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ABSTRACT

Learning Algorithms for Stochastic Dynamic Pricing and Inventory Control

by

Boxiao Chen

Chair: Xiuli Chao, Hyun-Soo Ahn

This dissertation considers joint pricing and inventory control problems in which the

customer’s response to selling price and the demand distribution are not known a

priori, and the only available information for decision-making is the past sales data.

Data-driven algorithms are developed and proved to converge to the true clairvoyant

optimal policy had decision maker known the demand processes a priori, and, for the

first time in literature, this dissertation provides theoretical results on the convergence

rate of these data-driven algorithms.

Under this general framework, several problems are studied in different settings.

Chapter 2 studies the classical joint pricing and inventory control problem with back-

logged demand, and proposes a nonparametric data-driven algorithm that learns

about the demand on the fly while making pricing and ordering decisions. The per-

formance of the algorithm is measured by regret, which is the average profit loss

compared with that of the clairvoyant optimal policy. It is proved that the regret

vanishes at the fastest possible rate as the planning horizon increases.

Chapter 3 studies the classical joint pricing and inventory control problem with

lost-sales and censored demand. Major challenges in this study include the following:

vii



First, due to demand censoring, the firm cannot observe either the realized demand

or realized profit in case of a stockout, therefore only biased data is accessible; second,

the data-driven objective function is always multimodal, which is hard to solve and

establish convergence for. Chapter 3 presents a data-driven algorithm that actively

explores in the inventory space to collect more demand data, and designs a sparse dis-

cretization scheme to jointly learn and optimize the multimodal data-driven objective.

The algorithm is shown to be very computationally efficient.

Chapter 4 considers a constraint that only allows the firm to change prices no

more than a certain number of times, and explores the impact of number of price

changes on the quality of demand learning. In the data-driven algorithm, we extend

the traditional maximum likelihood estimation method to work with censored demand

data, and prove that the algorithm converges at the best possible rate for any data-

driven algorithms.
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CHAPTER I

Introduction

Firms often integrate inventory and pricing decisions to match demand with sup-

ply. For instance, a firm may offer a discounted price when there is excess inventory

or raise the price when the inventory level is low. Since the seminal paper of Whitin

(1955), the joint pricing and inventory control problems have attracted significant

attention in the field (see, e.g., the survey papers by Petruzzi and Dada (1999), El-

maghraby and Keskinocak (2003), Yano and Gilbert (2003), Chen and Simchi-Levi

(2012)). Almost all papers on this topic assume that the firm knows how the market

responds to its selling prices and the exact distribution of uncertainty in customer

demand, and the inventory and pricing decisions are made with full knowledge of the

underlying demand process. However, in practice, the demand-price relationship is

usually not known a priori. Indeed, even with past observed demand data (often

censored in the lost-sales case), it remains difficult to select the most appropriate

functional form and estimate the distribution of demand uncertainty (see Huh and

Rusmevichientong (2009), Huh et al. (2011), Besbes and Muharremoglu (2013), Shi

et al. (2015) for more discussions on censored demand in various other inventory

systems).

In Chapter 2, we consider a firm (e.g., retailer) selling a single nonperishable prod-

uct over a finite-period planning horizon. Demand in each period is stochastic and
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price-dependent, and unsatisfied demands are backlogged. At the beginning of each

period, the firm determines its selling price and inventory replenishment quantity, but

it knows neither the form of demand dependency on selling price nor the distribution

of demand uncertainty a priori, hence it has to make pricing and ordering decisions

based on historical demand data. We propose a nonparametric data-driven policy

that learns about the demand on the fly and, concurrently, applies learned informa-

tion to determine replenishment and pricing decisions. The policy integrates learning

and action in a sense that the firm actively experiments on pricing and inventory

levels to collect demand information with the least possible profit loss. Besides con-

vergence of optimal policies, we show that the regret, defined as the average profit loss

compared with that of the clairvoyant optimal solution when the firm had complete

information about the underlying demand, vanishes at the fastest possible rate as the

planning horizon increases.

In Chapter 3, we consider the classical joint pricing and inventory control prob-

lem with lost-sales and censored demand in which the customer’s response to selling

price and the demand distribution are not known a priori, and the only available

information for decision-making is the past sales data. Conventional approaches,

such as stochastic approximation, online convex optimization, and continuum-armed

bandit algorithms, cannot be employed since neither the realized values of the profit

function nor its derivatives are known. A major difficulty of this problem lies in

the fact that the estimated profit function from observed sales data is multimodal

even when the expected profit function is concave. We develop a nonparametric

data-driven algorithm that actively integrates exploration and exploitation through

carefully designed cycles. The algorithm searches the decision space through a sparse

discretization scheme to jointly learn and optimize a multimodal (sampled) profit

function, and corrects the estimation biases caused by demand censoring. We show

that the algorithm converges to the clairvoyant optimal policy as the planning hori-
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zon increases, and obtain the convergence rate of regret. Numerical experiments show

that the proposed algorithm performs very well.

In Chapter 4, we consider a firm selling a product over T periods. Demand in

each period is random and price sensitive, and unsatisfied demands are lost and unob-

servable. The firm has limited prior knowledge about the demand process and needs

to learn it through historical sales data. We consider the scenario where the firm is

faced with the business constraint that prevents it from conducting extensive price

experimentation. We develop data-driven algorithms for pricing and inventory deci-

sions and evaluate their effectiveness using regret, which is the profit loss compared

to a clairvoyant who has complete information about the demand process. We study

three distinct scenarios and design algorithms that achieve the lowest possible regret

rates: First, in a quite general case, when the number of price changes is bounded by

a given number, the regret is O(T 1/2). Second, in a special so-called well-separated

case, when the number of price changes is limited to m, the regret is O(T 1/m+1).

Third, in the well-separated case allowing more frequent price changes that is limited

to O(log T ), the regret is O(log T ). Numerical results show that these algorithms

empirically perform very well.
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CHAPTER II

Coordinating Pricing

and Inventory Replenishment

with Nonparametric Demand Learning

2.1 Introduction

Balancing supply and demand is a challenge for all firms, and failure to do so

can directly affect the bottom-line of a company. From the supply side, firms can

use operational levers such as production and inventory decisions to adjust inven-

tory level in pace of uncertain demand. From the demand side, firms can deploy

marketing levers such as pricing and promotional decisions to shape the demand to

better allocate the limited (or excess) inventory in the most profitable way. With

the increasing availability of demand data and new technologies, e.g., electronic data

interchange, point of sale devices, click stream data etc., deploying both operational

and marketing levers simultaneously is now possible. Indeed, both academics and

practitioners have recognized that substantial benefits can be obtained from coordi-

nating operational and pricing decisions. As a result, the research literature on joint

pricing and inventory decisions has rapidly grown in recent years, see, e.g., the survey

papers by Petruzzi and Dada (1999), Elmaghraby and Keskinocak (2003), Yano and

Gilbert (2003), and Chen and Simchi-Levi (2012).
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Despite the voluminous literature, the majority of the papers on joint optimization

of pricing and inventory control have assumed that the firm knows how the market

responds to its selling prices and the exact distribution of uncertainty in customer

demand for any given price. This is not true in many applications, particularly with

demand of new products. In such settings, the firm needs to learn about demand

information during the dynamic decision making process and simultaneously tries to

maximize its profit.

In this chapter, we consider a firm selling a nonperishable product over a finite-

period planning horizon in a make-to-stock setting that allows backlogs. In each

period, the firm sets its price and inventory level in anticipation of price-sensitive and

uncertain demand. If the firm had complete information about the underlying demand

distribution, this problem has been studied by, e.g., Federgruen and Heching (1999),

among others. The point of departure this paper takes is that the firm possesses

limited or even no prior knowledge about customer demand such as its dependency

on selling price or the distribution of uncertainty in demand fluctuation. We develop

a nonparametric data-driven algorithm that learns the demand-price relationship and

the random error distribution on the fly. We also establish the convergence rate of

the regret, defined as the average profit loss per period of time compared with that

of the optimal solution had the firm known the random demand information, and

that is fastest possible for any learning algorithm. This work is the first to present a

nonparametric data-driven algorithm for the classic joint pricing and inventory control

problem that not only shows the convergence of the proposed policies but also the

convergence rate for regret.

2.1.1 Literature Review

Almost all early papers in joint pricing and inventory control, e.g., Whitin (1955),

Federgruen and Heching (1999), and Chen and Simchi-Levi (2004a), among others,

5



assume that a firm has complete knowledge about the distribution of underlying

stochastic demand for any given selling price. The complete information assumption

provides analytic tractability necessary for characterizing the optimal policy. The

extension to the parametric case (the firm knows the class of distribution but not

the parameters) has been studied by, for example, Subrahmanyan and Shoemaker

(1996), Petruzzi and Dada (2002), and Zhang and Chen (2006). Chung et al. (2011)

also consider the problem of dynamic pricing and inventory planning with demand

learning, and they develop learning algorithms using Bayesian method and Markov

chain Monte Carlo (MCMC) algorithms, and numerically evaluate the importance of

dynamic pricing. An alternative to the parametric approach is to model the firm’s

problem in a nonparametric setting. Under this framework, the firm does not make

specific assumptions about underlying demand. Instead, the firm makes decisions

solely based on the collected demand data, see Burnetas and Smith (2000). Our work

falls into this category.

To our best knowledge, Burnetas and Smith (2000) is the only paper that considers

the joint pricing and inventory control problem in a nonparametric setting. The

authors consider a make-to-stock system for a perishable product with lost sales and

linear costs, and propose an adaptive policy to maximize average profit. They assume

that the price is chosen from a finite set and formulate the pricing problem as a multi-

armed bandit problem, and show that the average profit under their approximation

policy converges in probability. No convergence rate or performance bound is obtained

for their algorithm.

Other approaches in the literature on developing nonparametric data-driven algo-

rithms include online convex optimization (Agarwal et al. (2011), Zinkevich (2003),

Hazan et al. (2007)), continuum-armed bandit problems (Auer et al. (2007), Kleinberg

(2005), Cope (2009)), and stochastic approximation (Kiefer and Wolfowitz (1952b),

Lai and Robbins (1981), and Robbins and Monro (1951)). In fact, Burnetas and
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Smith (2000) is an example of implementing such algorithms to the joint pricing

and inventory control problem. However, these methodologies require that the pro-

posed solution be reachable in each and every period, which is not the case with our

problem. This is because, in a demand learning algorithm of joint pricing/inventory

control problem, in each period the algorithm utilizes the past demand data to pre-

scribe a pricing decision and an order up-to level. However, if the starting inventory

level of the period is already higher than the prescribed order up-to level, then the

prescribed inventory level for the period cannot be reached. Actually, that is pre-

cisely the reason that Burnetas and Smith (2000) focused on the case of perishable

product (hence the firm has no carry-over inventory and the inventory decision ob-

tained by Burnetas and Smith (2000) based on multi-armed bandit process can be

implemented in each period). Agarwal et al. (2011), Auer et al. (2007), and Kleinberg

(2005) propose learning algorithms and obtain regrets that are not as good as ours

in this chapter. Zinkevich (2003) and Hazan et al. (2007) present machine learning

algorithms in which the the exact gradient of the unknown objective function at the

current decision can be computed, and their results have been applied to dynamic

inventory control in Huh and Rusmevichientong (2009). However, in the joint pricing

and inventory control problem with unknown demand response, the gradient of the

unknown objective function cannot be obtained thus the method cannot be applied.

2.1.2 Contributions and Comparison with Closely Related Literature

The closest related research works to ours are Besbes and Zeevi (2015), Levi et al.

(2007) and Levi et al. (2011), offering nonparametric approaches to pure pricing

problem (with no inventory) and pure inventory control problem (with no pricing),

respectively.

Besbes and Zeevi (2015) consider a dynamic pricing problem in which a firm

chooses its selling price to maximize expected revenue. The firm does not know
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the deterministic demand curve (i.e., how the average demand changes in price) and

learns it through noisy demand realizations, and the authors establish the sufficiency

of linear approximations in maximizing revenue. They assume that the firm has

infinite supply of inventory, or, alternatively, the seller has no inventory constraint.

In this case, since the expected revenue in each period depends only on its mean

demand, the distribution of random error is immaterial in their learning algorithm

and analysis. On the other hand, in the dynamic newsvendor problem considered

in Levi et al. (2007, 2010), the essence for effective inventory management is to

strike a balance between overage cost and underage cost, for which the distribution

of uncertain demand plays a key role. Levi et al. (2007) and Levi et al. (2011)

apply Sample Average Approximation (SAA) to estimate the demand distribution

and average cost function, and they analyze the relationship between sample sizes

and accuracy of estimations and inventory decisions.

Our problem has both dynamic pricing and inventory control, and the firm knows

neither the relationship between demand and selling price nor the distribution of

demand uncertainty. In Besbes and Zeevi (2015), the authors only need to estimate

the average demand curve in order to maximize revenue, and demand distribution

information is irrelevant. In a remark, Besbes and Zeevi (2015) state that their

method of learning the demand curve can be applied to maximizing more general

forms of objective functions beyond the expected revenue which, however, does not

apply to our setting. This is because, in the general form presented in Besbes and Zeevi

(2015), the objective function still has to be a known function in terms of price and the

demand curve for a given price and a given demand curve. Thus the firm must know

the exact expression of the objective function when the estimate of a demand curve is

given. In our problem, even with a given price and inventory level and a given demand

curve, the objective function cannot be written as a known deterministic function.

Indeed, this function contains the expected inventory holding and backorder costs

8



that depend on the distribution of demand fluctuation, which is also unknown to the

firm. In fact, the latter is a major technical challenge encountered in this chapter

because, as we will explain below, the estimation of the demand uncertainty, therefore

also of the expected holding/shortage cost, cannot be decoupled with the estimation

of the average demand curve, which is gathered through price experimentation.

Standard SAA method is implemented to the newsvendor problem by Levi et al.

(2007) and Levi et al. (2011) which, however, cannot be applied to our setting for

determining inventory decisions. In Levi et al. (2007) and Levi et al. (2011), dynamic

inventory control is studied in which pricing is not a decision and it is assumed (implic-

itly) to be given. The only information the firm is uncertain about is the distribution

of random fluctuation. Therefore, the firm can observe true realizations of demand

fluctuation which are used to build an empirical distribution. In our model, however,

the firm knows neither how average demand responds to the selling price (demand

curve) nor the distribution of fluctuating demand, but both of them affect demand re-

alizations. For any estimation of average demand curve, the error of this estimate will

affect the estimation of distribution of random demand fluctuation. Hence, through

the realization of random demand we are unable to obtain a true realization of ran-

dom demand error without knowing the exact average demand function. As a result,

the standard SAA analysis is not applicable in our setting because unbiased samples

of the random error cannot be obtained.

Because the firm does not know the exact demand curve a priori, its estimate

of error distribution using demand data is inevitably biased, and as a result, the

data-driven optimization problem constructed to compute the pricing and ordering

strategies is also biased. Because of this bias, it is no longer true that the solution

of the data-driven problem using SAA must converge to the true optimal solution.

Fortunately, we are able to show that as the learning algorithm proceeds, the biases

will be gradually diminishing and that allows us to prove that our learning algorithm
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still converges to the true optimal solution. This is done by establishing several

important properties of the newsvendor problem that bound the errors of biased

samples. One main contribution of this chapter is to explicitly prove that the solution

obtained from a biased data-driven optimization problem still converges to the true

optimal solution.

Finally, we highlight on the result of the convergence rate of regret. Besbes and

Zeevi (2015) obtain a convergence rate of T−1/2(log T )2 for their dynamic pricing

problem, where T is the length of the planning horizon. For the pure dynamic inven-

tory control problem, Huh and Rusmevichientong (2009) present a machine learning

algorithm with convergence rate T−1/2. For the joint pricing and inventory problem,

we show that the regret of our learning algorithm converges to zero at rate T−1/2,

which is also the theoretical lower bound. Thus, this chapter strengthens and extends

the existing work by achieving the tightest convergence rate for the problem with joint

pricing and inventory control. One important implication of our finding is that the

linear demand approximation scheme of Besbes and Zeevi (2015) actually achieves the

best possible convergence rate of regret, which further improves the result of Besbes

and Zeevi (2015). That is, nothing is lost in the learning algorithm in approximating

the demand curve by a linear model.

2.1.3 Organization

The rest of this chapter is organized as follows. Section 2.2 formulates the problem

and describes the data-driven learning algorithm for pricing and inventory control

decisions. The following two sections (Sections 3 and 4) present our major theoretical

results together with a numerical study, and the main steps of the technical proofs,

respectively. The chapter concludes with a few remarks in Section 5. Finally, the

details of the mathematical proofs are given in the Appendix.
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2.2 Formulation and Learning Algorithm

We consider an inventory system in which a firm (e.g., a retailer) sells a nonper-

ishable product over a planning horizon of T periods. At the beginning of each period

t, the firm makes a replenishment decision, denoted by the order-up-to level, yt, and a

pricing decision, denoted by pt, where yt ∈ Y = [yl, yh] and pt ∈ P = [pl, ph] for some

known lower and upper bounds of inventory level and selling price, respectively. We

assume ph > pl since otherwise, the problem is the pure inventory control problem

and learning algorithms have been developed in Huh and Rusmevichientong (2009),

Levi et al. (2007), and Levi et al. (2011). During period t and when the selling price is

set to pt, a random demand, denoted by D̃t(pt), is realized and fulfilled from on-hand

inventory. Any leftover inventory is carried over to the next period, and in case the

demand exceeds yt, the unsatisfied demand is backlogged. The replenishment lead-

time is zero, i.e., an order placed at the beginning of a period can be used to satisfy

demand in the same period. Let h and b be the unit holding and backlog costs per

period, and the unit purchasing cost is assumed, without loss of generality, to be zero.

The model as described above is the well-known joint inventory and pricing deci-

sion problem studied in Federgruen and Heching (1999), in which it is assumed that

the firm has complete information about the distribution of D̃t(pt). In this chapter

we consider a setting where the firm does not have prior knowledge about the demand

distribution.

In general, the demand in period t is a function of selling price pt in that period and

some random variable ε̃t, and it is stochastically decreasing in pt. The most popular

demand models in the literature are the additive demand model D̃t(pt) = λ̃(pt) + ε̃t

and multiplicative demand model D̃t(pt) = λ̃(pt) ε̃t, where λ̃(·) is a strictly decreas-

ing deterministic function and ε̃t, t = 1, 2, . . . , T, are independent and identically

distributed random variables. In this chapter, we shall study both additive and the

multiplicative demand models. However, the firm knows neither the function λ̃(pt)
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nor the distribution function of random variable ε̃t. The firm has to learn from his-

torical demand data, that are the realizations of market responses to offered prices,

and use that information as a basis for decision making. Suppose ε̃t has finite support

[l, u], with l ≥ 0 for the case of multiplicative demand.

To define the firm’s problem, we let xt denote the inventory level at the beginning

of period t before replenishment decision. We assume that the system is initially

empty, i.e., x1 = 0. The system dynamics are xt+1 = yt − D̃t(pt) for all t = 1, . . . , T .

An admissible policy is represented by a sequence of prices and order-up-to levels,

{(pt, yt), t ≥ 1}, where (pt, yt) depends only on realized demand and decisions made

prior to period t, and yt ≥ xt, i.e., (pt, yt) is adapted to the filtration generated by

{(ps, ys), D̃s(ps); s = 1, . . . , t− 1}. The firm’s objective is to find an admissible policy

to maximize its total profit.

If both the function of λ̃(·) and the distribution of ε̃t are known a priori to the

firm (complete information scenario), then the optimization problem the firm wishes

to solve is

max
(pt, yt) ∈ P × Y

yt ≥ xt

T∑
t=1

(
ptE[D̃t(pt)]− hE[yt − D̃t(pt)]

+ − bE[D̃t(pt)− yt]+
)
, (2.1)

where E stands for mathematical expectation with respect to random demand D̃t(pt),

and x+ = max{x, 0} for any real number x. However, since in our setting the firm

does not know the demand distribution, the firm is unable to evaluate the objective

function of this optimization problem.

We develop a data-driven learning algorithm to compute the inventory control and

pricing policy. It will be shown in Section 3 that the average profit of the algorithm

converges to that of the case when complete demand distribution information is known

a priori, and that the pricing and inventory control parameters also converge to

that of the optimal control policy for the case with complete information as the
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planning horizon becomes long. To save space we shall only present the algorithm

and analytical results for the multiplicative demand model. The results and analyses

for the additive demand case are analogous, and we only highlight the main differences

at the end of this section.

Remark 1. For ease of exposition, in this chapter we assume the support of un-

certainty ε̃t is bounded. This can be relaxed, and all the results hold as long as we

assume the moment generating functions of the relevant random variables are finite

in a small neighborhood of 0, or light tailed.

Case of complete information about demand. In the case of complete infor-

mation in which the firm knows λ̃(·) and the distribution of ε̃t, it follows from (2.1)

that, if (p∗, y∗) is the optimal solution of each individual term

max
p∈P,y∈Y

{
pE[D̃t(p)]− hE[y − D̃t(p)]

+ − bE[D̃t(p)− y]+
}
. (2.2)

and that this solution is reachable in every period, i.e., xt ≤ y∗ for all t, then (p∗, y∗)

is the optimal policy for each period. We refer to p∗ and y∗ as the optimal price

and optimal order up-to level (or optimal base-stock level), respectively. It is clear

that the reachability condition is satisfied if the system is initially empty, which we

assume.

We find it convenient to analyze (2.2) using a slightly different but equivalent

form. Taking logarithm on both sides of D̃t(pt) = λ̃(pt)ε̃t, we obtain

log D̃t(pt) = log λ̃(pt) + log ε̃t, t = 1, . . . , T.

Denote Dt(pt) = log D̃t(pt), λ(pt) = log λ̃(pt) and εt = log ε̃t. Then, the logarithm of

demand can be written as

Dt(pt) = λ(pt) + εt, t = 1, . . . , T. (2.3)
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We shall refer to λ(·) as the demand-price function (or demand-price curve) and

εt as random error (or random shock). Clearly, λ(·) is also strictly decreasing in

p ∈ P . Hence, in the case of complete information, the firm knows the function

λ(·) and the distribution of εt, and when the firm does not know function λ(·) and

the distribution of εt, which is our case, the firm will need to learn about them.

Without loss of generality, we assume E[εt] = E[log ε̃t] = 0. If this is not the case, i.e.,

E[log ε̃t] = a 6= 0, then E[log(e−αε̃t)] = 0, thus if we let λ̂(·) = eaλ̃(·) and ε̂t = e−aε̃t,

then D̃t(pt) = λ̂(pt)ε̂t, and λ̂(·) and ε̂t satisfy the desired properties.

For convenience, let ε be a random variable distributed as ε1. In terms of λ(·) and

ε, we define

G(p, y) = peλ(p)E
[
eε
]
−
{
hE
[
y − eλ(p)eε

]+
+ bE

[
eλ(p)eε − y

]+}
.

Then problem (2.2) can be re-written as

Problem CI: max
p∈P,y∈Y

G(p, y) (2.4)

= max
p∈P

{
peλ(p)E

[
eε
]
−min

y∈Y

{
hE
[
y − eλ(p)eε

]+
+ bE

[
eλ(p)eε − y

]+}}
.

The inner optimization problem (minimization) determines the optimal order-up-to

level that minimizes the expected inventory and backlog cost for given price p, and we

denote it by y
(
eλ(p)

)
. The outer optimization solves for the optimal price p. Let the

optimal solution for (2.4) be denoted by p∗ and y∗, then they satisfy y∗ = y(eλ(p∗)).

The analysis above stipulates that the firm knows the demand-price curve λ(p)

and the distribution of ε, thus we refer to it as problem CI (complete information).

Learning algorithm. In the absence of the prior knowledge about the demand

process, the firm needs to collect the demand information necessary to estimate λ(p)

and the empirical distribution of random error ε, thus price and inventory decisions

not only affect the profit but also the demand information realized. The major dif-
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ficulty lies in that, the estimations of demand-price curve λ(p) and the distribution

of random error cannot be decoupled. This is because, the firm only observes real-

ized demands, hence with any estimation of demand-price curve, the estimation error

transfers to the estimation of the random error distribution. Indeed, we are not even

able to obtain unbiased samples of the random error εt.

In our algorithm below we approximate λ(p) by an affine function, and construct

an empirical (but biased) error distribution using the collected data. We divide the

planning horizon into stages whose lengths are exponentially increasing (in the stage

index). At the start of each stage, the firm sets two pairs of prices and order-up-

to levels based on its current linear estimation of demand-price curve and (biased)

empirical distribution of random error, and the collected demand data from this

stage are used to update the linear estimation of demand-price curve and the biased

empirical distribution of random error. These are then utilized to find the pricing

and inventory decision for the next stage.

The algorithm requires some input parameters v, ρ and I0, with v > 1, I0 > 0,

and 0 < ρ ≤ 2−3/4(ph − pl)I1/4
0 . To initiate the algorithm, it sets {p̂1, ŷ11, ŷ12}, where

p̂1 ∈ P , ŷ11 ∈ Y , ŷ12 ∈ Y are the starting pricing and order-up-to levels. For i ≥1, let

Ii = bI0v
ic, δi = ρ(2Ii−1)−

1
4 , and ti =

i−1∑
k=1

2Ik with t1 = 0, (2.5)

where bI0v
ic is the largest integer less than or equal to I0v

i.

The following is the detailed procedure of the algorithm. Recall that xt is the

starting inventory level at the beginning of period t, pt is the selling price set for

period t, and yt (≥ xt) is the order-up-to inventory level for period t, t = 1, . . . , T .

The number of learning stages is n =
⌈

logv

(
v−1
2I0v

T + 1
)⌉
, where dxe denotes the

smallest integer greater than or equal to x.

Data-Driven Algorithm (DDA)
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Step 0. Initialization. Choose v > 1, ρ > 0 and I0 > 0, and p̂1, ŷ11, ŷ12.

Compute I1 = bI0vc, δ1 = ρ(2I0)−
1
4 , and p̂1 + δ1.

Step 1. Setting prices and order-up-to levels for stage i. For i = 1, . . . , n,

set prices pt, t = ti + 1, . . . , ti + 2Ii, to

pt = p̂i, t = ti + 1, . . . , ti + Ii,

pt = p̂i + δi, t = ti + Ii + 1, . . . , ti + 2Ii;

and for t = ti + 1, . . . , ti + 2Ii, raise the inventory levels to

yt = max {ŷi1, xt}, t = ti + 1, . . . , ti + Ii,

yt = max {ŷi2, xt}, t = ti + Ii + 1, . . . , ti + 2Ii.

Step 2. Estimating the demand-price function and random errors us-

ing data from stage i. Let Dt = log D̃t(pt) be the logarithm of demand

realizations for t = ti + 1, . . . , ti + 2Ii, and compute

(α̂i+1, β̂i+1) = argmin
α,β

{ ti+2Ii∑
t=ti+1

(
Dt − (α− βpt)

)2
}
, (2.6)

ηt = Dt − (α̂i+1 − β̂i+1pt), for t = ti + 1, . . . , ti + 2Ii. (2.7)

Step 3. Defining and maximizing the proxy profit function, denoted by

GDD
i+1(p, y). Define

GDD
i+1(p, y) = peα̂i+1−β̂i+1p

1

2Ii

ti+2Ii∑
t=ti+1

eηt −
{

1

2Ii

ti+2Ii∑
t=ti+1

(
h
(
y − eα̂i+1−β̂i+1peηt

)+

+b
(
eα̂i+1−β̂i+1peηt − y

)+
)}

.
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Then the data-driven optimization is defined by

Problem DD:

max
(p,y)∈P×Y

GDD
i+1(p, y) (2.8)

= max
p∈P

{
peα̂i+1−β̂i+1p

1

2Ii

ti+2Ii∑
t=ti+1

eηt

−min
y∈Y

{
1

2Ii

ti+2Ii∑
t=ti+1

(
h
(
y − eα̂i+1−β̂i+1peηt

)+

+ b
(
eα̂i+1−β̂i+1peηt − y

)+
)}}

.

Solve problem DD and set the first pair of price and inventory level to

(p̂i+1, ŷi+1,1) = arg max
(p,y)∈P×Y

GDD
i+1(p, y),

and set the second price to p̂i+1 + δi+1 and the second order-up-to level to

ŷi+1,2 = arg max
y∈Y

GDD
i+1(p̂i+1 + δi+1, y).

In case p̂i+1 + δi+1 6∈ P , set the second price to p̂i+1 − δi+1.

Remark 2. When β̂i+1 > 0, the objective function in (2.8) after minimizing over

y ∈ Y is unimodal in p. To see why this is true, let d = eα̂i+1−β̂i+1p and thus

p = α̂i+1−log d

β̂i+1
with d ∈ D = [dl, dh], where dl = eα̂i+1−β̂i+1p

h
and dh = eα̂i+1−β̂i+1p

l
.

Then the optimization problem (2.8) is equivalent to

max
d∈D

{
d
α̂i+1 − log d

β̂i+1

(
1

2Ii

ti+2Ii∑
t=t1+1

eηt

)
−min

y∈Y

{
1

2Ii

ti+2Ii∑
t=ti+1

(
h(y − deηt)+ + b(deηt − y)+

)}}
.

The objective function of this optimization problem is jointly concave in (y, d) hence

it is concave in d after minimizing over y ∈ Y . Thus, it follows from p = α̂i+1−log d

β̂i+1
is

strictly decreasing in d that the objective function in (2.8) (after minimization over

y) is unimodal in p ∈ P .
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Remark 3. In Step 3 of DDA, the second price is set to p̂i+1−δi+1 when p̂i+1 +δi+1 >

ph. In this case our condition ρ ≤ 2−3/4(ph − pl)I1/4
0 ensures that p̂i+1 − δi+1 ≥ pl,

thus p̂i+1 − δi+1 ∈ P . This is because, when p̂i+1 > ph − δi+1, we have

p̂i+1 − δi+1 > ph − 2δi+1 ≥ ph − 2δ1 = ph − 2ρ(2I0)−1/4 ≥ pl,

where the last inequality follows from the condition on ρ.

Discussion of algorithm and its connections with the literature. In our

algorithm above, iteration i focuses on stage i that consists of 2Ii periods. In Step 1,

the algorithm sets the ordering quantity and selling price for each period in stage i,

and they are derived from the previous iteration. In Step 2, the algorithm uses the

realized demand data and least-squares method to update the linear approximation,

α̂i+1 − β̂i+1p, of λ(p) and computes a biased sample ηt of random error εt, for t =

ti+1, . . . , ti+2Ii. Note that ηt is not a sample of the random error εt. This is because

εt = Dt(pt) − λ(pt) and the (logarithm of) observed demand is Dt(pt). However as

we do not know λ(p), it is approximated by α̂i+1 − β̂i+1p, therefore

ηt = Dt(pt)− (α̂i+1 − β̂i+1pt) 6= Dt(pt)− λ(pt) = εt.

For the same reason, the constructed objective function for holding and shortage costs

is not a sample average of the newsvendor problem.

In the traditional SAA, mathematical expectations are replaced by sample means,

see e.g., Kleywegt et al. (2002). Levi et al. (2007) and Levi et al. (2011) apply SAA

method in dynamic newsvendor problems. The argument above shows that the tra-

ditional analyses that show SAA leads to the optimal solution is not applicable to

our setting. Indeed, in our inner layer optimization, we face a newsvendor problem

for which the firm needs to balance holding and shortage cost, and the knowledge

about demand distribution is critical. However, the lack of samples of random error
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εt makes the inner loop optimization problem significantly different from Levi et al.

(2007) and Levi et al. (2011), which consider pure inventory control problems and

samples of random errors are available for applications of SAA result and analysis.

Because of this, it is not guaranteed that the SAA method will lead to a true optimal

solution.

The DDA algorithm integrates a process of earning (exploitation) and learning

(exploration) in each stage. The earning phase consists of the first Ii periods starting

at ti + 1, during which the algorithm implements the optimal strategy for the proxy

problem GDD
i (p, y). In the next Ii periods of learning phase that starts from ti+Ii+1,

the algorithm uses a different price p̂i + δi and its corresponding order-up-to level.

The purpose of this phase is to allow the firm to obtain demand data to estimate the

rate of change of the demand with respect to the selling price. Note that, even though

the firm deviates from the optimal strategy of the proxy problem in the second phase,

the policies, (p̂i+δi, ŷi,2) and (p̂i, ŷi,1), will be very close to each other as δi diminishes

to zero. We will show that they both converge to the true optimal solution and the

loss of profit from this deviation converges to zero.

The pricing part of our algorithm is similar to the pure pricing problem considered

by Besbes and Zeevi (2015) as we also use linear approximation to estimate the

demand-price function then maximize the resulting proxy profit function. Although

our algorithm is heavily influenced by their work, there is a key difference. Besbes

and Zeevi (2015) consider a revenue management problem and they only need to

estimate the deterministic demand-price function, and the distribution of random

errors is immaterial in their analysis. In our model, however, due to the holding and

backlogging costs, the distribution of the random error is critical and that has to be

learned during the decision process, but it cannot be separated from the estimation

of demand-price curve, as discussed above.

Therefore, due to the lack of unbiased samples of random error and that the learn-
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ing of demand-price curve and the random error distribution cannot be decoupld, we

are not able to prove that the DDA algorithm converges to the true optimal solution

by using the approaches developed in Besbes and Zeevi (2015) for the pricing problem

and in Levi et al. (2007) for the newsvendor problem. To overcome this difficulty, we

construct several intermediate bridging problems between the data-driven problem

and the complete information problem, and perform a series of convergence analyses

to establish the main results.

Performance Metrics. To measure the performance of a policy, we use two

metrics proposed in Besbes and Zeevi (2015): consistency and regret. An admissible

policy π = ((pt, yt), t ≥ 1) is said to be consistent if (pt, yt) → (p∗, y∗) in probability

as t → ∞. The average (per-period) regret of a policy π, denoted by R(π, T ), is

defined as the average profit loss per period, given by

R(π, T ) = G(p∗, y∗)− 1

T
E

[
T∑
t=1

G(pt, yt)

]
. (2.9)

Obviously, the faster the regret converges to 0 as T →∞, the better the policy.

In the next section, we will show that the DDA policy is consistent, and we will

also characterize the rate at which the regret converges to zero.

2.3 Main Results

In this section, we analyze the performance of the DDA policy proposed in the

previous section. We will show that under a fairly general assumption on the underly-

ing demand process, which covers a number of well-known demand models including

logit and exponential demand functions, the regret of DDA policy converges to 0 at

rate O(T−1/2). We also present a numerical study to illustrate its effectiveness.

Recall that the demand in period t is D̃t(pt) = λ̃(pt)ε̃t. As λ̃(p) is strictly decreas-

ing, it has strictly decreasing inverse function. Let λ̃−1(d) be the inverse function
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of λ̃(p), which is defined on d ∈ [dl, dh] =
[
λ̃(ph), λ̃(pl)

]
. We make the following

assumption.

Assumption 1. The function λ̃(p) satisfies the following conditions:

(i) The revenue function dλ̃−1(d) is concave in d ∈
[
dl, dh

]
.

(ii) 0 <
λ̃′′(p)λ̃(p)

(λ̃′(p))2
< 2 for p ∈

[
pl, ph

]
.

The first condition is a standard assumption in the literature on joint optimization

of pricing and inventory control (see e.g., Federgruen and Heching (1999), and Chen

and Simchi-Levi (2004b)), and it guarantees that the objective function in problem

CI after minimizing over y is unimodal in p. The second assumption imposes some

shape restriction on the underlying demand function, and similar assumption has

been made in Besbes and Zeevi (2015). Technically, this condition assures that the

prices converge to a fixed point through a contraction mapping. Some examples that

satisfy both conditions of Assumption 1 are given below.

Example 1. The following functions satisfy Assumption 1.

i) Exponential models: λ̃(p) = ek−mp,m > 0.

ii) Logit models: λ̃(p) = a ek−mp

1+ek−mp
for a > 0,m > 0, and k −mp < 0 for p ∈ P .

iii) Iso-elastic (constant elasticity) models: λ̃(p) = kp−m for k > 0 and m > 1.

We now present the main results of this chapter. Recall that p∗ and y∗ are the

optimal pricing and inventory decisions for the case with complete information.

Theorem II.1. (Policy Convergence) Under Assumption 1, the DDA policy is

consistent, i.e., (pt, yt)→ (p∗, y∗) in probability as t→∞.

Theorem II.1 states that both pricing and ordering decisions from the DDA al-

gorithm converge to the true optimal solution (p∗, y∗) in probability. Note that the

convergence of inventory decision yt → y∗ is stronger than the convergence of order
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up-to levels ŷi,1 → y∗ and ŷi,2 → y∗. This is because, the order up-to levels may or may

not be achievable for each period, thus the resulting inventory levels may “overshoot”

the targeting order up-to levels. Theorem II.1 shows that, despite these overshoots,

the realized inventory levels converge to the true optimal solution in probability.

Convergence of inventory and pricing decisions alone does not guarantee the per-

formance of DDA policy is close to optimal. Our next result shows that DDA is

asymptotically optimal in terms of maximizing the expected profit.

Theorem II.2. (Regret Convergence Rate) Under Assumption 1, the DDA pol-

icy is asymptotically optimal. More specifically, there exists some constant K > 0

such that

R(DDA, T ) = G(p∗, y∗)− 1

T
E

[
T∑
t=1

G(pt, yt)

]
≤ KT−

1
2 . (2.10)

Theorem II.2 shows that as the length of planning horizon, T , grows, the regret of

DDA policy vanishes at the rate of O
(
T−1/2

)
, hence DDA policy is asymptotically op-

timal as T goes to infinity. Thus, even though the firm does not have prior knowledge

about the demand process, the performance of the data-driven algorithm approaches

the theoretical maximum as the planning horizon becomes long. In Keskin and Zeevi

(2014), the authors consider a parametric data-driven pricing problem (with no in-

ventory decision) where the demand error term is additive and the average demand

function is linear, and they prove that no learning algorithm can achieve a conver-

gence rate better than O(T−1/2). Our problem involves both pricing and inventory

decisions, and the firm does not have prior knowledge about the parametric form of

the underlying demand-price function or the distribution of the random error, and our

algorithm achieves O
(
T−1/2

)
, which is the theoretical lower bound. One interesting

implication of this finding is that, linear model in demand learning achieves the best

regret rate one can hope for, thus our result offers further evidence for the sufficiency

of Besbes and Zeevi’s linear model.
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A numerical Study. We perform a numerical study on the performance of the

DDA algorithm, and present our numerical results on the regret. We consider two

demand curve environments for λ̃(p):

1) exponential ek−mp: k ∈ [k, k],m ∈ [m,m], where [k, k] = [0.1, 1.7], [m,m] =

[0.3, 2],

2) logit ek−mp

1+ek−mp
: k ∈ [k, k],m ∈ [m,m], where [k, k] = [−0.3, 1], [m,m] = [2, 2.5].

And we consider five error distributions for ε̃t:

i) truncated normal on [0.5, 1.5] with mean 1 and variance 0.1,

ii) truncated normal on [0.5, 1.5] with mean 1 and variance 0.25,

iii) truncated normal on [0.5, 1.5] with mean 1 and variance 0.35,

iv) truncated normal on [0.5, 1.5] with mean 1 and variance 0.5,

v) uniform on [0.5, 1.5].

Here truncated normal on [a, b] with mean µ and variance σ2 is defined as random

variable X conditioning on X ∈ [a, b], where X is normally distributed with mean µ

and variance σ2.

Following Besbes and Zeevi (2015), for each combination of the above demand

curve-error distribution specifications, we randomly draw 500 instances from the pa-

rameters k and m according to a uniform distribution on [k, k] and [m,m]. For each

draw, we compute the percentage of profit loss per period defined by

R(π, T )

G(p∗, y∗)
× 100%.

Then we compute the average profit loss per period over the 500 draws and report

them in Table 1. In all the experiments, we set pl = 0.51, ph = 4, yl = 0, yh =
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3, b = 1, h = 0.1, I0 = 1, and initial price p̂1 = 1, initial inventory order up-to level

ŷ11 = 1, ŷ12 = 0.3. We test two values of ρ, ρ = 0.5 and ρ = 0.75, and two values of

v, namely, v = 1.3 and v = 2.

Table 2.1: Exponential Demand

Time Periods T = 100 T = 500 T = 1000 T = 5000 T = 10000
ρ v = 1.3 v = 2 v = 1.3 v = 2 v = 1.3 v = 2 v = 1.3 v = 2 v = 1.3 v = 2

Normal
σ = 0.1

0.5 6.83 6.21 3.39 2.46 2.54 1.71 1.25 0.86 0.87 0.62
0.75 6.84 6.31 3.65 2.59 2.89 1.84 1.39 1.06 0.95 0.76

Normal
σ = 0.25

0.5 15.36 12.75 8.73 6.55 6.74 4.76 3.48 2.31 2.67 1.69
0.75 11.70 9.74 6.48 4.58 5.12 3.39 2.60 1.78 1.82 1.27

Normal
σ = 0.35

0.5 18.20 15.12 11.04 8.09 8.65 5.77 4.55 3.03 3.39 2.24
0.75 13.62 10.83 7.64 5.18 5.91 3.76 3.08 2.03 2.26 1.51

Normal
σ = 0.5

0.5 20.03 16.55 12.07 9.47 9.40 6.87 5.11 3.54 3.88 2.64
0.75 14.84 12.15 8.41 6.12 6.59 4.44 3.51 2.41 2.54 1.76

Uniform
0.5 18.53 15.02 9.98 7.18 7.59 5.39 3.69 2.62 2.58 1.86
0.75 14.08 11.11 8.12 5.57 6.49 4.22 3.41 2.54 2.40 1.85

Maximum 20.03 16.55 12.07 9.47 9.40 6.87 5.11 3.54 3.88 2.64
Average 14.00 11.58 7.95 5.78 6.19 4.22 3.21 2.22 2.34 1.62

Table 2.2: Logit Demand

Time Periods T = 100 T = 500 T = 1000 T = 5000 T = 10000
ρ v = 1.3 v = 2 v = 1.3 v = 2 v = 1.3 v = 2 v = 1.3 v = 2 v = 1.3 v = 2

Normal
σ = 0.1

0.5 6.80 5.62 4.35 2.30 2.63 1.63 1.26 0.89 0.85 0.63
0.75 10.09 8.34 3.42 3.67 4.42 2.67 2.15 1.60 1.45 1.15

Normal
σ = 0.25

0.5 13.72 9.57 6.83 4.44 4.98 3.17 2.34 1.56 1.66 1.10
0.75 12.58 9.86 6.89 4.51 5.42 3.30 2.67 1.87 1.81 1.35

Normal
σ = 0.35

0.5 17.13 12.52 8.65 6.01 6.52 4.10 3.04 1.98 2.12 1.41
0.75 13.84 10.49 7.49 4.85 5.82 3.55 2.85 2.00 1.96 1.43

Normal
σ = 0.5

0.5 19.38 13.75 9.99 6.52 7.31 4.57 3.35 2.18 2.34 1.57
0.75 14.49 11.30 7.84 5.24 6.07 3.79 3.00 2.11 2.05 1.51

Uniform
0.5 21.20 15.29 9.51 6.20 7.16 4.46 3.36 2.39 2.29 1.72
0.75 17.46 14.63 10.44 6.97 8.74 5.35 4.81 3.63 3.38 2.73

Maximum 21.20 15.29 10.44 6.97 8.74 5.35 4.81 3.63 3.38 2.73
Average 14.67 11.14 7.54 5.07 5.91 3.66 2.88 2.02 1.99 1.46

Table 2.1 summarizes the results when the underlying demand curve is exponen-

tial, and Table 2.2 displays the results when the underlying demand curve is logit.

Combining both tables, one sees that when T = 100 periods, on average the profit loss

from the DDA algorithm falls between 11% and 14% compared to the optimal profit

under complete information, in which DDA starts with no prior knowledge about the

underlying demand. When T = 500, the profit loss is further reduced to between 5%

and 8%. The performance gets better and better when T becomes larger. Also, it
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is seen from the table that the overall performance of algorithm is better when the

variance of the demand is smaller, which is intuitive.

As mentioned earlier, Theorems II.1 and II.2 continue to hold for the additive

demand model D̃t(pt) = λ̃(pt) + ε̃t with minor modifications. Specifically, we need to

modify Assumption 1 to Assumption 1A below.

Assumption 1A. The demand-price function λ̃(p) satisfy the following conditions:

(i′) pλ̃(p) is unimodal in p on p ∈ P .

(ii′) −1 < λ̃′′(p)λ̃(p)

2(λ̃′(p))2
< 1, for all p ∈ P .

Note that these are exactly the same assumptions made in Besbes and Zeevi (2015)

for the revenue management problem, and examples that satisfy Assumption 1A

include (a) linear with λ(p) = k−mp, m > 0, (b) exponential with λ(p) = ek−mp,m >

0, and (c) logit with λ(p) = ek−mp

1+ek−mp
,m > 0, ek−mp < 3 for all p ∈ P .

The learning algorithm for the additive demand model is similar to that of the

multiplicative demand case, except that there is no need to transform it using the

logarithm of the deterministic portion of demand and the logarithm of random de-

mand error. Instead, the algorithm directly estimates λ̃(p) using affine function and

computes the biased samples of the random demand error in each iteration.

2.4 Sketches of the Proof

In this section, we present the main ideas and steps in proving the main results of

this chapter. In the first subsection, we elaborate on the technical issues encountered

in the proofs. The key ideas of the proofs are discussed in Subsection 4.2, and the

major steps for the proofs of Theorems 1 and 2 are given in Subsections 4.3 and 4.4,

respectively.
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2.4.1 Technical Issues Encountered

To prove Theorem 1, we will need to show

E
[
(p̂i+1 − p∗)2

]
→ 0, E

[
(p̂i+1 + δi+1 − p∗)2

]
→ 0, as i→∞; (2.11)

E[(y∗ − ŷi+1,1)2]→ 0, E[(y∗ − ŷi+1,2)2]→ 0, as i→∞, (2.12)

where p∗ is the optimal solution of

max
p∈P

Q(p, λ(p)) = max
p∈P

{
peλ(p)E

[
eε
]
− J(λ(p))

}
,

where J(λ(p)) is defined as

J(λ(p)) = min
y∈Y

{
hE
[
y − eλ(p)eε

]+
+ bE

[
eλ(p)eε − y

]+}
.

However, both Q(·, ·) and J(·) are unknown to the firm because all the expectations

cannot be computed. To estimate J(·), in (2.8) of the learning algorithm we use the

data-driven biased estimation of

JDDi+1 (α̂i+1 − β̂i+1p) = min
y∈Y

{
1

2Ii

ti+2Ii∑
t=ti+1

(
h
(
y − eα̂i+1−β̂i+1peηt

)+

+ b
(
eα̂i+1−β̂i+1peηt − y

)+
)}

,

and p̂i+1 is the optimal solution of

max
p∈P

QDD
i+1(p, α̂i+1 − β̂i+1p) = max

p∈P

{
peα̂i+1−β̂i+1p

1

2Ii

ti+2Ii∑
t=ti+1

eηt − JDDi+1 (α̂i+1 − β̂i+1p)

}
,

in which QDD
i+1(·, ·) is random and is constructed based on biased random samples ηt.

