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Abstract 

Photovoltaics are a large part of the global strategy to reduce carbon dioxide emissions. The 

strict processing requirements of silicon are viewed as economic and technical barriers to 

larger scale deployment of solar energy.  Many of these materials have photocurrents limited 

by dissociation of bound excited states.  The separation between the photo-excited electron 

and the hole it leaves behind at the interface between the donor and acceptor material is at 

the core of the functional response of an organic photovoltaic (OPV) device.  We therefore 

examine the effects of interfacial electrostatics in a semi-classical manner on these excited 

states for both an organic interface and a hybrid organic-inorganic interface. We use boron 

subphtalocyanine chloride and C60 as our organic interface wherein we also simulate the 

effects of thermal motion on the excited state energetics using ab initio molecular dynamics. 

For our hybrid interface, we use pentacene and silicon for which the applicability of our 

model depends on surface termination. We develop a semi-classical model for the 

description of dissociation between electron and hole, which takes into account the 

difference of dielectric constants of the materials juxtaposed at the interface, as well as the 

potentially polar nature of the interfacial termination.  Particularly this latter effect can be 

exploited for device performance optimization.   

Hence, using ab intio modeling, we explore possible modifications of boron 

subphthalocyanine chloride derivatives to control the dipole associated with these molecules 

and their photonic properties.  We substitute the axial boron and chlorine atoms for other 

trivalent and halogen atoms in our derivatives. Through ab intio modeling, we explore boron 

subphthalocyanine chloride derivatives as possible organic photovoltaic materials. Possible 
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crystal structures are predicted and their electronic and photonic properties for the 

proposed derivatives.   Many of these materials have photocurrents limited by dissociation of 

bound excited states.  

We further refine the semi-classical model, leading to a quantum mechanical model based 

on the effective mass Schrödinger equation, which utilizes a self-consistent approach for the 

calculation of excited states.  This model reveals that at hybrid organic/inorganic interfaces, 

the excited electron-hole configuration transitions from a regime where both reside in the 

donor phase to a regime where they are predominantly separated across the interface, which 

is uniquely controlled by the attraction between electron and hole and the band edge offset.
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CHAPTER 1 

 Introduction 

1.1 Introduction to Computational Science 

While the underlying theory of a general purpose computer had already been worked out, 

the announcement of the ENIAC computer in early 1946 is considered to the genesis of 

computational science.[1] In the past 70 years, computer simulation has spread to every field 

of science and has resulted in multiple Nobel prizes. But to the uninitiated, this is a great 

deal of fuss over computers, which are, despite their original intent, mostly used for 

communication and entertainment.[2] To enlighten the reader, it is best to describe how 

and why we do experiments so as to better understand the nature of simulation. 

When a scientist wants to learn about some physical system, they have several options. One 

possibility is, they can look to see if that something has previously been measured for their 

system. For common systems like steel alloys, rats, aqueous solutions, wheat, carbon nuclei 

etc., the answer is usually yes, and the scientist can find the information somewhere. If that 

something about their system follows fairly simple physical laws, they might be able to 

calculate this thing they want to know accurately enough. Some good examples of this might 

be water flow rate inside of a pipe, two body orbital mechanics, or voltages inside of a 

simple circuit. If the system follows complicated and deeply fundamental physical laws, and 

the scientist deeply enjoys mathematics, they may still try to calculate the thing they are 

interested by using many approximations and mathematical tricks. These are usually 

problems like compressible fluid flow, general relativity, and quantum electrodynamics. 
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The problem with this approach is that the scientist may waste a great amount of time while 

making no progress, but sometimes, the results are profound and widely helpful.  

So if a scientist wants to know something about a physical system, but cannot find that 

information, cannot use a simple model, and does not want to risk a lengthy calculation, 

they’ll have to conduct an experiment themselves. But there are limits on what can be done 

in an experiment. Some things are too large to be an experiment. For example, we cannot 

build our own continents to test plate tectonics, nor can we build our own stars to test 

stellar fusion. In the end, we are usually limited to experiments that are smaller than a 

football field. When it comes to time scale of experiments, scientists are unfortunately 

limited to conducting experiments that are shorter than the average human life expectancy.  

From these constraints, we can make a map of experiments based on size and time scale as 

shown in Figure 1.1. Even inside the realm of things that can be experiments, there is 

another factor: cost. For whatever reason, things that happen very quickly like the particle 

physics (<10-20 s) in the Large Hadron Collider or are as large as the International Space 

Station (≈102 m) or some combination of the two, roughly form a boundary of steeply 

increasing cost. For example, an automobile crash test, which involves and an automobile 

(≈101 m) and a crash (≈10-1 s) and requires the destruction of a new car on top of the cost of 

all the scientific equipment and technician time can easily exceed median income of the 

United States.[3] Thankfully, computer simulations can fill in some of the hard to reach 

areas in this picture. 
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Figure 1.1 A diagram of experiment time and size with some well-known experiments. The shaded 

blue area is roughly the regime of what are possible experiments. 

With computer simulation, there is almost always a means of simulating a system, no-matter 

the size scale. The crux is that a good mathematical model for the system has to exist for that 

system at every size scale but for many systems, they do. For example, the mechanical 

response of a material can be modeled from the kilometer scale down to the millimeter scale 

using non-linear elasticity and flow plasticity theory. From the millimeter scale down to the 

100 nanometer scale, phase field theory works well. From 100 nanometer scale down to the 

Angstrom scale, atomistic models such as molecular dynamics work well. Below this size 

scale, macroscopic concepts such as stress and strain become unclear, but density function 

theory can still model the behavior of chemical bonds well. The only problem is that each 

time a lower level model is used, computation complexity increases dramatically, i.e. the 

computer has to work dramatically harder. This sort of behavior generally means that the 

maximum simulated time decreases every time a lower level model is used. This leads to an 

overall relationship between simulation size and time scales that is schematically shown in 

Figure 1.2. Wonderfully, many of the experimentally difficult to reach size and time scales 
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are easily within the reach of simulation. Also, there are more than just size and time scale 

reasons to use computer simulations.  Because computer simulations are not bound by the 

same rules of as reality, we can also do things that are otherwise impossible in experiment. 

 

Figure 1.2. Across many simulation types and size scales, there is an upper bound on the amount of 

time that can be simulated for a simulation size. This time increases with available computational 

power. 

The first and possibly the most important advantage of simulations is the ability to explain 

and differentiate phenomena. In an experiment where something inexplicable happens, we 

can perform simulations using the physical laws that we hypothesize are involved. If the 

inexplicable result is replicated in simulation, we know that the interplay of a set or subset 

of the physics implemented in simulation give rise to the inexplicable result. From there, 

physical laws can be eliminated one by one from the simulation one by one till only the ones 

that reproduce the inexplicable result remain. This is a brute-force means of elucidating the 

underlying physics of the phenomenon. Simulations can also differentiate phenomena. For 

example, if an experiment yields some measurement but cannot determine what contributes 

to that measurement, a simulation of the measurement can be done. Since in the computer 
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all the contributions to a measurement are calculated, it is usually trivial to examine 

contribution of each phenomenon. 

The second area where simulations can excel compared to experiment is in throughput. If 

someone wants to perform a destructive test on a sample, they often have 

make/buy/prepare a new sample each time. In a computer, we can email copies of the 

sample to each other. Some of our simulations have become so well established that the 

computational cost of performing one is trivial compared to human time required to setup 

the simulation. In this case, we can automate the setup and execution of simulations to test 

original samples under a huge number of conditions. We can also do this the other way 

around, and use automation to perform the same simulated test on many possible design 

candidates to find the best one quickly. This is known as high-throughput screening.  

The third major reason to use simulations is that some experiments are very difficult or 

impossible to do. We cannot do experiments on neutron star matter on earth because 

nothing can withstand the required pressures. Experiments involving nuclear chain reactions 

are generally either illegal or bureaucratic nightmares due to safety and security issues. It is 

difficult to measure the properties of interfaces in materials, any probing requires 

mechanical access to the interface which makes it a surface not an interface. Scattering 

methods like electron microscopy and x-ray scattering can be used on interfaces but don’t as 

work well on molecular materials. This inaccessibility of interfaces is the major motivation 

for the development of the models presented in chapters two and four. 

The majority of the work in this thesis comprises ab initio calculations of photovoltaic 

materials to explore new architectures and materials, and to better understand these solar 

cells. Ultimately, improvements in solar cells are part of our species’ plan to ween ourselves 

from polluting our atmosphere with carbon dioxide to power our machines. Because ab 

initio calculations are the most computationally intensive class of calculations in materials 

science, there is considerable irony given the amount of carbon dioxide released as a 
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byproduct of the electrical energy that powered the processors used to perform the 

calculations with the purpose of reducing global carbon dioxide emissions. 

1.2 An Introduction to Ab Initio Calculations 

What are ab initio and first principles models/calculations/simulations? In the context of 

materials modeling, ab initio, which literally translates to ‘from the beginning’, and first 

principles both imply that by beginning with the quantum mechanical behavior of electrons, 

you can predict materials properties. Ironically, all of these methods are based on the 

Schrodinger equation in some form or another and not on quantum electrodynamics which 

makes them, in fact, still approximations. Nonetheless, any model that captures significant 

phenomena is wise to disregard unnecessary complexity. This brings us back to the 

Schrodinger equation, because it and its many variations are sufficient for describing most 

materials. In its most concise form it is: 

HΨ = 𝐸Ψ 

Where 𝐻 is the Hamiltonian operator, Ψ is the wave function, and 𝐸 is the energy 

eigenvalue. Unfortunately, this is very alien to those unfamiliar with quantum mechanics. In 

practical application, the Schrodinger equation is more of a recipe for constructing quantum 

mechanical problems than an all-encompassing solution in the same way that the proper use 

of Newton’s laws allows the solution of classical mechanical problems.  

As a gentle introduction, starting with a single particle, 1-dimensional, time independent 

case in real space we have:  

H = −
ℏ!

2𝑚
∂!

∂𝑥!
+ 𝑉 

−
ℏ!

2𝑚
∂!𝜓
∂𝑥!

+ 𝑉𝜓 = 𝐸𝜓 
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The wave function 𝜓 is related to the probability density,𝜌, of the particle being at a certain 

x value via 𝜓∗𝜓 = 𝜌. (This means wave functions have strange units due to the space in 

which they are defined. In this linear example, the units are 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠/ 𝑚𝑒𝑡𝑒𝑟.) The 

first term represents kinetic energy, and V is the potential energy imposed on the particle 

through some interaction as a function of position. Finally, E is the energy of the particle. E 

is also the energy eigenvalue. What this means is that only some functional forms of 𝜓 can 

solve this equation and for each functional form (eigenvector), there is only one energy 

eigenvalue. This can be more easily understood if this differential equation is conceptualized 

as a linear algebra problem. As an example, in this matrix formulation we have discretized 

the x coordinate in periodic system. The Hamiltonian is represented as a matrix and the 

wave function as a vector. 

𝐇

𝜓!
𝜓!
𝜓!
𝜓!
𝜓!

= 𝐸

𝜓!
𝜓!
𝜓!
𝜓!
𝜓!

 

−ℏ!

2𝑚
1
∆𝑥 !

−2 1 0 0 1
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
1 0 0 1 −2

+

𝑉! 0 0 0 0
0 𝑉! 0 0 0
0 0 𝑉! 0 0
0 0 0 𝑉! 0
0 0 0 0 𝑉!

𝜓!
𝜓!
𝜓!
𝜓!
𝜓!

= 𝐸

𝜓!
𝜓!
𝜓!
𝜓!
𝜓!

 

Since we don’t know 𝐸 or 𝜓, but do know the Hamiltonian matrix, this is an eigenvalue 

problem where the state energies are eigenvalues and the eigenvectors are the spatial 

variation of the state wave functions. In this case, there are 5 energy eigenvalues and 5 

eigenvectors. In reality, with its continuous space there can be infinitely many. The only 

problem for real systems is that they have many electrons and finding eigenvalues becomes 

expensive. Using an orthonormal basis set of functions to represent wave functions is the 

most common means of reducing the work involved. For example, the spherical harmonics 
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and Gaussians are often used to represent atomic and molecular orbitals (MO) because they 

are so similar and only require a few coefficients to represent the MO well. Since the basis 

has known mathematical properties and only coefficients need to be saved, much 

computational efficiency is gained. In periodic systems, plane waves are a common choice.  

1.2.1 Multiple Electrons and Hartree-Fock 

What about multiple electrons? The first and simplest approximation is the uncorrelated 

wave function. Basically, when constructing a wave function for a multi-electron system, is 

the probability of finding an electron at a certain place dependent on the probability of 

another electron being found at some other location? If so, then the electron wave function 

depends on 6 dimensions. (3N dimensions for the N-electron system). However if our 

electrons are uncorrelated, then the probability of finding an electron at a location is just the 

product of the two independent probability densities. As a wave function this looks like this:  

Ψ 𝐫!, 𝐫! = 𝜓! 𝐫! 𝜓! 𝐫!  

This approximation is a good one. Except for a small subclass of materials known as strongly 

correlated materials (such as super conductors), this can mostly be ignored. Also, it creates 

two 3-dimenstional problems out of a 6-dimentional problem, which is highly preferable 

computationally.  

The next and possibly least intuitive component is the exchange interaction.  I will cover it 

shortly for completeness sake, but for a more thorough description (14 pages long), see 

Leach.[4]Briefly, because electrons are indistinguishable, only the total wave function is 

disguisable (i.e. observable). This means that electron one in state a and electron two in b 

cannot be distinguished from electron one in state b and electron two in state a. The total 

wave function cannot be changed if the two electrons are swapped since this would affect 

the total energy. The answer is that total wave function can be expressed in symmetric and 
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anti-symmetric ways, which leave the total wave function intact when the electrons are 

exchanged. The symmetric and anti-symmetric cases are: 

Ψ 𝐫!, 𝐫! =
1
2
𝜓! 𝐫! 𝜓! 𝐫! + 𝜓! 𝐫! 𝜓! 𝐫!  

