic matter
particles like light neutrinos would also be included here). It is also convenient to describe
both curvature and the cosmological constant in terms of an energy density, though it is
important to emphasize that curvature does not actually contribute to a physical energy
density, unlike Λ, which might. So let us define ρi to be the energy density of species i
only, and then let us also define

ρk =
3

8πG

k

a2
, ρΛ =

Λ

8πG
, (1.9)

so that the Friedmann equation becomes

H2 =
8πG

3
(ρ− ρk) , ρ = ρm + ρr + ρΛ , H ≡ ȧ

a
. (1.10)

Here, H is the Hubble parameter, which describes the rate of expansion of the universe;
like a, it is a function of time.

One further simplification is helpful. Notice that if we set ρ = 3H2/(8πG) in
Eq. (1.10), it would imply that k = 0 and the universe is flat. Since k is a constant, if
this is the case at one time, then k is always zero and it is thus impossible for an expanding
universe (ȧ > 0) to contract, though the rate of expansion will approach zero as t → ∞.
This motivates the definition of the critical density ρcrit = 3H2/(8πG) and the fractional
density Ωi = ρi/ρcrit. The Friedmann equation simply becomes Ω− Ωk = 1.

To proceed further, we observe that the two independent Friedmann equations involve
three variables (a, ρ, and p). In order to get some real solutions, we must close the system by
relating two of these quantities. The most obvious way to do that is by assuming an equation
of state, which is a relationship between p and ρ. For the perfect fluids that we want to
describe, the equation of state has the form pi = wiρi, where wi is a constant. For matter,
which is assumed to be cold (non-relativistic), the pressure is negligible compared to the
energy density, so we set wm = 0 so that pm = 0. For radiation, we know from statistical
mechanics that pr = ρr/3 so that wr = 1/3. Although not the case for the other fluids,
we expect the vacuum stress-energy tensor to be Lorentz invariant (all observers should see
the same vacuum). Since Tµν ∝ gµν when pΛ = −ρΛ, we have wΛ = −1. For curvature,
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we can deduce the effective wk from the fluid equation. Substituting the definition of ρk in
Eq. (1.9) into Eq. (1.7) and specifying pk = wkρk, we find that wk = −1/3.

We expect the fluid equation to be valid for any species i. Since we now know the
pressure as a function of energy density for each species, we can solve Eq. (1.7) to find the
energy density ρi as a function of the scale factor a:

ρi = ρi,0 a
−3(1+wi). (1.11)

It is customary to denote present values with a subscript 0 and to fix a0 = 1 (since a is just
a scale factor, its overall normalization has no physical significance, and this is the most
convenient choice).

This result is easy to understand. For matter, wm = 0, so ρm ∝ a−3. This is what
we expect: given some fixed amount of matter, its average mass density is inversely pro-
portional to its volume. The mass of non-relativistic matter is proportional to its energy,
and the actual volume of the universe is proportional to a3, so this result is consistent with
expectations. For radiation (wr = 1/3), we find that ρr ∝ a−4. Here, we still expect the
same dilution factor that applies to matter, but there is an extra factor of 1/a. This is due
to the fact that, as the universe expands, so do the wavelengths of photons, and the energy
of a photon E = hc/λ is inversely proportional to its wavelength. For the cosmological
constant (wΛ = −1), we find ρΛ to be constant. This may seem surprising, but if Λ is in-
terpreted as vacuum energy, this makes sense: the volume of the universe may change, but
the amount of vacuum energy is proportional to the volume of the vacuum, so the density
is constant. The curvature result (ρk ∝ a−2) is less intuitive but is a consequence of the
way we defined curvature density.

Finally, we can rewrite the Friedmann equation one more time by inserting the expres-
sions for ρi(a) and making use of the parameters Ωi that we defined earlier:

H2(a) = H2
0

[
Ωma

−3 + Ωra
−4 + ΩΛ − Ωka

−2
]
, (1.12)

where these Ωi refer to present values even though the subscript 0 is almost always omitted.
Defining the cosmological redshift of photons as

1 + z ≡ λobs

λemit
=

1

a
, (1.13)

we can express Eq. (1.12) equivalently in terms of the redshift:

H2(z) = H2
0

[
Ωm (1 + z)3 + Ωr (1 + z)4 + ΩΛ − Ωk (1 + z)2

]
. (1.14)
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Equations (1.12) and (1.14) are probably the most illuminating and most useful forms of
the Friedmann equation.

Solving for a(t), for instance, is now straightforward, though for a realistic universe
the Friedmann equation must be integrated numerically for a given choice of the Ωi and
H0 parameters. To gain insight, we can solve Eq. (1.12) assuming that the energy density
of the universe is dominated by one of the fluids so that we can ignore the others. This
may seem like a terrible oversimplification, since we know that the universe has multiple
components and has had multiple components in the past; however, since each fluid tends
to dominate during a different epoch, these simpler solutions could in principle be stitched
together to obtain a more complete picture. So let us now find the solution for a(t) when a
fluid with equation of state parameter w is dominant. By integrating the simplified version
of Eq. (1.12),

H2 = H2
0 a
−3(1+w), (1.15)

we find

a(t) =

(
t

t0

) 2
3(1+w)

, w 6= −1. (1.16)

Here we have assumed that the universe had zero size (a = 0) at a time t = 0 (correspond-
ing to the Big Bang) and used the present as a reference point (a(t0) = 1). For the special
case w = −1, one can go back to Eq. (1.15). The result is

a(t) = eH0(t−t0) = e
√

Λ/3 (t−t0), w = −1. (1.17)

Thus we have exponential expansion as a function of time when the cosmological constant
dominates. It is evident from Eq. (1.17) that one cannot have a nontrivial solution with
a = 0 at t = 0, but we were able to set a(t0) = 1 as in the other cases. A summary of the
results for these simple one-fluid universes is given in Table 1.1.

component symbol (i) wi ρi(a) ∝ a(t) ∝
cold matter m 0 1/a3 t2/3

radiation r 1/3 1/a4 t1/2

curvature k −1/3 1/a2 t

cosmological constant Λ −1 1 e
√

Λ/3 t

Table 1.1: Summary of results for simple one-component universes.
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1.3 The Standard Cosmological Model

The currently favored cosmological model features a universe that consists mostly of cold
dark matter and dark energy in the form of a cosmological constant. A Big Bang occurred
13.8 billion years ago, with space itself expanding from a very small, hot, and dense ini-
tial state. Roughly 10−36 seconds after the Big Bang, inflation — a period of very rapid
expansion — occurred, driving any intrinsic curvature to very near zero and seeding the
universe with small, Gaussian density perturbations. A few seconds later, protons and neu-
trons fused to form hydrogen and helium along with trace amounts of heavier elements in a
process called Big Bang nucleosynthesis (BBN), which lasted several minutes. After about
380,000 years, at a redshift z ' 1100, the universe cooled enough for electrons and protons
to combine and form neutral hydrogen, allowing photons to free stream. These photons are
observed today at a temperature of 2.73 K as the cosmic microwave background (CMB).
The universe then entered a period, the Dark Ages, which lasted until the epoch of reion-
ization when the first stars formed and partially reionized the universe. The formation of
galaxies and galaxy clusters followed, creating a large-scale structure imprinted with the
primordial density perturbations and acoustic waves. At z ∼ 1, roughly half the present
age, the expansion of the universe began to accelerate due to the cosmological constant Λ,
which now dominates the energy budget.

This model is called ΛCDM, since the primary ingredients are a cosmological constant
and cold dark matter. With only six free parameters, ΛCDM accurately describes an enor-
mous breadth of cosmological observations and has passed stringent tests in recent years.
The six parameters are: the physical densities of cold dark matter and baryons Ωch

2 and
Ωbh

2, the Hubble constant H0 = 100h km/s/Mpc, the amplitude and index of a power law
primordial power spectrum P (k) = As (k/kpiv)

ns , and the optical depth at reionization τ .
With the minor exception of τ , which is rather poorly constrained at present, Planck CMB
observations [7] alone measure all of these parameters with roughly 1% precision.

Testing the ΛCDM model and characterizing the nature of dark energy are among the
central challenges for modern cosmology. Given the robustness of ΛCDM, it is not surpris-
ing that most alternative models are extensions in the sense that ΛCDM is embedded as a
special case. Such extensions include a non-minimal neutrino sector, where the neutrino
mass sum or the effective number of species is allowed to vary; a non-minimal dark energy
sector, where the equation of state is allowed to be different from −1 and vary with cosmic
time; a nonzero value for intrinsic curvature; and a non-minimal inflationary epoch that
manifests running of the spectral index or a nonzero tensor-to-scalar ratio. Many of these
one- or two-parameter extensions are already well-constrained by combined data (e.g. [7]).
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1.4 Distance Probes of Dark Energy

Here we give a brief overview of the three classic distance probes of dark energy and
cosmic expansion: Type Ia supernovae (SNe Ia), CMB fluctuations, and baryon acoustic
oscillations (BAO).

1.4.1 SNe Ia

SNe Ia alone were used to discover dark energy [8, 9]. They function as bright standard can-
dles — objects with roughly constant or otherwise deterministic luminosity whose apparent
brightnesses can be used to infer distance. SNe Ia are characterized spectroscopically by
the lack of a hydrogen line, distinguishing them from Type II SNe, and the presence of a
singly ionized silicon line, distinguishing them from Type Ib/c SNe. While the other types
are associated with the core collapse of a dying massive star, it is thought that a SN Ia
occurs when mass is accreted onto the surface of a white dwarf from a companion star.
When the white dwarf accumulates enough mass to exceed the Chandrasekhar limit, the
whole star detonates, releasing an enormous amount of energy in the process. Given this
specific mass limit (∼ 1.4M�) for white dwarves, it is not surprising that all SNe Ia release
approximately the same amount of energy.

It is important to note that, whether or not our understanding of this mechanism is
correct, it is an empirical fact that there exist stellar explosions, distinguishable from other
stellar explosions, that tend to have similar peak luminosities. Since these explosions are
very bright, they can be observed at high redshifts, making them useful for measuring
cosmological distances.

The apparent magnitude of a SN Ia is given by

m(z) = 5 log10

[
H0

c
dL(z)

]
+M , (1.18)

where dL is the luminosity distance andM is an offset that depends on the Hubble constant
H0 and the absolute magnitude of a SN Ia, which is a priori unknown. The luminosity
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distance is given by dL(z) = (1 + z) r(z), where

r(z) ≡


R0 sin [χ(z)/R0] Ωk > 0

χ(z) Ωk = 0

R0 sinh [χ(z)/R0] Ωk < 0

(1.19)

χ(z) ≡
∫ z

0

c

H(z′)
dz′ , R0 ≡

c

H0

1√
|Ωk|

. (1.20)

For a flat universe, the Hubble parameter has the form

H(z) = H0

√
Ωm (1 + z)3 + ΩX (1 + z)3(1+w) , (1.21)

where we have left out the radiation contribution, which is negligible for the relatively
low redshifts (z . 2) where we find SNe. Also, we have replaced the Λ term with a
more general dark energy term, assuming a constant equation of state that reduces to Λ if
w = −1.

SNe are not perfect standard candles; their absolute magnitudes vary with a scatter of
∼0.3 mag, corresponding to a distance error of ∼14%. But useful empirical correlations
exist between the peak apparent magnitude and other light-curve properties, notably the
light curve’s stretch (i.e. broadness, decline time) and color measure (e.g. magnitude dif-
ference between two bands). As a rule of thumb, broader is brighter, and bluer is brighter.
These relations further standardize SNe Ia, reducing the intrinsic scatter to ∼0.15 mag or
less for a distance error of less than 7%.

Since these standardization relations are empirical, substantial current work is focused
on how best to model them, determining whether other useful correlations exist, and at-
tempting to quantify any possible evolutionary effects.

1.4.2 CMB

The CMB contains a wealth of cosmological information; it can separately inform us about
the densities of dark matter and baryons, the physics of inflation, and the geometry of the
universe [7]. Until relatively recently, most of this information came from measurements
of the power spectrum of temperature fluctuations, but today these are joined by measure-
ments of the E-mode and B-mode polarization spectra as well as the CMB lensing potential.

On the other hand, CMB observations are very limited in their ability to constrain gen-
eral models of the dark energy equation of state. Since dark energy was negligible at high
redshifts, the CMB is only sensitive to dark energy in how it affects the CMB photons on
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their way to us. While this includes some information from the effect of dark energy on
growth of structure, via the integrated Sachs-Wolfe (ISW) effect and gravitational lensing,
most of the information is encapsulated by a single measure of distance to the surface of
recombination. Since the redshift z∗ of recombination is not known a priori, it is most
appropriate to summarize CMB distance information with a set of observables. A common
choice is to measure z∗ along with

la ≡ π (1 + z∗)
dA(z∗)

rs(z∗)
, (1.22)

R ≡
√

ΩmH2
0

c
(1 + z∗) dA(z∗) , (1.23)

where la is the acoustic angular scale, R is the so-called shift parameter, and rs is the sound
horizon — the distance that a sound wave travels in a time t since the Big Bang, given by

rs(t) =

∫ t

0

cs
a
dt′ , cs =

c√
3 (1 +R)

, (1.24)

where the sound speed cs depends on the ratio of baryon energy density to photon energy
density, with R ≡ 3ρb/(4ργ).

Although these observables basically provide one distance measurement, it is a very
precise distance to a very high redshift, so the approximate result is that it effectively fixes
one parameter describing the geometry of the late universe, for instance, a constraint on
Ωm or a narrow constraint band in the Ωm – w plane.

It is important to be aware of any possible model dependence of these observables.
While they are typically independent of any dark energy model, they will be sensitive to
the overall cosmological model. For instance, the measured value of z∗ might shift if non-
standard neutrino physics is assumed.

1.4.3 BAO

BAO are the regular, periodic fluctuations of visible matter density in large-scale structure
(LSS) resulting from sound waves propagating in the early universe. The BAO signal cor-
responds to a peak in the correlation function at a comoving scale of∼150 Mpc. This scale
is an excellent standard ruler, and measuring the location of the peak at various redshifts
will probe expansion and dark energy. The first detection of the feature in the SDSS LRG
sample [10] has since been replaced by several more precise measurements, including one
at z = 0.106 (6dF, [11]), z = 0.32 (BOSS LOWZ, [12]), and z = 0.57 (BOSS CMASS,
[13]), with the latter achieving a ∼1% distance measurement. BAO can also be detected in

10



other LSS tracers, such as Lyman-α forests, where the feature has been detected at z = 2.34

using BOSS quasars (e.g. [14]).
The typical observable derived from the BAO measurement is DV (zeff)/rd, where zeff

is the median redshift of the LSS survey, rd ≡ rs(zd) is the size of the sound horizon at the
epoch of baryon drag, and DV is a spherical-volume-averaged distance defined by

DV (z) ≡
[
(1 + z)2 d2

A(z)
cz

H(z)

]1/3

. (1.25)

Recently, it has been possible to achieve high signal-to-noise detections using the trans-
verse and radial correlation functions separately, resulting in separate measurements of
(1 + zeff) dA(zeff)/rd and czeff/H(zeff)/rd. In addition to providing more cosmological con-
straining power, these anisotropic measurements can be used to look for exotic departures
from the standard model.

One important caveat when using the BAO observables is that the measurements are
often correlated. This is the case for the anisotropic measurements as well as for mea-
surements at different redshifts and/or from different surveys if there is overlap in survey
volume. Neglecting any significant correlation will lead to incorrect constraints and under-
estimates of errors.

Also, note that comparing data to theory here requires a way to estimate the size of the
sound horizon, which ultimately requires some information from the CMB, such as a prior
on the sound horizon itself, priors on Ωmh

2 and Ωbh
2, or some combination thereof. One

way around this is to use multiple BAO measurements as relative distance indicators, as
one typically does with SNe Ia, and just marginalize over the sound horizon.

BAO measurements are generally thought to be robust and free of systematic effects
at least down to the 1% level, making them effective probes of dark energy, especially at
higher redshifts, where they will likely out-perform SN Ia distances.

Fig. 1.1 illustrates how the three probes (SN Ia, CMB, BAO) complement one another
to constrain dark energy by breaking degeneracies in parameter space. Combining these
and other probes not only allows us to more precisely determine cosmological parame-
ters, it also provides a way to check for consistency and determine whether there are any
unaccounted-for systematic effects.

1.5 Outline

This goal of this dissertation is to investigate systematic effects and perform new cosmo-
logical tests with observational probes of dark energy in anticipation of the precision dark
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Figure 1.1: SN Ia, CMB, and BAO constraints on Ωm and ΩΛ in an open ΛCDM universe
(left panel) and on Ωm and w in a flat universe where the dark energy equation of state is
allowed to vary (right panel).

energy constraints expected in the near future.
Chapters 2–4 study systematic effects in dark energy probes, focusing especially on

constraints from distance probes like SNe Ia. In Chapter 2, we quantify the effect of current
SN Ia systematic errors on dark energy constraints, both for simple parametrizations of the
equation of state and for a general description with principal components. We consider both
SN-only and combined constraints and find that the SN Ia systematics typically degrade
figures of merit by roughly a factor of three, illustrating their importance even for current
data. Separately, we consider the effect on constraints of the finite detection significance of
the BAO feature.

Chapter 3 investigates recent evidence for a phantom dark energy equation of state
using three separate SN Ia compilations (SNLS3, Union2.1, and PS1) in combination with
CMB distance information from either WMAP9 or Planck. Using this distance information
alone, we find nearly 2σ evidence for w < −1 when SNLS3 or PS1 is combined with
Planck. In the process, we introduce new tests to investigate systematic effects. We study
the dependence of the constraints on the redshift, stretch, color, and host galaxy stellar
mass of SNe, but we find no unusual trends. In contrast, the constraints strongly depend
on any external H0 prior: a higher adopted value for the direct measurement of the Hubble
constant (H0 & 71 km/s/Mpc) leads to & 2σ evidence for phantom dark energy. Given
Planck data, and assuming that ΛCDM is correct, we conclude that either the SNLS3 and
PS1 data have systematics that remain unaccounted for or that the Hubble constant is below
about 71 km/s/Mpc.

Chapter 4 is concerned with photometric calibration errors in the galaxy power spec-
trum. We first point out the danger posed by the multiplicative effect of calibration errors,
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where large-angle error propagates to small scales and may be significant even if the large-
scale information is cleaned or not used in the cosmological analysis. We then propose a
method to measure the arbitrary large-scale calibration errors and use these measurements
to correct the small-scale (high-multipole) power which is most useful for constraining the
majority of cosmological parameters. Using a Fisher matrix formalism, we demonstrate
the effectiveness of our approach on synthetic examples and briefly discuss how it may be
applied to real data.

Chapters 5–6 focus on tests of the standard ΛCDM model. In Chapter 5, we use
goodness-of-fit and Bayesian model comparison techniques with model-independent SN
Ia and BAO data to test power law expansion as an alternative cosmological model. We
find that neither power law expansion nor ΛCDM is strongly preferred over the other when
the SN Ia and BAO data are analyzed separately but that power law expansion is strongly
disfavored by the combination. We treat the so-called Rh = ct cosmology (a constant rate
of expansion) separately and find that it is conclusively disfavored by all combinations of
data that include SN Ia observations and a poor overall fit when systematic errors in the SN
Ia measurements are ignored, despite a recent claim to the contrary. We discuss this claim
and some concerns regarding hidden model dependence in the SN Ia data.

In Chapter 6, we use low-redshift SN Ia data to test for the presence of the peculiar
velocity correlations predicted for the standard ΛCDM model. We find no evidence for the
presence of these correlations, although, given the significant noise, the data is also consis-
tent with them. We then consider the dipolar component of the velocity correlations — the
frequently studied “bulk velocity” — and explicitly demonstrate that including the velocity
correlations in the data covariance matrix is crucial for drawing correct and unambiguous
conclusions about the bulk flow. In particular, current SN data is consistent with no excess
bulk flow on top of what is expected for ΛCDM and effectively captured by the covariance.
We further clarify the nature of the apparent bulk flow that is inferred when the velocity
covariance is ignored.
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CHAPTER 2

Dark Energy with SN Ia Systematic Errors

2.1 Introduction

Since the discovery of the accelerating universe in the late 1990s [8, 9], a tremendous
amount of effort has been devoted to improving measurements of dark energy (DE) pa-
rameters. As constraints on these parameters improved, controlling the systematic errors
in measurements became critical for continued progress. The systematics come in many
flavors, including a multitude of instrumental effects and astrophysical effects.

Type Ia supernovae (SNe Ia) were used to discover DE and still provide the best con-
straints on DE. The advantage of SNe Ia relative to other cosmological probes is that ev-

ery SN provides a distance measurement and therefore some information about DE. More
recently, SN Ia observations have been joined by measurements of baryon acoustic oscil-
lations (BAO), which provide exceedingly accurate measurements of the angular diameter
distance in redshift bins. Cosmic microwave background (CMB) anisotropies come mostly
from high redshift and are thus not particularly effective in probing DE, but they do provide
one measurement of the angular diameter distance to redshift z ' 1100 very accurately.
Galaxy clusters also constrain DE usefully, while weak gravitational lensing is expected to
become one of the most effective probes of DE in the near future. For recent comprehensive
reviews of DE probes, see [15, 16].

In this work, we are interested in studying the effect of SN Ia systematics on DE con-
straints by including the covariance of measurements between different SNe. The covari-
ance includes primarily systematic errors, and for the first time it has been quantified in
depth by [17]. Including the effects of the systematic errors, represented by nonzero co-
variance, weakens the overall constraints on model parameters. Here we wish to explore
the effect of systematic errors for general models of DE described by a number of principal
components (PCs) of the equation of state, though we first consider these effects for sim-
pler, more commonly used descriptions of the DE sector. We choose to combine the SN
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Ia data with BAO and CMB measurements and estimate the effects of current systematic
errors in SN Ia observations. We then proceed to study another systematic concern that is
particularly relevant for BAO: whether the finite significance of the detection of the BAO
feature in various surveys, when taken into account, weakens the constraints imposed on
DE parameters.

While we closely follow the accounting for the SN Ia systematics from [17], we note
that several other analyses have considered the effect of SN systematics. However, most
of these analyses only studied the effects of the systematic errors on the constant equation
of state (e.g. [17–20]) or included the additional parameter wa to describe the variation of
the equation of state with time (e.g. [21]). Notable exceptions are studies by [22] and [23],
which considered a number of specific DE models with non-standard behavior, and [24]
and [25], which parametrized the DE density in several redshift bins. Here our goal is to go
beyond any specific models and study the effects of systematic errors in current data on DE
constraints in the greatest generality possible. While a truly model-independent description
of the DE sector is of course impossible, a description of the expansion history in terms of
10 or so parameters – which we adopt in this paper – comes close1. In this sense, our
paper complements the recent investigations by [26, 27] (see also [28–36]), which studied
constraints on very general descriptions of DE using (a slightly different set of) current data
but without specific study of the effects of systematic errors.

The paper is organized as follows. In Sec. 2.2, we describe the SN Ia, BAO, and CMB
data (and for BAO and CMB, the distilled observable quantities) that we use in our analysis.
In Sec. 2.3, we discuss useful parametrizations of DE and compare constraints on the DE
parameters with and without systematic errors included in the analysis. In Sec. 2.4, we in-
vestigate the effects of the finite detection significance of the BAO feature in galaxy surveys
on the cosmological parameter constraints. In Sec. 2.5, we summarize our conclusions.

2.2 Data Sets Used

We begin by describing the data sets used in this analysis. We have used three probes of
DE: SNe Ia, BAO and CMB anisotropies.

1We do not, however, consider allowing departures from general relativity; doing so would further gener-
alize the treatment.
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2.2.1 SN Ia Data and Covariance

Although SNe Ia are not, of course, perfect standard candles, it has long been known that
there exist useful correlations between the peak apparent magnitude of a SN Ia and the
stretch, or broadness, of its light curve (simply put, broader is brighter). The peak appar-
ent magnitude is also correlated with the color of the light curve (bluer is brighter). We
therefore model the apparent magnitude of a SN Ia with the equation [37]

mmod = 5 log10

(
H0

c
dL

)
− αs(s− 1) + βc C +M, (2.1)

where dL is the luminosity distance, αs is a nuisance parameter associated with the mea-
sured stretch s of a SN Ia light curve, and βc is a nuisance parameter associated with the
measured color C of the light curve. The absolute magnitude of a SN Ia is contained within
the constant magnitude offsetM, which is considered yet another nuisance parameter2.

Recent work has concentrated on estimating correlations between measurements of in-
dividual SN Ia magnitudes. A complete covariance matrix for SNe Ia includes all identified
sources of systematic error in addition to the intrinsic scatter and other sources of statistical
error. The χ2 statistic is then given by

χ2 = ∆mTC−1∆m, (2.2)

where ∆m = mobs−mmod(p) is the vector of magnitude differences between the observed
magnitudes of N SNe Ia mobs and the theoretical prediction that depends on the set of
cosmological parameters p, mmod(p). Here C is the N × N covariance matrix between
the SNe. Given a value for χ2, we assume that the likelihood of a set of cosmological
parameters is Gaussian, so that L(p) ∝ e−χ

2/2. Since C is a function of parameters αs
and βc (see below), we would naı̈vely expect that the inclusion of the Gaussian prefactor
1/
√

det C in the likelihood is necessary. However, using simple simulations of parameter
extraction with synthetic data, we (and separately [17]) find that including the prefactor
leads to significant biases in recovered αs and βc values. This result, discussed briefly
in [17], is in hindsight not surprising given that both the independent variables (stretch
and color) and dependent variable (magnitude) have errors; see e.g. [38] for a lengthy
discussion. We therefore do not include the 1/

√
det C prefactor in our analysis.

Recently [17] determined covariances between SN Ia measurements from the Super-

2Throughout the analyses in this paper, we actually marginalize analytically over a model with two distinct
M values, where a mass cut of the host galaxy dictates whichM value applies (here we use a mass cut of
1010M�). This is meant to correct for host galaxy properties and is empirical in nature (see text and Appendix
C of [17]). For simplicity, we suppress mention of the secondM parameter.
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Source NSN Range in z

Low-z 123 0.01 - 0.1

SDSS 93 0.06 - 0.4

SNLS 242 0.08 - 1.05

HST 14 0.7 - 1.4

Table 2.1: Summary of SN Ia observations included in this analysis, showing the number
of SNe included from each survey and the approximate redshift ranges.
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Figure 2.1: Hubble diagram for the compilation of all SN Ia data used in this paper, labeling
SNe from each survey separately and showing the (diagonal-only) magnitude uncertainties.
The solid black line represents the best fit to the data.

nova Legacy Survey (SNLS). The SN compilation and covariance matrix that resulted from
this work will be used in this analysis. The SNLS compilation consists of 472 SNe Ia, ap-
proximately one half of which were detected in SNLS, while the rest originated from one
of three other sources. These four main sources are summarized in Table 2.1 and illustrated
in the Hubble diagram of Fig. 2.1. The low-redshift (Low-z) SNe actually come from a
variety of samples as discussed in [17].