To prove the convergence of the data-driven solutions to the true optimal solution,

we face two major challenges. The first one is the comparison between JDDi+1 (α̂i+1 −

β̂i+1p) and J(λ(p)) as functions of p. In JDDi+1 , the true demand-price function is

26



replaced by a linear estimation and, due to lack of knowledge about distribution

of random error, the expectation is replaced by an arithmetic average from biased

samples ηt not true samples of random error εt. To put it differently, the objective

function for JDDi+1 is not a sample average approximation, but a biased-sample average

approximation. The second challenge lies in the comparison of QDD
i+1(p, α̂i+1 − β̂i+1p)

and Q(p, λ(p)). Since QDD
i+1 is a function of JDDi+1 that is minimum of a biased-sample

average approximation, the errors in replacing εt by ηt carry over to QDD
i+1 , making it

difficult to compare (p̂i+1, ŷi+1,1) and (p̂i+1+δi+1, ŷi+1,2) with (p∗, y∗). To overcome the

first difficulty, we establish several important properties of the newsvendor problem

and bound the errors of biased samples (Lemmas A2, A3, A4, A8 in the Appendix).

For the second, we identify high probability events in which uniform convergence of

the data-driven objective functions can be obtained (Lemmas A1, A5, A6, and A7 in

the Appendix).

We note that in the revenue management problem setting, Besbes and Zeevi (2015)

also prove the convergence result (2.11). In Besbes and Zeevi (2015), p∗ is the optimal

solution of maxp∈P Q(p, λ(p)), and p̂i+1 is the optimal solution of maxp∈P Q(p, α̂i+1−

β̂i+1p), where Q(·, ·) is a known and deterministic function Q(p, λ(p)) = pλ(p). As

Besbes and Zeevi (2015) point out, their analysis extends to more general function

Q(p, λ(p)) in which Q(·, ·) is a known deterministic function. This, however, is not

true in our setting as Q(·, ·) is not known, and as a matter of fact, one cannot even find

an unbiased sample average to estimate Q(·, ·). Therefore, the challenges discussed

above were not present in Besbes and Zeevi (2015).

2.4.2 Main Ideas of the Proof

To compare the policy and the resultant profit of DDA algorithm with that of the

optimal solution, we first note that these two problems differ along several dimensions.

For example, in DDA we approximate λ(p) by an affine function and estimate the
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parameters of the affine function in each iteration, and we approximate the expected

revenue and the expected holding and shortage costs using biased sample averages.

These differences make the direct comparison of the two problems difficult. Therefore,

we introduce several “intermediate” bridging problems, and in each step we compare

two “adjacent” problems that differ just in one dimension.

For convenience, we follow Besbes and Zeevi (2015) to introduce notation

ᾰ(z) = λ(z)− λ′(z)z, β̆(z) = −λ′(z), z ∈ P . (2.13)

We proceed to prove (2.11) as follows:

E
[
(p∗ − p̂i+1)2

]
≤ E

[( ∣∣∣p∗ − p(ᾰ(p̂i), β̆(p̂i)
)∣∣∣︸ ︷︷ ︸

Comparison of problems CI and B1
Lemma A1

(2.14)

+
∣∣∣p(ᾰ(p̂i), β̆(p̂i)

)
− p̃i+1

(
ᾰ(p̂i), β̆(p̂i)

)∣∣∣︸ ︷︷ ︸
Comparison of problems B1 and B2

Lemma A5

+ +
∣∣∣p̃i+1

(
ᾰ(p̂i), β̆(p̂i)

)
− p̂i+1

∣∣∣︸ ︷︷ ︸
Comparison of problems B2 and DD

Lemma A6 and Lemma A7

)2
]
,

where the two new prices p
(
·, ·) and p̃i+1 (·, ·) are the optimal solutions of two bridging

problems. Specifically, we let p
(
α, β

)
denote the optimal solution for the first bridging

problem B1 defined by

Bridging Problem B1:

max
p∈P

{
peα−βpE

[
eε
]
−min

y∈Y

{
hE
[
y − eα−βpeε

]+

+ bE
[
eα−βpeε − y

]+
}}

,(2.15)

while p̃i+1 (α, β) denotes the optimal solution for the second bridging problem B2
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defined by

Bridging Problem B2:

max
p∈P

{
peα−βp

(
1

2Ii

ti+2Ii∑
t=ti+1

eεt

)
(2.16)

−min
y∈Y

{
1

2Ii

ti+2Ii∑
t=ti+1

(
h
(
y − eα−βpeεt

)+
+ b
(
eα−βpeεt − y

)+
)}}

.

Moreover, for given p ∈ P , we let y(eα−βp) denote the optimal order-up-to level for

problem B1, and ỹi+1(eα−βp) denote the optimal order-up-to level for problem B2.

By Lemma A2 in the Appendix, the objective functions for problems B1 and B2 are

unimodal in p after minimizing over y ∈ Y when β > 0.

Comparing (2.15) with (2.4), it is seen that problem B1 simplifies problem CI by

replacing the demand-price function λ(p) by a linear function α−βp, while problem B2

is obtained from problem B1 after replacing the mathematical expectations in problem

B1 by their sample averages, i.e., problem B2 is the SAA of problem B1. Comparing

(2.16) with (2.8), it is noted that problems B2 and DD differ in the coefficients of the

linear function as well as the arithmetic averages. More specifically, in B2 the real

random error samples εt, t = ti+1, . . . , ti+2Ii, are used, while in problem DD, biased

error samples ηt are used in place of εt, t = ti+1, . . . , ti+2Ii. Furthermore, note that

the optimal prices for problems CI and B1, p∗ and p
(
ᾰ(p̂i), β̆(p̂i)

)
, are deterministic,

but the optimal solutions of problems B2 and DD, p̃i+1

(
ᾰ(p̂i), β̆(p̂i)

)
and p̂i+1, are

random. Specifically, p̃i+1

(
ᾰ(p̂i), β̆(p̂i)

)
is random because εt is random, while p̂i+1

is random due to demand uncertainty from periods 1 to ti+1. Hence, to show the

right hand side of (2.14) converges to 0, we will first develop an upper bound for∣∣p∗ − p(ᾰ(p̂i), β̆(p̂i)
)∣∣ by comparing problems CI and B1, and the result is presented

in Lemma A1. Since p̃i+1(ᾰ(p̂i), β̆(p̂i) is random, we compare the two problems B1 and

B2 and show the probability that
∣∣p(ᾰ(p̂i), β̆(p̂i)

)
− p̃i+1

(
ᾰ(p̂i), β̆(p̂i)

)∣∣ exceeds some
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small number diminishes to 0 in Lemma A5. Similarly, in Lemma A6 and Lemma A7

we compare problems B2 and DD and show the probability that
∣∣p̃i+1

(
ᾰ(p̂i), β̆(p̂i)

)
−

p̂i+1

∣∣ exceeds some small number also diminishes to 0. Finally, we combine these

several results to complete the proof of (2.11). The idea for proving (2.12) is similar,

and that also relies heavily on the two bridging problems (Lemmas A6, A7, and A8).

The detailed proofs for Theorem 1 and Theorem 2 are given in Subsections 4.3 and

4.4.

In the subsequent analysis, we assume that the space for feasible price, P , and the

space for order-up-to level, Y , are large enough so that the optimal solutions p∗ and

optimal y(eλ(p)) over R+ for given p ∈ P for problem CI fall into P and Y , respectively;

and for given q ∈ P , the optimal solutions p
(
ᾰ(q), β̆(q)

)
and y

(
eᾰ(q)−β̆(q)p

)
for given

p ∈ P over R+ for problem B1 fall into P and Y , respectively. Note that both

problem CI and problem B1 depend only on primitive data and do not depend on

random samples, hence these are mild assumptions. We remark that our results

and analyses continue to hold even if these assumptions are not satisfied as long as

we modify Assumption 1(ii) to
∣∣∂p(ᾰ(z), β̆(z)

)
/∂z
∣∣ < 1 for z ∈ P . This condition

reduces to Assumption 1(ii) if the optimal solutions for problem CI and problem B1

satisfy the feasibility conditions described above.

We end this subsection by listing some regularity conditions needed to prove the

main theoretical results.

Regularity Conditions:

(i) y(eλ(q)) and y
(
eᾰ(q)−β̆(q)p

)
are Lipschitz continuous on q for given p ∈ P , i.e.,

there exists some constant K1 > 0 such that for any q1, q2 ∈ P ,

∣∣y(eλ(q1))− y(eλ(q2))
∣∣ ≤ K1 |q1 − q2| , (2.17)∣∣∣y(eᾰ(q1)−β̆(q1)p

)
− y
(
eᾰ(q2)−β̆(q2)p

)∣∣∣ ≤ K1 |q1 − q2| . (2.18)
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(ii) G(p, ȳ(eλ(p))) has bounded second order derivative with respect to p ∈ P .

(iii) E[Dt(p)] > 0 for any price p ∈ P .

(iv) λ(p) is twice differentiable with bounded first and second order derivatives on

p ∈ P .

(v) The probability density function f(·) of ε̃t satisfies min{f(x), x ∈ [l, u]} > 0.

It can be seen that all the functions in Example 1 satisfy the regularity conditions

above with appropriate choices of pl and ph.

2.4.3 Proof of Theorem 1

The proofs for the convergence results are technical and rely on several lemmas

that are provided in the Appendix. In this subsection, we outline the main steps in

establishing the first main result, Theorem 1.

Convergence of pricing decisions. To prove the convergence of pricing deci-

sions, we continue the development in (2.14) as follows:

E
[
(p∗ − p̂i+1)2

]
≤ E

[( ∣∣∣p∗ − p(ᾰ(p̂i), β̆(p̂i)
)∣∣∣+

∣∣∣p(ᾰ(p̂i), β̆(p̂i)
)
− p̃i+1

(
ᾰ(p̂i), β̆(p̂i)

)∣∣∣
+
∣∣∣p̃i+1

(
ᾰ(p̂i), β̆(p̂i)

)
− p̂i+1

∣∣∣ )2]
≤ E

[(
γ|p∗ − p̂i|+

∣∣∣p(ᾰ(p̂i), β̆(p̂i)
)
− p̃i+1

(
ᾰ(p̂i), β̆(p̂i)

)∣∣∣+
∣∣∣p̃i+1

(
ᾰ(p̂i), β̆(p̂i)

)
− p̂i+1

∣∣∣ )2]
≤

(
1 + γ2

2

)
E
[
(p∗ − p̂i)2

]
+K2E

[(∣∣∣p(ᾰ(p̂i), β̆(p̂i)
)
− p̃i+1

(
ᾰ(p̂i), β̆(p̂i)

)∣∣∣+
∣∣∣p̃i+1

(
ᾰ(p̂i), β̆(p̂i)

)
− p̂i+1

∣∣∣)2
]

≤
(

1 + γ2

2

)
E
[
(p∗ − p̂i)2

]
+K3E

[∣∣∣p(ᾰ(p̂i), β̆(p̂i)
)
− p̃i+1

(
ᾰ(p̂i), β̆(p̂i)

)∣∣∣2]
+K3E

[∣∣∣p̃i+1

(
ᾰ(p̂i), β̆(p̂i)

)
− p̂i+1

∣∣∣2] , (2.19)
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where the first inequality follows from the expansion in (2.14), the second inequality

follows from Lemma A1, and the third inequality is justified by γ < 1 in Lemma A1

and some constant K2, and the last inequality holds for some appropriately chosen

K3 because of the inequality (a+ b)2 ≤ 2(a2 + b2) for any real numbers a and b.

To bound E
[∣∣p(ᾰ(p̂i), β̆(p̂i)

)
− p̃i+1

(
ᾰ(p̂i), β̆(p̂i)

)∣∣2] in (2.19), by Lemma A5 one

has, for some constant K4,

E
[∣∣∣p(ᾰ(p̂i), β̆(p̂i)

)
− p̃i+1

(
ᾰ(p̂i), β̆(p̂i)

)∣∣∣2] ≤ K2
4

+∞∫
0

5e−4Iiξ
2

dξ =
5π

1
2K2

4

4I
1
2
i

. (2.20)

And to bound E
[∣∣∣p̃i+1

(
ᾰ(p̂i), β̆(p̂i)

)
− p̂i+1

∣∣∣2] in (2.19), by Lemma A6 and Lemma

A7, when i is large enough (greater than or equal to i∗ defined in the proof of Lemma

A7), for some positive constants K5, K6, and K7 one has

E
[∣∣∣p̃i+1

(
ᾰ(p̂i), β̆(p̂i)

)
− p̂i+1

∣∣∣2]
≤ E

[
K2

5

(∣∣ᾰ(p̂i)− α̂i+1

∣∣+
∣∣β̆(p̂i)− β̂i+1

∣∣+
∣∣ᾰ(p̂i + δi)− α̂i+1

∣∣+
∣∣β̆(p̂i + δi)− β̂i+1

∣∣)2
]

+
8

Ii

(
ph − pl

)2

≤ E
[
K6

(
|ᾰ(p̂i)− α̂i+1|2 + |β̆(p̂i)− β̂i+1|2 + |ᾰ(p̂i + δi)− α̂i+1|2 + |β̆(p̂i + δi)− β̂i+1|2

)]
+

8

Ii

(
ph − pl

)2

≤ K7I
− 1

2
i . (2.21)

Substituting (2.20) and (2.21) into (2.19), one has

E
[
(p∗ − p̂i+1)2

]
≤
(

1 + γ2

2

)
E
[
(p∗ − p̂i)2

]
+K8I

− 1
2

i .
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Letting 1+γ2

2
= θ, we further obtain

E
[
(p̂i+1 − p∗)2

]
≤ θi(p̂1 − p∗)2 +K8

i−1∑
j=0

θjI
− 1

2
i−j ≤ K9(v−

1
2 )i

i−1∑
j=0

θj(v
1
2 )j. (2.22)

We choose v > 1 that satisfies θv
1
2 < 1, then there exists a positive constant K10 such

that
∑i−1

j=0 θ
j(v

1
2 )j ≤ K10, therefore, for some constants K11 and K12,

E
[
(p̂i+1 − p∗)2

]
≤ K11(v−

1
2 )i ≤ K12I

− 1
2

i . (2.23)

Moreover, we have, for some positive constant K13,

E
[
(p̂i+1 + δi+1 − p∗)2

]
≤ 2E

[
(p̂i+1 − p∗)2

]
+ 2δ2

i+1 ≤ K13I
− 1

2
i → 0, as i→∞. (2.24)

This completes the proof of (2.11). Because mean-square convergence implies

convergence in probability, this shows that the pricing decisions from DDA converge

to p∗ in probability.

Convergence of inventory decisions. To prove yt converges to y∗ in proba-

bility, we first prove the convergence of order up-to levels (2.12). For some constant
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K14, we have

E
[∣∣y∗ − ŷi+1,1

∣∣2]
≤ E

[(∣∣∣y(eλ(p∗)
)
− y(eλ(p̂i+1))

∣∣∣+
∣∣∣y(eλ(p̂i+1)

)
− y
(
eᾰ(p̂i+1)−β̆(p̂i+1)p̂i+1)

∣∣∣
+
∣∣∣y(eᾰ(p̂i+1

)
−β̆(p̂i+1)p̂i+1)− y

(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

)∣∣∣
+
∣∣∣y(eᾰ(p̂i)−β̆(p̂i)p̂i+1

)
− ỹi+1

(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

)∣∣∣+
∣∣∣ỹi+1

(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

)
− ŷi+1,1

∣∣∣)2]
≤ K14E

[( ∣∣∣y(eλ(p∗)
)
− y(eλ(p̂i+1))

∣∣∣2︸ ︷︷ ︸
Difference between p∗ and p̂i+1

+
∣∣∣y(eλ(p̂i+1)

)
− y
(
eᾰ(p̂i+1)−β̆(p̂i+1)p̂i+1)

∣∣∣2︸ ︷︷ ︸
Zero

(2.25)

+
∣∣∣y(eᾰ(p̂i+1)−β̆(p̂i+1)p̂i+1

)
− y
(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

)∣∣∣2︸ ︷︷ ︸
Difference between p̂i+1 and p̂i

+
∣∣∣y(eᾰ(p̂i)−β̆(p̂i)p̂i+1

)
− ỹi+1

(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

)∣∣∣2︸ ︷︷ ︸
Comparison of problems B1 and B2

Lemma A8

+
∣∣∣ỹi+1

(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

)
− ŷi+1,1

∣∣∣2︸ ︷︷ ︸
Comparison of problems B2 and DD

Lemma A6 and Lemma A7

)]
.

We want to upper bound each term on the right hand side of (2.25). First, it

follows from (2.17) that, for some constant K15 it holds

E
[∣∣∣y(eλ(p∗)

)
− y
(
eλ(p̂i+1)

)∣∣∣2] ≤ K15E
[
| p∗ − p̂i+1 |2

]
.

By definition of ᾰ(p) and β̆(p) in (2.13) one has ᾰ(p̂i+1)− β̆(p̂i+1)p̂i+1 = λ(p̂i+1), thus

the second term on the right hand side of (2.25) vanishes. For the third term, we

apply the Lipschitz condition on y
(
eᾰ(q)−β̆(q)p

)
in (2.18) to obtain, for some constants

K16 and K17,

E
[∣∣∣y(eᾰ(p̂i+1)−β̆(p̂i+1)p̂i+1

)
− y
(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

)∣∣∣2] ≤ K16E
[
| p̂i+1 − p̂i |2

]
≤ K17E

[(
| p∗ − p̂i |2 + | p∗ − p̂i+1 |2

)]
.
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By Lemma A8, we have, for some constants K18 and K19,

E
[∣∣∣y(eᾰ(p̂i)−β̆(p̂i)p̂i+1)− ỹi+1

(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

)∣∣∣2] ≤ K2
18

+∞∫
0

2e−4Iiξdξ ≤ K19

Ii
,(2.26)

and by Lemma A6 and Lemma A7 one has, for some constant K20,

E
[∣∣∣ỹi+1(eᾰ(p̂i)−β̆(p̂i)p̂i+1)− ŷi+1,1

∣∣∣2]
≤ K20E

[
|ᾰ(p̂i)− α̂i+1|2 + |β̆(p̂i)− β̂i+1|2 + |ᾰ(p̂i + δi)− α̂i+1|2 + |β̆(p̂i + δi)− β̂i+1|2

]
≤ K20I

− 1
2

i .

Summarizing the analyses above we obtain, for some constants K21 and K22,

E
[(
y∗ − ŷi+1,1

)2
]

≤ K21E
[
| p∗ − p̂i+1 |2 + | p∗ − p̂i |2

]
+K21I

− 1
2

i

≤ K22I
− 1

2
i (2.27)

→ 0 as i→∞,

where the second inequality follows from the convergence rate of the pricing decisions.

Similarly, we obtain

E
[(
y∗ − ŷi+1,2

)2
]
≤ K22I

− 1
2

i → 0, as i→∞.

We next show that E[(y∗−yt)2]→ 0 as t→∞. It suffices to prove this for (a) t ∈

{ti+1 +1, . . . , ti+1 +Ii+1}, i = 1, 2, . . ., and for (b) t ∈ {ti+1 +Ii+1 +1, . . . , ti+1 +2Ii+1},

i = 1, 2, . . .. We will only provide the proof for (a).

The inventory order up-to level prescribed from DDA for periods t ∈ {ti+1 +

1, . . . , ti+1 + Ii+1} is ŷi+1,1. This, however, may not be achievable for some period
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t. Consider the event that the second order up-to level of learning stage i, ŷi,2, is

achieved during periods {ti + Ii + 1, . . . , ti + 2Ii}. Since λ̃(ph)l ≤ Dt ≤ λ̃(pl)u, it

follows from Hoeffding inequality1 that for any ζ > 0,

P

{
ti+2Ii∑

t=ti+Ii+1

Dt ≥ E

[
ti+2Ii∑

t=ti+Ii+1

Dt

]
− ζ

}
≥ 1− exp

(
− 2ζ2

Ii(λ̃(pl)u− λ̃(ph)l)2

)
.(2.28)

Let ζ =
(
λ̃(pl)u− λ̃(ph)l

)
(Ii)

1
2 (log Ii)

1
2 in (2.28), then one has

P

{
ti+2Ii∑

t=ti+Ii+1

Dt ≥ IiE [Dti+Ii+1]−
(
λ̃(pl)u− λ̃(ph)l

)
(Ii)

1
2 (log Ii)

1
2

}
≥ 1− 1

I2
i

. (2.29)

By regularity condition (iii), E [Dti+Ii+1] > 0, thus when i is large enough, we will

have

1

2
IiE [Dti+Ii+1] ≥

(
λ̃(pl)u− λ̃(ph)l

)
(Ii)

1
2 (log Ii)

1
2 .

Hence it follows from (2.29) that, when i is large enough, we will have

P

{
ti+2Ii∑

t=ti+Ii+1

Dt ≥
1

2
IiE [Dti+Ii+1]

}
≥ 1− 1

I2
i

. (2.30)

Define event

A1 =

{
ω :

ti+2Ii∑
t=ti+Ii+1

Dt ≥
1

2
IiE [Dti+Ii+1]

}
,

then (2.30) can be rewritten as

P(A1) ≥ 1− 1

I2
i

.

1If the random demand is not bounded, then the same result is obtained under the condition
that the moment generating function of random demand is finite around 0.
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Note that when i is large enough, 1
2
IiE [Dti+Ii+1] > yh − yl, which means that on

the event A1, the accumulative demand during {ti + Ii + 1, . . . , ti + 2Ii} is high

enough to consume the initial on-hand inventory of period ti + Ii + 1 and ŷi,2 will be

achieved. Therefore, for t ∈ {ti+1 + 1, . . . , ti+1 + Ii+1}, yt will satisfy yt ∈ [ŷi,2, ŷi+1,1]

if ŷi+1,1 ≥ ŷi,2, and yt ∈ [ŷi+1,1, ŷi,2] otherwise. Thus,

E[(y∗ − yt)2] = P(A1)E[(y∗ − yt)2
∣∣A1] + P(Ac1)E[(y∗ − yt)2

∣∣Ac1]

≤ max
{
E
[
(y∗ − ŷi,2)2

]
,E
[
(y∗ − ŷi+1,1)2

]}
+

1

I2
i

(
yh − yl

)2
.

As shown above, E [(y∗ − ŷi,2)2] → 0 and E [(y∗ − ŷi+1,1)2] → 0 as i → ∞. Hence it

follows from 1/I2
i → 0 as i → ∞ that E [(y∗ − yt)2] → 0 for t ∈ {ti+1 + 1, . . . , ti+1 +

Ii+1} as i→∞.

Similarly one can prove that E [(y∗ − yt)2]→ 0 for t ∈ {ti+1 + Ii+1 + 1, . . . , ti+1 +

2Ii+1} as i → ∞. This proves E[(y∗ − yt)
2] → 0 when t → ∞. And again, since

convergence in probability is implied by mean-square convergence, we conclude that

inventory decisions yt of DDA also converge to y∗ in probability as t → ∞. This

completes the proof of Theorem 1.

2.4.4 Proof of Theorem 2

We next prove the second main result, the convergence rate of regret. By defini-

tion, the regret for the DDA policy is

R(DDA, T ) =
1

T
E

[
T∑
t=1

(
G(p∗, y∗)−G(pt, yt)

)]
.
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We have

E

[
T∑
t=1

(
G(p∗, y∗)−G(pt, yt)

)]

≤ E

[
n∑
i=1

(
ti+Ii∑
t=ti+1

(
G(p∗, y∗)−G(p̂i, ŷi,1) +G(p̂i, ŷi,1)−G(pt, yt)

)
+

ti+2Ii∑
t=ti+Ii+1

(
G(p∗, y∗)−G(p̂i + δi, ŷi,2) +G(p̂i + δi, ŷi,2)−G(pt, yt)

))]

= E

[
n∑
i=1

Ii
(
G(p∗, y∗)−G(p̂i, ŷi,1) +G(p∗, y∗)−G(p̂i + δi, ŷi,2)

)]

+E

[
n∑
i=1

(
ti+Ii∑
t=ti+1

(
G(p̂i, ŷi,1)−G(pt, yt)

)
+

ti+2Ii∑
t=ti+Ii+1

(
G(p̂i + δi, ŷi,2)−G(pt, yt)

))]
,

(2.31)

where n is the smallest number of stages that cover T , i.e., n is the smallest integer

such that 2I0

∑n
i=1 v

i ≥ T , and it satisfies logv

(
v−1
2I0v

T +1
)
≤ n < logv

(
v−1
2I0v

T +1
)

+1.

The inequality in (2.31) follows from that the right hand side includes 2I0

∑n
i=1 v

i

periods which is greater than or equal to T .

The first expectation on the right hand side of (2.31) is with respect to the sum of

the difference between profit values of DDA decisions and the optimal solution, hence

its analysis relies on the convergence rate of DDA policies; these are demonstrated

in (2.23), (2.24), and (2.27). The second expectation on the right hand side of (2.31)

stems from the fact that in the process of implementing DDA, it may happen that the

inventory decisions from DDA are not implementable. This issue arises in learning

algorithms for nonperishable inventory systems and it presents additional challenges

in evaluating the regret. We note that in Huh and Rusmevichientong (2009), a queue-

ing approach is employed to resolve this issue for a pure inventory system with no

pricing decisions.

To develop an upper bound for G(p∗, y∗)−G(p̂i, ŷi,1) in (2.31), we first apply Taylor
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expansion on G(p, y(eλ(p)) at point p∗. Using the fact that the first order derivative

vanishes at p = p∗ and the assumption that the second order derivative is bounded

(regularity condition (ii)), we obtain, for some constant K23 > 0, that

G
(
p∗, y

(
eλ(p∗)

))
−G

(
p̂i, y

(
eλ(p̂i)

))
≤ K23(p∗ − p̂i)2. (2.32)

Noticing that y
(
eλ(p̂i)

)
maximizes the concave function G

(
p̂i, y) for given p̂i, we apply

Taylor expansion with respect to y at point y = y
(
eλ(p̂i)

)
to yield that, for some

constant K24,

G
(
p̂i, y

(
eλ(p̂i)

))
−G(p̂i, ŷi,1) ≤ K24

(
y
(
eλ(p̂i)

)
− ŷi,1

)2
. (2.33)

In addition, we have

E
[
(y(eλ(p̂i))− ŷi,1)2

]
≤ E

[(∣∣∣y(eλ(p̂i))− y(eᾰ(p̂i)−β̆(p̂i)p̂i)
∣∣∣+
∣∣∣y(eᾰ(p̂i)−β̆(p̂i)p̂i)− y(eᾰ(p̂i−1)−β̆(p̂i−1)p̂i)

∣∣∣
+
∣∣∣y(eᾰ(p̂i−1)−β̆(p̂i−1)p̂i)− ỹi(eᾰ(p̂i−1)−β̆(p̂i−1)p̂i)

∣∣∣+
∣∣∣ỹi(eᾰ(p̂i−1)−β̆(p̂i−1)p̂i)− ŷi,1

∣∣∣)2]
≤ K25E

[∣∣∣y(eλ(p̂i))− y(eᾰ(p̂i)−β̆(p̂i)p̂i)
∣∣∣2 +

∣∣∣y(eᾰ(p̂i)−β̆(p̂i)p̂i)− y(eᾰ(p̂i−1)−β̆(p̂i−1)p̂i)
∣∣∣2

+
∣∣∣y(eᾰ(p̂i−1)−β̆(p̂i−1)p̂i)− ỹi(eᾰ(p̂i−1)−β̆(p̂i−1)p̂i)

∣∣∣2 +
∣∣∣ỹi(eᾰ(p̂i−1)−β̆(p̂i−1)p̂i)− ŷi,1

∣∣∣2].
This is similar to the right hand side of (2.25) except that i+1 is replaced by i. Thus,

using the same analysis as that for (2.25), we obtain

E
[
(y(eλ(p̂i))− ŷi,1)2

]
≤ K26I

− 1
2

i−1 (2.34)

for some constant K26.

39



Applying the results above, we obtain, for some constants K27, K28, and K29, that

E [G(p∗, y∗)−G(p̂i, ŷi,1)]

= E
[(
G
(
p∗, y

(
eλ(p∗)

))
−G

(
p̂i, y

(
eλ(p̂i)

)))
+
(
G
(
p̂i, y

(
eλ(p̂i)

))
−G(p̂i, ŷi,1)

)]
≤ K27

(
E
[
(p∗ − p̂i)2

]
+ E

[(
y(eλ(p̂i))− ŷi,1

)2
])

≤ K28

(
K10I

− 1
2

i−1 +K37I
− 1

2
i−1

)
= K29I

− 1
2

i−1,

where the first inequality follows from (2.32) and (2.33), and the second inequality

follows from the convergence rate of pricing decisions (2.23) and (2.34).

Similarly, we establish for some constants K30, K31 and K32, that

E [G(p∗, y∗)−G(p̂i + δi, ŷi,2)] ≤ K30

(
E
[
(p∗ − p̂i − δi)2

]
+ E

[
(y(eλ(p̂i+δi))− ŷi,2)2

])
≤ K30

(
E
[
2(p∗ − p̂i)2 + 2δ2

i

]
+K31I

− 1
2

i−1

)
≤ K32I

− 1
2

i−1.

Note that, as seen from Lemma A7 in the Appendix, these results hold when i is

greater than or equal to some number i∗.
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Consequently, we have, for some constants K33, K34 and K35,

E

[
n∑
i=1

(
G(p∗, y∗)−G(p̂i, ŷi,1) +G(p∗, y∗)−G(p̂i + δi, ŷi,2)

)
Ii

]

=
n∑

i=i∗+1

K33I
− 1

2
i−1Ii +

i∗∑
i=1

(
G(p∗, y∗)−G(p̂i, ŷi,1) +G(p∗, y∗)−G(p̂i + δi, ŷi,2)

)
Ii

=
n∑

i=i∗+1

K33I
1
2
i−1 +K34

≤ K33

n∑
i=2

I
1
2
i−1 +K34

= K33
(2I0)

1
2v

1
2

v
1
2 − 1

(
v
n−1
2 − 1

)
+K34

≤ K33
(2I0)

1
2v

1
2

v
1
2 − 1

(v
logv( v−1

2I0v
T+1)+1−1

)
1
2 +K34

≤ K35T
1
2 , (2.35)

where K34 =
∑i∗

i=1

(
G(p∗, y∗)−G(p̂i, ŷi,1) +G(p∗, y∗)−G(p̂i + δi, ŷi,2)

)
Ii.

We next evaluate the second term of (2.31), i.e.,

E

[
n∑
i=1

(
ti+Ii∑
t=ti+1

(
G(p̂i, ŷi,1)−G(pt, yt)

)
+

ti+2Ii∑
t=ti+Ii+1

(
G(p̂i + δi, ŷi,2)−G(pt, yt)

))]
.(2.36)

Recall from DDA that pt = p̂i for t = ti + 1, . . . , ti + Ii and pt = p̂i + δi for t =

ti + Ii + 1, . . . , ti + 2Ii, and DDA sets two order-up-to levels for stage i, ŷi1 and ŷi2,

for the first and second Ii periods, respectively. The order-up-to levels may not be

achievable, which happens when xt > ŷi,1 for some t = ti + 1, . . . , ti + Ii, or xt > ŷi,2

for some t = ti + Ii + 1, . . . , ti + 2Ii. In such cases, yt = xt. If the inventory level

before ordering at the beginning of the first Ii periods (in period ti + 1) or at the

beginning of the second Ii periods (in period ti + Ii + 1) of stage i is higher than the

DDA order-up-to level, then the inventory level will gradually decrease during the Ii

periods until it drops to or below the order up-to level.
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We start with the analysis of the first Ii periods of state i, i.e.,

E

[
ti+Ii∑
t=ti+1

(
G(p̂i, ŷi,1)−G(pt, yt)

)]
.

A main issue with the analysis of this part is that, if xti+1 > ŷi, then ŷi is not

achievable. To resolve this issue, we apply a similar argument as that in the proof of

the second part of Theorem 1 to show that, if this is the case, then with very high

probability, after a (relatively) small number of periods, the prescribed inventory

order up-to level will become achievable .

Consider the accumulative demands during periods ti + 1 to ti +
⌊
I

1
2
i

⌋
. If these

accumulative demands consume at least xti+1− ŷi, then at period ti+
⌊
I

1
2
i

⌋
, ŷi will be

surely achieved. Since λ̃(ph)l ≤ Dt ≤ λ̃(pl)u for t = 1, . . . , T , by Hoeffding inequality,

for any ζ > 0 one has

P


ti+

⌊
I
1
2
i

⌋∑
t=ti+1

Dt ≥ E


ti+

⌊
I
1
2
i

⌋∑
t=ti+1

Dt

− ζ
 ≥ 1− exp

− 2ζ2⌊
I

1
2
i

⌋
(λ̃(pl)u− λ̃(ph)l)2

 . (2.37)

Let ζ =
(
λ̃(pl)u− λ̃(ph)l

) (⌊
I

1
2
i

⌋) 1
2
(

log
⌊
I

1
2
i

⌋) 1
2

, then it follows from (2.37) that

P


ti+

⌊
I
1
2
i

⌋∑
t=ti+1

Dt ≥
⌊
I

1
2
i

⌋
E [Dti+1]−

(
λ̃(pl)u− λ̃(ph)l

) (⌊
I

1
2
i

⌋) 1
2
(

log
⌊
I

1
2
i

⌋) 1
2


≥ 1− 1⌊

I
1
2
i

⌋2 . (2.38)

By regularity condition (iii), E [Dti+1] > 0. Thus, when i is large enough, say

42



greater than or equal to some number i∗∗, we will have

⌊
I

1
2
i

⌋
E [Dti+1]−

(
λ̃(pl)u− λ̃(ph)l

) (⌊
I

1
2
i

⌋) 1
2
(

log
⌊
I

1
2
i

⌋) 1
2

≥ 1

2

⌊
I

1
2
i

⌋
E [Dti+1] ≥ yh − yl ≥ xti+1 − ŷi.

Based on (2.38), we define event A2 as

A2 =


ti+

⌊
I
1
2
i

⌋∑
t=ti+1

Dt ≥
⌊
I

1
2
i

⌋
E [Dti+1]− (λ̃(pl)u− λ̃(ph)l)

(⌊
I

1
2
i

⌋) 1
2
(

log
⌊
I

1
2
i

⌋) 1
2

 .(2.39)

Then (2.38) can be restated as

P(A2) ≥ 1− 1⌊
I

1
2
i

⌋2 . (2.40)

On the event A2, the inventory order up-to level ŷi will be achieved after periods{
ti + 1, . . . , ti +

⌊
I

1
2
i

⌋}
. By (2.40), we have

E

[
ti+Ii∑
t=ti+1

(
G(p̂i, ŷi,1)−G(pt, yt)

)]

= P(A2)E

[
ti+Ii∑
t=ti+1

(
G(p̂i, ŷi,1)−G(pt, yt)

)∣∣∣∣A2

]
+ P(Ac2)E

[
ti+Ii∑
t=ti+1

(
G(p̂i, ŷi,1)−G(pt, yt)

)∣∣∣∣Ac2
]

≤ max{h, b}(yh − yl)
⌊
I

1
2
i

⌋
+

1⌊
I

1
2
i

⌋2 max{h, b}(yh − yl)Ii

≤ 2 max{h, b}(yh − yl)I
1
2
i ,

where the first inequality follows from, for periods t = ti + 1, . . . , ti + Ii, that

|G(p̂i, ŷi,1)−G(pt, yt)| = |G(p̂i, ŷi,1)−G(p̂i, yt)| ≤ max{h, b}(yh − yl),
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and P(Ac2) ≤ 1
/⌊

I
1/2
i

⌋2

. Similarly, for large enough i that is greater than or equal to

i∗∗, we can establish

E

[
ti+2Ii∑

t=ti+Ii+1

(
G(p̂i + δi, ŷi,2)−G(pt, yt)

)]
≤ 2 max{h, b}(yh − yl)I

1
2
i .

Based on the analysis above, we upper bound (2.36). LetK36 =
∑i∗∗

i=1 max{h, b}(yh−

yl)Ii, it can be seen that there exist some constants K37 and K38 such that

E

[
n∑
i=1

(
ti+Ii∑
t=ti+1

(
G(p̂i, ŷi,1)−G(pt, yt)

)
+

ti+2Ii∑
t=ti+Ii+1

(
G(p̂i + δi, ŷi,2)−G(pt, yt)

))]

≤
i∗∗∑
i=1

max{h, b}(yh − yl)Ii +
n∑

i=i∗∗+1

4 max{h, b}(yh − yl)I
1
2
i

≤ K36 + 4 max{h, b}(yh − yl)I
1
2
0

v
1
2 (1− (v

1
2 )
n
)

1− v 1
2

≤ K36 +K37(v
1
2 )
n+1

≤ K36 +K37v
logv( v−1

2I0v
T+1)

1
2

≤ K38T
1
2 . (2.41)

By combining (2.35) and (2.41), we conclude

R(DDA, T ) ≤ 1

T

(
K35T

1
2 +K38T

1
2

)
≤ K39T

− 1
2

for some constant K39. The proof of Theorem 2 is thus complete.

2.5 Conclusion

In this chapter, we consider a joint pricing and inventory control problem when

the firm does not have prior knowledge about the demand distribution and customer

response to selling prices. We impose virtually no explicit assumption about how
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the average demand changes in price (other than the fact that it is decreasing) and

on the distribution of uncertainty in demand. This chapter is the first to design

a nonparametric algorithm data-driven learning algorithm for dynamic joint pricing

and inventory control problem and present the convergence rate of policies and profits

to those of the optimal ones. The regret of the learning algorithm converges to zero

at a rate that is the theoretical lower bound O(T−1/2).

There are a number of follow-up research topics. One is to develop an asymptot-

ically optimal algorithm for the problem with lost-sales and censored data. In the

lost-sales case, the DDA algorithm proposed here cannot be directly applied and the

estimation and optimization problems are more challenging as the profit function of

the data-driven problem is neither concave nor unimodal, and the demand data is

censored. Another interesting direction for research is to develop a data-driven learn-

ing algorithm for dynamic pricing and stocking decisions for multiple products in an

assortment.

2.6 Appendix

In this Appendix, we provide the technical lemmas and proofs omitted in the main

context.

Lemma A1 compares the optimal solutions of problem CI and bridging problem

B1, i.e., p∗ and p
(
ᾰ(p̂i), β̆(p̂i)

)
.

Lemma A1. Under Assumption 1, there exists some number γ ∈ [0, 1) such that

for any p̂i ∈ P, we have

∣∣∣p∗ − p(ᾰ(p̂i), β̆(p̂i)
)∣∣∣ ≤ γ |p∗ − p̂i| .
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Proof. First we make the observation that

p∗ = p
(
ᾰ(p∗), β̆(p∗)

)
. (2.42)

This result links the optimal solutions of CI and B1 with parameters ᾰ(p∗), β̆(p∗),

and it shows that p∗ is a fixed point of p
(
ᾰ(z), β̆(z)

)
= z. To see why it is true, let

G(p, λ(p)) = peλ(p)E[eε]−min
y∈Y

{
hE
[
y − eλ(p)eε

]+
+ bE

[
eλ(p)eε − y

]+}
. (2.43)

Then Assumption 1(i) implies that G(p, λ(p)) is unimodal in p. Assuming that G has

a unique maximizer and that p(ᾰ(z), β̆(z)) is the unique optimal solution for problem

B1 with parameters
(
ᾰ(z), β̆(z)

)
, then (2.42) follows from Lemma A1 of Besbes and

Zeevi (2015) by letting their function G be (2.43).

When the optimal solution y over R+ for problem CI for a given p falls in Y , p(α, β)

is the maximizer of peα−βpE[eε]−Aeα−βp, where A = minz
{
hE[z− eε]+ + bE[eε− z]+

}
is a constant. Thus p(α, β) satisfies

(
1− βp(α, β)

)
E[eε] + Aβ = 0.

Letting α = ᾰ(z), β = β̆(z) and taking derivative of p
(
ᾰ(z), β̆(z)

)
with respect to z

yield

dp
(
ᾰ(z), β̆(z)

)
dz

=
λ′′(z)

(λ′(z))2
=
λ̃′′(z)λ̃(z)

(λ̃′(z))2
− 1.

By Assumption 1(ii), we have

∣∣∣∣dp(ᾰ(z),β̆(z)
)

dz

∣∣∣∣ < 1 for any z ∈ P . This shows that

∣∣∣p(ᾰ(p∗), β̆(p∗)
)
− p
(
ᾰ(p̂i), β̆(p̂i)

)∣∣∣ ≤ γ |p∗ − p̂i| ,
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where γ = maxz∈P

∣∣∣∣dp(ᾰ(z),β̆(z)
)

dz

∣∣∣∣ < 1. This proves Lemma A1. �

To compare the optimal solutions of Problems B1 and B2, we need several techni-

cal Lemmas. To that end, we change the decision variables in B1 and B2. For given

parameters α and β > 0, define d = eα−βp, d ∈ D = [dl, dh] where dl = eα−βp
h

and

dh = eα−βp
l
. Then problem B1 can be rewritten as

max
d∈D

{
d
α− log d

β
E
[
eε
]
−min

y∈Y

{
hE
[
y − deε

]+
+ bE

[
deε − y

]+}}
.

Define

W (d, y) = hE
(
y − deε

)+
+ bE

(
deε − y

)+
(2.44)

and

G(α, β, d) = d
α− log d

β
E
[
eε
]
−min

y∈Y
W (d, y) = d

α− log d

β
E
[
eε
]
−W (d, y(d)),(2.45)

where y(d) is the optimal solution of (2.44) in Y for given d. Let F (·) be the cumulative

distribution function (CDF) of eε, then it can be verified that

y(d) = dF−1

(
b

b+ h

)
, (2.46)

where F−1(·) is the inverse function of F (·). Also, we let d (α, β) denote the optimal

solution of maximizing (2.45) in D.

Similarly, we reformulate problem B2 with decision variables d and y as

max
d∈D

{
d
α− log d

β

(
1

2Ii

ti+2Ii∑
t=ti+1

eεt

)
−min

y∈Y

{
1

2Ii

ti+2Ii∑
t=ti+1

(
h
(
y − deεt

)+
+ b
(
deεt − y

)+
)}}
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Let

W̃i+1(d, y) =
1

2Ii

ti+2Ii∑
t=ti+1

(
h
(
y − deεt

)+
+ b
(
deεt − y

)+
)
, (2.47)

and

G̃i+1(α, β, d) = d
α− log d

β

(
1

2Ii

ti+2Ii∑
t=ti+1

eεt

)
−min

y∈Y
W̃i+1(d, y)

= d
α− log d

β

(
1

2Ii

ti+2Ii∑
t=ti+1

eεt

)
− W̃i+1(d, ỹ(d)), (2.48)

where ỹi+1 (d) denotes the optimal solution of W̃i+1(d, y) in (2.47) on Y . Let d̃i+1 (α, β)

be the optimal solution for G̃i+1(·, ·, d) in (2.48) on D. Also, let ỹui+1 (d) denote the

optimal order-up-to level for problem B2 on R+ for given p ∈ P (here the superscript

“u” stands for “unconstrained”). Then

ỹui+1 (d) = min

{
deεj :

1

2Ii

ti+2Ii∑
t=ti+1

1 {eεt ≤ eεj} ≥ b

b+ h

}
, (2.49)

where 1{A} is the indicator function taking value 1 if “A” is true and 0 otherwise.

It can be checked that

ỹi+1(d) = min
{

max
{
ỹui+1 (d) , yl

}
, yh
}
. (2.50)

Since ỹi+1(d) is random, it is possible for ỹi+1(d) to take value at the boundary, yh or

yl.

We first compare the profit functions defined for the two problems (2.44), (2.45),

and (2.47), (2.48). To this end, we need the following properties.

Lemma A2. If β > 0, then both G(α, β, d) and G̃i+1(α, β, d) are concave in d ∈ D,

and both G(α, β, eα−βp) and G̃i+1(α, β, eα−βp) are unimodal in p ∈ P .
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Proof. It is easily seen that W (d, y) and W̃i+1(d, y) are both jointly convex in

(d, y), hence miny∈YW (d, y) and miny∈Y W̃i+1(d, y) are convex in d (Proposition B4

of Heyman and Sobel (1984)). Therefore, the results follow from that the first term

of G (and G̃i+1) is concave when β > 0.

The unimodality of G(α, β, eα−βp) and G̃i+1(α, β, eα−βp) follows from the concavity

of G and G̃i+1, and the fact that eα−βp is strictly decreasing in p when β > 0. �

The following important result shows that, for any given d, W (d, y(d)) and W̃i+1(d, ỹi+1(d))

are close to each other with high probability.

Lemma A3. There exists a positive constant K40 such that, for any ξ > 0,

P
{

max
d∈D

∣∣∣W (d, y(d))− W̃i+1(d, ỹi+1(d))
∣∣∣ ≤ K40ξ

}
≥ 1− 4e−2Iiξ

2

.

Proof. By triangle inequality, we have

max
d∈D

∣∣∣W (d, y(d))− W̃i+1(d, ỹi+1(d))
∣∣∣

≤ max
d∈D

∣∣∣W(d, y(d)
)
− W̃i+1

(
d, y(d)

)∣∣∣+ max
d∈D

∣∣∣W̃i+1

(
d, y(d)

)
− W̃i+1

(
d, ỹi+1(d)

)∣∣∣ .
(2.51)

In what follows we develop upper bounds for maxd∈D |W (d, y(d))−W̃i+1(d, y(d))| and

maxd∈D |W̃i+1(d, y(d))− W̃i+1(d, ỹi+1(d))| separately.

For any d ∈ D and y ∈ Y , we define z = y/d. Then, from (2.46), the optimal z to

minimize W (d, dz) is

z =
y(d)

d
= F−1

(
b

b+ h

)
.

Moreover, we have

W (d, y(d)) = W (d, dz) = d
(
hE
(
z − eε

)+
+ bE

(
eε − z

)+
)
,
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and

W̃i+1(d, y(d)) = W̃i+1(d, dz) = d

(
1

2Ii

ti+2Ii∑
t=ti+1

(
h
(
z − eεt

)+
+ b
(
eεt − z

)+
))

. (2.52)

For t ∈ {ti + 1, . . . , ti + 2Ii}, denote

∆t =
(
hE[z − eεt ]+ + bE[eεt − z]+

)
−
(
h(z − eεt)+ + b(eεt − z)+

)
.

Then E [∆t] = 0. Since εt is bounded, so is ∆t, thus we apply Hoeffding inequality

(see Theorem 1 in Hoeffding (1963), and Levi et al. (2007) for its application in

newsvendor problems) to obtain, for any ξ > 0,

P

{
dh

∣∣∣∣∣ 1

2Ii

ti+2Ii∑
t=ti+1

∆t

∣∣∣∣∣ > dhξ

}
= P

{∣∣∣∣∣ 1

2Ii

ti+2Ii∑
t=ti+1

∆t

∣∣∣∣∣ > ξ

}
≤ 2e−4Iiξ

2

, (2.53)

which deduces to

P
{

max
d∈D

∣∣∣W (d, y(d))− W̃i+1(d, y(d))
∣∣∣ > dhξ

}
≤ 2e−4Iiξ

2

. (2.54)

This bounds the first term on the right hand side of (2.51).