Ψ 𝐫!, 𝐫! =
1
2
𝜓! 𝐫! 𝜓! 𝐫! − 𝜓! 𝐫! 𝜓! 𝐫!  

The symmetric and anti-symmetric wave functions alone does not create an immediate 

peculiarity because they are merely a result of statistics, however, the inclusion of intrinsic 

spin does create a peculiarity. For spin-1/2 particles like electrons, symmetric total wave 

functions equate to zero. So, total electron wave functions must be anti-symmetric. This is 

where most authors would explore the slater determinate for its simple representation of 

the antisymmetric total N-electron wave function, but this should be left to more eloquent 

and patient authors.  

With the multi-electron wave function glossed over, the next step is a multi-electron 

Hamiltonian. For two electrons: 

H = −
ℏ!

2𝑚
∇𝐫!
! −

ℏ!

2𝑚
∇𝐫!
! + V!"# 𝐫!, 𝐫! + V!"# 

The kinetic energy of an electron is represented by the Laplacian of the total wave function 

with respect to that electron’s position. (For a correlated wave function, this Laplacian 

couples the masses.) The next term,V!"#, is the interaction potential,V!"#, which depends 

on the location of the two electrons. The final term,V!"#, represents an externally applied 

potential, which for materials, represents the field of nuclear cores, applied fields, etc. The 

simplest and strongest electron-electron interaction is the Coulomb interaction which is 

formulated as: 
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V!"# 𝐫!, 𝐫! =
𝑒!

4𝜋𝜖! 𝐫! − 𝐫!
 

For the total energy of this two electron system, we rely on the expectation value of the 

Hamiltonian to tell us the total energy: 

𝐸 =
Ψ∗HΨ𝑑𝐫!𝑑𝐫!
Ψ∗Ψ𝑑𝐫!𝑑𝐫!

 

For the two electron system with the proper anti-symmetric wave functions, this expands 

to: 

𝐸 = −
ℏ!

2𝑚
𝜓!∗∇𝐫!

! 𝜓!𝑑𝐫! −
ℏ!

2𝑚
𝜓!∗∇𝐫!

! 𝜓!𝑑𝐫! 

+
𝑒!

4𝜋𝜖!
𝜓!∗ 𝐫! 𝜓! 𝐫! 𝜓!∗ 𝐫! 𝜓! 𝐫!

𝐫! − 𝐫!
𝑑𝐫!𝑑𝐫! 

−
𝑒!

4𝜋𝜖!
𝜓!∗ 𝐫! 𝜓! 𝐫! 𝜓!∗ 𝐫! 𝜓! 𝐫!

𝐫! − 𝐫!
𝑑𝐫!𝑑𝐫! 

+ 𝜓!∗𝜓!V!"# 𝐫! 𝑑𝐫! + 𝜓!∗𝜓!V!"# 𝐫! 𝑑𝐫! 

The first two terms are the kinetic energy and the third is the coulomb integral between the 

charge densities of the two electrons. This is sometimes referred to as 𝐾!" 

𝐾!" =
𝑒!

4𝜋𝜖!
𝜓!∗ 𝐫! 𝜓! 𝐫! 𝜓!∗ 𝐫! 𝜓! 𝐫!

𝐫! − 𝐫!
𝑑𝐫!𝑑𝐫! 

The fourth term is the exchange energy also known as 𝐽!". It is the result of the anti-

symmetric component of the total wave function going into to coulomb interaction. This is 

known as the exchange integral. 

𝐽!" =
𝑒!

4𝜋𝜖!
𝜓!∗ 𝐫! 𝜓! 𝐫! 𝜓!∗ 𝐫! 𝜓! 𝐫!

𝐫! − 𝐫!
𝑑𝐫!𝑑𝐫! 



 
 

11 

It is important to note that in multi-electron system, exchange terms not involving both 

electrons of the two-electron operator go to zero. So for the multi-electron system, we only 

need to consider all the possible pairs of electrons. Finally, the last two terms represent the 

effect of the external potential on the electrons. 

From here we will switch to a multi-electron description by summing over all the electrons 

for the single-electron operators of the Hamiltonian namely the kinetic energy and the 

external field interaction. For the coulomb and exchange interaction energies 𝐾!"  and 𝐽!", 

we can sum over all pairs or in the case below double count and divide by 2. Since 

𝐾!! − 𝐽!! = 0, we don’t have the exclude these terms from the sum. 

𝐸 = −
ℏ!

2𝑚
𝜓!∗∇𝐫!

! 𝜓!𝑑𝐫!
!

+
1
2

𝐾!" − 𝐽!"
!,!

+ 𝜓!∗𝜓!V!"# 𝐫! 𝑑𝐫!
!

 

This is the Hartree-Fock formulation for the electron energy. It has exact exchange and no 

correlation correction. By applying the variational principle to this, we can get the Fock 

equation or a single particle Hamiltonian which reduces the problem to a single particle 

equation. But first, we should create Coulomb 𝑘! 𝐫! and exchange𝑗! 𝐫!  one-electron 

operators: 

𝑘! 𝐫! =
𝑒!

4𝜋𝜖!

𝜓!∗ 𝐫! 𝜓! 𝐫!
𝐫! − 𝐫!

𝑑𝐫!
!!!

 

𝑗! 𝐫! 𝜓! 𝐫! =
𝑒!

4𝜋𝜖!
𝜓!∗ 𝐫! 𝑑𝐫!

𝜓!∗ 𝐫! 𝜓! 𝐫!
𝐫! − 𝐫!!!!

 

The exchange operator is an integral operator and it has to be this way so that the 

expectation value computes correctly. This all results in the Fock equation: 

−
ℏ!

2𝑚
∇𝐫!
! + V!"# 𝐫! + 𝑘! 𝐫! − 𝑗! 𝐫! 𝜓! = 𝜀!𝜓!  
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Where the 𝜀!  is the energy eigenvalue of an electron. This equation is hugely important 

because allow each electron to be solved separately and then updated with each other and 

re-solved in a self-consistent manner (self-consistent iteration). The single particle 

Hamiltonian is also hugely important since it is what is actually implemented in software for 

solving electronic structure problems. 

Before continuing, it’s important to discuss the meaning of these energy eigenvalues. The 

energy eigenvalue reflects the energy level of an electron relative to vacuum. Or more 

simply the negative of the energy required to remove the electron from the system while 

keeping all the other electrons frozen. Or mathematically: 

𝜀!
!

≠  𝐸 

1.2.2 DFT and Beyond 

Any astute computationalist will have noticed that a naïve implementation of Hartree-Fock 

will be at least O(N4) if the single particle wave functions are exactly. D1sson solver (fast 

Fourier transform, fast multipole method, multilevel summation method, etc.) on the 

coulomb integral to speed that up but that still leaves the computationally nasty exchange 

term. The solution is yet another set of approximations that lead to density functional theory 

(DFT). 

The main idea is that we try to treat the electron density rather than the wave functions as 

much as possible. To start, the electron density is defined as: 

𝜌 𝐫 = 𝜓!∗ 𝐫 𝜓! 𝐫
!

 

And the total number N of electrons: 

𝑁 = 𝜌 𝐫 𝑑𝐫 
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Using this we can write the total energy as a functional of the electron density as per 

suggestion of Kohn and Sham[6]: 

𝐸 𝜌 𝐫 = 𝐸!" 𝜌 𝐫 + 𝐸!"# 𝜌 𝐫 + 𝐸! 𝜌 𝐫 + 𝐸!" 𝜌 𝐫  

The first term is the kinetic energy, followed by the interaction with an external potential, 

the classical coulombic intra-action of the electron density (Hartree energy), and finally a 

functional for the exchange and correlation correction (not necessarily combined). 

The kinetic energy functional is: 

𝐸!" 𝜌 𝐫 = −
ℏ!

2𝑚
𝜓!∗∇𝐫!

! 𝜓!𝑑𝐫!
!

 

The external energy functional is: 

𝐸!"# 𝜌 𝐫 = 𝜌 𝐫 V!"# 𝐫 𝑑𝐫 

The Hartree functional is the classical self-interaction of a charge density (again the ½ for the 

double counting): 

𝐸! 𝜌 𝐫 =
1
2
𝑒!

4𝜋𝜖!
𝜌 𝐫! 𝜌 𝐫!
𝐫! − 𝐫!

𝑑𝐫!𝑑𝐫! 

And finally the exchange and correlation energy is: 

𝐸!" 𝜌 𝐫 =? 

Nobody knows or will likely ever know the exact or even optimal form, however there are 

great approximations. Now the resulting single particle Hamiltonian known as a Kohn-Sham 

equation is:  

−
ℏ!

2𝑚
∇𝐫!
! + V!"# 𝐫! +

𝑒!

4𝜋𝜖!
𝜌 𝐫!
𝐫! − 𝐫!

𝑑𝐫! − 𝑉!" 𝐫! 𝜓! = 𝜀!𝜓!  

Where, 
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𝑉!" 𝐫 =
𝛿𝐸!" 𝜌 𝐫
𝛿𝜌 𝐫

 

This equation should look familiar because it is so similar to the Fock equation. However, it 

is much more easily solved! The kinetic energy and external potentials were already local 

(meaning that no integral was needed to calculate them). The Coulombic term is much less 

difficult than before. In fact, the coulomb potential only needs to be calculated over all space 

while being reused for all the electrons. Finally, the exchange and correlation functional 

becomes some sort of local potential for speed reasons.  

If only the charge density is used in the exchange and correlation functional, it is referred to 

as a local density approximation (LDA). If the density and some of the gradients of the 

density are included, it is referred to as a general(lized) gradient approximation (GGA). 

There are many formulations of LDA and GGA. Because of an oddity of DFT, it tends to 

under-predict band gaps and highest occupied, lowest unoccupied molecular orbital, 

HOMO/LUMO, gaps in materials and molecules. However, Hartree-Fock tends to over 

predict it. Because of this, there are many hybrid formulations that can be tuned by a linear 

mixing parameter to correctly predict band gaps. None of the methods above have 

mentioned electron spin or spin-density, and spin polarized versions of all of these theories 

exist. For transition metals, a popular correction for correlation and spin-polarized systems 

called LDA+U based on the Hubbard Hamiltonian and on-site energies is common.[7] 

Currently, the most popular approximation for correctly calculating electronic structure 

beyond the ground state is the GW approximation for Σ , which is the self-interaction 

energy correction through polarization of the other electrons.[8] 

None of these methods address excited state wave functions properly. The desire to 

simulate excited states has lead to the development of time-dependent DFT (TDDFT). 

More recently, the Bethe-Salpeter equation is used to solve for correlated electron-hole 
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excitations. There are more methods still, but these are getting far outside the scope of a 

relatively brief introduction.  
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CHAPTER 2 

 Semi-Classical Model for Calculating Exciton and 
Polaron Pair Energetics at Interfaces 

2.0 Synopsis 

Exciton and polaron pair dissociation is a functional requirement of photovoltaic devices. To 

improve upon the current state of interfacial transport models, we augment the existing 

classical models of dielectric interfaces by incorporating ab initio simulations, allowing us to 

calculate exciton and polaron binding energies more accurately. We demonstrate the 

predictive capabilities of this new model using two interfaces: (i) the boron 

subphthalocyanine chloride (SubPc) and C60 interface which is an archetype for many organic 

photovoltaic devices; and (ii) pentacene and silicon (100), which represents a hybrid 

between organic and inorganic semiconductors. We find that molecular dipoles may be 

useful as an engineering parameter for improving polaron pair dissociation and that sharp 

transitions in permittivity can have a stronger effect on polaron pair dissociation than even 

the electron-hole Coulomb interaction. 

2.1 Motivation and Background 

In all photovoltaic devices, photons excite charge carriers that must be separated and 

collected to generate current. In all materials, the excited electron and the pseudo particle 

hole interact. In most cases, this interaction is dominated by the Coulomb component, 

which acts to bind the excited electron and hole into a charge neutral effective particle: the 
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exciton. When an exciton becomes split over and interface where the electron and hole are 

mostly located on opposite sides of the interface yet still bound, a polaron pair is formed. 

The polaron pair binding energy is one of the largest limiting factors to the performance of 

organic and hybrid organic/inorganic photovoltaic devices. It subtracts from the open circuit 

voltage and directly limits the device current via the dissociation rate of polaron pairs at the 

accepter/donor interface (shown in Figure 2.1).[1, 2] Direct measurement of polaron pair 

states is difficult and progress with respect to the theoretical description of polar pair 

dissociation kinetics has been slow, limiting the accuracy of device scale transport models. 

The most commonly used models are based the Onsager-Braun models.[1-3] Onsager’s 

original model was developed for the electric field assisted dissociation of ions in solution,[4] 

which Braun applied to the dissociation of excitons and charge transfer states.[5] While some 

shortcomings of these models in describing polaron pairs have already been pointed out in 

the literature, [6] here we examine the electrostatics of the interface and the excitonic 

differences of the two materials. The effect of the excitonic differences between materials 

on the polaron pair behavior can be best understood by reviewing the two prototypical 

forms of excitons discussed below. Following this, we present a short review of the theory 

as its stands for exciton and polaron pairs at heterojunctions. 
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Figure 2.1. The band gaps and band alignment of a hypothetical interface is shown. The ∆EI is the 

energy from the band edges alone for an electron excited across the interface to form a polaron 

pair. The polaron pair binding energy, EB, directly limits the electronically available VOC. 