The complete covariance matrix from [17] can be written most usefully as the sum of
two separate parts, a diagonal part consisting of typical statistical errors and a systematic
part, which includes both diagonal and off-diagonal elements. This off-diagonal piece
includes some correlated errors which are considered statistical in [17] (since they can be
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reduced by including more observations), but here we disregard the distinction and group
these errors with the actual systematic errors, which also lead to off-diagonal covariance
elements. This simplification is reasonable because the correlated statistical errors are small
compared to the (correlated) systematic errors. The diagonal, statistical-only part of the
covariance matrix can be expressed as

Dstat
ii = σ2

mB ,i
+ α2

s σ
2
s,i + β2

c σ
2
C,i + σ2

int

+

(
5(1 + zi)

zi(1 + zi/2) log 10

)2

σ2
z,i + σ2

lensing (2.3)

+ σ2
host correction +DmBs C

ii (αs, βc)

In the above, σmB ,i , σs,i , σC,i , and σz,i are the statistical uncertainties of the measured
magnitude, stretch, color, and redshift, respectively, of the ith SN. The z term translates
the error in redshift into error in magnitude. To include actual intrinsic scatter of SNe Ia
and allow for any mis-estimates of photometric uncertainties, the quantity σint is included,
with a different value allowed for each sample. The σint values were derived by requiring
the χ2 of the best-fitting (ΩM ,w) cosmological fit to a flat universe to be one per degree of
freedom for each sample separately. Also included here are statistical uncertainties due to
gravitational lensing and uncertainty in the host galaxy correction.

The contribution DmBs C
ii (αs, βc) represents a combination of the covariance terms be-

tween magnitude, stretch, and color for the ith SN. It is given by

DmBs C
ii (αs, βc) = 2αsD

mB s
ii − 2βcD

mB C
ii − 2αsβcD

s C
ii , (2.4)

where DmB s
ii , DmB C

ii and Ds C
ii represent the computed magnitude-stretch, magnitude-color,

and stretch-color covariances for the ith SN. Note that even the statistical covariance ma-
trix is a function of αs and βc, meaning that a proper analysis involves varying the errors
(recomputing the covariance matrix) any time αs and βc are changed.

A similar equation can be used to construct the systematic covariance matrix, where
different systematic terms are combined to produce submatrices which are then added to-
gether with specified values for αs and βc, as above. The systematic terms include calibra-
tion (which is the dominant contribution), Malmquist bias, peculiar velocities, Milky Way
dust extinction, contamination of the sample with non-Ia SNe, uncertainties arising from
differences in the light-curve fitters, uncertainty in the relationship between host galaxy
properties and SN magnitude, evolution of αs and βc, and early light-curve photometric un-
certainty. The systematic covariance matrix includes diagonal and off-diagonal elements,
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Figure 2.2: Left panel: correlation matrix obtained from the complete covariance matrix
Cfull, sorted first by survey and then by redshift within each survey. Right panel: same, but
using only the systematic covariance matrix Csys. In both cases we assume αs = 1.43 and
βc = 3.26, the best-fit values for the flat w = const model. The right panel is similar to
Fig. 12 from Conley et al. (2011a), but we repeat it here and show the full covariance (left
panel) for completeness.

which are calculated (see [17] for more details) using the equation

Csys
ij =

K∑
k=1

(
∂mmod i

∂Sk

)(
∂mmod j

∂Sk

)
(∆Sk)

2 , (2.5)

where the sum is over the K systematics Sk, ∆Sk is the size of each term (for example, the
uncertainty in the zero point), and mmod is defined in Eq. (2.1). Then the full covariance
matrix is simply given by

Cfull = Dstat + Csys. (2.6)

A plot of the full covariance matrix (constructed using flat w = const model best-fit values
αs = 1.43 and βc = 3.26) is shown in Fig. 2.2.

2.2.2 BAO and CMB data

To produce the combined constraints in this paper, we include information from both BAO
and the CMB in addition to the SN data. In each case, we choose for simplicity distilled
quantities which depend only on ΩM , ΩDE, ΩK , and a parametrized w(z).

For BAO, we compare the theoretical prediction for the acoustic parameter A(z) with
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Sample zeff A0(zeff)

6dFGS 0.106 0.526± 0.028

SDSS DR7 0.20 0.488± 0.016

SDSS DR7 0.35 0.484± 0.016

WiggleZ 0.44 0.474± 0.034

BOSS 0.57 0.444± 0.014

WiggleZ 0.60 0.442± 0.020

WiggleZ 0.73 0.424± 0.021

Table 2.2: Summary of measurements of distilled BAO parameter A(z). We show the
survey from which the measurement comes, the effective redshift of the survey (or its
subsample), and the measured value A0.

the measured value, where we define (see [10])

A(z) ≡
[
r2(z)

cz

H(z)

]1/3
√

ΩMH2
0

cz
, (2.7)

where r(z) is the comoving distance to redshift z. We combine recent measurements of
A(z) at different effective redshifts, using data from the 6dF Galaxy Survey [11], the Sloan
Digital Sky Survey (SDSS) Data Release 7 (DR7) [39], the WiggleZ survey [40, 41], and
the SDSS Baryon Oscillation Spectroscopic Survey (BOSS) [42, 43]. The measured values
are summarized in Table 2.2.

A plot of the measured values and their uncertainties superimposed on an A(z) curve
(Fig. 2.3) suggests that there is no significant tension between the measurements. Note that
the SDSS DR7 measurements at z = (0.2, 0.35) are correlated with correlation coefficient
0.337. The WiggleZ measurements are correlated with coefficient 0.369 for the pair z =

(0.44, 0.6) and coefficient 0.438 for z = (0.6, 0.73). Ignoring the relatively small overlap
in survey volume between SDSS DR7 and the BOSS sample, we expect all other pairwise
correlations to be zero. We compute χ2 in the usual way for correlated measurements, as
in Eq. (2.2).

Nearly all of the sensitivity of the CMB to DE comes from the measurement of an
angle at which the sound horizon at z ≈ 1100 is observed (e.g. [44]). This measurement
in turn determines the angular diameter distance to recombination with the physical matter
quantity, ΩMh

2, essentially fixed. The latter quantity is popularly known as the CMB shift
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Figure 2.3: Measured values of A(z) and their (diagonal-only) uncertainties for each effec-
tive redshift. The black curve shows A(z) for a model that fits the data points well, and the
parameters for this model are given in the legend.

parameter R and is defined as

R ≡
√

ΩMH2
0

c
r(z∗), (2.8)

where z∗ = 1091.3 is the redshift of decoupling as measured by WMAP7 [45]. We take the
measured value of R to be the value determined by WMAP7, R0 = 1.725 ± 0.0184 [45].
We compute χ2 in the usual way, comparing this measured value of R with the theoretical
prediction.

Calculating the combined SN, BAO, and CMB likelihood is now a simple task. We
define Lcomb ∝ e−χ

2
tot/2, where χ2

tot = χ2
SN + χ2

BAO + χ2
CMB.

2.2.3 Parameter constraint methodology

We use two alternate codes to produce our constraints. For the basic constraints, including
the constant equation of state of DE or the (w0, wa) description, we use a brute-force search
which computes likelihoods over a grid of values of ∼ 5 parameters (listed below).

Alternatively, we developed a new Markov Chain Monte Carlo (MCMC; e.g. see [46,
47]) code to determine DE parameter constraints and figures of merit (FoMs) for the general
(∼ 13 parameters) PC description. The MCMC procedure is based on the Metropolis-
Hastings algorithm [48, 49]. From the likelihood L(x|θ) of the data x given each proposed
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parameter set θ, Bayes’ Theorem tells us that the posterior probability distribution of the
parameter set given the data is

P(θ|x) =
L(x|θ)P(θ)∫
L(x|θ)P(θ) dθ

, (2.9)

where P(θ) is the prior probability density. The MCMC algorithm generates random draws
from the posterior distribution. We test convergence of the samples to a stationary distri-
bution that approximates P(θ|x) by applying a conservative Gelman-Rubin criterion [50]
of R − 1 . 0.03 across a minimum of four chains for each model class. We use the
getdist routine of the CosmoMC code [51] to process the resulting chains; getdist
bins the chains and then smoothes the binned distribution of counts by convolution with a
multidimensional Gaussian kernel.

We verified that the two codes give results that are in excellent agreement in several
relevant cases, e.g. constraints in the ΩM–w or w0–wa plane.

2.3 Results: Effects Of The Systematics

2.3.1 Preliminaries

Before beginning our discussion of systematics, we briefly consider the vanilla ΛCDM

cosmology, where w = −1. The cosmological parameters describing the expansion rate
are matter and cosmological constant densities relative to critical, ΩM and ΩΛ. Including
the nuisance parameters, the total parameter set is

pi ∈ {ΩM ,ΩΛ,M, αs, βc}. (2.10)

We combine SN constraints with BAO and CMB constraints and marginalize over the other
parameters to map the likelihood of ΩΛ. We find a mean value ΩΛ = 0.724 ± 0.0114.
This suggests that a universe with zero (or negative) cosmological constant is ruled out
at approximately 64-σ! Amusingly, using the brute-force likelihood search that includes
the positive and negative values of ΩΛ, we find that the combined data give a remarkably
low likelihood of zero or negative vacuum energy, even allowing for nonzero curvature:
P (ΩΛ ≤ 0) ∼ 10−267. Of course, in reality, the evidence for DE is not nearly this con-
vincing, since the likelihood in the space of cosmological observables is certainly not ex-
pected to be Gaussian this far away from the peak and thus would not be described by
Lcomb ∝ e−χ

2
tot/2 (we discuss a related issue in Sec. 2.4). Nonetheless, it is impressive how
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strong the evidence for DE is with current data.
We now discuss how one goes beyond ΛCDM cosmology by parametrizing the DE

equation of state.
Previous work on the effect of systematics, such as [17], considered the DE sector

parametrized by its energy density relative to critical, ΩDE, and a constant equation of state
w. Here, we are particularly interested in extending the DE sector to allow for a time-
varying equation of state. We make two alternative choices in addition to the constant
equation of state so that the three parametrizations we consider are:

1. Constant equation of state, w = constant;

2. Equation of state described with w0 and wa [52], so that w(a) = w0 + wa(1− a);

3. Equation of state described by a finite number of principal components of w(z) [53].

We now describe in more detail the different parametrizations of DE that we consider
(constant w, w0 and wa, PCs) and then proceed to analyze the effects of SN systematics on
parameter constraints.

2.3.2 Constant w

Assuming that DE can be described by an equation of state w that is constant in time,
and assuming a flat universe, we calculate the SN-only likelihood in the ΩM–w plane. We
marginalize over the usual nuisance parametersM, αs, and βc.

The results for SN-only constraints on ΩM and w are shown in Fig. 2.4, where we il-
lustrate the effect of the systematics by showing constraints from the full covariance matrix
Cfull on top of those which assume only the diagonal statistical uncertainties Dstat. The
systematic uncertainties broaden the well-determined direction in the ΩM -w plane without
elongating the poorly determined direction much. Constraints in either parameter are not
appreciably shifted. The marginalized uncertainty for w is σw = 0.17 for statistical errors
only and σw = 0.20 when systematic errors are included. Thus, even though systematic
errors increase the area of the contours in the ΩM–w plane by more than a factor of two,
they only increase the uncertainty of w by about 20%.

We also seek to understand how SN systematics influence the stretch and color param-
eters αs and βc, not only because these correlations are what make SNe Ia useful standard
candles, but also because it is expected that systematics could potentially affect these corre-
lations. In Fig. 2.5, we marginalize overM, ΩM , and w to show constraints on the stretch
and color coefficients αs and βc. Of particular interest is the color coefficient βc, which
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Figure 2.4: 68.3%, 95.4%, and 99.7% likelihood constraints on ΩM and w, assuming a
constant value for w and a flat universe. We use only SN data and marginalize over the
nuisance parameters. We compare the case of diagonal statistical errors only (shaded blue)
with the full covariance matrix (red).

αs

β
c

1 1.2 1.4 1.6 1.8 2

2.8

3

3.2

3.4

3.6

3.8

Figure 2.5: 68.3%, 95.4%, and 99.7% likelihood constraints on αs and βc, assuming a
constant value for w and a flat universe. We use only SN data and marginalize over M,
ΩM , and w. We compare the case of diagonal statistical errors only (shaded blue) with the
full covariance matrix (red).
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Figure 2.6: 68.3%, 95.4%, and 99.7% likelihood constraints on w0 and wa in a flat uni-
verse, marginalized over ΩM and the nuisance parameters. The left panel shows SN-only
constraints, while the right panel shows combined SN+BAO+CMB constraints. The shaded
blue contours represent constraints with only statistical SN errors assumed (Dstat), while
the red contours represent the full SN covariance matrix (Cfull). Note that the ΛCDM
model (w0, wa) = (−1, 0), represented by the black dashed lines, is fully consistent with
the data.
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FoM(w0 wa) Dstat Cfull

SN 2.28 1.16

SN+BAO+CMB 32.9 11.8

Table 2.3: Values of the FoM (Eq. (2.12)) for SN alone (middle row) and SN+BAO+CMB
(bottom row). The middle column shows the FoMs for the statistical covariance matrix
Dstat only, while the right column shows the FoMs for the full covariance matrix Cfull.
Note that including the systematics reduces the FoM by a factor of two to three.

is broadly consistent with values found previously; the systematic errors shift it slightly
upwards and increase errors in both parameters by a modest amount.

2.3.3 w0 and wa

We wish to understand the constraints on the redshift dependence of w(z), so we allow
w(z) to have the form [52, 54]

w(z) = w0 + wa z/(1 + z). (2.11)

Constraints on w0 and wa in a flat universe are shown in Fig. 2.6. The shaded blue contours
represent constraints with only statistical SN errors assumed (Dstat), while the red contours
(Cfull) additionally include the systematic errors. The left panel shows SN-only constraints,
while the right panel shows constraints when BAO and CMB information is also included.

The figure of merit (FoM) for this model defined by the Dark Energy Task Force
(DETF) [55, 56] is the inverse of the area of the 95.4% confidence level region A95 in
the w0–wa plane; to be slightly more specific, we instead define the FoM as in [27] as

FoM(w0 wa) ≡ (det C)−1/2 ≈ 6.17π

A95

. (2.12)

The approximate equality in Eq. (2.12) becomes exact for a Gaussian posterior distribution,
in which case our FoM is equivalent to the DETF FoM. The FoMs for various scenarios
in the w0–wa plane are given in Table 2.3. We find that including the systematic errors
reduces the FoM by about a factor of two to three.
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Figure 2.7: The first 10 PCs, e1(z)–e10(z), used in our analysis, in order of increasing vari-
ance (bottom to top). The PCs were obtained assuming the observable quantities centered
at the fiducial ΛCDM model, but with actual errors from the current data. See text for
details.
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2.3.4 Principal Components

We now describe the methodology of how to calculate and constrain the principal compo-
nents of DE [53], which are weights in redshift ordered by how well they are measured by
a given cosmological probe and with a given survey.

Following e.g. [26], we first precompute the PCs assuming the current data centered at a

fixed fiducial model (we choose the standard flat ΛCDM model with ΩM = 1−ΩΛ = 0.25).
For this precomputation, we include data from all probes (SN+BAO+CMB) and use all
identified SN errors. We follow the procedure set forth by the Figure of Merit Science
Working Group (FoMSWG) [57] and parametrize w(z) by 36 piecewise constant values in
bins uniformly spaced in scale factor a in the range 0.1 ≤ a ≤ 1.0. We fix (i.e. ignore) all
other parameters in the FoMSWG except for ΩM and the SN Ia nuisance parameter3 M
because they are not probed by the SN Ia data, and at the same time they are effectively
marginalized over in the BAO and CMB data in the distilled observable quantities, A(z)

and R respectively. We fix curvature to zero.
We therefore have a 38× 38 Fisher matrix (or really a 45× 45 Fisher matrix with seven

parameters fixed), corresponding to parameters

pi ∈ {w1, . . . , w36,ΩM ,M}. (2.13)

We marginalize over ΩM andM and then diagonalize the remaining 36-dimensional Fisher
matrix of the piecewise constant w parameters. The resulting eigenvectors – shapes that
describe w(z) – are the PCs ei(z), and we show the 10 best-determined of these PCs,
e1(z)–e10(z), in Fig. 2.7.

The equation of state can be described as [58]

1 + w(z) =
N∑
i=1

αiei(z), (2.14)

where αi are amplitudes for each PC ei(z). While the Fisher matrix tells us the best ac-
curacy to which these PCs are measured using the assumed data set (these accuracies are
related to the eigenvalues λi via σ(αi) = λ

−1/2
i ), we are not interested in this; rather, we

would like to constrain the PCs using actual current data.
We then feed the shapes in redshift of the first several PCs to the MCMC procedure to

3In the Fisher matrix precomputation of the PCs we assume a singleM parameter as per usual practice
(and following the FoMSWG parametrization), but in the actual constraints on the cosmological parameters
we adopt two such parameters as described in Sec. 2.2.1. To the extent that the PCs will be correlated
anyway due to the differences between real data and assumed “data” going into the Fisher matrix, this subtle
difference will be unimportant.
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constrain these (and a few other, non-w(z)) parameters.
Finally, in our parameter search we impose weak priors on the PCs. Following [58]

we impose a hard-bound prior on each αi, enforcing its contribution to excursions in the
equation of state to the region |1 +w(z)| ≤ 1. This approach yields top-hat priors of width
[27]

∆αi =
2

Nz,PC

Nz,PC∑
j=1

|ei(zj)| (2.15)

centered at w(z) = −1 or αi = 0. As we will demonstrate, these priors are much wider
than the allowed ranges for many of the individual PCs, meaning that our principal results
are largely unaffected by the prior (Indeed, we verified this explicitly by constraining the
PCs without the prior).

The pairwise constraints on all 13 parameters (ΩM , the PC amplitudes α1 − α10, and
the nuisance parameters αs and βc) are shown in Fig. 2.8. The black curves represent
constraints from the diagonal statistical SN errors only, while the red curves correspond to
the full SN covariance matrix. Overall, the systematic errors broaden and shift the contours
slightly.

In Fig. 2.9, we show the individual marginalized constraints on the 10 PC amplitudes.
When we assume only diagonal statistical errors, three PCs have a ratio of error to the rms
value of the top-hat prior less than 1/3, and six PCs have a ratio less than 1/2. For the full
covariance case, two and five PCs have error/prior ratios less than 1/3 and 1/2, respectively.
From this, we are extremely encouraged by the fact that constraints on several PCs are very
good even with current data, a result incidentally also found by [26] using a slightly differ-
ent combined “current” data set that, most notably, did not include the BOSS and WiggleZ
BAO measurements. Here we again see that the SN systematics broaden the constraints
slightly; however, as we show just below, the cumulative effect of the systematics on the
FoM is not negligible.

We finally calculate the generalization of the DETF FoM to PCs. As defined in [27],

FoM(PC)
n ≡

(
det Cn

det C
(prior)
n

)−1/2

, (2.16)

where Cn is the n× n covariance submatrix of n PCs and

det C(prior)
n =

n∏
i=1

(
∆αi√

12

)2

is the determinant of the top-hat prior covariance for the n PC coefficients. Each
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Figure 2.8: 68.3%, 95.4%, and 99.7% likelihood constraints for all pairwise combinations
of the 13 cosmological parameters using the combined SN+BAO+CMB data. Diagonal
boxes show the 1D marginalized likelihood for each parameter. The black contours illus-
trate the case of diagonal statistical SN errors only (Dstat), while the red contours (Cfull)
also include the systematic SN covariance matrix. The parameter ordering is (top to bot-
tom, or left to right): matter density relative to critical ΩM , the 10 PC amplitudes α1–α10,
and the stretch and color nuisance parameters αs and βc. Note the good constraints on all
parameters except for the last few PC amplitudes.
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Figure 2.9: Marginalized SN+BAO+CMB constraints on the 10 PC amplitudes. The dashed
vertical lines represent the prior limits. Black curves represent constraints from the diag-
onal statistical SN errors only, while the red curves correspond to the full SN covariance
matrix. The black and red number in each panel shows the ratio of the PC error to the
rms of the top-hat prior for the statistical-covariance and full-covariance case, respectively.
Note the good constraints on all PC amplitudes except for the last few.

(∆αi/
√

12)2 term refers to the rms value of the top-hat prior, where ∆αi is the width
of the top-hat prior as calculated in Eq. (2.15).

FoM results are shown in Fig. 2.10, where we show the FoM as a function of the number
of PCs included. The top panel shows the FoMs with and without SN systematic errors,
while the bottom panel shows the corresponding ratios of the two cases. We see that the
FoM degradation with the addition of SN systematic errors asymptotes to about a factor of
three to four when about five PCs are included and after that remains relatively constant. We
therefore conclude that only the few lowest PCs are affected by current systematic errors.
We suspect that this is due to the fact that the effect of the systematics is relatively smooth
in redshift, and therefore systematics do not become degenerate with the higher PCs that
wiggle in z (see the PC shapes in Fig. 2.7). It is somewhat fortuitous that higher (n & 5)
PCs seem to be unaffected by systematics, since it is precisely those higher PCs that are
difficult to measure accurately; however, it may be the case that systematics in future data
will behave differently and affect the higher components.
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Figure 2.10: Top panel: FoM as a function of the number of PCs included, with the black
line showing the statistical-only FoM and the red line showing the FoM with systematics
included (See Eq. (2.16) for the definition of the FoM). Bottom panel: ratio of the FoM with
systematic errors considered in the SN Ia data to that with only statistical errors considered.
BAO and CMB constraints were included in both cases. Notice that the FoM ratio levels
off after approximately five PCs have been included. Note that here we have considered
the first 15 PCs (as opposed to 10 in Figs. 2.7-2.9) to show that the FoM indeed flattens off
as the PCs become very poorly constrained.
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2.4 Effect of Finite Detection Significance of BAO

In an interesting paper, [59] pointed out that for marginal detections of cosmological ob-
servable quantities, a Gaussian assumption for the likelihood may be a poor one, especially
for models that are several-σ away from the central value of the observed quantity. This
happens because the usual Gaussian likelihood implicitly ignores the possibility that the
observed quantity has not actually been detected in the data at all. That possibility may
have non-negligible probability, and in that case a flat likelihood in the observable may be
more appropriate. In other words, writing a total likelihood of parameters p as a function
of data vector d, we have

P (p|d) = Pdetect P (p|d, detect) + (1− Pdetect)P (p|d, noise), (2.17)

where Pdetect is the probability that the observable quantity has actually been detected and
P (p|d, detect) is the likelihood of the cosmological parameters in that case. The cos-
mological parameter likelihood P (p|d, noise) corresponds to the case that the observable
feature was actually noise, and it can be represented by a flat distribution in the parameters
p. Most BAO analyses effectively assume that Pdetect = 1, thus ignoring the higher-than-
expected tail in the overall likelihood coming from the nonzero second term on the right-
hand side of Eq. (2.17). If the BAO feature has been detected at very high significance,
then this is a good assumption, but it is not a priori clear that this is the case with all of the
current BAO surveys which typically have several-σ detection significances.

To account for the diminished power of the observations to discriminate between cos-
mological models when detection significance is not high, [59] suggest a fitting function
which replaces the usual Gaussian χ2 expression ∆χ2

G with

∆χ2 =
∆χ2

G√
1 +

(
S

N

)−4

∆χ4
G

, (2.18)

where S/N is the signal-to-noise ratio or detection significance of the observable feature
or quantity. With this prescription, the quantity ∆χ2 is equal to its Gaussian counterpart
for departures from the best-fit model that are small compared to the signal-to-noise of the
observed feature, but it asymptotes to a constant “tail” (S/N)2 in the opposite limit, when
∆χ2

G � (S/N)2.
Here we apply this reasoning to the measurement of the BAO feature. The significances

of the detection of the BAO feature are 2.4σ (corresponding to S/N = 2.4) for 6dF [11],
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Figure 2.11: Effects on the BAO-only (left panel) and BAO+CMB+SN (right panel) con-
straints in the ΩM–w plane with (red) and without (shaded blue) the finite detection signif-
icances of the BAO features taken into account. Note that the differences are modest in the
BAO-only case and negligible in the combined case.

2.8σ for WiggleZ [41] (combined for three redshift bins), 3.6 σ for SDSS [39] (combined
for two redshift bins), and 5.0σ for BOSS [43]. We expect that, once the probability of
non-detection of the BAO feature has been included, the BAO constraints will change,
especially for surveys with lower significance of detection and for 99.7% contour regions.
This has in fact been confirmed by [59] for the case of the SDSS BAO data alone.

Fig. 2.11 shows the BAO-only (left panel) and BAO+CMB+SN (right panel) constraints
in the ΩM–w plane with and without the finite detection of the BAO features taken into
account4. Note that the difference is modest in the BAO-only case and negligible in the
combined case. This is as expected, especially given that some of the strongest BAO data
sets (e.g. BOSS) also have the highest detection significances of the BAO feature.

Note also that there is nothing BAO-specific to the effects of the finite detection signif-
icance. While the CMB is detected with very high confidence and thus does not warrant
a similar analysis, it could be applied to SNe Ia where, for example, a few percent of SNe
may not be Type Ia5. Given the full probabilistic classification of each SN on whether
or not it is Type Ia [60, 61], one could carry out a similar analysis, which in this context
would be how imperfect purity of the SN Ia sample affects the constraints on cosmologi-
cal parameters. We suspect the results would be even less discrepant relative to the usual

4The results in the w0–wa plane are qualitatively similar, and we do not show them here.
5[17] find that the fraction of non-Ia SNe rises from zero at low redshift to O(10%) at z ∼ 1; however,

their modeling is very conservative, and the true fraction of non-Ia SNe is likely very small in the current data
sets.
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perfect-detection analysis than in the case of BAO, and we do not pursue such an analysis
in this paper.