To bound the second term in (2.51), we use

F̂ (x) =
1

2Ii

2Ii∑
t=1

1 {eεt ≤ x} , x ∈ [l, u]

to denote the empirical distribution of eεt . For θ > 0, we call F̂ (z) a θ-estimate of

F (z) (= b/(b+ h)), or simply a θ-estimate, if

∣∣∣∣F̂ (z)− b

b+ h

∣∣∣∣ ≤ θ. (2.55)
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It can be verified that

P
{
F̂ (z) <

b

b+ h
− θ
}

= P
{
F̂ (z) < F (z)− θ

}
= P

{
F̂ (z)− F (z) < −θ

}
≤ e−2Iiθ

2

,

where the last inequality follows from Hoeffding inequality. Similarly, we have

P
{
F̂ (z) >

b

b+ h
+ θ

}
≤ e−2Iiθ

2

.

Combining the two results above we obtain

P
{∣∣∣∣F̂ (z)− b

b+ h

∣∣∣∣ ≤ θ

}
≥ 1− 2e−2Iiθ

2

.

Let A3(θ) represent the event that F̂ (z̄) is a θ-estimate, then the result above states

that

P(A3(θ)) ≥ 1− 2e−2Iiθ
2

. (2.56)

For d ∈ D, let z̃i+1(d) = ỹi+1(d)
d

and z̃ui+1 =
ỹui+1(d)

d
, then it follows from (2.49) that

z̃ui+1 = min

{
eεj :

1

2Ii

ti+2Ii∑
t=ti+1

1 {eεt ≤ eεj} ≥ b

b+ h

}
.

And it follows from (2.50) that

z̃i+1(d) = min

{
max

{
z̃ui+1,

yl

d

}
,
yh

d

}
.

By ỹui+1(d) = d z̃ui+1, we have W̃i+1(d, ỹui+1(d)) = W̃i+1(d, d z̃ui+1). In the following,

we develop an upper bound for W̃i+1(d, dz)−W̃i+1(d, dz̃ui+1) when F̂ (·) is a θ-estimate.
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First, for any given d ∈ D, if z ≤ z̃ui+1, then it follows from (2.52) that

W̃i+1(d, dz) =
d

2Ii

2Ii∑
t=1

[
b
(
eεt − z

)
1
{
z̃ui+1 < eεt

}
+b
(
eεt − z

)
1
{
z < eεt ≤ z̃ui+1

}
+ h
(
z − eεt

)
1
{
eεt ≤ z

}]
≤ d

2Ii

2Ii∑
t=1

[
b
(
eεt − z

)
1
{
z̃ui+1 < eεt

}
+b
(
z̃ui+1 − z

)
1
{
z < eεt ≤ z̃ui+1

}
+ h
(
z − eεt

)
1
{
eεt ≤ z

}]
,

(2.57)

where the inequality follows from replacing eεt in the second term by its upper bound

z̃ui+1, and

W̃i+1(d, dz̃ui+1) =
d

2Ii

2Ii∑
t=1

[
b(eεt − z̃ui+1))1{z̃ui+1 < eεt}

+h(z̃ui+1 − eεt)1{z < eεt ≤ z̃ui+1}+ h(z̃ui+1 − eεt)1{eεt ≤ z}
]

≥ d

2Ii

2Ii∑
t=1

[
b(eεt − z̃ui+1))1{z̃ui+1 < eεt}+ h(z̃ui+1 − eεt)1{eεt ≤ z}

]
, (2.58)

with the inequality obtained by dropping the nonnegative middle term. Consequently

when z ≤ z̃ui+1 we subtract (2.58) from (2.57) to obtain

W̃i+1(d, dz)− W̃i+1(d, dz̃ui+1)

≤ d
(
b(z̃ui+1 − z)(1− F̂ (z̃ui+1)) + b(z̃ui+1 − z)(F̂ (z̃ui+1)− F̂ (z)) + h(z − z̃ui+1)F̂ (z)

)
= d(z̃ui+1 − z)

(
−(h+ b)F̂ (z) + b

)
≤ d

(
z̃ui+1 − z

)
(b+ h)θ, (2.59)

where the second inequality follows from F̂ (z) ≥ b
b+h
− θ when F̂ (·) is a θ-estimate.
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Similarly, if z > z̃ui+1, then

W̃i+1(d, dz) =
d

2Ii

2Ii∑
t=1

[
b(eεt − z)1{z < eεt}

+h(z − eεt)1{z̃ui+1 < eεt ≤ z}+ h(z − eεt)1{eεt ≤ z̃ui+1}
]

≤ d

2Ii

2Ii∑
t=1

[
b(eεt − z)1{z < eεt}

+h(z − z̃ui+1)1{z̃ui+1 < eεt ≤ z}+ h(z − eεt)1{eεt ≤ z̃ui+1}
]
,

(2.60)

where the inequality follows replacing eεt in the second term by its lower bound z̃ui+1,

and

W̃i+1(d, dz̃ui+1) =
d

2Ii

2Ii∑
t=1

[
b(eεt − z̃ui+1)1{z < eεt}

+b(eεt − z̃ui+1)1{z̃ui+1 < eεt ≤ z}+ h(z̃ui+1 − eεt)1{eεt ≤ z̃ui+1}
]

≥ d

2Ii

2Ii∑
t=1

[
b(eεt − z̃ui+1)1{z < eεt}+ h(z̃ui+1 − eεt)1{eεt ≤ z̃ui+1}

]
,

(2.61)

again the inequality follows from dropping the nonnegative second term. Subtracting

(2.61) from (2.60), we obtain

W̃i+1(d, dz)− W̃i+1(d, dz̃ui+1)

≤ d
(
b(z̃ui+1 − z)(1− F̂ (z)) + h(z − z̃ui+1)(F̂ (z)− F̂ (z̃ui+1)) + h(z − z̃ui+1)F̂ (z̃ui+1)

)
= d(z − z̃ui+1)((h+ b)F̂ (z)− b)

≤ d(z − z̃ui+1)(b+ h)θ, (2.62)

where the last inequality follows from F̂ (z) ≤ b
b+h

+ θ when F̂ (·) is a θ-estimate.
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The results (2.59) and (2.62) imply that, when F̂ (·) is a θ-estimate, or (2.55) is

satisfied, it holds that

W̃i+1(d, dz)− W̃i+1(d, dz̃ui+1) ≤ d
∣∣z − z̃ui+1

∣∣(b+ h)θ.

As demand is bounded, dz̃ui+1 is bounded too, hence it follows from dz ∈ Y that there

exists some constant K41 > 0 such that d
∣∣z − z̃ui+1

∣∣ ≤ K41. Thus

W̃i+1(d, dz)− W̃i+1(d, dz̃ui+1) ≤ K41(b+ h)θ.

Since z̃ui+1 is the unconstrained minimizer of W̃i+1(d, dz), it follows that

W̃i+1(d, dz)− W̃i+1(d, dz̃i+1(d)) ≤ W̃i+1(d, dz)− W̃i+1(d, dz̃ui+1) ≤ K41(b+ h)θ.

As this inequality holds for any d ∈ D, it implies that, when F̂ (·) is a θ-estimate, or

on the event A3(θ),

max
d∈D

{
W̃i+1(d, dz)− W̃i+1(d, dz̃i+1(d))

}
≤ K41(b+ h)θ. (2.63)

Letting θ = ξ in (2.63) we obtain

P
{

max
d∈D

(
W̃i+1(d, dz)− W̃i+1(d, dz̃i+1(d))

)
≤ K41(b+ h)ξ

}
≥ P(A3(ξ))

≥ 1− 2e−2Iiξ
2

,

where the last inequality follows from (2.56). This proves, by noting W̃i+1(d, y(d))−

W̃i+1(d, ỹi+1(d)) ≥ 0 as ỹi+1(d) is the minimizer of W̃i+1 on Y , that

P
{

max
d∈D

∣∣∣(W̃i+1(d, y(d))− W̃i+1(d, ỹi+1(d))
)∣∣∣ ≤ K41(b+ h)ξ

}
≥ 1− 2e−2Iiξ

2

. (2.64)

54



Applying (2.54) and (2.64) in (2.51), we conclude that there exist a constant K40 > 0

such that for any ξ > 0, when Ii is sufficiently large,

P
{

max
d∈D

∣∣∣W (d, y(d))− W̃i+1(d, ỹi+1(d))
∣∣∣ ≤ K40ξ

}
≥ 1− 2e−2Iiξ

2 − 2e−4Iiξ
2 ≥ 1− 4e−2Iiξ

2

.

This completes the proof of Lemma A3. �

Having compared functions W and W̃i+1, we next compare G with G̃i+1.

Lemma A4. Given parameters α and β, there exist a positive constant K42 such

that, for any ξ > 0,

P
{

max
d∈D

∣∣∣G (α, β, d)− G̃i+1 (α, β, d)
∣∣∣ ≥ K42ξ

}
≤ 5e−2Iiξ

2

.

Proof. For any d ∈ D, similar argument as that used in proving (2.53) of Lemma

A2 shows that, for any ξ > 0,

P

{∣∣∣∣∣E[eεt ]−

(
1

2Ii

ti+2Ii∑
t=ti+1

eεt

)∣∣∣∣∣ ≤ ξ

}
≥ 1− e−4Iiξ

2

,

where σ =
√

Var(eεt). Let r∗ = maxd∈D
|α−log d|

β
d, then we have

P

{
max
d∈D

∣∣∣∣∣dα− log d

β
E[eεt ]− dα− log d

β

(
1

2Ii

ti+2Ii∑
t=ti+1

eεt

)∣∣∣∣∣ ≤ r∗ξ

}

= P

{
r∗

∣∣∣∣∣E[eεt ]−

(
1

2Ii

ti+2Ii∑
t=ti+1

eεt

)∣∣∣∣∣ ≤ r∗ξ

}
≥ 1− e−4Iiξ

2

. (2.65)
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Hence, it follows from (2.45) and (2.48) that, for any d ∈ D and ξ > 0,

P
{

max
d∈D

∣∣∣G(α, β, d)− G̃i+1(α, β, d)
∣∣∣ ≤ (K40 + r∗)ξ

}
= P

{
max
d∈D

∣∣∣∣(dα− log d

β
E
[
eε
]

−W (d, y(d))

)
−
(
d
α− log d

β

(
1

2Ii

ti+2Ii∑
t=ti+1

eεt
)
− W̃i+1(d, ỹi+1(d))

)∣∣∣∣ ≤ (K40 + r∗)ξ

}

≥ P
{

max
d∈D

∣∣∣∣dα− log d

β
E
[
eε
]
− dα− log d

β

(
1

2Ii

ti+2Ii∑
t=ti+1

eεt
)∣∣∣∣

+ max
d∈D

∣∣∣∣W (d, y(d)− W̃i+1(d, ỹi+1(d))

∣∣∣∣ ≤ (K40 + r∗)ξ

}
≥ P

{
max
d∈D

∣∣∣∣dα− log d

β
E
[
eε
]
− dα− log d

β

(
1

2Ii

ti+2Ii∑
t=ti+1

eεt
)∣∣∣∣ ≤ r∗ξ,

and max
d∈D

∣∣∣∣W (d, y(d)− W̃i+1(d, ỹi+1(d))

∣∣∣∣ ≤ K40ξ

}
= 1− P

{
max
d∈D

∣∣∣∣dα− log d

β
E
[
eε
]
− dα− log d

β

(
1

2Ii

ti+2Ii∑
t=ti+1

eεt
)∣∣∣∣ > r∗ξ,

or max
d∈D

∣∣∣∣W (d, y(d))− W̃i+1(d, ỹi+1(d))

∣∣∣∣ > K40ξ

}
≥ 1− P

{
max
d∈D

∣∣∣∣dα− log d

β
E
[
eε
]
− dα− log d

β

(
1

2Ii

ti+2Ii∑
t=ti+1

eεt
)∣∣∣∣ > r∗ξ

}
−P
{

max
d∈D

∣∣∣∣W (d, y(d)− W̃i+1(d, ỹi+1(d))

∣∣∣∣ > K40ξ

}
≥ 1− e−4Iiξ

2 − 4e−2Iiξ
2

≥ 1− 5e−2Iiξ
2

,

where the last inequality follows from (2.65) and Lemma A2. LettingK42 = K40+2r∗σ

completes the proof of Lemma A4. �

For any ξ > 0, we define event

A4(ξ) =

{
ω : max

d∈D

∣∣∣G(α, β, d)− G̃i+1(α, β, d)
∣∣∣ ≤ K42ξ

}
. (2.66)
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Then Lemma A4 can be reiterated as P(A4(ξ)) ≥ 1− 5e−2Iiξ
2
.

With the preparations above, we are now ready to compare the optimal solutions

of problems B1 and B2. Different from B1, in problem B2 the distribution of ε

in the objective function is unknown, hence the expectations are replaced by their

sample averages, giving rise to the SAA problem. Lemma A5 below presents a useful

result that bounds the probability for the optimal solution of problem B2 to be away

from that of problem B1. Since Ii tends to infinity as t goes to infinity, this shows

that the probability that the two solutions, p
(
ᾰ(p̂i), β̆(p̂i)

)
and p̃i+1

(
ᾰ(p̂i), β̆(p̂i)

)
, are

significantly different converges to zero when the length of the planning horizon T

increases.

Lemma A5. F or any p ∈ P and any ξ > 0,

P
{∣∣∣p(ᾰ(p), β̆(p)

)
− p̃i+1

(
ᾰ(p), β̆(p)

)∣∣∣ ≥ K43ξ
1
2

}
≤ 5e−4Iiξ

2

for some positive constant K43.

Proof. To slightly simplify the notation, for given parameters α and β, in this proof

we let

G(d) = G(α, β, d), G̃(d) = G̃i+1(α, β, d), d = d(α, β), d̃ = d̃i+1 (α, β) .

By Taylor’s expansion,

G(d̃) = G(d) +G
′
(d)(d̃− d) +

G
′′
(q)

2
(d̃− d)2, (2.67)

where q ∈ [d, d̃] if d ≤ d̃ and q ∈ [d̃, d] if d > d̃. Since we assume the minimizer of

W (d, y) over R+ falls into Y , it follows from (2.45) that G(d) = dα−log d
β

E[eε] − Ad,
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where A = minz
{
hE
(
z − eε

)+
+ bE

(
eε − z

)+}
> 0 is a constant. Thus, we have

G
′′
(d) = −E[eε]

βd
.

Since λ(·) is assumed to be strictly decreasing, it follows that β̆(·) is bounded below

by a positive number, say ā > 0. On β ≥ ā, let mind∈D
E[eε]
βd

= m and it holds that

m > 0, then it follows from (2.67) that

G(d̃) ≤ G(d)− m

2
(d̃− d)2. (2.68)

Now we prove, on event A4(ξ), that

G(d̃)−G(d) ≥ −2K42ξ. (2.69)

We prove this by contradiction. Suppose it is not true, i.e., G(d) − G(d̃) > 2K42ξ,

then it follows from (2.66) that

G̃(d)− G̃(d̃)

=
(
G̃(d)−G(d)

)
+
(
G(d)−G(d̃)

)
+
(
G(d̃)− G̃(d̃)

)
> −K42ξ + 2K42ξ −K42ξ

= 0.

This leads to G̃(d) > G̃(d̃), contradicting with d̃ being optimal for problem B2. Thus,

(2.69) is satisfied on A4(ξ).

Using (2.68) and (2.69), we obtain that, on event A4(ξ),

∣∣d̃− d∣∣2 ≤ 4K42

m
ξ,
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or equivalently, for some constant K44,

∣∣d̃− d∣∣ ≤ K44ξ
1
2 .

Let g(d) = α−log d
β

, then p(α, β) = g(d) and p̃i+1(α, β) = g(d̃). Since the first order

derivative of g(d) with respect to d ∈ D is bounded, there exist constant K45 > 0,

such that on A4(ξ), it holds that

|p(α, β)− p̃i+1(α, β)| = |g(d)− g(d̃)| ≤ K45|d− d̃| ≤ K44 ×K45ξ
1
2 .

Letting K43 = K44 ×K45, this shows that for any values of α and β ≥ ā,

P
{
|p(α, β)− p̃i+1(α, β)| ≤ K43ξ

1
2

}
≥ P(A4(ξ)) ≥ 1− 5e−2Iiξ

2

.

Substituting α = ᾰ(p) and β = β̆(p), we obtain the desired result in Lemma A5. �

Lemma A6 shows that (α̂i+1, β̂i+1), (ᾰ(p̂i), β̆(p̂i)) and (ᾰ(p̂i + δi), β̆(p̂i + δi)) ap-

proach each other when i gets large.

Lemma A6. There exists a positive constant K46 such that

E
[
|ᾰ(p̂i)− α̂i+1|2 + |β̆(p̂i)− β̂i+1|2 + |ᾰ(p̂i + δi)− α̂i+1|2 + |β̆(p̂i + δi)− β̂i+1|2

]
≤ K46I

− 1
2

i .

Proof. The proof of this result bears similarity with that of Besbes and Zeevi (2015),

hence here we only present the differences. For convenience we define

B1
i+1 =

1

Ii

ti+Ii∑
t=ti+1

εt, B2
i+1 =

1

Ii

ti+2Ii∑
t=ti+Ii+1

εt.

Recall that α̂i+1 and β̂i+1 are derived from the least-square method, and they are
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given by

α̂i+1 =
λ(p̂i) + λ(p̂i + δi)

2
+
B1
i+1 +B2

i+1

2
+ β̂i+1

2p̂i + δi
2

, (2.70)

β̂i+1 = −λ(p̂i + δi)− λ(p̂i)

δi
− 1

δi
(−B1

i+1 +B2
i+1). (2.71)

Applying Taylor’s expansion on λ(p̂i + δi) at point p̂i to the second order for (2.71),

we obtain

β̂i+1 = −
(
λ′(p̂i) +

1

2
λ′′(qi)δi

)
− 1

δi
(−B1

i+1 +B2
i+1)

= β̆(p̂i)−
1

2
λ′′(qi)δi −

1

δi
(−B1

i+1 +B2
i+1), (2.72)

where qi ∈ [p̂i, p̂i + δi]. Substituting β̂i+1 in (2.70) by (2.72), and applying Taylor’s

expansion on λ(p̂i + δi) at point p̂i to the first order, we have

α̂i+1 = λ(p̂i) +
1

2
λ′(q′i)δi +

B1
i+1 +B2

i+1

2
− λ′(p̂i)

(
p̂i +

δi
2

)
+

(
−1

2
λ′′(qi)δi −

1

δi
(−B1

i+1 +B2
i+1)

)(
p̂i +

δi
2

)
= ᾰ(p̂i) +

1

2
λ′(q′i)δi +

B1
i+1 +B2

i+1

2
− 1

2
λ′(p̂i)δi

+

(
−1

2
λ′′(qi)δi −

1

δi
(−B1

i+1 +B2
i+1)

)(
p̂i +

δi
2

)
,

(2.73)

where q′i ∈ [p̂i, p̂i + δi].

Since the error terms εt are assumed to be bounded, we apply Hoeffding inequality

to obtain

P
{∣∣−B1

i+1

∣∣ > ξ
}
≤ 2e−2Iiξ

2

, P
{∣∣B2

i+1

∣∣ > ξ
}
≤ 2e−2Iiξ

2

.
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Hence,

P
{∣∣−B1

i+1

∣∣+
∣∣B2

i+1

∣∣ > 2ξ
}
≤ P

{∣∣−B1
i+1

∣∣ > ξ
}

+ P
{∣∣B2

i+1

∣∣ > ξ
}
≤ 4e−2Iiξ

2

.

Therefore,

P
{∣∣−B1

i+1 +B2
i+1

∣∣ ≤ 2ξ
}
≥ P

{∣∣−B1
i+1

∣∣+
∣∣B2

i+1

∣∣ ≤ 2ξ
}
≥ 1− 4e−2Iiξ

2

.

Similar argument shows

P
{∣∣B1

i+1 +B2
i+1

∣∣ ≤ 2ξ
}
≥ 1− 4e−2Iiξ

2

.

Since λ′(·) and λ′′(·) are bounded and δi converges to 0, from (2.73) we conclude

that there must exist a constant K47 such that, on the event
∣∣B1

i+1 +B2
i+1

∣∣ ≤ 2ξ and∣∣−B1
i+1 +B2

i+1

∣∣ ≤ 2ξ, it holds that

|α̂i+1 − ᾰ(p̂i)| ≤ K47

(
δi +

ξ

δi
+ ξ

)
.

Therefore,

P
{
|α̂i+1 − ᾰ(p̂i)| ≤ K47

(
δi +

ξ

δi
+ ξ

)}
≥ P

{∣∣B1
i+1 +B2

i+1

∣∣ ≤ 2ξ,
∣∣−B1

i+1

∣∣+
∣∣B2

i+1

∣∣ ≤ 2ξ
}

≥ 1− 8e−2Iiξ
2

,

which implies

P
{
|α̂i+1 − ᾰ(p̂i)|2 ≤ K48

(
δ2
i +

ξ2

δ2
i

+ ξ2

)}
≥ 1− 8e−2Iiξ

2

. (2.74)
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From (2.72) we have

P
{∣∣β̂i+1 − β̆(p̂i)

∣∣ ≤ K49

(
δi +

ξ

δi

)}
≥ 1− 4e−2Iiξ

2

,

which implies

P
{∣∣β̂i+1 − β̆(p̂i)

∣∣2 ≤ K50

(
δ2
i +

ξ2

δ2
i

)}
≥ 1− 4e−2Iiξ

2

. (2.75)

Following the development of (2.74) and (2.75), we have

P
{
|α̂i+1 − λ(p̂i + δi)|2 ≤ K51

(
δ2
i +

ξ2

δ2
i

+ ξ2

)}
≥ 1− 8e−2Iiξ

2

. (2.76)

and

P
{∣∣β̂i+1 − β̆(p̂i + δi)

∣∣2 ≤ K52

(
δ2
i +

ξ2

δ2
i

)}
≥ 1− 4e−2Iiξ

2

. (2.77)

Combining(2.74), (2.75), (2.76), and (2.77), we obtain

P
{
|α̂i+1 − λ(p̂i)|2 +

∣∣β̂i+1 − β̆(p̂i)
∣∣2 + |α̂i+1 − λ(p̂i + δi)|2 +

∣∣β̂i+1 − β̆(p̂i + δi)
∣∣2

≤ K53

(
δ2
i +

ξ2

δ2
i

+ ξ2

)}
(2.78)

≥ 1− 24e−2Iiξ
2

,

which is

P
{(

K54

δ2
i

+K55

)−1 (
|ᾰ(p̂i)− α̂i+1|2 + |β̆(p̂i)− β̂i+1|2

+|ᾰ(p̂i + δi)− α̂i+1|2 + |β̆(p̂i + δi)− β̂i+1|2 −K53δ
2
i

)
≥ ξ2

}
< 24e−2Iiξ

2

.
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Therefore,

E
[(

K54

δ2
i

+K55

)−1 (
|ᾰ(p̂i)− α̂i+1|2 + |β̆(p̂i)− β̂i+1|2 + |ᾰ(p̂i + δi)− α̂i+1|2

+|β̆(p̂i + δi)− β̂i+1|2 −K53δ
2
i

)]
=

(
K54

δ2
i

+K55

)−1

E
[
|ᾰ(p̂i)− α̂i+1|2 + |β̆(p̂i)− β̂i+1|2 + |ᾰ(p̂i + δi)− α̂i+1|2

+|β̆(p̂i + δi)− β̂i+1|2
]
−
(
K54

δ2
i

+K55

)−1

K53δ
2
i

≤
+∞∫
0

24e−2Iiξdξ

=
12

Ii
.

Hence one has

E
[
|ᾰ(p̂i)− α̂i+1|2 + |β̆(p̂i)− β̂i+1|2 + |ᾰ(p̂i + δi)− α̂i+1|2 + |β̆(p̂i + δi)− β̂i+1|2

]
≤

(
12

Ii
+

(
K54

δ2
i

+K55

)−1

K53δ
2
i

)(
K54

δ2
i

+K55

)
≤ K46I

− 1
2

i . (2.79)

This completes the proof of Lemma A6. �

Lemma A7 bounds the difference between the solution for problem B2, p̃i+1

(
ᾰ(p̂i), β̆(p̂i)

)
,

and the solution for problem DD, p̂i+1. Comparing the two problems, we note that

there are two main differences: First, problem DD has an affine function with coeffi-

cients α̂i+1 and β̂i+1 , while problem B2 has an affine function with coefficients ᾰ(p̂i)

and β̆(p̂i); second, in problem DD, the biased sample of demand uncertainty, ηt, is

used, while in problem B2, an unbiased sample εt is used. Despite those differences,

we have the following result.

Lemma A7. T here exists some positive constants K56 and i∗ such that for any
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i ≥ i∗ one has

P
{ ∣∣∣p̃i+1

(
ᾰ(p̂i), β̆(p̂i)

)
− p̂i+1

∣∣∣ ≥ K56

(∣∣ᾰ(p̂i)− α̂i+1

∣∣+
∣∣β̆(p̂i)− β̂i+1

∣∣
+
∣∣ᾰ(p̂i + δi)− α̂i+1

∣∣+
∣∣β̆(p̂i + δi)− β̂i+1

∣∣)} ≤ 8

Ii
,

P
{ ∣∣∣ỹi+1

(
ᾰ(p̂i), β̆(p̂i)

)
− ŷi+1

∣∣∣ ≥ K56

(∣∣ᾰ(p̂i)− α̂i+1

∣∣+
∣∣β̆(p̂i)− β̂i+1

∣∣
+
∣∣ᾰ(p̂i + δi)− α̂i+1

∣∣+
∣∣β̆(p̂i + δi)− β̂i+1

∣∣)} ≤ 8

Ii
.

Proof. To compare the solutions of these two problems, we introduce a general

function based on the data-driven problem DD and problem B2: Given selling price

pt = p̂i for t = ti+1, . . . , ti+Ii and pt = p̂i+δi for t = ti+Ii+1, . . . , ti+2Ii, logarithm

demand data Dt, t = ti + 1, . . . , ti + 2Ii, and two sets of parameters (α1, β1), (α2, β2),

define ζt1+Ii
t=ti+1(α1, β1) = (ζti+1, . . . , ζti+Ii) and ζti+2Ii

t=ti+Ii+1(α2, β2) = (ζti+Ii+1, . . . , ζti+2Ii)

by

ζt = Dt − (α1 − β1pt) = λ(p̂i) + εt − (α1 − β1p̂i), t = ti + 1, . . . , ti + Ii,

ζt = Dt − (α2 − β2pt) = λ(p̂i + δi) + εt − (α2 − β2(p̂i + δi)), t = ti + Ii + 1, . . . , ti + 2Ii.

Then, we define a function Hi+1 by

Hi+1

(
p, eα1−β1p, ζt1+Ii

t=ti+1(α1, β1), ζti+2Ii
t=ti+Ii+1(α2, β2)

)
(2.80)

= peα1−β1p 1

2Ii

ti+2Ii∑
t=ti+1

eζt −min
y∈Y

{
1

2Ii

ti+2Ii∑
t=ti+1

(
h
(
y − eα1−β1peζt

)+
+ b
(
eα1−β1peζt − y

)+
)}

.

Consider the optimization of Hi+1, and let its optimal price be denoted by

p
(
(α1, β1), (α2, β2)

)
= arg max

p∈P
Hi+1

(
p, eα1−β1p, ζt1+Ii

t=ti+1(α1, β1), ζti+2Ii
t=ti+Ii+1(α2, β2)

)
(2.81)
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and its optimal order-up-to level, for given price p, be denoted by

y
(
eα1−β1p, (α1, β1), (α2, β2)

)
= arg min

y∈Y

{
1

2Ii

ti+2Ii∑
t=ti+1

(
h
(
y − eα1−β1peζt

)+
+ b
(
eα1−β1peζt − y

)+
)}

. (2.82)

Similar to Besbes and Zeevi (2015), we make the assumption that the optimal

solutions

p
(
(α1, β1), (α2, β2)

)
and y

(
eα1−β1p, (α1, β1), (α2, β2)

)
are differentiable with respect to

α1, α2 and β1, β2 with bounded first order derivatives. Then, p
(
(α1, β1)(α2, β2)

)
and

y
(
eα1−β1p, (α1, β1), (α2, β2)

)
are both Lipschitz and in particular, there exists a con-

stant K57 > 0 such that for any α1, α2, α
′
1, α

′
2 and β1, β2, β

′
1, β

′
2, it holds that

∣∣∣p((α1, β1)(α2, β2)
)
− p
(
(α′1, β

′
1)(α′2, β

′
2)
)∣∣∣ (2.83)

≤ K57

(
|α1 − α′1|+ |β1 − β′1|+ |α2 − α′2|+ |β2 − β′2|

)
,∣∣∣y(eα1−β1p, (α1, β1), (α2, β2)

)
− y
(
eα
′
1−β′1p, (α′1, β

′
1), (α′2, β

′
2)
)∣∣∣ (2.84)

≤ K57

(
|α1 − α′1|+ |β1 − β′1|+ |α2 − α′2|+ |β2 − β′2|

)
.

The optimization problem (2.80) will serve as yet another bridging problem be-

tween DD and B2. To see that, observe that when α1 = α2 = α̂i+1 and β1 = β2 = β̂i+1,

problem (2.81) is reduced to the data-driven problem DD. That is,

p̂i+1 = p
(
(α̂i+1, β̂i+1), (α̂i+1, β̂i+1)

)
. (2.85)

On the other hand, when α1 = ᾰ(p̂i), β1 = β̆(p̂i), α2 = ᾰ(p̂i + δi), β2 = β̆(p̂i + δi), we

deduce from the definition of ᾰ(·) and β̆(·) that for t = ti + 1, . . . , ti + Ii, we have

ζt = Dt − (α1 − β1pt) = λ(p̂i) + εt − (ᾰ(p̂i)− β̆(p̂i)p̂i) = εt, (2.86)
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and for t = ti + Ii + 1, . . . , ti + 2Ii, it holds that

ζt = Dt − (α2 − β2pt) = λ(p̂i + δi) + εt − (ᾰ(p̂i + δi)− β̆(p̂i + δi)(p̂i + δi)) = εt.(2.87)

This shows that when the parameters are
(
ᾰ(p̂i), β̆(p̂i)

)
and

(
ᾰ(p̂i + δi), β̆(p̂i + δi)

)
,

problem (2.81) is reduced to bridging problem B2. This gives us

p̃i+1

(
ᾰ(p̂i), β̆(p̂i)

)
= p
((
ᾰ(p̂i), β̆(p̂i)

)
,
(
ᾰ(p̂i + δi), β̆(p̂i + δi)

))
. (2.88)

The two results (2.85) and (2.88) will enable us to compare the optimal solutions

of the data-driven optimization problem DD and bridging problem B2 through one

optimization problem (2.81).

In Lemma A6, letting ξ = (2Ii)
− 1

2 (log 2Ii)
1
2 in (2.78), we obtain

P
{
|ᾰ(p̂i)− α̂i+1|2 + |β̆(p̂i)− β̂i+1|2 + |ᾰ(p̂i + δi)− α̂i+1|2 + |β̆(p̂i + δi)− β̂i+1|2 (2.89)

≤ K53

(
I
− 1

2
i + (2Ii)

− 1
2 (log 2Ii) + (2Ii)

−1(log 2Ii)
)}

≥ 1− 8

Ii
.

This implies

P
{
|ᾰ(p̂i)− α̂i+1| ≤ (3K53)

1
2 (2Ii)

− 1
4 (log 2Ii)

1
2 ,

|β̆(p̂i)− β̂i+1| ≤ (3K53)
1
2 (2Ii)

− 1
4 (log 2Ii)

1
2 ,

|ᾰ(p̂i + δi)− α̂i+1| ≤ (3K53)
1
2 (2Ii)

− 1
4 (log 2Ii)

1
2 ,

|β̆(p̂i + δi)− β̂i+1| ≤ (3K53)
1
2 (2Ii)

− 1
4 (log 2Ii)

1
2

}
≥ 1− 8

Ii
. (2.90)
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For convenience, we define the event A5 by

A5 =
{
ω : |ᾰ(p̂i)− α̂i+1| ≤ (3K53)

1
2 (2Ii)

− 1
4 (log 2Ii)

1
2 ,

|β̆(p̂i)− β̂i+1| ≤ (3K53)
1
2 (2Ii)

− 1
4 (log 2Ii)

1
2 ,

|ᾰ(p̂i + δi)− α̂i+1| ≤ (3K53)
1
2 (2Ii)

− 1
4 (log 2Ii)

1
2 ,

|β̆(p̂i + δi)− β̂i+1| ≤ (3K53)
1
2 (2Ii)

− 1
4 (log 2Ii)

1
2

}
. (2.91)

Then by (2.91) one has

P(Ac5) ≤ 8

Ii
. (2.92)

When β1 > 0, similar to Remark 2 and Lemma A2, one can verify thatHi+1(·, ·, ·, ·)

of (2.80) is unimodal in p thus its optimal solution is well-defined. Define

i∗ = max
{

logv
e

2I0

, min
{
i
∣∣∣ (3K53)

1
2 (2Ii)

− 1
4 (log 2Ii)

1
2 < min

p∈P
β̆(p)

}}
, (2.93)

where we need i∗ to be no less than logv
e

2I0
to ensure that (2Ii)

− 1
4 (log 2Ii)

1
2 is de-

creasing on i ≥ i∗. When i ≥ i∗, it follows that β̂i+1 > 0 on A5, hence on event A5,

problem DD is unimodal in p after minimizing over y, and the optimal pricing is well-

defined. These properties will enable us to prove that the convergence of parameters

translates to convergence of the optimal solutions. Then the first part in Lemma A7

on p follows directly from (2.85), (2.88) and (2.83). From equations (2.82), (2.86),

and (2.87), we conclude

ỹi+1

(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

)
= y
(
eᾰ(p̂i)−β̆(p̂i)p̂i+1 ,

(
ᾰ(p̂i), β̆(p̂i)

)
,
(
ᾰ(p̂i + δi), β̆(p̂i + δi)

))
,
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and it follows from the DDA policy that

ŷi+1,1 = y
(
eα̂i+1−β̂i+1p̂i+1 , (α̂i+1, β̂i+1), (α̂i+1, β̂i+1)

)
.

Then, similar analysis as that in the proof of (2.83) can be used to prove (2.84). �

To prepare for the convergence proof of order-up-to levels in Theorem 1, we need

another result. Recall that y
(
eα−βp

)
and ỹi+1

(
eα−βp

)
are the optimal y on Y for

problem B1 and problem B2 respectively for given p ∈ P . We have the following

result.

Lemma A8. T here exists some constant K58 such that, for any p ∈ P and p̂i ∈ P ,

for any ξ > 0, it holds that

P
{ ∣∣∣y(eᾰ(p̂i)−β̆(p̂i)p

)
− ỹi+1

(
eᾰ(p̂i)−β̆(p̂i)p

)∣∣∣ ≥ K58ξ
}
≤ 2e−4Iiξ

2

.

Proof. For p ∈ P , the optimal solution for bridging problem B1 is the same as (2.46),

y
(
eᾰ(p̂i)−β̆(p̂i)p

)
. Thus

y
(
eᾰ(p̂i)−β̆(p̂i)p

)
= eᾰ(p̂i)−β̆(p̂i)pF−1

(
b

b+ h

)
. (2.94)

For given p ∈ P , we follow (2.49) to define ỹui+1

(
eᾰ(p̂i)−β̆(p̂i)p

)
as the unconstrained

optimal order-up-to level for problem B2 on R+, then it can be verified that

ỹui+1

(
eᾰ(p̂i)−β̆(p̂i)p

)
= eᾰ(p̂i)−β̆(p̂i)p min

{
eεj :

1

2Ii

ti+2Ii∑
t=ti+1

1 {eεt ≤ eεj} ≥ b

b+ h

}
,(2.95)

and, similar to (2.50), we have

ỹi+1

(
eᾰ(p̂i)−β̆(p̂i)p

)
= min

{
max

{
ỹui+1(eᾰ(p̂i)−β̆(p̂i)p), yl

}
yh
}
.
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It is seen that

∣∣∣y (eᾰ(p̂i)−β̆(p̂i)p
)
− ỹi+1

(
eᾰ(p̂i)−β̆(p̂i)p

)∣∣∣ ≤ ∣∣∣y (eᾰ(p̂i)−β̆(p̂i)p
)
− ỹui+1

(
eᾰ(p̂i)−β̆(p̂i)p

)∣∣∣ . (2.96)

Now, for any z > 0, we have

P
{
F

(
ỹui+1

(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

)
e−(ᾰ(p̂i)−β̆(p̂i)p̂i+1)

)
− b

b+ h
≤ −z

}
(2.97)

= P
{
ỹui+1

(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

)
e−(ᾰ(p̂i)−β̆(p̂i)p̂i+1) ≤ F−1

(
b

b+ h
− z
)}

≤ P

{
1

2Ii

ti+2Ii∑
t=ti+1

1

{
eεt ≤ F−1

(
b

b+ h
− z
)}
≥ b

b+ h

}

= P

{
1

2Ii

ti+2Ii∑
t=ti+1

1

{
eεt ≤ F−1

(
b

b+ h
− z
)}
−
(

b

b+ h
− z
)
≥ z

}
,

where the first inequality follows from (2.95). Since E
[
1
{
eεt ≤ F−1

(
b

b+h
− z
)}]

=

b
b+h
− z, we apply Hoeffding inequality to obtain

P

{
1

2Ii

ti+2Ii∑
t=ti+1

1

{
eεt ≤ F−1

(
b

b+ h
− z
)}
−
(

b

b+ h
− z
)
≥ z

}
≤ e−4Iiz

2

.

Combining this with (2.94) and (2.97), we obtain

P
{
F

(
ỹui+1

(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

)
e−(ᾰ(p̂i)−β̆(p̂i)p̂i+1)

)
−F
(
y
(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

)
e−(ᾰ(p̂i)−β̆(p̂i)p̂i+1)

)
≤ −z

}
≤ e−4Iiz

2

.

(2.98)
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Similarly, we have

P
{
F

(
ỹui+1

(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

)
e−(ᾰ(p̂i)−β̆(p̂i)p̂i+1)

)
−F
(
y
(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

)
e−(ᾰ(p̂i)−β̆(p̂i)p̂i+1)

)
≥ z

}
≤ e−4Iiz

2

.

(2.99)

From regularity condition (v), the probability density function f(·) of eεt satisfies

r = min{f(x), x ∈ [l, u]} > 0. From calculus, it is known that, for any x < y, there

exists a number z ∈ [x, y] such that F (y)−F (x) = f(z)(y− x) ≥ r(y− x). Applying

(2.98) and (2.99), for any ξ > 0, we obtain

2e−4Iiξ
2

≥ P
{∣∣∣∣F(ỹui+1

(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

)
e−(ᾰ(p̂i)−β̆(p̂i)p̂i+1)

)
−F
(
y
(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

)
e−(ᾰ(p̂i)−β̆(p̂i)p̂i+1)

)∣∣∣∣ ≥ ξ

}
≥ P

{
r

∣∣∣∣ỹui+1

(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

)
e−(ᾰ(p̂i)−β̆(p̂i)p̂i+1) − y

(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

)
e−(ᾰ(p̂i)−β̆(p̂i)p̂i+1)

∣∣∣∣ ≥ ξ

}
= P

{∣∣∣∣ỹui+1

(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

)
− y

(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

) ∣∣∣∣ ≥ 1

r
eᾰ(p̂i)−β̆(p̂i)p̂i+1ξ

}
.

Let K58 = maxp̂i∈P,p̂i+1∈P
1
r
eᾰ(p̂i)−β̆(p̂i)p̂i+1 , then K58 > 0. We have

P
{∣∣∣∣ỹui+1

(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

)
− y

(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

) ∣∣∣∣ ≥ K58ξ

}
≤ 2e−4Iiξ

2

,

and Lemma A8 follows from the inequality above and (2.96). �
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CHAPTER III

Nonparametric Algorithms for

Joint Pricing and Inventory Control with

Lost-Sales and Censored Demand

3.1 Introduction

Different from Chapter 2 with backlogged demand, in this chapter, we consider

lost-sales with censored demand.

3.1.1 Model Overview, Example and Research Issues

This paper studies a periodic-review joint pricing and inventory control problem

with lost-sales over a finite horizon of T periods. At the beginning of each period,

the firm makes pricing and inventory replenishment decisions. The demands across

periods t = 1, . . . T are denoted by Dt(pt) = λ(pt) + εt, where λ(pt) is a decreasing

deterministic function representing the average customer response rate to the selling

price in period t, pt, and εt, t = 1, 2, . . . , T , are independent and identically dis-

tributed (i.i.d.) random variables representing noises (see §3.2 for model details). For

notational convenience, we use εt and ε interchangeably in this chapter, due to the

i.i.d. assumption. Different from the related literature, the firm knows neither the

form of λ(·) nor the distribution of εt a priori. Moreover, the firm only observes the
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censored demand realizations over time, i.e., it observes the sales quantity in each

period, which is the minimum of the realized demand and the on-hand inventory, and

thus the lost-sales information is censored and not observed.

Even with complete information about the function λ(·) and the distribution of

εt, this class of problems is known to be hard since the expected profit function, in

general, fails to be jointly concave. Several papers in the literature present sufficient

conditions under which the expected single-period profit function is unimodal (see,

e.g., Chen et al. (2006), Huh and Janakiraman (2008), Song et al. (2009), Wei (2012),

Chen et al. (2014b)). We also assume the expected single-period profit function is

unimodal if the function λ(·) and the distribution of εt were known a priori. However,

if one constructs an estimated profit function using past demand observations, the

estimated (sampled) profit function, as we demonstrate in Example III.1 below, will

be multimodal in price, which presents a major analytical barrier for learning and

optimization (see Figure 3.2). In addition, the censored demand information adds

further complexity to the problem because the estimators constructed from the ob-

servable demand data are also biased. As a result, the firm needs to actively explore

the decision space in a cost-efficient manner so as to minimize the estimation errors

while maximizing its profit on the fly.

We develop a nonparametric data-driven closed-loop control policy π = (pt, yt |

t ≥ 1) where pt and yt are the pricing decision and the order-up-to level in period

t, respectively; and we denote its total expected profit by C (π). Now, had the firm

known the underlying demand-price function λ(·) and the distribution of εt a priori,

there exists a clairvoyant optimal policy π∗ with total expected profit denoted by

C (π∗). We measure the performance of our proposed policy π through an average

(per-period) regret R(π, T ) , (C (π∗) − C (π))/T. The main research question is to

devise an effective nonparametric data-driven policy π that converges to π∗ in proba-

bility and also drives the average regret R(π, T ) to zero with a provable convergence
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rate.

Example III.1. Let λ(p) = 2.944− 0.52p, and the random error ε follows the trun-

cated Normal distribution with mean 0 and standard deviation 0.5 on [−1, 5]. Set

the price range P = [0, 3.6] and the inventory range Y = [0, 10]. The clairvoyant’s

problem (Opt-CV) (i.e., with known λ(p) and distribution of ε a priori) is given by

max
p∈[0,3.6]

{
p(2.944− 0.52p+ E[ε]) (3.1)

− min
y∈[0,10]

{
(b+ p)E [2.944− 0.52p+ ε− y]+ + hE [y − (2.944− 0.52p+ ε)]+

}}
,

where h = 1 and b = 1.1 are the per-unit holding and lost-sales penalty costs,

respectively.

Figure 3.1: The clairvoyant’s problem
(Opt-CV)

Figure 3.2: The sampled problem
(Opt-SAA)

The objective profit function in (3.1) over P is plotted in Figure 3.1. It is clear

that the clairvoyant’s problem is unimodal (in fact concave) in p and the optimal

price is around 2.7. However, if the demand information is not known a priori, then

the estimated objective profit function constructed using demand samples can quickly

become ill-structured (multimodal).
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To illustrate, we for the moment hypothetically assume that the firm knows λ(p),

but does not know the distribution of ε and instead has observed 5 unbiased samples

of ε as {−1,−1,−1, 0.85, 5}. (In the case that the firm does not know λ(p), the

samples of ε collected are usually biased in our model.) Using sample average, one

can readily construct an estimated objective profit function as

max
p∈[0,3.6]

{
p

(
2.944− 0.52p+

1

5

5∑
j=1

εj

)
− min

y∈[0,10]

1

5

{
(b+ p)

5∑
j=1

( 2.944− 0.52p+ εj − y)+

+h
5∑
j=1

(y − (2.944− 0.52p+ εj))
+

}}
. (3.2)

Unfortunately, even for this simpler setting, as seen from Figure 3.2, the (sampled)

objective profit function (3.2) is multimodal in p. More precisely, it is a piece-wise

concave function with three pieces illustrated in different colors. There are two local

maxima, i.e., 2.6 and 3.4, and the natural question arises as to how to choose from

the multiple local maxima so that the convergence to the clairvoyant’s maximum

can be guaranteed. It can be seen that the number of local maxima increases in the

number of sample points used to construct the sampled objective function. This poses

significant challenges in both the algorithmic design and its performance analysis. �

We note again that the example above is in fact a simplified version of our prob-

lem with known λ(·) (for illustration purposes). The full-fledged problem needs to

estimate λ(·), and therefore the unbiased samples of ε cannot be obtained (as they

cannot be separated from the estimation of λ(·)), making the problem considerably

more difficult to analyze.

3.1.2 Main Results and Contributions

We propose the first nonparametric algorithm, called the Data-Driven algorithm

for Censored demand (DDC for short), for the joint pricing and inventory control
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problems with lost-sales and censored demand information. We show the convergence

of pricing and inventory replenishment decisions to the clairvoyant optimal decisions

in probability (Theorem III.3), and also characterize its rate of convergence (Theorem

III.4). More specifically, we show that the average regret R(DDC, T ) converges

to zero at the rate of O(T−
1
5 (log T )

1
4 ). We also conduct numerical experiments to

demonstrate the effectiveness of the proposed algorithm.

Our proposed algorithm DDC builds upon the recent work of Besbes and Zeevi

(2015) (which focused on a dynamic pricing problem without inventory replenishment

decisions) and Chen et al. (2015) (which studied a joint pricing and inventory control

problem with backlogging and full demand observation). In particular, DDC uses

a linear approximation scheme to estimate the average demand function λ(·) using

the least-square method. This elegant idea was originally put forth by Besbes and

Zeevi (2015). One critical difference between our work and theirs is that with inven-

tory replenishment as an operational decision, we also need to learn the underlying

distribution of the random error εt using historical demand data in order to set the

order-up-to levels in each period. Since λ(·) is not known a priori and is subject to

estimation errors, true samples of the random error εt cannot be obtained. Further-

more, due to the lost-sales, the firm cannot observe the true realized cost whenever

a stockout occurs in a period, as the lost-sales penalty cost depends on the lost-sales

quantity which is not observed by the firm. Thus, in our problem the firm does not

always observe the realized profit in a period, and due to lack of knowledge about

λ(p), nor can the firm assess the derivatives of the realized profit function. As a

result, conventional approaches, such as stochastic approximation, online convex op-

timization, and continuum-armed bandit algorithms, cannot be applied or adapted

to this setting, as these methods rely heavily on knowing either the realized objective

value or its derivatives for a given decision.