2.1.1 Wannier Excitons 

In traditional semiconductors made of inorganic materials, photo-excited electrons and their 

holes behave, for most intents and purposes, as separate particles. However, weakly bound 

exciton states do exist, typically called Wannier or Wannier-Mott excitons. These excitons 

are characterized by hydrogenic states delocalized over many unit cells that travel via wave 

propagation. The energy levels are quantized as 

 𝐸! =
!!!

! !!! ! =
!∗

!!!
!
!!

!!!!

! !!! ! =
!∗

!!!
!
!!
𝑅! ≈

!∗

!!!
!
!!
× 13.605 eV,  

Where 𝜇 = !!
∗!!

∗

!!
∗!!!

∗  and 𝜇∗ = !
!!

!!
∗!!

∗

!!
∗!!!

∗  are the reduced effective mass and scaled 

reduced effective mass of the electron-hole pair.  𝑛 is the quantum number of the exciton. 

The Bohr radius for the ground state, which gives an approximation for the minimum 

exciton size is: 

𝑎! =
!!!

!"!!
= !!

!∗
!!!!

!!!!!
= !!

!∗
𝑎! ≈

!!
!∗
× 0.52918 Å (2.0) 

For most classical semiconductors, which have small effective masses and large dielectric 

constants, the binding energies are small (usually less than 𝑘!𝑇) and the radii are large (10s 

ofÅ). For example, the above formulas applied to silicon yield a binding energy of 55 meV 

and a radius of 21 Å.  

2.1.2 Frenkel Excitons 

In the more recently popularized organic semiconductors, excited electrons are by 

comparison strongly bound to their holes, forming Frenkel excitons. This binding leads to 

the exciton pseudo-particle where the electron and hole travel together as an effective 
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neutral particle. The strong binding and localization mean that Frenkel excitons tend to 

travel via tunneling from site to site. The binding interaction is usually described as purely 

Coulombic, as with the Wannier type. The difference is that the strongly localized electron 

and holes require treatment of the actual wave function rather than treating them as 

perturbations of valence and conduction bands. A good approximation of the binding energy 

is: 

𝐸!"#$ =
𝑒!

4𝜋𝜖
𝜓! 𝐫! ! 𝜓! 𝐫! !

𝐫! − 𝐫!
𝑑𝐫!𝑑𝐫! , 

Which uses the dielectric permittivity of the bulk material to account for the screening of 

other atoms and molecules. The exciton radius is oftentimes computed based on a measured 

binding energy according to 

𝑟!!! =
!!

!!"!!"#$
. 

However, the exact spatial distribution of charges is disregarded, which can lead to error. As 

a case in point, consider that two spherically symmetric co-centered Gaussian charge 

distributions have a finite binding energy but no distance between them. (See Appendix2.1 

for derivation.) 

We immediately see that, in the case of the Wannier exciton, spatial confinement of the 

wave function comes from the interaction between electron and hole, whereas in the case of 

Frenkel excitons, it comes in part, from the spatial extent of the molecular orbitals. If we 

consider a polaron pair to be an exciton split over an interface, then three possible pairings 

of interfaces can be made by categorizing them as combinations of exciton type: Frenkel-

Frenkel, Wannier-Wannier, and Frenkel-Wannier.  

In the case of the Frenkel-Frenkel pairs, most treat the exciton binding energy with the 

Mulliken rule from optical measurements.[7-9]  Although, some have included classical 

image potentials from dielectric interfaces into the binding energy considerations.[10] For 
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the most part, it seems that exciton binding energies are calculated from the interaction 

between the electron and hole states. These are then fed into the Onsager-Braun model to 

calculate dissociation rates. However a Poole-Frenkel model may be more accurate.[3, 11, 

12] 

In the case of Wannier-Wannier polaron pairs, there has been much analytical work on 

solving exciton Hamiltonians in the presence of dielectric interfaces with image potentials 

near interfaces.[13-17] Unfortunately these calculations have constrained the excitons to one 

material by application of infinite potential barrier. Ideally, finite potential barriers related 

to the differing band structures of the two materials would spatially separate the carriers. 

In the case of hybrid interface, neither model can accurately describe the system. One may 

consider hydrogen like states trapped in a half space for one of the carriers, but then each 

position of the Frenkel-like carrier has a different set of quantized exciton binding energies. 

To further complicate that matter, the electric field dependence of the dissociation rate 

requires a full quantum mechanical treatment. Considering the small size of Frenkel 

excitons relative to Wannier excitons, a hybrid polaron pair might be treatable as a 

hydrogenic atom in two adjacent dielectric half spaces where one half-space has a finite 

potential. Some work has been done for hydrogen in a single dielectric material with an 

infinite half space.[18, 19] 

In this work we focus on the statics of the polaron pair binding energy as the first step in the 

creation of more accurate polaron pair dissociation and recombination rate models. The first 

part of this paper consists of an overview of electrostatic interaction at a dielectric interface. 

In the second part, we apply these equations to an interface between C60 and boron 

subphthalocyanine chloride (SubPc) as an example of Frenkel-Frenkel polaron pair. Finally, 

we examine the interface between pentacene and a silicon (100) surface as an example of 

Wannier-Frenkel pair.  
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2.2 Classical Electrostatic Effects 

Since most novel or experimental photovoltaic devices tend to be planar due to production 

via spin coating or some sort of chemical or vapor deposition method, we elected to 

examine the idealized case of carrier interactions near a planar interface. Since this is a 

straightforward electrostatics problem, some solutions already exist.[20] The following 

relations were derived from theses known solutions in the context of device performance in 

the form of energetic effects on polaron pair binding energy and are summarized here, for a 

more complete description, see Appendix 2.2.  

In the simplest configuration, a single carrier (of charge 𝑞!), rests in material 1 near the 

interface with material 2. An areal bound charge density is created at the interface due to the 

difference in the dielectric displacement as seen in Fig. 2.2. 

 

Figure 2.2. A charge of q1 in located in material 1 

This areal bound charge density acts on the carrier to draw it into the material with the 

higher dielectric constant. The charge interacts effectively with its own image charge.[10] 

This is the self-polarization energy[21] and it causes the carrier to move away from the 

interface and deeply into material 1, and is given by Equation 2.1, where ℎ! is the initial 

distance to the interface. It should be noted that this energy is proportional to the difference 

in the dielectric constants and can be either positive or negative.  

Material 1 Material 2 

!r1

q1
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∆𝑈!"#$" = − !!!

!"!!!!!

!!!!!
!!!!!

 (2.1) 

 

 

Figure 2.3. Two charges, q1 and q2, are located on either side of the interface. 

In the case of a polaron pair, two carriers are on either side of the interface between 

material 1 and material 2 as in Figure2.3.The electrostatic potential between the two 

carriers is surprisingly simple and is described by Equation 2.2, where 𝑑 is the distance 

between the charges. 

𝑈!!!"#$!!!!"#$ =
!!!!

!!" !!!!! !
 (2.2) 

This is result is interestingly valid no matter what the positions of the two charges are, so 

long as they are on different sides of the interface. This result can be easily extended to 

diffuse charges on either side of the interface in Equation 2.3. 

𝑈!!!"#$!!!!"#$ =
!

!! !!!!! !
𝑑!𝑟! 𝑑!𝑟!

!! !! !! !!
!!!!!

 (2.3) 

The charge densities of the two diffuse charges are 𝜌! and 𝜌!. 

In some cases, there may be a local polarization of the material near an interface as a result 

of epitaxy. In the case of perovskites, a thin layer of polarized material can occur as result of 

epitaxial strain near the interface but be relieved in bulk by misfit dislocations. In the case of 

Material 1 Material 2 

!r1

q1
!r2

q2
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an amorphous SubPc film on C60, the preferred molecular orientation of the polar SubPc 

molecules can lead to local polarization.[22] For a thin polar layer between the two 

materials the resulting potential field exhibits a discontinuity at the interface. The change in 

potential across is:  

∆𝜙!→! =
!!
!

!
!!
+ !

!!
 (2.4) 

Where 𝜎! is the areal dipole moment density perpendicular to the interface.  Depending on 

the configuration of the system of interest, this may just accelerate the formation of a 

polaron pair from the exciton or reduce the polaron pair binding energy. In perovskites, a 

more complex situation may occur where flexoelectric polarization density decays with 

distance from the interface as misfit dislocations relieve a lattice mismatch.[23-25] The net 

result in either system is a small built-in field that can increase or decrease the polaron pair 

binding energy.  

2.3 SubPc on C60 

For the SubPc/C60 interface, previous work has shown the preferred orientation of SubPc 

on C60(111) surfaces is the ball-in-cup configuration. In this configuration, it is ultimately 

favorable for an electron to excite from the HOMO of the SubPc to the LUMO of the C60. 

[26] This is also observed with phthalocyanine and C60.[27] However, it was not known if 

room temperature thermal motion would lead to significant variation of the polaron pair 

binding energy. To investigate this, the thermal motion of an isolated SubPc sitting on the 

(111) surface of C60 is simulated using ab initio MD. The C60 (111) surface comprises one 

unit cell containing four C60molecules in a single layer as seen in Figure 2.4. A series of 

single-point ab initio calculations is performed to determine to spatial extent of the SubPc 

HOMO and the C60 LUMO as a function of centroid distance between the two. These are 

done using a single isolated pair of a SubPc and C60 molecules as shown in Figure 2.7. 
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Figure 2.4. (a) Top down view of the SubPc molecule and C60 surface. (b) perspective view of the 

same SubPc molecule and C60 surface. 

2.4 Pentacene on Silicon 

Two (001) silicon slabs were created. One with a bare surface and the other one with a 

hydrogenated surface, both consisting of 27 layers of silicon atoms (~35 Å thick).The 

relaxed bare surface exhibits the p(2 x 2) buckled dimer reconstruction and the 

hydrogenated surface the symmetric dimer reconstruction. There are several 

reconstructions of the silicon (001) surface with different buckling orders of the dimers. The 

energy differences between these are less than kBT per dimer.[28] Projected band structures 

were calculated for the two surfaces to compare to bulk silicon and identify surface states 

using relaxed 2 x 2 unit cell slabs. For interactions with pentacene, the 2 x 2 unit cells slabs 

are duplicated twice in each surface direction to provide enough space for the pentacene 

molecule. The molecule is placed in line with the dimer ridges. Calculations for each 

orientation are costly since each system consists of at least 900 atoms. This large number of 

atoms is required to minimize vertical quantum confinement effect on the electronic 

structure, which typically is inversely proportional to the square of the slab thickness. 

 

A B 
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Figure 2.5. (a) The clean silicon (001) surface is viewed top down and (b) along the alternating dimer 

ridges. (c) The hydrogenated surface is also viewed top down and (c) along the hydrogen 

terminated dimer ridges 

2.5 Methods 

2.5.1 SubPc on C60 

Ab initio molecular dynamics simulations are done using VASP (version 5.3.3) using the 

PAW method[29] with the PBE exchange-correlation functional. [30]. Augmented plane 

waves with a cutoff energy of 120 eV form the basis set. Van der Waals interactions were 

A B 

C D 
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accounted for using the VdW-DFT approach developed in Ref.[31, 32] with removed PBE 

correlation correction. In the initial configuration, a 7 Å vacuum gap was added to the super 

cell between the chlorine atom of the Subpc molecule and the bottom of the C60 to minimize 

interactions with the periodic images in the surface normal direction (z-direction). Partial 

occupancies are determined using Gaussian smearing with a width of 0.172 eV. Nuclear 

motion is integrated with a time step of 1 fs.  A Nosé-Hoover thermostat is employed with a 

target temperature of 300 K and an equilibration time of ~ 3 ps. Once the system is 

equilibrated, simulations are continued for another 12 ps to capture the relative position 

space of the C60/SubPc pair. The relative orientation and position of the SubPc molecule at 

each time step are calculated using Procrustes (Also known as Kabsch) analysis, which is 

based on computing the least squares rotation matrix after the centroid motion has been 

accounted for.[33] 

A series of single-point electronic structure calculations are performed on the SubPc 

molecule and the C60 molecule immediately beneath it as function of centroid separation 

distance between the two. For these single point calculations, Gaussian 09, Revision C.01 is 

used with the B3LYP hybrid functional and the 6-31G(d) basis set. For each centroid 

distance, a Coulomb integral is evaluated on the density mesh automatically generated by 

Gaussian. To simplify the intensive six dimensional integral, only cells inside the isodensity 

surface containing 99 % of the HOMO or LUMO states are used. Effective cell densities are 

corrected for the loss of the remaining 1%. While this does not change the asymptotic 

computational complexity of the calculation, it results in a 222-fold speedup at the cost of 

less than 5 meV error. The Coulombic contribution to the polaron pair binding energy at 

each time step is interpolated among a series of single point calculations using a cubic spline. 

All isolated molecular structures are created in Avogadro and relaxed using the built-in 

potentials before being used as input for ab initio calculations.[34] 
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2.5.2 Pentacene on Silicon 

All electronic structure calculations are carried out using VASP version 5.3.5 (build Mar. 