In conclusion, the finite detection significance of the BAO feature in large-scale struc-
ture surveys leads to a small but discernible weakening of the constraints on cosmological
parameters.

2.5 Conclusions

In this paper, we have investigated the effects of systematic errors in current SN Ia ob-
servations on DE parameter constraints. We accounted for the systematic errors in SN
Ia observations, including the effects of photometric calibration, dust, color, gravitational
lensing, and other systematics by adopting a fully off-diagonal covariance matrix between
∼ 500 SNe from the SNLS compilation (see Fig. 2.2). We extended the similar analysis
from [17] by constraining the temporal evolution of the equation of state of DE described
by the pair of parameters (w0, wa) as well as a much richer description in terms of 10 PCs
of the equation of state (shown in Fig. 2.7). We combined the SN Ia constraints with data
from BAO from four different surveys (see Fig. 2.3) as well as the principal information
on DE given by the acoustic peak measurements of the CMB anisotropies measured by the
WMAP experiment.

The constraints on the simple parametrizations of DE are affected by the systemat-
ics, but the overall constraints are still strong even after their inclusion (see Figs. 2.4 and
2.6). More importantly, we found that systematic errors affect the constraints somewhat,
reducing the w0–wa FoM by a factor of about three (see Table 2.3), while the general-
ized PC-based FoM is degraded by a factor of three to four (see Fig. 2.10). However, as
the PC analysis shows, this degradation is mainly restricted to the first few numbers (PC
amplitudes) describing DE. In fact, what is particularly impressive about current data is
that roughly five PCs are well-constrained even in the presence of systematic errors (see
Figs. 2.8 and 2.9).

In the spirit of testing for systematic effects in current data constraining DE, we also
wondered if the relatively low detection significances of BAO features, ranging from about
2.4σ to 5.0σ in various surveys, change the overall cosmological constraints. While not
a systematic error per se, the small but non-negligible probability that the BAO feature
has not been detected in some of these surveys implies that the posterior probability of
cosmological parameter values asymptotes to a small but nonzero value far from the like-
lihood peak [59]. We find that, while the BAO-only constraints are somewhat affected, the
combined constraints are not (see Fig. 2.11).
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From all this, we conclude that current systematic errors do degrade DE constraints and
FoMs, but not in a major way. Given that future constraints are forecasted to be much better,
continued control of current systematic errors remains key for progress in characterizing
DE.
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CHAPTER 3

Distance Probes and Evidence for Phantom Dark
Energy

3.1 Introduction

A key question in understanding the mechanism behind the acceleration of the Universe is
the value of the dark energy equation of state, the ratio of pressure to energy density for
dark energy: w ≡ pDE/ρDE . Measurements so far [18–20, 22–25, 62–66] have generally
been in good, even excellent, agreement with w = −1, the value corresponding to the
vacuum energy density described by the famous cosmological-constant term in Einstein’s
equations of general relativity. Any measured departure from this value would not only
profoundly shake up our understanding of the Universe, but also provide an important hint
in our quest to understand cosmic acceleration.

It is therefore particularly important to measure the equation of state and search for any
evidence of its variation in time. Over the past decade, there were several clear instances
in which the measurements indicated that w < −1 at & 2σ evidence [28, 67–69], though
eventually these departures either were explained by known systematics in the data or qui-
etly went away as new and better data became available. More recently, with the release of
the first results from Planck [7], other such claims have been presented, such as [70], which
features high-quality data and a careful analysis including systematic errors [71] (see also
[72, 73]). This motivates us to investigate the current data in some detail, concentrating
especially on the value of w marginalized over other cosmological parameters.

The principal tool for studying the equation of state is the combination of three of
the most mature probes of dark energy: Type Ia supernovae (SNe Ia), baryon acoustic
oscillations (BAO), and cosmic microwave background (CMB) anisotropies. SNe Ia and
BAO probe expansion at low and intermediate redshifts and are thus a crucial ingredient
in studying dark energy. The CMB measurements effectively probe a single high-redshift
distance (specifically, the distance to the surface of last scattering), which is crucial mainly
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because it provides complementary information to break degeneracy in the Ωm–w plane.
For comprehensive reviews of dark energy probes, see [15, 16].

The rest of the paper is organized as follows. In Sec. 3.2, we describe the SN Ia, BAO,
and CMB data that we use in our analysis. In Sec. 3.3, we present our results for the
constraints on a constant dark energy equation of state along with several further analyses
that were performed. In Sec. 3.4, we summarize and discuss our findings.

3.2 Data Sets

We begin by describing the data sets used in this analysis. We have used the three most ma-
ture probes of dark energy: SNe Ia, BAO, and CMB anisotropies. We focus on these three
probes since they remain the most mature, well-studied, and robust dark energy probes at
present. Furthermore, they are expected to be statistically independent for all practical pur-
poses. Finally, being purely geometric in nature, they measure dark energy only through its
effect on expansion history; therefore they are understood intuitively and may bypass cer-
tain systematic effects, such as those involved in growth of structure measurements, which
are not very well understood.

3.2.1 SN Ia data

SNe Ia were used to discover dark energy [8, 9] and still provide the best constraints on
dark energy. SNe Ia are very bright standard candles that are useful for measuring cosmic
distances.

SNe Ia constrain cosmology by providing essentially one measurement each of the
luminosity distanceDL(z) = (1+z) r(z) to the redshift of the SN. The theoretical apparent
magnitude is then given by

mth(z) = 5 log10

(
H0

c
DL(z)

)
+M , (3.1)

where the constant magnitude offsetM is a nuisance parameter that depends on both the
absolute magnitude of a SN Ia and the Hubble constant H0. It has long been known that
there exist useful correlations between the peak absolute magnitude of a SN Ia and both
the stretch (or broadness) and photometric color of its light curve. Simply put, a broader
or bluer SN light curve corresponds to a brighter SN. Thus we compare the theoretical
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apparent magnitude with the measured magnitude after light-curve correction:

mcorr = mB + α× (stretch)− β × (color) , (3.2)

where the stretch and color measures are specific to the light-curve fitter employed (e.g.
SALT2 [37] or SiFTO [74]) and where α and β are two additional nuisance parameters.

Recent work has concentrated on estimating correlations between measurements of in-
dividual SN Ia magnitudes as a way of accounting for the numerous systematic effects
which must be controlled in order to improve SN Ia constraints significantly beyond their
current level [1]. A complete covariance matrix for SNe Ia includes all identified sources
of systematic error in addition to the intrinsic scatter and other sources of statistical error.
The χ2 statistic is then given by

χ2 = ∆mᵀC−1∆m , (3.3)

where ∆m = mcorr −mth(p) is the vector of differences between the observed, corrected
magnitudes mcorr ofN SNe Ia and the theoretical predictions mth(p) that depend on the set
of cosmological parameters p. Here, C is the N×N covariance matrix between individual
SNe.

In this analysis, we compare current SN Ia data from three separate compilations: the
Union2.1 compilation from the Supernova Cosmology Project, the three-year compilation
from the Supernova Legacy Survey (SNLS3), and the compilation of the first SN sample
from the Pan-STARRS1 survey (PS1).

3.2.1.1 Union2.1

The Union2.1 compilation [25] from the Supernova Cosmology Project1 improves on the
previous Union2 compilation [24] by introducing 27 additional SNe at high redshift, mak-
ing it both the largest compilation (580 SNe) and the one with the most high-redshift SNe
(∼30 at z & 1). The compilation combines several different samples in each redshift region
(low, intermediate, and high), making the redshift coverage very complete but also making
the compilation very inhomogeneous.

For this analysis, we include all identified systematic errors via the covariance matrix
provided. The SN magnitudes have been pre-corrected for stretch and color using best-fit
values for α and β, and we have verified that our SN-only constraints match those presented
in [25].

1http://supernova.lbl.gov/Union/
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3.2.1.2 SNLS3

Results from the first three years of the Supernova Legacy Survey include measurements of
∼250 SNe at intermediate-to-high redshifts. When combined with∼100 low-redshift SNe,
∼100 SNe from the Sloan Digital Sky Survey (SDSS), and∼10 high-redshift SNe from the
Hubble Space Telescope, they produce a compilation [17] of 472 SNe with good redshift
coverage out to z ∼ 1 and some SNe extending to z ' 1.4. The SNLS3 compilation
contains the largest homogeneous sample and includes many of the best-measured SNe
along with a detailed analysis of systematic errors [17]. Note that the SNLS3 and SDSS
samples have been recalibrated [75] and that new cosmological results, including the full
SDSS sample, are forthcoming.

We use the SN Ia data and covariance matrices provided2 to compute the full covariance
matrix, which includes all identified sources of statistical and systematic error. Like the
corrected SN magnitudes, the covariance matrix is a function of the light-curve nuisance
parameters α and β. For practical reasons, and for a fairer comparison with other SN Ia data
sets, we fix these parameters at their best-fit values (α = 1.43, β = 3.26) throughout the
analysis. It is worth noting that completely marginalizing over these parameters (varying
them both when computing the corrected magnitudes and when building the covariance
matrix) has a negligible effect on constraints in our parameter space. We verify that our
SN-only constraints match those in [1, 17], where α and β are varied.

It is important to note that, in constraints with SNLS3, we follow the prescription in [17]
and marginalize over a model with two distinctM parameters, where a mass cut (1010M�)
of the host galaxy dictates which M applies. This is meant to correct for environmental
dependencies of SN Ia magnitudes on host galaxy properties and is empirical in nature. We
discuss and investigate this issue further in Sec. 3.3.3.

3.2.1.3 PS1

The primary goal of the Panoramic Survey Telescope and Rapid Response System (Pan-
STARRS) is to detect Solar System objects by making precise, repeated observations of
a wide field of view. These observations also lead to the discovery of SNe Ia, which can
be spectroscopically confirmed in follow-up observations. Recently-published SN results
from the first 1.5 years of the Pan-STARRS1 Medium Deep Survey include a compilation
[70] of 313 SNe, 112 of which were discovered via Pan-STARRS. The rest (201 SNe)
come from a combination of low-redshift samples. Aside from the low-redshift anchor, all
SNe come from the same instrument, making this compilation very homogeneous. A full

2https://tspace.library.utoronto.ca/snls
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systematic analysis is described in [71]. Due to the smaller number of SNe and the lack
of high-redshift SNe, the PS1 compilation is not competitive with current constraints from
Union2.1 or SNLS3, but the survey is ongoing and this will eventually change. The current
compilation nevertheless provides good constraints on a constant-w model of dark energy
when combined with other probes, so we study it here.

We use the SN Ia data provided3 and adopt the covariance matrix to account for all
identified systematic errors. As with Union2.1, the SN magnitudes have been pre-corrected
for stretch and color, and we have verified that our SN-only constraints agree with those in
[70].

3.2.2 BAO data

Baryon acoustic oscillations (BAO) are the regular, periodic fluctuations of visible matter
density in large-scale structure (LSS) resulting from sound waves propagating in the early
Universe. In recent years, measurements of BAO have proven to be useful geometric probes
of dark energy. A measurement of the position of the BAO feature in the LSS power
spectrum or correlation function basically provides a precise measurement of a spherically-
averaged comoving distance to the effective redshift of the survey. New measurements
over a wide range of redshifts are making it possible to map expansion history with the
BAO distance, analogous to the way SNe Ia map expansion with luminosity distance. For
our BAO constraints, we combine recent measurements of the BAO feature from the Six-
degree-Field Galaxy Survey (6dFGS) [11], the SDSS Luminous Red Galaxies (SDSS LRG)
[76], and the SDSS-III DR9 Baryon Oscillation Spectroscopic Survey (BOSS) [43].

Different authors report their measurement of the BAO feature using different dis-
tilled observable quantities. The surveys included here report constraints on the quantity
rs(zd)/DV (z) or its inverse, where rs(zd) is the comoving sound horizon at the redshift of
the baryon drag epoch and DV is a spherically-averaged (two tangential and one radial)
distance measure [10] given by

DV (z) ≡
[
(1 + z)2D2

A(z)
cz

H(z)

]1/3

, (3.4)

where DA(z) = r(z)/(1 + z) is the angular diameter distance. We compute the sound

3http://wachowski.pha.jhu.edu/˜dscolnic/PS1_public/
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horizon via

rs(z) =

∫ t

0

cs
a

dt′ =
∫ a

0

cs
a′2H(a′)

da′ , (3.5)

cs =
c√

3 (1 +R)
,

where the sound speed cs depends on the ratio of baryon energy density to photon energy
density, which is proportional to the scale factor:

R ≡ 3ρb
4ργ
≈ 31500 Ωbh

2

(
TCMB

2.7 K

)−4

a . (3.6)

The redshift of the baryon drag epoch is given by the fitting formula [77]

zd =
1291 (Ωmh

2)0.251

1 + 0.659 (Ωmh2)0.828

[
1 + b1(Ωbh

2)b2
]
, (3.7)

where

b1 = 0.313 (Ωmh
2)−0.419

[
1 + 0.607 (Ωmh

2)0.674
]
,

b2 = 0.238 (Ωmh
2)0.223 .

It is important to include a term for radiation in H(a). One can write Ωr = Ωmaeq, where
aeq = 1/(1 + zeq) is the scale factor at the epoch of matter-radiation equality and zeq is
approximated by

zeq ≈ 25000 Ωmh
2

(
TCMB

2.7 K

)−4

. (3.8)

We assume the value TCMB = 2.7255 K in our analysis.
The measured values of the BAO parameters are summarized in Table 3.1. Covari-

ance between different surveys should be negligible here, so we treat these as independent
measurements.

Note that previous measurements of the BAO feature from SDSS LRG data (e.g.
[10, 39]) cannot be used simultaneously with the measurement from [76] since roughly
the same galaxy sample is analyzed. The measurement from [76] makes use of a recon-
struction technique to enhance the BAO signal and increase the precision of the distance
measurement. We use this measurement since it is the most precise and avoids the cor-
relation between the pair of measurements from [39], where the SDSS LRG sample is
combined with the SDSS main galaxy sample.

Also note that we choose to leave out the BAO measurements from the WiggleZ
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Sample zeff Parameter Measurement

6dFGS 0.106 rs(zd)/DV (zeff) 0.336± 0.015

SDSS LRG 0.35 DV (zeff)/rs(zd) 8.88± 0.17

BOSS 0.57 DV (zeff)/rs(zd) 13.67± 0.22

Table 3.1: Summary of BAO measurements combined in the analysis. We list the survey
from which the measurement comes, the effective redshift of the survey, the observable
parameter constrained, and its measured value.
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Figure 3.1: Likelihood curves for a constant equation of state w in a flat universe, using
Planck CMB data (left panel) and WMAP9 CMB data (right panel). We compare con-
straints from CMB + BAO data alone (dashed black) to those which additionally include
SN Ia data from SNLS3 (blue), Union2.1 (green), or PS1 (dashed red). All likelihoods are
marginalized over other cosmological and nuisance parameters, as explained in the text.

Dark Energy Survey [41], which measures the BAO distance in three redshift slices
(zeff = 0.44, 0.6, 0.73). These measurements are somewhat correlated with the BOSS mea-
surement due to overlap in sky area and redshift, and so far no correlation coefficients
have been estimated. Although the correlation is probably negligible (in part due to shot
noise), adding the WiggleZ measurements to the other BAO measurements improves our
constraints only very slightly, so we leave them out.

3.2.3 CMB data

Although the CMB contains relatively little geometric information about dark energy, the
position of the first peak in the power spectrum basically provides one very precise mea-
surement of the angular diameter distance to recombination at z ≈ 1100. This measure-
ment helps break degeneracy between the dark energy equation of state and Ωm [44]. In
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our analysis, we include CMB constraints from Planck [7] and also from WMAP9 [78] for
comparison.

We summarize CMB information using the following CMB observables:

la ≡ π (1 + z∗)
DA(z∗)

rs(z∗)
, (3.9)

R ≡
√

ΩmH2
0

c
(1 + z∗)DA(z∗) . (3.10)

The redshift z∗ of decoupling is given by the fitting formula [79]

z∗ = 1048
[
1 + 0.00124 (Ωbh

2)−0.738
]

(3.11)

×
[
1 + g1(Ωmh

2)g2
]
,

where

g1 =
0.0783 (Ωbh

2)−0.238

1 + 39.5 (Ωbh2)0.763
,

g2 =
0.560

1 + 21.1 (Ωbh2)1.81
.

Following [80], we use the Markov chains from the Planck Legacy Archive (PLA) to
derive constraints on the parameter combination (la , R , z∗), which is known to efficiently
summarize CMB information on dark energy, with the measurements themselves indepen-
dent of the dark energy model to a good approximation. We assume the same model that we
constrain in this analysis (flat universe, constant w) when deriving the CMB observables.
For the Planck data, we use information from the temperature power spectrum combined
with WMAP polarization at low multipoles (Planck + WP). We also use the PLA chains to
derive the corresponding measurements for WMAP9 (temperature and polarization data)
with the same model assumptions. The CMB measurements are summarized in Table 3.2.

We evaluate the correlation matrix for (la , R , z∗) for Planck to be 1.0000 0.5262 0.4708

0.5262 1.0000 0.8704

0.4708 0.8704 1.0000

 .
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x̄± σ Planck WMAP9

la 301.65± 0.18 301.98± 0.66

R 1.7499± 0.0088 1.7302± 0.0169

z∗ 1090.41± 0.53 1089.09± 0.89

Table 3.2: Mean values and standard deviations of the CMB measurements used in our
analysis. The measurements for both Planck and WMAP9 were obtained using the Markov
chains provided by the Planck collaboration. We assumed the model with a flat universe
and constant dark energy equation of state, the same model we constrain in this analysis.

The same correlation matrix for WMAP9 is 1.0000 0.4077 0.5132

0.4077 1.0000 0.8580

0.5132 0.8580 1.0000

 .

We have explicitly verified that, when multiple probes are combined, the constraints
on w obtained directly from the CMB chains are in good agreement with results obtained
using the measurements in Table 3.2. For the base case of Planck combined with BAO and
SNLS3 SNe, the best-fit values of w differ by less than 0.1σ. The discrepancy is greater
when the complementary SN data are not included, but the difference is still less than 0.3σ
for the data combinations we consider.

Note that our measurements cannot be directly compared to those presented in [80]
because of different assumptions: we do not include Planck lensing information, we assume
a flat model with w as a free parameter instead of a Λ model with curvature, and we treat
z∗ as an observable in place of Ωbh

2.

3.3 Results

3.3.1 Constraint methodology

The complete parameter set used in our analysis is

pi ∈ {Ωm , w ,Ωmh
2 ,Ωbh

2 , {Mi}} ,
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Figure 3.2: Evolution of the mass step predicted from a toy model calibrated using data
from the Nearby Supernova Factory. This is similar to Fig. 11 of Rigault et al. (2013),
though we include a region of uncertainty by propagating errors in the mass step and lo-
cal star-forming fraction measured at z = 0.05 from the Nearby Supernova Factory data.
Vertical lines separate the three redshift bins, each of which contains two M nuisance
parameters, one for each host galaxy mass range.

where we marginalize over Ωmh
2 and Ωbh

2 for the CMB and BAO constraints and over one
or more SN Ia nuisance parametersMi (see Secs. 3.2.1.2 and 3.3.3). Given the small num-
ber of parameters, we calculate constraints using brute-force computation of likelihoods
over a grid of parameter values. We assume a Gaussian likelihood L ∝ exp(−χ2/2),
where we have ignored the 1/

√
det C prefactor, which is a constant and thus cancels out

in likelihood ratios. Note that, in general, the SN covariance matrix is a function of the SN
nuisance parameters. If we were to vary those parameters, we would need to recompute the
SN covariance matrix at each step; however, one might still want to drop the Gaussian pref-
actor, as it can bias the values of recovered parameters if included (e.g. [38] and Appendix B
of [17]). Finally, note that aside from the implicit prior that {Ωm ,Ωmh

2 ,Ωbh
2} ≥ 0, we

assume flat priors on all of the parameters.

3.3.2 Basic constraints

Combined constraints on the equation of state, marginalized over the other parameters, are
shown in Fig. 3.1, where the left panel shows the Planck data combined with the BAO
and SN Ia data, while the right panel shows the same for WMAP9. CMB and BAO data
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Figure 3.3: Effect of allowing for evolution of the mass step in redshift bins in the SN Ia
analysis. Left: 68.3%, 95.4% and 99.7% likelihood contours in the Ωm–w plane for SNLS3
data analyzed the standard way with twoM nuisance parameters (filled blue) and a new
way with sixM parameters (open red), one for each of two mass bins and three redshift
bins. Planck + BAO constraints (open black) are overlaid for comparison. Right: 68.3%
contours in the same plane for combined Planck + BAO + SNLS3 data using one, two, or
sixM parameters.

alone constrain the equation of state rather weakly. With Planck, there is a preference for
w < −1, but at ' 1σ it is not significant. There is no preference at all with WMAP9. Note
also that the constraints with Planck are visibly better than those with WMAP9, as Planck
measures all of the CMB distance parameters (la , R , z∗) more precisely, with errors that
are 2–3 times smaller.

Things get more interesting when SN Ia data are added. The Union2.1 data set pro-
duces the best constraints when combined with CMB and BAO, marginally better than the
constraints with SNLS3. Again, though, this leads to good agreement with a cosmological
constant, with an insignificant preference for w < −1 driven by the Planck data. However,
when SNLS3 or PS1 data are used, we find a preference for w < −1 at the 1.8σ (SNLS3)
or 1.9σ (PS1) level with Planck and the 1σ (SNLS3) or 1.2σ (PS1) level with WMAP9.4

Note that the PS1 data give slightly stronger evidence for w < −1, even though the overall
constraints are weaker.

It is useful to study the SN Ia constraints in more detail, which we do in the following

4Since the posterior likelihoods are not perfectly Gaussian, we always determine σ values by computing
the integral of the likelihood between the two values of w where the likelihood equals that at w = −1.
The quoted multiple of σ is the number of standard deviations that enclose this probability in a Gaussian
distribution.
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Figure 3.4: Residuals of SN Ia magnitudes, binned by redshift (inverse-covariance
weights), for SNLS3 (blue) and Union2.1 (red). All curves and data points are relative
to a flat ΛCDM cosmology with Ωm = 0.3, which is roughly the best-fit value from CMB
and BAO data. The plot shows the degree to which SNe in each redshift range pull toward
w < −1, and we show several theory curves with constant w for comparison.

two subsections. Our work here complements the detailed systematic analyses in [1, 17,
71, 81–87]. The particular focus of this paper is the effect of potential SN Ia systematics
and external priors on evidence for “phantom” behavior of dark energy where w < −1.

3.3.3 SN Ia host mass correction

Recently, much work has been focused on understanding the environmental dependence of
SNe Ia, which presumably is not only one of the important factors contributing to intrinsic
scatter of SN magnitudes but also an important systematic effect. In particular, there is
evidence that the absolute magnitude of SNe Ia is correlated with host galaxy properties
such as specific star formation rate, metallicity, and stellar mass after the usual light-curve
stretch and color correction [71, 81, 82, 84, 85, 87]. Most striking is the evidence for a
“mass step” where SNe in more massive hosts (& 1010M�) are brighter, on average, after
light-curve correction. This is consistent with a step function, suggesting that one could
fit for two separate magnitude offsets (i.e.M), one for SNe in low-mass hosts and one for
SNe in high-mass hosts. Indeed this was prescribed for SNLS3 in [17].

Of course, the mass of the host galaxy itself should have no direct physical influence
on SN luminosity, so something else must be at work. Recent measurements from Nearby
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Supernova Factory data [87] have indicated strong (∼ 3.1σ) evidence that SNe Ia in locally

passive environments are brighter on average than those in active star-forming environ-
ments. The authors further show that this can explain the observed mass step, as passive
environments are more common in high-mass galaxies. This is especially important be-
cause the fraction of SNe Ia in locally star-forming environments surely evolves with red-
shift, and therefore the amplitude of the mass step should also evolve. This is a systematic
effect not corrected for by the introduction of twoM parameters, and the authors estimate
a bias on the equation of state of ∆w ' 0.06.

Fig. 3.2 shows a toy model for the redshift evolution of the mass step from the analysis
of [87], with errors that we have estimated by propagating errors in the mass step and local
star-forming fraction measured at z = 0.05 from the Nearby Supernova Factory data. Given
the astrophysical uncertainties in linking the star formation rate to host stellar mass and the
latter to absolute magnitude of SNe Ia, we do not try to use any fixed model to correct for
this. Instead, we use a less model-dependent parametrization of the relation between the
observed host galaxy mass and absolute magnitude by allowing for two independent values
of M in each of three redshift bins: z ≤ 0.5, 0.5 < z ≤ 1.0, and z > 1.0. Therefore,
instead of two offset parameters in the Hubble diagram as in [17], we now have a total of
sixM parameters. The redshift extent that pairs of these parameters cover is illustrated in
Fig. 3.2, with the divisions centered on the fiducial model presented in [87]. Clearly, once
their amplitudes are allowed to float, these nuisance parameters will do a much better job
recovering the redshift dependence of the mass step than a single pair of M parameters
for the whole redshift range. We succeeded in marginalizing analytically over these six
parameters with flat priors and including covariance between SNe with different M (see
Sec. A).

The result is shown in Fig. 3.3. In the left panel, the filled blue contours show the
68.3%, 95.4% and 99.7% constraints for the usual case with two M parameters, while
the open red contours show the result for the six M parameters. The constraints clearly
weaken, although not as much as one might expect with four extra parameters introduced
at the level of the Hubble diagram. This “self-calibration” serves to effectively protect
against departures from the standard-candle assumption. Remarkably, when SN Ia data is
combined with CMB and BAO data, the resulting constraints are barely weakened because
the lengthening of the contours occurs mainly in the direction that is very well constrained
by the complementary data sets. On the other hand, the right panel of Fig. 3.3 shows
that the best-fit value of w is shifted appreciably, illustrating the sensitivity of dark energy
constraints to systematic effects in SN Ia measurements.
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Figure 3.5: Effect of each individual SNLS3 SN on the combined constraint on the equation
of state, as a function of redshift (top left), host galaxy stellar mass (top right), stretch
(bottom left), and color (bottom right). The blue points show the shift ∆w in the final
constraint on w due to each individual SN. The red circles show the combined (summed)
pull from each bin in the particular quantity.