Recently, Chen et al. (2015) studied a joint pricing and inventory control problem
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with backlogging, and proposed a method for constructing a (sampled) proxy profit

function. Our work is closely related to theirs, and also involves constructing a sam-

pled proxy profit function using historical demand data, but is significantly different

from that work in several aspects. It is well-known in the literature that the joint

pricing and inventory control with lost-sales is much harder to analyze than its backo-

rder counterpart, since the lost-sales problem is structurally much more complex even

with known λ(·) and εt. This difficulty is further aggravated by censored demand in-

formation (i.e., the demand observations are truncated by the on-hand inventory lev-

els). As noted in Example III.1, the sampled profit function for the lost-sales model

is ill-behaved, which is a major difficulty not encountered in the backorder model.

Therefore, the algorithmic design and analysis become highly nontrivial, requiring a

multitude of new ideas and techniques.

In the following, we detail the three major challenges of our problem that did not

exist in previous related works, and our high-level solution approaches.

(a) Active exploration of the inventory space. In the lost-sales model, the

demand realizations are often truncated by the on-hand inventory levels (i.e., the

lost-sales quantity is unobservable when customers find their desired items out of

stock and walk away). This means that the firm does not know the lost-sales cost

incurred during a period when a stockout occurs (as it does not know how many

customers are lost). The censored data also create much difficulty in the algorithmic

design since this unobservable lost-sales quantity is essential in estimating λ(·) and

εt. To learn about the demand and maximize the profit, active exploration is needed

to discover the lost-sales quantity that is otherwise unknown. Our algorithm DDC

carries out active experimentation on the inventory space in carefully designed cycles.

The algorithm raises the inventory level whenever there is a stockout (see Step 1 of

DDC). The next immediate issue is how to use the observable sales data (censored

demand realizations) to estimate λ(·) and the distribution of the error term. Using
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the sales data clearly introduces downward biases in estimating the true demand, but

we show that their long run impacts are negligible under our exploration strategy

when the length of learning cycle increases (Lemmas III.7 and III.11).

(b) Correction of estimation bias. There are two sources of estimation biases

we need to overcome in the performance analysis of DDC. First, since the demand-

price function λ(·) is not known, we cannot obtain true samples of the random error

εt based on demand observations. We instead use the residual error defined in (3.10),

computed based on the linear estimate of λ(·), to approximate the true random error.

Note that knowing the distribution of error term is crucial for making inventory

decisions that strike a good balance between overage and underage costs. We show

that this estimation bias vanishes as the algorithm proceeds (Lemmas III.8 and III.12).

Second, we use sales data (censored demand) instead of full demand realizations to

carry out our least-square estimation and sampled optimization (see Steps 2 and 3

of DDC), and this clearly introduces estimation biases that need to be overcome

(Lemmas III.7 and III.11).

(c) Learning and optimizing a multimodal function. The most difficult

(and also the unqiue) part of this lost-sales problem lies in the fact that the esti-

mated (sampled) proxy profit function (Opt-SAA) using demand observations in the

exploration phase is multimodal in p in Step 3 of DDC (see, e.g., Figure 3.2), even

though the expected profit function is assumed to be unimodal in p (e.g., Figure

3.1). In contrast, the original objective and its (sampled) proxy function in the back-

order model studied by Chen et al. (2015) are both unimodal in p, and therefore

the optimal prices can be solved through a first-order condition, establishing that

the convergence in parameters guarantees the convergence of decisions. Learning and

optimizing a multimodal function is indeed a challenging task, which is a unique

characteristic in the lost-sales setting. Moreover, the number of local maxima grows

in the number of demand data points used. To resolve this issue, we develop a new
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technique called sparse discretization to overcome the technical hurdle (Proposition

III.6). More specifically, we optimize the multimodal (sampled) proxy profit func-

tion (Opt-SAA) on a sparse discretized set of prices. For any time horizon T , we

only need to exhaustively check on the order of T
1
5 number of price points (which is

very sparse). We show the (sampled) proxy profit function (Opt-SAA) is uniformly

close to the linear approximated function (Approx-CV) over this sparse discretiza-

tion (see Figure 3.5). We then establish the convergence result by exploiting some

structural properties of the linear approximated function (Approx-CV). We believe

the sparse discretization technique developed in this chapter can be useful in learning

and optimizing multimodal functions of other settings where the original function

has nice structures (e.g., concavity, unimodality) but the sampled proxy function is

ill-behaved.

3.1.3 Literature Review

Our work is relevant to the following research streams.

Joint pricing and inventory control problems with lost-sales. The literature

on joint pricing and inventory control problems has confined itself mainly to models

that assume unmet demand is fully backlogged. The optimality of base-stock list-price

or (s, S, p) policies for backorder models has been well established (see, e.g., Feder-

gruen and Heching (1999), Chen and Simchi-Levi (2004a,b), Huh and Janakiraman

(2008)). Compared with the classical backorder model, the difficulty in analyzing the

lost-sales model is mainly due to the fact that the expected profit function fails to be

jointly concave even when demand is linear in price p (see Federgruen and Heching

(1999)), which is often a crucial property for characterizing optimal policies. Nev-

ertheless, there is a stream of literature that extends the optimality of base-stock

list-price or (s, S, p) policies to the lost-sales model with additive or multiplicative
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demand (see, e.g., Chen et al. (2006), Huh and Janakiraman (2008), Song et al.

(2009), Chen et al. (2014b)). These papers require that the expected single-period

profit function to be unimodal (or quasiconcave) in p under certain technical con-

ditions. Our work differs from the above literature by not taking the demand-price

relationship as given. The firm needs to use observed demand data to learn the de-

mand process on the fly while maximizing their expected profit. However, when the

demand-price relationship is not known a priori, our (sampled) proxy profit functions,

constructed using SAA methods, no longer preserve the unimodality property, which

poses a significant challenge in the performance analysis.

Nonparametric algorithm for inventory models. Huh and Rusmevichientong

(2009) proposed gradient descent based algorithm for lost-sales systems with cen-

sored demand. Subsequently, Huh et al. (2009) proposed algorithm for finding the

optimal base-stock policy in lost-sales inventory systems with positive lead time. Bes-

bes and Muharremoglu (2013) examined the discrete demand case and showed that

active exploration is needed. Huh et al. (2011) applied the concept of Kaplan-Meier

estimator to devise another data-driven algorithm for censored demand. Shi et al.

(2015) proposed algorithm for multi-product inventory systems under a warehouse-

capacity constraint with censored demand. Another nonparametric approach in the

inventory literature is sample average approximation (SAA) (e.g., Kleywegt et al.

(2002), Levi et al. (2007, 2011)) which uses the empirical distribution formed by

uncensored samples drawn from the true distribution. Concave adaptive value esti-

mation (e.g., Godfrey and Powell (2001), Powell et al. (2004)) successively approxi-

mates the objective cost function with a sequence of piecewise linear functions. The

bootstrap method (e.g., Bookbinder and Lordahl (1989)) estimates the newsvendor

quantile of the demand distribution. The infinitesimal perturbation approach (IPA) is

a sampling-based stochastic gradient estimation technique that has been used to solve
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stochastic supply chain models (see, e.g., Glasserman (1991)). Eren and Maglaras

(2014) employed maximum entropy distributions to solve a stochastic capacity control

problem. For parametric approaches in stochastic inventory systems, see, e.g., Lar-

iviere and Porteus (1999) and Chen and Plambeck (2008) on Bayesian learning, and

Liyanage and Shanthikumar (2005) and Chu et al. (2008) on operational statistics.

Nonparametric algorithm for dynamic pricing models. There is a growing

literature on dynamic pricing problems with a demand learning approach (see, e.g,

survey papers by Aviv and Vulcano (2012) and den Boer (2015)). The majority of the

papers have adopted parametric models in which the firm knows the functional form

of the underlying demand-price function (e.g., linear, logit, exponential). Popular

approaches in this setting include Bayesian method (see, e.g., Araman and Caldentey

(2009), Farias and van Roy (2010), Harrison et al. (2012)), Maximum Likelihood

Estimation (see, e.g., Broder and Rusmevichientong (2012), den Boer (2014), den

Boer and Zwart (2014, 2015)), Least Square method (see, e.g., Bertsimas and Per-

akis (2006), Keskin and Zeevi (2014)) and Thompson Sampling method (see, e.g.,

Johnson et al. (2015)). In contrast, there are only a few papers on nonparametric

models. Besbes and Zeevi (2009, 2012) proposed simple “blind” policies to single-

product and network revenue management models. Wang et al. (2014) and Lei et al.

(2014) proposed generalized bisection search methods to produce a sequence of pric-

ing intervals that converge to the optimal static price with a high probability and also

obtained their convergence rates. On the methodological side, Broadie et al. (2011)

derived general upper bounds on the mean-squared error for the Kiefer-Wolfowitz

(KW) stochastic approximation algorithm. Closer to our work, Besbes and Zeevi

(2015) used a linear approximation scheme to estimate the demand-price function,

which gives (surprising) near-optimal performance.
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Nonparametric algorithm for joint pricing and inventory control models.

To the best of our knowledge, there have been only two papers that proposed non-

parametric learning algorithms for the joint pricing and inventory control problem.

Burnetas and Smith (2000) first developed a gradient descent type algorithm for or-

dering and pricing when inventory is perishable (i.e., without inventory carryover);

they showed that the average profit converges to the optimal one but did not estab-

lish the rate of convergence. We also note that Burnetas and Smith (2000) did not

even consider lost-sales penalty costs so they did not have the issue of not being able

to observe the realized profit value. Recently, Chen et al. (2015) proposed a non-

parametric data-driven algorithm for the joint pricing and inventory control problem

with backorders. Our work contributes to the literature by considering a counterpart

model with lost-sales and censored demand information, which is substantially harder

to analyze. This is the first attempt in the literature to the best of our knowledge.

3.1.4 Organization and General Notation

The rest of this chapter is organized as follows. In §3.2, we formally describe

our joint pricing and inventory control problem with lost-sales, and also characterize

the clairvoyant optimal policy had the demand-price relationship known a priori. In

§3.3, we propose a nonparametric data-driven algorithm called DDC under censored

demand information. In §3.4, we state our main results and provide our proof strate-

gies. The detailed proofs are deferred to the Appendix. In §3.5, we extend our model

and results to the observable demand case and also the unbounded demand case.

Throughout this chapter, for any real numbers x and y, we denote x+ = max{x, 0},

x ∨ y = max{x, y}, and x ∧ y = min{x, y}. We also use the notation bxc and dxe

frequently, where bxc is defined as the largest integer value which is smaller than or

equal to x; and dxe is the smallest integer value which is greater than or equal to x.

The notation , means “is defined as”. We use LHS and RHS to denote “left hand
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side” and “right hand side”, respectively.

3.2 Joint Pricing and Inventory Control with Lost-Sales and

Censored Demand

3.2.1 Problem Definition

We consider a periodic-review joint pricing and inventory control problem with

lost-sales (see, e.g., Chen et al. (2006), Huh and Janakiraman (2008), Song et al.

(2009)). Different from the conventional literature, the firm has no knowledge of

the true underlying demand process a priori, and can make sequential pricing and

inventory decisions only based on the past observed sales data (i.e., censored demand).

We formally describe our problem below.

Demand process. For each period t = 1, . . . , T , the demand in period t depends

on the selling price pt in period t and some random noise εt, and it is stochastically

decreasing in pt. The well-studied demand models in the literature are the additive

demand model Dt(pt) = λ(pt) + εt and the multiplicative demand model Dt(pt) =

λ(pt)εt, where λ(·) is a non-increasing deterministic function and εt, t = 1, 2, . . . , T ,

are independent and identically distributed (i.i.d.) random variables. We assume that

εt is defined on a finite support [l, u], but will later extend it to the case of unbounded

support in §3.5. We denote the CDF of εt by F (·). For notational convenience, we

use εt and ε interchangeably in this chapter, due to the i.i.d. assumption.

In this chapter we focus our attention on the additive demand model, and assume

without loss of generality that E[εt] = 0. (We remark that the analysis and results

for the multiplicative demand model are analogous.) The firm knows neither the

function λ(pt) nor the distribution of the random term εt a priori, and thus it has to

learn such demand-price information from the censored demand data collected over

time while maximizing its profit on the fly. For convenience, we shall refer to λ(·) as
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the demand-price function and εt as the random error.

System dynamics and objectives. We let xt and yt denote the inventory

levels at the beginning of period t before and after an inventory replenishment de-

cision, respectively. We assume that the system is initially empty, i.e., x1 = 0. An

admissible or feasible policy is represented by a sequence of prices and order-up-to

levels, {(pt, yt), t ≥ 1} with yt ≥ xt, where (pt, yt) depends only on the demand

and decisions made prior to time t, i.e, (pt, yt) is adapted to the filtration generated

by {(ps, ys),min {Ds(ps), ys} : s = 1, . . . , t− 1} under censored demand. We assume

yt ∈ Y = [yl, yh] and pt ∈ P = [pl, ph] with known bounded support, and λ(ph) > 0

and yh ≥ λ(pl) + u.

Given any admissible policy π, we describe the sequence of events for each period

t. (Note that xπt , yπt , pπt ’s are functions of π; for ease of presentation, we will make

their dependence on π implicit.)

(a) At the beginning of period t, the firm observes the starting inventory level xt.

(b) The firm decides to order a non-negative amount of inventory to bring the in-

ventory level up to yt ∈ Y , and also sets the selling price pt ∈ P . We assume

instantaneous replenishment.

(c) The demand Dt(pt) in period t realizes to be dt(pt), and is satisfied to the maxi-

mum extent using on-hand inventory. Unsatisfied demand is lost and unobserv-

able. In other words, the firm only observes the sales quantity min {dt(pt), yt},

instead of the full realized demand dt(pt). The state transition is xt+1 = (yt −

dt(pt))
+.

(d) At the end of period t, the firm incurs a profit of

pt min{dt(pt), yt} − b(dt(pt)− yt)+ − h(yt − dt(pt))+ (3.3)

= ptdt(pt)− (b+ pt) (dt(pt)− yt)+ − h (yt − dt(pt))+ ,
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where h and b are the per-unit holding and lost-sales penalty costs, respectively.

We assume without loss of generality that the per-unit purchasing cost is zero

(see Zipkin (2000)).

It is important to note that (3.3) is the perceived profit obtained by the firm;

the firm cannot observe its true realized value if a stockout occurs. This is because,

the lost-sales cost depends on the actual lost demand (dt(pt)− yt)+ which is not

observed. However, this term does represent a true damage to the firm and it is part

of the objective function that the firm wishes to optimize.

If the underlying demand-price function λ(p) and the distribution of the error

term εt were known and the firm could observe the lost demand, then the problem

specified above could be formulated as an optimal control problem with state variables

xt, control variables (pt, yt), random disturbances εt, and the total profit given by

max
(pt, yt) ∈ P × Y

yt ≥ xt

T∑
t=1

(
ptE[Dt(pt)]− (b+ pt)E[Dt(pt)− yt]+ − hE[yt −Dt(pt)]

+
)
. (3.4)

However, in our setting, the firm does not know the demand information a priori

and cannot observe the lost-sales quantity. Hence the firm is unable to evaluate

the objective function of this optimization problem. The firm has to learn from

historical sales data, revealing information about market responses to offered prices,

and uses the learned information to estimate the objective profit function as a basis

for optimization.

3.2.2 Clairvoyant Optimal Policy and Main Assumptions

We first characterize the clairvoyant optimal policy (as the benchmark of per-

formance), had the firm known the demand-price function λ(p) and the distribution

of ε a priori. Sobel (1981) has shown that a myopic policy is optimal. Define the
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single-period revenue function by

Q(p, y) , pE[D1(p)]− (b+ p)E[D1(p)− y]+ − hE[y −D1(p)]+. (3.5)

To find the optimal pricing and inventory decisions, it suffices to maximize the single-

period revenue Q(p, y), which is equivalent to solving

max
p∈P,y∈Y

{
pE[D1(p)]− (b+ p)E[D1(p)− y]+ − hE[y −D1(p)]+

}
= max

p∈P,y∈Y

{
pλ(p)− (b+ p)E [λ(p) + ε− y]+ − hE [y − λ(p)− ε]+

}
= max

p∈P

{
pλ(p)−min

y∈Y

{
(b+ p)E [λ(p) + ε− y]+ + hE [y − λ(p)− ε]+

}}
.

Hence we write the clairvoyant optimization problem (Opt-CV) compactly as

max
p∈P,y∈Y

Q(p, y) = max
p∈P

{
Ḡ(p, λ(p))

}
, (Opt-CV)

where Ḡ(p, λ(p)) , pλ(p)−min
y∈Y

{
(b+ p)E [λ(p) + ε− y]+ + hE [y − λ(p)− ε]+

}
.

Let the optimal solution for (Opt-CV) be (p∗, y∗).

The inner optimization problem Ḡ(p, λ(p)) determines the optimal order-up-to

level for a given price p, and the outer optimization solves for the optimal price p.

Clearly, in the clairvoyant problem, once we start below y∗, we are able to raise the

inventory level to y∗ at the beginning of all subsequent periods, and thus the expected

profit in each period is Q(p∗, y∗). This, however, is not the case when the underlying

demand process is not known a priori.

Linear approximation. Next we introduce a linear approximation of (Opt-CV)

that will be useful in developing our nonparametric algorithm. For given parameters
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α, β > 0, define the optimization problem (Approx-CV) by

max
p∈P

{
Ḡ(p, α− βp)

}
, (Approx-CV)

where Ḡ(p, α− βp)

, p(α− βp)−min
y∈Y

{
(b+ p)E [(α− βp) + ε− y]+ + hE [y − (α− βp)− ε]+

}
.

Note that (Approx-CV) replaces the demand-price function λ(p) in (Opt-CV) by its

linear approximation α−βp, which serves as an intermediate benchmark. Let p̄(α, β)

be the optimal price for Ḡ(p, α − βp) . For any fixed p ∈ P , let ȳ(p, α − βp) be the

optimal order-up-to level for Ḡ(p, α− βp).

We also conveniently write y∗ = ȳ(p∗, λ(p∗)). And, for any z ∈ P , we introduce

notation

ᾰ(z) = λ(z)− λ′(z)z and β̆(z) = −λ′(z). (3.6)

Main assumptions. We state the main assumptions for our results in §3.4 to

hold.

Assumption III.2. (i) Ḡ(p, λ(p)) is unimodal in p ∈ P.

(ii) Ḡ(p, ᾰ(z)− β̆(z)p) is strictly concave in p ∈ P for any z ∈ P.

(iii) maxz∈P

∣∣∣dp̄(ᾰ(z),β̆(z))
dz

∣∣∣ < 1.

(iv) The random error ε has a bounded support [l, u] where l ≤ u <∞.

We remark that unimodality (or quasiconcavity) of the expected profit function is

a predominant assumption in joint pricing and inventory control problems with lost-

sales (see, e.g., Chen et al. (2006), Huh and Janakiraman (2008), Song et al. (2009),

Chen et al. (2014b)). We provide sufficient conditions for a demand-price function

λ(·) to satisfy Assumption III.2 in the Appendix. Assumption III.2 admits a large

class of demand-price functions (e.g., linear, logarithmic, logit, and exponential). In
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fact, Assumption III.2(iv) can be dropped, and we defer the detailed discussion to

§3.5.

3.3 Nonparametric Data-Driven Algorithm

Without knowing both λ(p) and the underlying distribution of ε a priori, the firm

needs to experiment with prices and target inventory levels in order to collect demand

data while maximizing the profit on the fly. We propose a nonparametric algorithm,

called the Data-Driven algorithm for Censored demand (DDC for short), that strikes

a good balance between learning (exploration) and earning (exploitation). At a high

level, DDC estimates λ(p) by an affine function, and constructs an empirical error

distribution. The difficulty arises from the fact that the empirical distribution may be

biased due to inaccurate estimation of λ(p) as well as demand censoring. As a result,

DDC needs to actively explore the decision space (especially the target inventory lev-

els) whenever a stockout occurs, and also ensures that the sampling biases diminish

to zero quickly. More strikingly, the sampled optimization problem (Opt-SAA) con-

structed using demand data loses unimodality, a key property utilized in Chen et al.

(2015) to establish the desired convergence for the backorder counterpart model. To

overcome this major difficulty, we develop a sparse discretization scheme to search

for the optimal solution of (Opt-SAA) over a sparse discretized set of price points,

and then develop a uniform convergence argument between the sampled profit func-

tion and the original profit function over this sparse discretization to establish our

convergence results.

3.3.1 Data-Driven Algorithm for Censored Demands (DDC)

The DDC algorithm consists of learning stages with exponentially increasing

length. Stage i has Ii periods in total, with the first 2Li periods being the exploration

phase, and the remaining Ii−2Li periods being the exploitation phase. The algorithm
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starts with initial parameters {p̂1, ŷ1,1, ŷ1,2} where p̂1 ∈ P , ŷ1,1 ∈ Y , ŷ1,2 ∈ Y , and four

fixed parameters I0 > 0, v > 0, s > 0 and ρ > 0. For each learning stage i ≥1, we set

Ii = bI0v
ic, Li = bI

4
5
i c, δi = ρL

− 1
4

i (logLi)
1
4 , and ti =

i−1∑
k=1

Ik with t1 = 0. (3.7)

Then, stage i > 1 starts in period ti+1, and at the beginning of stage i, the algorithm

proceeds with {p̂i, ŷi,1, ŷi,2} that are derived in the preceding stage i − 1. Define a

sparse discretized set of prices for stage i as

Si = {pl, pl + δi, p
l + 2δi, . . . , p

h}, (3.8)

which is the discrete search space for our pricing decisions in stage i.

Now we are ready to present the learning algorithm DDC under censored demand.

Step 0: Preparation. Input I0, v, s, and ρ, and p̂1, ŷ1,1, ŷ1,2, δ1, I1, L1.

Then, for each learning stage i = 1, . . . , n where n =
⌈
logv

(
v−1
I0v
T + 1

)⌉
, repeat

the following steps.

Step 1: Setting prices and target levels for periods t ∈ {ti + 1, . . . , ti +

2Li} in stage i.

Set prices pt, t = ti + 1, . . . , ti + 2Li, to

pt = p̂i, for all t = ti + 1, . . . , ti + Li,

pt = p̂i + δi for all t = ti + Li + 1, . . . , ti + 2Li;

and for t = ti + 1, . . . , ti + 2Li, raise the inventory level of period t to yt as

follows:

(i) for t = ti + 1, set yt = ŷi,1 ∨ xt;
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(ii) for t = ti + 2, . . . , ti + Li,

yt =


yt−1, if yt−1 > dt−1;

((1 + s)yt−1) ∧ yh, otherwise;

(iii) for t = ti + Li + 1, set yt = ŷi,2 ∨ xt;

(iv) for t = ti + Li + 2, . . . , ti + 2Li,

yt =


yt−1, if yt−1 > dt−1;

((1 + s)yt−1) ∧ yh, otherwise.

Step 2: Estimating the demand-price function and the error term.

Since the realized demand data dt is not available in the event of stockouts, we

instead use the sales data dt ∧ yt (where t ∈ {ti + 1, . . . , ti + 2Li}), and solve

the following least-square problem

(α̂i+1, β̂i+1) = argmin

{
ti+2Li∑
t=ti+1

[
dt ∧ yt − (α− βpt)

]2
}
, and (3.9)

ηt = dt ∧ yt − (α̂i+1 − β̂i+1pt), for t ∈ {ti + 1, . . . , ti + 2Li}. (3.10)

Step 3: Maximize the proxy profit QSAA(p, y).
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We define the following sampled optimization problem (Opt-SAA).

max
(p,y)∈Si+1×Y

QSAA
i+1 (p, y) , max

p∈Si+1

{
Ĝi+1(p, α̂i+1, β̂i+1)

}
, (Opt-SAA)

where Ĝi+1(p, α̂i+1, β̂i+1) , p
(
α̂i+1 − β̂i+1p

)
−min

y∈Y

{
1

2Li

ti+2Li∑
t=ti+1

{
(b+ p)

(
α̂i+1 − β̂i+1p+ ηt − y

)+

+ h
(
y − (α̂i+1 − β̂i+1p+ ηt)

)+
}}

.

Then, set the first pair of price and inventory level to

(p̂i+1, ŷi+1,1) = arg max
(p,y)∈Si+1×Y

QSAA
i+1 (p, y),

and set the second pair to (p̂i+1 + δi+1, ŷi+1,2), where

ŷi+1,2 = arg max
y∈Y

QSAA
i+1 (p̂i+1 + δi+1, y).

In case that p̂i+1 + δi+1 6∈ Si+1, set the second price to be p̂i+1 − δi+1.

Step 4: Setting prices and target levels for periods t ∈ {ti + 2Li +

1, . . . , ti + Ii} in stage i.

For t = ti + 2Li + 1, . . . , ti + Ii, set the price and target inventory level to

pt = p̂i+1, yt = xt ∨ ŷi+1,1.

3.3.2 Algorithmic Overview of DDC

The DDC algorithm integrates active learning (exploration) and earning (exploita-

tion) in carefully designed cycles. We divide the planning horizon T into stages in-

dexed by i, i = 1, 2, . . . , n. The length of stage i is Ii, where Ii is an integer that is
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exponentially increasing in i.

Step 1: The proposed algorithm DDC uses the first two Li intervals of stage i

to actively explore the target inventory levels in order to mitigate the negative effect

caused by demand censoring. More specifically, during the first Li periods, DDC sets

the price as p̂i and the order-up-to level as ŷi,1 (which are determined by its preceding

stage i− 1). Whenever a stockout occurs, DDC carries out an upward correction by

increasing yt by some fixed percentage s > 0 for the subsequent periods. A similar

procedure is also carried out during the second Li periods. The frequency of stockouts

(and thus the upward corrections in setting target inventory levels) will decrease as

Li grows. Note that Chen et al. (2015) need not actively explore the inventory space

in the backorder setting where all demand observations are uncensored.

During the active exploration phase, the target inventory levels may exceed the

optimal inventory level. This is very different than Huh et al. (2011) and Besbes

and Muharremoglu (2013) attempting to settle the order-up-to level around the true

quantile solution of the newsvendor problem. Note that they consider a much sim-

pler problem without pricing decisions and no inventory carryovers (the so-called

“repeated” newsvendor problem), and hence need not learn the demand-price func-

tion. In our setting, the unobservable lost-sales data contain important information

about the demand-price function, which is critical for making future pricing decisions.

Second, DDC also experiments with prices during the exploration phase. More

specifically, DDC uses p̂i during the first Li periods where p̂i is the optimal pricing

decision based on the current belief about the demand-price function. Then DDC

perturbs p̂i by δi during the second Li periods, so that the demand data collected at

these two (nearby) price points can be used to carry out an affine estimation of the

demand-price function using the least-square method in Step 2.

Step 2: The proposed algorithm DDC utilizes the sales information dt ∧ yt col-

lected from the 2Li periods (since the true demand data dt is not available in the
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events of stockouts) to estimate the linear approximation of λ(p) via the least-square

method, and also to compute the residual error ηt. This step resembles Besbes and

Zeevi (2015) in the dynamic pricing setting but in their problem the firm can al-

ways observe the complete demand data dt and they need not estimate the random

error εt, which is critical in our inventory setting. Our problem is more challenging

for the following two reasons. First, the firm can only use the observable sales data

(truncated demand data) to carry out the least-square estimation. Second, it is cru-

cial to realize that ηt is not a true sample of εt, because the linear approximation

α̂i+1 − β̂i+1pt 6= λ(pt) and thus ηt = dt ∧ yt − (α̂i+1 − β̂i+1pt) 6= dt − λ(pt) = εt.

This poses significant challenges in estimating the distribution of the random error

ε (when setting target inventory levels). In the traditional SAA approach (e.g., Levi

et al. (2007)), true samples of a random variable are employed to construct its em-

pirical distribution, and results are developed to show how many samples are needed

for the empirical distribution to achieve a certain degree of accuracy. However, in

our setting, true samples of εt are never available, because the demand-price function

λ(·) is unknown, and the lost-sales quantity is censored. Therefore, the conventional

SAA techniques cannot be applied to tackle our problem. Alternatively, our strategy

at a high-level is to prove that, as i grows, α̂i+1 − β̂i+1p approaches the tangent line

of λ(p) at point p̂i, and the residual error ηt converges to εt with a high probability.

Step 3: The proposed algorithm DDC computes two new pairs of decisions,

(p̂i+1, ŷi+1,1) and (p̂i+1+δi+1, ŷi+1,2) using the sampled optimization problem (Opt-SAA).

Note that (Opt-SAA) resembles (Opt-CV) except that (i) λ(p) is replaced by a linear

estimation α̂i+1 − β̂i+1p, and (ii) the terms in the objective function involving εt are

replaced by either empirical average or quantile of ηt. It is important to note that

both (α̂i+1, β̂i+1) and ηt are computed using the sales data (i.e., censored demand

realizations), thereby suffering from (downward) estimation bias. To correct such es-

timation bias, our strategy at a high-level is to show that the frequency of stockouts
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drops as i grows, and the downward bias in estimating the terms involving λ(p) and

εt diminishes to zero. This challenge did not exist in Chen et al. (2015).

The most critical difference from its backorder counterpart model studied in Chen

et al. (2015) is that the estimated (sampled) proxy profit function in (Opt-SAA) after

minimizing over y ∈ Y is multimodal in p in the lost-sales setting, which stands as

our major technical hurdle in the performance analysis of DDC (see Figure 3.2 for

a simpler setting). To this end, we develop a new sparse discretization technique to

jointly learn and optimize a multimodal function. More precisely, the optimization

of (Opt-SAA) is conducted over a sparse discretized set of prices Si+1, instead of

the original continuous set P . The sparsity is on the order of T
1
5 . We then develop

a uniform convergence argument between the sampled objective function and the

original objective function over Si+1, which is essential for obtaining the convergence

in policy and the corresponding convergence rate. Optimizing a multimodal function

on a sparse discrete set of price points significantly reduces the computational burden,

and also makes the performance analysis tractable.

Step 4: In this exploitation phase, the proposed algorithm DDC implements the

first pair of decisions (p̂i+1, ŷi+1,1) throughout the remaining Ii− 2Li periods in stage

i (the earning phase). Note that (p̂i+1, ŷi+1,1) is optimal for the sampled optimization

problem (Opt-SAA) in stage i.

3.3.3 Linear Approximation of (Opt-SAA), and Regularity Conditions

To analyze the performance of DDC, we need to compare the sampled problem

(Opt-SAA) with the clairvoyant’s problem (Opt-CV). However, the direct compari-

son or cost amortization between these two optimization problems are difficult. To

alleviate such problem, we introduce two bridging optimization problems that serve

as our intermediate benchmarks, with one already defined by (Approx-CV) replacing

the demand-price function λ(p) in (Opt-CV) by its linear approximation α− βp. We
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now define the other bridging problem (Approx-SAA) as follows.

max
p∈Si+1

{
G̃i+1(p, α− βp)

}
, (Approx-SAA)

where G̃i+1(p, α− βp) , p (α− βp)

−min
y∈Y

{
1

2Li

ti+2Li∑
t=ti+1

{
(b+ p) (α− βp+ ε̃t − y)+ + h (y − (α− βp+ ε̃t))

+}},
where the truncated random error ε̃t is defined by

ε̃t , dt ∧ yt − λ(pt), t ∈ {ti + 1, . . . , ti + 2Li}, (3.11)

It is clear that the truncated random error ε̃t = εt only when dt ≤ yt. Let p̃i+1(α, β)

be the optimal price for G̃i+1(p, α− βp), and for any fixed p ∈ P , let ỹi+1(p, α− βp)

be the optimal order-up-to level for G̃i+1(p, α− βp).

We have now established four key optimization problems needed to carry out our

performance analysis, i.e., (Opt-CV), (Approx-CV), (Approx-SAA) and (Opt-SAA),

in the order of requiring less and less demand information. The optimization problem

(Opt-CV) assumes that the firm knows both the demand-price function λ(p) and the

distribution of ε, so the expectations can be readily computed. In (Approx-CV), the

firm does not know λ(p) and instead uses a linear function α−βp as a proxy to λ(p).

However, the distribution of ε is still available information. In (Approx-SAA), the

firm knows neither λ(p) nor the distribution of ε, but it could hypothetically access

the truncated samples of εt (which does not incur the estimation error of λ(p)). Thus

in addition to using a linear function α − βp as a proxy to λ(p), the firm evaluates

the expectations using truncated sample averages of ε in (Approx-SAA). Finally in

(Opt-SAA), the firm estimates the coefficients of the linear demand-price function

using historical censored demand data, and uses the (biased) residual errors ηt in

place of the true random errors εt to construct the sample averages. The caveat here
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is that the estimated α̂i+1, β̂i+1 from random demand realizations are random and

subject to estimation errors, and so are the residual errors ηt.

We end this subsection by listing some mild regularity conditions for our results

to hold.

(a) We assume Lipschitz condition for the single-period profit function Q(p, y) in

(3.5) on p ∈ P and y ∈ Y , i.e., there exists some constant K1 > 0 such that for

any p1, p2 ∈ P and y1, y2 ∈ Y ,

|Q(p1, y1)−Q(p2, y2)| ≤ K1 (|p1 − p2|+ |y1 − y2|) . (3.12)

We also assume Lipschitz conditions for ȳ(q, λ(q)) and ȳ
(
p, ᾰ(q)−β̆(q)p

)
on q ∈ P

for any fixed p ∈ P , i.e., there exists some constant K2 > 0 such that for any

q1, q2 ∈ P ,

|ȳ(q1, λ(q1))− ȳ(q2, λ(q2))| ≤ K2 |q1 − q2| , (3.13)∣∣∣ȳ(p, ᾰ(q1)− β̆(q1)p
)
− ȳ
(
p, ᾰ(q2)− β̆(q2)p

)∣∣∣ ≤ K2 |q1 − q2| . (3.14)

(b) The function Q(p, ȳ(p, λ(p))) has a bounded second-order derivative with respect

to p ∈ P .

(c) The probability density function f(·) of ε satisfies r = min{f(x), x ∈ [l, u]} > 0.

3.3.4 Numerical Experiment

An important question is how well the DDC algorithm performs computationally.

We conduct a numerical study on its empirical performance, and present the numerical

results below. The demand-price function is exponential, i.e., λ(p) = e5.5−0.1p. The

input parameters are initialized as follows: pl = 0, ph = 20, yl = 0, yh = 120, I0 =

2, v = 1.2, s = 0.1, ρ = 1, the starting price is p̂1 = 5 and the starting target inventory
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levels ŷ1,1 = 80 and ŷ1,2 = 85. We tested uniform and truncated normal random

errors ε, given by

i) Uniform distribution on [-2.5, 2.5];

ii) Uniform distribution on [-5, 5];

iii) Truncated Normal distribution with mean 0 and standard deviation 1 on [-2.5,

2.5];

iv) Truncated Normal distribution with mean 0 and standard deviation 1 on [-5,

5].

And the cost parameters tested are b ∈ {2, 10, 20} and h ∈ {1, 2}.

We measure the performance of DDC by the percentage of profit loss per period,

compared with the clairvoyant optimal profit, defined by

Q(p∗, y∗)− 1
T
E
[∑T

t=1Q(pt, yt)
]

Q(p∗, y∗)
× 100%.

The results are averaged over 500 time periods and summarized in Table 3.1.

It can be seen from Table 3.1 that when T = 10, the regret is as high as 73.85%.

When T = 100, the average regret is reduced to 8.69%, and then to 1.57% when

T = 1000. Our numerical results show that DDC quickly converges to the clairvoyant

optimal solution in computation.

3.4 Main Results and Performance Analysis

The average regret R(π, T ) of a policy π is defined as the average profit loss per

period compared with the clairvoyant optimal solution, given by

R(π, T ) = Q(p∗, y∗)− 1

T
E

[
T∑
t=1

Q(pt, yt)

]
. (3.15)
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T=10 T=30 T=100 T=300 T=1000 T=3000 T=10000

U[-2.5, 2.5]

h=1
b=2 35.92 12.54 4.34 1.85 0.90 0.58 0.39
b=10 64.15 22.01 7.19 2.77 1.14 0.62 0.39
b=20 99.57 33.90 10.73 3.94 1.48 0.71 0.39

h=2
b=2 36.03 12.78 4.59 2.09 1.23 0.92 0.67
b=10 64.37 22.28 7.38 2.95 1.42 0.94 0.66
b=20 99.81 34.12 10.88 4.12 1.70 0.99 0.66

U[-5, 5]

h=1
b=2 35.90 13.73 6.41 3.66 1.82 1.04 0.61
b=10 64.13 23.31 9.39 4.51 2.07 1.09 0.61
b=20 99.54 35.07 13.01 5.73 2.43 1.18 0.61

h=2
b=2 35.91 13.83 6.59 3.81 2.05 1.32 0.87
b=10 64.16 23.25 9.44 4.63 2.24 1.35 0.86
b=20 99.80 35.34 13.02 5.77 2.52 1.43 0.87

N(0, 1) on [-2.5, 2.5]

h=1
b=2 43.36 15.03 4.88 1.93 0.89 0.56 0.37
b=10 78.07 26.65 8.38 3.08 1.20 0.64 0.39
b=20 121.67 41.23 12.76 4.52 1.62 0.75 0.41

h=2
b=2 43.40 15.26 5.15 2.20 1.24 0.91 0.64
b=10 78.14 26.82 8.58 3.30 1.50 0.96 0.65
b=20 121.87 41.48 12.94 4.71 1.87 1.05 0.67

N(0, 1) on [-5, 5]

h=1
b=2 43.23 14.98 4.89 1.93 0.89 0.56 0.37
b=10 78.12 26.65 8.39 3.10 1.21 0.64 0.39
b=20 121.72 41.30 12.80 4.54 1.62 0.76 0.41

h=2
b=2 43.43 15.29 5.18 2.19 1.23 0.90 0.64
b=10 78.24 26.87 8.59 3.30 1.51 0.97 0.66
b=20 121.93 41.49 12.96 4.73 1.88 1.05 0.67

average 73.85 25.63 8.69 3.56 1.57 0.91 0.58
maximum 121.93 41.49 13.02 5.77 2.52 1.43 0.87

Table 3.1: Percentage of Profit Loss (%)

We are now ready to present the main results of this chapter.

Theorem III.3. (Convergence of Decisions) Under Assumption III.2, for the

joint pricing and inventory control problem with lost-sales and censored demand, the

DDC algorithm satisfies

(a) pt → p∗ in probability as t→∞;

(b) yt → y∗ in probability as t→∞.

The above result asserts that the pricing and inventory decisions of DDC converge

to the clairvoyant optimal solution (p∗, y∗) in probability under censored demand. The

next result shows that the average regret of DDC converges to zero with a provable

convergence rate.

Theorem III.4. (Convergence Rate of Regret) Under Assumption III.2, for the

joint pricing and inventory control problem with lost-sales and censored demand, there
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exists a constant K0 > 0 such that the average regret of the DDC policy satisfies

R(DDC, T ) ≤ K0 · T−
1
5 (log T )

1
4 . (3.16)

To the best of our knowledge, Theorems III.3 and III.4 provide the first asymptotic

analysis on the joint pricing and inventory control problem with lost-sales and cen-

sored demand information, which significantly departs from its backorder counterpart

model recently studied by Chen et al. (2015) in a number of ways (that are explicitly

summarized in §3.1.2). We refer the readers to the detailed discussions in §3.3.2 (algo-

rithmic design) and §3.4.1–§3.4.3 (technical analysis) for the key differences between

our work and Chen et al. (2015). In particular, we explain the high-level ideas of the

sparse discretization scheme, and the key factors that affect the above convergence

rate in §3.4.1.

We also remark that traditional nonparametric approaches have been well studied

in the literature of stochastic optimization, such as stochastic approximation (see

Kiefer and Wolfowitz (1952a), Robbins and Monro (1951), Nemirovski et al. (2009)

and references therein), online convex optimization (see Zinkevich (2003), Hazan

et al. (2006), Hazan (2015) and references therein), and continuum-armed bandit

algorithms (Auer et al. (2007), Kleinberg (2005), Cope (2009) and references therein).

Many papers have adapted some of these ideas and techniques to the inventory and/or

pricing settings (see, e.g., Burnetas and Smith (2000), Levi et al. (2007), Huh and

Rusmevichientong (2009)). However, these standard approaches cannot be applied or

adapted to establish convergence guarantees of our problem. The key reason is that

in our setting the firm can observe neither the realized profit (because the lost-sales

quantity, thus also the lost-sales cost, is unobservable), nor the realized derivatives of

profit function (because the demand-price function is not known).

Remark on the convergence rate. We first give an intuitive explanation on the
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Figure 3.3: β = 0.52 Figure 3.4: β = 0.54

key factor that affects the convergence rate, and will present a more technical discus-

sion in §3.4.1. Figure 3.3 shows the same sampled objective function as in Example

III.1, with parameters α = 2.944 and β = 0.52, and the global optimal solution is

p = 3.4. Now we slightly perturb β to 0.54 (while holding all other parameters fixed),

then the global optimal solution shifts drastically to p = 2.45 as depicted in Figure

3.4. This shows that even a slight perturbation in the parameters α and β can lead

to a dramatic change in the global optimal solution (jumping from one region/piece

of the multimodal function to another). In light of this simple numerical example of

Ĝi+1 in (Opt-SAA), it is clear that the convergence in parameters (i.e., α̂i+1 → ᾰ(p∗)

and β̂i+1 → β̆(p∗)) does not guarantee the convergence in the pricing decision (i.e.,

p̂i+1 → p∗). We note that this convergence is satisfied (and needed) in both Besbes

and Zeevi (2015) (see Condition 3 of their Appendix A) and Chen et al. (2015) as

their optimal solution of Ĝi+1 is Lipschitz in (α, β). In these papers, the proxy ob-

jective function Ĝi+1 is unimodal, and hence this “region switching phenomenon” of

the optimal solution does not occur, and establishing the convergence in parameters

guarantees the convergence in the pricing decision. Unfortunately, this is not true in

the lost-sales model, and we will establish a uniform convergence argument through

a sparse discretization technique in §3.4.1, which results in the final regret rate in
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Theorem III.4.

For the remainder of §3.4, we shall outline the main steps, ideas and techniques

developed for the proofs of Theorems III.3 and III.4. We will also explain in details

the key differences between this chapter and the closely related works, e.g., Besbes

and Zeevi (2015) and Chen et al. (2015).

3.4.1 Key Ideas in Proving the Convergence of Pricing Decisions

We first discuss the key ideas and steps in proving Theorem III.3(a). It suffices

to show E[(p̂i+1 − p∗)2] → 0, since convergence in L2-norm implies convergence in

probability.

Using p̄
(
ᾰ(p̂i), β̆(p̂i)

)
from (Approx-CV) as an intermediate benchmark, we have

(p̂i+1 − p∗)2 ≤

∣∣∣p∗ − p̄(ᾰ(p̂i), β̆(p̂i)
)∣∣∣︸ ︷︷ ︸

Proposition III.5

+
∣∣∣p̄(ᾰ(p̂i), β̆(p̂i)

)
− p̂i+1

∣∣∣︸ ︷︷ ︸
Proposition III.6


2

. (3.17)

In the following, we develop upper bounds for the two terms on the RHS of (3.17).

Proposition III.5. There exists some real number γ ∈ [0, 1) such that, for any

p̂i ∈ P,

∣∣∣p∗ − p̄(ᾰ(p̂i), β̆(p̂i)
)∣∣∣ ≤ γ |p∗ − p̂i| . (3.18)

The proof of Proposition III.5 uses the same contraction mapping argument given

in Besbes and Zeevi (2015). The key point is to establish p∗ = p̄
(
ᾰ(p∗), β̆(p∗)

)
,

which shows that p∗ is a fixed point of p̄
(
ᾰ(z), β̆(z)

)
as a function of z. By further

showing bounded derivative |dp̄
(
ᾰ(z), β̆(z)

)
/dz| < 1 under Assumption III.2(iii), we

then obtain the desired result by contraction mapping. This result links the optimal

solutions of (Opt-CV) and (Approx-CV) with parameters ᾰ(p̂i) and β̆(p̂i). We remark

that Proposition III.5 is the only technical result in which we followed the proof
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techniques of Besbes and Zeevi (2015), and all subsequent analysis in this chapter

requires new ideas.

We now develop an upper bound for the second term on the RHS of (3.17), which

is one of the most critical results in our analysis. It bridges between (Approx-CV)

and (Opt-SAA).

Proposition III.6. There exist positive constants KP2
1 and KP2

2 such that, for any

p̂i ∈ P,

P
{∣∣∣p̄(ᾰ(p̂i), β̆(p̂i)

)
− p̂i+1

∣∣∣ ≥ KP2
1 L

− 1
8

i (logLi)
1
8

}
≤ KP2

2 L
− 7

4
i (logLi)

− 1
4 . (3.19)

The difficulty of establishing Proposition III.6 arises because the two sampled

proxy objective functions G̃i+1 in (Approx-SAA) and Ĝi+1 in (Opt-SAA) lose uni-

modality, a key feature in the lost-sales problem. In contrast, G̃i+1 and Ĝi+1 are both

unimodal in the backorder counterpart problem studied by Chen et al. (2015), and

their proof strategy is to establish the “parameter” convergence, i.e., α̂i+1 → ᾰ(p̂i) and

β̂i+1 → β̆(p̂i), which can be used to guarantee the convergence of p̂i+1 → p̃i+1 → p̄.

However, this scheme of “parameter” convergence does not translate to “solution”

convergence in the lost-sales case where unimodality is no longer preserved. This

implies that we need to compare between proxy functions Ḡ, G̃i+1, and Ĝi+1 from

(Approx-CV), (Approx-SAA) and (Opt-SAA) directly. The two intermediate results

below (Lemmas III.7 and III.8) show that, for any fixed price p ∈ P , the two random

proxy functions G̃i+1 and Ĝi+1 are very close to Ḡ with a high probability.

Lemma III.7. There exists some positive constant KL1
1 such that, for any given α,

β, and p ∈ P,

P
{∣∣∣Ḡ (p, α− βp)− G̃i+1 (p, α− βp)

∣∣∣ > KL1
1 L

− 1
2

i (logLi)
1
2

}
≤ 4L−4

i . (3.20)

101



In the function Ḡ (p, α− βp) the distribution of ε is known and the expectation

can be taken, whereas in the function G̃i+1 (p, α− βp) the expectation is replaced

with the sample average of the sales data (i.e., truncated demand realizations), which

suffers from (downward) estimation bias. In the proof of Lemma III.7, we show that

the frequency of stockout (resulting in truncated demand realizations) decreases as

Li grows, and the estimation bias diminishes to zero as i grows.