31, 2014). The augmented plane wave basis set is cut off at 400 eV and electronic 

relaxations are converged to an energy difference of 10 μeV. A Gaussian energy smearing 

width of 100 meV width is used. The PBE exchange-correlation density functional is used 

for structural relaxations.[30] The more costly HSE06 hybrid DFT/HF method is used for 

more accurate electronic structure calculations.[35] For structural relaxations of slabs, ions 

are relaxed until no atomic force exceeds 10 meV/Å. k-point grids are automatically 

generated using the Monkhorst-Pack scheme. Total energy calculations of bulk silicon are 

found to converge within 150 μeV/atom using an 8 x 8 x 8 k-point grid and the 

aforementioned plane wave cut-off. The lattice parameter of silicon calculated using HSE06 

is used for the construction of silicon slabs. The bulk electronic structure of silicon is 

calculated using the conventional cell with a 16 x 16 x 16 k-point grid. For the slabs used to 

compute the projected band structure, a 4 x 4 x 1 k-point grid is used since the slab is not 

periodic in the surface normal direction. For the final structures with the pentacene 

molecule, only one k-point is used due to computational cost. Van der Waals interactions 

between the surface and the pentacene molecule were accounted for using the VdW-DFT 

method developed in Ref.[31, 32] with removed PBE correlation correction. All slabs have a 

vacuum gap of 10 Å between the highest and lowest atoms to remove periodic interaction in 

the surface normal direction. Wave functions are extracted using the WaveTrans[36] code 

developed for Ref. [37]. Coulomb integrals are calculated as they were in Section 2.5.1 

using the dielectric constants of 3.61 for pentacene [38] and 11.7 [39] for silicon.  
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2.6 Results and Discussion 

2.6.1 SubPc on C60 

From tracking the relative position and orientation of the SubPc molecule, it’s found that 

the SubPc molecule strays less than 10° from surface normal with a mean of only 3.6°, only 

the centroid distance to the nearest C60 molecule was considered for Coulomb integrals. 

The distribution of the centroid distributions is shown in Figure 2.6. 

 

Figure 2.6.  The distribution of the centroid distances of the SubPc molecule and nearest C60 

molecule with the mean centroid distance shown as a dotted red line. 

For each single-point calculation, Coulomb integrals were evaluated to obtain the 

Coulombic contribution to the polaron pair binding energy as a function of the centroid 

distance, as shown in Figure 2.7. The Coulombic contribution to the polaron pair binding 

energy at each time step was interpolated from the series single-point calculations to get a 

mean and standard deviation of the Coulombic contribution to the polaron pair binding 

energy.  
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Figure 2.7. (a) The HOMO of the SubPc is shown in green and the LUMO of the C60 is shown in gold. 

Both are shown as isodensity surfaces containing 80% of the state. (b) The Coulomb contribution to 

the polaron pair binding energy is plotted as function of the centroid distance between the SubPc 

and C60 molecules. The mean centroid distance shown as a dotted red line. 

The most important result of the ab initio MD simulation is the small effect that thermal 

motion has on the Coulombic contribution to the polaron pair binding energy. In fact, the 

difference between the energy associated with the equilibrium position and that of any 

position within the thermal distribution is safely smaller than kBT. The insignificance of 

thermal motion in this case is further underscored by the lack of neighboring molecules to 

hinder motion of the SubPc molecule in our model surface. The charge center 

approximation often used by simpler models does well to first order, but in the current race 

for highly efficient devices it is not likely accurate enough considering the 80 meV between 

the two. 

  

A B 
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Table 2.1. The Coulomb contribution to the polaron pair binding energy from various calculation 

methods. 

Charge center (Equ. 2.2) 537 meV 

Coulomb integral at equilibrium (Equ. 3.3) 457 meV 

Coulomb integrals over thermal distribution 456 ± 6 meV 

The Coulomb integral results can be combined with an estimate on the upper bound of the 

effect polarized interface (the net ordering of dipoles at the interface) and the self-

polarization energies to gain a better understanding of their relative contributions.  The 

Procrustes analysis shows that the SubPc molecules do not significantly tilt from vertical, 

which means that their dipole moments are normal to the interface. We estimate the upper 

bound interface dipole density as the case where half of the C60 sites have a vertical SubPc 

molecule. The upper bound polarized interface energy is large enough to non-trivially 

weaken the polaron pair binding energy. Without a full experimental or molecular dynamics 

study of the SubPc molecular orientations it is not possible to accurately calculate this value. 

It is also important to note that, even though in this case the polarized interface reduces the 

polaron pair binding energy, there is no reason that, in another system, it could do the 

opposite. In conjunction with the work in Ref.[44], the effect of the molecular dipole 

moment on the I-V curve of a real SubPc/C60 device is modeled for five cases: no molecular 

alignment, ¼ of C60 sites covered with SubPc molecules, ½ of C60 sites covered with SubPc 

molecules and dipole inversions the last two cases. In Figure 2.8, it can be seen that 

alignment of the molecular dipoles can have a large effect on device performance.  
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Figure 2.8. The modeled I-V curves for a SubPc/C60 device with half of the C60 sites covered with 

SubPc molecules (solid green line), one quarter of the C60 sites covered with SubPc molecules 

(dashed green line), random SubPc molecule orientation (solid black line), one quarter of C60 sites 

covered with inverted SubPc molecules (dashed purple line), and half of C60 sites covered with 

inverted SubPc molecules (solid purple line). 

For the self-polarization energy, we estimate the interface is halfway between the lowest 

hydrogen atom of the SubPc molecule and the highest carbon atom of the neighboring C60 

molecule. The resulting effects on the polaron pair binding energy are collected in Table 2.2 

below. Unsurprisingly, the small difference in permittivity between SubPc and C60 gives a 

negligible self-polarization energy contribution.  
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Table 2.2 All of the semi-classical corrections to the polaron pair binding energy for the SubPc/C60 

interface are tabulated. *The polarized interface energy is an upper bound. 

Self-Polarization Energy (Equ. 2.1) 17 meV 

Polarized Interface Energy* (Equ. 2.4) -237 meV 

Coulomb Contribution (Equ. 2.3) 456 meV 

Total Polaron Pair Binding Energy 236 meV 

To demonstrate the effect of the dielectric constant, the same device as in Figure 2.8 has 

been simulated only changing the dielectric permittivity of the C60. The dielectric constant 

of C60 is fictitiously increased from the experimental value of 5.0 to 15.0 in Figure 2.9 

below. As the Coulomb interaction weakens, the self-polarization energy grows holding 

holes in the SubPc more strongly to the interface. The self-polarization energy grows more 

slowly than the Coulomb energy decreases due to the smaller leading coefficient. The net 

effect is that increasing the dielectric permittivity improves device performance but there is 

no significant improvement after a relative permittivity of 10.0. 
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Figure 2.9.  Simulated I-V curves of a hypothetical SubPc/C60 devicewhere the relative permittivity 

of C60 is the experimental value (solid green line), 10.0 (solid red line), and 15.0 (dashed blue line). 

2.6.2 Pentacene on Silicon 

For bulk silicon, the lattice parameter and bulk modulus have been calculated using both 

HSE06 and PBE. Both agree well with experiment for structural and mechanical properties. 

(Table 2.3) As usual, PBE (and DFT in general) under predicts the band gap, which is why 

HSE06 was used for electronic structure calculations despite the significant increase in 

computational cost.   
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Table 2.3. The calculated properties of silicon compared with experimental values 

 PBE HSE06 Experimental 

Lattice Parameter (Å) 5.4685 

[+0.72 %] 
5.4332 

[+0.07 %] 

5.4293 (0K)[40] 

Bulk Modulus (GPa) 92.5 [-6.28 %] 99.8 [+1.11 %] 98.7 (233 K) calculated 

from Ref.[41] 

Band gap (eV) 0.579 [-50.44 %] 1.158 [-1.03 %] 1.170 (0K) [42] 

The projected band structures of the two surfaces reveal distinctly different electronic 

structures near the band gap. The clean surface has two distinctive bands that sit in the 

middle of the band gap as seen in Figure. 2.10a. These bands can clearly be seen to be 

surface states associated with the surface reconstruction in Figure2.10c and 2.10d. The band 

gap for the clean surface is 0.615 eV (1.268 eV if the surface states are ignored) and 1.209 

eV for the hydrogenated surface. These band gaps are slightly larger than the bulk band gap, 

which is easily attributable to quantum confinement in the z-direction.  
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Figure 2.10. The projected band diagrams of the clean surface and the hydrogenated surface are 

shown in (a) and (g) respectively. At the Γ-point, the valence band, the first surface state, the 

second surface state, and the conduction band for the clean surface are shown in (b), (c), (d), and 

(e), respectively. Also At the Γ-point, the valence band and the conduction band for the 

hydrogenated surface are shown in (h) and (i), respectively. (f) shows the band diagram path 

through the Brilliouin zone use in (a) and (g). 

A B C D E 
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For the pentacene functionalized surfaces, we found that the pentacene molecule adsorbed 

to the clean surface in the A-1 sub-type single symmetric dimer of Choudhary et al.[43] 

Meanwhile on the hydrogenated surface, the molecule remained flat and aligned with the 

dimer ridge. Both surfaces can be seen in Figure2.11.  

 

Figure 2.11. Pentacene adsorbed to a pristine (a) and a hydrogenated (b) Si (111) surface.  In the 

latter case, the pentacene remains unreacted. 

A 

B 
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The electronic structures of the two surfaces are very different. The hydrogenized surface 

displays essentially independent electronic states between the silicon slab and pentacene 

molecule. The highest filled state (HFS) is simply the HOMO for pentacene molecule 

essentially unperturbed from the isolated molecule. The second highest filled state (HFS-1) 

is the valence band of the silicon slab. The lowest unoccupied state (LUS) is the conduction 

band of silicon. The HFS/LUS gap was found to be 1.256 eV. The state corresponding to 

the LUMO of the pentacene molecule is 478 meV above the LUS. These states are shown 

below with their corresponding DOS in Figure2.12. 
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Figure 2.12. On top, the DOS of the hydrogenated surface with the pentacene molecule. From the 

left to right on the bottom, the HFS-1, HFS, and LUS which for an isolated  surface correspond to the 

valence band of silicon, the HOMO of pentacene and the conduction band of silicon, respectively. 
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For the molecule on the clean surface, the reaction between the two completely changes the 

nature of the silicon surface states and the MOs of the pentacene molecule.  The HFS now 

resides on the distorted pentacene molecule and penetrates into the surface. In fact, HFS-6 

was the highest state with obvious distortion in relation to the pentacene molecule. These 

can be seen in the DOS shown in Figure 2.13. In the other direction, the LUS is the 

relatively undisturbed surface state on the opposing side of the silicon slab. The LUS+1 has a 

similar mixing of surface state and MO as the HFS. The lower unoccupied states all resided 

at the surfaces and the lowest state, residing mostly in the bulk of slab, was LUS+5. The 

HFS/LUS gap was found to be 0.668 eV and the HFS/LUS+1 gap was found to be 0.606 

eV.  This gap represents the interface transitions better since both states actually reside 

there. 
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Figure 2.13. On top, the silicon surface with and without the molecule have very different DOS due 

to the states formed by the reaction of the molecule with the surface. From left to right on the 

bottom, the HFS, LUS, and LUS+1 are shown. 
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The calculation of the polaron pair binding energies using the semi-classical formulas present 

in Section 2.2 requires some approximation. For the hydrogenated surface, a surface height 

in the z-direction had to be defined to allow the use the carrier-interface potential. The 

mean height of the hydrogen atoms on the surface is chosen for this because it also 

corresponds very closely to the height where the valence electron density decreases to half 

the bulk value. Any part of the states of interest that extended beyond this height is 

truncated because the carrier-interface potential is ill-defined for crossing the interface. [39] 

The truncation of the HFS and LUS across the interface was less than 0.005% of the total 

states. For the unhydrogenized interface, the centroids of the HFS and LUS+1 are both well 

inside the silicon and significantly distributed across the interface, which makes the carrier-

interface potential completely inapplicable. The Coulomb integral, while it can be 

calculated, it is not as applicable when the states are mixing across the interface. 

Nonetheless, we present the values for the unhydrogenized interface. The Renshaw model 

treats the coulomb interaction between the electron and hole using an electron distance 

from the interface that is the bulk exciton radius obtained from Equation 2.0 and a hole 

distance from the interface that is computed from the molecular geometry.[2] We find this 

gives reasonable values coulomb interaction. However, the unaccounted self-polarization 

contribution is significant for hybrid structures and cannot be ignored. 
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Table 2.4. The contributions to the total polaron pair binding energy are given for the hydrogenized 

and unhydrogenized surfaces with the estimate from the Renshaw model. 

Energies (meV) Clean Hydrogenated 

Self-Polarization Energy N/A 194 

Coulomb Integral 201 87 

Total polaron pair binding energy 201* 281 

Renshaw Model [2] 53 53 

2.7 Conclusions 

We have attempted a more rigorous calculation of the electrostatic effects of interfaces on 

carriers, excitons, and polaron pairs. By taking a semi-classical approach, we aimed to 

correct small scale ab initio simulations for being part of a larger system. In doing so, we 

found that for small molecule organic semiconductors, thermal motion likely has an 

insignificant effect on the Coulomb interaction of a polaron pair. We have also found that 

Coulomb integrals are more reliable than charge centers for calculating the Coulombic 

contribution to the polaron pair binding energy, especially if the hole and electron wave 

functions start to overlap. Proper surface termination is well known to be critical to 

predictable electronic properties of interfaces. Our work underscores this fact, as the 

electronic properties of unhydrogenated interfaces were significantly different both without 

the pentacene molecule and with it present, the chemical reaction of pentacene and silicon 

created completely new electronic states. The new electronic states defied the reasonable 

application of our semi-classical models for polaron pair binding energy.  However with 

good surface termination, hybrid polaron pair binding energies calculated with the methods 

here should be reasonably accurate. If these static models of polaron pair binding prove 

sufficient in most cases, then a clear path exists toward creating better kinetic models. 
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2.8 Appendices 

Appendix 2.1 The Coulomb Interaction of spherically symmetric 
co-centered Gaussian electron and hole distributions 

A Gaussian electron charge density of net charge qe is defined by: 

𝜌! 𝑟 =
𝑞!

𝜎!! 2𝜋
! 𝑒

!!!
!
!!

!

 

𝜌! 𝑟 𝑑!𝐫 = 𝑞!  

The potential field: 

𝜙! 𝑟 =
1
4𝜋𝜀

𝑞!
𝑟
erf

𝑟
2𝜎!