3.3.4 Scanning through SN observables

Are SNe in any given redshift range of the SNLS3 compilation responsible for shifting the
equation of state to phantom values? We examine this issue in Fig. 3.4, where we show
the residuals in the Hubble diagram relative to w = −1 for SNe binned in ∆z = 0.075

bins. In this analysis, we have assumed the same cosmology for both SNLS3 and Union2.1
(Ωm = 0.3, w = −1), where Ωm is roughly the best-fit value from CMB + BAO. We
fix the stretch, color, andM parameters at their best-fit values separately for each SN Ia
data set. We see that the two data sets are consistent at the 1σ level in all bins except
at z ' 0.95, where they are consistent at 2σ. Therefore, the agreement between the two
Hubble diagrams seems excellent.

We can get an even more accurate picture of the redshift dependence of SN constraints
on the equation of state. The individual points in Fig. 3.5 show the effect of adding a single
SN to the combination of Planck + BAO + SNLS3. For practical purposes,5 we compare the
mean equation of state rather than the maximum of the likelihood. The red circles denote

5The computed mean value depends on the precise likelihood ratios between different points in a grid of
parameter values, but a simple numerical estimate of the maximum-likelihood value will only reflect changes
that are of order the grid spacing or larger.
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the total (summed) contribution of SNe per ∆z = 0.075 bin. We see that no redshift bin
contributes to a negative shift in the mean equation of state more than about 0.01.

The other three panels in Fig. 3.5 show the individual SNLS3 SN contributions to w
as a function of stretch, color, and host galaxy stellar mass. As before, the red circles
denote the summed contribution of all SNe in a given bin in the quantity shown. As in the
redshift scan, we do not observe any correlation or particular region in the stretch, color, or
host-mass spaces that is chiefly responsible for shifting the equation of state.

3.3.5 External H0 Prior

Adding a prior corresponding to an external measurement of the Hubble constant with a
small error bar has an important effect on our results. This is easy to understand: Given that
the CMB essentially pins down the physical matter density Ωmh

2 (for example, to better
than 2% with Planck), δ ln Ωm ' −2δ lnh and therefore a higher value of H0 corresponds
to a lower value of Ωm. For a lower Ωm, the degenerate direction of CMB + BAO con-
straints leads to a more negative w. Therefore, we would expect that higher values of H0

lead to more negative w, and vice versa.
This expectation is confirmed by our explicit tests with the current data, shown in

Fig. 3.6. Here we use the same Hubble constant measurement error of ±2.4 km/s/Mpc
as reported by [88], but instead of adopting the central value of 73.8 km/s/Mpc, we vary
the central value as an integer in the range H0 ∈ [65, 75] km/s/Mpc, one value at a time.
We show the final constraint on the dark energy equation of state using the CMB + BAO
+ H0 data, with or without the addition of the PS1 or SNLS3 SN data, as a function of
the H0 central value. For the external prior H0 = 74 ± 2.4 km/s/Mpc, we recover results
similar to [70] that favor w < −1 at ∼ 2.5σ. However, for a smaller central value of H0

(≤ 70 km/s/Mpc), the results are consistent with w = −1 at the 2σ level or less, and for an
even smaller central value (' 66 km/s/Mpc), we find the results consistent with w = −1 at
1σ.

3.4 Conclusions

We studied geometric constraints on the dark energy equation of state from recent SN Ia
data complemented with distance measurements from the CMB and a compilation of BAO
results. For the SNLS3 and PS1 SN data sets, the combined SN Ia + BAO + Planck data
favor a phantom equation of state where w < −1 at ∼ 1.9σ confidence (see Fig. 3.1), in
good agreement with the corresponding results reported in the original SN Ia and Planck
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Figure 3.6: Effect of an external H0 prior on the constant equation of state. We show
the effect on Planck + BAO constraints (black) and on combined Planck + BAO + SN
constraints separately for PS1 (red) and SNLS3 (blue), where the error bars bound 68.3%
and 95.4% of the likelihood for w. The external prior has an uncertainty of 2.4 km/s/Mpc
in each case, mimicking the uncertainty in the Riess et al. (2011) measurement.

papers. Evidence for a phantom equation of state is weaker if WMAP9 is used instead
of Planck, while the Union2.1 data set is consistent with the cosmological-constant value
w = −1 when combined with either CMB data set.

We have tested for a possible presence of systematics correlated with SN properties –
their redshifts, stretch factors, colors, and host galaxy masses. We find no evidence of a
trend or that a particular range of any of these properties contributes to pushing w < −1;
rather, the hints of a phantom equation of state appear to be uncorrelated with these basic
SN observables. We have also investigated the effect of modeling the redshift dependence
of the host galaxy mass step of SN luminosities, assigning up to six separate M param-
eters for different mass and redshift bins. The additional nuisance parameters shift the
SN Ia constraints sufficiently that, when combined with BAO and CMB data, they allow
agreement with w = −1 at ∼ 1σ. Therefore, a more generous allowance for the temporal
evolution of the dependence of SN luminosity on host galaxy mass removes the evidence
for w < −1. The hope for the future is that independent observations can pin down the
environmental dependence of SN luminosities and make it possible to account for such
subtle but important systematic effects in a consistent way and without the damaging effect
of extra nuisance parameters at the level of the Hubble diagram.
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External measurements of the Hubble constant play a particularly important role in the
final constraints on w. This is shown in Fig. 3.6, where we illustrate the effect of adding
a measurement of H0 with an error of 2.4 km/s/Mpc as in [88], but with the central value
varied from 65-75 km/s/Mpc. Clearly, interesting > 2σ evidence for the phantom equation
of state is present only when the central value is somewhat large: H0 & 71 km/s/Mpc.
Therefore, as first clearly argued by [89], with excellent CMB constraints the Hubble con-
stant measurements and their interpretation (e.g. [90, 91]) are among the most important
inputs in determining the dark energy equation of state.

Although we have taken Planck + BAO data at face value throughout most of our anal-
ysis, it is worth mentioning that systematics may be present in these data as well. This is
particularly true for the Planck data, given that its analysis is still in the early stages and
given the moderate tension between Planck results and both WMAP and growth measure-
ments (e.g. [92]). Indeed, a recent re-analysis of Planck data [93] resulted in parameter
shifts that somewhat reduce the tension with WMAP, and substantial ongoing work is fo-
cused on understanding systematics in growth measurements.

With current data we therefore find ourselves in an interesting situation in which we
can make the following statement at 2σ confidence: Given Planck data, either the SNLS3
and PS1 data have systematics that remain unaccounted for or the Hubble constant is below
71 km/s/Mpc; else the dark energy equation of state is indeed phantom.
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CHAPTER 4

Multiplicative Errors in the Power Spectrum

4.1 Introduction

Observations of large-scale structure (LSS) have proven to be a powerful probe of cos-
mology in recent years. Earlier large galaxy surveys, such as CfA [94], APM [95], and
2dF [96, 97], have paved the way for modern surveys like WiggleZ [98], SDSS [99–101],
and the Baryon Oscillation Spectroscopic Survey (BOSS), the current incarnation of SDSS
[102, 103]. These surveys have identified millions of galaxies and obtained spectra (and
therefore redshifts) of over one million, allowing us to map the three-dimensional distri-
bution of matter in the Universe. The enormous data sets resulting from these surveys are
often distilled into measurements of the location of the peak in the correlation function
corresponding to the scale of baryon acoustic oscillations (BAO), the imprint on structure
resulting from sound waves propagating in the early Universe [10, 39, 43, 76, 104]. These
BAO measurements, some of which are now at the percent level [13], have been crucial in
that they complement other probes of cosmic expansion to help break degeneracies between
key cosmological parameters.

But there is much more information in the power spectrum than just the primary BAO
peak, and with ongoing surveys like the Dark Energy Survey (DES; Abbott et al. 105),
which is on track to identify ∼300 million galaxies, the galaxy power spectrum as a whole
will complement other probes of cosmology (CMB power spectra, Type Ia supernovae,
weak lensing, etc.) to place tight constraints on dark energy and other cosmological pa-
rameters. Planning is already underway for future wide-field LSS surveys, such as LSST
[106] and Euclid [107].

Making these observations suitable for cosmology is not trivial. With the enormous
statistical power of surveys like DES, control of systematics becomes crucial, especially
at small scales where cosmic variance is small. A major class of systematic errors is pho-

tometric calibration errors, by which we mean any systematic that effectively causes the
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magnitude limit of the sample to vary across the sky, thus biasing the true galaxy power
spectrum. A number of recent observations [108–114] show a significant excess of power
at large scales that likely results from such calibration errors that have not been accounted
for. Recent work [109, 110, 114–117] has focused on mitigating these systematics in order
to probe the underlying cosmology.

[118], which we will refer to as H13, introduced a formalism for quantifying the effect
of an arbitrary photometric calibration error. They found that in order to use information
from large scales to constrain cosmological parameters, the root-mean-square variation
due to the calibration field must be ∼0.001–0.01 mag or less in order to avoid significantly
biasing cosmological parameters. This is a very stringent requirement.

A potentially more dangerous effect is the multiplicative leakage of these large-angle
errors to small angular scales, where most cosmological information resides. As discussed
in H13, the observed number density of galaxies is given by Nobs(n̂) = [1 + c(n̂)]N(n̂),
where the true number density N(n̂) is modulated by a calibration-error field c(n̂), which
is directly related to a host of interrelated photometric effects (survey depth, completeness,
atmospheric conditions, galactic dust, etc.). Even though the calibration error is significant
only at large angular scales, it multiplies the true galaxy field, so the observed field is
affected on all angular scales. This multiplicative effect, to our knowledge first pointed out
in H13 in the context of LSS systematics, is further studied in this work.

Current methods to clean the power spectra have been impressively efficient, but they
typically rely on systematics templates – prior knowledge of the relative spatial variation
of the contamination across the sky due to a known systematic. The methods rely on
the assumption that these templates are correct and that the set of templates is complete;
any unknown large-scale systematic that is not covered by one of the templates (or some
combination thereof) will not be accounted for.

Mode projection (or extended mode projection, see Leistedt and Peiris 117) is a par-
ticularly effective method. Essentially, it is a way of marginalizing over spatially varying
patterns on the sky that are expected to be caused by various systematics. While mode
projection has been shown to be effective at mitigating the added power from known sys-
tematics, this method cannot remove multiplicative errors. To understand why, suppose for
simplicity that a single systematic effect modulates the observed galaxy densities and that
the shape of the template is that of a pure spherical harmonic (so that c(n̂) ∝ Y`m(n̂) for
some `, m). This modulation will then not only add power at the angular scale `, but it will
also affect the power at all other multipoles. The obvious way to “project out” this mode,
at least in principle, is to simply ignore that one contaminatedmmode when estimating the
varianceC`. The additive error is removed entirely with little loss of cosmological informa-
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tion, but other multipoles have still been affected by the multiplicative effect in accordance
with our Eq. (4.13) below.

In this paper, we study a new approach that is both alternative and complementary to
previously employed techniques: using some of the power spectrum observations them-
selves to directly measure the systematic contamination and correct the rest of the mea-
surements for a cosmological analysis. Since the calibration errors are expected to enter at
large scales and then fall off quickly at higher multipoles (smaller scales), one may inter-
pret the low-multipole power spectrum as measurements of the systematics and use these to
correct the power spectrum at high multipoles, sacrificing some cosmological information
from large scales to remove the multiplicative error and obtain unbiased estimates of cos-
mological parameters from small scales. The benefit of this approach is that no templates
or otherwise detailed modelling of the systematics is required at this level.

The rest of the paper is organized as follows. In Sec. 4.2, we review and extend the cal-
ibration formalism introduced in H13, discuss our Fisher matrix formalism, and describe
a fiducial model and DES-like survey. In Sec. 4.3, we quantify the effect of multiplica-
tive calibration error for our fiducial survey and demonstrate the self-calibration method.
In Sec. 4.4, we summarize our conclusions and discuss how one might apply the self-
calibration method to real data.

4.2 Methodology

In this section, we outline our formalism to describe the calibration errors, review and
extend the Fisher matrix for the galaxy power spectrum, and detail our fiducial model and
survey.

4.2.1 Calibration Error Formalism

In the absence of all systematics, we would observe the true number density of galaxies on
the sky, which we expand in spherical harmonics:

δ(n̂) ≡ N(n̂)− N̄
N̄

=
∞∑
`=0

∑̀
m=−`

a`mY`m(n̂) , (4.1)

where a bar denotes a sky average and where the monopole vanishes (a00 = 0) since it
is proportional to the average overdensity on the sky, which is zero by construction. The
coefficients a`m are expected to be Gaussian random variables with a mean of zero and a
variance that depends on the cosmological model. The various m modes are statistically
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independent under the assumption of isotropy, so we have the familiar relations

〈a`ma∗`′m′〉 = δ``′ δmm′ C` , (4.2)

〈a`m〉 = 0 . (4.3)

Following H13, we now consider the effect of an arbitrary variation in the limiting magni-
tude δmmax(n̂) of the photometric survey due to calibration variation across the sky. This
magnitude variation implies a relative variation in galaxy counts [δN/N ](n̂) ∝ δmmax(n̂),
where the constant of proportionality depends on the faint-end slope of the luminosity func-
tion s(z) ≡ d log10N(z,m)/dm|mmax that may depend on redshift but does not depend on
direction. More generally, one can write [δN/N ](n̂) ≡ c(n̂) so that the observed galaxy
number density Nobs(n̂) is equal to the true number density N(n̂) modulated by the field
c(n̂), which we can also expand in spherical harmonics:

Nobs(n̂) = [1 + c(n̂)]N(n̂) , (4.4)

c(n̂) =
∑
`m

c`mY`m(n̂) . (4.5)

The calibration coefficients c`m are deterministic (not inherently stochastic) and thus have
the trivial statistical properties

〈c`mc∗`′m′〉 = c`mc
∗
`′m′ , (4.6)

〈c`m〉 = c`m . (4.7)

In other words, the calibration-error field is a fixed pattern on the sky, and there is no loss
of generality in making this assumption to simplify the analysis. The observed overdensity
is given by

δobs(n̂) ≡ Nobs(n̂)− N̄obs

N̄obs
=

[1 + c(n̂)]N(n̂)

N̄(1 + ε)
− 1

=
1

1 + ε
[δ(n̂) + c(n̂) + c(n̂)δ(n̂)− ε] , (4.8)

where N̄obs = N̄(1+ε) is the observed mean number of galaxies per pixel on the sky. Then
ε is defined by

ε ≡ 1

N̄
c(n̂)N(n̂) = c(n̂) [1 + δ(n̂)] =

c00√
4π

+
1

4π

∑
`m

c`ma
∗
`m , (4.9)
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where the overbar again denotes a sky average.
Expanding the observed overdensity in spherical harmonics,

δobs(n̂) =
∑
`m

t`mY`m(n̂) , (4.10)

we calculate the expansion coefficients of δobs to be

t`m =
1

1 + ε

a`m + c`m −
√

4π ε δ`0 +
∑
`1m1
`2m2

R`1 `2 `
m1m2m

c`1m1a`2m2

 , (4.11)

where the coupling coefficient R`1 `2 `
m1m2m

is a variant of the Gaunt coefficient, the result of
integrating a product of three spherical harmonics. It can be written in terms of Wigner 3-j
symbols:

R`1 `2 `
m1m2m

≡ (−1)m
√

(2`1 + 1)(2`2 + 1)(2`+ 1)

4π
(4.12)

×
(
`1 `2 `

0 0 0

)(
`1 `2 `

m1 m2 −m

)
.

In this formalism, how will the observed power be related to the true power C`? If
the observed coefficients are t`m, then the observed (potentially biased) power is given by
(Appendix B)

T` =

∑
m〈|t`m|2〉
2`+ 1

= C` + Ccal
` −

1

2π
Ccal
` C` (4.13)

+
1

4π

∑
`1`2

(2`1 + 1)Ccal
`1

(
`1 `2 `

0 0 0

)2

(2`2 + 1)C`2 ,

where we have defined the calibration-error contribution to the observed power as

Ccal
` ≡

∑
m

|c`m|2/(2`+ 1) . (4.14)

It is worth making several comments about Eq. (4.13), where the observed angular power
spectrum T` is given as a function of the true powerC`, the calibration-error powerCcal

` , and
various geometric coupling factors. The second term on the right-hand side,Ccal

` , represents
the additive effect of calibration error, which is typically important at large angular scales
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(such as ` . 20). The other terms are products of the true and calibration-error power;
they represent the multiplicative effect of calibration errors that affects the observed power
T` at all angular scales. Note that Eq. (4.13) is equivalent to the formula for T` from H13,
though here we have substantially simplified it by defining away the 1/(1 + ε) factor and
using Wigner 3-j relations (see Appendix B for more details).

Finally, we can gain some insight into the multiplicative contribution to T` by simpli-
fying Eq. (4.13) under the assumption that Ccal

` vanishes for multipoles greater than some
cutoff multipole ` = `max, cal and with the approximation that the true power C` is constant
in the multipole range ` ± `max, cal that contributes to the sum over `2. This allows us to
factor C`2 out of the sum and apply the Wigner 3-j relation Eq. (B.8). Then Eq. (4.13)
simply becomes

T` ' C` + Ccal
` −

1

2π
Ccal
` C` + σ2

c C` , (4.15)

where σ2
c ≡ Var[c(n̂)] =

∑∞
`=1(2` + 1)Ccal

` /(4π) is the variance of the calibration field
across the sky. This is generally an excellent approximation, and it shows that the multi-
plicative effect (the last term) is roughly independent of the shape of the calibration power
spectrum. Also, all C` at ` > `max, cal are multiplied by roughly the same factor, an effect
mimicking that of an incorrect galaxy bias.

4.2.2 Fisher matrix and bias

We now review and extend the standard LSS Fisher matrix formalism in order to forecast
both the extent to which multiplicative calibration errors bias cosmological parameters and
the uncertainty that results from trying to measure the contamination itself.

In the absence of systematics, and when cross-power spectra are assumed to vanish
(C ij

` ≡ 0 for i 6= j), the observables Cii
` are uncorrelated with a variance due to cosmic

sampling variance and shot noise:

Var[Cii
` ] =

2

(2`+ 1)fsky

(
Cii
` +

1

N i

)2

, (4.16)

where N i is the number of galaxies per steradian for redshift bin i. Then the well-known
Fisher matrix for measurements of the power spectrum is given by

Fαβ =
∑
i

∑
`

∂Cii
`

∂pα

1

Var[Cii
` ]

∂Cii
`

∂pβ
, (4.17)

where the pi are cosmological parameters.
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We will be particularly interested in the effect of the presence of uncorrected-for cal-
ibration errors on cosmological parameters. A useful Fisher-matrix-based formalism is
available to evaluate these effects [119, 120]. Given a bias δm in a vector of observables
m with covariance matrix C, the linear estimate for the bias in cosmological parameters is

δp = F−1D C−1δm , (4.18)

where the matrix D contains the derivatives of the observables with respect to the parame-
ters evaluated at their fiducial values: Dij = ∂mj/∂pi.

We can extend the Fisher matrix to measure both cosmological parameters and
calibration-error parameters Ccal

` from the observed (biased) angular power spectrum. Our
observables are now the set of T ii` , and we calculate their covariance from Eq. (4.15). To a
good approximation, they are uncorrelated with a variance

Var[T`] ' Var[C`]
(

1 + σ2
c −

1

2π
Ccal
`

)2

, (4.19)

where Var[C`] is the usual error from cosmic variance plus shot noise, as in Eq. (4.16),
and the redshift bin indices have been suppressed. The derivatives with respect to the
parameters are

∂T`
∂pi
' ∂C`

∂pi

(
1 + σ2

c −
1

2π
Ccal
`

)
, (4.20)

∂T`
∂Ccal

`′
' δ``′

(
1− 1

2π
C`

)
+

2`′ + 1

4π
C` . (4.21)

Note that when none of theCcal
` are added as parameters, the Fisher matrix for cosmological

parameters reduces to the usual Fisher matrix Eq. (4.17), independent of the fiducial size
of the calibration errors.

4.2.3 Fiducial model and survey

At small scales, we use the Limber approximation, which ignores the contribution of radial
modes, and model the angular power spectra of galaxy density fluctuations as

Cij
` = bibj

∫ ∞
0

H(z)

r2(z)
P

(
`+ 1

2

r(z)
, z

)
W i(z)W j(z) dz , (4.22)

where bi is the galaxy bias for the ith redshift bin (which we assume to be a constant), H(z)

is the Hubble parameter, r(z) is the comoving distance, P (k, z) is the power spectrum, and
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the weights are given by

W i(z) =
n(z)

N i

[
θ
(
z − zimin

)
− θ

(
z − zimax

)]
, (4.23)

where θ(x) is the Heaviside step function, zimin and zimax are the lower and upper bound of
the ith redshift bin, and n(z) is the radial distribution of galaxies per steradian. We use
the transfer functions and nonlinear modelling of CAMB [121] to compute and evolve the
power spectrum.

The Limber approximation is not valid at the largest scales, so for ` ≤ 30, we use the
full expression for the power spectrum:

Cij
` =

2

π

∫ ∞
0

P (k, 0) I i`(k) Ij` (k) k2dk , (4.24)

I i`(k) ≡ bi
∫ ∞

0

W i(z)D(z) j`(k r(z)) dz , (4.25)

where D(z) is the linear growth factor relative to z = 0 (since we are safely in the linear
regime) and j`(x) is the spherical Bessel function of order `. Note that in the above we are
assuming a flat universe.

Our fiducial DES-like survey covers 5,000 deg2 (corresponding to fsky ' 0.12)
and identifies a total of 300 million galaxies ('17 galaxies per arcmin2). We split
the sample into five tomographic redshift bins of width ∆z = 0.2, centred at
z = 0.1, 0.3, 0.5, 0.7, and 0.9. We take the radial distribution of galaxies to be n(z) ∝
z2 exp(−z/z0), with z0 = 0.3, and divide the total number of galaxies among the redshift
bins accordingly. As shown in Fig. 4.1, the distribution peaks at z = 2z0 = 0.6. We assume
that the photometric redshifts can be determined well enough that the cross-power spectra
between these bins are small enough to be ignored, making the power spectra for different
z slices statistically independent.

We choose for our fiducial cosmology a flat ΛCDM model with Ωm = 0.3, Ωmh
2 =

0.143, Ωbh
2 = 0.0222, ns = 0.96, and 109As = 2.2 for k0 = 0.05 Mpc−1, values which

agree well with data from Planck [7] and other probes.
In our analysis, we allow the dark energy equation of state to vary along with the pa-

rameters above, though we keep Ωmh
2 and Ωbh

2 fixed at their fiducial values. In prac-
tice, Planck CMB measurements constrain these parameters very well (to ∼1%), so we
are effectively adding Planck priors to all of our constraints and assuming the remaining
uncertainty to be negligible, which should be a reasonable approximation. We assume a
(constant) galaxy bias bi = 2.2 (same for all redshift bins), which we hold fixed for simplic-

61



z

n
(z
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

2

2.5

3
x 10

8

1
2

3
5

4

Figure 4.1: Number density of galaxies per steradian for our fiducial survey. Galaxies are
assigned to the five redshift bins in proportion to the areas of the coloured regions, each
spanning ∆z = 0.2.

ity. In a full analysis, one should parametrize the bias appropriately and marginalize, since
the bias parameters may have significant uncertainties and be somewhat degenerate with
cosmological parameters. Allowing the dark energy equation of state to vary with time as
w(a) = w0 + wa(1 − a) [52], our fiducial parameter space is therefore five-dimensional
(Ωm, w0, wa, ns, As), though we briefly consider a constant equation of state (with fixed
wa = 0) as well.

4.3 Results

4.3.1 Biases from multiplicative errors

H13 used a similar formalism to study the effect of arbitrary photometric calibration errors
on cosmological parameters. The large biases that resulted were primarily due to additive
errors (the Ccal

` term in Eq. (4.13)), which strongly biased the power spectrum at low mul-
tipoles and which were assumed negligible at smaller scales (Ccal

` = 0 for ` > `max, cal).
With the exception of some parameters (e.g. fNL), most of the constraining power on cos-
mological parameters, including dark energy parameters, comes from high `, where there
are many more modes to minimize cosmic variance. The simplest way to avoid biases due
to these large additive errors at low ` is to just remove those multipoles from the analysis,
sacrificing the modest amount of information they contain. For our fiducial survey, we find
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Figure 4.2: Multiplicative effect due to our fiducial calibration errors with σ2
c = 0.1 dis-

tributed on large scales ` ≤ 20. The biased power spectrum T` (black points) is compared
to the true power spectrum C` (solid lines) for three of the five redshift bins of our fidu-
cial survey. The spectra are binned in ` with inverse-variance weights, and the error boxes
include cosmic variance and shot noise.

that this increases the errors on parameters by ∼1%, though this number is sensitive to
the model and which parameters are varied. Alternatively, with detailed modelling of the
systematic effects, one can attempt to remove the contaminated modes and obtain useful
cosmological information from the low multipoles.

The problem is not so simple when there are significant multiplicative errors, corre-
sponding to the other terms in Eq. (4.13), where a given multipole is not only affected by
calibration errors at that scale, but also calibration errors from every other multipole. Ig-
noring or cleaning the low-` information is not helpful here, since the biases have already
“leaked” into the high-` power. The multiplicative errors are much smaller (by a factor of
order C`) than the additive errors, but for a large total amount of contamination, the effects
can be important.

In Fig. 4.2, we show our fiducial power spectra along with the same power spectra
when biased due to multiplicative errors, for three of the five redshift bins. The spectra are
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binned with inverse-variance weights, and the error boxes represent the combined cosmic
variance and shot noise error for each bin. For definitiveness, we assume a spectrum for
the calibration systematics of Ccal

` ∝ `−2 (separately for each redshift bin) and impose a
cutoff such that Ccal

` = 0 for ` > `max, cal = 20. A variance of the calibration-error field
across the sky of σ2

c = 0.1 is assumed. Recall that this quantity is related to the power
spectrum of calibration errors by σ2

c ≡ Var[c(n̂)] =
∑∞

`=1(2` + 1)Ccal
` /(4π). While this

is a large contamination, it may not be unrealistic for a survey like DES, since the relevant
error is the raw variation in the effective magnitude limit before any attempts to clean or
remove it. While the cleaning or marginalization methods effectively remove the additive
contribution, the Ccal

` term in Eq. (4.13), the original multiplicative effects remain.
Note that the factor by which the power is increased by the multiplicative errors is

relatively constant, but since cosmic variance decreases at higher `, the biases eventually
become larger than the errors. From the approximate expression Eq. (4.15), we can easily
estimate this relative bias in the space of observables. The multiplicative bias is σ2

c C`,
while the variance is given by Eq. (4.16). Ignoring the shot noise contribution, the bias
relative to the error is therefore

T` − C`
σC`

'
√

(2`+ 1) fsky

2
σ2
c . (4.26)

For σ2
c = 0.1, the bias is as large as the error for ` ' 800 and twice as large for ` '

3,000. The biases on bandpowers, such as those shown in Fig. 4.2, are more severe still,
as cosmic variance is further reduced by measuring the power spectrum in bins spanning
several independent ` modes.