Lemma III.8. There exists a positive constant KL2
1 such that, for any given p ∈ P,

P
{∣∣∣G̃i+1

(
p, ᾰ(p̂i)− β̆(p̂i)p

)
− Ĝi+1

(
p, α̂i+1, β̂i+1

)∣∣∣ ≥ KL2
1 L

− 1
4

i (logLi)
1
4

}
≤ 24L−2

i .

There are two main differences between G̃i+1 and Ĝi+1. First, G̃i+1 is constructed

using the truncated random error ε̃t defined in (3.11), whereas Ĝi+1 is constructed

using the residual error ηt defined in (3.10). (Note that both ε̃t and ηt are used to

estimate the true random error εt, and both of them suffer from the estimation error

due to demand censoring. The difference is that ηt also suffers from the estimation

error of λ(·) while ε̃t does not.)

Second, G̃i+1 involves the parameters ᾰ(p̂i) and β̆(p̂i), whereas Ĝi+1 involves the

parameters α̂i+1 and β̂i+1. To compare G̃i+1 and Ĝi+1, we first make a simple yet

key observation: since λ(p) = ᾰ(p)− β̆(p)p for any p ∈ P , we can therefore write the

truncated random error ε̃ in G̃i+1 and the residual error ηt in Ĝi+1 as

ε̃t = dt ∧ yt − λ(p̂i) = dt ∧ yt − (ᾰ(p̂i)− β̆(p̂i)p̂i), (3.21)

ηt = dt ∧ yt − (α̂i+1 − β̂i+1p̂i), (3.22)

which suggests that the difference between ε̃t and ηt can be bounded by the difference

between the associated parameters (ᾰ(p̂i), β̆(p̂i)) and (α̂i+1, β̂i+1).We then show that

both α̂i+1 → ᾰ(p̂i) and β̂i+1 → β̆(p̂i) in probability as i grows to obtain the desired

result.
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Sparse discretization scheme. To obtain the convergence of prices in Propo-

sition III.6, we need to establish that Ḡ and Ĝi+1 are uniformly close (with a high

probability) across the continuous price set P (see Figure 3.5).

Definition III.9 (Uniform Closeness). We say two functions g1(·) and g2(·) are

uniformly close to each other over a domain M, if there exist some (small) con-

stants η > 0 and δ > 0 such that the maximum deviation in their objective val-

ues over M is bounded by η with a (high) probability no less than 1 − δ, i.e.,

P (maxx∈M |g1(x)− g2(x)| ≤ η) ≥ 1− δ.

Establishing uniform closeness between two functions over a continuous domain is

a very challenging task, because one of them, the sampled objective function Ĝi+1 in

(Opt-SAA), is multimodal and ill-structured. Moreover, the number of local maxima

increases when more demand data points are used to construct the sampled objective

function Ĝi+1.

To facilitate our performance analysis, we develop a sparse discretization scheme

to jointly learn and optimize the multimodal profit function in (Opt-SAA). The

basic idea is to carefully identify a sparse discrete set of pricing points (also referred

to as the grid), and show that the sampled objective function Ĝi+1 (multimodal) is

uniformly close to the linear approximated objective function Ḡ (concave) over this

grid (see (3.23)). We then exploit the strict concavity property of Ḡ to establish the

desired convergence in price on the original continuous set of prices.

The choice of sparsity is delicate and non-trivial when constructing such a grid

Si+1. We keep two factors in check: (1) Is the grid Si+1 sparse enough so that Ĝi+1

is uniformly close to Ḡ over the discrete domain Si+1? The more sparse the grid is,

the less outliers there will be on Ĝi+1 that are far away from Ḡ. (2) Is the grid Si+1

dense enough to guarantee the solution accuracy, i.e., is the optimal price of Ĝi+1 on

the grid Si+1 close enough to the true optimal price on the original continuous set P?

It turns out that the optimal choice of Si+1 is given by (3.8), since the chosen step
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Figure 3.5: Sparse discretization and uniform closeness

size δi+1 in (3.7) perfectly balances between the aforementioned two factors, yielding

the best convergence results under this sparse discretization framework. Note that

the number of price points in Si+1 is

ph − pl

δi+1

=

(
ph − pl

ρ

)
L

1
4
i+1(logLi+1)−

1
4 ≤

(
ph − pl

ρ

)
I

1
5
i+1 ≤

(
ph − pl

ρ

)
T

1
5 .

If, say, the planning horizon T = 105, the algorithm only needs to check no more

than (ph − pl)/ρ × 10 price points for each stage. Moreover, the number of stages

n ∼ log T = 5 log(10). As a result, our proposed algorithm DDC is computationally

very efficient.

Using Lemmas III.7 and III.8, we first obtain the uniform closeness result (between

Ḡ and Ĝi+1) only on the sparse grid Si+1, i.e., for any p ∈ Si+1, we will show

P
{∣∣∣Ḡ(p, ᾰ(p̂i)− β̆(p̂i)p

)
− Ĝi+1

(
p, α̂i+1, β̂i+1

)∣∣∣ ≥ KP2
3 L

− 1
4

i (logLi)
1
4

}
≤ 28L−2

i ,

which leads to

P
{

max
p∈Si+1

∣∣∣Ḡ(p, ᾰ(p̂i)− β̆(p̂i)p
)
− Ĝi+1

(
p, α̂i+1, β̂i+1

)∣∣∣ ≥ KP2
3 L

− 1
4

i (logLi)
1
4

}
(3.23)

≤ 28L−2
i

(
ph − pl

δi+1

)
≤ KP2

2 L
− 7

4
i (logLi)

− 1
4 ,
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which says that Ḡ and Ĝi+1 are uniformly close on the grid Si+1 (see Figure 3.5).

Figure 3.6: Choosing ¯̄p to be the closet point on the grid to p̄, and also on the same
side as p̂ (relative to p̄)

Since the uniform closeness result (3.23) is only established on the grid but the

optimal price p̄ for Ḡ in (Approx-CV) may not lie on the grid, we then choose an

auxillary price point ¯̄p ∈ Si+1 that is the closest point on the grid to p̄ and also lies

on the same side as p̂i+1 relative to p̄ (see Figure 3.6). Because both ¯̄p and p̂i+1 lie on

the grid, we can then apply (3.23) to obtain

P
{
Ḡ(¯̄p, ᾰ(p̂i)− β̆(p̂i)¯̄p)− Ḡ(p̂i+1, ᾰ(p̂i)− β̆(p̂i)p̂i+1) ≤ 2KP2

3 L
− 1

4
i (logLi)

1
4

}
(3.24)

≥ 1−KP2
2 L

− 7
4

i (logLi)
− 1

4 .

We then show, by strict concavity of Ḡ, that there exists some positive number m > 0

such that

Ḡ(¯̄p, ᾰ(p̂i)− β̆(p̂i)¯̄p)− Ḡ(p̂i+1, ᾰ(p̂i)− β̆(p̂i)p̂i+1) ≥ m(¯̄p− p̂i+1)2. (3.25)

Combining (3.24) and (3.25), there exists some constant KP2
4 > 0 such that

P
{
| ¯̄p− p̂i+1| ≤ KP2

4 L
− 1

8
i (logLi)

1
8

}
≥ 1−KP2

2 L
− 7

4
i (logLi)

− 1
4 . (3.26)
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By our choice of ¯̄p and the property of δi+1, we have

|p̄− ¯̄p| ≤ δi+1. (3.27)

Combining (3.26) and (3.27), we obtain the desired result

P
{
|p̄− p̂i+1| ≤ KP2

1 L
− 1

8
i (logLi)

1
8

}
≥ 1−KP2

2 L
− 7

4
i (logLi)

− 1
4 .

Remark. To obtain the convergence rate of p̂i+1 to p∗, we need to bound the dif-

ference between p̂i+1 and p̄. Due to the multimodality of the sampled proxy function

Ĝi+1 in (Opt-SAA), a discretized search space is designed to show that |p̄ − p̂i+1| ≤

O
(
L
− 1

8
i (logLi)

1
8

)
with a high probability, which largely determines the final regret

rate of T−
1
5 (log T )

1
4 in Theorem III.4. We note that, because of the multimodality of

Ĝi+1, the above regret rate is the tightest possible under our current sparse discretiza-

tion approach. In contrast, for the backorder counterpart model studied in Chen et al.

(2015), the corresponding functions Ḡ and Ĝi+1 are both concave, and thus their op-

timal prices p̄ with p̂i+1 can be directly compared, which leads to a lower (in fact best

possible) final regret rate of T−
1
2 in their Theorem 2.

Now we are ready to prove Theorem III.3(a).

Proof of Theorem III.3(a). Using Proposition III.5 and some simple algebra, for

some constant KT1
1 ,

E
[
(p∗ − p̂i+1)2

]
≤ E

[( ∣∣∣p∗ − p̄(ᾰ(p̂i), β̆(p̂i)
)∣∣∣+

∣∣∣p̄(ᾰ(p̂i), β̆(p̂i)
)
− p̂i+1

∣∣∣ )2]
≤ E

[(
γ|p∗ − p̂i|+

∣∣∣p̄(ᾰ(p̂i), β̆(p̂i)
)
− p̂i+1

∣∣∣ )2]
≤

(
1 + γ2

2

)
E
[
(p∗ − p̂i)2

]
+KT1

1 E
[∣∣∣p̄(ᾰ(p̂i), β̆(p̂i)

)
− p̂i+1

∣∣∣2] .
(3.28)
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By Proposition III.6, we have

P
{∣∣∣p̄(ᾰ(p̂i), β̆(p̂i)

)
− p̂i+1

∣∣∣2 ≥ (KP2
1 )2L

− 1
4

i (logLi)
1
4

}
≤ KP2

2 L
− 7

4
i (logLi)

− 1
4 , (3.29)

It follows from (3.29) and the fact that p̄ and p̂i+1 are bounded, that

E
[∣∣∣p̄(ᾰ(p̂i), β̆(p̂i)

)
− p̂i+1

∣∣∣2] ≤ KT1
2 L

− 7
4

i (logLi)
− 1

4 +KT1
3 L

− 1
4

i (logLi)
1
4

≤ KT1
4 L

− 1
4

i (logLi)
1
4 . (3.30)

Substituting (3.30) into (3.28), we have that for 1+γ2

2
< 1,

E
[
(p∗ − p̂i+1)2

]
≤
(

1 + γ2

2

)
E
[
(p∗ − p̂i)2

]
+KT1

5 L
− 1

4
i (logLi)

1
4 . (3.31)

Letting 1+γ2

2
= θ, we further obtain that

E
[
(p̂i+1 − p∗)2

]
≤ θi(p̂1 − p∗)2 +KT1

6

i−1∑
j=0

θjL
− 1

4
i−j(logLi−j)

1
4 ≤ KT1

7 i
1
4 (v−

1
5 )i

i∑
j=0

θj(v
1
5 )j.

(3.32)

By choosing v > 1 satisfying θv
1
5 < 1, there exists a positive constant KT1

8 such that∑i
j=0 θ

j(v
1
5 )j ≤ KT1

8 . This implies that for some constants KT1
9 and KT1

10 , we have

E
[
(p̂i+1 − p∗)2

]
≤ KT1

9 i
1
4 (v−

1
5 )i ≤ KT1

10 L
− 1

4
i (logLi)

1
4 → 0, as i→∞. (3.33)

Moreover, for some positive constant KT1
11 , we have

E
[
(p̂i+1 + δi+1 − p∗)2

]
≤ 2E

[
(p̂i+1 − p∗)2

]
+ 2δ2

i+1 ≤ KT1
11 L

− 1
4

i (logLi)
1
4 → 0, as i→∞.

(3.34)

107



This completes the proof of Theorem III.3(a). �

3.4.2 Key Ideas in Proving the Convergence of Inventory Decisions

We next elaborate on the proof of Theorem III.3(b).

For any fixed p ∈ P , recall that ȳ(p, λ(p)) and ȳ(p, α−βp) are optimal order-up-to

levels for problems (Opt-CV) and (Approx-CV), respectively. By using the fact that

y∗ = ȳ
(
p∗, λ(p∗)),

E
[∣∣y∗ − ŷi+1,1

∣∣2] ≤ E
[(∣∣∣ȳ(p∗, λ(p∗)

)
− ȳ(p̂i+1, λ(p̂i+1))

∣∣∣+
∣∣∣ȳ(p̂i+1, λ(p̂i+1))− ŷi+1,1

∣∣∣︸ ︷︷ ︸
Proposition III.10

)2]
.

(3.35)

It follows from (3.13) that there exists some positive constant K2 such that

∣∣∣ȳ(p∗, λ(p∗)
)
− ȳ
(
p̂i+1, λ(p̂i+1)

)∣∣∣ ≤ K2 |p∗ − p̂i+1| . (3.36)

Thus, it suffices to bound the second term on the RHS of (3.35), which is more

involved.

Proposition III.10. There exists some positive constant KP3
1 such that,

E
[
(ȳ(p̂i+1, λ(p̂i+1))− ŷi+1,1)2

]
≤ KP3

1 L
− 1

4
i (logLi)

1
4 . (3.37)

We provide some high-level ideas of proving Proposition III.10. By definitions of

ᾰ and β̆, we have

ȳ(p̂i+1, λ(p̂i+1)) = ȳ(p̂i+1, ᾰ(p̂i+1)− β̆(p̂i+1)p̂i+1).
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Then it follows that

E
[∣∣ȳ(p̂i+1, λ(p̂i+1))− ŷi+1,1

∣∣2]
≤ E

[(∣∣∣ȳ(p̂i+1, ᾰ(p̂i+1)− β̆(p̂i+1)p̂i+1)− ȳ(p̂i+1, ᾰ(p̂i)− β̆(p̂i)p̂i+1)
∣∣∣

+
∣∣∣ȳ(p̂i+1, ᾰ(p̂i)− β̆(p̂i)p̂i+1)− ỹi+1(p̂i+1, ᾰ(p̂i)− β̆(p̂i)p̂i+1)

∣∣∣︸ ︷︷ ︸
Lemma III.11

+
∣∣∣ỹi+1(p̂i+1, ᾰ(p̂i)− β̆(p̂i)p̂i+1)− ŷi+1,1

∣∣∣︸ ︷︷ ︸
Lemma III.12

)2]
. (3.38)

For the first term on the RHS of (3.38), by (3.14), there exists some positive constant

K2 such that

∣∣∣ȳ(p̂i+1, ᾰ(p̂i+1)− β̆(p̂i+1)p̂i+1

)
− ȳ
(
p̂i+1, ᾰ(p̂i)− β̆(p̂i)p̂i+1

)∣∣∣ (3.39)

≤ K2 |p̂i+1 − p̂i| ≤ K2

(
|p∗ − p̂i|+ |p∗ − p̂i+1|

)
.

We then focus on the second and third terms on the RHS of (3.38) that both involve

the optimal solution ỹi+1

(
p̂i+1, ᾰ(p̂i)− β̆(p̂i)p̂i+1

)
for (Approx-SAA).

Lemma III.11. There exists some positive constant KL3
1 such that, for any p̂i, p̂i+1 ∈

P,

P
{ ∣∣∣ȳ(p̂i+1, ᾰ(p̂i)− β̆(p̂i)p̂i+1

)
− ỹi+1

(
p̂i+1, ᾰ(p̂i)− β̆(p̂i)p̂i+1

)∣∣∣ ≥ KL3
1 L

− 1
2

i (logLi)
1
2

}
≤ 2L−1

i .

For any given price p̂i+1 and parameters ᾰ(p̂i) and β̆(p̂i), the inventory decision

ȳ
(
p̂i+1, ᾰ(p̂i)− β̆(p̂i)p̂i+1

)
is the optimal solution for the inner newsvendor problem in

(Approx-CV), which is a quantile solution of distribution F (·). On the other hand,

ỹi+1

(
p̂i+1, ᾰ(p̂i) − β̆(p̂i)p̂i+1

)
is computed using truncated random error ε̃t, which is

the (downward biased) empirical newsvendor solution. To correct such estimation

bias and prove Lemma III.11, we first compare ỹi+1

(
p̂i+1, ᾰ(p̂i)− β̆(p̂i)p̂i+1

)
with the
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unbiased empirical newsvendor solution (assuming uncensored demand data within

[ti + 1, ti + 2Li] were available), and then compare this intermediate solution with

ȳ
(
p̂i+1, ᾰ(p̂i)− β̆(p̂i)p̂i+1

)
.

Lemma III.12. There exists some positive constant KL4
1 such that, for any p̂i, p̂i+1 ∈

P,

P
{ ∣∣∣ỹi+1

(
p̂i+1, ᾰ(p̂i)− β̆(p̂i)p̂i+1

)
− ŷi+1,1

∣∣∣ ≥ KL4
1 L

− 1
4

i (logLi)
1
4

}
≤ 24L−2

i .

For any given price p̂i+1, the inventory target level ỹi+1

(
p̂i+1, ᾰ(p̂i) − β̆(p̂i)p̂i+1

)
in (Approx-SAA) is computed using the truncated random error ε̃t and parameters

(ᾰ(p̂i), β̆(p̂i)), whereas the inventory target level ŷi+1,1 is computed using the residual

error ηt and parameters (α̂i+1, β̂i+1). By (3.21) and (3.22), we can show that the

difference between ỹi+1

(
p̂i+1, ᾰ(p̂i) − β̆(p̂i)p̂i+1

)
and ŷi+1,1 can be bounded by the

difference between their associated parameters (ᾰ(p̂i), β̆(p̂i)) and (α̂i+1, β̂i+1).

While the sampled optimization problem (Opt-SAA) is multimodal in p, its inner

sampled optimization problem (i.e., optimizing on y for a given price p) is concave and

well-structured (see Figure 3.7). Hence, it can be shown that establishing the con-

vergence in parameters guarantees the convergence in the inventory target levels. We

emphasize again that such translation is not viable for establishing the convergence

in pricing decisions, since (Opt-SAA) is multimodal in p.

Proof of Theorem III.3(b). By (3.35) and Proposition III.10, we have

E
[(
y∗ − ŷi+1,1

)2
]
≤ KT1

12 L
− 1

4
i (logLi)

1
4 → 0, as i→∞,

and similarly,

E
[(
y∗ − ŷi+1,2

)2
]
≤ KT1

13 L
− 1

4
i (logLi)

1
4 → 0, as i→∞.
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This completes the proof of Theorem III.3(b). �

Figure 3.7: The sampled profit as a function of order-up-to level y (for a fixed price
p = 2.6) in Example III.1

3.4.3 High Level Ideas in Proving the Regret Rate

To prove Theorem III.4, we break the time horizon T into n learning stages to

obtain

E

[
T∑
t=1

(
Q(p∗, y∗)−Q(pt, yt)

)]

≤ E

[
n∑
i=1

(
ti+2Li∑
t=ti+1

(
Q(p∗, y∗)−Q(pt, yt)

)
+

ti+Ii∑
t=ti+2Li+1

(
Q(p∗, y∗)−Q(p̂i+1, ŷi+1,1) +Q(p̂i+1, ŷi+1,1)−Q(pt, yt)

))]

= E

[
n∑
i=1

ti+2Li∑
t=ti+1

(
Q(p∗, y∗)−Q(pt, yt)

)]
︸ ︷︷ ︸

regret from experimentation

+E

[
n∑
i=1

ti+Ii∑
t=ti+2Li+1

(
Q(p∗, y∗)−Q(p̂i+1, ŷi+1,1)

)]
︸ ︷︷ ︸

regret from the estimation error

+E

[
n∑
i=1

ti+Ii∑
t=ti+2Li+1

(
Q(p̂i+1, ŷi+1,1)−Q(pt, yt)

)]
︸ ︷︷ ︸

regret from missing inventory targets

, (3.40)
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where the inequality follows from the construction of DDC. As shown in (3.40), the

first part of the regret is due to pricing and ordering experimentation of each stage,

which is not required in the observable demand case. To carry out upward corrections

of order-up-to levels due to demand censoring, DDC keeps increasing the ordering

level whenever a stockout occurs, resulting in some bounded profit loss. The second

part of regret in (3.40) gives the difference between profit of “fictitious” DDC (that

implements (p̂i+1, ŷi+1,1) exactly) and that of the clairvoyant optimal policy. We call

it “fictitious” DDC because ŷi+1,1 may not be attained if the starting inventory level

is already higher. The third part of regret in (3.40) reflects the profit loss of missing

inventory targets from DDC, due to positive inventory carryover.

We note that for the classical inventory setting without dynamic pricing, Huh

and Rusmevichientong (2009) developed a queueing approach to resolve the issue

of missing inventory targets due to positive inventory carryovers; in contrast, we

show that, with a very high probability, the prescribed target level ŷi+1,1 becomes

achievable after a small number of periods. We also remark that other related works

such as Burnetas and Smith (2000), Huh et al. (2011) and Besbes and Muharremoglu

(2013) considered the so-called “repeated newsvendor problem” with no inventory

carryovers, so they would not encounter this “overshooting” issue.

Next we develop upper bounds for each of the three terms on the RHS of (3.40).

The first term on the RHS of (3.40) can be bounded as follows: For some positive

constants KT2
2 , KT2

3 , and KT2
4 ,

E

[
n∑
i=1

ti+2Li∑
t=ti+1

(
Q(p∗, y∗)−Q(pt, yt)

)]
≤

n∑
i=1

2LiK
T2
2 ≤ KT2

3

n∑
i=1

I
4
5
i ≤ KT2

4 T
4
5 ,(3.41)

where the first inequality holds because (p, y) is bounded on P×Y and Q(p, y) is Lip-

schitz by (3.12), and the second inequality holds by the choice of the experimentation

interval Li in DDC.
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We then focus on the second term on the RHS of (3.40), which has the following

upper bound.

Proposition III.13. There exists some positive constant KP4
1 such that

E

[
n∑
i=1

ti+Ii∑
t=ti+2Li+1

(
Q
(
p∗, y∗

)
−Q(p̂i+1, ŷi+1,1)

)]
≤ KP4

1 T
4
5 (log T )

1
4 . (3.42)

This proposition measures how good the target decisions of DDC are. We write

E
[
Q
(
p∗, ȳ

(
p∗, λ(p∗)

))
−Q(p̂i+1, ŷi+1,1)

]
(3.43)

≤ E
[
Q
(
p∗, ȳ

(
p∗, λ(p∗)

))
−Q

(
p̂i+1, ȳ

(
p̂i+1, λ(p̂i+1)

))]
+E

[
Q
(
p̂i+1, ȳ

(
p̂i+1, λ(p̂i+1)

))
−Q(p̂i+1, ŷi+1,1)

]
,

where the first term on the RHS of (3.43) can be bounded by the difference between

p∗ and p̂i+1 (from the analysis for Theorem III.3(a)), and the second term can be

bounded by the difference between ȳ
(
p̂i+1, λ(p̂i+1)

)
and ŷi+1,1 (from the analysis for

Theorem III.3(b)).

Proposition III.14. There exists some positive constant KP5
1 such that

E

[
n∑
i=1

ti+Ii∑
t=ti+2Li+1

(
Q(p̂i+1, ŷi+1,1)−Q(pt, yt)

)]
≤ KP5

1 T
1
2 . (3.44)

This part of the regret captures the profit loss of missing inventory targets, due

to positive inventory carryover. More precisely, in the process of implementing DDC,

the desired inventory order-up-to level ŷi+1,1 may not be reached if xt > ŷi+1,1 for

some periods t = ti + 2Li + 1, . . . , ti + Ii. This poses a challenge in bounding the

regret.

Our strategy is to utilize the Hoeffding’s inequality to show that, with a very high

probability, after a small number of periods, the prescribed inventory order up-to
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level ŷi+1,1 becomes achievable. By the construction of DDC, the same target level is

prescribed for every period in t = ti+2Li+1, . . . , ti+Ii, which helps resolve the issue

of missing inventory targets. During the small number of periods, although demand

in each period can be zero, it is very likely that the cumulative demands during the

small number of periods can consume the initial onhand inventory to a level lower

than the inventory target. Then, the inventory target will always be reached from

that point onwards.

Proof of Theorem III.4. The proof of Theorem III.4 follows directly from combin-

ing (3.41), and Propositions III.13 and III.14. �

3.5 Discussions

In this chapter we studied a joint pricing and inventory control problem with lost-

sales and censored demand. The demand-price information is not known a priori,

and the firm makes pricing and inventory decisions in each period based on past sales

data. We developed the first nonparametric algorithm for such system, and showed

that it converges to the optimal policy as the planning horizon increases. We also

obtained the convergence rate at which the regret vanishes to zero.

Observable demand case. A natural question is whether the regret rate can

be improved if the firm were able to observe the full demand realizations (including

the lost-sales quantity). The answer turns out to be affirmative. Note that this

observable demand case is in fact applicable in some applications, such as online

retailing where the online system can keep track of the lost customers via clicks,

queries and order submissions. We prescribe a different nonparametric algorithm

called DDO in the Appendix, which has an improved regret rate of O(T−
1
4 (log T )

1
4 ).

The proofs are omitted since the arguments are very similar to that of the censored

demand case. As we discussed in §4.1, the key reason behind the larger regret rate

114



(compared with the backorder model) is that the proxy objective profit functions

constructed from the demand data are multimodal. Indeed, even when the lost-

demand is observed, the sample-based single-period profit function is still multimodal.

As a result, even though active exploration is no longer necessary to learn about the

demand distribution, the sparse discretization approach is still needed to search for

the approximate solution of the data-driven optimization problem, leading to the said

regret rate.

Unbounded demand. In the preceding sections we have focused on the case

with bounded demand. When the demand is unbounded, i.e., P{Dt(p) > x} > 0 for

all x ≥ 0, we can extend our results after some minor modifications. We make the

following mild technical assumptions:

(a) The random demand is light tailed, i.e., in a small neighborhood of 0, the

moment generating function of the error term ε is finite, i.e., E[exp(κε)] < +∞

for κ near 0.

(b) The search region for inventory level is sufficiently large. More precisely, yh ≥

KU
1 log T for some constant KU

1 > 0.

(c) The optimal order-up-to level y∗ is known to lie in some range y∗ ∈ [yl0, y
h
0 ] for

some positive constants yl0 and yh0 . In addition, r = min
{
f(x), x ∈ [zl, zu]

}
> 0,

where

zl = min
y∈[yl0,y

h
0 ],p,q∈[pl,ph]

(
y − (ᾰ(p)− β̆(p)q)

)
,

zu = max
y∈[yl0,y

h
0 ],p,q∈[pl,ph]

(
y − (ᾰ(p)− β̆(p)q)

)
.

When the demand is unbounded, at any inventory level, there will be stockouts

from time to time. Assumption (b) ensures that the decision space during exploration

phase for inventory order-up-to level is large enough so that the distribution of de-
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mand can be adequately learned through experimentation. Indeed, since the demand

can take very large values in the unbounded case, if the inventory decision space is

tightly constrained, then one would not be able to learn about the necessary demand

information in order to find the optimal inventory level. Assumption (c) is needed in

the proof of Lemma 3 when bounding the difference between order quantities.

There are two changes in the DDC algorithm for the unbounded demand case.

The first change is that, during the exploration phase of Step 1, every time a stockout

occurs, we raise the inventory by certain percentage until the inventory level hits

KU
1 log T ; and the second change is that, in the data-driven optimization in Step 3,

the feasible region for y is constrained to [yl0, y
h
0 ]. In the Appendix, we show that

Theorems III.3 and III.4 continue to hold for the modified algorithm except that the

regret rate in Theorem III.4 is changed to O(T−
1
5 log T ).

3.6 Appendix

A: Sufficient Conditions for Assumption III.2

We present some sufficient conditions for the demand-price function to satisfy

Assumption III.2. For notational convenience, let D = [dl, dh] where dl = λ(ph) and

dh = λ(pl), and also let λ−1(·) be the inverse function of λ(·).

For Assumption III.2(i) to hold, it suffices to require R(d, y) , λ−1(d)E[min{d +

εt, y}] to be jointly concave. Then the objective function after minimizing over y is

concave in d, and as a result is unimodal in p. Chen et al. (2014b) proposed sufficient

conditions for R(d, y) to be jointly concave. Define %(d, y) = − λ−1(d)
(λ−1(d))′

F ′(y−d)

F̄ (y−d)
, and

the two sufficient conditions are as follows.

(C1) (λ−1(d))′′d+ (λ−1(d))′ ≤ 0 for all d ∈ D; and

(C2) %(d, y) ≥ 1 for all d ∈ D and y ≥ 0.

116



The first condition (C1) is satisfied by a fairly large class of demand functions,

which includes linear demand λ(p) = k −mp, log demand λ(p) = ln(k −mp), logit

demand λ(p) = ek−mp

1+ek−mp
, and exponential demand λ(p) = ek−mp, for some parameter

m > 0.

For the second condition (C2), note that %(d, y) = d × −λ−1(d)
d(λ−1(d))′

× F ′(y−d)

F̄ (y−d)
, where

−λ−1(d)
d(λ−1(d))′

is the price elasticity of demand and F ′(y−d)

F̄ (y−d)
is the hazard rate of the error

distribution. Thus (C2) is satisfied if d ≥ 1 and both the price elasticity and the

hazard rate are no smaller than 1.

For Assumption III.2(ii) to hold, it suffices that for any z ∈ P , any p ∈ P , the

second derivative

∂Ḡ2(p, ᾰ(z)− β̆(z)p)

∂p2
= 2λ′(z) + h2(b+ p+ h)−3f

(
F−1

(
b+ p

b+ p+ h

))−1

< 0.(3.45)

For Assumption III.2(iii) to hold, it suffices to require the absolute derivative

∣∣∣∣∣dp̄(ᾰ(z), β̆(z))

dz

∣∣∣∣∣ =

∣∣∣∣∣∣∣
λ′′(z)(2p− z)

2λ′(z) + h2(b+ p+ h)−3f
(
F−1

(
b+p

b+p+h

))−1

∣∣∣∣∣∣∣ < 1 (3.46)

to hold for any z ∈ P and for p satisfying λ(z)−λ′(z)z+2λ′(z)p = E
[
ε− F−1

(
b+p

b+p+h

)]+

.

We provide several simple examples of demand-price functions that satisfy As-

sumption 1.

(1) Linear demand: λ(p) = k − mp and ε is uniformly distributed over [−n, n],

where m ≥ 1, 0 ≤ pl ≤ ph and 0 < n/8 < h ≤ b.

(2) Exponential demand: λ(p) = ek−mp and ε is uniform on [−n, n], where k > 5,

0.01 < m < 0.2, 0 ≤ n < 3, 0 ≤ h < 0.076, b = 20h, pl = 0, and ph = 1.1/m.

(3) Logit demand: λ(p) = ek−mp

1+ek−mp
and ε is uniform on [−n, n], where 0 ≤ k ≤ 1.39,

0.1 ≤ m ≤ 0.34, n = 2.56, h = 0.1, b = 2, pl = 4, ph = 6, and yl = 25/9, yh = 3.
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B: Technical Proofs for Theorem III.3(a)

Proof of Proposition III.5. We first show that

p∗ = p̄
(
ᾰ(p∗), β̆(p∗)

)
. (3.47)

That is, p∗ is a fixed point of p̄
(
ᾰ(z), β̆(z)

)
= z. Recall that

Ḡ(p, λ(p)) = pλ(p)−min
y∈Y

{
(b+ p)E

[
λ(p) + ε− y

]+
+ hE

[
y − λ(p)− ε

]+}
. (3.48)

We know that Ḡ has a unique maximizer p∗ by Assumption III.2(i), and also by

definition of p̄ that p̄(ᾰ(z), β̆(z)) is the unique optimal solution for (Approx-CV) with

parameters
(
ᾰ(z), β̆(z)

)
. Then (3.47) follows immediately from Lemma A1 of Besbes

and Zeevi (2015) by replacing their function G with our objective function (3.48).

In addition, by Assumption III.2(iii), we have

∣∣∣∣dp̄(ᾰ(z),β̆(z)
)

dz

∣∣∣∣ < 1 for any z ∈ P ,

which implies that

∣∣∣p̄(ᾰ(p∗), β̆(p∗)
)
− p̄
(
ᾰ(p̂i), β̆(p̂i)

)∣∣∣ ≤ γ |p∗ − p̂i| ,

where γ = maxz∈P

∣∣∣∣dp̄(ᾰ(z),β̆(z)
)

dz

∣∣∣∣ < 1. This completes the proof. �

Proof of Lemma III.7. For any given α, β, define the following newsvendor-type

functions

W̄ (p, y) = hE [y − (α− βp)− ε]+ + (b+ p)E [α− βp+ ε− y]+ ,

W̃i+1(p, y) =
1

2Li

ti+2Li∑
t=ti+1

(
h
(
y − (α− βp)− ε̃t

)+
+ (b+ p)

(
α− βp+ ε̃t − y

)+
)
,

where recall that the truncated random error ε̃t is defined in (3.11).
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For any given p ∈ P , by the definition of G’s and the triangle inequality, we have

∣∣∣Ḡ(p, α− βp)− G̃i+1(p, α− βp)
∣∣∣

=
∣∣∣W̄ (p, ȳ(p, α− βp))− W̃i+1(p, ỹi+1(p, α− βp))

∣∣∣ (3.49)

≤
∣∣∣W̄(p, ȳ(p, α− βp)

)
− W̃i+1

(
p, ȳ(p, α− βp)

)∣∣∣
+
∣∣∣W̃i+1

(
p, ȳ(p, α− βp)

)
− W̃i+1

(
p, ỹi+1(p, α− βp)

)∣∣∣ .
It then suffices to bound the two terms on the RHS of (3.49) as follows, for any ξ > 0:

P
{∣∣∣W̄ (p, ȳ(p, α− βp))− W̃i+1(p, ȳ(p, α− βp))

∣∣∣ > KL1
3 ξ +

KL1
4

2Li

}
≤ 2e−4Liξ

2

. (3.50)

P
{∣∣∣(W̃i+1(p, ȳ(p, α− βp))− W̃i+1(p, ỹi+1(p, α− βp))

)∣∣∣ > KL1
5 (b+ ph + h)

(
ξ +

KL1
6

2Li

)}
≤ 2e−4Liξ

2

. (3.51)

Letting ξ = L
− 1

2
i (logLi)

1
2 , then the proof of Lemma III.7 follows from combining

(3.49), (4.62) and (3.51).

We first focus on proving (4.62). For any p ∈ P and y ∈ Y , let z = y − (α− βp).

Then the optimal z that minimizes W̄ (p, z+α−βp) is z̄ = ȳ(p, α−βp)− (α−βp) =

F−1
(

b+p
b+p+h

)
. Moreover, we have

W̄ (p, ȳ(p, α− βp)) = W̄ (p, z̄ + α− βp) = hE
(
z̄ − ε

)+
+ (b+ p)E

(
ε− z̄

)+
, (3.52)

W̃i+1(p, ȳ(p, α− βp)) = W̃i+1(p, z̄ + α− βp) =
1

2Li

ti+2Li∑
t=ti+1

(
h
(
z̄ − ε̃t

)+
+ (b+ p)

(
ε̃t − z̄

)+
)
,

(3.53)

W̃A
i+1(p, ȳ(p, α− βp)) = W̃A

i+1(p, z̄ + α− βp) =
1

2Li

ti+2Li∑
t=ti+1

(
h
(
z̄ − εt

)+
+ (b+ p)

(
εt − z̄

)+
)

. (3.54)
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For t ∈ {ti + 1, . . . , ti + 2Li}, we denote

∆t =
(
hE[z̄ − ε]+ + (b+ p)E[ε− z̄]+

)
−
(
h(z̄ − εt)+ + (b+ p)(εt − z̄)+

)
.

Then E [∆t] = 0 and ∆t has a bounded support of some positive length KL1
3 (as εt

is bounded). We then apply the Hoeffding’s inequality (see Theorem 1 in Hoeffding

(1963)) to obtain, for any p ∈ P and ξ > 0, P
{∣∣∣ 1

2Li

∑ti+2Li
t=ti+1 ∆t

∣∣∣ > KL1
3 ξ
}
≤ 2e−4Liξ

2
,

which implies

P
{∣∣∣W̄ (p, ȳ(p, α− βp))− W̃A

i+1(p, ȳ(p, α− βp))
∣∣∣ > KL1

3 ξ
}
≤ 2e−4Liξ

2

. (3.55)

Denote the set of periods whose target level is above the demand realization by

Ci , {t :∈ [t1 + 1, . . . , ti + 2Li] : yt > dt} .

Note that ε̃t = εt for t ∈ Ci. Because yt ∈ [yl, yh], let ñ be the number of order-up-to

level raised during the two Li intervals in Step 1 of DDC, one has yl(1+s)ñ < yh(1+s),

which is ñ < log1+s(y
h/yl)+1. This implies that the number of stockout during these

2Li intervals is thus bounded by a constant, i.e.,

2Li − |Ci| < 2 log1+s(y
h/yl) + 2, (3.56)

where |Ci| denotes the cardinality of Ci. In addition, because εt is bounded, and by

(3.56), there exists a constant KL1
4 > 0 such that

∣∣∣W̃A
i+1(p, ȳ(p, α− βp))− W̃i+1(p, ȳ(p, α− βp))

∣∣∣ < KL1
4

2Li
. (3.57)

Thus, (4.62) follows from (3.55) and (3.57).
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Next we focus on proving (3.51). We denote the empirical distribution of εt by

F̂A(x) =
1

2Li

2Li∑
t=1

1 {εt ≤ x} , x ∈ [l, u].

For ξ > 0, it can be verified that

P
{
F̂A(z̄) <

b+ p

b+ p+ h
− ξ
}

= P
{
F̂A(z̄) < F (z̄)− ξ

}
= P

{
F̂A(z̄)− F (z̄) < −ξ

}
≤ e−4Liξ

2

,

where the inequality is due to the Hoeffding’s inequality. Similarly, we have

P
{
F̂A(z̄) >

b+ p

b+ p+ h
+ ξ

}
≤ e−4Liξ

2

.

Combining the above two inequalities, we have

P
{∣∣∣∣F̂A(z̄)− b+ p

b+ p+ h

∣∣∣∣ ≤ ξ

}
≥ 1− 2e−4Liξ

2

. (3.58)

We then define a (biased) empirical distribution of εt using truncated demand data

as follows,

F̂ (x) =
1

2Li

ti+2Li∑
t=ti+1

1 {ε̃t ≤ x} , x ∈ [l, u].

By (3.56), we have that for some positive constant KL1
6 ,

0 ≤ F̂ (z̄)− F̂A(z̄) ≤ KL1
6

2Li
. (3.59)

For any given p ∈ P and any ξ > 0, define the event A1(p, ξ) as follows,

A1(p, ξ) =

{
ω :

∣∣∣∣F̂ (z̄)− b+ p

b+ p+ h

∣∣∣∣ ≤ ξ +
KL1

6

2Li

}
.
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Combining (3.58) and (3.59), we have

P(A1(p, ξ)) ≥ 1− 2e−4Liξ
2

. (3.60)

For any given p ∈ P , and any given α, β, we define ỹui+1(p, α−βp) as the unconstrained

optimal order-up-to level for (Approx-SAA) on R+, and let z̃ui+1 = ỹui+1(p, α − βp)−

(α− βp), then

z̃ui+1 = min

{
ε̃j :

1

2Li

ti+2Li∑
t=ti+1

1 {ε̃t ≤ ε̃j} ≥
b+ p

b+ p+ h

}
.

Similarly, let z̃i+1 = ỹi+1(p, α − βp) − (α − βp). Because ỹi+1(p, α − βp) ∈ [yl, yh],

it holds that z̃i+1 ∈ [yl − (α − βp), yh − (α − βp)], and by convexity of newsvendor

functions, we have

z̃i+1 = min
{

max
{
z̃ui+1, y

l − (α− βp)
}
, yh − (α− βp)

}
.

By ỹui+1(p, α−βp) = z̃ui+1+α−βp, we have W̃i+1(p, ỹui+1(p, α−βp)) = W̃i+1(p, z̃ui+1+α−

βp). It then suffices to develop an upper bound for W̃i+1(p, z̄+α−βp)−W̃i+1(p, z̃ui+1+

α− βp) conditioning on the event A1(p, ξ).

First, for any given d ∈ D, if z̄ ≤ z̃ui+1, it follows from (3.53) that

W̃i+1(p, z̄ + α− βp)

=
1

2Li

ti+2Li∑
t=ti+1

[
(b+ p)

(
ε̃t − z̄

)
1
{
z̃ui+1 < ε̃t

}
+(b+ p)

(
ε̃t − z̄

)
1
{
z̄ < ε̃t ≤ z̃ui+1

}
+ h
(
z̄ − ε̃t

)
1
{
ε̃t ≤ z̄

}]
≤ 1

2Li

ti+2Li∑
t=ti+1

[
(b+ p)

(
ε̃t − z̄

)
1
{
z̃ui+1 < ε̃t

}
+(b+ p)

(
z̃ui+1 − z̄

)
1
{
z̄ < ε̃t ≤ z̃ui+1

}
+ h
(
z̄ − ε̃t

)
1
{
ε̃t ≤ z̄

}]
, (3.61)
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where the inequality holds by replacing εt by its upper bound z̃ui+1, and

W̃i+1(p, z̃ui+1 + α− βp)

=
1

2Li

ti+2Li∑
t=ti+1

[
(b+ p)(ε̃t − z̃ui+1))1{z̃ui+1 < ε̃t}

+h(z̃ui+1 − ε̃t)1{z̄ < ε̃t ≤ z̃ui+1(p)}+ h(z̃ui+1 − ε̃t)1{ε̃t ≤ z̄}
]

≥ 1

2Li

∑
t∈Ci

[
(b+ p)(ε̃t − z̃ui+1))1{z̃ui+1 < ε̃t}+ h(z̃ui+1 − ε̃t)1{ε̃t ≤ z̄}

]
, (3.62)

where the inequality follows from dropping the nonnegative middle term. Conse-

quently when z̄ ≤ z̃ui+1, we subtract (3.62) from (3.61) to obtain

W̃i+1(p, z̄ + α− βp)− W̃i+1(p, z̃ui+1 + α− βp)

≤ (b+ p)
(
z̃ui+1 − z̄

) (
1− F̂ (z̃ui+1)

)
+ (b+ p)(z̃ui+1 − z̄)

(
F̂ (z̃ui+1)− F̂ (z̄)

)
+h(z̄ − z̃ui+1)F̂ (z̄)

= (z̃ui+1 − z̄)
(
−(h+ b+ p)F̂ (z̄) + b+ p

)
≤

(
z̃ui+1 − z̄

)
(b+ p+ h)

(
ξ +

KL1
6

2Li

)
, (3.63)

where the second inequality follows from the definition of A1(p, ξ).

Similarly, if z̄ > z̃ui+1, by the symmetric argument, we have

W̃i+1(p, z̄ + α− βp)− W̃i+1(p, z̃ui+1 + α− βp) ≤ (z̄ − z̃ui+1)(b+ p+ h)

(
ξ +

KL1
6

2Li

)
.

(3.64)

Combining (3.63) and (3.64), we have that conditioning on A1(p, ξ),

W̃i+1(p, z̄ + α− βp)− W̃i+1(p, z̃ui+1 + α− βp) ≤
∣∣z̄ − z̃ui+1

∣∣(b+ p+ h)

(
ξ +

KL1
6

2Li

)
.

As the demand is bounded, so is z̃ui+1 + α − βp, and therefore it follows from z̄(p) +
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α − βp ∈ Y that there exists some constant KL1
5 > 0 such that

∣∣z̄ − z̃ui+1

∣∣ ≤ KL1
5 .

Thus

W̃i+1(p, z̄ + α− βp)− W̃i+1(p, z̃ui+1 + α− βp) ≤ KL1
5 (b+ p+ h)

(
ξ +

KL1
6

2Li

)
.

Since z̃ui+1 is the unconstrained minimizer of W̃i+1(p, z + α− βp), it follows that

W̃i+1(p, z̄ + α− βp)− W̃i+1(p, z̃i+1 + α− βp)

≤ W̃i+1(p, z̄ + α− βp)− W̃i+1(p, z̃ui+1 + α− βp)

≤ KL1
5 (b+ p+ h)

(
ξ +

KL1
6

2Li

)
≤ KL1

5 (b+ ph + h)

(
ξ +

KL1
6

2Li

)
.

For any given p ∈ P , conditioning on the event A1(p, ξ), we obtain

W̃i+1(p, z̄ + α− βp)− W̃i+1(p, z̃i+1 + α− βp) ≤ KL1
5 (b+ ph + h)

(
ξ +

KL1
6

2Li

)
. (3.65)

In addition, since ỹi+1(p, α− βp) minimizes W̃i+1, we have

W̃i+1(p, ȳ(p, α− βp))− W̃i+1(p, ỹi+1(p, α− βp)) ≥ 0. (3.66)

Thus, combining (3.65) and (3.66) with (3.60) yields

P
{∣∣∣(W̃i+1(p, ȳ(p, α− βp))− W̃i+1(p, ỹi+1(p, α− βp))

)∣∣∣ ≤ KL1
5 (b+ ph + h)

(
ξ +

KL1
6

2Li

)}
≥ P(A1(p, ξ)) ≥ 1− 2e−4Liξ

2

,

which immediately implies (3.51). �

Proof of Lemma III.8. Define

B1
i+1 =

1

Li

ti+Li∑
t=ti+1

ε̃t, B2
i+1 =

1

Li

ti+2Li∑
t=ti+Li+1

ε̃t.
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Recall that α̂i+1 and β̂i+1 are derived from the least-square method, and they are

given by

α̂i+1 =
λ(p̂i) + λ(p̂i + δi)

2
+
B1
i+1 +B2

i+1

2
+ β̂i+1

2p̂i + δi
2

, (3.67)

β̂i+1 = −λ(p̂i + δi)− λ(p̂i)

δi
− 1

δi
(−B1

i+1 +B2
i+1). (3.68)

To measure the effectiveness of α̂i+1 and β̂i+1 we define the (true) sample averages

by

B1A
i+1 =

1

Li

ti+Li∑
t=ti+1

εt, B2A
i+1 =

1

Li

ti+2Li∑
t=ti+Li+1

εt.