 

Satisfies the Poisson equation: 

∇!𝜙! = −
𝜌! 𝑟
𝜖

 

So a hole’s charge density is: 

𝜌! 𝑟 =
𝑞!

𝜎!! 2𝜋
! 𝑒

!!!
!
!!

!

 

The electrostatic energy is: 

𝑈 = 𝜌! 𝑟 𝜙! 𝑟 𝑑!𝐫 
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𝑈 = 𝜌! 𝑟 𝜙! 𝑟 4𝜋𝑟!𝑑𝑟
!

!

 

𝑈 =
𝑞!

𝜎!! 2𝜋
! 𝑒

!!!
!
!!

!
1
4𝜋𝜀

𝑞!
𝑟
erf

𝑟
2𝜎!

4𝜋𝑟!𝑑𝑟
!

!

 

𝑈 =
𝑞!

𝜎!! 2𝜋
! 𝑒

!!!
!
!!

!
𝑞!
𝜀
erf

𝑟
2𝜎!

𝑟𝑑𝑟
!

!

 

𝑈 =
𝑞!𝑞!

𝜀𝜎!! 2𝜋
! 𝑟𝑒

!!!
!
!!

!

erf
𝑟
2𝜎!

𝑑𝑟
!

!

 

𝑈 =
𝑞!𝑞!

𝜀𝜎!! 2𝜋
! 𝜎!

!

𝜎!erf
! !!

!!!!!

!!!!!

𝜎!! + 𝜎!!
− 𝑒

!!!
!
!!

!

erf
𝑟
2𝜎!

!

!

 

𝑈 =
𝑞!𝑞!
𝜀 2𝜋

!
1

𝜎!! + 𝜎!!
 

Finally: 

𝑈 =
𝑞!𝑞!
4𝜋𝜀

1

𝜋 !!
!!!!!

!

 

Despite there being no distance between the distribution centers, there is still a finite 

Coulomb interaction unlike with point particles. 
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Appendix 2.2 Classical Electrostatics of Interfaces 

2.2.1 Electrostatic potential and bound charge of a carrier near an interface 

For this configuration, we define the interface as the x-y plane and positive z direction 

pointing into material 1. The solution for the electrostatic potential and bound interface 

charge density are adapted from Jackson’s image charge analysis.[45] The electrostatic 

potential 𝜙! of 𝑞! is split into two parts: the potential in material 1, 𝜙!! and the potential in 

material 2, 𝜙!!.  

𝜙! 𝑟 =
𝜙!! 𝑟 , 𝑧 > 0
𝜙!! 𝑟 , 𝑧 < 0

 

𝜙!! 𝑟 =
𝑞!
4𝜋𝜖!

1
𝑟 − 𝑟!

+
𝛼!

𝑟 − 𝑟!
! 𝛼! =

𝜖! − 𝜖!
𝜖! + 𝜖!

 

𝜙!! 𝑟 =
𝑞!
4𝜋𝜖!

𝛽!
𝑟 − 𝑟!

𝛽! =
2𝜖!

𝜖! + 𝜖!
 

The eletric field from charge 1 is: 

𝐸!! 𝑟 =
𝑞!
4𝜋𝜖!

𝑟 − 𝑟!
𝑟 − 𝑟! ! + 𝛼!

𝑟 − 𝑟!
!

𝑟 − 𝑟!
! !  

𝐸!! 𝑟 =
𝛽!𝑞!
4𝜋𝜖!

𝑟 − 𝑟!
𝑟 − 𝑟! !  

The areal bound charge density at the interface induced by charge 1 is  

𝜎! =
𝑞!ℎ
8𝜋𝑟!!

𝜖! 𝜖! − 𝜖!
𝜖! 𝜖! + 𝜖!

 

𝑟! = ℎ! + 𝜌! 

where ℎ is the distance of charge 1 above the interface and 𝜌 is a the radial distance on the 

interface, e.g. 𝜌 = 0 is the closest point in the interface to charge 1. 
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2.2.2 Carrier interaction with bound charge at interface. 

The bound charge density Columbicly interacts with the charge that induced it. It’s electric 

field is same as that of the image charge at −𝑟!
!. 

𝐸!
!! 𝑟 =

𝑞!𝛼!
4𝜋𝜖!

𝑟 − 𝑟!
!

𝑟 − 𝑟!
! !  

Thus the electric field acting on charge 1 due to its bound interfacial charge density is: 

𝐸!
!! 𝑟! =

𝑞!𝛼!
4𝜋𝜖!

𝑟! − 𝑟!
!

𝑟! − 𝑟!
! !  

The distance vector 𝑟! − 𝑟!
!is mearly twice the distance to the interface.  

𝑟! − 𝑟!
! = 2ℎ𝑧 

𝐸!
!! 𝑟! =

𝑞!𝛼!𝑧
16𝜋𝜖!ℎ!

 

 With this, we can calculate the change in the energy for charge 1 leaving from a distance ℎ! 

to the interface and traveling infinitly far into material 1 by integrating the force on charge 

1.  

∆𝑈!"#$" = − 𝑞!𝐸!
!! ∙ 𝑧𝑑ℎ

!

!!
= −

𝑞!!𝛼!
16𝜋𝜖!ℎ!

 

Thus if 𝛼! > 0, i.e. 𝜖! > 𝜖! then it is energetically favorible for charge 1 to leave the 

interface into  material 1. Alternatively, if the opposite is true 𝜖! < 𝜖!, then it will be 

favorable for charge 1 to move towards the interface. This result can be extended to diffuse 

classical charge density by means of coulumb integral of the charge desity with it’s image 

density. However, in this context, the expecation value of this potential applied to a single 
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particle wave function results in a simpler relation that is more in line with a quantum 

mechanical approach. 

∆𝑈!"#$" = −
𝑞!!𝛼!
16𝜋𝜖!

𝜓! 𝑟! !

𝑧
!!!

𝑑!𝑟! 

2.2.3 Two Carriers Near and Interface 

The interaction energy of two charges at on either side of the interface can found by the 

potential field of charge 1 acting on charge 2, 𝑞!, at its position 𝑟!. 

𝑈!!!"#$!!!!"#$ = 𝑞!𝜙!! 𝑟!  

𝑈!!!"#$!!!!"#$ =
𝑞!
4𝜋𝜖!

𝛽!𝑞!
𝑟! − 𝑟!

=
𝑞!𝑞!

4𝜋 𝜖! + 𝜖! 2
1

𝑟! − 𝑟!
 

This result is interesting in its simplicity. As long as the charges are on opposite sides of the 

interface, it does not matter where; the interaction is Coulombic where the permittivity is 

average of the two materials. This result can also be easily extended to diffuse charges on 

either side of the interface: 

𝑈!!!"#$!!!!"#$ =
1

4𝜋 𝜖! + 𝜖! 2
𝑑!𝑟! 𝑑!𝑟!

𝜌! 𝑟! 𝜌! 𝑟!
𝑟! − 𝑟!

!!!!!!

 

The charge densities of the two diffuse charges are 𝜌! and 𝜌!. This the same as the 

expectation value of the coulomb interaction between two uncorrelated, non-exchangeable 

particles. 

2.2.4 Polarized Interface 

We can approximate a polar molecule at the interface as a pair of opposite charges on either 

side with the same distance. This will start with the combined potential fields in material 1 

and 2. 
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𝑟! = 𝑟!
!,    𝑟! = 𝑟!

! ,   − 𝑞! = 𝑞! 

𝜙! 𝑟 =
1

4𝜋𝜖!
𝑞!

𝑟 − 𝑟!
+

𝛼!𝑞!
𝑟 − 𝑟!

+
1

4𝜋𝜖!
𝛽!𝑞!
𝑟 − 𝑟!

 

𝜙! 𝑟 =
1

4𝜋𝜖!
𝛽!𝑞!
𝑟 − 𝑟!

+
1

4𝜋𝜖!
𝑞!

𝑟 − 𝑟!
+

𝛼!𝑞!
𝑟 − 𝑟!

 

which simplfy to: 

𝜙! 𝑟 =
𝑞!
4𝜋𝜖!

1
𝑟 − 𝑟!

+
−1
𝑟 − 𝑟!

 

𝜙! 𝑟 =
𝑞!
4𝜋𝜖!

−1
𝑟 − 𝑟!

+
1

𝑟 − 𝑟!
 

These can be treated with a dipole expansion: 

𝑑 = 𝑟! − 𝑟! 

𝑝 = 𝑞!𝑑 

𝑟! =
𝑟! + 𝑟!
2

 

𝜙! 𝑟 ≈
1

4𝜋𝜖!
𝑝 ∙ 𝑟 − 𝑟!
𝑟 − 𝑟! !  

𝜙! 𝑟 ≈
−1
4𝜋𝜖!

𝑝 ∙ 𝑟 − 𝑟!
𝑟 − 𝑟! !  

The molecular dipole moment is 𝑝 and the location of the dipole is 𝑟!. 

If there is a thin sheet of these oreiented molecules at the interface due to texturing order, a 

net potential field is created. A diagram of this arrangement is avaible in Figure 3.12. 
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Figure 2.12.  A thin layer of dipoles is arranged at the interface. They collectively act to form a 

potential field which is dependent on the dipole moment density. 

 The dipole density of this sheet in dipole moments 𝑝, per area 𝐴, is given by 𝜎. 

𝜎 =
𝑝
𝐴

 

The net potential field is given by integrating over interface. 

𝜙 𝑟 = 𝑔 𝑟 − 𝑟! ∙ 𝜎 𝑟! 𝑑!𝑟!  

where 𝑟!  is a position in the interface and 𝑔 is the dipole field given by: 

𝑔 𝑟 =
1
4𝜋𝜖

𝑟
𝑟 ! 

The permativity 𝜖 is 𝜖! in material 1 and is 𝜖! in material 2. 

This integral can be switched to polar form for  easier evaluation: 

Material 1 Material 2 
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𝜌 = 𝑟!  

𝜙 𝑟 = 𝜌𝑑𝜌

!!!

!!!

𝑑𝜃𝑔 𝑟 − 𝑟! ∙ 𝜎 𝑟!

!!!!

!!!

 

With a constant polarization density and substituting: 

𝜙 𝑟 =
1
4𝜋𝜖

𝜌𝑑𝜌

!!!

!!!

𝑑𝜃
1

𝑟 − 𝑟! ! 𝑟 ∙ 𝜎 − 𝑟! ∙ 𝜎
!!!!

!!!

 

There is no z component to 𝑟!  since it is just a sheet. 

𝑟! ∙ 𝜎 = 𝜌 𝜎 𝑐𝑜𝑠 𝜃! − 𝜃  

where 𝜃!  is the angle of  projection of the dipole moments onto the x-y plane.  

𝜙 𝑟 =
1
4𝜋𝜖

𝜌𝑑𝜌

!!!

!!!

𝑑𝜃
!!!!

!!!

𝑟 ∙ 𝜎
𝑟 − 𝑟! ! − 𝑑𝜃

!!!!

!!!

𝜌 𝜎 𝑐𝑜𝑠 𝜃! − 𝜃
𝑟 − 𝑟! !  

Since our system is translationally ivarient in the x and y directions, we only need consider 

the z component of our position vector: 

𝑟 = ℎ𝑧 

ℎ𝑧 − 𝑟! → ℎ! + 𝜌!
!
! 

and the potential becomes: 

𝜙 ℎ =
1
4𝜋𝜖

𝜌𝑑𝜌

!!!

!!!

𝑑𝜃
!!!!

!!!

ℎ𝑧 ∙ 𝜎

ℎ! + 𝜌!
!
!

− 𝑑𝜃
!!!!

!!!

𝜌 𝜎 𝑐𝑜𝑠 𝜃! − 𝜃

ℎ! + 𝜌!
!
!

 

the two interior integrals can be evaluted easily since the first has no dependce on 𝜃 and the 

second evalutes to zero. Also the only z component of 𝜎 maters so we can replace it 
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𝜙 ℎ =
1
4𝜋𝜖

𝜌𝑑𝜌

!!!

!!!

 2𝜋
ℎ𝑧 ∙ 𝜎

ℎ! + 𝜌!
!
!

=
𝜎!
2𝜖

ℎ
ℎ

 

thus:  

𝜙! =
𝜎!
2𝜖!

 

𝜙! = −
𝜎!
2𝜖!

 

The jump across the interface is then: 

∆𝜙!→! =
𝜎!
2

1
𝜖!
+
1
𝜖!

 

∆𝜙!→! = −
𝜎!
2

1
𝜖!
+
1
𝜖!

 

If there is pair of charges across this ordered interface, the energy is then: 

𝑈!"#$% =
𝜎!
2
𝑞!
𝜖!
−
𝑞!
𝜖!
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CHAPTER 3 

 Predictive Simulations for Tuning Electronic and 
Optical Properties of SubPc Derivatives 

3.0 Synopsis 

Boron subphthalocyanine chloride is an electron donor material currently used in small 

molecule organic photovoltaics. In order to enhance the electronic and optical properties of 

subphthalocyanines for this application, we use first-principles calculations to investigate a 

series of derivatives of the boron subphthalocyanine chloride molecule where the boron and 

chlorine atoms are substituted with other trivalent and halogen atoms. Gas phase molecular 

structures and properties are predicted. Using positions and orientations of the known 

compounds as the starting coordinates for these molecules, stable crystalline structures are 

derived following a procedure that involves perturbation and energy minimization. 

Electronic structure and photonic properties of the predicted crystals are computed using 

the GW method. 