Fig. 4.3 shows the effect of the bias from Fig. 4.2 in the space of dark energy parameters
w0 and wa using information from ` = 21 through `max = 2,000. In this case, both w0 and
wa are shifted from their fiducial values by more than 3σ.

Fig. 4.4 shows the effect of these same biases in the full space of our cosmological
parameters. We plot ∆χ2 as a function of the maximum multipole `max used in the analysis,
where ∆χ2 = δp>F δp. For the five-dimensional space of all parameters, this is equivalent
to the observable-space ∆χ2 in the Fisher matrix formalism. In this case, χ2 is shifted
by 3σ for `max ' 100. We also show ∆χ2 for the two-parameter spaces of Ωm and w

(marginalizing over As and ns but fixing wa = 0) and for w0 and wa (marginalizing over
the other three parameters). In these cases, χ2 is shifted by more than 3σ for `max '
2,500. Notice that the sizes of the biases oscillate somewhat; since the Fisher derivatives
sometimes flip sign, the biases will cancel for some `max. This subtlety depends strongly on
which parameters are of interest, apparent here from the “out-of-phase” cancelling between
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the constant-w and w0–wa dark energy parametrizations. It is therefore the envelope of the
bias curves in the Ωm–w and w0–wa spaces that indicates the bias one can realistically
expect.

Although we fix the galaxy bias in this illustration, it is worth mentioning that the effect
at high ` of a constant (scale-independent) galaxy bias is almost completely degenerate
with the multiplicative effect from low ` (see Eq. (4.15) with Ccal

` = 0). In other words,
if the contaminated low multipoles are removed from the analysis and the galaxy bias is
constrained along with other cosmological parameters, the inferred value of the galaxy
bias will shift due to the multiplicative effect, but the marginalized constraints on the other
cosmological parameters will not be significantly biased. Of course, if the galaxy bias
exhibits scale dependence or can be known independently to a good precision (which we
effectively assumed here), this will not be the case.

Figure 4.3: Forecasted 68.3, 95.4, and 99.7 per cent joint constraints on the w0–wa dark
energy parametrization for our fiducial survey, using information from ` = 21 through
`max = 2,000 without calibration errors (blue) and with multiplicative calibration errors
from ` ≤ 20 with σ2

c = 0.1 (red).
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Figure 4.4: Shift in parameter-space χ2 due to multiplicative calibration errors as a func-
tion of the maximum multipole used in the analysis. We show the effect on the full five-
dimensional space of parameters (black) along with the two-dimensional spaces of Ωm and
w with fixed wa = 0 (blue) and w0 and wa (red). The overlaid dashed grey lines mark
the 68.3, 95.4, and 99.7 per cent bounds for a two-dimensional Gaussian distribution (for
comparison with the red or blue lines).

4.3.2 Self-calibration to remove multiplicative errors

We now study the possibility of measuring the contamination directly at low multipoles
to correct the power at high multipoles. Due to large cosmic variance, the low-` Ccal

` are
not known precisely, and for a cut sky, there will be very few modes to inform us about
the lowest-` Ccal

` . In practice, the T` would be measured in bandpowers, so one could then
measure the calibration error in bandpowers, but for our purposes here, we assume that each
Ccal
` can be measured with an associated error due to cosmic variance of the true power (and

shot noise, though it is negligible at the relevant low multipoles). Note that in our Fisher
formalism we are ignoring any additional errors that may result from imperfectly extracting
T` from the cut sky, though these could be estimated in principle [116, 122, 123].

To study the effect of a self-calibration procedure, we consider the example in
Sec. 4.3.1, where a calibration power spectrum Ccal

` ∝ `−2 with σ2
c = 0.1 and `max, cal = 20

has been added to each of the fiducial power spectra. We introduce the Ccal
` as nuisance

parameters to be constrained along with the cosmological parameters. Since `max, cal = 20,
there are 20 calibration-error parameters for each of five redshift bins, for a total of 100
nuisance parameters. Using the Fisher matrix formalism discussed in Sec. 4.2.2, we can
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bration errors as a function of the maximum multipole used in the analysis, for calibration-
error parameters measured up to various `max, meas. The overlaid dashed grey lines mark the
68.3, 95.4, and 99.7 per cent bounds for a five-dimensional Gaussian distribution.

estimate the additional statistical error on cosmological parameters that results from imper-
fectly measuring the Ccal

` .
In Fig. 4.5, we show the effect of measuring Ccal

` up to a variety of `max, meas by plot-
ting ∆χ2 (in the five-dimensional parameter space of Ωm, w0, wa, ns, and As) due to the
remaining bias, as a function of the maximum multipole `max used in the analysis. In other
words, for `max, meas = x, we constrain 5x total nuisance parameters. For `max, meas = 20,
∆χ2 = 0 for all `max, since the assumption is that all of the calibration terms have been
measured without significant bias. Note the very large biases in the cosmological parame-
ters when `max, meas is low; that is, when we have not used measurements of additive error
at sufficiently many low multipoles to effectively “clean” the high-multipole LSS informa-
tion.

In Fig. 4.6, we show the statistical error and remaining bias in thew0 andwa dark energy
parameters as a function of the maximum multipole `max, meas at which calibration errors are
measured. For both parameters, the statistical errors increase modestly (by ∼50%), while
the biases approach zero at `max, meas = `max, cal. In this specific case, it is apparent that one
would need to measure systematics to ` ' 10 in order to reduce the biases to a comfortable
level (such as ∼1/4 of the statistical error).
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4.4 Discussion

In this paper, we have considered a general class of systematic errors – photometric cal-
ibration errors – that contaminate measurements of the galaxy angular power spectrum.
These errors arise from any effect which causes a spatial variation in the effective mag-
nitude limit of the photometric survey, modulating the true galaxy number densities and
biasing the angular power spectrum (see Eq. (4.13)). More specifically, we studied the ef-
fect of multiplicative errors, where calibration error at any scale biases inferences of the
power spectrum at all other scales. In this case, cleaning the power spectra of excess ad-
ditive power, or excluding contaminated multipoles from the analysis, does not remove the
multiplicative effect. For a large total amount of contamination, the multiplicative effect
can significantly bias cosmological parameters (Figs. 4.3–4.4).

Given the fact that these calibration errors tend to affect primarily large angular scales
(for instance ` . 20), we proposed a possible method of “self-calibrating” the survey by
using the largest angular scales to measure the contamination itself, which can then be
removed from small scales where most of the information on cosmological parameters
resides. We studied a fiducial DES-like survey, using Fisher matrix formalism to fore-
cast errors and biases in cosmological parameters given the survey parameters and our
assumed photometric calibration error. We then extended the Fisher matrix to include the
low-multipole calibration powers as nuisance parameters. For a modest increase in statis-
tical uncertainty, one can remove the biases in cosmological parameters, including those
describing dark energy (Fig. 4.6).

We now briefly discuss how this method could be applied to real data. One clear prob-
lem with the procedure is the near-perfect degeneracy at large scales between the additive
calibration-error power and cosmological parameters. This means that nearly all of the
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information on cosmological parameters must come from small scales. While little infor-
mation on most cosmological parameters comes from the largest scales, a major exception
is the non-Gaussianity parameter fNL, on which most information comes from these scales
(see fig. A1 of H13), making its measurement difficult with this procedure. On the other
hand, it may be possible to incorporate cross-power spectra from overlapping redshift bins
and cross-correlations with other probes into this formalism. The extra information, which
may not be subject to the same systematics, could be used to constrain parameters like fNL

along with the general calibration-error parameters.
The other important assumption is that one can safely ignore all additive error above

some multipole `max, cal. For our illustration here, we assumed `max, cal = 20, though this
is optimistic, and one could easily make the cutoff somewhere else. While photometric
calibration error from known systematics tends to decrease sharply at smaller scales, some
contamination may still be present at higher multipoles. Although one can probably assume
that the extra multiplicative effect from any of these (smaller) additive errors is negligible,
the additive errors themselves would need to be removed via other means.

One could thus imagine using this procedure in conjunction with mode projection and
other cleaning techniques, using the cleanest possible small-scale spectrum but still re-
taining the fully contaminated spectrum at large scales to constrain the calibration-error
parameters. This procedure would be particularly useful if one is worried about unknown
sources of calibration error but willing to assume that these add significant power to multi-
poles below some cutoff only.

Finally, if one is doubtful about removing all of the smaller-scale additive contamina-
tion using standard cleaning techniques, the only way forward would be to choose a more
conservative `max, cal that is high enough for one to comfortably assume that the bias in
the remaining small-scale spectrum is due only to the multiplicative effect from the larger
scales.
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CHAPTER 5

Testing Power Law Cosmology with Model
Comparison Statistics

5.1 Introduction

Despite the general observational success of ΛCDM in describing the detailed properties
of the Universe and its expansion, some alternative models for expansion have been pro-
posed. A notable alternative is power law cosmology, where the scale factor evolves purely
as a function of the proper time (age) to some constant power. While constraints from
Big Bang nucleosynthesis suggest that a power law model cannot describe the complete
expansion history of the Universe [124, 125], it may be more plausible as a description
of a low-redshift modified-gravity alternative to the cosmological constant. For instance,
power law expansion could result from a coupling of classical fields to spacetime curvature,
regardless of matter content (e.g. [126]). Theoretical motivation aside, it is instructive to
compare alternative models with ΛCDM to test the robustness of the data and their ability
to discriminate between competing models.

Power law expansion has been shown (e.g. [127–129]) to be consistent with a variety
of cosmological probes for a power law exponent in the range 1 . n . 1.5. More recently,
[130] studied power law cosmology using current data from observations of Type Ia super-
novae (SNe Ia) and baryon acoustic oscillations (BAO). They found that low-redshift power
law cosmology is a good fit to the SN Ia data if the power law exponent has a value n ' 1.5.
Here we will study similar data, but rather than simply constrain the model parameters and
confirm that one can find a good fit, we would like to explicitly compare power law cosmol-
ogy with ΛCDM. We will use several alternative model comparison statistics to determine
if (and if so, how strongly) various data combinations prefer power law expansion over
ΛCDM.

A similar alternative to ΛCDM is the so-called Rh = ct universe proposed by [131],
where Rh = c/H(t) is the Hubble radius. Though presented as a distinct model, the
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expansion history of Rh = ct matches that of a power law with exponent n = 1 (a constant
rate of expansion). Note that a constant rate of expansion has been studied earlier [132, 133]
under the name “linear coasting cosmology.”

Whether or not the Rh = ct model is unphysical has been debated in the literature.
Aside from the nucleosynthesis arguments [124, 125] that apply to power law expansion
in general, [134] points out that the Rh = ct universe, which is constrained to have an
effective equation of state w̄ = −1/3, requires either that Ωm = 0 or that the dark energy
equation of state evolves in an unphysical way at early times. In a response, [135] argues
that the assumption of a conserved matter field is not justified even at late times, though
one might view this as rather contrived. The idea of Rh as a meaningful cosmic horizon
has also been challenged [136]. Setting these important concerns aside, we may still ask
whether the observations favor Rh = ct expansion as a phenomenological description of
the late Universe.

An analysis by [137] determined that the Rh = ct universe is ruled out by both SN Ia
data and H(z) data (from BAO and cosmic chronometers) separately, though, as pointed
out in [138], the conclusions are based heavily on visual inspection of plots of reconstructed
dynamical quantities. While there is nothing wrong with this dynamical approach, and
while the inconsistency with Rh = ct indeed appears quite significant, direct model com-
parison can quantify the preference of the data and appropriately account for differences in
model complexity. That analysis also ignores systematic errors in the SN Ia measurements,
and these are significant for current data. In addition, proponents of Rh = ct cosmology
have argued [139, 140] that using SN Ia data may be unfair anyway because of hidden
model dependence.

In this paper, we test both power law cosmology and, separately, theRh = ct cosmology
against ΛCDM using current data and robust model comparison statistics. The outline of
the rest of the paper is as follows. In Sec. 5.2, we briefly review these three models for
cosmic expansion. In Sec. 5.3, we describe the datasets we will use, and in Sec. 5.4, we
review the goodness-of-fit and model comparison statistics. Our results are presented in
Sec. 5.5. Finally, in Sec. 5.6, we discuss the issue of hidden model dependence in the SN
Ia data, explaining why there is no real problem, before summarizing our conclusions.

5.2 Models

In this section, we briefly describe the three models we wish to compare: ΛCDM, power
law cosmology, and the Rh = ct cosmology.
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5.2.1 ΛCDM

The flat ΛCDM model is considered the standard model of modern cosmology, and it is mo-
tivated by a combination of physics and empirical observations. In the ΛCDM framework,
the present-day Universe consists mostly of cold dark matter and the simplest form of dark
energy, the cosmological constant Λ. The ΛCDM model is usually described as having
six free parameters (e.g. Ωm, Ωch

2, Ωbh
2, ns, As, τ ), remarkably simple for a model that

describes the Universe as a whole (for comparison, the Standard Model of particle physics
has 19 free parameters). Moreover, if the focus is only on late-time relative expansion,
there is really only one free parameter, which we take to be Ωm. For a flat universe, the
present cosmological-constant density is fixed to the value ΩΛ = 1−Ωm, and the comoving
angular diameter distance r(z) coincides with the line-of-sight comoving distance:

r(z) =
c

H0

∫ z

0

dz′

E(z′)
, (5.1)

E(z) ≡ H(z)

H0

=
√

Ωm(1 + z)3 + (1− Ωm) . (5.2)

Note that, since we are focusing on low-redshift expansion only, we can ignore contribu-
tions to H(z) from radiation or relativistic neutrinos, which have a negligible impact on
expansion to the precision we are concerned with here.

5.2.2 Power law and Rh = ct cosmology

In power law cosmology, the scale factor evolves with proper time (age) as

a(t) =

(
t

t0

)n
, (5.3)

where a0 = a(t0) = 1 is the present value. In this case, we have

E(z) = (1 + z)1/n, (5.4)

so that

r(z) =
c

H0

×


(1 + z)1−1/n − 1

1− 1/n
, n 6= 1 ,

ln(1 + z), n = 1 .

(5.5)

Here there is one free parameter, the power law exponent n, which can be restricted to
be in the range 0 < n <∞ if we agree we live in an expanding universe. Since the data
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combinations we will analyze here all exclude n ≤ 0 anyway, this restriction does not affect
our analysis.

The Rh = ct universe [131], though proposed as a distinct model, has an expansion
history that matches that of a power law with n = 1. In the definition,Rh is the gravitational
radius, which is equivalent to the Hubble radius Rh = c/H(t) for a flat universe, so one
can also write Ht = 1 to describe this model. The comoving angular diameter distance is
then given by the second case in Eq. (5.5). There are no free parameters in this model, so
only nuisance parameters associated with the data can be varied.

Note that we are assuming a flat universe for these models as well, an assumption
which can be relaxed (e.g. [130]). Flatness is empirically motivated (e.g. [7]) for ΛCDM-
like models, where Ωk is constrained to be small, but the tightest constraints are somewhat
model-dependent since they rely on CMB observations (see Sec. 5.3.2). On the other hand,
if the inflationary picture is correct, we still have strong theoretical motivation to assume a
flat universe, and we proceed with this assumption.

5.3 Data Sets

We now describe in some detail the data used in the analysis. It is crucial that we only
choose data whose interpretation is independent of the cosmological model. To this end,
we consider SN Ia observations as well as measurements of the BAO feature in large-
scale structure. These are among the most mature, well-studied, and robust probes of dark
energy and cosmic expansion at present. In this section and also in Sec. 5.6, we discuss
some important issues related to the model-independence of these data.

We intentionally do not use some other measurements of distance and expansion rate,
such as cosmic chronometers (e.g. [141, 142]), which measure H(z) directly by estimating
the ages of passively evolving galaxies. While very promising, this method is newer and
less well-studied, and the systematic errors on individual measurements are often as large as
the statistical errors. In addition, we leave out measurements of the CMB distance because
the measurement is at least somewhat model-dependent (see Sec. 5.3.2).

5.3.1 SN Ia data

Type Ia supernovae (SNe Ia) are very bright standard candles (or standardizable candles)
that are useful for measuring cosmological distances. SNe Ia alone provided the first con-
vincing evidence for accelerated cosmic expansion [8, 9]. Today, not only have we ob-
served many more SNe, but we have also improved our understanding of their light curves
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and performed rigorous analyses of systematic errors (e.g. [17, 71, 83, 143]). Although
measurements of CMB anisotropies and large-scale structure can constrain the matter con-
tent of the Universe and even the dark energy equation of state, SNe Ia have an important
role in breaking degeneracies to achieve precision constraints on dark energy.

The distance modulus of a SN at redshift z is given by

µ(z) = 5 log10

[
H0

c
DL(z)

]
, (5.6)

where DL(z) = (1 + z) r(z) is the luminosity distance. Here we have defined the distance
modulus without the H0 term, which is degenerate with the SN Ia absolute magnitude (see
below).

Useful correlations between the peak luminosity of SNe Ia and both the stretch (or
broadness) and photometric color of their light curves improve the standardization of SNe
Ia by reducing the intrinsic scatter in their luminosities (and simultaneously mitigating po-
tential systematic effects). Simply put, a broader or bluer SN light curve corresponds to
a brighter SN. More recently, it has become apparent that properties of the host galaxy
correlate with the intrinsic luminosity as well, and understanding these effects is the fo-
cus of much current work (e.g. [81, 87, 144]). It is now common practice to fit for two
absolute magnitudes, splitting the sample using a stellar mass cut of the host galaxy. We
therefore compare the predicted distance modulus with its measured value after light-curve
correction:

µobs = m− (M− α s+ β C + P ∆M), (5.7)

where m is the apparent magnitude in some photometric band, s and C are the stretch and
color measures, which are specific to the light-curve fitter (e.g. SALT2 [37]) employed,
and P ≡ P (M∗ > 1010M�) is the probability that the SN occurred in a high-stellar-mass
host galaxy. The stretch, color, and host-mass coefficients (α, β, and ∆M , respectively) are
nuisance parameters that should ideally be constrained along with any cosmological param-
eters. The constantM = M − 5 log10[H0/c× 10 pc] absorbs the H0 term from Eq. (5.6)
and is yet another nuisance parameter.

Recent analyses (see below) have concentrated on estimating correlations between mea-
surements of individual SNe in order to appropriately account for the numerous systematic
effects which must be controlled in order to improve constraints significantly beyond their
current level. A complete covariance matrix for SNe Ia includes estimates of all identi-
fied systematic errors in addition to the intrinsic scatter and other statistical errors. The χ2
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statistic is then calculated in the usual way for correlated measurements:

χ2 = ∆µᵀC−1∆µ , (5.8)

where ∆µ = µobs − µ(θ) is the vector of residuals between the observed, corrected dis-
tance moduli and the theoretical predictions that depend on the set of cosmological model
parameters θ and C is the NSN ×NSN covariance matrix for the observed distance moduli.

In this work, we use current SN Ia datasets from two alternative analyses: the joint light-
curve analysis (JLA) of SNe from the Supernova Legacy Survey (SNLS) and the Sloan
Digital Sky Survey (SDSS) and the Supernova Cosmology Project’s Union2.1 compilation.

5.3.1.1 JLA

The joint light-curve analysis (JLA) [145] includes recalibrated SNe from the first three
years of SNLS [17, 75] as well as the complete SN sample from SDSS [146], and it is the
largest combined SN analysis to date. The final compilation includes 740 SNe, ∼100 low-
redshift SNe from various subsamples, ∼350 from SDSS at low to intermediate redshifts,
∼250 from SNLS at intermediate to high redshifts, and ∼10 high-redshift SNe from the
Hubble Space Telescope.

We use the SN Ia data and individual covariance matrix terms provided1 to compute
the full covariance matrix, which includes statistical errors and all identified systematic
errors. The covariance matrix, like the corrected distance moduli themselves, is a function
of the light-curve nuisance parameters α and β. In the analysis, we vary all of the SN Ia
nuisance parameters (α, β,M, ∆M ), recomputing the covariance matrix whenever α or β
is changed.

5.3.1.2 Union2.1

The Union2.1 analysis [25] from the Supernova Cosmology Project2 adds ∼15 high-
redshift SNe to the Union2 compilation [24], making Union2.1 the compilation with the
most high-redshift SNe (∼30 at z > 1) to date.

The SN distance moduli provided have been pre-corrected for stretch, color, and host-
mass correlations using best-fit values for α, β, and ∆M . While we do include all identified
systematic errors via the covariance matrix provided, we keep α and β fixed at their best-
fit values in the analysis because the covariance matrix is a function of these parameters
and individual covariance matrix terms are not provided. While fixing α and β is unlikely

1http://supernovae.in2p3.fr/sdss_snls_jla/
2http://supernova.lbl.gov/Union/
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to affect the results of our model comparison (see Sec. 5.5), it is important to allow the
effective value of the SN Ia absolute magnitude to change, so we let bothM and ∆M vary
in the analysis.

5.3.2 BAO data

Baryon acoustic oscillations (BAO) are the regular, periodic fluctuations of visible matter
density in large-scale structure resulting from sound waves propagating in the early Uni-
verse. In recent years, precise measurements of the BAO scale at a variety of redshifts have
proven to be effective probes of cosmic expansion and dark energy [16, 147]. The principal
observable is the ratio of the BAO distance scale at low redshift to the comoving sound
horizon rd = rs(zd) at the redshift of baryon drag (zd ' 1060, shortly after recombination
at z∗ ' 1090).

Typically the BAO feature is assumed to be isotropic and is identified from a
spherically-averaged power spectrum. In this case, the observable is DV (zeff)/rd, where
DV is a spherically-averaged (two transverse and one radial) distance measure [10] given
by

DV (z) ≡
[
r2(z)

cz

H(z)

]1/3

, (5.9)

where r(z) = (1 + z)DA(z) is the comoving angular diameter distance and H(z) is the
Hubble parameter. More recently, it has become possible to robustly measure radial and
transverse clustering separately, allowing for anisotropic BAO. In that case, the observables
r(zeff)/rd and c/(H(zeff) rd) are measured separately (but with some statistical correlation).

We follow [147] and combine recent measurements of the BAO feature from the Six-
degree-Field Galaxy Survey (6dFGS) [11], the SDSS-II DR7 main galaxy sample (MGS)
[104], and the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) DR11 LOWZ
[12] and CMASS [13] samples. We also include a combined measurement from BOSS
Lyman-α forest (LyαF) auto-correlation [14] and cross-correlation [148]. We use pairs of
anisotropic measurements for the CMASS and LyαF samples and isotropic measurements
for the others.

The BAO measurements used in this analysis are summarized in Table 5.1. As dis-
cussed in [147], statistical correlations (covariance) between these different samples should
be negligible, so we treat them as independent in the analysis. Note that the CMASS
anisotropic measurements are correlated with coefficient −0.52, while the LyαF measure-
ments are correlated with coefficient −0.48.

The likelihood for the BAO observables is not Gaussian far from the peak. For a finite
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Sample zeff Observable Measurement
6dFGS 0.106 DV (zeff)/rd 3.047± 0.137
SDSS MGS 0.15 DV (zeff)/rd 4.480± 0.168
BOSS LOWZ 0.32 DV (zeff)/rd 8.467± 0.167
BOSS CMASS 0.57 r(zeff)/rd 14.945± 0.210
BOSS CMASS 0.57 c/(H(zeff) rd) 20.75± 0.730
BOSS LyαF 2.34 r(zeff)/rd 36.489± 1.152
BOSS LyαF 2.34 c/(H(zeff) rd) 9.145± 0.204

Table 5.1: Summary of BAO measurements combined in this analysis. We list the sample
from which the measurement comes, the effective redshift of the sample, the observable
quantity constrained, and its measured value. The anisotropic measurements from BOSS
CMASS are correlated with coefficient −0.52, while those from BOSS LyαF are corre-
lated with coefficient −0.48. Otherwise, we assume the measurements to be statistically
independent.

detection significance of the BAO feature, the actual likelihood will eventually asymptote
to a flat tail, since any value for the observable is equally probable in the event of a non-
detection [59]. This is particularly important to consider when constraining parameters to
a high confidence level or claiming that a model is a very poor fit to the data.

We account for this effect by applying the fitting function proposed in [59] to ap-
proximate the correct likelihood. For a given signal-to-noise ratio (S/N ), the usual
∆χ2

G = −2 lnLG for an observable with a Gaussian likelihood is replaced by

∆χ2 =
∆χ2

G√
1 + ∆χ4

G

(
S

N

)−4
. (5.10)

Here, the S/N corresponds to the reported detection significance, in units of σ, of the BAO
feature. For further explanation of this effect and how it relates to BAO measurements,
see [1, 59]. Note that if ∆χ2

G is a combined value for multiple measurements, such as a
pair of anisotropic BAO measurements, the relevant (S/N)2 is the Gaussian ∆χ2 value that
corresponds to the detection probability. For instance, (S/N)2 = 6.18 rather than 4.00 for
a 2σ (95.4%) detection and a ∆χ2

G with two degrees of freedom (see e.g. [149]).
The detection significance quoted for 6dFGS is 2.4σ. For SDSS MGS, the detection

significance is roughly 2σ, but since the likelihood is non-Gaussian anyway, we apply
Eq. (5.10) to the publically-available χ2 look-up table. We also truncate its ∆χ2 contri-
bution at ∆χ2 = 3.43 to avoid extrapolating beyond the edge of the table. No detection
significance was explicitly quoted for BOSS LOWZ, so we assume a 4σ detection as a
conservative guess. The quoted detection significance is more than 7σ for BOSS CMASS,
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but we use a value of 6σ in the analysis, in case the likelihood becomes non-Gaussian for
other reasons at such a high confidence level. Finally, for BOSS LyαF, the detection signif-
icance is 5σ for the auto-correlation measurement and roughly 4σ for the cross-correlation
measurement. Since these measurements are almost completely independent (see [14]), we
simply add their publically-available χ2 tables. Although the combined detection signifi-
cance is presumably higher, we apply Eq. (5.10) to the combined χ2 table assuming a sig-
nificance of only 4σ. We then truncate the ∆χ2 contribution at ∆χ2 = 15.93 (less than 4σ
for two degrees of freedom) to avoid any extrapolation beyond the table. We have verified
that the final results are qualitatively insensitive to the exact choices here and quantitatively
sensitive to only the LyαF BAO significance, which we discuss in Sec. 5.5.