Let α̂Ai+1 and β̂Ai+1 are derived from the least-square method, and they are given by

α̂Ai+1 =
λ(p̂i) + λ(p̂i + δi)

2
+
B1A
i+1 +B2A

i+1

2
+ β̂Ai+1

2p̂i + δi
2

, (3.69)

β̂Ai+1 = −λ(p̂i + δi)− λ(p̂i)

δi
− 1

δi
(−B1A

i+1 +B2A
i+1). (3.70)

Comparing (3.67) and (3.68) with (3.69) and (3.70), by (3.56), we have, for some

constant KL2
2 > 0,

∣∣α̂i+1 − α̂Ai+1

∣∣ ≤ KL2
2

Liδi
,
∣∣∣β̂i+1 − β̂Ai+1

∣∣∣ ≤ KL2
2

Liδi
. (3.71)

Applying the Taylor’s expansion on λ(p̂i + δi) at point p̂i to the second order for

(3.70), we obtain

β̂Ai+1 = −
(
λ′(p̂i) +

1

2
λ′′(qi)δi

)
− 1

δi
(−B1A

i+1 +B2A
i+1)

= β̆(p̂i)−
1

2
λ′′(qi)δi −

1

δi
(−B1A

i+1 +B2A
i+1), (3.72)

where qi ∈ [p̂i, p̂i + δi]. Substituting (3.72) into (3.69), and applying the Taylor’s
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expansion on λ(p̂i + δi) at point p̂i to the first order, we have, for q′i ∈ [p̂i, p̂i + δi],

α̂Ai+1 = λ(p̂i) +
1

2
λ′(q′i)δi +

B1A
i+1 +B2A

i+1

2
− λ′(p̂i)

(
p̂i +

δi
2

)
+

(
−1

2
λ′′(qi)δi −

1

δi
(−B1A

i+1 +B2A
i+1)

)(
p̂i +

δi
2

)
= ᾰ(p̂i) +

1

2
λ′(q′i)δi +

B1A
i+1 +B2A

i+1

2
− 1

2
λ′(p̂i)δi

+

(
−1

2
λ′′(qi)δi −

1

δi
(−B1A

i+1 +B2A
i+1)

)(
p̂i +

δi
2

)
. (3.73)

Since the error terms εt are bounded, by the Hoeffding’s inequality, we have that

for any ξ > 0,

P
{∣∣−B1A

i+1

∣∣ > (u− l)ξ
}
≤ 2e−2Liξ

2

, P
{∣∣B2A

i+1

∣∣ > (u− l)ξ
}
≤ 2e−2Liξ

2

.

Hence, we have

P
{∣∣−B1A

i+1

∣∣+
∣∣B2A

i+1

∣∣ > 2(u− l)ξ
}

≤ P
{∣∣−B1A

i+1

∣∣ > (u− l)ξ
}

+ P
{∣∣B2A

i+1

∣∣ > (u− l)ξ
}
≤ 4e−2Liξ

2

,

which implies that

P
{∣∣−B1A

i+1 +B2A
i+1

∣∣ ≤ 2(u− l)ξ
}
≥ P

{∣∣−B1A
i+1

∣∣+
∣∣B2A

i+1

∣∣ ≤ 2(u− l)ξ
}
≥ 1− 4e−2Liξ

2

.

Similar argument shows

P
{∣∣B1A

i+1 +B2A
i+1

∣∣ ≤ 2(u− l)ξ
}
≥ 1− 4e−2Liξ

2

.

Since λ′(·) and λ′′(·) are bounded and δi converges to 0, from (3.73) we conclude

that there must exist a constant KL2
3 such that, on the event

∣∣B1A
i+1 +B2A

i+1

∣∣ ≤ 2(u−l)ξ
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and
∣∣−B1A

i+1 +B2A
i+1

∣∣ ≤ 2(u− l)ξ, it holds that

|α̂Ai+1 − ᾰ(p̂i)| ≤ KL2
3

(
δi +

ξ

δi
+ ξ

)
.

Therefore,

P
{∣∣α̂Ai+1 − ᾰ(p̂i)

∣∣ ≤ KL2
3

(
δi +

ξ

δi
+ ξ

)}
(3.74)

≥ P
{∣∣B1A

i+1 +B2A
i+1

∣∣ ≤ 2(u− l)ξ,
∣∣−B1A

i+1 +B2A
i+1

∣∣ ≤ 2(u− l)ξ
}
≥ 1− 8e−2Liξ

2

.

By (3.72), we have

P
{∣∣β̂Ai+1 − β̆(p̂i)

∣∣ ≤ KL2
4

(
δi +

ξ

δi

)}
≥ 1− 4e−2Liξ

2

. (3.75)

By (3.74) and (3.75), we have

P
{
|α̂Ai+1 − ᾰ(p̂i + δi)| ≤ KL2

5

(
δi +

ξ

δi
+ ξ

)}
≥ 1− 8e−2Liξ

2

, (3.76)

P
{∣∣β̂Ai+1 − β̆(p̂i + δi)

∣∣ ≤ KL2
6

(
δi +

ξ

δi

)}
≥ 1− 4e−2Liξ

2

. (3.77)

Together with (3.71), we have

P
{
|α̂i+1 − ᾰ(p̂i)| ≤ KL2

7

(
δi +

ξ

δi
+ ξ +

1

Liδi

)
,
∣∣β̂i+1 − β̆(p̂i)

∣∣ ≤ KL2
7

(
δi +

ξ

δi
+

1

Liδi

)
,

|α̂i+1 − ᾰ(p̂i + δi)| ≤ KL2
7

(
δi +

ξ

δi
+ ξ +

1

Liδi

)
,

∣∣β̂i+1 − β̆(p̂i + δi)
∣∣ ≤ KL2

7

(
δi +

ξ

δi
+

1

Liδi

)}
≤ 1− 24e−2Liξ

2

. (3.78)

To compare the two objective functions in Lemma III.8, we introduce a generalized

problem called (Generalized-SAA) based on (Opt-SAA) and (Approx-SAA) as follows.
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Given pt = p̂i for t = ti + 1, . . . , ti +Li and pt = p̂i + δi for t = ti +Li + 1, . . . , ti + 2Li,

the sales data for t ∈ [ti+1, . . . , ti+2Li], and some given parameters (α1, β1), (α2, β2),

define the following two sets ζ1
i (α1, β1) = (ζt, t ∈ [ti + 1, . . . , ti +Li]) and ζ2

i (α2, β2) =

(ζt, t ∈ [ti + Li + 1, . . . , ti + 2Li]) with

ζt = dt ∧ yt − (α1 − β1pt), t ∈ [ti + 1, . . . , ti + Li],

ζt = dt ∧ yt − (α2 − β2pt), t ∈ [ti + Li + 1, . . . , ti + 2Li].

We define a generalized function Hi+1 by

Hi+1

(
p, α1 − β1p, ζ

1
i (α1, β1), ζ2

i (α2, β2)
)

(Generalized-SAA)

= p(α1 − β1p)−min
y∈Y

{
1

2Li

ti+2Li∑
t=ti+1

(
h
(
y − (α1 − β1p+ ζt)

)+
+ (b+ p)

(
α1 − β1p+ ζt − y

)+
)}

.

Note that (Generalized-SAA) generalizes (Opt-SAA) and (Approx-SAA). To see

this, by setting α1 = α2 = α̂i+1 and β1 = β2 = β̂i+1, (Generalized-SAA) is reduced to

(Opt-SAA), i.e.,

Ĝi+1

(
p, α̂i+1, β̂i+1

)
= Hi+1

(
p, α̂i+1 − β̂i+1p, ζ

1
i (α̂i+1, β̂i+1), ζ2

i (α̂i+1, β̂i+1)
)
. (3.79)

On the other hand, by setting α1 = ᾰ(p̂i), β1 = β̆(p̂i), α2 = ᾰ(p̂i + δi), β2 = β̆(p̂i +

δi), and using the fact that λ(p) = ᾰ(p) − β̆(p)p, (Generalized-SAA) is reduced to

(Approx-SAA), i.e.,

G̃i+1

(
p, ᾰ(p̂i)− β̆(p̂i)p

)
(3.80)

= Hi+1

(
p, ᾰ(p̂i)− β̆(p̂i)p, ζ

1
i (ᾰ(p̂i), β̆(p̂i)), ζ

2
i (ᾰ(p̂i + δi), β̆(p̂i + δi))

)
.

Next, we see that Hi+1

(
p, α1 − β1p, ζ

1
i (α1, β1), ζ2

i (α2, β2)
)

is differentiable with

respect to α1, α2 and β1, β2 with bounded first-order derivatives. In particular, there
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exists a constant KL2
8 > 0 such that for any α1, α2, α

′
1, α

′
2 and β1, β2, β

′
1, β

′
2, it holds

that

∣∣∣Hi+1

(
p, α1 − β1p, ζ

1
i (α1, β1), ζ2

i (α2, β2)
)
−Hi+1

(
p, α′1 − β′1p, ζ1

i (α
′
1, β

′
1), ζ2

i (α
′
2, β

′
2)
)∣∣∣

≤ KL2
8

(
|α1 − α′1|+ |β1 − β′1|+ |α2 − α′2|+ |β2 − β′2|

)
. (3.81)

Now, by substituting (3.79) and (3.80) into (3.81), we see that the two objec-

tive functions G̃i+1

(
p, ᾰ(p̂i)− β̆(p̂i)p

)
and Ĝi+1

(
p, α̂i+1, β̂i+1

)
differ only in their

associated parameters. Consequently, Lemma III.8 follows from (3.78) by letting

ξ = L
− 1

2
i (logLi)

1
2 . �

Proof of Proposition III.6. By Lemmas III.7 and III.8, we have that for any

p ∈ Si+1,

P
{∣∣∣Ḡ(p, ᾰ(p̂i)− β̆(p̂i)p

)
− Ĝi+1

(
p, α̂i+1, β̂i+1

)∣∣∣ ≥ KP2
3 L

− 1
4

i (logLi)
1
4

}
≤ 28L−2

i ,

which leads to

P
{

max
p∈Si+1

∣∣∣Ḡ(p, ᾰ(p̂i)− β̆(p̂i)p
)
− Ĝi+1

(
p, α̂i+1, β̂i+1

)∣∣∣ ≥ KP2
3 L

− 1
4

i (logLi)
1
4

}
≤ 28L−2

i

(
ph − pl

δi+1

)
≤ KP2

2 L
− 7

4
i (logLi)

− 1
4 .

Define event

A2 =

{
ω : max

p∈Si+1

∣∣∣Ḡ(p, ᾰ(p̂i)− β̆(p̂i)p
)
− Ĝi+1

(
p, α̂i+1, β̂i+1

)∣∣∣ < KP2
3 L

− 1
4

i (logLi)
1
4

}
,

and we have that

P(A2) > 1−KP2
2 L

− 7
4

i (logLi)
− 1

4 .
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Let ¯̄p ∈ Ŝi+1 be the closest point on Ŝi+1 to p̄(ᾰ(p̂i), β̆(p̂i)) and

(p̄(ᾰ(p̂i), β̆(p̂i))− ¯̄p)(p̄(ᾰ(p̂i), β̆(p̂i))− p̂i+1) ≥ 0,

where ¯̄p is chosen to be on the same side as p̂i+1 relative to p̄(ᾰ(p̂i), β̆(p̂i)) (see Figure

3.8).

Figure 3.8: Choosing ¯̄p to be the closet point on the grid to p̄, and also on the same
side as p̂ (relative to p̄)

Applying the Taylor’s expansion of Ḡ(p̂i+1, ᾰ(p̂i)− β̆(p̂i)p̂i+1) at ¯̄p, we obtain

Ḡ(¯̄p, ᾰ(p̂i)− β̆(p̂i)¯̄p)− Ḡ(p̂i+1, ᾰ(p̂i)− β̆(p̂i)p̂i+1)

=− Ḡ′(¯̄p, ᾰ(p̂i)− β̆(p̂i)¯̄p)(p̂i+1 − ¯̄p)− Ḡ′′(q, ᾰ(p̂i)− β̆(p̂i)q)(p̂i+1 − ¯̄p)2

>m(p̂i+1 − ¯̄p)2, (3.82)

wherem , minq∈P,p̂i∈P

∣∣∣Ḡ′′(q, ᾰ(p̂i)− β̆(p̂i)q)
∣∣∣ > 0 due to strictly concavity of Ḡ(p, ᾰ(p̂i)−

β̆(p̂i)p). The inequality follows also from the selection of ¯̄p, which is chosen to be on

the same side as p̂i+1 relative to p̄(ᾰ(p̂i), β̆(p̂i)). When p̂i+1 ≥ p̄(ᾰ(p̂i), β̆(p̂i)), due to

concavity of Ḡ(p, ᾰ(p̂i)− β̆(p̂i)p) in p, Ḡ′(¯̄p, ᾰ(p̂i)− β̆(p̂i)¯̄p) ≤ 0, and therefore

−Ḡ′(¯̄p, ᾰ(p̂i)− β̆(p̂i)¯̄p)(p̂i+1 − ¯̄p) ≥ 0. (3.83)
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When p̂i+1 < p̄(ᾰ(p̂i), β̆(p̂i)), (3.83) holds true by similar arguments.

On the other hand, conditioning on A2, we have

Ḡ(p̂i+1, ᾰ(p̂i)− β̆(p̂i)p̂i+1) +KP2
3 L

− 1
4

i (logLi)
1
4 > Ĝi+1

(
p̂i+1, α̂i+1, β̂i+1

)
≥ Ĝi+1

(
¯̄p, α̂i+1, β̂i+1

)
> Ḡ(¯̄p, ᾰ(p̂i)− β̆(p̂i)p̂i+1)−KP2

3 L
− 1

4
i (logLi)

1
4 ,

where the first and the last inequalities follow from the definition of A2, and the

second inequality holds because p̂i+1 is the maximizer for Ĝi+1

(
p, α̂i+1, β̂i+1

)
on Si+1.

Therefore,

Ḡ(¯̄p, ᾰ(p̂i)− β̆(p̂i)¯̄p)− Ḡ(p̂i+1, ᾰ(p̂i)− β̆(p̂i)p̂i+1) ≤ 2KP2
3 L

− 1
4

i (logLi)
1
4 . (3.84)

Together with (3.82) and (3.84), one has

∣∣p̂i+1 − ¯̄p
∣∣ ≤ KP2

4 L
− 1

8
i (logLi)

1
8 ,

which leads to, by conditioning on A2,

∣∣p̄(ᾰ(p̂i), β̆(p̂i))− p̂i+1

∣∣ ≤ ∣∣p̄(ᾰ(p̂i), β̆(p̂i))− ¯̄p|+ | ¯̄p− p̂i+1

∣∣
≤ δi+1 +KP2

4 L
− 1

8
i (logLi)

1
8 ≤ KP2

1 L
− 1

8
i (logLi)

1
8 .

This completes the proof of Proposition III.6. �

C: Technical Proofs for Theorem III.3(b)

Proof of Lemma III.11. For p ∈ P , one has

ȳ
(
p, ᾰ(p̂i)− β̆(p̂i)p

)
= F−1

(
b+ p

b+ p+ h

)
+ ᾰ(p̂i)− β̆(p̂i)p. (3.85)
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For a given p ∈ P , we define ỹui+1

(
p, ᾰ(p̂i) − β̆(p̂i)p

)
as the unconstrained optimal

target inventory level for (Approx-SAA) on R+, then it can be verified that

ỹui+1

(
p, ᾰ(p̂i)− β̆(p̂i)p

)
= ᾰ(p̂i)− β̆(p̂i)p (3.86)

+ min

{
ε̃j : j ∈ [ti + 1, . . . , ti + 2Li],

∑ti+2Li
t=ti+1 1 {ε̃t ≤ ε̃j}

2Li
≥ b+ p

b+ p+ h

}
,

ỹi+1

(
p, ᾰ(p̂i)− β̆(p̂i)p

)
= min

{
max

{
ỹui+1(p, ᾰ(p̂i)− β̆(p̂i)p), y

l
}
yh
}
.

Then we have

∣∣∣ȳ (p, ᾰ(p̂i)− β̆(p̂i)p
)
− ỹi+1

(
p, ᾰ(p̂i)− β̆(p̂i)p

)∣∣∣
≤

∣∣∣ȳ (p, ᾰ(p̂i)− β̆(p̂i)p
)
− ỹui+1

(
p, ᾰ(p̂i)− β̆(p̂i)p

)∣∣∣ . (3.87)

There exists a positive constant KL3
2 such that, by (3.56), for any ξ > 0

1

2Li

ti+2Li∑
t=ti+1

1

{
ε̃t ≤ F−1

(
b+ p

b+ p+ h
− ξ
)}

≤ 1

2Li

ti+2Li∑
t=ti+1

1

{
εt ≤ F−1

(
b+ p

b+ p+ h
− ξ
)}

+
KL3

2

2Li
. (3.88)
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Now, for any ξ ≥ KL3
2 /Li, we have

P
{
F

(
ỹui+1

(
p, ᾰ(p̂i)− β̆(p̂i)p

)
− (ᾰ(p̂i)− β̆(p̂i)p)

)
− b+ p

b+ p+ h
≤ −ξ

}
(3.89)

= P
{
ỹui+1

(
p, ᾰ(p̂i)− β̆(p̂i)p

)
− (ᾰ(p̂i)− β̆(p̂i)p) ≤ F−1

(
b+ p

b+ p+ h
− ξ
)}

≤ P

{
1

2Li

ti+2Li∑
t=ti+1

1

{
ε̃t ≤ F−1

(
b+ p

b+ p+ h
− ξ
)}
≥ b+ p

b+ p+ h

}

= P

{
1

2Li

ti+2Li∑
t=ti+1

1

{
ε̃t ≤ F−1

(
b+ p

b+ p+ h
− ξ
)}
−
(

b+ p

b+ p+ h
− ξ
)
≥ ξ

}

≤ P

{
1

2Li

ti+2Li∑
t=ti+1

1

{
εt ≤ F−1

(
b+ p

b+ p+ h
− ξ
)}

+
KL3

2

2Li
−
(

b+ p

b+ p+ h
− ξ
)
≥ ξ

}

≤ P

{
1

2Li

ti+2Li∑
t=ti+1

1

{
εt ≤ F−1

(
b+ p

b+ p+ h
− ξ
)}
−
(

b+ p

b+ p+ h
− ξ
)
≥ ξ

2

}
,

where the first inequality follows from (3.86), the second inequality holds from using

(3.88), and the last inequality holds as ξ ≥ KL3
2 /Li, ξ −KL3

2 /(2Li) ≥ ξ
2
.

Since E
[
1
{
εt ≤ F−1

(
b+p

b+p+h
− ξ
)}]

= b+p
b+p+h

− ξ, we apply the Hoeffding’s in-

equality to obtain

P

{
1

2Li

ti+2Li∑
t=ti+1

1

{
εt ≤ F−1

(
b+ p

b+ p+ h
− ξ
)}
−
(

b+ p

b+ p+ h
− ξ
)
≥ ξ

2

}
≤ e−Liξ

2

.

Together with (3.85) and (3.89), we have

P

{
F

(
ỹui+1

(
p, ᾰ(p̂i)− β̆(p̂i)p

)
− (ᾰ(p̂i)− β̆(p̂i)p)

)

−F
(
ȳ
(
p, ᾰ(p̂i)− β̆(p̂i)p

)
− (ᾰ(p̂i)− β̆(p̂i)p)

)
≤ −ξ

}
≤ e−Liξ

2

. (3.90)
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Similarly, we have

P

{
F

(
ỹui+1

(
p, ᾰ(p̂i)− β̆(p̂i)p

)
− (ᾰ(p̂i)− β̆(p̂i)p)

)

−F
(
ȳ
(
p, ᾰ(p̂i)− β̆(p̂i)p

)
− (ᾰ(p̂i)− β̆(p̂i)p)

)
≥ ξ

}
≤ e−Liξ

2

. (3.91)

We have assumed the probability density function f(·) of εt satisfies r = min{f(x), x ∈

[l, u]} > 0. Then, for any x < y, there exists a number z ∈ [x, y] such that

F (y)−F (x) = f(z)(y−x) ≥ r(y−x). Applying (3.90) and (3.91), for any ξ ≥ KL3
2 /Li,

we obtain

2e−Liξ
2 ≥ P

{∣∣∣∣F(ỹui+1

(
p, ᾰ(p̂i)− β̆(p̂i)p

)
− (ᾰ(p̂i)− β̆(p̂i)p)

)
−F
(
ȳ
(
p, ᾰ(p̂i)− β̆(p̂i)p

)
− (ᾰ(p̂i)− β̆(p̂i)p)

)∣∣∣∣ ≥ ξ

}
≥ P

{∣∣∣∣F(ỹi+1

(
p, ᾰ(p̂i)− β̆(p̂i)p

)
− (ᾰ(p̂i)− β̆(p̂i)p)

)
−F
(
ȳ
(
p, ᾰ(p̂i)− β̆(p̂i)p

)
− (ᾰ(p̂i)− β̆(p̂i)p)

)∣∣∣∣ ≥ ξ

}
≥ P

{
r

∣∣∣∣ỹi+1

(
p, ᾰ(p̂i)− β̆(p̂i)p

)
− (ᾰ(p̂i)− β̆(p̂i)p)

−ȳ
(
p, ᾰ(p̂i)− β̆(p̂i)p

)
− (ᾰ(p̂i)− β̆(p̂i)p)

∣∣∣∣ ≥ ξ

}
= P

{∣∣∣∣ỹi+1

(
p, ᾰ(p̂i)− β̆(p̂i)p

)
− ȳ

(
p, ᾰ(p̂i)− β̆(p̂i)p

) ∣∣∣∣ ≥ 1

r
ξ

}
,

where the second inequality follows from (3.87). For constant KL3
1 = 1

r
we have, for

ξ ≥ KL3
2 /Li,

P
{∣∣∣∣ỹi+1

(
p, ᾰ(p̂i)− β̆(p̂i)p

)
− ȳ

(
p, ᾰ(p̂i)− β̆(p̂i)p

) ∣∣∣∣ ≥ KL3
1 ξ

}
≤ 2e−Liξ

2

, (3.92)

By letting ξ = L
− 1

2
i (logLi)

1
2 , Lemma III.11 follows from (3.92). �

Proof of Lemma III.12. Following the analysis of Lemma III.8, consider the
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optimization of Hi+1 in (Generalized-SAA), the inner optimization problem is convex

in y, and therefore for given price p, we denote the optimal order-up-to level by (with

ζt’s defined in the proof of Lemma III.8)

yi+1

(
p, α1 − β1p, ζ

1
i (α1, β1), ζ2

i (α2, β2)
)

(3.93)

= arg min
y∈Y

{
1

2Li

ti+2Li∑
t=ti+1

(
h
(
y − (α1 − β1p+ ζt)

)+
+ (b+ p)

(
α1 − β1p+ ζt − y

)+
)}

.

We see that yi+1

(
p, α1 − β1p, ζ

1
i (α1, β1), ζ2

i (α2, β2)
)

are differentiable with respect

to α1, α2 and β1, β2 with bounded first-order derivatives. In particular, there exists a

constant KL4
2 > 0 such that for any α1, α2, α

′
1, α

′
2 and β1, β2, β

′
1, β

′
2, it holds that

∣∣∣yi+1

(
p, α1 − β1p, ζ

1
i (α1, β1), ζ2

i (α2, β2)
)
− yi+1

(
p, α′1 − β′1p, ζ1

i (α
′
1, β

′
1), ζ2

i (α
′
2, β

′
2)
)∣∣∣

≤ KL4
2

(
|α1 − α′1|+ |β1 − β′1|+ |α2 − α′2|+ |β2 − β′2|

)
. (3.94)

In addition, we know that

ŷi+1,1 = yi+1

(
p̂i+1, α̂i+1 − β̂i+1p̂i+1, ζ

1
i (α̂i+1, β̂i+1), ζ2

i (α̂i+1, β̂i+1)
)
, (3.95)

ỹi+1

(
p̂i+1, ᾰ(p̂i)− β̆(p̂i)p̂i+1

)
(3.96)

= yi+1

(
p̂i+1, ᾰ(p̂i)− β̆(p̂i)p̂i+1, ζ

1
i

(
ᾰ(p̂i), β̆(p̂i)

)
, ζ2

i

(
ᾰ(p̂i + δi), β̆(p̂i + δi)

))
.

Thus, Lemma III.12 follows by combining (3.78), (3.94), (3.95), and (3.96) and letting

ξ = L
− 1

2
i (logLi)

1
2 . �
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Proof of Proposition III.10. From (3.38),

E
[∣∣ȳ(p̂i+1, λ(p̂i+1))− ŷi+1,1

∣∣2]
≤ KP3

2 E
[∣∣∣p̂i+1 − p∗

∣∣∣2 +
∣∣∣p̂i − p∗∣∣∣2]

+KP3
2 E

[∣∣∣ȳ(p̂i+1, ᾰ(p̂i)− β̆(p̂i)p̂i+1)− ỹi+1(p̂i+1, ᾰ(p̂i)− β̆(p̂i)p̂i+1)
∣∣∣2]

+KP3
2 E

[∣∣∣ỹi+1(p̂i+1, ᾰ(p̂i)− β̆(p̂i)p̂i+1)− ŷi+1,1

∣∣∣2]. (3.97)

By Theorem III.3(a), we have

E
[∣∣∣p̂i+1 − p∗

∣∣∣2 +
∣∣∣p̂i − p∗∣∣∣2] ≤ KP3

3 L
− 1

4
i (logLi)

1
4 . (3.98)

And it follows from Lemma III.11 that

E
[∣∣∣ȳ(p̂i+1, ᾰ(p̂i)− β̆(p̂i)p̂i+1)− ỹi+1

(
p̂i+1, ᾰ(p̂i)− β̆(p̂i)p̂i+1

)∣∣∣2] (3.99)

≤ KP3
4

Li
+KP3

5 L−1
i logLi ≤ KP3

6 L−1
i logLi. (3.100)

In Lemma III.12,

E
[∣∣∣ȳ(p̂i+1, ᾰ(p̂i)− β̆(p̂i)p̂i+1

)
− ŷi+1,1

∣∣∣2]
≤ KP3

7 L−2
i +KP3

8 L
− 1

2
i (logLi)

1
2 ≤ KP3

9 L
− 1

2
i (logLi)

1
2 . (3.101)

Proposition III.10 follows from (3.98), (3.99), and (3.101). �
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D: Technical Proofs for Theorem III.4

Proof of Proposition III.13. To prove Proposition III.13, we proceed as follows.

Using the fact that y∗ = ȳ
(
p∗, λ(p∗)

)
, we have

E
[
Q
(
p∗, ȳ

(
p∗, λ(p∗)

))
−Q(p̂i+1, ŷi+1,1)

]
≤ E

[
Q
(
p∗, ȳ

(
p∗, λ(p∗)

))
−Q

(
p̂i+1, ȳ

(
p̂i+1, λ(p̂i+1)

))
+Q
(
p̂i+1, ȳ

(
p̂i+1, λ(p̂i+1)

))
−Q(p̂i+1, ŷi+1,1)

]
.

The first term Q
(
p∗, ȳ

(
p∗, λ(p∗)

))
−Q

(
p̂i+1, ȳ

(
p̂i+1, λ(p̂i+1)

))
is bounded using Taylor

expansion on Q(p, ȳ(p, λ(p)) at point p∗. Using the fact that the first order derivative

vanishes at p = p∗ and bounded second-order derivative, we obtain, for some constant

KP4
2 > 0, that

E
[
Q
(
p∗, ȳ

(
p∗, λ(p∗)

))
−Q

(
p̂i+1, ȳ

(
p̂i+1, λ(p̂i+1)

))]
≤ E[KP4

2 (p∗ − p̂i+1)2]

≤ KP4
3 L

− 1
4

i (logLi)
1
4 ≤ KP4

4 I
− 1

5
i (log Ii)

1
4 . (3.102)

To bound the second term Q
(
p̂i+1, ȳ

(
p̂i+1, λ(p̂i+1)

))
− Q(p̂i+1, ŷi+1,1), notice that

ȳ
(
p̂i+1, λ(p̂i+1)

)
maximizes the concave function Q

(
p̂i+1, y) for any given p̂i+1, we

apply Taylor expansion with respect to y at point y = ȳ
(
p̂i+1, λ(p̂i+1)

)
to yield that,

for some constant KP4
5 ,

Q
(
p̂i+1, ȳ

(
p̂i+1, λ(p̂i+1)

))
−Q(p̂i+1, ŷi+1,1) ≤ KP4

5

(
ȳ
(
p̂i+1, λ(p̂i+1)

)
− ŷi+1,1

)2
, (3.103)

which leads to

E
[
Q
(
p̂i+1, ȳ

(
p̂i+1, λ(p̂i+1)

))
−Q(p̂i+1, ŷi+1,1)

]
≤ KP4

5 E
[(
ȳ
(
p̂i+1, λ(p̂i+1)

)
− ŷi+1,1

)2
]

≤ KP4
6 L

− 1
4

i (logLi)
1
4 , (3.104)
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where the second inequality follows from Proposition III.10.

By (3.102) and (3.104), we have

E

[
n∑
i=1

ti+Ii∑
t=ti+2Li+1

(
Q
(
p∗, y∗

))
−Q(p̂i+1, ŷi+1,1)

)]

≤ E

[
n∑
i=1

I
− 1

5
i (log Ii)

1
4 Ii

]
≤ KP4

7 T
4
5 (log T )

1
4 .

This completes of the proof of Proposition III.13. �

Proof of Proposition III.14. Consider the accumulative demands during periods

ti + 2Li + 1 to ti + 2Li +
⌊
I

1
2
i

⌋
. If these accumulative demands consume at least

xti+2Li+1− ŷi+1, then at period ti + 2Li +
⌊
I

1
2
i

⌋
+ 1, ŷi+1 will be surely achieved. Since

λ(ph) + l ≤ Dt ≤ λ(pl) + u for all t, by Hoeffding inequality, for any ζ > 0,

P


ti+2Li+

⌊
I
1
2
i

⌋∑
t=ti+2Li+1

Dt ≥ E


ti+2Li+

⌊
I
1
2
i

⌋∑
t=ti+2Li+1

Dt

− ζ
 ≥ 1− exp

− 2ζ2⌊
I

1
2
i

⌋
(λ(pl) + u− λ(ph)− l)2

 .

(3.105)

Now choose ζ =
(
λ(pl)+u−λ(ph)− l

) (⌊
I

1
2
i

⌋) 1
2
(

log
⌊
I

1
2
i

⌋) 1
2

, and define the event

A3 =


ti+2Li+

⌊
I
1
2
i

⌋∑
t=ti+2Li+1

Dt ≥
⌊
I

1
2
i

⌋
E [Dti+2Li+1]− ζ

 . (3.106)

Then it follows from (3.105) that P(A3) ≥ 1−
⌊
I

1
2
i

⌋−2

.

Since λ(ph) > 0, E [Dti+2Li+1] > 0. Then there exists some i∗∗ such that whenever

i ≥ i∗∗,

⌊
I

1
2
i

⌋
E [Dti+2Li+1]− ζ ≥ 1

2

⌊
I

1
2
i

⌋
E [Dti+2Li+1] ≥ yh − yl ≥ xti+2Li+1 − ŷi,
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which suggests that on the event A3, the order-up-to level ŷi will always be achieved

after periods{
ti + 2Li + 1, . . . , ti + 2Li +

⌊
I

1
2
i

⌋}
.

Now using P(Ac3) ≤
⌊
I

1/2
i

⌋−2

, we have

E

[
ti+Ii∑

t=ti+2Li+1

(
G(p̂i, ŷi,1)−G(pt, yt)

)]

= P(A3)E

[
ti+Ii∑

t=ti+2Li+1

(
G(p̂i, ŷi,1)−G(pt, yt)

)∣∣∣∣A3

]

+P(Ac3)E

[
ti+Ii∑

t=ti+2Li+1

(
G(p̂i, ŷi,1)−G(pt, yt)

)∣∣∣∣Ac3
]

≤ max{h, b+ ph}(yh − yl)
⌊
I

1
2
i

⌋
+
⌊
I

1
2
i

⌋−2

max{h, b+ ph}(yh − yl)Ii

≤ 2 max{h, b+ ph}(yh − yl)I
1
2
i .

Then the result of Proposition III.14 follows. �

E: Nonparametric Algorithm for the Observable Demand Case

The algorithm starts with initial parameters {p̂1, ŷ1,1, ŷ1,2}, and three positive

numbers, I0, v and ρ, where I0 > 0, v > 1, ρ > 0 and p̂1 ∈ P , ŷ1,1 ∈ Y , ŷ1,2 ∈ Y .

Let I1 = bI0vc and the first stage consists of 2I1 periods. For the first I1 periods of

stage 1 (t = 1, . . . , I1), the firm sets the price p̂1 and the order-up-to level ŷ1,1; for

the second I1 periods of stage 1 (t = I1 + 1, . . . , 2I1), the firm perturbs the price p̂1

by a small δ1 amount (i.e., p̂1 + δ1), where δ1 = ρ(2I0)−
1
4 (log(2I0))

1
4 . Then the firm

re-sets the price p̂1 + δ1 and the order-up-to level ŷ1,2. In general, for each learning

stage i ≥1,

Ii = bI0v
ic, δi = ρ(2Ii−1)−

1
4 (log(2Ii−1))

1
4 , and ti =

i−1∑
k=1

2Ik. (3.107)
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Then, stage i > 1 starts in period ti+1, and at the beginning of stage i, the algorithm

proceeds with {p̂i, ŷi,1, ŷi,2} that are derived in the preceding stage i − 1. Define set

Si = [pl, pl + δi, p
l + 2δi, . . . , p

h].

Now we present the learning algorithm DDO for the observable demand case.

Step 0: Preparation. Initialize I0, v and ρ, and p̂1, ŷ1,1, ŷ1,2, δ1, I1 as shown

above.

For each stage i = 1, . . . , n where n =
⌈
logv

(
v−1
2I0v

T + 1
)⌉

, repeat the three

steps below:

Step 1: Setting prices and order-up-to level for stage i.

Set prices pt, t = ti + 1, . . . , ti + 2Ii, as follows,

pt = p̂i, for all t = ti + 1, . . . , ti + Ii,

pt = p̂i + δi, for all t = ti + Ii + 1, . . . , ti + 2Ii;

and for t = ti + 1, . . . , ti + 2Ii, raise the inventory level in period t to yt as

follows,

yt = ŷi,1 ∨ xt, for all t = ti + 1, . . . , ti + Ii,

yt = ŷi,2 ∨ xt, for all t = ti + Ii + 1, . . . , ti + 2Ii.

Step 2: Estimating the demand-price function and the error term.

Let dt be demand realizations for t = ti + 1, · · · , ti + 2Ii. Solve a least-square
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problem

(α̂i+1, β̂i+1) = argmin

 ∑
t∈[ti+1,ti+2Ii]

[dt − (α− βpt)]2
 , and (3.108)

ηt = dt − (α̂i+1 − β̂i+1pt) = λ(pt) + εt − (α̂i+1 − β̂i+1pt) for t = ti + 1, . . . , ti + 2Ii.

(3.109)

Step 3: Maximize the proxy profit QSAA(p, y).

We define the following sampled optimization problem (Opt-SAA-O).

max
(p,y)∈Si+1×Y

QSAA
i+1 (p, y) , max

p∈Si+1

{
Ĝi+1(p, α̂i+1, β̂i+1)

}
, (Opt-SAA-O)

where Ĝi+1(p, α̂i+1, β̂i+1) , p
(
α̂i+1 − β̂i+1p

)
−min

y∈Y

1

2Ii

ti+2Ii∑
t=ti+1

{
(b+ p)

(
α̂i+1 − β̂i+1p+ ηt − y

)+

+ h
(
y − (α̂i+1 − β̂i+1p+ ηt)

)+
}
.

Then, set the first pair of price and order-up-to level to

(p̂i+1, ŷi+1,1) = arg max
(p,y)∈Si+1×Y

QSAA
i+1 (p, y),

and compute ŷi+1,2 as

ŷi+1,2 = arg max
y∈Y

QSAA
i+1 (p̂i+1 + δi+1, y).

In case that p̂i+1 + δi+1 6∈ Si+1, set the second price to p̂i+1 − δi+1.
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F: Analysis of Unbounded Demand

Under Assumption (a) of light tailed demand, there exist positive constantsKU
2 , K

U
3 , K

U
4

such that P{Dt(p
l) ≥ x} ≤ KU

2 exp(−KU
3 x) for any x ≥ KU

4 .

We assume the inventory search space ceiling yh is at least 1/(2KU
3 ) log T for the

problem with planning horizon T . In our algorithm we explore the inventory space

up to 1/(2KU
3 ) log T . For convenience we set yh = 1/(2KU

3 ) log T .

Most of the analyses for the unbounded demand case follow similar lines of ar-

guments as those for the bounded demand case. The major difference lies in the

estimation of average demand using sales data, which is the focus of our analysis

below. To analyze the regret, we need to compute the error of estimation had the

complete demand-price information been observed, and then study the impact of

truncated demand data. The former follows from the Chebyshev’s inequality and

Assumption (a), that for some positive constant KU
5 ,

P

(
−σ1L

− 1
2

i (logLi)
1
2 ≤

∑ti+Li
t=ti+1Dt(p)

Li
− E[Dt(p)] ≤ σ1L

− 1
2

i (logLi)
1
2

)
≥ 1− KU

5

Li
,

(3.110)

where σ1 is the standard deviation of Dt(p), and similarly we have

P

(∑ti+Li
t=ti+1(Dt(p)− yh)+

Li
− E[(Dt(p)− yh)+] ≤ σ2L

− 1
2

i (logLi)
1
2

)
≥ 1− KU

6

Li
,

(3.111)

where σ2 is the standard deviation of (Dt(p) − yh)+. We first show that when T is

large enough (because yh grows linearly in log T ), we have 2σ2 < σ1. To that end,

we shall prove that σ2
2 = V ar[(Dt(p)− yh)+] is continuous and decreasing in yh from

σ2
1 = V ar[Dt(p)] to 0 as yh → ∞. Since yh increases linearly in log T , this implies

that when T is large enough, we will have σ2 < σ1/2.
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Let FD(p) and fD(p) denote the cdf and pdf of Dt(p), respectively. Then

σ2
2 =

∞∫
yh

(x− yh)2fD(p)(x)dx−
( ∞∫
yh

(x− yh)fD(p)(x)dx
)2

, and

∂σ2
2

∂yh
= −2FD(p)(y

h)

∞∫
yh

(x− yh)fD(p)(x)dx ≤ 0,

and σ2
2 is decreasing in yh.

It is clear that σ2
2 is continuous in yh and σ2

2 = σ2
1 when yh = 0. Furthermore, it

follows from the monotone convergence theorem that σ2
2 → 0 as yh →∞. Therefore,

σ2
2 is continuously decreasing in yh from σ2

1 to 0 as yh goes from 0 to infinity.

To bound 1
Li

∑ti+Li
t=ti+1 min{Dt(p), y

h} − E[Dt(p)], we notice that min{Dt(p), y
h} =

Dt(p)− (Dt(p)− yh)+, and by Assumption (a), we have

E[(Dt(p)− yh)+}] =

+∞∫
0

P(Dt(p)− yh ≥ x)dx ≤
+∞∫
0

KU
2 e
−KU

3 (x+yh)dx =
KU

2

KU
3

e−K
U
3 y

h

.

Hence, by our choice of yh,
KU

2

KU
3
e−K

U
3 y

h
=

KU
2

KU
3
T−

1
2 ≤ KU

2

KU
3
L
− 1

2
i when T is large enough.

Consequently for large enough i, we have

E[(Dt(p)− yh)+] ≤ KU
2

KU
3

L
− 1

2
i ≤ σ2(Li)

− 1
2 (logLi)

1
2 . (3.112)

Combining (3.111) and (3.112) yields

P

(∑ti+Li
t=ti+1(Dt(p)− yh)+

Li
≤ 2σ2(Li)

− 1
2 (logLi)

1
2

)
≥ 1− KU

6

Li
. (3.113)

Let A4 be the event for (3.110), and A5 be the event for (3.113). Writing (3.110)
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as

−σ1(Li)
− 1

2 (logLi)
1
2 −

∑ti+Li
t=ti+1(Dt(p)− yh)+

Li
≤
∑ti+Li

t=ti+1 min{Dt(p), y
h}

Li
− E[Dt(p)]

≤ σ1(Li)
− 1

2 (logLi)
1
2 −

∑ti+Li
t=ti+1(Dt(p)− yh)+

Li
. (3.114)

Then it can be seen that on the event A4 ∩ A5, it holds that

(−σ1 − 2σ2)(Li)
− 1

2 (logLi)
1
2 ≤

∑ti+Li
t=ti+1 min{Dt(p), y

h}
Li

− E[Dt(p)] ≤ σ1(Li)
− 1

2 (logLi)
1
2 .

Thus by −2σ2 ≥ −σ1, it follows from (3.110) and (3.113) that

P

(
−2σ1(Li)

− 1
2 (logLi)

1
2 ≤

∑ti+Li
t=ti+1 min{Dt(p), y

h}
Li

− E[Dt(p)] ≤ σ1(Li)
− 1

2 (logLi)
1
2

)

≥ P (A4 ∩ A5) = 1− P (Ac4 ∩ Ac5) ≥ 1− KU
5 +KU

6

Li
. (3.115)

Comparing this result with (3.110) reveals that, estimating the average demand

using sales data during the exploration phase leads to an error very similar to that

using true demand data. This estimation error determines the regret from the ex-

ploitation phase, and it shows that the regret from the exploitation phase using sales

data is similar in format to that in the bounded demand case. However, we note

that in the proof of Theorem III.4, the regret is amplified by yh − yl = O(1) for the

bounded demand case, whereas the regret is amplified by yh − yl = O(log T ) for the

unbounded demand case, resulting in a total regret of O(T−
1
5 log T ).
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CHAPTER IV

Data-Driven Dynamic Pricing

and Inventory Control with Censored Demand

and Limited Price Changes

4.1 Introduction

Information about the demand distribution and its dependency on selling prices

is critical for making pricing and inventory decisions. However, in many applications,

such information is not known a priori, and the firm needs to learn through price

experimentation. This is usually done through exploration and exploitation. In the

exploration phase, the firm uses different price points to collect demand data, and

then uses the obtained information to make decisions for implementation during the

exploitation phase. When demand is censored, the firm can only observe the de-

mand realization up to the inventory level, and any unsatisfied demand is lost and

unobserved. This leads to partial and incomplete demand information. For a finite

planning-horizon problem, there is a trade-off between these two phases: the longer

the exploration phase, the more demand information the firm can extract, but the

shorter the remaining time for exploitation to maximize profit. Thus, designing effec-

tive learning algorithms has been of great interest in the recent literature. See e.g.,

Burnetas and Smith (2000), Besbes and Zeevi (2009), Broder and Rusmevichientong
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(2012), and Besbes and Zeevi (2015), to name just a few.

One common observation in practice is that a firm may be constrained from mak-

ing frequent price changes. Cheung et al. (2015) discuss several practical reasons in

price experimentations that forbid frequent price changes, such as customer’s nega-

tive responses to frequent price changes (e.g., that may cause confusion and affect

seller’s brand reputation). One economic reason for not having frequent price change

is the cost for making such changes (e.g., due to changing price labels, etc.), hence

by limiting the number of price changes the firm would control the associated cost.

Clearly, such constraint brings enormous additional complexity in demand learning.

In this chapter we consider a dynamic joint pricing and inventory replenishment

problem over a finite planning horizon, where the firm has little prior knowledge about

the demand distribution and needs to learn it through historical censored demand

data. The firm needs to determine its inventory replenishment and pricing decisions

in each period, subject to some constraint on the number of price changes, and the

objective is to maximize total expected profit. We consider a setting where the

demand distribution on an offered price is drawn from a family of distributions with

unknown continuous parameters of dimension k. We develop data-driven algorithms

to compute pricing and inventory replenishment decisions for various constraints on

the number of price changes, and evaluate their performances by regret, which is the

total profit loss compared to a clairvoyant who has complete information about the

demand distribution and can change its selling prices as many times as it wishes.

Three scenarios are considered: First, for a general case, when the number of price

changes is limited to k, the regret is O(T 1/2). Second, for a so-called well-separated

case, when the number of price changes is limited to m, an arbitrarily given positive

integer, the regret is O(T 1/(m+1)). Third, also for the well-separated case, when the

number of price changes is in the order of O(log T ), the regret is O(log T ). We further

show that these bounds are the best possible in the sense that, they have the same
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order of magnitude as the lower bound of regret for any learning algorithms of these

problems. We also conduct numerical studies and show that these learning algorithms

empirically perform very well.

Comparisons with the Literature. This chapter is related to the research

literature dealing with limited demand information in stochastic inventory control,

revenue management, and joint pricing and inventory control problems. For each cat-

egory, the research literature is classified as either parametric (i.e., the firm knows the

family of demand distribution but not the parameters of the distribution) or nonpara-

metric approach. Our work falls into the parametric category of joint optimization of

pricing and inventory control. Thus, in the following we briefly review related works

on inventory and pricing using parametric demand estimation.

Earlier research papers on stochastic inventory control with parameter estimation

include Scarf (1959, 1960), Murray and Silver (1966), Azoury (1985), Lovejoy (1990)

for completely observable demand data; Ding et al. (2002), and Lariviere and Porteus

(1999) for censored demand; and Chen and Plambeck (2008) for the case with mul-

tiple products. In these papers, price is static and exogenous, thus the firm is only

concerned with inventory replenishment decisions. In the revenue management liter-

ature, early papers such as Kalish (1983), and Gallego and van Ryzin (1994) consider

a firm’s pricing problem when the firm has complete information about the under-

lying demand process. These papers have been extended to the parametric settings

by, e.g., Araman and Caldentey (2009), Aviv and Pazgal (2005), Broder and Rus-

mevichientong (2012), Carvalho and Puterman (2005), Farias and van Roy (2010),

den Boer and Zwart (2015), Harrison et al. (2012), and Keskin and Zeevi (2014),

among others. Cheung et al. (2015) develop learning algorithms for a pricing problem

with constraint on the number of price changes.

There have been numerous studies in the literature on joint pricing and inven-

tory decisions. As in the above two categories, earlier papers in this area, including

147



Whitin (1955), Karlin and Carr (1962), Thowsen (1975), Federgruen and Heching

(1999), and Chen and Simchi-Levi (2004b), assume that the firm has complete in-

formation about demand distribution. Refer to survey papers by Chan et al. (2004),

Elmaghraby and Keskinocak (2003), Yano and Gilbert (2003), and Chen and Simchi-

Levi (2004b) for more references. The extension to the parametric case has been

studied by Subrahmanyan and Shoemaker (1996), and Petruzzi and Dada (2002).

The most closely related works to ours are Broder and Rusmevichientong (2012),

Cheung et al. (2015), and Besbes and Zeevi (2009). Broder and Rusmevichientong

(2012) consider a dynamic pricing problem with Bernoulli demand, and the firm

learns unknown parameters by maximum likelihood estimation (MLE). They clas-

sify the customer response probability functions into a general case (which motivates

our definition of identifiable demand distributions) and a well-separated case. In

this chapter, our demand process follows a general distribution, and because of cen-

sored demand, the traditional MLE cannot be applied to our problem. We develop

a modified MLE method to incorporate censored data and prove that it admits the

same convergence rate as the traditional MLE. This development is new to the lit-

erature. Note that Broder and Rusmevichientong (2012) assume that the firm has

infinite inventory available initially, hence there are no inventory replenishment de-

cisions and all realized demands are fully observed. In contrast, our problem has

joint pricing and inventory control, and unsatisfied demand is unobservable. It is

clear that a lower starting inventory level gives higher chance of stockout hence less

information about demand, implying that inventory replenishment decisions impact

demand learning. Thus, besides experimenting with prices, we also need to explore

in the replenishment space so that demand information can be collected. In addition,

Broder and Rusmevichientong (2012) do not consider the business constraints on the

number of price changes. For the well-separated case, we design two algorithms for

the joint pricing and replenishment problem, with the first one achieving a regret of
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O(T 1/(m+1)) when the firm is constrained to changing prices at most m times, and

our second algorithm admits a regret of O(log T ) when the firm can change price

O(log T ) times (in contrast, the algorithm of Broder and Rusmevichientong (2012)

for the pure pricing problem has a regret of O(log T ) by changing the price O(T )

times); for the general case, we develop an algorithm that changes the price at most

k times and achieves a regret of O(T 1/2) with the knowledge of horizon length T (the

learning algorithm of Broder and Rusmevichientong (2012) changes prices O(T 1/2)

times without knowing T ). We further show that the regret rates of our algorithms

are the lowest possible, i.e., they are the same magnitude as the lower bound of regret

of any learning algorithm for the respective classes of problems.