3.1 Motivation and Background 

Organic photovoltaics (OPV) are a promising technology for large-scale deployment of 

renewable energy generation. They have the advantages of being more easily processed, 

using less material, and being more substrate-independent than traditional inorganic PV’s 

such as silicon.[1] Of the OPV materials, there are two types: polymeric and molecular. Of 

the molecular OPV materials, a group of macrocyclic compounds known as phthalocyanines 
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have been found to be good absorbers/electron donors. Boron subphthalocyanine chloride, 

a related material, has been shown to offer improved efficiency.[2] As opposed to the 

typically planar geometry of phthalocyanines consisting of four fused diiminoisoindole rings, 

boron subphthalocyanine chloride adopts an inverted umbrella shape with only three fused 

diiminoisoindole rings. The boron subphthalocyanine chloride molecular structure is shown 

in Figure 3.1. 

 

Figure 3.1. The structure of the most commonly known subphthalocyanine, boron 

subphthalocyanine chloride is shown. 

The goal of this work is to use ab intio methods to computationally evaluate and identify 

useful trends in derivatives of boron phthalocyanine chloride where the boron and chlorine 

atoms have been substituted for other trivalent elements and halogen atoms, respectively.  

The trivalent site elements explored in this work were boron, aluminum, gallium, indium, 

scandium, and yttrium. The halogen site elements used in this work were fluorine, chlorine, 

bromine, and iodine. Thus, a total of twenty-four molecules were examined in our 

simulation matrix. For the remainder of this paper, to designate a subphtalocyanine with a 

given pairing of trivalent element T and halogen element X, we use the abbreviation T-X. 

For example, B-Cl refers to the commonly described boron subphthalocyanine chloride. Of 

the molecules explored here, the B-F, B-Cl, and B-Br molecules have been observed 

experimentally and their crystal structures are known.[3, 4]  In order to evaluate these 

concept molecules as OPV materials, the structure, as well as several electrical and optical 
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properties, have been calculated for each molecule in the gas phase and then in their 

predicted crystal structures.   

Most of the molecules simulated in this work have not been synthesized or are difficult to 

synthesize,[3] Therefore, by identifying the most promising candidates for a given 

application via the simulation-based predictive evaluation of molecular concepts, we hope to 

facilitate on-target materials selection and provide motivation for the development of the 

necessary synthesis routes.  

The B-Cl molecule is used to validate our electronic and optical properties calculations since 

its properties are known experimentally. The B-Cl material is a purple compound with an 

optical bandgap of 2.0 – 2.1 eV. [2, 3, 5] The molecule has non-linear optical properties 

that have been of some interest to researchers in that field.[6] 

The crystal structures of the B-F, B-Cl, and B-Br derivatives have been found using X-ray 

diffraction to be orthorhombic of space group Pnma, with each unit cell containing four 

molecules.[4, 7] All molecules have the shape of an inverted umbrella with a molecular 

dipole pointing from the electronegative halogen towards trivalent site. In the crystal 

structure, there is no net polarization due to the alternating arrangement of molecular 

dipoles.  The B-Cl unit cell configuration is shown in Figure 3.2.  
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Figure 3.2. The B-Cl unit cell viewed along the c direction (left) and b direction (right) rendered 

from Ref. [7]. In both renderings, the a direction is horizontal. 

3.2 Properties of Interest 

For the gas-phase molecules, the relaxed geometry is used to compute the HOMO/LUMO 

relative to the vacuum level. These are central properties in organic electronic device 

design.[8] The molecular dipole moments were also calculated from the relaxed geometry. 

The dipole moment of a molecule can play a significant role in electronic properties of 

interfaces. [9] 

For the crystal structures of the molecules, we are faced with the reality that crystal 

structure prediction is a difficult and outstanding problem in solid-state physics and 

materials science.[10, 11]  Considering that the geometries of the relaxed isolated molecules 

do not differ from each other very much, we opted to pursue a procedure in which the new 

structures are obtained via energy relaxation by using the known structures of other family 

members as the starting configuration.  This method is described in more detail in the 

methodology section. 

A B 
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Once possible crystal structures are found, the property of greatest interest is the electronic 

band structure and, in conjunction, the band gap. The complex permittivity and complex 

refractive indices have previously been calculated in literature, since researchers in the OPV 

field commonly employ these for optical modeling of devices.[12] The static permittivity has 

also been calculated using the long wavelength limit of the complex permittivity. The static 

permittivity is often used in modeling exciton dissociation energy via a simple Coulombic 

formula such as[8] 

𝐸!!! =
𝑞!

4𝜋𝜖!𝜖!𝑅!!!
. 

3.3 Computational Methodology 

To obtain the isolated molecular geometry, molecules are created and relaxed using the 

program Avogadro with its built-in empirical classical potentials.[13] This is done to save 

computational effort in the more intensive DFT computation. The final molecular geometry 

of isolated molecules is computed via relaxation using Gaussian 09 (Rev. C). The exchange-

correlation functional employed is B3LYP, which is a variation of the hybrid functional 

created by Becke.[14] The B3LYP hybrid functional utilizes a linear combination of the 

correlation functionals from VWN[15] and LYP[16]. The basis set used for molecules with 

atoms below atomic number 36 is 6-31G(d) from Ref.[17]. For molecules containing 

species with higher atomic number, the DGDZVP basis set is used.[18, 19] The dipole 

moments of the molecules are calculated from the volume integrals of the electron density.  

Calculations of crystals of the SubPc's were done using VASP (version 5.3.3). These 

calculations employ the PAW method [20] with the PBE exchange-correlation 

functional,[21] where augmented plane waves form the basis set and van der Waals 

interactions are accounted for using the VdW-DFT method developed in Ref.[22, 23] with 

removed PBE correlation correction. 
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For relaxations of the crystal structure, the electronic component is accomplished using the 

Kosugi algorithm.[24] A maximum energy difference between iterations of 0.01 meV 

served as the convergence criterion. Partial occupancies are determined with a Gaussian 

smearing width of 0.1 eV. The cutoff energy for the plane wave basis set is 400 eV. The 

number of Fourier space grid points used is twice as many as needed to equate to the energy 

cutoff wave vector. 

3.4 Crystal Structure Prediction 

There are several codes that are designed to find the lowest energy crystal structure such as 

USPEX, CALYPSO, XtalOpt, and Polymorph/GULP.  The state of the art of crystal 

structure prediction based on these codes allows for ~100 atoms per unit cell.[25] 

Subphthalocyanines are relatively large molecules with 44 atoms each and the known 

structures contain four molecules per unit cell.  Hence, using any crystal structure 

prediction codes was impractical. Instead, we devised a sequence of procedures involving 

manipulation of atomic positions and structural relaxation, based on the assumption that the 

new derivatives conceived here have crystals structures similar to those of the three known 

crystal structures, and that achieving the same results via different structural progression 

pathways provides additional validation of the predicted structure. Moreover, simple 

substitution and relaxation does not necessarily result in the lowest energy state structure. 

Of all the approaches we explored, the following three treatments produced the lowest 

energy structures: 

In a first treatment, we simply substitute elements in the known B-Cl crystal structure. The 

structures and their corresponding unit cells are relaxed while maintaining their space group 

symmetry. The relaxed structures are then relaxed again without symmetry conservation. 

As a simple means of perturbing the structures, the unit cells and molecules inside are 

dilated by 10% in each lattice direction and then allowed to relax again. In the second and 

third treatments, elements are replaced in the isolated B-Cl molecules with known structure 



 
 

62 

and the isolated derivative molecules are relaxed before they are assembled into a crystalline 

configuration.  During the assembly procedure the trivalent atom in the derivatives is 

positioned on the boron location of the known B-Cl crystal structure and the relaxed gas-

phase molecules are rotated about their trivalent site so that their halogen bonds and 

nitrogen bonds are aligned with the corresponding bonds in the known B-Cl crystal 

structure. From this point, in the second treatment the unit cell and molecular positions are 

expanded independently along each lattice direction by small increments.  Upon each 

incremental expansion, a single point energy calculation is performed to determine the 

energy associated with this configuration. The procedure is repeated until the energy 

minima in each independent crystallographic direction are clearly identified. The 

corresponding unit cell vector dilations were then applied to the original structure and it is 

allowed to relax. The third treatment is essentially the same as the second with the 

exception that the molecules themselves are not dilated with the unit cell. The purpose of 

these procedures is to systematically perturb the crystal unit cells after elemental 

substitutions and to provide for different relaxation pathways and to verify that the 

equilibrium structures are reached in each case. 

3.5 Electronic Structure Calculations 

Standard DFT calculations fail to reproduce an electronic band gap even as large as the 

known optical band gap in B-Cl. This under-prediction is a well-known weakness of DFT. 

To remedy this, the GW approximation is used. The complex dielectric function is 

computed using the method in Ref.[26].  The Bethe-Salpeter equation (BSE) is used to 

calculate the complex dielectric function of the materials in order to account for excitonic 

effects.[27] 

For the GW calculations, the recommended GW PAW pseudo-potentials included with 

VASP is used with a cut off energy of 300 eV. The Gaussian energy smearing is set to a 

width of 0.05 eV. GW response functions are truncated to 100 eV since increasing this cut-
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off had no effect. 1216 bands with 50 frequency points are included in the calculation. 

Increasing the number of total bands considered does not affect the predicted extinction 

coefficient. A grid of 2x2x2 k-points is used in the reduced Brillouin zone since larger grids 

are computationally intractable. 

BSE calculations are carried out with 256 frequency points, and the GW response functions 

are truncated at the same value as the in the previous GW calculations. 100 occupied and 

unoccupied states are considered for the calculation. The complex shift in the Kramers-

Kronig transformation for determining the dielectric function is set to 0.03 eV 

3.6 Gas Phase Results 

After structural relaxation, all of the proposed subphthalocyanine derivatives retain the 3-

fold symmetric inverted umbrella structure. The degree of openness of the umbrella 

structures canopy varies between the proposed derivatives. To quantify this openness, the 

angle between the nearest nitrogen atom, the trivalent atom, and the halogen is computed. 

This nitrogen-trivalent-halogen (NTX) angle depends almost entirely on the size of the 

trivalent atom as seen in Figure 3.3. This degree of openness may be useful for conformation 

or epitaxy to substrates. 
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Figure 3.3. In the plot of the nitrogen-trivalent-halogen angle above, the angle is mostly unchanged 

by halogen substitution depending much more strongly on the identity of the trivalent atom. 

 The molecular dipole moments of the proposed subphthalocyanine derivatives are 

found to vary widely from 1 ~ 6 D. All of the dipole moments are axial pointing in the 

direction from the halogen atom to the trivalent atom. No simple model or trends could be 

found to predict the variations in the molecular dipole moments as seen in Figure 3.4. Using 

electronegativity or the Mulliken charges and structure does not describe the dipole 

moments found. Despite the lack of a model for describing the trends found, the range of 

dipole moments allows for a new experimental parameter to be exploited. 
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Figure 3.4. The proposed molecules yielded a wide range of molecular dipole moments despite 

having no obvious trends. 

The HOMO and LUMO levels are not strongly affected by the substitution of either halogen 

or trivalent species. We attribute this to the spatial distribution of the HOMO and LUMO, 

which are almost entirely located on the diiminoisoindole rings. This is visualized with the 

B-F molecule in Figure 3.5a. One rudimentary trend that can be observed is that with higher 

atomic number substitution the HOMO/LUMO gap decreases, which can be seen in Figure 

3.5b.    
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Figure 3.5. (a) The HOMO and LUMO are shown (LUMO on top) as isodensity surfaces containing 

80% of each state. The blue/pink coloring indicates positive/negative values of the wave function.  

(b) The HOMO/LUMO difference is shown versus the halogen sequence. 

3.7 Crystal Structure Results 

The crystal structures determined for the concept molecules match experiment well for the 

known molecules B-F, B-Cl, and B-Br. The largest lattice parameter error is ≈ 4.5%. All of 

the crystal structures found are orthorhombic of the space group Pnma. Interestingly, the 

equilibrium structures of the scandium derivatives no longer have axial halogen atoms. 

Instead, the halogen atoms are displaced towards the second nearest scandium atom. This is 

apparent in Figure 3.6, where the Al-Cl and Sc-Cl structures are rendered side by side. 

Unfortunately, the crystals containing yttrium and indium derivatives are not stable when 

subject to systematic perturbations used to find the minimum energy structures. This may 

simply indicate that these molecules form different crystalline structures that cannot be 

accessed using the above procedure, which implicitly lends credibility to our approach in 

A B 
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that it shows selectivity.  The lattice parameters for all the proposed crystal structures are 

available in Table 3.1. 

 

Figure 3.6. (a) The Al-Cl crystal has axial halogen atoms whereas (b) the Sc-Cl crystal does not. All of 

the scandium derivatives have halogens are tilted towards the second neighboring scandium atom. 

Both unit cells are viewed such that the a, b, and c lattice directions are horizontal, vertical, and into 

the page respectively. 

A B 
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Table 3.1. The predicted lattice parameters of the subphthalocyanine derivatives.  The percentage 

deviations from experiments are shown in parenthesis if available.[32] 

 

The GW method electronic structure calculations are limited by computational resources. 

However, band structure calculations without GW on the B-Cl crystal show that conduction 

band and valence band edges are relatively flat across the reduced Brillouin zone, with 

extrema at the high symmetry k-points. The same behaviors are reflected in the band 

diagrams computed using the GW method, as can be seen in the side-by-side comparison of 

Figure 3.7. For this reason, we believe that the band gaps found via the GW method are 

well converged despite the low number of k-points used.  The electronic band gaps found all 

range from 2.25 ~ 2.61 eV and mostly increase with the substitution of each heavier 

halogen atom.  