Measurements of the BAO scale are typically calibrated by the CMB, which effectively
fixes the sound horizon rd by precisely constraining Ωmh

2 and Ωbh
2. Here we avoid using

the CMB to measure the sound horizon, as this measurement is model-dependent. To this
end, we simply allow rd to be a free parameter, effectively using only relative distance in-
formation from BAO. This is analogous to SN Ia analysis, where one usually marginalizes
over the SN Ia absolute magnitude, using only relative distance information to constrain
dark energy. The CMB also provides its own precise measurement of the angular diameter
distance to recombination at z∗ ' 1090 that breaks degeneracies among the parameters de-
scribing expansion. Here we will also leave out this high-redshift distance measurement;
while it can be thought of as just another BAO measurement (i.e. r(z∗)/rd), the interpre-
tation is not completely model-independent because the redshift z∗ of the CMB cannot be
determined without a model. See [147] for further discussion of these different options for
calibrating BAO measurements.

5.4 Methodology

In this section, we review the statistics we use to determine goodness-of-fit and perform
the model comparison.

5.4.1 Goodness of fit

To determine if a model is a good fit to the data, we minimize χ2 over the free model
parameters and calculate the probability P (χ2

min, ν) that a greater χ2
min could occur due to

chance alone for a fit with ν = N − k degrees of freedom, where N is the total number of
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measurements and k is the number of free model parameters. This probability is given by

P (χ2, ν) =

Γ

(
ν

2
,
χ2

2

)
Γ
(ν

2

) , (5.11)

where Γ(s, x) is the upper incomplete gamma function,

Γ(s, x) =

∫ ∞
x

ts−1e−tdt , (5.12)

and Γ(s) = Γ(s, 0) is the (complete) gamma function.

5.4.2 Model comparison

We will use three alternative methods for model comparison. Formally, the different statis-
tics have different meanings and are valid under different assumptions, so obtaining consis-
tent results using different criteria mitigates the possibility that invalid assumptions about
the nature of the data will favor one model over another and lead to invalid conclusions.
Each of these statistics accounts for the fact that a simpler model (one with fewer free pa-
rameters) is preferable to a more complex model if both fit the data similarly well. Note
that they do not require the different models to be nested; while Rh = ct is nested within
power law cosmology, neither is nested with ΛCDM. For more information about these
statistics, and for other interesting uses of model comparison in cosmology, see [150–156].

The Akaike information criterion (AIC) [157], which is grounded in information theory,
estimates how much more information is lost when describing data with one model over
another. For a best-fit χ2

min and a model with k free parameters, AIC is given by

AIC = χ2
min + 2k . (5.13)

This is an asymptotic expression, and a second-order correction term can be added to make
the criterion more accurate for a finite number of observations:

AICc = AIC +
2k (k + 1)

N − k − 1
. (5.14)

This makes a small difference when the number of data points N is large (e.g. for the SN
data) but a significant difference if N is small (e.g. for the BAO data). Since AICc reduces
to AIC in the limit of large N , we use AICc instead of AIC throughout the analysis.

The Bayesian information criterion (BIC) [158] is also an asymptotic expression, and
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it follows from a Bayesian argument that considers likelihoods in the exponential family of
probability distributions, which includes the Gaussian distribution and many other common
distributions. BIC selects the model that is a posteriori most probable. It is given by

BIC = χ2
min + k ln(N) . (5.15)

BIC typically (though not always) penalizes extra parameters more severely than AIC.
The Bayes factor B10 indicates the likelihood of one model relative to another by in-

tegrating both likelihoods over all values of the model parameters, weighting them by the
priors. This statistic is presumably the most robust, as it considers all values, not just the
best-fit values, of the parameters. It naturally penalizes a model with more free parameters,
especially if those parameters do not lead to a better fit. In fact, BIC can be considered an
approximation to the logarithm of the Bayes factor. For a set of data D and two different
models M0 and M1 that are described, respectively, by sets of parameters θ0 and θ1, the
Bayes factor indicates the likelihood of M1 relative to M0 and is given by

B10 =

∫
Pr(D|θ1,M1) Pr(θ1|M1) dθ1∫
Pr(D|θ0,M0) Pr(θ0|M0) dθ0

. (5.16)

For this analysis, we take the prior distributions Pr(θ|M) to be flat, and we assume that the
likelihoods Pr(D|θ,M) are Gaussian (this assumption is implicit in our definitions of AIC
and BIC, where we write χ2

min in place of the more general −2 ln(Lmax)). We compute the
likelihoods numerically over grids of parameter values. Analytic marginalization overM
and ∆M (e.g. Appendix of [2]) leaves at most four parameters over which to grid, making
this brute-force approach feasible.

5.5 Results

Table 5.2 lists the best-fit values for the model parameters, including the nuisance parame-
ters for the SN and BAO data, for each model discussed in Sec. 5.2 and data combination
discussed in Sec. 5.3. Table 5.3 shows the results of the model comparison. For each model
and data combination, we list the number of parameters k that were varied, the total number
of data points N , the best-fit χ2

min, the probability P (χ2
min, ν) that a greater χ2

min could occur
due to chance alone for degrees of freedom ν = N − k, and the likelihood of the model rel-
ative to ΛCDM for the AICc, BIC, and Bayes factor model comparison statistics. We note
that, while statisticians have proposed various scales that give a qualitative interpretation
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Model Data Ωm n rd ×H0/c α β M ∆M
ΛCDM JLA (Stat) 0.287 - - 0.140 3.14 24.11 -0.060
ΛCDM JLA (Sys) 0.294 - - 0.141 3.10 24.11 -0.070
ΛCDM Union2.1 (Stat) 0.278 - - - - 43.16 0.000
ΛCDM Union2.1 (Sys) 0.295 - - - - 43.17 0.000
ΛCDM BAO 0.285 - 0.0338 - - - -
ΛCDM BAO + JLA (Stat) 0.286 - 0.0338 0.140 3.14 24.11 -0.059
ΛCDM BAO + JLA (Sys) 0.288 - 0.0338 0.141 3.10 24.11 -0.070
ΛCDM BAO + Union2.1 (Stat) 0.282 - 0.0339 - - 43.16 -0.002
ΛCDM BAO + Union2.1 (Sys) 0.288 - 0.0338 - - 43.16 0.001
Power Law JLA (Stat) - 1.56 - 0.139 3.14 24.14 -0.061
Power Law JLA (Sys) - 1.55 - 0.141 3.10 24.13 -0.071
Power Law Union2.1 (Stat) - 1.54 - - - 43.20 -0.022
Power Law Union2.1 (Sys) - 1.44 - - - 43.20 -0.003
Power Law BAO - 0.93 0.0301 - - - -
Power Law BAO + JLA (Stat) - 1.52 0.0333 0.139 3.13 24.14 -0.062
Power Law BAO + JLA (Sys) - 1.45 0.0331 0.140 3.09 24.14 -0.072
Power Law BAO + Union2.1 (Stat) - 1.49 0.0332 - - 43.20 -0.027
Power Law BAO + Union2.1 (Sys) - 1.35 0.0326 - - 43.21 -0.007
Rh = ct JLA (Stat) - - - 0.131 3.13 24.24 -0.083
Rh = ct JLA (Sys) - - - 0.138 3.07 24.23 -0.077
Rh = ct Union2.1 (Stat) - - - - - 43.33 -0.115
Rh = ct Union2.1 (Sys) - - - - - 43.29 -0.026
Rh = ct BAO - - 0.0308 - - - -
Rh = ct BAO + JLA (Stat) - - 0.0308 0.131 3.13 24.24 -0.083
Rh = ct BAO + JLA (Sys) - - 0.0308 0.138 3.07 24.23 -0.077
Rh = ct BAO + Union2.1 (Stat) - - 0.0308 - - 43.33 -0.115
Rh = ct BAO + Union2.1 (Sys) - - 0.0308 - - 43.29 -0.026

Table 5.2: Best-fit values of each parameter varied for each model and data combination.

of the numerical results of model comparison statistics (e.g. Jeffreys’ scale for the Bayes
factor), these are obviously rather subjective, so here we simply discuss the results in terms
of relative probabilities (e.g. exp(−∆BIC/2)) and let the reader judge their significance.

From Table 5.3, it is clear that ΛCDM is a good fit to all of the SN Ia data. When sys-
tematic errors are included, the fit may even be slightly too good, indicating that the errors
may be overestimated. This would not be surprising, as the SN analyses generally aim to be
conservative when estimating the magnitude of systematic errors. A more surprising result
is that ΛCDM is actually not a very good fit to the BAO data. The fit, with a probability
of 0.052, corresponds to a nearly 2σ discrepancy. This tension has already been noted (e.g.
[147]) and is due to the anisotropic LyαF BAO measurements, with the radial measurement
c/(H(2.34) rd) too high and the transverse measurement r(2.34)/rd too low for ΛCDM.
This is the case regardless of whether Ωm and rd are constrained by CMB observations
(e.g. Planck) or by the combined set of BAO measurements, as in this analysis. The similar
value of Ωm preferred by both SN Ia and BAO data means extra tension will not arise when
combining the data, and so the combined SN + BAO fits are still very good.
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Figure 5.1: Fits to an isotropic-only version of the BAO data (black points), where we use
the direct isotropic measurement from BOSS CMASS (z = 0.57) and an isotropic mea-
surement derived from the LyαF anisotropic measurements (z = 2.34). We show the best
fit to this modified BAO set for ΛCDM with Ωm and rd varied (solid black), power law
cosmology with n and rd varied (solid blue), and power law cosmology with n = 1.5 and
only rd varied (dashed red), where the value n = 1.5 is roughly the value required to fit the
SN Ia data.

As we will see below, the uncalibrated galaxy BAO distances (our set without the LyαF
BAO) are not effective in distinguishing between the expansion models we consider here.
Although the galaxy BAO measurements are more mature and their systematics have been
more thoroughly studied, there is no obvious reason why we should ignore the LyαF mea-
surements. The original analyses [14, 148] investigate some important systematic effects,
and they find no substantial evidence that contamination from these systematics is large.
They also show that the measurements are generally robust to variations in the fiducial
analysis pipeline. We therefore use the full set of BAO measurements, including the high-
redshift LyαF BAO, leaving open the possibility that power law or Rh = ct cosmology
improves the fit to the anisotropic data.

Interestingly, power law cosmology is about as good a fit to the SN and BAO data
separately as ΛCDM. If systematic errors in the SN data are ignored, ΛCDM is preferred,
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but when the systematics are included, the preference for ΛCDM nearly disappears. Here
the AICc and BIC statistics give identical results simply because ΛCDM and power law
cosmology both have one free model parameter. Power law expansion is actually a better
fit to the BAO data, though the model comparison statistics indicate only a mild preference
for power law expansion. The Bayes factor, which considers the likelihood averaged over
the respective parameter spaces, is particularly indifferent.

The story changes when SN and BAO data are combined, however, and here ΛCDM
is strongly favored by the data. As Table 5.2 suggests, the power law exponent preferred
by SN data (n ' 1.5) is much higher than that preferred by BAO data (n = 0.93), and this
tension means that the combination strongly disfavors power law cosmology relative to
ΛCDM, even though power law expansion is still a good fit overall. The relative probability
that power law cosmology is the “correct” model is at most 0.0052 ' 1/200, which occurs
for the Bayes factor when the JLA SN compilation is used with systematic errors included
in the analysis.

One might wonder whether the low power law exponent (n = 0.93) preferred by the
BAO data is due to some effect specific to the anisotropic measurements and the extra de-
gree of freedom they probe. To investigate this, and to visualize the fit to the BAO data, we
plot an isotropic-only version of the BAO data in Fig. 5.1. Here we have used the direct
isotropic measurement from BOSS DR11 CMASS [13], DV (0.57)/rd = 13.773± 0.134,
and an isotropic measurement we derived from the LyαF anisotropic measurements,
DV (2.34)/rd = 30.543± 0.570, where we have propagated the errors and accounted for
their correlation. Note that, while the direct isotropic measurement from CMASS is in ex-
cellent agreement with a measurement inferred in this way, the result is approximately valid
only if systematic errors in the anisotropic measurements are negligible compared to the
statistical errors. Obviously there is reason to worry that this is not the case for the LyαF
BAO, so our fiducial analysis uses the anisotropic measurements directly, as recommended
in the original analyses.

This issue aside, it is clear from Fig. 5.1 that the preference for a low power law ex-
ponent is not some artifact of the anisotropic measurements. Here we show fits to the
isotropic-only BAO data for both ΛCDM and power law cosmology. Power law cosmol-
ogy is a slightly worse fit than in the fiducial analysis, with χ2

min = 7.03 (a probability of
0.071 for three degrees of freedom). ΛCDM is a good fit now that the tension from the
anisotropic LyαF measurements has effectively canceled, with χ2

min = 1.65 (a probability
of 0.65 for three degrees of freedom). We also plot a power law model with the exponent
fixed to the value n = 1.5, roughly the value required by the SN Ia data, adjusting only the
sound horizon rd to give the best fit. Since we have assumed the same detection signifi-
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cances (6σ for CMASS and 4σ for LyαF) as in the fiducial analysis, it is no surprise that a
smaller value for the sound horizon, which raises the model relative to the data, is preferred.
Such a model fits the low-redshift BAO data nicely but misses the LyαF measurement com-
pletely. Increasing the detection significance of the LyαF measurement would make this
discrepancy with the SN Ia data even more significant, and we believe that our choice here
of 4σ (effectively less when using the χ2 table for the anisotropic measurements) for the
combined auto-correlation and cross-correlation measurement is conservative.

Focusing separately on the Rh = ct universe, we find that it is conclusively disfavored
relative to ΛCDM for all data combinations that include SN Ia data, with at most a relative
probability of 0.00081 ' 1/1200, which occurs for BIC when the Union2.1 SN compilation
is used without BAO data and with systematic errors included. If systematic errors in the
SN data are ignored, theRh = ct universe is a poor fit to the data (for JLA, the fit probability
of 0.0014 corresponds to a > 3σ discrepancy). The Rh = ct universe is also a poor fit to
the BAO data alone and, despite the fact that Rh = ct benefits from having one less free
parameter, ΛCDM is slightly preferred by the model comparison statistics. Note that here,
with N very small, we do not expect the BIC result to be valid, and indeed we find that the
AICc statistic, with its correction term for finite sample size, is closer to the Bayes factor
result.

Figure 5.2 illustrates the ΛCDM and Rh = ct fits to the JLA SN data, which we have
binned in redshift by averaging the distance moduli with inverse-covariance weights. There
are two sets of data points because the SN data were standardized separately for each model,
withM, ∆M , α, and β optimized to produce the best fit. While ΛCDM is clearly a good
fit with or without systematic errors included, it is apparent by eye that Rh = ct is a poor
fit with statistical errors only. While the overall fit looks reasonable when systematic errors
are included, there is a clear trend in the residuals, with nearby SNe too bright and distant
SNe too dim.

5.6 Discussion

In this analysis, we have used goodness-of-fit and model comparison statistics to test power
law andRh = ct cosmology against ΛCDM. Before we summarize our conclusions, we dis-
cuss some arguments made by proponents of the Rh = ct universe [138–140], particularly
those about hidden model dependence in the SN Ia data.

As mentioned in Sec. 5.1, the authors of [138] criticize the analysis of [137], pointing
out that the conclusions are based heavily on visual inspection of plots of reconstructed
dynamical quantities (e.g. derivatives of the Hubble parameter). While there is nothing
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Figure 5.2: Hubble diagram for the JLA SN compilation, where the measured distance
moduli have been standardized separately for ΛCDM (blue points) and the Rh = ct cos-
mology (red points). The best-fit (Ωm = 0.29) ΛCDM model (solid blue) is plotted along
with the Rh = ct model (dashed red). We show the SN data without (left panel) and with
(right panel) systematic errors included. The distance moduli are binned in redshift with
inverse-covariance weights.

wrong with a dynamical approach, one would like a way to quantify the preference of the
data. Here we have used direct model comparison to quantify the relative likelihoods of
the alternative models, appropriately accounting for differences in model complexity. Note
that a similar approach is used in [140].

One of the concerns [139] about the SN Ia data is that the standardization of the SNe is
model-dependent, in the sense that the parameters α, β,M, and ∆M have been determined
assuming ΛCDM (or a ΛCDM-like model). This is a valid point in general, but only if one
analyzes distance moduli that have been pre-corrected for stretch, color, and host-mass cor-
relations. Fixing the SN Ia absolute magnitude and Hubble constant (thus fixingM) would
be even worse. In this analysis, we have used the public JLA data to vary all of the nuisance
parameters simultaneously with any cosmological parameters ([140] does something simi-
lar using an older version of the SNLS data). It is worth noting that, aside from adjusting
the overall offset in the Hubble diagram M, allowing the other parameters to vary has a
rather small effect. This is hinted at in Table 5.2, where the best-fit values for α, β, and
even ∆M are similar for the different models and regardless of whether systematic errors
are included. This is because these correlations, which have now been well-established,
primarily serve to reduce the intrinsic scatter in the Hubble diagram. Only if there is, for
instance, a trend where the fraction of SNe with high-stretch light curves changes signifi-
cantly with redshift would the choice of model affect the value of α significantly. Note that
the SN analyses do consider possible evolution of α and β and account for this by adding
systematic error.
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The authors of [140] go further and argue that, because the intrinsic scatter is deter-
mined by adjusting its value until the reduced χ2 of the fit is equal to one, the intrinsic
scatter estimate is model-dependent. This concern is actually addressed in Section 5.5 of
the JLA analysis [145], which explains that one can avoid this problem by estimating the
intrinsic scatter in redshift bins, essentially relying on the fact that the SNe are so constrain-
ing, and the redshift coverage so complete, that no parametric model needs to be used at
all. In other words, the scatter around the mean in a redshift bin gives the intrinsic scatter
for that bin directly. Although [145] finds an apparent trend where the estimated intrinsic
scatter decreases with increasing redshift, the values are consistent with a constant, and
ultimately a separate value is chosen for each of the four main subsamples, effectively
allowing for survey-dependent misestimates of other statistical errors. We point out that
the approach used in [140], where σint is constrained along with the other parameters, re-
sults in nearly identical determinations of the intrinsic scatter whether assuming ΛCDM
(σint = 0.103± 0.010) or Rh = ct (σint = 0.106± 0.010), indicating that even if the model
matters in general, it does not in their case.

Why does [140] come to a different conclusion (that Rh = ct is modestly favored over
ΛCDM) than the present analysis, where similar SN Ia data is used? Presumably the rea-
son is that [140] uses only the SNLS SNe, leaving out the low-redshift samples, the mid-
redshift SDSS SNe, and the high-redshift SNe from the Hubble Space Telescope, without
any real justification. This of course removes much of the discriminating power of the SN
data. In Fig. 5.2, notice that only considering the data points in the range 0.4 < z < 1,
which roughly corresponds to the redshift range dominated by the SNLS SNe, would make
Rh = ct a great fit after the overall height of the data points (M) is adjusted. Even the trend
in these residuals (presumably due to their statistical correlation) aligns with the Rh = ct

expansion. While it is true that combining observations of SNe from different instruments
into one Hubble diagram is challenging and can lead to concerns about residual systematic
effects, the most important systematic errors (e.g. photometric calibration) are quantified
in current analyses. For some reason, despite their apparent worry about unaccounted-for
systematic effects, the authors of [140] ignore the known systematic errors altogether, a
common trend in the literature that is usually unjustified and will lead to false conclusions.
Here, for instance, systematic errors substantially weaken the model-discriminating power
of the SN data; in fact, it is these systematic errors that allow the Rh = ct universe to be an
acceptable overall fit, even if it is conclusively disfavored by the model comparison.

These concerns notwithstanding, we are confident in our conclusions, which we sum-
marize as follows. Given the tension in the BAO data resulting from the anisotropic LyαF
measurements, we find that power law cosmology is a slightly better model than ΛCDM
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for BAO data alone and is only slightly disfavored relative to ΛCDM for SN Ia data alone.
When SN and BAO data are combined, the different power law exponents preferred by
each create substantial tension such that ΛCDM is strongly preferred by the model com-
parison statistics (Table 5.3). While the strength of this preference depends on the detection
significance of the BOSS LyαF measurement, our choice here (see Sec. 5.3.2) is conser-
vative. Also, while the preference for a low power law exponent (n ' 0.9) is due to the
LyαF BAO, it is not due to any subtlety in the anisotropic measurements (see Fig. 5.1 and
the discussion in Sec. 5.5). In order to reconcile the power law exponent from BAO with
the higher value (n ' 1.5) required by SN Ia data, an unaccounted-for systematic affecting
the anisotropic LyαF measurements must avoid cancellation in the isotropic measurement,
shifting the value by several times its current error. Hopefully, new data (e.g. BOSS DR12)
will soon improve these high-redshift BAO measurements, which are clearly important for
distinguishing between alternative models for expansion, including those considered here.

We have also found that the Rh = ct cosmology is nearly ruled out when systematic
errors in the SN Ia data are ignored (for JLA, the fit is unlikely at a level of > 3σ). With
systematic errors included, the overall fit is acceptable, but ΛCDM is conclusively the better
model. The BAO data separately favor ΛCDM, though only slightly, and combining SN
and BAO data simply strengthens these conclusions.
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CHAPTER 6

Peculiar Velocities of SNe Ia

6.1 Introduction

Motions of objects in the universe are not entirely random. Objects which are physically
close to one another respond similarly to the pull of large-scale structure, and as a result
their peculiar velocities are correlated. Correlations between galaxy peculiar velocities
are an old subject [159–165], and these velocities have already been used to constrain
cosmological models, in particular the amount of matter in the universe (see [166] for
a review). More recently, peculiar velocities have become important in the analysis of
type Ia supernova (SN Ia) data. At low redshift (z . 0.05), typical peculiar velocities of
∼300 km/s are a significant contribution to the SN redshift (for instance, cz = 3,000 km/s
at z = 0.01). These peculiar velocities are a nuisance if one is interested in using the SNe
to constrain expansion history and dark energy, and it is common practice to propagate this
extra dispersion into the error budget (e.g. add 300 km/s× 5/(cz ln 10) in quadrature to the
statistical uncertainty of each SN magnitude). However, this neglects significant covariance
between the velocities of different SNe.

Alternatively, one can consider the SN peculiar velocity field itself to be a signal, one
that should contain useful information about the amount and distribution of matter in the
universe. Nearby SNe are much fewer in number than nearby galaxies, and given the
volume limitation for both, this will likely still be the case in the future. On the other hand,
SNe are more useful on a per-object basis because their individual distances can be inferred
directly and with relative precision — roughly 7% for each SN, depending on the quality
of the observations. Therefore, there has been a resurgence of interest in how SN peculiar
velocities are modeled and used [167, 168].

In this paper, we perform a careful study of the SN velocity correlations in current data,
in particular the way in which they are used to draw conclusions about the so-called “bulk
velocity” — the motion, relative to the cosmic microwave background (CMB) rest frame,
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of the patch of the universe centered on us and containing the nearby sample. Though we
focus on SNe, our methodology is not restricted to SNe and equally applies to analysis of
galaxy peculiar velocities.

The paper is organized as follows. In section 6.2, we review the physics of how pe-
culiar velocities affect SN magnitudes. In section 6.3, we describe the SN samples and
how we use them. In section 6.4, we define a general likelihood that is the basis for our
analyses, which include a test for the presence of velocity correlations (section 6.5), a test
for the presence of excess bulk velocity beyond that encoded in the correlations predicted
in ΛCDM (section 6.6), and a comparison to previous work that studied bulk flows without
the velocity covariance (section 6.7). We summarize our conclusions in section 6.8.

6.2 Theoretical framework

6.2.1 Magnification and SN magnitude residuals at low redshifts

The magnitude residuals of standard candles like SNe Ia are directly related to the mag-
nification µ, which is defined as the fractional perturbation in the angular diameter and
luminosity distances (see [167, 169]),

− 1

2
µ =

∆dL
d̄L(z)

=
∆dA
d̄A(z)

, (6.1)

where d̄A(z) and d̄L(z) denote the background distances evaluated at the observed redshift
z. The second equality, relating luminosity and angular diameter distances, follows from
the conservation of the photon phase space density. That is, µ describes both the change
in the apparent angular size of a spatial ruler as well as the change in observed flux of a
standard candle.

Covariant expressions for the magnification at linear order in cosmological perturba-
tions have been given in [169–172]. In the conformal-Newtonian (cN) gauge, where the
metric is written as

ds2 = a2(τ)
[
−(1 + 2Ψ) dτ 2 + (1 + 2Φ) δij dx

idxj
]
, (6.2)
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the magnification is given, in the notation of [172], by1

µ =

[
−2 +

2

aHχ̃

]
∆ ln a− 2Φ + 2κ− 2v‖o −

2

χ̃

∫ χ̃

0

dχ (Ψ− Φ) , (6.3)

where χ̃ ≡ χ(z) is the coordinate distance inferred using the observed redshift, and

κ =
1

2

∫ χ̃

0

dχ
χ

χ̃
(χ̃− χ)∇2

⊥ (Ψ− Φ) , (6.4)

∆ ln a = Ψo −Ψ + v‖ − v‖o +

∫ χ̃

0

dχ [Φ′ −Ψ′] (6.5)

are the convergence and fractional redshift perturbation, respectively. The latter contains
the gravitational redshift, Doppler shift, and integrated Sachs-Wolfe effect. Further, ∇2

⊥

denotes the Laplacian on a sphere of radius χ, v‖ = vin̂i denotes the peculiar velocity pro-
jected along the line of sight n̂, integrals over χ denote integrals along the past lightcone,
and a subscript o denotes a quantity evaluated at the location of the observer. Note that
κ, ∆ ln a, and any other terms appearing in eq. (6.3) are coordinate-dependent quantities,
and only the combination given in eq. (6.3) corresponds to an actual (gauge-invariant) ob-
servable. This can be verified by considering gauge transformations and various test cases
[172, 173].