Cheung et al. (2015) study a dynamic pure pricing problem with demand learning,

in which the firm faces a constraint on the number of price changes. They consider a

scenario where there is infinite initial inventory, and demand distribution belongs to

a finite set of possibilities. Cheung et al. (2015) present an algorithm which changes

prices no more than m times and show that it has a regret of O(log(m) T ), which

achieves the lower bound. In contrast, in our model the customer response is from a

general parametric class of functions with unknown continuous parameters of dimen-

sion k, hence the set has an infinite and uncountable number of elements. We have

a joint optimization of pricing and inventory control problem with non-perishable

products, thus we face the issue of not being able to achieve inventory target in

making replenishment decisions. We also have censored demand, adding additional

complexity to the analysis. Methodology wise, our work is substantially different

from Cheung et al. (2014). For parameter estimation, we develop the modified MLE

method, while Cheung et al. (2015) implements the first moment estimation (using

sample average to estimate mean of the demand). Note that the convergence analysis

of the estimation method in Cheung et al. (2015) only works for a finite number of

candidate functions, and they assume the difference between values of any two can-
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didate functions at the testing price point is lower bounded by a positive constant.

Even with an infinite and countable number of candidate functions, the method in

Cheung et al. (2015) will no longer work. To develop the lower bound for regret,

Cheung et al. (2015) apply change of measure as in Lai and Robbins (1985), while in

our chapter, we apply the van Trees inequality (Gill and Levit (1995)) to establish

the lower bound. It is worthwhile to note that, when no constraints are imposed on

the number of price changes, the lower bound for regret of the dynamic pricing model

of Cheung et al. (2015) is Ω(1) (constant); while the lower bounds for the regret of

our dynamic pricing and inventory replenishment problem are Ω(log T ) and Ω(T 1/2),

respectively, for the well-separated and general cases.

Besbes and Zeevi (2009) study the revenue management problem with fixed initial

inventory using both nonparametric and parametric approaches, thus they have no in-

ventory decisions. For the parametric case, they prove that the lower bound for the re-

gret of their algorithm is Ω(T 1/2). In their k-unknown-parameter case (which is similar

to our k-identifiable case), they propose an algorithm with regret O
(
T 2/3(log T )1/2

)
;

in their 1-unknown-parameter case (which is similar to our well-separated case), they

obtain a regret of O
(
T 1/2(log T )1/2(log log T )

)
.

Structure of This chapter. In the next section we formulate the joint pricing

and inventory replenishment problem. In Section 3 we present the learning algorithms,

for the well-separated case and the general case, respectively, as well as their regret

rates. In Section 4 we conduct a numerical study and report the numerical results.

We conclude the chapter in Section 5. Finally, some detailed proofs and background

information are provided in the Appendix. Throughout the chapter, for a real number

x, let dxe denote the smallest integer that is greater than or equal to x, and we use

‖·‖ to denote the Euclidean norm, i.e., ‖x‖ = (
∑n

i=1 x
2
i )

1/2 for x = (x1, . . . , xn) ∈ Rn.
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4.2 Model Formulation and Preliminaries

A firm sells a product over a planning horizon of T periods. At the beginning of

each period t, the firm sets a selling price pt ∈ P = [pl, ph] and determines a replen-

ishment decision, the order-up-to level, yt ∈ Y = {yl, yl + 1, . . . , yl}, t = 1, . . . , T .

During period t, a random number of customers Dt(pt, z) arrive, where z ∈ Z is a

parameter vector and Z is a compact and convex set. Suppose Dt(·, ·) takes integer

value from D that ranges from dl ≥ 0 to dh (≥ dl), which may be infinity, and the

average demand E[Dt(p, z)] at the true value z is positive at price p ∈ P . Realized

demands are satisfied as much as possible by on-hand inventory, and unsatisfied de-

mands are lost. We consider the scenario with censored demand, i.e., the firm only

observes sales data min{Dt(pt, z), yt} in period t, but not the actual demand. The

cost structure includes the unit holding cost h, unit shortage cost b, and the inventory

ordering cost is normalized to zero. Suppose the inventory replenishment lead-time is

zero. The objective of the firm is to dynamically determine its pricing and inventory

replenishment decisions in each period to maximize the expected total profit.

The demand model described above is a parametric model, i.e., for a given p ∈ P ,

the firm knows the probability mass function for Dt(p, z), f(·; p, z), up to the unknown

parameter vector z. Assume f(·; p, z) is differentiable with respect to z. Clearly, if the

firm knew the values of z, then this is a standard dynamic joint pricing and inventory

control problem that has been extensively studied in the literature. However, in our

setting, the firm does not know the parameter vector z, thus it has to learn about

the demand information from past sales data, which is obtained through price and

ordering experimentations. Furthermore, this chapter is concerned with the case

that the firm is faced with the business constraint that prevents it from conducting

extensive price experimentations. Thus, the firm is subject to the constraint on the

number of times it can change its selling price.

The objective of the firm is to develop a mechanism that learns the demand
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information from sales data while satisfying the constraint on the number of price

changes, and exploit the extracted information to maximize its expected total profit.

Remark 1. In the subsequent analysis, we will focus on the case that the selling price

is continuous and the demand and order quantities are discrete. However, we point

out that the results, as well as all analyses, carry over to the case with continuous

demands and ordering quantities, i.e., Dt(pt, z) is a continuous random variable and

Y = [yl, yh] ⊂ R+.

The Complete Information Problem. Let xt denote the inventory level at the

beginning of period t before the replenishment decision, and suppose the initial inven-

tory level is x1 = 0. Given a pricing and inventory policy φ = ((p1, y1), (p2, y2), . . . , (pT , yT )),

the total expected profit over the planning horizon is

V φ(T ) (4.1)

=
T∑
t=1

{
ptE[Dt(pt, z)]−

{
hE [max{yt, xt} −Dt(pt, z)]+ + (b+ pt)E [Dt(pt, z)−max{yt, xt}]+

}}
.

If the firm knows the parameters z and thus also the distribution of Dt a priori,

then dynamic programming can be used to compute the optimal pricing and inventory

replenishment decisions. In that case, and if in addition there is no constraint on the

number of price changes, then it is known (see e.g. Sobel (1981)) that a myopic policy

is optimal for problem (4.1). Let G(p, y, z) denote the single-period profit function,

i.e.,

G(p, y, z) = pE[D(p, z)]− hE [y −D(p, z)]+ − (b+ p)E [D(p, z)− y]+ , (4.2)

where D(p, z) is the generic random demand when the true parameter is z and the

selling price is p, and suppose it has a unique maximizer (p∗, y∗) on P ×Y . Then the

optimal strategy φ∗ for the firm is to order up to y∗ and set the price at p∗ in each

period.
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Definition of Regret. In our setting, the firm does not know the parameter

vector z a priori, so it needs to develop an adaptive policy φ which determines the

selling price pt and replenishment level yt for each period t based on historical in-

formation, i.e., past selling prices, order-up-to levels, and sales data, subject to the

constraint on the number of price changes. To measure the performance of a policy

φ, we define the regret as the total profit loss of policy φ compared with that of the

optimal policy φ∗ when complete information is available and there is no constraint

on the number of price changes. That is,

Rφ(T ) = V φ∗(T )− V φ(T ).

It is clear that Rφ(T ) ≥ 0, and the smaller the regret, the better policy φ performs.

The Traditional Maximum Likelihood Estimation. To estimate the un-

known parameters z of a distribution, a commonly used method is maximum likeli-

hood estimation (MLE). For 1 ≤ t1 ≤ t2 <∞, let {pt1 , pt1+1, . . . , pt2} be a sequence of

given prices for periods {t1, t1 + 1, . . . , t2}, and if the corresponding realized demand

{dt1 , dt1+1, . . . , dt2} can be observed and there is no censored data, then an estimate

of z can be computed using the standard MLE given by

ẑ = arg max
z∈Z

t2∏
t=t1

f(dt; pt, z). (4.3)

In our setting, however, the traditional MLE will not work due to censored demand

data. Indeed, the true demand dt is observed only when dt < yt. If dt ≥ yt, then the

firm observes the sales quantity yt with the implication that the demand dt is no less

than yt. Therefore, the likelihood function (4.3) cannot be applied under censored

demand data.

In this chapter we modify the standard MLE to incorporate censored demand

information. A key in this step in our analysis is to show that the modified estimator
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possesses the desired convergence rate under the mean-squared error measure.

A Technical Result. We next develop an upper bound for regret from estimation

error in a general setting, which will be used in our subsequent analysis. Suppose

that a firm maximizes an objective function H(p, y, z) over decision variables p and y

without knowing the values of underlying parameters z a priori, where z ∈ Z ⊂ Rr3

for some integer r3 ≥ 1. The objective function may be multimodal, and the decision

variables p ∈ P ⊂ Rr1 for some integer r1 ≥ 1 and y ∈ Y ⊂ Zr2 for some integer

r2 ≥ 1. The firm learns the value of ẑ through some noisy observations during decision

process. We impose the following regularity conditions.

Assumption A (Regularity Conditions).

i) There is a unique global maximizer on P × Y , denoted by (p∗(z), y∗(z)) for

H(p, y, z), i.e.,

(p∗(z), y∗(z)) = arg max
p∈P,y∈Y

H(p, y, z),

and it falls into the interior of P × Y .

ii) For any y ∈ Y , H(p, y, z) is twice differentiable with respect to p ∈ P with

bounded second order derivatives.

iii) H(p, y, z) satisfies the Lipschitz condition on P × Y , i.e., there exists some

constant K1 > 0 such that ‖H(p1, y1, z)−H(p2, y2, z)‖ ≤ K1(‖p1 − p2‖+ ‖y1 −

y2‖) for any p1, p2 ∈ P and y1, y2 ∈ Y .

iv) p∗(z) is locally Lipschitz on P at the true underlying parameter z. That is,

there exist constants δ > 0 and K2 > 0 such that when ‖z′ − z‖ < δ, we have

‖p∗(z′)− p∗(z)‖ ≤ K2‖z′ − z‖.

v) If z is the true underlying parameter, then there exists a constant δ > 0 such

that when ‖z′ − z‖ < δ, we have y∗(z′) = y∗(z). (If y is continuous, then
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there exist constants δ > 0 and K3 > 0 such that when ‖z′ − z‖ < δ, we have

‖y∗(z′)− y∗(z)‖ ≤ K3‖z′ − z‖.)

Under these assumptions, we have the following basic result.

Theorem IV.1. (Regret from Estimation Error). Suppose ẑ is an estimator of

z using c data points, and for any ε > 0 it satisfies

P
{
‖ẑ− z‖ ≥ ε

}
≤ K4e

−cK5ε2 (4.4)

for some constants K4 > 0 and K5 > 0. Then, there exists a positive constant K6

such that

H(p∗(z), y∗(z), z)− E[H(p∗(ẑ), y∗(ẑ), z)] ≤ K6

c
.

This theorem will play an important role in proving the main results in this

chapter. Its proof is provided in Appendix A.

4.3 Learning Algorithms

With censored demand, the firm only observes sales data min{yt, dt} in period

t. If stockout occurs in period t, then the firm knows that the demand is at least

yt, but does not know the exact demand. This has two implications: One is that

the incompleteness of demand data impedes parameter estimation, as the firm can

no longer compute the MLE estimator in (4.3) in the usual way. The other is that,

with censored demand, the collected demand information depends on the inventory

level yt, hence the quality of the observed demand data depends on the inventory

replenishment decision. Indeed, it is intuitive that higher inventory level helps reveal

more demand information as less likely stockout would occur. This implies that the

firm needs to strategically integrate inventory (and pricing) decisions with demand
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learning in maximizing its total profit.

Depending on the characteristics of the class of parametric demand models, in the

following subsections we study two cases and design learning algorithms that achieve

the lowest possible regret rate for each of them.

4.3.1 Well-Separated Case

We first consider the case that the parameter z is a scaler, i.e., z ∈ Z = [zl, zh] ⊂

R1 for some zl ≤ zh <∞, and the demand processes with different parameters z are

relatively easy to differentiate. Recall that two probability mass functions are said to

be identifiable if they are not identically the same.

Definition 1. The family of distributions {f(·; p, z) : z ∈ Z} is called well-separated

if for any p ∈ P , the class of probability mass functions {f(·; p, z) : z ∈ Z} is

identifiable, i.e., f(·; p, z1) 6= f(·; p, z2) for z1 6= z2.

Identifiability is an important concept in mathematical statistics and it has been

widely used in the literature, see Condition (A0) in Borovkov (1998). If a family of

distributions is well-separated, then no matter what selling price p the firm charges,

the corresponding demand distribution differs for different parameter z, hence allow-

ing the firm to learn about the parameter z at any selling price. This indicates that

in the well-separated case, it is possible to combine exploration with exploitation

to design an efficient learning algorithm. The well-separated demand distributions

have been studied in the revenue management literature with infinite starting inven-

tory (hence there is no censored demand and no inventory decision) in Broder and

Rusmevichientong (2012) and Chen et al. (2014a), among others.

We make the following assumptions for the well-separated family of distributions

{f(·; p, z) : z ∈ Z}.

Assumption 1.

(i) There exists some constant cf > 0 such that Ĩ(p, z) ≥ cf for all p ∈ P and
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z ∈ Z, where

Ĩ(p, z) =

(
∂f(dl; p, z)

/
∂z
)2

f(dl; p, z)
,

and there exists a constant c̄f < +∞ such that the Fisher information If (p, z),

given by

If (p, z) =
dh∑
d=dl

(
∂f(d; p, z)

/
∂z
)2

f(d; p, z)
,

satisfies I(p, z) < c̄f for all p ∈ P and z ∈ Z.

(ii) There exists a constant f > 0 such that f(d; p, z) ≥ f for all p ∈ P , z ∈ Z and

d ∈ {dl, dl + 1, . . . , yh}.

(iii) For any p ∈ P , f(dl; p, z) is strictly monotone in parameter z ∈ Z.

Assumption 1 is satisfied by various demand distributions, and two are given

below.

Example 1. The following examples satisfy Assumption 1: (a) Poisson random

variable with rate r(p, z), (b) Binomial random variable with total number of trials

dh ≥ 1 and success probability r(p, z). For both examples, r(p, z) can be

1) linear function r(p, z) = 2− zp with P = [8/15, 2/3],Z = [2, 3];

2) logit function r(p, z) = e2−zp

1+e2−zp
with P = [1/2, 2],Z = [1, 5];

3) exponential function r(p, z) = e2−zp with P = [2, 10],Z = [2, 5].

As will be described in the algorithm shortly, we will estimate the unknown pa-

rameter z using a modified MLE method tailored for the well-separated case under

censored demand data. Assumption 1 is imposed to guarantee that this modified

MLE estimator will converge to the true value of z at the desired convergence rate.
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We assume y∗ > dl, i.e., the true optimal order-up-to level is higher than the lower

bound of random demand, which is a reasonable and weak assumption. During the

learning process, the best solution under the updated estimate of z may be equal to

dl. That is, if ẑ is the estimated parameter it may happen that y∗(ẑ) = dl. If we

implement inventory decision y∗(ẑ), then the inventory level will surely drop to zero

at the end of the period, and the only demand information it yields is that demand

is at least dl, which is already known. This shows that, whenever y∗(ẑ) = dl occurs,

we should modify the ordering decision to a quantity above dl, say dl + ∆ for some

small positive number ∆, in the algorithm so that some information about demand

is to be revealed with positive probability.

Fixed Number of Price Changes. We first consider the setting where the

number of price changes is limited to a given number, say m ≥ 1. To develop a

learning algorithm for this case, we divide the planning horizon T into m+ 1 stages,

of which the ith stage consists of Ii =
⌈
T i/(m+1)

⌉
periods, i = 1, . . . ,m, and the last

stage contains T −
∑m

i=1 Ii periods. During stage i ≥ 2, the algorithm sets a pricing

and ordering decision that is constructed using data collected from the previous stage

i − 1. If the order-up-to level in the solution is above dl, then both the pricing and

ordering decision is implemented in stage i. Otherwise, and as we discussed above,

the algorithm implements the pricing solution but raises the order-up-to level slightly.

At the end of the stage, the algorithm applies the observed sales data to estimate

parameter z using a modified MLE method, and then solve a data-driven version of

optimization problem for (4.2) to obtain a new decision to be used for the subsequent

stage i+ 1.

Let ti denote the last period of stage i− 1, i = 2, . . . ,m+ 2. To get the algorithm

started, we need an initial pricing decision p̂1 ∈ P and initial ordering decision ŷ1 =

dl + ∆ for some constant ∆ > 0 such that ŷ1 ∈ Y . Let F (d, p, z) =
∑

x≤d f(x, p, z).

Algorithm I (m price changes for the well-separated case)
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Step 0: Preparation

Ii =
⌈
T i/(m+1)

⌉
, for i = 1, . . . ,m, and Im+1 = T −

∑m
i=1 Ii.

t1 = 0, and ti =
∑i−1

j=1 Ij for i = 2, . . . ,m+ 2.

Step 1: Setting pricing and ordering decisions

For stage i ≤ m+ 1, set the price and inventory level to

pt = p̂i, t = ti + 1, . . . , ti+1,

yt = max{xt, ỹi}, t = ti + 1, . . . , ti+1,

xt+1 = max{yt − dt, 0}, t = ti + 1, . . . , ti+1,

where

ỹi =


ŷi, if ŷi > dl,

dl + ∆, if ŷi = dl.

Step 2: Estimation

Compute the estimator for z by

ẑi = argmax
z∈Z

{ ∏
{t∈{ti+1,...,ti+1}:dt<yt}

f(dt; p̂i, z) ·
∏

{t∈{ti+1,...,ti+1}:dt≥yt}

(
1− F (yt − 1; p̂i, z)

)}
.

(4.5)

Step 3: Data-driven optimization

Solve the data-driven optimization problem

(p̂i+1, ŷi+1) = arg max
(p, y) ∈ P × Y

G(p, y, ẑi). (4.6)

Go to Step 1 with i := i+ 1.

159



The intuition behind the learning algorithm above is the following. Since selling

price cannot be changed more than m times, the planning horizon is divided into

m+ 1 stages with each stage charging the same price. These stages are exponentially

increasing in length since, as more data are collected, more accurate estimates of

demand are obtained hence they can be used for longer time to extract profit.

For each stage i ≥ 2, Step 1 reflects the tension between exploration and ex-

ploitation regarding the ordering decisions. At the new price decision p̂i, if the cor-

responding ordering decision ŷi equals dl, then implementing ŷi will not yield any

information about demand distribution. Hence the algorithm prescribes order-up-to

level dl + ∆ instead, which will guarantee observing a non-censored demand realiza-

tion with positive probability, thus providing information to update the estimate of

parameter z. Note that in this case, the algorithm experiments an ordering decision

at a loss of profit. Fortunately, as the learning process continues, the probability for

having ŷi = dl will be diminishing because, if ẑi approaches the true z, then y∗(ẑi)

will approach y∗ which is greater than dl. In Step 2, a modified MLE is employed to

estimate z. For each period t, if dt < yt, then we can observe the true value of dt, and

the probability for that event is f(dt; p̂i, z); if dt ≥ yt, then the firm only knows that

the demand dt is at least yt, and the probability for this event is 1− F (yt − 1; p̂i, z),

which is incorporated in the likelihood function. The optimization problem con-

structed in (4.5) resembles the traditional MLE method in (4.3). Finally, in Step 3,

the data-driven optimization problem finds the optimal pricing and inventory deci-

sions using the updated estimate ẑi of parameter z, which will be implemented in the

next iteration.

The following theorem gives the theoretical performance of Algorithm I.

Theorem IV.2. For any problem instance of the well-separated case that satisfies

Assumptions A and 1, for any initial values of p̂1 ∈ P, ∆ > 0 and ŷ1 + ∆ ∈ Y, there

exists a constant K7 > 0 such that the regret of learning algorithm I with at most m
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price changes is upper bounded by

R(T ) ≤ K7 T
1

m+1 .

Before presenting the proof of Theorem 1, we elaborate on the technical issues en-

countered in analyzing the algorithm. First, note that the objective function in (4.5) is

different from the traditional MLE method, and there exists no result in the literature

on convergence rate for estimators obtained by maximizing the modified likelihood

function (4.5). To overcome this issue, we introduce a truncated random variable

D̃t,yt(p̂i, z) defined on {dl, dl + 1, . . . , yt} with probability mass function f̃yt(·; p̂i, z):

f̃yt(d; p̂i, z) =


f(d; p̂i, z), if dl ≤ d < yt,

1− F (yt − 1; p̂i, z), if d = yt.

Then, D̃t,yt(p̂i, z) = min{Dt(p̂i, z), yt}. It is easily verified that (4.5) is exactly the

maximum likelihood estimation for this truncated distribution. The main difficulty

lies in that D̃t,yt(·; p̂i, z) are dependent across periods, because yt depends on demand

realizations and inventory levels of previous periods. Furthermore, D̃t,yt(p̂i, z) are

not identically distributed as yt are not constant. As a result, the convergence rate

result of MLE (see Borovkov (1998) Theorem 36.3), which requires samples to be

independently and identically distributed, cannot be applied here.

Nonetheless, in Proposition 1 below, we show that ẑi computed from (4.5), al-

though involving dependent and non-identically distributed random variables, con-

verges to the true z at the same rate as that of the traditional MLE method. This

result is crucial for establishing the upper bound of regret in Theorem 2.

Proposition IV.3. For any problem instance of the well-separated case that satisfies

Assumptions A and 1, there exist constants K8 > 0 and K9 > 0 such that for any
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ε > 0, ẑi of (4.5) satisfies

P
{
|ẑi − z| ≥ ε

}
≤ K8e

−IiK9ε2 .

Proposition IV.3 implies

E[|ẑi − z|2] =

+∞∫
0

P{|ẑi − z|2 ≥ ε}dε ≤
+∞∫
0

K8e
−IiK9εdε =

K10

Ii
, (4.7)

where K10 = K8/K9. This result will be utilized in proving Theorem IV.2.

Proof Sketch of Theorem IV.2. By the definition of regret, we have

R(T ) =
T∑
t=1

E [G(p∗, y∗, z)−G(pt, yt, z)]

=

t2∑
t=t1+1

E [G(p∗, y∗, z)−G(pt, yt, z)] +
m+1∑
i=2

ti+1∑
t=ti+1

E [G(p∗, y∗, z)−G(pt, yt, z)]

≤
t2∑

t=t1+1

E [G(p∗, y∗, z)−G(pt, yt, z)]︸ ︷︷ ︸
regret from initial decision

+
m+1∑
i=2

ti+1∑
t=ti+1

E [G(p∗, y∗, z)−G(p̂i, ŷi, z)]︸ ︷︷ ︸
regret from estimation error

+
m+1∑
i=2

ti+1∑
t=ti+1

E [|G(p̂i, ŷi, z)−G(p̂i, ỹi, z)|]︸ ︷︷ ︸
regret from exploration on the ordering decision

+
m+1∑
i=2

ti+1∑
t=ti+1

E [|G(p̂i, ỹi, z)−G(pt, yt, z)|]︸ ︷︷ ︸
regret from missing inventory targets

.

(4.8)

As marked in (4.8), the first term on the right hand side stems from the input

initial solutions that may not be optimal, and its upper bound is proportional to the

length of the first stage. The second term is due to the estimation error (ẑi may not

be equal z), and the closer ẑi is to z, the smaller the second part of regret. The key

drivers to obtain an upper bound for the second part of regret are, as pointed out by

one reviewer, (i) the optimization error is linear in the estimation error, and (ii) the

squared estimation error is inversely proportional to the sample size. The first one (i)
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is established under some regularity condition concerning continuity of the function,

while the second (ii) refers to (4.7). The upper bound for the second term is obtained

by applying Theorem IV.1. The third term presents the regret from exploration in

the inventory decision, and it is proportional to the probability for ỹi to be not equal

to ŷi, which is also the probability for ŷi to be equal to dl. As discussed earlier, since

y∗ > dl, as the data size increases, it is intuitive that the probability for ŷi to be close

to y∗ will be high, hence the probability for this event will be small. The fourth and

last term on the right hand side of (4.8) is contributed by the carry-over inventories

between periods. We employ Hoeffding inequality to show that after a relative short

number of periods, ỹi can be achieved with a high probability. A general result in

bounding the fourth part of regret is shown in Proposition A1 in Appendix A.

An important question is whether there exists learning algorithm with m or fewer

price changes but with lower regret rate than Algorithm I. The following result shows

that is not possible at least for algorithms with predetermined price-change schedules.

Theorem IV.4. There exist problem instances such that the regret for any learning

algorithm for the joint inventory control and pricing problem with censored demand

that changes price at most m times according to a predetermined schedule is lower

bounded by Ω(T 1/(m+1)). That is, there exists a constant K11 > 0 such that for any

such learning algorithm φ,

Rφ(T ) ≥ K11 T
1

m+1 .

Proof Sketch. To prove Theorem IV.4, we construct a problem instance in which

the inventory order-up-to level for each period is fixed and high enough so that any

realization of the demand can be satisfied under any price. Therefore, the effect of

lost sales and censored data is eliminated and the original joint pricing and inventory

control problem is reduced to a pure dynamic pricing problem with fixed inventory
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control strategies. Because price for period t, pt, is a function of the historical data

from period 1 to period t− 1, it can be considered as an “estimator” based on t− 1

data points. By van Trees inequality (Gill and Levit (1995)), the performance of pt

is lower bounded as inversely proportional to t − 1, which can be used to establish

the lower bound of the regret. Because of the freedom of at most m price changes,

this gives rise to a problem with m+ 1 variables, and we apply geometric inequality

to prove the designed result.

The two theorems above show that our algorithm has achieved the lowest regret

rate for the well-separated case with a fixed number and predetermined times of price

changes under censored demand.

Remark 2. The discussion following Algorithm I leads to a practically less interesting

mathematical problem of what happens if the real optimal order-up-to level is very low,

i.e., y∗ ≤ dl? We have also studied this case, and as one can expect, it will become

inevitable to have more tension between learning and earning because of the lack of

information the learning phase can offer in exploring the true value of z. In that case

learning algorithm can be developed with a higher regret rate of O(T 1/2).

A More-frequent-price-change Case. In the analysis above it is assumed that

the number of price changes is restricted up to a fixed number. In applications it may

be the case that the firm cannot change the price too often, but it is allowed to make

more price changes when the planning horizon is longer. In the following, we propose

a learning algorithm for the joint pricing and inventory control problem which can

change the price O(log T ) times, and we refer to it as the case with more-frequent-

price-change. We show that the regret of our algorithm improves significantly, from

polynomial O(T 1/(m+1)) to O(log T ).

In our learning algorithm for the case with more-frequent-price-change, we again

divide the time horizon into stages with exponentially increasing lengths. Let I0 > 0
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and v > 1 be given positive numbers, and let

Ii =
⌈
I0v

i
⌉
, i = 1, 2 . . . , N, (4.9)

denote the length of stage i, where

N =

⌈
logv

(
v +

v − 1

I0

T

)
− 2

⌉
= O(log T )

is the number of price changes. The last stage, N+1, has IN+1 = T−
∑N

i=1 Ii periods.

Again we let ti be the last period of stage i − 1, i.e.,
∑i−1

j=1 Ij = ti, i = 2, . . . , N + 2,

with t1 = 0. Thus, stage i starts in period ti + 1. The algorithm needs some initial

input p̂1 ∈ P , ŷ1 = dl + ∆ ∈ Y for the first stage. The algorithm runs in exactly the

same manner as Steps 1 to 3 in Algorithm I, except that now the number of periods

in stage i is given by (4.9) and there is a total of N = O(log T ) iterations.

Theorem IV.5. For any problem instance of the well-separated case that satisfies

Assumptions A and 1, for any initial values of p̂1 ∈ P, ∆ > 0 and ŷ1 + ∆ ∈ Y, there

exists a constant K12 > 0 such that the regret of the learning algorithm with O(log T )

price changes is upper bounded by

R(T ) ≤ K12 log T.

We remark that Ω(log T ) is also the lower bound for the regret of any algorithm for

our problem in hand. As a matter of fact, even for the special case with no constraint

on the number of price changes and no censored demand data, Ω(log T ) is the lower

bound for the regret of any learning algorithm. Indeed, Broder and Rusmevichientong

(2012) establish such a lower bound for the dynamic pricing problem with infinite

initial inventory (thus there is no inventory replenishment decision and no censored

data) and no constraint on the number of price changes, and they show that the regret

165



is lower bounded by Ω(log T ). Broder and Rusmevichientong (2012) obtain this lower

bound by a pricing policy that changes price every period. As our problem is more

general than theirs, the regret of our problem is also lower bounded by Ω(log T ). This

shows that our algorithm has achieved the lowest possible regret rate for the problem

with more-frequent-price-change.

To prove Theorem 4, we will not be able to apply Proposition A1 to bound the

regret from missing inventory target ỹi as was done in the proof of Theorem 2. This

is because, in the algorithm of Theorem 2, the stage is long, thus at the beginning

of each stage we can allocate a relatively short phase to be the “depletion phase”.

During the deletion phase, the initial inventory of this stage can be consumed by the

cumulative demands to below ỹi (with a high probability), and after which the target

level ỹi is always achieved in this stage. However, in the algorithm in Theorem 4,

the stage is short, even shorter than the required length of the “depletion phase”, so

the above method cannot be applied. The idea in proving Theorem 4 is to prove the

initial inventory level of stage i is not very high compared with ỹi. We obtain this

by showing that ỹi−1 and ỹi are very close (with a high probability), and once ỹi−1

is finally achieved during stage i− 1, the initial inventory level for stage i will be no

higher than ỹi−1.

4.3.2 The General Case

An important assumption in the previous subsection is that, the demand distri-

bution is identifiable for any selling price p. This special demand structure allows the

firm to learn about parameter z at any selling price, and therefore, the firm does not

need to “sacrifice” revenue to “learn” demand information. More precisely, it allows

the firm to combine “exploration” with “exploitation”, leading to a small regret of

the algorithm.

When that condition is not satisfied, there will be more tension between earning
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and learning in making the pricing and inventory decisions: on one hand, the firm

would like to set the prices as close as possible to estimated optimal price so that

more profits can be earned, but on the other, that price may not be identifiable so

that firm may not be able to learn more demand information at that price. Hence,

firm has to intentionally create price dispersion so that the underlying demand-price

relationship can be better learned. The latter, however, will result in profit loss. We

consider this more general case in this subsection.

Suppose the parameter in probability mass function f(·; p, z) is a k-dimensional

vector, i.e., z = (z1, . . . , zk) ∈ Z ⊂ Rk for some integer k ≥ 1. To estimate z,

we need at least k prices for experimentation. In this subsection we assume dt ∈

{dl, dl + 1, . . . , dh} where dh ≤ yh < ∞. The latter assumption is made to allow

the firm to learn the demand distribution by raising inventory levels. For a set

of given prices p = (p1, . . . , pk) ∈ Pk, and correspondingly realized demands d =

(d1, . . . , dk) ∈ {dl, dl + 1, . . . , dh}k, we define

Qp,z(d) =
k∏
j=1

f(dj; pj, z).

Definition 2. The family of distributions {Qp,z : z ∈ Z} is said to belong to the

general case if there exist k price points p̄ = (p̄1, . . . , p̄k) ∈ Pk such that the family

of distributions {Qp̄,z : z ∈ Z} is identifiable, i.e., Qp̄,z1(·) 6= Qp̄,z2(·) for any z1 6= z2

in Z.

The prominent difference between the general case and the well-separated case is

that in the general case the likelihood function is known to be identifiable only at a

set of prices p; while in the well-separated case of the last subsection, the demand

distribution is identifiable at any selling price. Thus, to learn about the true value of

z in the general case, the firm has to consistently experiment at these prices, resulting

in profit loss. This shows that it is inevitable that the learning algorithm will suffer
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higher regret. For the above reason, we shall refer to p as the exploration prices.

To ensure that the unknown parameters z can be estimated using our modified

maximum likelihood method, we make the following assumption for the general case.

Assumption 2. For any z ∈ Z,

i) there exists a constant cf > 0 such that λmin{I(p̄, z)} ≥ cf , where I(p̄, z)

denotes the Fisher information matrix given by

[I(p̄, z)]i,j = Ez

[
− ∂2

∂zi∂zj
logQp̄,z(D)

]
,

and λmin{I(p̄, z)} is the smallest eigenvalue of the Fisher information matrix

I(p̄, z);

ii) there exists a constant f > 0 such that f(d; p̄j, z) ≥ f for 1 ≤ j ≤ k and all d.

Similar conditions have been imposed and discussed in Broder and Rusmevichien-

tong (2012), Besbes and Zeevi (2009), and Chen et al. (2014a). The following families

of demand distributions have been verified to satisfy them.

Example 2. D(p, z) is a binomial variable with a constant total number of trials

dh ≥ 1 and success probability r(p, z). Examples of r(p, z) include

1) linear function r(p, z) = z1 − z2p with P = [1/3, 1/2],Z = [2/3, 3/4] × [3/4, 1]

and any p̄1 6= p̄2 ∈ P ;

2) logit function r(p, z) = e−z1p−z2
1+e−z1p−z2

with P = [1/2, 2],Z = [1, 2]× [−1, 1] and any

p̄1 6= p̄2 ∈ P ;

3) exponential function r(p, z) = e−z1p−z2 with P = [1/2, 1],Z = [1, 2]× [0, 1] and

any p̄1 6= p̄2 ∈ P .

Because of censored data, the true demand realizations exceeding the on-hand

inventory level cannot be observed. Thus, we design another variation of MLE to
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estimate z in Algorithm II below. This algorithm divides the planning horizon T

into two stages, i.e., an exploration stage which is of length dT 1/2e followed by the

exploitation stage. During the exploration stage, Algorithm II experiments in the in-

ventory space. To guarantee that demand distribution is sufficiently explored, every

time the firm observes a stockout, it increases the order-up-to level by some percent-

age. Let I =
⌈
T 1/2/k

⌉
, input ȳ ∈ Y for the initial inventory order-up-to level, and

s > 0.

Algorithm II (k price change for the general case)

Step 0: Preparation

Let I =
⌈
T 1/2/k

⌉
.

Step 1: Exploration of prices and order-up-to levels for periods t ∈

{1, . . . , kI}

Set price as follows: For i = 1, . . . , k, set

pt = p̄i, for t = (i− 1)I + 1, . . . , iI.

Set inventory order-up-to level as follows:

(i) for t = (i− 1)I + 1, set yt = max{xt, ȳ};

(ii) for t = (i− 1)I + 2, . . . , iI, set

yt =


yt−1, if dt−1 < yt−1;

min
{

(1 + s)yt−1, y
h
}
, otherwise.

And let

xt+1 = max{yt − dt, 0}, for t = (i− 1)I + 1, . . . , iI.
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Step 2: Estimation

Estimate z by

ẑ = argmax
z∈Z

{ ∏
{t∈{1,...,kI}:yt>dt}

f(dt; pt, z) ·
∏

{t∈{1,...,kI}:yt≤dt}

(
1− F (yt − 1; pt, z)

)}
.

(4.10)

Step 3: Data-driven optimization and exploitation

Solve the data-driven optimization problem

(p̂, ŷ) = max
(p, y) ∈ P × Y

G(p, y, ẑ).

For periods t = kI + 1, . . . , T , set the pricing and inventory level to

pt = p̂, yt = max{xt, ŷ},

and let

xt+1 = max{0, yt − dt}.

In Step 1, Algorithm II experiments at every exploration price for the same number

of periods I during the exploration stage. At each price, the target inventory order-

up-to level is first set to ȳ, but it is raised by some percentage s whenever a stockout is

observed. The logic for this action is to explore more information about the demand

distribution. In Step 2, the unknown parameter z is estimated as in (4.10), which

is then used in Step 3 to compute the updated pricing and inventory decision (p̂, ŷ),

and that are implemented for the rest of the planing horizon.

The following theorem establishes the theoretical worst-case performance guaran-

tee of Algorithm II.
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Theorem IV.6. Consider any problem instance of the general case satisfying As-

sumptions A and 2 with exploration prices p̄ ∈ Pk, for any ȳ ∈ Y in Algorithm II,

there exists a constant K12 > 0 such that the regret is upper bounded by

R(T ) ≤ K12T
1
2 .

A key in establishing the result above is the convergence rate of ẑ to the true

parameter z. Because of the censored demand data, the estimation of z is not the

traditional MLE. However, since the demand in each period is upper bounded by

dh, the “raising inventory” action is performed for at most
⌈
log1+s

dh

yl

⌉
times, which

is independent of the length of the exploration phase. In other words, there is a

bounded number of stockout periods in the learning phase, and in the rest of at

least
⌈
T 1/2

⌉
−
⌈
log1+s

dh

yl

⌉
periods, the firm observes complete demand realizations.

During the stockout periods, demands are truncated up to the corresponding starting

inventory levels, and are thus dependent and follow different distributions. Since the

number of these truncated demands are upper bounded by a constant, when the time

horizon grows, the impact of stockout periods diminishes. This allows us to show, in

Proposition IV.7, that ẑ still converges to the true z at the same rate as the standard

MLE method.

Proposition IV.7. Consider any problem instance of the general case satisfying

Assumptions A and 2 with exploration prices p̄ ∈ Pk, for any ȳ ∈ Y in Algorithm

II, there exist some constants K13 > 0 and K14 > 0 such that for any ε > 0, the

estimator ẑ in Step 2 satisfies

P
{
‖ẑ− z‖ ≥ ε

}
≤ K13e

−IK14ε2 .

The proof of Proposition IV.7 is given in Appendix A. The convergence rate of ẑ

to z stated in Proposition IV.7 allows us to prove Theorem IV.6.
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Proof Sketch of Theorem IV.6. The regret can be evaluated as

R(T ) =
T∑
t=1

E[G(p∗, y∗, z)−G(pt, yt, z)]

≤
kI∑
t=1

E [G(p∗, y∗, z)−G(pt, yt, z)]︸ ︷︷ ︸
Exploration Regret

(4.11)

+
T∑

t=kI+1

E [G(p∗, y∗, z)−G(p̂, ŷ, z)]︸ ︷︷ ︸
Regret from Estimation Error

+
T∑

t=kI+1

[|G(p̂, ŷ, z)−G(pt, yt, z)|]︸ ︷︷ ︸
Regret from Missing Inventory Targets

.

In (4.11), the first part on the right hand side is the profit loss during the exploration

phase. The second term comes from the estimation error of ẑ, for which the con-

vergence rate is provided in Proposition IV.7, thus the second term can be bounded

using Theorem IV.1. The third term stems from the fact that ŷ may not be achieved

for some period t if xt > ŷ, which happens when xkI+1 > ŷ, resulting in overshooting

of inventory process. Its upper bound is presented in Proposition A1 of Appendix A.

We point out that, even when both the pricing and inventory decisions are allowed

to change in each and every period (so there is no constraint on the number of price

changes) and there is no censored demand data, the regret rate for any learning

algorithm is lower bounded by Ω(T 1/2). This lower bound is established in Broder and

Rusmevichientong (2012) for a dynamic pricing problem with infinite initial inventory.

Since that model is a special case of ours, the lower bound holds in our setting

with joint pricing and inventory replenishment decisions as well. This shows that

Algorithm II actually achieves the lowest possible regret rate.

Remark 3. The problem instances for Theorems 2 to 5 can depend on the length of

planning horizon T . Indeed, the lower bound developed in Broder and Rusmevichien-

tong (2012) is also based on problem instances with parameters depending on T .
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4.4 Numerical Results

We consider time horizons of length T = 100, 300, 1000, 3000, 10000. The feasible

region for order-up-to level is Y = {0, 1, 2, 3, 4}, b = 0.6, and h = 0.1. For the

well-separated case, demand follows the Poisson distribution with rate r(pt, z), and

the function r(p, z) and feasible region P for selling price p are described below. We

consider two functions of r(pt, z):

i) Exponential function r(p, z) = exp(2 − zp) with true value z = 4/5, P =

[1/10, 2], Z = [1/2, 1], the starting price p̂1 = 1/10, and the starting order-up-

to level is ŷ1 = 2.

ii) Logit function r(p, z) = exp(−zp)/(1 + exp(−zp)) with true value z = 1, P =

[1/2, 3/2], Z = [1/5, 3/2], the starting price p̂1 = 1, and the starting order-up-to

level is ŷ1 = 2.

We conduct experiments when the number of price changes is constrained to 1, 2, 3,

4, 5, or dlog T e.

For the general case, demand follows the Binomial distribution B(4, r(pt, z)), and

s = 0.2. We also consider two functions of r(pt, z):

1) Exponential function r(p, z) = exp(−z1p − z2) with z1 = 3/2 and z2 = 1/2,

P = [1/2, 1] and Z = [1, 2] × [0, 1]. p1 = 1/2, p2 = 1, and y = 3. The number

of price changes is limited to 2.

2) Logit function r(p, z) = exp(−z1p − z2)/(1 + exp(−z1p − z2)) with z1 = 1 and

z2 = −1, P = [1/2, 2] and Z = [1/5, 2]× [−1, 1]. p1 = 1/2, p2 = 3/2, and y = 3.

The number of price changes is limited to 2.

To evaluate the performance of the algorithm, we consider the percentage profit

loss compared with the complete information optimal profit when there is no con-
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straint on the number of price changes, which is

R(T )

T ×G(p∗, y∗, z)
× 100%.

We compute the percentage profit loss per period over 100 rounds, then calculate the

average value. The results are summarized in Table 4.1.

Table 4.1: Numerical results

Horizon
Length

T=100 T=300 T=1000 T=3000 T=10000

Exponential
Response

Probability

Well-separated
Case

m=1 13.15 9.57 7.06 5.57 5.25
m=2 6.77 3.63 1.64 0.95 0.46
m=3 5.77 2.74 1.07 0.49 0.2
m=4 4.84 2.29 0.89 0.4 0.15
m=5 5.01 1.99 0.82 0.35 0.14
O(log T ) 3.48 1.55 0.64 0.27 0.11

General Case m=2 12.66 9.87 8.09 7.39 4.36

Logit
Response

Probability

Well-separated
Case

m=1 21.23 11.44 9.14 5.04 3.07
m=2 16.22 8.57 5.25 2.96 1.97
m=3 16.67 8.55 3.92 2.21 1.35
m=4 15.62 8.58 3.90 2.18 1.15
m=5 15.34 8.28 3.73 1.80 1.06
O(log T ) 17.11 8.67 3.82 1.77 1.06

General Case m=2 7.87 5.62 4.09 3.61 1.76

From Table 4.1, it is seen that, when T = 300 most percentages of profit loss are

below 10% with only one exception, and when T = 3000, most percentages of profit

loss are below 5% with four exceptions. For the well-separated case, within each

column, it is seen that more significant improvement can be achieved by adding one

more price change when there are initially very few price changes allowed; and allowing

more price changes, though in general improves the performance of the algorithm, has

diminishing effect.
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4.5 Conclusion

In most real world applications it is unlikely that the firm has complete information

of the distribution of customer demand, hence learning is an important task for the

firm’s decision making process. In this chapter we consider a dynamic joint pricing and

inventory control problem in which the firm has little or no prior knowledge about the

distribution of customer demand and that, due to business constraints or associated

cost for making price changes, the firm is prevented from conducting extensive price

experimentations. We consider several scenarios and develop learning algorithms that

satisfy the constraints on the number of price experimentations. We derive the regrets

for these learning algorithms and show that they are the best possible in the sense

that, the rates of regrets have the same magnitude as the lower bounds. Numerical

results show that the algorithms perform very well and quickly converge to that of

the optimal solutions as the planning horizon becomes long.

After this work was completed, it was brought to our attention that Broder (2011)

obtained similar results in his doctoral dissertation for a pure dynamic pricing prob-

lem1. Broder (2011) considers infinite initial inventory (thus no inventory decision

and no censored demand) and a single customer arriving in each period (Bernoulli

demand process), and applies the MLE to estimate the unknown parameters. In our

model, we have a general demand process, the firm makes replenishment decision in

addition to pricing decision in every period, and the demand is censored. Therefore,

we have to explore the inventory space to learn the impact of inventory decision on

demand parameter estimation. Because of demand censoring, the convergence result

of the standard MLE cannot be applied to our model, hence we develop a modified

MLE for censored data and show that it preserves the same convergence rate as the

standard MLE method, that is new to the literature, to establish the regret rate of

1The authors are grateful to Profs. Omar Besbes and Paat Rusmevichientong for bringing this
work to our attention.
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our algorithm.

In this study we consider the scenario where the customer responses are drawn

from a parametric class of distributions, which is possible if the firm has prior expe-

rience with similar and/or relevant products and has formed a knowledge base about

the set of possible customer responses. If that is not the case, e.g., new product

just released to the market, then the estimation of customer response will become

a nonparametric problem. Nonparametric demand estimation for inventory control,

revenue management, and joint pricing and inventory control problems have been

studied in the literature, see e.g., Levi et al. (2007, 2010), Huh and Rusmevichien-

tong (2009), Huh et al. (2011), Besbes and Zeevi (2009, 2015), and Chen et al. (2015).

It is interesting future work to extend our study to the case with nonparametric cus-

tomer responses to selling prices.

We end this section by elaborating on the technical issue with applying maximum

likelihood method to dependent random samples. Recall that in our first algorithm we

only use sales data from latest stage, instead of all the previous stages. There are a few

papers in the operations literature that utilize all previous data points in MLE method

and provide convergence rate result. In these studies the authors explore some special

demand structure, and establish the results under specific conditions. For example,

Broder and Rusmevichientong (2012) consider a revenue management problem with

Bernoulli demand, and den Boer and Zwart (2014) impose conditions on the mean

and variance of the demand distribution. In our problem, due to demand censoring

and the general form of the demand process, we can establish the convergence rate of

the modified MLE at stage i only when using data points from the most recent stage

i−1, but not all previous stages 1, . . . , i−1. If we do include the data points from all

previous stages, then it would require that −
∑t1

t=1 log f̃yt(dt; pt, z), where f̃yt(dt; pt, z)

is f(dt; pt, z) when dt < yt, and 1 − F (yt − 1; pt, z) when dt ≥ yt, be convex in z for

any pt ∈ P , dt ∈ {dl, dl + 1, . . .}, and 1 ≤ t1 ≤ T (a similar condition was imposed
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in Broder and Rusmevichientong (2012) for the Bernoulli demand setting without

demand censoring). This condition on f(·; p, z) for our general demand setting is

clearly quite restrictive. It is an interesting future research to explore under what

relaxed conditions the MLE of dependent and non-identically distributed samples

enjoys similar convergence rate as that of MLE under i.i.d. assumptions.