Molecule a Lattice Parameter 
(Å) b Lattice Parameter (Å) c Lattice Parameter (Å) 

�B-F 9.8609 
(-4.5 %) 

11.9603 
(-1.2 %) 

14.4059 
(0.6 %) 

B-Cl 9.9991 
(-3.7 %) 

11.9465 
(-1.5 %) 

14.8851 
(0.4 %) 

B-Br 10.1315 
(-2.6 %) 

11.9319 
(-0.7 %) 

15.1059 
(0.3 %) 

B-I 10.3203 11.8903 15.5287 
Al-F 11.1761 11.5943 14.1377 

Al-Cl 11.6901 11.2454 14.6624 
Al-Br 11.8680 11.2251 14.8772 

Al-I 11.8554 11.2113 15.3509 
Ga-F 11.5458 11.4904 13.9705 

Ga-Cl 12.0337 11.1450 14.4848 
Ga-Br 11.8222 11.5221 14.7211 

Ga-I 11.8946 11.6867 15.0485 
Sc-F 10.9861 11.5415 13.5916 

Sc-Cl 11.2909 11.5687 14.0733 
Sc-Br 11.1962 11.6360 14.3676 

Sc-I 11.1179 11.3186 14.6759 
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Figure 3.7. Two band diagrams for the B-Cl crystal. (a)The band diagram calculated using the 

standard DFT yields an electric band gap smaller than the optical gap. (b) a sparse band diagram 

calculated using the more costly GW method yields a more realistic electronic band gap. Different 

bands are assigned different colors to guide the eye. 

The complex anisotropic permittivities computed for each crystal and all are found to have 

highly anisotropic dissipation. This is not unexpected considering that the similar 
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compound, copper phthalocyanine, exhibits anisotropic permittivity relative to the 

molecular stacking direction.[28, 29] For the materials explored here, relatively little 

complex permittivity is found in the a-direction. Unfortunately, not a single crystal optical 

properties measurements could be found in literature for comparison, only data for 

amorphous and nanocrystalline materials. Further complicating the problem, it is known 

that the local molecular environment can affect the absorption spectra.[30] In order to 

reconcile the calculations performed for anisotropic structures with measurements done on 

isotropic materials, the anisotropic permittivity is averaged. To this end, the complex 

refractive index is then taken as the square root of the averaged complex anisotropic 

permittivity. Figure 3.8 shows the directionally averaged extinction coefficient, along with 

those for each lattice direction and that measured for an amorphous film of the B-Cl 

derivative. Notice the extra peaks between 400~485 nm, which also occur in the other 

boron derivatives. These may be physical but only observable in single crystals or they are an 

artifact of the BSE method and/or the limited number of k-points used. Either way, the 

optical band gap absorption peak position aligns well with experiment with a difference of 

75 meV for B-Cl and 91 meV for B-F.[31] When compared to the work of Fulford et al., 

whom has measure the extinction coefficient of B-Cl dissolved in toluene, the differences 

are small. The maximum difference between B-Cl, B-F, and B-Br is 31 meV.[4] These 

results are a tabulated in Table 3.2.Due to the averaging of the complex anisotropic 

permittivity, the extinction coefficient magnitudes and the optical band gap are only 

accurate to first order, but nonetheless presented in Table 3.2.  
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Table 3.2. The first peak of the extinction coefficients indicating the optical band gap are listed for 

the subphthalocyanine derivatives. Experimental values are given in parentheses. 

 

Molecule Optical Band Gap (nm) Electronic Band Gap (eV) Exciton Dissociation 
Energy (eV) 

B-F 
559 

(583)[31] 
(562)[4] 

2.50 0.28 

B-Cl 
565 

(585)[31] 
(565)[4] 

(587)[33] 
2.49 0.29 

B-Br 558 
(566)[4] 2.51 0.29 

B-I 554 2.58 0.34 
Al-F 567 2.52 0.34 

Al-Cl 550 2.54 0.29 
Al-Br 543 2.56 0.28 

Al-I 549 2.56 0.30 
Ga-F 571 2.47 0.30 

Ga-Cl 580 2.52 0.38 
Ga-Br 546 2.56 0.29 

Ga-I 540 2.61 0.31 
Sc-F 621 2.24 0.25 

Sc-Cl 566 2.37 0.18 
Sc-Br 546 2.47 0.20 

Sc-I 552 2.50 0.25 
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Figure 3.8. The extinction coefficient for each direction is plotted with directionally averaged 

extinction coefficient and the experimental extinction coefficient for B-Cl from Ref. [31]. Despite 

the conjectural nature of this comparison, the optical band gap is well matched and the optical 

band gap extinction coefficients can be compared between the proposed derivatives. 

 The static permittivity is also computed as part of the BSE calculations at the long 

wavelength limit. As mentioned above, the static permittivity is related to the exciton 

dissociation energy, which is important for device performance. In the proposed derivatives, 

the static permittivity is found to generally decrease with heavier halogen atoms, which can 

be seen in Figure 3.9. We suspect this is due to the larger halogen atoms introducing more 

free volume into the unit cells which lowers the permittivity despite larger halogen atoms 

having a larger atomic polarizability. The authors have yet to find static permittivity 

measurements of any of the proposed derivatives for validation. However the values 

presented here can still be used for relative comparisons. 
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Figure 3.9. The static permittivity of the proposed derivatives is plotted against the halogen 

sequence. 

Finally, we simulate the I-V curves for the solar cell of Ref. [31] using the methods 

contained therein. These simulations were carried out under the assumption that a quarter 

of the C60 sites are occupied with ball-in-cup aligned subphthalocyanine derivatives. The I-V 

curves for four derivatives are show in Figure 3.10. These include B-I as it has the largest 

molecular dipole moment, In-I as it has the smallest molecular dipole, Sc-F as it has the 

smallest molecular dipole of the derivatives that were found to be stable enough for crystal 

structure prediction, and B-Cl as it is the commonly known derivative. In this simulation, B-

I can offer a small improvement over B-Cl. 
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Figure 3.10. Simulated I-V curves for a device substituting four derivatives are plotted. This 

simulation assumes some molecular dipole ordering at the interface. 

3.8 Conclusions 

A series of concept SubPc molecules has been generated through systematic elemental 

substitutions.  Calculation of their electronic properties and prediction of their crystal 

structures reveals several interesting trends that can guide device design.  The degree of 

openness of the molecule canopy is controlled by trivalent atom. Molecular dipole moments 

range from 1 ~ 6 D. These may be used as another parameter device design. All crystal 

structures found are orthorhombic and belong to the space group Pnma. Predicted optical 

band gaps match experimental well, while the predicted spectra are accurate to first order. 

The static permittivities of the molecules are found to increase within the halogen sequence.  
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CHAPTER 4 

 Effect of Long-Range Electrostatics on Interfacial 
Excited States 

4.0 Synopsis 

Exciton dissociation at heterojunctions in photovoltaic devices is not completely understood 

despite being fundamentally necessary to generate electrical current. Ab initio based methods 

can yield the excited-state properties of materials with very good accuracy. One of the 

fundamental issues for ab initio calculations is that hybrid interfaces combining materials with 

Wannier-Mott excitons and those with Frenkel excitons can easily require thousands of 

atoms to encompass the exciton-wave function. The problem is further exacerbated by a 

large permittivity difference at the interface, which requires meso-scale boundary conditions 

to accurately predict electrostatic potentials. For these reasons, we have constructed a 

model of excited states at hybrid interfaces based on an effective mass Schrödinger equation. 

In this continuum model, carrier wave functions are represented by their envelope function 

rather than resolving the atomic scale variations. Electrostatic interactions are accounted for 

using the Poisson equation. For our model system, we use a pentacene/silicon interface. 

Because carrier mobility is low in pentacene relative to silicon, the hole is frozen such that it 

only interacts with the electron though an immobile positive charge density. The inputs to 

this model are as follows: dielectric permittivities, electron effective masses, interfacial 

width, band alignment, and the hole wave function.  
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4.1 Motivation and Background 

As one of our solutions to building a renewable energy infrastructure, photovoltaics (PV) 

have been the subject of intense research. While traditional silicon solar cells still dominate 

the commercial market, significant effort has been devoted to finding and perfecting novel 

solar cell designs that can surpass silicon in terms of price, performance, and lifespan. In 

terms of efficiency, classical semiconductors such as silicon, gallium arsenide, etc. remain 

unmatched,[1] but these materials have relatively costly and demanding production 

techniques. Many emerging PV technologies have aimed to reduce production costs by using 

easier to manufacture materials rather than improve performance as a means of becoming 

more economically viable. These emerging technologies such as perovskite, organic, 

quantum dot, and dye-sensitized solar cells, combine very different materials in 

heterojunctions. These heterojunctions pose particular theoretical challenges for predicting 

charge transport across them. The problem comprises both corrections to the energetics and 

transport theory. In our previous work we discussed issues with the current state of the 

transport theory and addressed the issue of energetics with some semi-classical corrections. 

In this work, we have constructed a model based on the works of Stier et al. and Bolcatto et 

al. using the effective mass Schrödinger equation to self-consistently calculate excited states 

and energies at heterojunction interfaces.[2, 3] To better understand the reasons for the 

theoretical difficulties in addressing heterojunction excited states, a review excited states in 

bulk materials is included.  

In bulk materials, electrons can be excited to bound states below the conduction band (or 

LUMO level), which are referred to as excitons. Excitons, which are comprised of an 

electron-hole pair, are bound via Coulomb interactions. The exciton binding energy refers 

to the additional energy required to excite the electron fully into the conduction band and 

separate the electron and hole. Materials with high dielectric constants and low carrier 

effective masses typically have Wannier-Mott type excitons, which are characterized by 
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being spread over many unit cells or molecules and having low binding energies that are 

quantized in similar way to the hydrogen atom. Materials with the opposite set of 

properties, low dielectric permittivity and high carrier effective masses, typically have 

Frenkel type excitons which are strongly bound and typically do not spread over more than 

a few atoms or molecules. From a theoretical standpoint, it is possible to calculate exciton 

binding energies for either type of material with good accuracy using the GW approximation 

and the Bethe-Salpeter equation. 

The difficulty in analyzing heterojunctions using electronic structure calculation methods is 

that describing the interface requires a large real-space calculation so as not to represent a 

thinly layered structure. For a heterojunction using two Frenkel materials, it might be 

possible to use these methods because the Frenkel excitons are usually small enough to be 

computationally viable. But for a heterojunction containing a Wannier-Mott type material, 

the excited state volume requires far too much computational resource for most electronic 

structure methods. For heterojunctions containing two Wannier-Mott type materials, it is 

expected that excited state dissociation energies will be on the order of kBT, like they are in 

the bulk, which makes their calculation less of a practical application and more theoretical 

curiosity. This leaves the case of a hybrid heterojunction between a Wannier-Mott and 

Frenkel type material where the excited state dissociation energies are conceivably large 

enough to be of practical consideration and their real-space volumes large enough for them 

to be inaccessible to a full treatment by atomic scale electronic structure calculations. For 

these reasons, we implement an effective mass Schrödinger equation model based on Stier et 

al. [2] and the frozen hole approximation.[4] 

Before continuing, it is important to address the terminology used in this paper. When 

describing a bound excited state in relatively homogenous bulk material, we refer to the 

exciton binding energy as the energy required to separate the electron and hole in their 

lowest excited state from each other.  However in real devices, we are interested in the 
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energy required to separate and collect carriers at opposite sides of the interface as this 

directly detracts from the open circuit voltage.[5] This leaves us with two different pictures: 

in the bulk the exciton must gain enough energy for the electron to reach the conduction 

band (Figure 4.1a). However at an interface, we want to know the energy required for the 

electron to reach the conduction band and then be collected far from the interface. The hole 

only needs to leave the interface to be collected in the opposite direction. For this reason we 

are reporting the dissociation energy for current collection across heterojunctions rather 

than the exciton binding energy. The difference in the LUMO and conduction band in 

Figure 4.1b is the band edge offset energy and is the energetic difference between the two 

schemes. 

 

Figure 4.1.  In (a), the dissociation energy of the excited state only requires that the electron and 

hole move far apart in any direction. In (b), the with the interface, the excited state dissociation 

energy for current collection is the energy required to move the electron into the conduction band 

and far away from the interface and the hole moving far in the opposite direction. 

There is one final curious difference between Wannier-Mott and Frenkel excitons in their 

binding energy treatments. From a theoretical standpoint, the exciton binding energies of 

Wannier-Mott excitons are given as the lowest energy eigenvalue in a discrete spectrum of 

energy eigenvalues that goes as 𝐸~ 1 𝑛!. For Frenkel excitons, the binding energy is 

A B 
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usually given as the Coulomb binding energy between the hole and the electron. The energy 

eigenvalues are, of course, a combination of kinetic energy and Coulomb interaction. The 

difference in formulation reflects that as Wannier-Mott excitons dissociate, their separate 

electron and hole wave functions are expected to become much more diffuse, whereas for 

Frenkel excitons they are expected to remain roughly the same spatially as they move farther 

away from each other. In our hybrid system, we treat the dissociation energy is calculated 

relative to an electron kinetic energy which becomes zero as it travels far into the silicon. 

We do not include the hole’s kinetic energy because it is expected to change insignificantly 

as it travels away from the interface.  

4.2 Theory 

Our model development is not motivated by lack of accuracy of ab initio methods but rather 

by the desire to reduce computational cost. To simulate a Wannier exciton in a material 

where that excited stated extends over many unit cells requires inclusion of hundreds to 

thousands of atoms and description of their electron wave functions, when this is an excess 

of information and we are only interested in the electron and hole wave functions. For these 

reasons we opted to use the effective mass Schrodinger equation approach,[2, 6, 7] which 

uses envelope wave functions as perturbations of the rapidly varying wave functions at the 

atomic scale, see Figure 4.2 below. This approach has been used with quantum dots[8] and 

junction tunneling.[6] Fundamentally, these models could be considered second principles 

models because they use first principles models for input parameters and trade exact 

electronic structure for more accurate capture of the effect of meso-scale structures on 

electronic structure. In our implementation, we make no assumptions of wave functional 

forms. The Schrödinger equation is directly solved on a finite volume grid for electron wave 

functions and their energy eigenvalues. The effects of materials properties are incorporated 

through our electron Hamiltonian.  
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Figure 4.2. Trading the rapidly varying wave function (filled blue) for the slowly varying one 

(dashed green line). 