For low-redshift SNe, where z � 1 so that χ̃ � 1/(aH), the terms involving the
velocity are the most significant. This is because the lensing convergence is suppressed for
small source distances and because the scales probed are much smaller than the horizon.
Then, the terms involving the potentials Φ and Ψ are also suppressed by roughly aHχ̃

relative to the velocity. In this case, we obtain

µ
z�1
=

2

aHχ̃

(
v‖ − v‖o

)
. (6.6)

This expression for the magnification, proportional to the relative velocity along the line
of sight between source and observer, simply arises due to the fact that we evaluate the
luminosity distance to a supernova using the background distance-redshift relation, while
the actual redshift is perturbed by the Doppler shift. One can easily verify numerically
that this approximation is better than 1% for z . 0.1, which is the redshift range we will
consider in this paper. Note that [167] includes the term −2 in the ∆ ln a prefactor in
eq. (6.3); however, this is not strictly consistent, since the terms involving Ψ in ∆ ln a, as

1Here, we have neglected a term that is present if the luminosity of the standard candle depends on time;
in any case, it is subdominant in the limit we will consider. We have also neglected two pure monopole
contributions, motivated by the discussion in section 6.2.2.
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well as the aberration term−2v‖o in eq. (6.3) are of comparable magnitude to this correction
(see also [174]). We will thus work with eq. (6.6) as the proper low-z limit of eq. (6.3). Note
that this relation remains valid even if µ becomes of order unity, as long as the velocities
v‖ remain small compared to the speed of light. On very small scales (z < 0.01), the
velocities are no longer described accurately by linear perturbation theory. However, since
the SN samples considered here are restricted to z & 0.01, we will work with velocities
derived from linear perturbation theory. Note that, in principle, nonlinear corrections to the
velocity could also be relevant for higher-redshift SNe, if two SNe happen to be physically
close. However, we have verified that nonlinear corrections to the velocities have a small
effect (see below).

As eq. (6.6) shows, the relevant quantity for the magnification at low z is the relative
velocity between the source and the observer projected along the line of sight. This also
includes small-scale motions such as the velocity of the Solar System with respect to the
Milky Way center, which are uncorrelated with large-scale cosmological velocity fields.
For this reason, we correct the observed SN redshifts to the CMB rest frame using the
measured CMB dipole moment (see section 6.3). Then, the magnification becomes

µ|zCMB =
2

aHχ̃

(
v‖ − v‖,CMB

)
, (6.7)

where the relevant quantity is now the velocity of the SN relative to the CMB rest frame.
This simplifies the interpretation, since v‖− v‖,CMB is well described by linear perturbation
theory. In fact, by performing the calculation in the CMB rest frame (as is normally done),
we can set vCMB = 0. The following relations will always assume that we work with
CMB-frame redshifts and in the CMB rest frame.

It is straightforward to convert a perturbation in the luminosity distance (as in eq. (6.1))
into a perturbation of the SN magnitude from the homogeneous background value:

δm = − 5

2 ln 10
µ
z�1
= − 5

ln 10

v · n̂
aHχ̃

. (6.8)

Note that this relation assumes that µ � 1 and is thus not applicable at very low red-
shifts. While it is straightforward to derive the proper nonlinear relation for δm, this is not
necessary for our purposes, since z & 0.01 in our SN samples.

Now consider one object at redshift zi in direction n̂i on the sky, and a second at (zj, n̂j).
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We can derive the covariance of their residuals,

Sij ≡ 〈δmi δmj〉 =

[
5

ln 10

]2
ai
a′iχi

aj
a′jχj

ξij

=

[
5

ln 10

]2
(1 + zi)

2

H(zi)dL(zi)

(1 + zj)
2

H(zj)dL(zj)
ξij , (6.9)

where ξij is the velocity covariance given by

ξij ≡ ξvel
ij ≡ 〈(vi · n̂i)(vj · n̂j)〉

=
dDi

dτ

dDj

dτ

∫
dk

2π2
P (k, a = 1)

∑
`

(2`+ 1)j′`(kχi)j
′
`(kχj)P`(n̂i · n̂j) . (6.10)

Here, primes denote derivatives of the Bessel functions with respect to their arguments,
τ is the conformal time, dτ = dt/(a2H), Di is the linear growth function evaluated at
redshift zi, and χi = χ(zi). The power spectrum P (k, a) is evaluated in the present (a = 1)
and, at the large scales we are interested in, only the first ' 10 terms in the sum over the
multipoles contribute. As mentioned above, we use velocities derived from linear theory
and thus insert the linear matter power spectrum for our numerical results. We have verified
that using a prescription for the nonlinear matter power spectrum in eq. (6.10) does not
significantly affect our results. We thus conclude that the linear treatment is sufficient for
our purposes. Physically, this is because the dominant contribution to the covariance comes
from fairly large-scale modes. Note that in our approach, 〈(δmi)

2〉 is assumed to capture
the random motion contribution to the variance of SN residuals.2 While this is not expected
to be completely accurate when using the linear matter power spectrum, the difference in
the diagonal covariance elements is not very significant.3

We have denoted this covariance matrix S to emphasize that this is a cosmologically
guaranteed “signal” to be added to the “noise” covariance matrix that accounts for the
combination of statistical and systematic errors that affects SN distance measurements,
such as intrinsic variations in the SN luminosity (see section 6.3). We again point out that
the two geometric prefactors in eq. (6.9) each differ by an additive factor of 1 relative to
those in [167] because we drop the term−2 in eq. (6.3) in order to achieve a consistent low-

2An alternative approach by [175] models velocities with perturbation theory based on a density field
derived from other surveys, and complements them with a “thermal” component of ∼150 km/s added in
quadrature to account for nonlinearities. In contrast to our approach, this thus relies on external data sets. A
detailed comparison between the covariances obtained using these different approaches would be interesting
but is beyond the scope of this paper.

3For the low-redshift SNe we consider, nearly all of the redshifts are derived from host galaxy spectra,
and so the motion of the SN within its host does not contribute to the residuals.
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redshift expansion; we have checked that all neglected terms would contribute negligibly
at z . 0.1.

6.2.2 Monopole subtraction

The magnification eq. (6.1) and its low-redshift version eq. (6.6) still have a monopole com-
ponent, that is, a contribution that is uniform on the sky. However, since the SN magnitude
residuals are defined with respect to the best-fit distance-redshift relation, this monopole
is mostly absorbed in the fit. While there could technically be a residual monopole signal
due to the fact that our fit (to a flat ΛCDM model, see section 6.4) is very restricted, we
will assume here that the bulk of the monopole is removed. Thus, eq. (6.9) needs to be
corrected.

To this end, we define the mean magnitude residual at redshift i as

δm(zi) =

∫
δm(zi, n̂)W (n̂) d2n̂ , (6.11)

where W (n̂) is the survey window function, which is normalized such that
∫
W (n̂) d2n̂ =

1. Then, noting that we actually measure δ̂mi = δmi − δm(zi), the proper covariance is

Sij ≡
〈
δ̂mi δ̂mj

〉
=
〈[
δm(zi, n̂i)− δm(zi)

] [
δm(zj, n̂j)− δm(zj)

]〉
, (6.12)

which can be worked out to be

Sij =

[
5

ln 10

]2
(1 + zi)

2

H(zi)dL(zi)

(1 + zj)
2

H(zj)dL(zj)

dDi

dτ

dDj

dτ

∫
dk

2π2
P (k, a = 1)

×
∑
`

(2`+ 1)j′`(kχi)j
′
`(kχj)

[
P`(n̂i · n̂j)−

4π

2`+ 1
[w`(n̂i) + w`(n̂j)] + 4πW`

]
,

(6.13)

where the survey footprint has been expanded in spherical harmonics,

W (n̂) =
∑
`m

w`mY`m(n̂) , (6.14)

and the coefficients w`(n̂i) and W` are defined as

w`(n̂) ≡
∑
m

w`mY`m(n̂) , W` ≡
∑

m |w`m|2
2`+ 1

. (6.15)
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The extra terms in the square brackets in eq. (6.13) are corrections due to the survey win-
dow. The W` are therefore just the angular power spectrum (more precisely, the “pseudo-
C`”) of the map, while w`(n̂) is the ` portion of the survey mask at an arbitrary location.
Note that, due to the required normalization of W , its value where the survey observes is
not unity, but rather

W (n̂) =


1

Ωsky
(observed sky)

0 (unobserved sky).
(6.16)

The term in the square parentheses in the last line of eq. (6.13), which includes the
subtraction of the mean, is therefore a new result that has not, to our knowledge, been
derived and included in previous analyses (although the existence of such a term has been
pointed out in [167, 174]). For a full-sky window, it is easy to show that this term becomes
P`(n̂i · n̂j) − 1 for ` = 0 and remains equal to the original expression P`(n̂i · n̂j) for the
other multipoles.

We find that the monopole-subtracted formula leads to small but noticeable changes in
the results, such as the constraints on the parameter A in section 6.5, and we recommend
that it be used in future analyses.

6.3 SN Ia data and noise covariance

For our primary SN Ia dataset, we use the joint light-curve analysis (JLA) [145] of SNe
from the Supernova Legacy Survey (SNLS) and the Sloan Digital Sky Survey (SDSS).
JLA includes a recalibration of SNe from the first three years of SNLS [17, 75] along with
the complete SN sample from SDSS, making it the largest combined SN analysis to date.
The final compilation includes 740 SNe, ∼100 low-redshift SNe from several subsamples,
∼350 from SDSS at low to intermediate redshifts,∼250 from SNLS at intermediate to high
redshifts, and ∼10 high-redshift SNe observed with the Hubble Space Telescope.

We combine the individual covariance matrix terms provided4 to compute the full co-
variance matrix, which includes statistical errors (correlated uncertainties in the light-curve
measurements, intrinsic scatter, lensing dispersion) and a variety of systematic errors (pho-
tometric calibration, uncertainty in the bias correction, light-curve model uncertainty, po-
tential non-Ia contamination, uncertainty in the Milky Way dust extinction correction, and
uncertainty in the host galaxy correction).

Although we compute the covariance matrix as described in the JLA analysis, we
leave out two contributions to the total error. First, we leave out the additional scatter of

4http://supernovae.in2p3.fr/sdss_snls_jla/
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150 km/s×5/(cz ln 10) added in quadrature to the other statistical errors on the diagonal to
account for peculiar velocity. This peculiar velocity scatter does not apply because peculiar
velocities are not a source of noise in our analysis; instead, they are modeled by the formal-
ism discussed in section 6.2. We also leave out the systematic error term corresponding to
uncertainty in the peculiar velocity correction applied to the low-z JLA redshifts. Since our
aim is to study the peculiar velocities themselves, we want to avoid this correction and then
leave out the systematic error associated with it. To this end, we obtain the CMB-frame
redshifts zCMB directly from the measured heliocentric redshifts zhel. Specifically, for each
SN we compute

1 + zCMB = (1 + zhel)
[
1 +

vCMB

c
(n̂CMB · n̂)

]
, (6.17)

where n̂ is the sky position of the SN, n̂CMB is the CMB dipole direction, and vCMB is
the velocity of the Solar System barycenter relative to the CMB rest frame implied by the
dipole amplitude. We use the measured values vCMB = 369 km/s and n̂CMB ≡ (l, b) =

(263.99◦, 48.26◦), where the quoted uncertainties [176] are negligible for our purposes.
For comparison, we separately consider the Union2 SN Ia analysis [24] from the Super-

nova Cosmology Project.5 We use the full covariance matrix provided for the Union2 SN
magnitudes, but as with JLA, we remove the peculiar velocity scatter (300 km/s here) that
was added to the diagonal. The redshifts given for the Union2 SNe are just the heliocentric
redshifts transformed to the CMB rest frame, so we use them directly.

Note that the Union2 compilation of 557 SNe has been superseded by the Union2.1
compilation [25] of 580 SNe, but here the goal is a fair comparison to previous work that
analyzes the Union2 data. Since the primary change in Union2.1 is the addition of a set of
high-redshift SNe, and since only low-redshift SNe are relevant for our analysis, we would
expect the two compilations to produce very similar results. When substituting Union2.1
for Union2, our results do not change qualitatively, but there are some minor differences
due to new estimates for some corrected SN magnitudes and their errors. Union2.1 also
includes a host-mass correction (see below) that Union2 does not, but this is relatively
small and only accounts for part of the magnitude differences.

Finally, we briefly consider the low-z compilation from the older analysis of [177],
also for comparison with other work. This compilation does not include an analysis of
systematic errors, so the uncertainty in a SN magnitude is just a combination of the light-
curve measurement errors and the derived intrinsic scatter of σint = 0.08 mag. Again,
we do not include the peculiar velocity scatter of 300 km/s prescribed for a cosmological
analysis. Although CMB-frame redshifts are given, we transform the given heliocentric

5http://supernova.lbl.gov/Union/
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redshifts into CMB-frame redshifts ourselves using eq. (6.17).
Because SNe Ia are not perfect standard candles, it is necessary to correct the observed

peak magnitude of each SN for the empirical correlations between the SN Ia absolute mag-
nitude and both the stretch (broadness) and color measure associated with the light-curve
fitter. More recently, it has become common to fit for a constant offset in the absolute
magnitude for SNe in high-stellar-mass host galaxies. For JLA, the corrected magnitude is
therefore given by

mcorr = m+ α× (stretch)− β × (color) + P ∆M, (6.18)

where α, β, and ∆M are nuisance parameters describing, respectively, the stretch, color,
and host-mass corrections. The measured P ≡ P (M∗ > 1010M�) is the probability that
the SN occurred in a high-stellar-mass host galaxy. Note that, as mentioned above, Union2
does not include this host-mass correction; also, the analysis of [177] uses a different light-
curve fitter with different (but related) light-curve corrections.

For each of the three datasets, we fix the SN Ia nuisance parameters to their best-fit
values from a fit to the Hubble diagram (for JLA, we perform this fit and correct the magni-
tudes ourselves; for the other datasets, we use precorrected magnitudes). In a proper cosmo-
logical analysis, one should vary the SN nuisance parameters simultaneously with any cos-
mological parameters. In practice, however, the nuisance parameters are well-constrained
by the Hubble diagram with little dependence on the cosmological model, so holding them
fixed should be a good approximation, especially for our purposes here.

6.4 Likelihood

We write the full covariance C as the sum of two contributions, C = S + N, where S is
the signal covariance, dominated by velocities at low z and discussed in section 6.2, and N

is the noise covariance, described in section 6.3.
Assuming a given cosmological model that allows us to calculate S (eq. (6.9)), the

optimal way to determine whether the data favors peculiar velocities is to consider evidence
for the detection of the full signal matrix S. This approach uses more information in the
data than the search for any particular moment, such as the dipole, of the peculiar velocity
field.

Here we would like to detect evidence for coherent departures of supernova magnitudes
from the mean — that is, clustering. To do this, we introduce a new dimensionless param-
eter A and let S → AS, where A = 1 for the fiducial model. A = 0 corresponds to the
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case that magnitude residuals are purely due to noise and systematics in the SN Ia data. We
would like to test whether A is consistent with one and different from zero. Including the
new parameter A, the full covariance becomes

C = AS + N , (6.19)

where 0 ≤ A <∞.
On the other hand, allowing for an excess bulk flow component is interesting as well,

as it can be used to search for signatures beyond the fiducial ΛCDM model and also allows
us to compare our results with the existing literature (see section 6.6). In this case, the
magnitude residuals are affected by an additional bulk velocity vbulk (e.g. [167]):

∆mbulk
i ≡ ∆mbulk(vbulk; zi, n̂i) = −

(
5

ln 10

)
(1 + zi)

2

H(zi)dL(zi)
n̂i · vbulk , (6.20)

where zi and n̂i are the redshift and sky position of the SN, while vbulk is a fixed three-
dimensional vector. In the quasi-Newtonian picture, vbulk corresponds to the bulk motion
of the SN sample; however, in the context of non-standard cosmological models (such
as those breaking homogeneity or isotropy), this should really be seen as a convenient
parametrization of the dipole of SN magnitude residuals.

Putting these ingredients together, we construct a multivariate Gaussian likelihood6

L(A,vbulk) ∝
1√
|C|

exp

[
−1

2
∆mᵀC−1∆m

]
, (6.21)

where the elements of the vector ∆m are

(∆m)i = mcorr
i −mth(zi,M,Ωm)−∆mbulk

i (vbulk) , (6.22)

where mcorr
i are the observed, corrected magnitudes and mth(zi,M,Ωm) are the theoretical

predictions for the background cosmological model (see below). TheM parameter corre-
sponds to the (unknown) absolute calibration of SNe Ia; we analytically marginalize over
it in all analyses (e.g. appendix of [2]).

We emphasize that, since the covariance depends on the parameter A that we are inter-
ested in constraining, we need to include a term for the 1/

√
|C| prefactor in addition to the

6Note that SN flux, or a quantity linearly related to it, might be a better choice for the observable than
the magnitude, given that we expect the error distribution of the former to be more Gaussian than the latter.
Nevertheless, this choice should not impact our results, as the fractional errors in flux are not too large, and
we have explicitly checked that the distribution of the observed magnitudes around the mean is approximately
Gaussian. Therefore we follow most literature on the subject and work directly with magnitudes.
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Figure 6.1: Comparison of the signal (left panel) and noise (right panel) contributions to
the full covariance matrix for the 111 SNe at z < 0.05 from the JLA compilation.

usual χ2 quantity. Since the covariance is a strictly increasing function of A, neglecting the
prefactor would lead to the clearly erroneous result that the likelihood is a maximum for
A→∞.

The likelihood in eq. (6.21) is the principal tool we will use for our analyses. In this
most general form, the likelihood depends on two input quantities (four parameters, since
the velocity has three components): the normalization A of the signal component of the
covariance matrix and the excess bulk velocity vbulk not captured by the velocity covariance.
Note that, in the fiducial model, A = 1 and vbulk = 0.

Throughout our analyses, we assume a flat ΛCDM model (w = −1, Ωk = 0) with free
parameters fixed to values consistent with data from Planck [178] and other probes. That
is, we fix Ωm = 0.3, physical matter density Ωmh

2 = 0.14, physical baryon density Ωbh
2 =

0.0223, scalar spectral index ns = 0.965, and amplitude of scalar fluctuations As = 2.22×
10−9. The corresponding derived value of the Hubble constant is h = 0.683, and that of the
amplitude of mass fluctuations is σ8 = 0.79. Within the ΛCDM model, these parameters
are determined very precisely using Planck data alone, and we have explicitly checked that
modest changes in the cosmological model, larger than those allowed by Planck, have a
negligible effect on our results. We can therefore conclude that adding Planck priors and
marginalizing over these parameters would not significantly affect our constraints. This is
not surprising. The background cosmology only affects the monopole of the Supernova
magnitudes, and even this dependence is weak at very low redshifts (since we marginalize
overM). Only a much larger change in the parameters would affect the expected pairwise
covariance, which we do not expect to be able to measure precisely in the first place.
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In figure 6.1, we compare the noise covariance N to the signal covariance S for our
fiducial cosmology. While the noise contribution is typically larger than the signal, the
signal is not negligible, and it actually dominates for the lowest-redshift SNe. The noise,
unlike the signal, becomes effectively smaller as more SNe are used in the analysis, making
the signal important for the whole redshift range considered (see also the discussion in
[179]).

6.5 Constraints on the amplitude of signal covariance

We first consider whether the data itself shows a preference for the presence of the velocity
(signal) covariance. Therefore, we explore the constraints on A using the likelihood in
eq. (6.21) and fixing vbulk = 0.

The constraints on the parameter A, which determines the fraction of the velocity co-
variance added to the full covariance C, are shown in figure 6.2, with the numerical results
given in table 6.1. We have adopted a uniform prior on A such that our Bayesian posterior
is proportional to the likelihood in eq. (6.21). All data choices consistently use the available
SNe out to z = 0.05. This leaves 111 objects in the JLA analysis and 132 in the Union2
analysis. We have explicitly checked that the results are insensitive to the precise redshift
cutoff; they are driven by the lowest-redshift SNe, and z < 0.05 comfortably captures all
of them.

The solid black curve shows JLA, the most current and rigorously calibrated dataset.
JLA does not rule out the A = 0 hypothesis; in fact, the likelihood peaks near this value.
Nevertheless, JLA is fully consistent with the standard value A = 1, with a probability of
0.07 for A > 1.

The solid red curve shows the result from the Union2 dataset. While it is noticeably
different than the JLA result, the two likelihoods are mutually consistent; in particular,
A = 1 is a satisfactory fit to both. Nevertheless, Union2 is different in that it strongly
disfavors A = 0.

In order to gain additional insight into the difference between the two datasets, we have
identified SNe at z < 0.05 that overlap between the two datasets, a total of 96 objects.
Performing the analysis on this overlap (dashed lines in figure 6.2), we see that the results
are in better agreement but still somewhat disagree, despite both analyses using the same
SN set. Part of the reason is that JLA and Union2 determine the magnitudes differently;
however, even some redshifts do not match. We find a root-mean-square (rms) redshift
difference of 1.4% for the object-to-object comparison of the 96 overlapping SNe, and
the largest difference is 5%. A further exploration of precisely why the SN redshifts and
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Figure 6.2: Constraints on the parameter A that quantifies the amount of velocity correla-
tions (A = 1 is the standard ΛCDM value). The JLA data are consistent with A = 1 but
do not rule out the noise-only hypothesis A = 0. JLA and Union2 give somewhat different
constraints, though they are not statistically inconsistent. Note that differences remain even
after restricting to the rather large subset of SNe that they have in common (dashed lines).

magnitudes differ is beyond the scope of this study, but we have explicitly checked that the
difference between JLA and Union2 for the overlap set is largely due to differences in the
estimated apparent magnitudes, not the redshifts.7

We also make connection to previous work in [180], where the first cosmological con-
straints from the correlations of SN Ia peculiar velocities have been obtained. Instead of
parametrizing the covariance with a multiplicative amplitude, they jointly constrained the
cosmological parameters Ωm and σ8. Using the earlier SN dataset from [177], they found
constraints broadly consistent with ΛCDM values. Using the same dataset, we roughly
agree with [180], our likelihood favoring A ' 1.4 with a large uncertainty but effectively
ruling out A = 0. However, we note that the dataset of [177] includes some SNe with
extremely low redshifts (as low as z = 0.002), which are not in the Hubble flow and for
which the assumption of small residuals in eq. (6.8) breaks down (see also discussion after
eq. (6.10)). Objects at such extremely low redshifts are mutually separated by distances of
a few tens of Mpc; their relative velocities are therefore expected to have important nonlin-

7We have checked that the sky positions of JLA and Union2 overlapping SNe do precisely agree. We
have also found that the subset of these SNe that are also found in the sample of [177] — 40 in total — have
redshifts that mostly agree very well with JLA, but show larger discrepancies with Union2.
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ear corrections, in addition to the linear relation eq. (6.8) breaking down, and the analysis
would have to be carefully generalized to take this into account. When we exclude all SNe
with z < 0.01 from the dataset of [177], the likelihood for A actually looks very similar
to the JLA constraints in figure 6.2, favoring A = 0 but still statistically consistent with
A = 1.

To summarize, we find that JLA, the most current and rigorous dataset, does not favor
the presence of SN velocity covariance guaranteed in the ΛCDM model, but is nonetheless
consistent with it. We also find that there is considerable variation in the SN data in terms
of their constraints on the velocity covariance, and in particular that the optimistic-looking
results found in [180] were due to some very-low-redshift SNe that may be too nearby for
accurate modeling with linear theory.

The covariance of SN flux residuals has the potential to provide additional informa-
tion about cosmological parameters and other interesting physics [181–185]. Our results
suggest that current data do not yield interesting constraints. This will likely change with
larger, homogeneous samples with greater sky coverage, such as those expected from the
Large Synoptic Survey Telescope (LSST), currently under construction.

6.6 Constraints on excess bulk velocity

The optimal way to search for the effect of SN velocity correlations in the context of a fidu-
cial cosmological model is to test for the presence of the full signal covariance, as we did
in section 6.5. However, we can also use the SN magnitude residuals to search for a dipo-
lar distortion (for example, due to bulk motion) beyond what is expected in ΛCDM. This
provides constraints on physics beyond the concordance cosmology, such as a breaking of
statistical isotropy or homogeneity, or the presence of a single large long-wavelength per-
turbation. The search for bulk flows is the subject of a significant body of literature. Here
we use a different approach, and we make the connection to previous literature in the next
section.

Bulk velocity is usually defined as the motion of the volume spanned by SNe Ia and
the rest frame defined by the CMB. Moving the SN redshifts to the CMB frame, we are
looking for an overall motion between the SN volume and the rest frame. Since we aim
to search for an excess bulk flow beyond ΛCDM, we include the velocity correlations S

in the likelihood, fixing A = 1. Since S includes all velocity correlations within ΛCDM,
including the dipole, we expect the posterior for the bulk flow to be consistent with zero if
ΛCDM provides a good description of the SN data. Of course, this assumes that our linear
modeling of the velocity correlations is accurate for the SN sample and also that there are
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Figure 6.3: A slice through the 3D likelihood for excess bulk velocity. The direction is
fixed to be n̂max-like (different for each dataset), while the amplitude of the dipole is varied
and allowed to be positive or negative. Conclusions about the bulk flow would differ signif-
icantly if the velocity signal covariance were set to zero (dashed lines), as in most previous
work on the subject.

no unaccounted-for systematic errors in the SN data that could masquerade as an excess
bulk flow.

For this analysis, we therefore adopt the likelihood from eq. (6.21), setting A = 1

but allowing the bulk velocity vbulk = (vbulk, θ, φ) to vary in magnitude and direction. In
order to get a sense of the three-dimensional likelihood L(vbulk, θ, φ), we first consider the
likelihood of the excess bulk flow amplitude in a cut through the best-fit direction, that is,
as a function of vbulk with θ and φ set to their maximum-likelihood values. This is shown
in figure 6.3, and note that we continue the scan past zero velocity in the direction opposite
that of the best fit by letting the amplitude of the bulk flow take negative values. Because
the likelihood is Gaussian, and because vbulk enters the observable magnitude linearly (see
eq. (6.20)), the likelihood of the bulk velocity is also guaranteed to be Gaussian. Therefore,
the likelihood ratio between the best-fit (vbulk, θ, φ) and vbulk = 0 immediately translates
into the confidence at which zero excess bulk velocity is ruled out, assuming uniform priors
on each component of the vector vbulk.