4.6 Appendix

Appendix A

Proof of Theorem IV.1. From (4.4), let ε2 = K−1
15 c

−1 log c, then there exists a
constant K16 > 0 such that

P
{
‖ẑ− z‖2 < K−1

15 c
−1 log c

}
> 1− K16

c
.

Define event

A1 =
{
ω : ‖ẑ− z‖2 < K−1

15 c
−1 log c

}
.

Then

P(A1) > 1− K16

c
. (4.12)

One has

E[H(p∗(z), y∗(z), z)−H(p∗(ẑ), y∗(ẑ), z)]

= P(A1)E
[
H(p∗(z), y∗(z), z)−H(p∗(ẑ), y∗(ẑ), z)

∣∣A1

]
+ (1− P(A1))E

[
H(p∗(z), y∗(z), z)−H(p∗(ẑ), y∗(ẑ), z)

∣∣Ac1] . (4.13)

On A1, when c is large enough, one will have ‖ẑ− z‖ < δ, thus by Assumption A v)
one has

P(A1)E
[
H(p∗(z), y∗(z), z)−H(p∗(ẑ), y∗(ẑ), z)

∣∣A1

]
= P(A1)E

[
H(p∗(z), y∗(z), z)−H(p∗(ẑ), y∗(z), z)

∣∣A1

]
. (4.14)
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To proceed, we apply Taylors expansion to H(p, y∗(z), z) at the maximizer p =
p∗(z). For a function g(x),x ∈ Rn, let Dg(x) be the 1 × n matrix of first order
derivative of function g(x), and D2g(x) be the Hessian Matrix of g(x). Then for
p ∈ P , one has

H(p, y∗(z), z)

= H(p∗(z), y∗(z), z) +DH(p∗(z), y∗(z), z)(p− p∗(z))

+
3

2
(p− p∗(z))T

1∫
0

(1− t)2D2H(p∗(z) + t(p− p∗(z)), y∗(z), z)dt (p− p∗(z))

= H(p∗(z), y∗(z), z)

+
3

2
(p− p∗(z))T

1∫
0

(1− t)2D2H(p∗(z) + t(p− p∗(z)), y∗(z), z)dt (p− p∗(z)),

(4.15)

where the equality holds because the first order derivative vanishes at the maximizer
p∗(z). Let p = p∗(ẑ) in (4.15), then (4.14) satisfies, for some constants K17 to K20,

P(A1)E
[
H(p∗(z), y∗(z), z)−H(p∗(ẑ), y∗(z), z)

∣∣A1

]
= P(A1)× E

[
3

2
(p∗(ẑ)− p∗(z))T

×
1∫

0

(1− t)2D2H(p∗(z) + t(p∗(ẑ)− p∗(z)), y∗(z), z)dt (p∗(ẑ)− p∗(z))
∣∣A1

]
≤ K17P(A1)E

[
‖p∗(ẑ)− p∗(z)‖2

∣∣A1

]
≤ K18P(A1)E

[
‖ẑ− z‖2

∣∣A1

]
≤ K18E

[
‖ẑ− z‖2

]
≤ K19

∞∫
ε=0

K4e
−cK5εdε

=
K20

c
, (4.16)

where the first inequality follows the boundedness of second order derivative on P by
Assumption A ii), and that for any real numbers a and b it holds that ab ≤ (a2+b2)/2.
The second inequality is justified by Assumption A iv), and the fourth inequality
follows from (4.4).
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Furthermore, we have, for some constant K21 and K22,

(1− P(A1))E
[
H(p∗(z), y∗(z), z)−H(p∗(ẑ), y∗(ẑ), z)

∣∣Ac1]
≤ K21

c
(‖p∗(z)− p∗(ẑ)‖+ ‖y∗(z)− y∗(ẑ)‖)

≤ K22

c
, (4.17)

where the first inequality follows from (4.12) and Assumption A iii), and the second
inequality is true because P and Y are bounded.

Combining (4.16) and (4.17) with (4.13), we complete the proof of Theorem IV.1.
�
Proof of Proposition IV.3. Rewrite (4.5) as

ẑi = argmax
z∈Z

ti+Ii∏
t=ti+1

f̃yt(min{dt, yt}; p̂i, z). (4.18)

For t ∈ {ti + 1, . . . , ti+1}, one can see that yt is nonincreasing and satisfies yt ≥ ỹi.
Let

Ci = {t : ti + 1 ≤ t ≤ ti+1, yt = ỹi} (4.19)

and

t̃i = min{t− 1 : t ∈ Ci}.

Next we analyze the following two cases separately: (1) t̃i ≥ ti+1, and (2) t̃i = ti.
(1) If t̃i ≥ ti + 1, it means the initial inventory of stage i is greater than the target

inventory order-up-to level, i.e., xti+1 > ỹi. Then define

C̃i = {ti + 1, . . . , ti+1} − Ci − {t̃i},

and for any t ∈ C̃i, it can be seen that dt < yt, and this yields D̃t,yt(p̂i, z) = Dt(p̂i, z),
and

f̃yt(min{dt, yt}; p̂i, z) = f(dt; p̂i, z),

which does not depend on yt. Therefore, for given C̃i, D̃t,yt(p̂i, z) = D(p̂i, z), t ∈ C̃i
are independent and each of them follows f(·; p̂i, z).

For any t ∈ Ci, yt = ỹi, therefore D̃t,yt(p̂i, z) = min{Dt(p̂i, z), ỹi} are independent,
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following the probability mass function of f̃ỹi(·; p̂i, z).
For t = t̃i, D̃t,yt(p̂i, z) = min{Dt(p̂i, z), yt}, and the probability mass function is

f̃yt(dt; p̂i, z) =


f(dt; p̂i, z) if dt < yt,

1− F (yt − 1; p̂i, z) if dt = yt,

(4.20)

where yt̃i = xti+1 −
∑t̃i−1

j=ti+1 dj is random and it holds that yt̃i > ỹi.

For any realization of C̃i and Ci, it can be seen that D̃t,yt(p̂i, z), t ∈ C̃i ∪ Ci are

independent random variables which follow two distinct distributions, and D̃t̃i,yt̃i
(p̂i, z)

depends on D̃t,yt(p̂i, z), t ∈ C̃i.
Following the discussions above, (4.18) can be rewritten as

ẑi = argmax
z∈Z

∏
t∈C̃i

f(dt; p̂i, z)× f̃yt̃i (min(dt̃i , yt̃i}; p̂i, z)×
∏
t∈Ci

f̃ỹi(min{dt, ỹi}; p̂i, z). (4.21)

Next we compare (4.21) with the following fictitious MLE formulation,

z̃i = argmax
z∈Z

∏
t∈C̃i

f(dt; p̂i, z)×
∏

t∈{t̃i}∪Ci

f̃ỹi(min{dt, ỹi}; p̂i, z), (4.22)

where Dt(p̂i, z), t ∈ C̃i follows f(·; p̂i, z) and D̃t,yt(p̂i, z), t ∈ {t̃i}∪Ci follows f̃ỹi(·; p̂i, z),
and they are all independent.

Comparing (4.22) and (4.21), the only difference is at period t = t̃i. Divide the
MLE formulation in (4.21) by that in (4.22) one has

∏
t∈C̃i f(dt; p̂i, z)× f̃yt̃i (min(dt̃i , yt̃i}; p̂i, z)×

∏
t∈Ci f̃ỹi(min{dt, ỹi}; p̂i, z)∏

t∈C̃i f(dt; p̂i, z)×
∏

t∈{t̃i}∪Ci f̃ỹi(min{dt, ỹi}; p̂i, z)

=
f̃yt̃i

(min(dt̃i , yt̃i}; p̂i, z)

f̃ỹi(min(dt̃i , ỹi}; p̂i, z)
.

If dt̃i ∈ {d
l, . . . , ỹi − 1}, then one has

f̃yt̃i
(min(dt̃i , yt̃i}; p̂i, z)

f̃ỹi(min(dt̃i , ỹi}; p̂i, z)
=
f(dt̃i ; p̂i, z)

f(dt̃i ; p̂i, z)
= 1.

180



If dt̃i ≥ ỹi, then by Assumption 1 ii), there exists constants K23, K24 > 0 such that

K23 ≤
f̃yt̃i

(min(dt̃i , yt̃i}; p̂i, z)

f̃ỹi(min(dt̃i , ỹi}; p̂i, z)
≤ K24. (4.23)

There exist constants −∞ < K25 ≤ K26 < +∞ such that, for any p ∈ P , any
z ∈ Z, and any d ∈ {dl, dl + 1, . . . , yh},

K25 ≤ f ′z(d; p, z) ≤ K26. (4.24)

Based on (4.21), we let

Ẑ(z) =
∏
t∈C̃i

f(dt; p̂i, z)× f̃yt̃i (min(dt̃i , yt̃i}; p̂i, z)×
∏
t∈Ci

f̃ỹi(min{dt, ỹi}; p̂i, z),

L̂(z) = log Ẑ(z),

Ẑ(z, z + u) =
Ẑ(z + u)

Ẑ(z)
,

and based on (4.22), define

Z̃(z) =
∏
t∈C̃i

f(dt; p̂i, z)×
∏

t∈{t̃i}∪Ci

f̃ỹi(min{dt, ỹi}; p̂i, z),

L̃(z) = log Z̃(z),

Z̃(z, z + u) =
Z̃(z + u)

Z̃(z)
.

Regardless of realizations of dt, t ∈ {ti + 1, . . . , ti+1}, t̃i, C̃i, and Ci, by (4.23) and
(4.24), these exists constants K27, K28 > 0 such that

Ez

[√
Ẑ(z, z + u)

]
≤ K27Ez

[√
Z̃(z, z + u)

]
, (4.25)

and

|L̂′(z + u)| ≤ |L̃′(z + u)|+K28. (4.26)

(4.25) and (4.26) will serve as the key properties to analyze the performance of (4.21)
through (4.22), as shown in what follows.
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We will start with the definition of Hellinger distance Hg(θ0, θ), between two
distributions g(·, θ0) and g(·, θ), i.e.,

Hg(θ0, θ) =
∑
R

(√
g(x, θ0)−

√
g(x, θ)

)2
dx

= 2

(
1−

∑
R

√
g(x, θ0)g(x, θ1)dx

)
.

Then clearly,

∑
R

√
g(x, θ1)g(x, θ0)dx = 1− 1

2
H(θ0, θ1). (4.27)

By Borovkov (1998) Theorem 31.3, if there exists constants 0 < K29 < K30 < +∞
such that the Fisher information for g(·, θ), for any θ ∈ Θ, is bounded as follows:

K29 < Ig(θ) =
∑
x∈R

(∂g(x, θ)/∂θ)2

g(x, θ)
< K30,

and if the distribution is identifiable, then there exists some constant a > 0 such that
for

Hg(θ0, θ1) =
∑
x∈R

(√
g(x, θ0)−

√
g(x, θ)

)2 ≥ a(θ0 − θ1)2.

By Assumption 1 (i) and the compactness of P and Z, for any realizations of
p̂i ∈ P and any z ∈ Z, the Fisher information of f(·; p̂i, z) satisfies

cf < If (p̂i, z) =
+∞∑
d=dl

(∂f(d; p̂i, z)/∂z)2

f(d; p̂i, z)
< c̄f . (4.28)
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On the other hand,

ỹi∑
d=dl

(∂f̃ỹi(min{d, ỹi}; p̂i, z)/∂z)2

f̃(min{d, ỹi}; p̂i, z)

=

ỹi−1∑
d=dl

(∂f(d; p̂i, z)/∂z)2

f(d; p̂i, z)
+

(
−
∑ỹi−1

d=dl
∂f(d; p̂i, z)/∂z

)2

1−
∑ỹi−1

d=dl
f(d; p̂i, z)

≤
ỹi−1∑
d=dl

(∂f(d; p̂i, z)/∂z)2

f(d; p̂i, z)
+

2
∑ỹi−1

d=dl
(∂f(d; p̂i, z)/∂z)2

1−
∑ỹi−1

d=dl
f(d; p̂i, z)

.

By (4.28),

ỹi−1∑
d=dl

(∂f(d; p̂i, z)/∂z)2

f(d; p̂i, z)
< c̄f ,

then

ỹi−1∑
d=dl

(∂f(d; p̂i, z)/∂z)2 < c̄f ,

and by Assumption 1 (ii),

∑ỹi−1
d=dl

(∂f(d; p̂i, z)/∂z)2

1−
∑ỹi−1

d=dl
f(d; p̂i, z)

<
c̄f
f
.

Therefore for any realizations of ỹi ∈ {dl + 1, . . . , yh}, the Fisher information of

f̃ỹi(·; p̂i, z) satisfies

cf < If̃ (p̂i, z) =

ỹi∑
d=dl

(∂f̃ỹi(min{d, ỹi}; p̂i, z)/∂z)2

f̃(min{d, ỹi}; p̂i, z)
< c̄f +

c̄f
f
. (4.29)

By Assumption 1 (iii), both f(·; p̂i, z) and f̃ỹi(·; p̂i, z) are identifiable.
Hence there exists a constant a > 0 such that one has

Hf (z, z + u) =
+∞∑
d=dl

(√
f(d; p̂i, z)−

√
f(d; p̂i, z + u)

)2 ≥ au2, (4.30)
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and

Hf̃ (z, z + u) =

ỹi∑
d=dl

(√
f̃ỹi(d; p̂i, z)−

√
f̃ỹi(d; p̂i, z + u)

)2 ≥ au2. (4.31)

Furthermore, it can be seen that

Ez

[√
f(d; p̂i, z + u)

f(d; p̂i, z)

]
=

+∞∑
d=dl

√
f(d; p̂i, z + u)

f(d; p̂i, z)
f(d; p̂i, z)

=
+∞∑
d=dl

√
f(d; p̂i, z + u)f(d; p̂i, z)

= 1− 1

2
Hf (z, z + u),

where the last equality follows from (4.27). Similarly one has

Ez

[√
f̃ỹi(min{d, ỹi}; p̂i, z + u)

f̃ỹi(min{d, ỹi}; p̂i, z)

]

=

ỹi∑
d=dl

√
f̃ỹi(min{d, ỹi}; p̂i, z + u)

f̃ỹi(min{d, ỹi}; p̂i, z)
f̃ỹi(min{d, ỹi}; p̂i, z)

=

ỹi∑
d=dl

√
f̃ỹi(min{d, ỹi}; p̂i, z + u)f̃ỹi(min{d, ỹi}; p̂i, z)

= 1− 1

2
Hf̃ (z, z + u).

Because the demands in (4.22) are independent, and by the inequality log(1−x) ≤
−x for x < 1, one has

Ez

[√
Ẑ(z, z + u)

]
≤ K2Ez

[√
Z̃(z, z + u)

]
= K2

t̃i∏
t=ti+1

(
1− 1

2
Hf (θ, z + u)

) ti+1∏
t=t̃i+1

(
1− 1

2
Hf̃ (θ, z + u)

)
= K2e

∑t̃i
t=ti+1 log(1− 1

2
Hf (z,z+u))+

∑ti+1
t=t̃i+1

log(1− 1
2
Hf̃ (z,z+u))

≤ K2e
− 1

2

(∑t̃i
t=ti+1Hf (z,z+u)+

∑ti+1
t=t̃i+1

Hf̃ (z,z+u)
)

≤ K2e
− 1

2
aIiu

2

, (4.32)
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where the first inequality follows from (4.25), and the third inequality follows from
(4.30) and (4.31).

For convenience, let

κ̂(u) =

(
Ẑ(z + u)

Ẑ(z)

)3/4

= (Ẑ(z, z + u))3/4,

and

κ̃(u) =

(
Z̃(z + u)

Z̃(z)

)3/4

= (Z̃(z, z + u))3/4.

By Cauchy inequality (E[|XY |])2 ≤ E[|X|2E[|Y |2] for random variables X and
Y , and Ez[Z̃(z + u)/Z̃(z)] = 1, it follows that there exists a constant K31 > 0 such
that

Ez[κ̂(u)] ≤ K31Ez[κ̃(u)]

= K31Ez[(Z̃(z, z + u))1/2(Z̃(z, z + u))1/4]

≤ K31

(
Ez[Z̃(z, z + u)])

)1/2(
Ez[(Z̃(z, z + u)])1/2)

)1/2

= K31

(
Ez

[
(Z̃(z, z + u))1/2

] )1/2

≤ K31e
−aIiu2/4, (4.33)

where the first inequality follows from (4.25), and the last inequality follows from
(4.32).

And note that

κ̂′(u) =
3

4

(
Ẑ ′(z + u)

Ẑ(z + u)

)(
Ẑ(z + u)

Ẑ(z)

)3/4

=
3

4
L̂′(z + u)

(
Ẑ(z + u)

Ẑ(z)

)3/4

.
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Furthermore, one has

Ez[|κ̂′(u)|]

=
3

4
Ez


∣∣∣L̂′(z + u)

∣∣∣(Ẑ(z + u)

Ẑ(z)

)1/2
(Ẑ(z + u)

Ẑ(z)

)1/4


≤ 3

4

Ez [(L̂′(z + u))2 Ẑ(z + u)

Ẑ(z)

]
Ez

(Ẑ(z + u)

Ẑ(z)

)1/2
1/2

≤ 3

4

Ez [(|L̃′(z + u)|+K32)2K33
Z̃(z + u)

Z̃(z)

]
Ez

(Ẑ(z + u)

Ẑ(z)

)1/2
1/2

≤ 3

4

((
Ez+u

[
(L̃′(z + u))2

]
+K34

)
Ez

[√
Ẑ(z, z + u)

])1/2

≤ 3

4
K35

(
(t̃i − 1)If (p̂i, z + u) + (Ii − t̃i + 1)If̃ (p̂i, z + u)

)1/2
e−aIiu

2/4 +K36e
−aIiu2/4

≤ K37I
1/2
i e−aIiu

2/4, (4.34)

where the second inequality follows from (4.25) and (4.26), the fourth inequality
follows from (4.32) and the definition of If (p̂i, z + u) and If̃ (p̂i, z + u), and last
inequality is true by (4.28) and (4.29) when Ii is large enough.

In addition, for any c > 0, one has

κ̂(t) = κ̂(c/
√
Ii) +

t∫
c/
√
Ii

κ̂′(u)du.

Furthermore, for x > 0, it holds that

1− Φ(x) ≥ e−x
2/2,

where Φ denotes the cumulative distribution function of the standard normal random
variable.
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Therefore, for any t > 0,

Ez

[
sup

t≥c/
√
Ii

κ̂(t)

]
= E

[
κ̂(c/

√
Ii)
]

+ E

 sup
t≥c/

√
Ii

t∫
c/
√
Ii

κ̂′(u)du


≤ E

[
κ̂(c/

√
Ii)
]

+ E

 sup
t≥c/

√
Ii

∞∫
c/
√
Ii

|κ̂′(u)|du


≤ E

[
κ̂(c/

√
Ii)
]

+

∞∫
c/
√
Ii

K37I
1/2
i e−aIiu

2/4du

= E
[
κ̂(c/

√
Ii)
]

+ 2K37

√
πK30

a

(
1− Φ

(
c
√
a/2
))

≤ e−ac
2/4 + 2K37

√
πK30

a
e−ac

2/4

=

(
1 + 2K37

√
πK30

a

)
e−ac

2/4,

where the second inequality follows from (4.34), and the fourth inequality follows
from (4.33).

Similar analysis shows that, for t < 0,

Ez

[
sup

t≤−c/
√
Ii

κ̂(t)

]
≤

(
1 + 2K37

√
πK30

a

)
e−ac

2/4.

This proves

Ez

[
sup

|t|≥c/
√
Ii

κ̂(t)

]
≤

(
1 + 2K37

√
πK30

a

)
e−ac

2/4.
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Now one has

Pz

{
sup

|t|≥c/
√
Ii

L̂(z + u)

L̂(z)
≥ 1

}
= Pz

 sup
|t|≥c/

√
Ii

(
L̂(z + u)

L̂(z)

)3/4

≥ 1


= Pz

{
sup

|t|≥c/
√
Ii

κ̂(t) ≥ 1

}
≤ Ez

[
sup

|t|≥c/
√
Ii

κ̂(t)
]

≤

(
1 + 2K37

√
πK30

a

)
e−ac

2/4.

Finally, we have the following relationship to complete the proof of the important
result for maximum likelihood estimator:

Pz{
√
Ii|z − ẑi| ≥ c} = P

{
sup

|t|≥c/
√
Ii

L̂(z + u)

L̂(z)
≥ sup
|t|≤c/

√
Ii

L̂(z + u)

L̂(z)

}

≤ P

{
sup

|t|≥c/
√
Ii

L̂(z + u)

L̂(z)
≥ L̂(z)

L̂(z)
= 1

}
≤ Ke−ac

2/4.

(2) If ỹi = ti + 1, then xti+1 ≤ ỹi, and ỹi is achieved for every period during stage
i. Thus,

ẑi = argmax
z∈Z

ti+Ii∏
t=Ii+1

f̃ỹi(min{dt, ỹi}; p̂i, z). (4.35)

The probability mass function of Dt,ỹi(dt; p̂i, z) is used for every period, and they are
independent across periods. The standard MLE result in Borovkov (1998) Theorem
36.3 can be directly applied to prove the result in Proposition IV.3. Combing (1) and
(2) completes the proof of Proposition IV.3. �

Proposition A1 below bounds the regret from missing inventory targets in Theorem
IV.2 and Theorem IV.6.
Proposition A1 (Regret from Missing Inventory Targets). Consider a total
of l periods, and the initial inventory level of period 1 is x1 ∈ Y . If for price p̂ ∈ P
and any order-up-to level ŷ ∈ Y , the algorithm sets

pt = p̂, t = 1, . . . , l,

yt = max{xt, ŷ}, t = 1, . . . , l.
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Then, one has

l∑
t=1

E[|L(p̂, ŷ)− L(pt, yt)|] ≤ l
1
n ,

for any n ≥ 2.
Proof. Let l1 = l

1
n . Note that Dt(p̂, z) ∈ [0, dh], by Hoeffding’s inequality (4.64) in

Appendix B, let ε = dh
(
n
2
l1 log l1

)1/2

and we obtain

P

{
l1∑
t=1

Dt(p̂, z) ≥ l1 E[D1(p̂, z)]− dh
(n

2
l1 log l1

)1/2
}
≥ 1− 1

ln1
.

Because E[D1(p̂, z)] > 0 for any p̂ ∈ P , then when l is large enough, it will hold
uniformly that

1

2
l1 E[D1(p̂, z)] ≥ dh

(n
2
l1 log l1

)1/2

.

Then, for large enough l,

P

{
l1∑
t=1

Dt(p̂, z) ≥ 1

2
l1 E[D1(p̂, z)]

}
≥ 1− 1

ln1
. (4.36)

Define event

A2 =

{
ω :

l1∑
t=1

Dt(p̂, z) ≥ 1

2
l1 E[D1(p̂, z)]

}
,

then (4.36) above can be restated as

P {A2} ≥ 1− 1

ln1
= 1− 1

l
. (4.37)

Furthermore, when l is large enough, it will hold uniformly that

1

2
l1 E[D1(p̂, z)] ≥ yh − yl.
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Thus, when l is large enough, on the event A2 the inventory targets will be surely
met after the first l1 periods. To obtain the bound in Proposition A1, we proceed as
follows:

l∑
t=1

E
[
|L(p̂, ŷ)− L(pt, yt)|

]
= P (A2)

l∑
t=1

E
[
|L(p̂, ŷ)− L(pt, yt)|

∣∣A2

]
+ (1− P (A2))

l∑
t=1

E
[
|L(p̂, ŷ)− L(pt, yt)|

∣∣AC2 ]. (4.38)

The first part in (4.38) is upper bounded by K38l1 for some constant K38 since on
A2, inventory targets will be surely achieved after the first l1 periods. By (4.37) the
second part is upper bounded by K39l/l

n
1 = K40. Hence one has, for some constant

K41,

l∑
t=1

E
[
|L(p̂, ŷ, z)− L(pt, yt, z)|

]
≤ K38l1 +K40 ≤ K41l

1
n . (4.39)

Proposition A1 is thus proved. �

Proof of Theorem IV.2. By the definition of regret, we have

R(T ) =
T∑
t=1

E [G(p∗, y∗, z)−G(pt, yt, z)]

=

t2∑
t=t1+1

E [G(p∗, y∗, z)−G(pt, yt, z)] +
m+1∑
i=2

ti+1∑
t=ti+1

E [G(p∗, y∗, z)−G(pt, yt, z)]

≤
t2∑

t=t1+1

E [G(p∗, y∗, z)−G(pt, yt, z)]︸ ︷︷ ︸
regret from initial decision

+
m+1∑
i=2

ti+1∑
t=ti+1

E [G(p∗, y∗, z)−G(p̂i, ŷi, z)]︸ ︷︷ ︸
regret from estimation error

+
m+1∑
i=2

ti+1∑
t=ti+1

E [|G(p̂i, ŷi, z)−G(p̂i, ỹi, z)|]︸ ︷︷ ︸
regret from exploration on the ordering decision

+
m+1∑
i=2

ti+1∑
t=ti+1

E [|G(p̂i, ỹi, z)−G(pt, yt, z)|]︸ ︷︷ ︸
regret from missing inventory targets

.

(4.40)

By the existence of second order derivative, ∂G(p, y, z)/∂p is a continuous function
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of p on P . Then it follows from P is compact that

α = max
p∈P

∣∣∣∣∂G(p, y, z)

∂p

∣∣∣∣ <∞.
Also it can be seen from (4.2) that

G(p, y, z)−G(p, y′, z) ≤ max{b, h} |y − y′|. (4.41)

The first term on the right hand side of (4.40) is bounded because, for some
constant K42,

t2∑
t=t1+1

E [G(p∗, y∗, z)−G(pt, yt, z)]

≤
t2∑

t=t1+1

E (α |p∗ − pt|+ max{b, h} |y∗ − yt|) (4.42)

≤ I1

(
α
∣∣ph − pl∣∣+ max{b, h}

∣∣yh − yl∣∣) ≤ K42I1.

To bound the second part in (4.40), we first analyze

E [G(p∗, y∗, z)−G(p̂i, ŷi, z)] .

According to Proposition IV.3 and Theorem IV.1,

E [G(p∗, y∗, z)−G(p̂i, ŷi, z)] ≤
K42

Ii−1

,

which leads to

m+1∑
i=2

ti+1∑
t=ti+1

E [G(p∗, y∗, z)−G(p̂i, ŷi, z)] ≤
m+1∑
i=2

K44

Ii−1

Ii ≤ K43T
1

m+1 . (4.43)

To bound the third part in (4.40), it can be seen that there exists a constant δ > 0,
such that

P(ŷi 6= ỹi) ≤ P(|ẑi − z| > δ).
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For any i ≥ 2, when Ii−1 grows, it will be true that K45I
−1
i−1 log Ii−1 < δ2. Therefore

P(ŷi 6= ỹi) ≤ P(|ẑi − z| > δ)

≤ P{|ẑi − z|2 ≥ K45I
−1
i−1 log Ii−1}

≤ K46

Ii−1

.

Consequently, we have

m+1∑
i=2

ti+1∑
t=ti+1

E [|G(p̂i, ŷi, z)−G(p̂i, ỹi, z)|]

≤
m+1∑
i=2

ti+1∑
t=ti+1

K46

Ii−1

E [max{b, h}|ŷi − ỹi|]

≤
m+1∑
i=2

ti+1∑
t=ti+1

K46 max{b, h}
Ii−1

(
yh − yl

)
≤ K47T

1
m+1 . (4.44)

For each i = 2, . . . ,m+ 1, letting n = i in Proposition A1 we obtain

ti+1∑
t=ti+1

E [|G(p̂i, ỹi, z)−G(pt, yt, z)|] ≤ K48I
1
i
i = K48T

1
m+1 ,

which renders

m+1∑
i=2

ti+1∑
t=ti+1

E [|G(p̂i, ỹi, z)−G(pt, yt, z)|] ≤
m+1∑
i=2

K48T
1

m+1 = K48mT
1

m+1 . (4.45)

Combing (4.42), (4.43),(4.44), and (4.45), one has

R(T ) ≤ K49T
1

m+1 ,

and Theorem IV.2 is proved. �
Proof of Theorem IV.4. We will consider the special case when D(p, z) is binomial
with success rate r(p, z). Let P = [1/3, 1/2], Y = {1}, Z = [2, 3], r(p, z) = 1− pz/2,
h = 0 and b = 0, and let dl = 0, dh = 1. In what follows, we prove that, for any
joint pricing and inventory control policy φ that changes price no more than m times
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(m ≥ 1) and any T ≥ 1, there exists a z ∈ Z such that

Rφ(T ) ≥ K50T
1

m+1

for some positive constant K50 > 0.
Following Broder and Rusmevichientong (2012), we let z be a random variable

with probability density function f(z) = 2{cos(π(z− 5/2))}2 on Z. Recall that p∗(z)
is the optimal pricing policy for the complete information case. For any pricing and
inventory control policy, the order-up-to level is 1, and because h = 0 and b = 0,
both the holding cost and the shortage cost are 0. Therefore the firm only focuses on
solving the revenue maximization problem of maxp∈P p r(p, z).

With complete information of z, it can be seen that p∗(z) = 1/z, and r(p∗(z), z) =
1/2 > 0 for any z ∈ Z, and

(p r(p, z))′p = 1− zp, (p r(p, z))′′p = −z. (4.46)

In the data-driven optimization, inventory holding and shortage costs are both 0,
therefore the firm only needs to learn z from historical data. Consider an arbitrary
data-driven pricing and replenishment policy φ that allows at most m price changes.
Let τi + 1 denote the starting period for the i-th price with τ1 = 0, and p1 ∈ P is
the initial price at the beginning of period 1, then 1 ≤ τ2 < · · · < τm+1 ≤ T − 1 and
the price at the beginning of period τi + 1 is set at pτi+1 for i = 2, . . . ,m + 1. For
convenience let τm+2 = T . In case pτi+1 = pτi−1+1 for some i = 2, . . . ,m + 1, then
policy φ changes prices less than m times. For any z ∈ Z, the regret of policy φ can
be computed as

Rφ(T ) =
T∑
t=1

E[G(p∗(z), y∗(z), z)−G(pt, yt, z)]

=
T∑
t=1

E[p∗(z) r(p∗(z), z)− pt r(pt, z)]

=
m+1∑
i=1

τi+1∑
t=τi+1

E[p∗(z) r(p∗(z), z)− pτi+1 r(pτi+1, z)],

in which the expectation in the first equality is taken with respect to pt, yt and the
binomial random variable, while the expectation in the second equality is taken with
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respect to pt. Hence

sup
z∈Z

Rφ(T ) ≥ sup
z∈Z

m+1∑
i=1

τi+1∑
t=τi+1

E[p∗(z) r(p∗(z), z)− pτi+1 r(pτi+1, z)]

≥
m+1∑
i=1

τi+1∑
t=τi+1

E[p∗(z) r(p∗(z), z)− pτi+1 r(pτi+1, z)]

= E[p∗(z) r(p∗(z), z)− p1 r(p1, z)]τ2

+
m+1∑
i=2

E[p∗(z) r(p∗(z), z)− pτi+1 r(pτi+1, z)](τi+1 − τi), (4.47)

here the expectation in the first inequality is taken with respect to pt, and the expec-
tation in the second inequality is with respect to pt and z, while in the equality, the
first expectation is with respect to p1 and z, and the second is with respect to pt and
z. Recall that z is distributed with pdf f(z) on Z.

Let

γ = max
z∈Z

(
p∗(z) r (p∗(z), z)− E

[
p1 r(p1, z)

])
= max

z∈Z

(
1

2z
− E[p1] +

zE[p2
1]

2

)
, (4.48)

here the mathematical expectation is with respect to p1 of policy φ. Since at the
beginning of period 1, the firm has no information yet about customer response data,
hence p1 is not demand data-dependent, and it may be a random pricing policy. If z
is known to the firm then p1 is set to 1/z with probability one, then the right hand
side of (4.48) (before maximizing over z) would be 0. Since z is not known a priori
and that we take maximum over z in (4.48), we have γ > 0 (γ = 0 only if the firm
knows the exact value of z a priori).

Denote

Z =

{
z :

1

2z
− E[p1] +

zE[p2
1]

2
≥ γ

2

}
,

then P{Z} > 0. Also, note that

1

2z
− E[p1] +

zE[p2
1]

2
≥ 1

2z
− E[p1] +

z(E[p1])2

2
,

and the right hand side, as a function of E[p1], is minimized when E[p1] = 1/z, at
which point the right hand side is equal to 0. This shows that

1

2z
− E[p1] +

zE[p2
1]

2
≥ 0.
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Hence, by conditioning on Z and ZC , we obtain

E[p∗(z) r(p∗(z), z)− p1 r(p1, z)]τ2 ≥
γ

2
P{Z}τ2. (4.49)

Since the pricing problem in our specific example is the same as that of Broder and
Rusmevichientong (2012), we follow the same argument as Broder and Rusmevichien-
tong (2012) (see also Gill and Levit (1995) and A.Goldenshluger and A.Zeevi (2009))
to conclude that, there exists some constant K51 > 0 such that for any t ≥ 1,

E[(p∗(z)− pt+1)2] ≥ K51

t
.

Therefore,

m+1∑
i=2

E[p∗(z) r(p∗(z), z)− pτi+1 r(pτi+1, z)](τi+1 − τi)

≥
m+1∑
i=2

E
[
K52(p∗(z)− pτi+1)2

]
(τi+1 − τi)

≥
m+1∑
i=2

K53

τi
(τi+1 − τi)

=
m+1∑
i=2

(
K53

τi+1

τi
−K53

)
, (4.50)

where the first inequality follows from Taylor expansion at p∗(z) to the second order,
and by (4.46) the second order derivative of pr(p, z) on p falls between [−3,−2].
Combining (4.49) and (4.50) with (4.47), we obtain, for some constant K2 > 0, that

sup
z∈Z

Rφ(T )

≥

(
γ

2
P{Z}τ2 +

m+1∑
i=2

K53
τi+1

τi

)
−mK53

≥ (m+ 1)

(
γ

2
P{Z}τ2

m+1∏
i=2

[
K53

τi+1

τi

]) 1
m+1

−mK53

≥ K54T
1

m+1

where the second inequality follows from arithmetic average is greater than or equal
to geometric average for nonnegative real numbers. The proof for Theorem IV.4 is
thus complete. �
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Proof of Theorem IV.5. Similar as in Theorem IV.2, we divide the total regret as
the following,

R(T ) =
T∑
t=1

E [G(p∗, y∗, z)−G(pt, yt, z)]

=

t2∑
t=t1+1

E [G(p∗, y∗, z)−G(pt, yt, z)] +
N+1∑
i=2

ti+1∑
t=ti+1

E [G(p∗, y∗, z)−G(pt, yt, z)]

≤
t2∑

t=t1+1

E [G(p∗, y∗, z)−G(pt, yt, z)]︸ ︷︷ ︸
regret from initial decision

+
N+1∑
i=2

ti+1∑
t=ti+1

E [G(p∗, y∗, z)−G(p̂i, ŷi, z)]︸ ︷︷ ︸
regret from estimation error

+
N+1∑
i=2

ti+1∑
t=ti+1

E [|G(p̂i, ŷi, z)−G(p̂i, ỹi, z)|]︸ ︷︷ ︸
regret from exploration on the ordering decision

+
N+1∑
i=2

ti+1∑
t=ti+1

E [|G(p̂i, ỹi, z)−G(pt, yt, z)|]︸ ︷︷ ︸
regret from missing inventory targets

.

(4.51)

The first part in (4.51) is bounded by, for some constant K55 > 0,

t2∑
t=t1+1

E [G(p∗, y∗, z)−G(pt, yt, z)] ≤ K55I1 = K55I0v. (4.52)

We bound the second part in (4.51) by analyzing E [G(p∗, y∗, z)−G(p̂i, ŷi, z)].
Based on similar analyses as Proposition IV.3, one has

P{|ẑi − z| ≥ ξ} ≤ K56e
−K57Ii−1ξ

2

.

Therefore by Theorem IV.1,

E [G(p∗, y∗, z)−G(p̂i, ŷi, z)] ≤
K58

Ii−1

,

which leads to

N+1∑
i=2

ti+1∑
t=ti+1

E [G(p∗, y∗, z)−G(p̂i, ŷi, z)] ≤
N+1∑
i=2

K58

Ii−1

Ii ≤
N+1∑
i=2

K58v ≤ K59 log T. (4.53)

The third part in (4.51) is upper bounded by P(ỹi 6= ŷi) = P{|ẑi−1 − z| > δ} for
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some constant δ > 0, and similar as in (4.44),

P{|ẑi−1 − z| > δ} ≤ 2K60

Ii−1

.

Therefore,

E [|G(p̂i, ŷi, z)−G(p̂i, ỹi, z)|] ≤
K61

Ii−1

,

which renders

N+1∑
i=2

ti+1∑
t=ti+1

E [|G(p̂i, ŷi, z)−G(p̂i, ỹi, z)|] ≤
N+1∑
i=2

K61

Ii−1

Ii ≤ K62 log T. (4.54)

The fourth part in (4.51) is upper bounded as the following. From the analyses
of bounding the third part of regret, one has

P{ỹi−1 = ŷi−1 = y∗} ≥ 1− K63

Ii−1

,

and

P{ỹi = ŷi = y∗} ≥ 1− K64

Ii
.

Therefore,

P{ŷi−1 = y∗, ŷi = y∗} ≥ 1− K65

Ii−1

,

and accordingly we define

A3 = {ω : ŷi−1 = y∗, ŷi = y∗},

and one has

P(A3) ≥ 1− K66

Ii−1

. (4.55)
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Next we consider the event that ŷi−1 is achieved during periods ti−1 + 1, . . . , ti.
By Hoeffding inequality (4.64), one has

P


ti∑

t=ti−1+1

Dt(p̂i−1, z)− Ii−1E[Dt(p̂i−1, z)] ≥ dhI
1/2
i−1(log Ii−1)1/2

 ≥ 1− 1

I2
i−1

.

Because E[Dt(p̂i−1, z)] > 0 for any p̂i−1 ∈ P , then when Ii−1 is large enough,

1

2
Ii−1E[Dt(p̂i−1, z)] > dhI

1/2
i−1(log Ii−1)1/2,

therefore define

A4 =

ω :

ti∑
t=ti−1+1

Dt(p̂i−1, z) ≥
1

2
Ii−1 E[Dt(p̂i−1, z)]

 ,

and one has

P(A4) ≥ 1− 1

I2
i−1

. (4.56)

Moreover, when i is large enough, we will also have

1

2
Ii−1E[Dt(p̂i−1, z)] ≥ yh − yl,

hence the target inventory level in stage i−1 will eventually be met, and the starting
inventory level at the beginning of stage i (in period ti + 1) is at most ŷi−1. This
implies that the target inventory level in stage i, ŷi, will always be met if ŷi ≥ ŷi−1,
and the only possibility for ever missing target in stage i is when ŷi < ŷi−1. In this
case, for ti + 1 ≤ t ≤ ti+1, we argue that the following relationship holds:

|ŷi − yt| ≤ |ŷi − ŷi−1|. (4.57)

This is because, if ŷi−1 ≤ ŷi then the target ŷi is always reached in stage i, hence
yt = ŷi and the left hand side is equal to 0, thus (4.57) is obviously satisfied. On the
other hand, if ŷi−1 > ŷi, then the left hand side of (4.57) are not equal to 0 only when
ŷi is not reached hence ŷi−1 ≥ yt > ŷi (since the starting inventory level in stage i is
no higher than ŷi−1), and in this case it is seen that (4.57) is also satisfied. Therefore,
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one has

ti+1∑
t=ti+1

E [|G(p̂i, ŷi, z)−G(pt, yt, z)|]

= P(A3 ∩ A4)

(
ti+1∑

t=ti+1

E
[
|G(p̂i, ŷi, z)−G(p̂i, yt, z)|

∣∣A3 ∩ A4

])

+(1− P(A3 ∩ A4))

(
ti+1∑

t=ti+1

E
[
|G(p̂i, ŷi, z)−G(p̂i, yt, z)|

∣∣Ac3 ∪ ∩Ac4]
)

≤
ti+1∑

t=ti+1

E
[
|G(p̂i, ŷi, z)−G(p̂i, yt, z)|

∣∣A3 ∩ A4

]
+
K67Ii
Ii−1

≤
ti+1∑

t=ti+1

E
[
max{h, b+ p̂i}|ŷi − yt|

∣∣A3 ∩ A4

]
+
K67Ii
Ii−1

≤
ti+1∑

t=ti+1

E
[
max{h, b+ ph}|ŷi − ŷi−1|

∣∣A3 ∩ A4

]
+
K67Ii
Ii−1

≤ K68,

where the first inequality follows from (4.55) and (4.56), the third inequality follows
from (4.57) when on event A4, and the last inequality is valid because on event A3

one has ŷi = ŷi−1.
Thus, the fourth part of regret in (4.51) is upper bounded by

N+1∑
i=2

K68 ≤ K69 log T. (4.58)

Combining (4.52), (4.53), (4.54) and (4.58) in (4.51) completes the proof of The-
orem 4. �
Proof of Proposition IV.7.

Recall (4.10) is

ẑ = argmax
z∈Z

∏
{t∈{1,...,kI}:yt>dt}

f(dt; pt, z) ·
∏

{t∈{1,...,kI}:yt≤dt}

(1− F (yt − 1; pt, z)),(4.59)

and we will compare (4.59) with the following fictitious MLE formulation,

z̃ = argmax
z∈Z

kI∏
t=1

f(dt; pt, z), (4.60)
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where Dt(pt, z), t ∈ {1, . . . , kI} independently follows the distribution of f(·; pt, z).
Let

C = {t :∈ [1, . . . , kI] : yt ≤ dt} ,

and let |C| denote the cardinality of C. (4.59) and (4.60) are different only in periods
t ∈ C. Because demands are upper bounded by dh, the “raising inventory” action is

performed for at most
⌈
log1+s

dh

yl

⌉
times. In other words, there are at most

⌈
log1+s

dh

yl

⌉
stockout periods in the learning phase, hence one has

|C| ≤
⌈

log1+s

dh

yl

⌉
= K70.

We will discuss the following two case separately, i.e., (1) |C| > 0, and (2) |C| = 0.
(1) If |C| > 0, then divide (4.59) by (4.60) one has

∏
{t∈{1,...,kI}:yt>dt} f(dt; pt, z)

∏
{t∈{1,...,kI}:yt≤dt}(1− F (yt − 1; pt, z))∏kI

t=1 f(dt; pt, z)

=
∏
t∈C

1− F (yt − 1; pt, z)

f(dt; pt, z)
.

By Assumption 2 ii), it can also be seen that for any t ∈ C, any dt ∈ {dl, . . . , dh},
any pt = p̄j, j = {1, . . . , k}, and z ∈ Z, there exist constants K71, K72 > 0, such that

K71 ≤
1− F (yt − 1; pt, z)

f(dt; pt, z)
≤ K72,

therefore

K71 ≤
∏
t∈C

1− F (yt − 1; pt, z)

f(dt; pt, z)
≤ K70K72,

which is parallel to (4.23).
There exist constants −∞ < K73 ≤ K74 < +∞ such that, for any p ∈ P , any

z ∈ Z, and any d ∈ {dl, . . . , yh},

K73 ≤ f ′z(d; p, z) ≤ K74,

which is in parallel to (4.24).
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Then, based on (4.59) we construct

Ẑ(z) =
∏

{t∈{1,...,kI}:yt>dt}

f(dt; pt, z) ·
∏

{t∈{1,...,kI}:yt≤dt}

(1− F (yt − 1; pt, z)),

L̂(z) = log Ẑ(z),

Ẑ(z, z + u) =
Ẑ(z + u)

Ẑ(z)
,

and based on (4.60), we define

Z̃(z) =
kI∏
t=1

f(dt; pt, z),

L̃(z) = log Z̃(z),

Z̃(z, z + u) =
Z̃(z + u)

Z̃(z)
.

The following analysis follows in parallel as that in proof of case (1) in Proposition
IV.3.

(2) If |C| = 0, then (4.59) is the same as (4.60), and the standard MLE result
in Borovkov (1998) Theorem 36.3 can be directly applied. Combing (1) and (2),
Proposition IV.7 is thus proved. �
Proof of Theorem IV.6. We evaluate the regret of the proposed policy as follows:

R(T ) =
T∑
t=1

E[G(p∗, y∗, z)−G(pt, yt, z)]

=
I∑
t=1

E [G(p∗, y∗, z)−G(pt, yt, z)] +
T∑

t=I+1

E[G(p∗, y∗, z)−G(pt, yt, z)]

≤
I∑
t=1

E [G(p∗, y∗, z)−G(pt, yt, z)]︸ ︷︷ ︸
Exploration Regret

+
T∑

t=I+1

E [G(p∗, y∗, z)−G(p̂, ŷ, z)]︸ ︷︷ ︸
Regret from Estimation Error

+
T∑

t=I+1

[|G(p̂, ŷ, z)−G(pt, yt, z)|]︸ ︷︷ ︸
Regret from Missing Inventory Targets

.

(4.61)
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Similar as developing (4.42), the first part in (4.61) is bounded by

I∑
t=1

E[G(p∗, y∗, z)−G(pt, yt, z)] ≤ I
(
α
∣∣ph − pl∣∣+ max{b, h}

∣∣yh − yl∣∣) ≤ K75T
1
2 .

(4.62)

By Proposition 2,

P
{
‖ẑ− z‖ ≥ ε

}
≤ K76e

−IK77ε2 ,

therefore the second part in (4.61) is bounded as

T∑
t=I+1

E [G(p∗, y∗, z)−G(p̂, ŷ, z)] ≤
T∑

t=I+1

K78

I
≤ K78T

1
2 .

In Proposition A1, let n = 2, and the third part in (4.61) is upper bounded by
K78T

1/2. Combing the above analyses for the three parts of regret, we finish the proof
of Theorem IV.6. �

Appendix B

Next we present Hoeffding inequality, which we include for convenience and it can
be found in Hoeffding (1963) (and see Levi et al. (2007) for applications in inventory
control).
Hoeffding Inequality. Let A1, . . . , Al be independent random variables and Sl =∑l

i=1 Ai. Assume that Ai, i = 1, . . . , l, are almost surely bounded, i.e., P{Ai ∈
[ali, a

h
i ]} = 1. Then, for any ε > 0,

P{Sl ≤ E[Sl] + ε} ≥ 1− exp

(
− 2ε2∑l

i=1(ahi − ali)2

)
, (4.63)

and

P{Sl ≥ E[Sl]− ε} ≥ 1− exp

(
− 2ε2∑l

i=1(ahi − ali)2

)
. (4.64)
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