Figure 6.3 shows that, once the velocity covariance is properly taken into account, SN
data do not favor any bulk velocity beyond the amount expected in ΛCDM. For example,
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Figure 6.4: Angle-averaged posterior on the amplitude of bulk velocity in excess of the
correlations captured by the full ΛCDM velocity covariance. Both JLA and Union2 data
are consistent with zero velocity, with relatively large error. The conclusion would again
be very different if the velocity covariance were artificially set to zero (dashed lines).

the JLA likelihood peaks at (vbulk, l, b) = (187 km/s, 323◦, 25◦), but this likelihood is larger
than that for vbulk = 0 only by−2∆ lnL = −1.6, far too low even for 68.3% (1σ) evidence,
which in three dimensions would be −2∆ lnL ' −3.5.

We would now like to explicitly calculate the posterior distribution of the amplitude
of an excess bulk velocity. Assuming uniform priors on each component of vbulk would
produce an additional v2

bulk factor in the posterior, driving it to zero for the vbulk = 0 case so
that vbulk = 0 is automatically ruled out. An alternative that allows us to test the vbulk = 0

assumption, implicitly (or explicitly [186]) adopted by most previous work, is to choose
the prior Pr(vbulk) ∝ 1/v2

bulk or, alternatively, to consider the angle-averaged likelihood

P angle-averaged(vbulk) ∝
∫
L(vbulk) d cos θ dφ . (6.23)

We plot this likelihood in figure 6.4. It is immediately apparent that both JLA and
Union2 data show no preference for excess bulk velocity, though there is a large uncertainty.
Performing the same analysis but setting the velocity correlations to zero (so that C = N

with S = 0), the results are drastically different, favoring bulk flows of several hundred
km/s and, in the case of Union2, firmly ruling out the vbulk = 0 case. This is in agreement
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with the conclusion found in previous work [187–192]. In the dashed curves shown in
figure 6.4, we have not included the 150 km/s (300 km/s) scatter that is added in quadrature
to the diagonal of the noise covariance N for JLA (Union2) data in some analyses. This
clearly does not capture the significant full covariance of SN residuals due to large-scale
structure. However, when adding back this contribution, we find nearly perfect agreement
with the results of [189].

Given the importance of this issue, we stress again that the dashed lines in figures 6.3
and 6.4 do not show the proper likelihood of any peculiar velocity, ΛCDM or otherwise,
since a guaranteed component of the covariance of the data has been neglected (neverthe-
less, one can still use these incorrect likelihoods to construct an estimator for bulk flow,
which we will turn to in the next section). Since the velocity covariance S gives a guar-
anteed source of correlations in ΛCDM, we argue that it should always be included in
likelihood analyses of SN magnitude residuals. Neglecting this covariance will lead to
suboptimal estimators and, in general, biased results.

6.7 Relation to previous bulk flow measurements

A significant body of earlier work on SN velocities neglected the velocity covariance (and
the lensing covariance, which is important at higher redshifts). These analyses often found
evidence for non-zero bulk flow, and we confirm these findings with our dashed curves in
figures 6.3 and 6.4. This bulk velocity with A = 0 is difficult to interpret, since it was
obtained in an analysis with a guaranteed contribution to the covariance of the observables
artificially set to zero.

Nevertheless, one can derive a theoretical expectation for what one should expect for
the bulk velocity derived in this way; we call it vnoise-only

bulk , and in some previous work it
corresponds to what the authors simply call “bulk velocity.” Note that this is not the excess

bulk velocity over the ΛCDM expectation considered in the previous sections.
We will adopt the likelihood from eq. (6.21) once more, but we define a new vector x

via ∆mbulk(vbulk) ≡ vbulk x, where

xi ≡ −
(

5

ln 10

)
(1 + zi)

2

H(zi)dL(zi)
n̂i · n̂bulk . (6.24)

To estimate vnoise-only
bulk , we set the signal covariance to zero, assume a fixed direction

n̂bulk, and find the maximum of the likelihood; that is

v̂noise-only
bulk ←→ max

vbulk
[L(A = 0,vbulk)] . (6.25)

105



Maximizing with respect to vbulk, one finds

v̂noise-only
bulk =

yᵀ δm

yᵀ x
, (6.26)

where we have defined for convenience a new vector y as y ≡ N−1x, and where δm is the
vector of SN magnitude residuals (eq. (6.20) without the ∆mbulk term). Assuming ΛCDM,
and still keeping the direction n̂bulk fixed, the expected (mean) velocity is of course zero
since 〈δmi〉 = 0.

We are more interested in the variance of this quantity, which can be computed directly
and is equal to 〈(

v̂noise-only
bulk

)2
〉

=
yᵀ(S + N) y

(yᵀ x)2
, (6.27)

since the true SN magnitude covariance for ΛCDM is the sum of both signal and noise:
〈(δmi)(δmj)〉 = Sij + Nij . The square root of this quantity is the desired theoretical
expectation for the rms bulk velocity in ΛCDM when one ignores the signal covariance
matrix.

Using the JLA SNe up to redshift z = 0.05, the ΛCDM expectation for the rms ve-
locity varies from about 150–170 km/s as a function of n̂bulk, with a sky-averaged value of
162 km/s. Assuming only noise in the data, 〈(δmi)(δmj)〉 = Nij , the result is 71 km/s.
The Union2 data give similar results.

We have therefore found that the predicted rms value of vnoise-only
bulk , assuming ΛCDM

and SN data up to z = 0.05, is ∼160 km/s, and that nearly half of this value would be
generated by statistical scatter in SN magnitudes in the absence of any peculiar velocities
in the universe (such a contribution is sometimes referred to as the “noise bias”). The peak
of the JLA likelihood (black dashed line in figure 6.4) is in agreement with the ΛCDM
expectation; Union2 gives a somewhat larger result. Again, however, we caution that the
analysis in this section is suboptimal, given that we do condense the data into a weighted
dipole estimator v̂noise-only

bulk rather than using the full covariance. Moreover, this estimator is
significantly affected by noise bias which needs to be subtracted. Given the uncertainties
in the noise covariance, the subtraction of noise bias will lead to additional systematic
uncertainties in the actual peculiar velocity measurement.

We have not attempted to repeat the analyses of some past work that studied the velocity
field of low-redshift SNe [190–197] or the anisotropy of the universe from the distribution
of nearby SN distances [198–203], since these studies adopted a wide variety of approaches
and, in some cases, complicated statistical procedures whose results are calibrated on sim-
ulations. We emphasize, however, that the velocity covariance due to large-scale structure
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P (A) (fig 6.2) vmax-like
bulk (fig 6.3) v

angle-avg
bulk (fig 6.4)

Survey ML 95% C.L. ∆χ2
∣∣
A=0

∆χ2
∣∣
A=1

ML 95% C.L. 95% C.L.

JLA 0.19 (0, 1.15) 0.24 4.13 187 (−108, 485) (0, 376)

Union2 1.19 (0.19, 3.27) 13.2 0.07 265 (−37, 568) (0, 456)

Table 6.1: Summary of numerical results. For both JLA and Union2, we show the best-fit,
maximum-likelihood (ML) values and 95% confidence intervals for A. We also show the
quantity ∆χ2 (that is, −2∆ lnL) between the best-fit value and special values A = 0 (no
velocity signal) and A = 1 (ΛCDM velocity signal). We also show ML and 95% intervals
for bulk velocity in the best-fit direction and 95% intervals for angle-averaged bulk velocity
(here we do not report ML values, which are near zero). All velocities are in units of km/s.

should be included in any such analyses in order to obtain unbiased results and draw reli-
able statistical conclusions about the velocity field of the nearby universe.

6.8 Conclusions

In this paper we have revisited the constraints on bulk velocity — the relative motion of the
volume populated by nearby SNe Ia and the rest frame defined by the CMB. Our emphasis
was on a precise and clear procedure for selecting the data, performing the analysis, and
modeling the theoretical expectation. We concentrated on SNe Ia as tracers of cosmic
structure and studied two separate (but overlapping) datasets. Our methodology applies
equally well to galaxies and other tracers of large-scale structure.

We argued, and demonstrated with explicit calculations, that inclusion of the “signal”
covariance matrix that captures the peculiar velocity correlations between SNe is crucial.
The velocities provide a guaranteed source of covariance between SNe; while the velocity
contribution is subdominant compared to the noise except at the lowest redshifts (see fig-
ure 6.1), it does not become smaller as more SNe are included in the analysis. Neglecting
the velocity covariance, as done by a significant body of earlier work on SN velocities and
tests of statistical isotropy, leads to results that are both biased and difficult to interpret.

Our approach was based on a likelihood that includes both the signal and noise covari-
ance and four free parameters: the normalization A, specifying the fraction of the signal
added to the covariance, and three components of an excess bulk velocity vbulk beyond that
which is encoded in the signal covariance. For the fiducial ΛCDM model, A = 1 and
vbulk = 0.

We first investigated whether the standard ΛCDM velocity covariance (A = 1) is pre-
ferred over the case in which the covariance is ignored (A = 0); that is, we constrained
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L(A,vbulk = 0). We found that the JLA dataset, while consistent with A = 1, cannot rule
out A = 0, and in fact its likelihood peaks near zero (figure 6.2). Therefore, we did not find
convincing evidence in the data for the correlations expected from velocities. Although we
expect things to change with future data, when precise measurements of a quantity like A
will effectively constrain cosmological parameters such as Ωm and σ8, our results indicate
that current data are not close to providing such useful constraints.

We then pursued a different approach; we assumed a standard ΛCDM velocity covari-
ance (theA = 1 case) and tested for excess bulk velocity vbulk beyond that already captured
by the covariance — that is, we adopted the likelihood L(A = 1,vbulk) in the analysis. We
found that current SN data provide no evidence for a departure from the null hypothesis
vbulk = 0 (figures 6.3 and 6.4). This result is in sharp contrast to the inference one would
have made by ignoring the velocity covariance (that is, setting A = 0 in the same analysis),
as some previous analyses in the literature have done.

To better understand this latter case, we separately studied inferred constraints on a
“non-excess” bulk velocity where the velocity covariance has been ignored — that is, the
L(A = 0,vnoise-only

bulk ) case. Note that this bulk velocity is more difficult to interpret since it
was obtained by ignoring a guaranteed source of correlations in the data. We showed that
the rms of the estimated vnoise-only

bulk , assuming ΛCDM and SN data up to z = 0.05, is expected
to be ∼160 km/s, and that nearly half of this value would be generated by a contribution
purely from intrinsic and observational scatter in the SN magnitudes. Therefore, there are
really two problems with this approach: not only is the constrained quantity difficult to
interpret, but it is also guaranteed to be nonzero even without any peculiar velocities in the
universe, which is clearly not optimal for cosmological interpretations.

The mapping of velocities in the universe using nearby tracers of large-scale structure
has had a remarkably long and productive history. With upcoming large-field, fast-scanning
surveys, it is likely that data will become of sufficiently high quality to enable peculiar ve-
locities to progress to the next level and become competitive cosmological probes. Of
course, data analysis and theoretical modeling will have to progress as well. In this paper
we have demonstrated that, even for current data, clearly defining the quantities to be con-
strained and carefully accounting for the guaranteed correlations between objects due to
large-scale structure are two factors of key importance.
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CHAPTER 7

Closing Remarks

Summary

This dissertation investigated systematic effects and performed new cosmological tests with
observational probes of dark energy in anticipation of the precision dark energy constraints
expected in the near future. Chapters 2–4 studied systematic effects in dark energy probes,
focusing on constraints from distance measurements, like those from Type Ia supernovae
(SNe Ia). In Chapter 2, we quantified the effect of current SN Ia systematic errors on dark
energy constraints, both for simple parametrizations of the equation of state and for a gen-
eral description with principal components. Chapter 3 investigated recent evidence for a
phantom equation of state using three separate SN Ia compilations, introducing new tests
to search for systematic effects in the data. Chapter 4 was concerned with photometric cal-
ibration errors in the galaxy power spectrum. We highlighted the danger of multiplicative
errors and, using a Fisher matrix formalism, demonstrated a simple way to mitigate these
errors. Chapters 5–6 focused on tests of the standard cosmological model. In Chapter 5, we
used Bayesian model comparison techniques with model-independent SN Ia and BAO data
to directly test power law expansion as an alternative cosmological model. In Chapter 6,
we used low-redshift SN Ia data to test for the presence of the peculiar velocity correlations
predicted by the standard model. We clarified how these are connected to the bulk velocity
of local structure.

As a whole, this body of work demonstrates how the distance probes of dark energy,
particularly SNe Ia, can be employed in a variety of ways to test the standard cosmological
model. It also highlights the many subtleties involved in using these probes for precise
cosmological measurements, introducing new ways to understand and test for the presence
of systematic effects in the data.

In the coming decade, as we enter an era of big data and of even more precision in
cosmology, it will be important to reassess the limitations of cosmological probes. Effects
that were once assumed negligible may become important. With so many different types of
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data, not to mention the many associated cross-correlations, that one will want to analyze
in combination, the question might soon become, which of these many probes are the most
robust and reliable, rather than which have the best constraining power individually. From
this standpoint, there is certainly an important role for the classic, well-studied probes of
dark energy that were the main focus of this dissertation. Below I briefly discuss the future
of these probes, particularly in the context of my own research interests.

CMB

CMB observations are packed with an enormous amount of detailed cosmological infor-
mation. But with the exquisitely precise measurements of temperature fluctuations from
Planck, it is not surprising that we are running into clear signs of tension among various
data sets. Moderate disagreement with WMAP9 in Planck’s 2013 release was investigated
in [93], and the tension between Planck’s value of H0 (inferred assuming ΛCDM) and the
local distance-ladder measurements of H0 (e.g. [88], discussed in Sec. 3.3.5) is now well-
known in the community. As illustrated nicely in [204], constraints on ΛCDM parameters
from high multipoles (` > 1000) are in significant tension with those inferred from low
multipoles (` < 1000), although the latter are now reasonably consistent with WMAP9
constraints from that same multipole range as well as with the low-redshift data (e.g. BAO,
H0). Further still, Planck SZ cluster counts disagree with those predicted from Planck’s
own cosmology, and σ8 inferred from Planck is lower than that inferred from weak lensing
(e.g. [205]).

Obviously, sorting out these discrepancies is crucial; if nothing else, hopefully next-
generation CMB experiments, which will seek precision polarization measurements at large
and small scales, will help alleviate some of the confusion.

On the other hand, for dark energy research, the CMB distance priors provide most
of the useful information (though CMB lensing is an important exception), and these will
continue to be crucial for breaking dark energy parameter degeneracies. It is worth studying
different ways to extract this distance information, for instance, whether the observables
described in Sec. 3.2.3 are optimal or whether any such CMB observables are less likely
to be affected by systematics. This latter issue is crucial, since the CMB distance now
tends to dominate combined constraints for simple dark energy descriptions. The model
dependence of the CMB is also an issue, and it would be helpful to understand, in the
context of the newest CMB observations, which properties of the CMB are robust to various
ΛCDM extensions.
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BAO

Fortuitously, BAO distances are still typically limited by statistical errors (shot noise, cos-
mic sampling variance), and measurements of the BAO feature have nicely Gaussian er-
rors, at least with the discussion in Sec. 2.4 about treating the tails of the likelihood for
low-signal-to-noise detections notwithstanding. This may change when we aim to push
BAO distance errors to below 1%. A separate question, however, is whether the BAO mea-
surements, once they are obtained, indeed function as a standard ruler. Simulations will be
needed here, and unfortunately the answer is probably model-dependent. It may be worth
investigating other strategies for using the BAO feature (e.g. [206]) that are maximally
reliable and model-independent.

With the newer anisotropic BAO measurements now available (e.g. [13], used in Chap-
ter 5), another avenue now exists for testing isotropy and the ΛCDM model. The radial
(line-of-sight) and transverse distances should agree, and interestingly, there is already ten-
sion here in the higher-redshift LyαF BAO (see Sec. 5.5). In the future, when anisotropic
measurements exist for many redshift slices, it will be interesting to check whether there is
broad agreement between the radial and transverse correlation functions. Agreement would
build confidence in the robustness of BAO analyses, while disagreement would point to new
physics if confirmed.

SNe Ia

As demonstrated in Chapter 2, SN Ia systematic errors are important even for current data.
Of the systematic errors, photometric calibration uncertainty is the most damaging, and
it will be the hardest and most important systematic error to control for future surveys.
But pushing SN cosmology to its limits is certainly worth it. As a probe, SNe Ia are
basically unique in that each individual SN has the ability to furnish a (nearly) statistically-
independent, model-independent, 7% distance measurement.

SN cosmology is very empirical in nature; the stretch and color calibration relations,
and the standard candle property itself, are not predicted by any model, at least in prac-
tice. There are many ways one could imagine revising or optimizing this modeling. Is it
sufficient to model SNe with a single and/or fixed intrinsic scatter (see brief discussion in
Sec. 5.6)? Is the likelihood for SN observables sufficiently Gaussian? Are fully Bayesian
techniques (e.g. [207, 208]) more appropriate? Should such methods be expanded, or could
they be simplified? Are there alternative models for SN light-curve corrections that better
explain the observed data? Can any of the current assumptions be relaxed without losing
cosmological information?
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A precise, direct measurement of H0, independent of the cosmological model and un-
correlated with other observations, is a key ingredient for precision dark energy constraints,
as it ties relative distances from SNe to the precise distances from CMB and BAO observ-
ables. In recent years, various interrelated efforts have been made to characterize the effect
of local structure on the H0 measurements and to explain the small but consistent discrep-
ancy between direct measurements and the CMB values. As low-redshift SNe (z < 0.1)
are used as the last rung of theH0 distance ladder, and SNe in this same range are used sep-
arately for cosmology, these measurements may be statistically correlated. On top of this,
the peculiar velocity formalism of Chapter 6 is particularly relevant for these low-redshift
SNe, where a sufficiently large sample of SNe essentially becomes a large-scale structure
survey and should be modeled appropriately.

In light of this, we might ask, to what extent can one use the whole redshift range
of SNe, not just the lowest-redshift sample, to determine H0, and is this consistent with
a purely local measurement? This would empirically test theoretical expectations for the
effect of local structure. Better still, can measurements of Cepheids and other local dis-
tance indicators be combined with SNe Ia in a joint cosmological analysis? This would
tie the local, low-redshift universe to the Hubble expansion in a maximally self-consistent
way, effectively adding an H0 measurement but also allowing the peculiar velocities, rel-
evant to both H0 and SN cosmology, and the other statistical correlations to be modeled
simultaneously.
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APPENDIX A

Analytic Marginalization Over Multiple SN Ia
Absolute Magnitudes

The computational cost of varying additional nuisance parameters in a likelihood analysis
can be reduced by marginalizing analytically over some of these parameters. The expres-
sion for the marginalized χ2 will be more complicated, but fewer likelihoods will need to
be computed in the analysis (in a brute-force grid search, many times fewer). Here we ex-
tend Appendix C of [17] and outline a procedure to marginalize analytically over a model
with more than twoM.

The analytic marginalization over the singleM in Eq. (3.1) is very straightforward. In
this case, the marginalized χ2 (for a flat prior) is given by

χ2
marg = −2 log

∫ ∞
−∞

e−χ
2/2 dM

= X00 + log

(
X11

2π

)
− X2

10

X11

, (A.1)

where the unmarginalized χ2 is given by Eq. (3.3) and

X00 = δᵀ C−1δ

X10 = 1ᵀ C−1δ

X11 = 1ᵀ C−11 .

In the above, 1 is a vector of ones and δ is the vector of magnitude residuals without the
M term:

δ = ∆m +M1 = mcorr − 5 log10

(
H0

c
DL

)
.

Marginalizing over a two-M model is a bit more complicated due to covariance be-
tween SNe with differentM. Ignoring this covariance will make things much simpler, but
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the resulting constraints will be biased and the effect can be significant. For the two-M
case, we modify Eq. (3.1) so that the vector of predicted SN magnitudes is given by

mth = 5 log10

(
H0

c
DL

)
+M1 x1 +M2 x2 ,

where x1 (x2) is a vector with ones for SNe described byM1 (M2), and zeros otherwise.
The marginalized χ2 is given by

χ2
marg = X00 + log

(
X

4π2

)
(A.2)

− 1

X

(
X2

10X22 +X2
20X11 − 2X10X20X12

)
,

where

X00 = δᵀ C−1δ

X10 = xᵀ
1 C−1δ

X20 = xᵀ
2 C−1δ

X11 = xᵀ
1 C−1x1

X22 = xᵀ
2 C−1x2

X12 = xᵀ
1 C−1x2

X = X11X22 −X2
12 .

One can extrapolate the two-M case above to cases with three or more M. This is
straightforward, but the result quickly becomes very messy. Using the familiar result for
the integral of a Gaussian function, one can compute the expression for severalM using
algebraic manipulation software. Explicit Mathematica code for marginalizing over six
M (as in this work) is given below. The result must be simplified at intermediate steps to
avoid long computation times, memory problems, or unmanageable final expressions. Still,
the computation below takes several minutes, and the resulting expressions are very long
(several pages of small type). This example can easily be modified for more or fewerM
and for slightly different parametrizations of the SN magnitude (for instance, treating one
M as a ∆M so that some SNe are described by more than one such nuisance parameter).
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fexp[{a_,b_,c_}] := bˆ2/(4*a)+c

fpre[{a_,b_,c_}] := a/Pi

g[f_,x_] := {-1*Coefficient[f,xˆ2],Coefficient[f,x],f/.x->0}

pre := 1

exp := -1/2*(X00-2*M1*X10-2*M2*X20-2*M3*X30-2*M4*X40-2*M5*X50-2*M6*X60

+M1ˆ2*X11+M2ˆ2*X22+M3ˆ2*X33+M4ˆ2*X44+M5ˆ2*X55+M6ˆ2*X66

+2*M1*M2*X12+2*M1*M3*X13+2*M1*M4*X14+2*M1*M5*X15+2*M1*M6*X16

+2*M2*M3*X23+2*M2*M4*X24+2*M2*M5*X25+2*M2*M6*X26+2*M3*M4*X34

+2*M3*M5*X35+2*M3*M6*X36+2*M4*M5*X45+2*M4*M6*X46+2*M5*M6*X56)

Do[{

coeffs = g[exp,Mi];

pre = FullSimplify[Expand[pre*fpre[coeffs]]];

exp = FullSimplify[Expand[fexp[coeffs]]]},{Mi,{M1,M2,M3,M4,M5,M6}}]

chisq_marg := Log[pre]-2*exp
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APPENDIX B

The Biased Angular Power Spectrum

The observed (biased) angular power spectrum for tomographic redshift bins i and j is
given by

T ij` =

∑
m〈ti`mtj∗`m〉
2`+ 1

, (B.1)

ti`m =
1

1 + εi

ai`m + ci`m +
∑
`1m1
`2m2

R`1 `2 `
m1m2m

ci`1m1
ai`2m2

−
√

4π εi δ`0

 , (B.2)

εi =
ci00√
4π

+
1

4π

∑
`m

ci`ma
i∗
`m , (B.3)

where the R coupling is defined in Eq. (4.12). Since the monopole of the calibration field
(or equivalently, the true mean galaxy density N̄ ) is not measurable, we are free to specify
a value, so we choose ci00 = (−1/

√
4π)

∑
`m c

i
`ma

i∗
`m so that εi = 0. Then

T ij` =
1

2`+ 1

∑
m

〈(ai`m + ci`m) (aj∗`m + cj∗`m)

+
∑
`1m1
`2m2

∑
`′1m

′
1

`′2m
′
2

R`1 `2 `
m1m2m

R
`′1 `

′
2 `

m′
1m

′
2m
ci`1m1

ai`2m2
cj∗`′1m′

1
aj∗`′2m′

2
(B.4)

+
∑
`1m1
`2m2

R`1 `2 `
m1m2m

[
(ai`m + ci`m) cj∗`1m1

aj∗`2m2
+ (aj∗`m + cj∗`m) ci`1m1

ai`2m2

]〉

Calculating the ensemble averages, we assume that the cosmological three-point function
vanishes and that the c`m are fixed (not random) variables, with the exception of c00 which
must be considered separately. Using the definition of Ccal

` in Eq. (4.14), we have (for
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` 6= 0)

T ij` = Cij
` + C

cal(ij)
` − 1

4π
C

cal(ij)
`

[
Cii
` + Cjj

`

]
+

1

4π

∑
`1 6=0
`2 6=0

(2`1 + 1)C
cal(ij)
`1

(
`1 `2 `

0 0 0

)2

(2`2 + 1)Cij
`2

(B.5)

+
1

(4π)2

[
C

cal(ij)
`

[
Cii
` C

jj
` + (Cij

` )2
]

+ Cij
`

∑
`′ 6=0

(2`′ + 1)Cij
`′C

cal(ij)
`′

]
.

Note that a00, C0, t00, and T0 are all equal to zero by construction, while Ccal
0 does not

contribute and is left undefined. Restricting to auto-power spectra only, dropping the re-
dundant redshift bin indices, and neglecting the last group of terms (which is suppressed
by an extra factor of order C` relative to the other terms), we have

T` = C` + Ccal
` −

1

2π
Ccal
` C` +

1

4π

∑
`1 6=0
`2 6=0

(2`1 + 1)Ccal
`1

(
`1 `2 `

0 0 0

)2

(2`2 + 1)C`2 , (B.6)

which matches Eq. (4.13) in the text.
The following relations involving Wigner 3-j symbols were useful for simplifying the

expression for T` and for computing the symbols numerically:

∑
m

(−1)m

(
` ` L

m −m 0

)
= (−1)`

√
2`+ 1 δL0 (B.7)

∑
`m

(2`+ 1)

(
`1 `2 `

m1 m2 m

)(
`1 `2 `

m′1 m′2 m

)
= δm1m′

1
δm2m′

2
(B.8)

∑
m1m2

(2`+ 1)

(
`1 `2 `

m1 m2 m

)(
`1 `2 `′

m1 m2 m′

)
= δ``′ δmm′ (B.9)(

` ` 0

m −m 0

)
=

(−1)`−m√
2`+ 1

(B.10)(
`1 `2 `

0 0 0

)
= (−1)g

√
(2g − 2`1)! (2g − 2`2)! (2g − 2`)!

(2g + 1)!
(B.11)

× g!

(g − `1)! (g − `2)! (g − `)! , for integer g =
`1 + `2 + `

2
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