Our electron Hamiltonian is composed of four terms: kinetic energy, Coulomb interaction 

between the hole and the electron, the effective potential from the band edge offset, and the 

self-polarization due to the interface (also known as image potential or self-energy). 

𝐻! = −
ℏ!

2
∇ ∙

1
𝑚! 𝑧

∇ + 𝑞!𝜙! + 𝑉!"#$ + Σ! . 

We include the effective mass in the Laplacian because it produces better continuity across 

the interface due the change in effective mass.[6] The band edge offset potential, 𝑉!"#$, is a 

step function representing the difference between the LUMO of the pentacene and the 

conduction band of the silicon. The self-polarization potential, Σ!, from the electron 

interacting with itself through the interface cannot be given in closed form, which will be 

discussed in further detail in the methods section.  

The potential field, 𝜙!, created by the hole is obtained by solving the Poisson equation. By 

using anon-uniform the dielectric constant, we can capture the effect of the hole’s ‘image’ 

charge on the electron. This formulation still requires the hole be represented by a charge 

density. From GW/BSE calculations; it is known that in pentacene crystals, excitons are 

delocalized over several intermolecular distances.[9] 

𝑞! 𝜓! ! = −∇ ∙ 𝜖 𝑧 ∇𝜙!  
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It would be convenient to replace the charge density and the Coulomb term with a 

molecular pseudopotential that is tuned to give the correct exciton binding energy, however 

this would fail to capture the effect of the holes ‘image’ charge on the electron that we get 

from solving Poisson’s equation. We examined several hole charge densities for their effect 

on the exciton binding energy and found that simply adapting a Gaussian profile results in an 

exciton binding energy that matches the first principles calculations of Sharifzadeh et al.[9] 

 

4.3 Algorithmic Implementation and Model Parameters 

We implemented a self-consistent iteration scheme to solve the above Schrödinger equation 

in real space on a regular, finite-volume grid. While not a basis set in a traditional sense, we 

choose a discrete grid because standard atomic orbitals will not likely represent the effect of 

the abrupt transition near the interface. We also did not use plane waves because we are not 

using a periodic system. We implemented our model in FiPy[10] using PySparse’s[11] 

precondition conjugate gradient solver (PCG) as the backend solver for both the 

Schrödinger equation and the Poisson equation. Higher energy states are calculated by 

performing numerically stable Gram-Schmidt orthonormalizations before each solver update 

of the wave function. This PCG solver is found to occasionally create non-converging 

oscillations in the wave function if too many iterations are performed between updates of 

the corresponding energy eigenvalue. However, increasing the number of iterations 

between eigenvalue updates yields a more quickly converging calculation. Our solution to 

improve the stability at a greater number of solver iterations per eigenvalue update is to mix 

old and new solutions for the wave function. Inspired by the DIIS method of Pulay,[12] we 

developed an efficient method for determining the optimal mixing parameter between old 

and new wave functions. We then coupled the optimal mixing parameter to the number of 

solver iterations per energy eigenvalue update via a rudimentary feedback algorithm (further 

described in Appendix 4.1). With this implementation, minimum energy electron wave 
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functions can be reliably calculated even if the wave function is assigned a random value at 

every grid point. 

The classical result of the self-potential for a point charge near a sharp dielectric interface is 

inappropriate in this model due to the non-integrable singularity in the self-potential at the 

interface. We have elected to implement a diffuse dielectric interface model.  To our 

knowledge, no closed form solution exists for the self-potential with a diffuse dielectric 

interface. Therefore, we implemented the numerical model for self-potential of a diffuse 

dielectric interface of Xue and Deng.[13] A plot of this dielectric constant and the image 

potential are shown in Figure4.3.Our simplified implementation of the model of Xue and 

Deng is further detailed in Appendix 4.2.  

 

Figure 4.3. The dielectric permittivity relative to the interface is plotted with the green dashed line. 

The solid blue line is the calculated self-polarization energy and the dashed and doted red line is the 

divergent potential calculated for a sharp interface. 

We created two versions of our simulation, a full three dimensional version and a two 

dimensional version, which, by assuming azimuthal symmetry about the axis normal to the 
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interface, allows the azimuthal coordinate of a cylindrical coordinate system to be 

eliminated, and thus reduces the memory requirements. Both are shown in Figure 4.4. Both 

cases use, effectively, the same parameters. The interface between the pentacene and silicon 

lies at half the vertical height of the simulation size. For wave functions, the Dirichlet 

boundary condition of ψ = 0 was applied at the exterior faces. For the hole potential 

calculated from the Poisson equation, mixed boundary conditions are used, with the 

Dirichlet boundary condition applied at the top and bottom faces, and the Neumann 

boundary condition of zero electric field at the lateral exterior faces. This combination of 

boundary conditions on the electric potential allows the application of external potentials 

mimicking a real device. As with Stier et al., we find that for most cases, the spatial 

requirement to capture the electron wave function is much smaller (~10X) than the spatial 

requirement to converge the hole potential. Using the cylindrical version, we find that 

exciton binding energies change by less than 1 meV for a radial and axial size of 800 Å. For 

the 3D version, this translates to 800 Å in the vertical direction and approximately 1600 Å 

in the lateral direction. Although, for the full 3D case, this size scale is prohibitive, due 

mostly to memory limitations, smaller size scales proved useful in verifying that the ground 

state is indeed azimuthally symmetric and amenable to the less demanding 2D cylindrical 

model. For the grid spacing in the vertical direction, the sharpness of the self-polarization 

potential limits the spacing to 0.4 Å with an energy convergence of < 1 meV. In the radial 

direction, no such sharpness exists so the same energy convergence is achieved with a grid 

spacing of 1.0 Å. The Poisson equation is converged until PySparse reports a residual of less 

than 10-10. Wave functions are iterated until the relative change in energy eigenvalue is less 

than 10-5. 



 
 

87 

 

Figure 4.4. The two coordinate systems used in this work. For both, the green material represents 

the silicon and the blue represents the pentacene with the interface residing at half the z height. (a) 

The radially symmetric 2D cylindrical coordinates collapse the problem into a 2D grid inside the 

orange rectangle for which effectively larger simulations can be performed. (b)The standard 3D 

Cartesian coordinates are pictured. 

For this model some materials parameters are required. These include the dielectric 

permittivities, the effective masses and the band offset between the LUMO of the pentacene 

and the conduction band of silicon. The values of the electron effective mass in pentacene 

and silicon are anisotropic which, while implementable in our model, was an unnecessary 

complexity for a first generation model, and thus representative values for both are taken 

from Refs [14] and [15]. The static dielectric permittivity of pentacene is taken as the 

average of the two experimental values presented in Ref.[16]. The LUMO of the pentacene 

molecule is found to be 478 meV above the conduction band of silicon in chapter 2 using the 

hybrid functional HSE06.[17] We chose a width,𝛿, of 3 Å for the width of the dielectric 

transition at the interface because our previous work indicates that this width completely fits 

between a pentacene molecule and silicon surface. The spacing is also in agreement with the 

work of Cappellini and Del Sole which indicates that 3 Å is the size scale for the dielectric 

constant of silicon to develop bulk behavior. [18]These values are presented in Table 4.1 

below: 
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Table 4.1.  The six materials parameters used in the model. 

Static permittivity of silicon, 𝜖!"  11.68[19] 

Static permittivity of pentacene, 𝜖!"#$%&"#"  3.61[16] 

Electron effective mass in silicon, 𝑚!"
∗  1.0[15] 

Electron effective mass in silicon, 𝑚!"#$%&"#"
∗  4.0[14] 

LUMO pentacene / Si conduction band difference  478 meV 

Width of gradual dielectric interface, 𝛿 3 Å 

 Before calculations of excited states at heterojunctions could be performed, the 

exciton binding energy of pentacene had to be reproduced. We use an azimuthally 

symmetric, Gaussian hole charge density because it can be used in both the two dimensional 

cylindrical and three dimensional models. The form of this charge density is described by the 

equation below. 

𝜌 =
𝑞!

𝜎! 2𝜋
𝑒!

!
!
!!!!
!!

! 1
2𝜋𝜎!!

𝑒!
!
!

!
!!

!

 

 

Figure 4.5. The azimuthally symmetric Gaussian density is roughly ellipsoidal where the principal 

axes in the x-y plane are the same. 

𝜎! 

𝜎! 

𝜎! 

z 
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A matrix of exciton binding energy calculations was performed varying both the thickness 

𝜎! and width 𝜎!  of the hole charge density to find values that reproduce the magnitude of 

0.5 eV known from GW/BSE calculations and experiment.[9] This is shown in Figure 4.6. 

We opt for 𝜎! = 6 Åand 𝜎! = 3 Å because this corresponds approximately to twice the 

planar stacking distance of pentacene (≈3 Å) and twice the length (≈ 14 Å), and gives a 

Coulomb binding energy of 536 meV. This results in the electron wave function shown in 

Figure 4.6.  

 

Figure 4.6. (a) The exciton binding energy of pentacene versus frozen hole charge density thickness 

and width parameters. Energies are shown in the square at corresponding width and thickness. (b) 

The first electron state is shown in blue/red for +/- values of the wave function. The green line is 

the isodensity contour containing 80% of hole charge density. 

The first few electron wave functions of the Gaussian hole are calculated using a reduced 3D 

size of 200 Å x 200 Å x 100 Å. While the electrostatic energies are under-represented due 

A B 
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to the poor Coulombic convergence from the smaller simulation size, the 3D azimuthally 

symmetric electron wave functions calculated correspond to the ones calculated with the 2D 

cylindrical model in both shape and energy eigenvalue. 3D states 1, 4, 5, and 10 match the 

2D cylindrical wave functions states 1, 2, 3, and 4 in shape and are close in energy. The 3D 

states are consistently ~42 meV higher in energy eigenvalue. These results give confidence 

in our use of the 2D cylindrical model to find the exciton ground states. 
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Table 4.2. The 3D electron wave functions and their respective  energy eigenvalues for a hole in 

pentacene.  The corresponding 2D wave functions and their eigenvalues are given. 

3D State 3D Eigenvalue (meV) Corresponding 2D State 

2D 

Eigenvalue(me

V) 

1  

-417 

1  

-460 

2  

-327 - - 

3  

-327 - - 

4  

-298 

2  

-341 

5  

-258 

3  

-300 
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6  

-249 - - 

7  

-247 - - 

8  

-223 - - 

9  

-223 - - 

10  

-213 

4  

-255 

4.4 Results and Discussion 

The effect of the hole position on the excited state dissociation energy has been 

examined by calculating the electron wave function for various distances between the hole 

and the interface. In Figure 4.7, we have plotted the exciton dissociation and Coulomb 

energies as a function of the distance from the interface with several of the electron wave 

functions shown. Moving the hole closer than 5 Å to the interface places a large fraction of 
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the hole density in the silicon, where this density is not optimal. We find that the excited 

state becomes more tightly bound as the hole moves closer to the interface. The electron 

wave function becomes more diffuse as the hole moves farther away from the interface. This 

widening can only be due to the weakening Coulomb interaction in the silicon as the hole 

moves farther away, since this is the only term in the Hamiltonian that depends on the hole 

position. We find that even if the hole is 100 Å away from the interface with silicon, the 

electron wave function is still located in the silicon. This result is surprising because the 

exciton binding energy is greater than the band offset energy. It seems that the band offset 

energy (pentacene LUMO/silicon conduction band difference) has a strong effect on the 

electron location. 

 

Figure 4.7.  The dissociation energy (blue) and the Coulomb interaction (green) are plotted versus 

hole distance to the interface. Energies are reported such that negative values are binding. In the 

thumbnail images of the electron wave function (blue), the silicon is above the pentacene and the 

interface is denoted by the dashed white line. The small green half ellipse indicates the isodensity 

contour containing 80% of the hole. The same scale of 300 Å x 300 Å is used in each image. 
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To investigate the effect of band offset energy, a series of calculations were performed 

varying the band offset energy while the hole position is fixed at 20 Å from the silicon. We 

find that as the band offset energy increases, the first state energy of the electron residing in 

pentacene rises linearly until a critical band offset energy is reached, where the electron 

switches into silicon and beyond which the electron energy remains constant, as shown in 

Figure 4.8. Note that Figure 4.8 shows actual data, not a schematic. Below the critical band 

offset energy, the electron distribution inside the pentacene remains unchanged since band 

offset energy is a uniform potential applied to the pentacene. Above the critical band offset 

energy, the electron distribution in the silicon changes little because the coulomb interaction 

remains constant and only the height of the potential barrier to entering the pentacene 

changes. In other words, because the band offset energy is a flat potential in pentacene and 

once the electron switches to the silicon the electron no longer feels the band offset energy 

as a flat potential but as an increasingly tall potential barrier. Curiously, the critical band 

offset energy required to cause the electron to reside in the silicon (~425 meV) is smaller 

than both the energy eigenvalue (460 meV) and the Coulomb energy (536 meV) of the first 

electron state in the bulk pentacene exciton. 
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Figure 4.8. The dissociation energy and Coulomb energy are plotted versus the band edge offset 

energy. Energies are reported such that negative values are binding. Below the critical value the 

electron sits in the pentacene and above, it resides in the silicon. 

If the next higher energy electron state is calculated, it can be seen (in Figure 4.9.) that the 

second state’s wave function below the critical band edge offset energy is essentially the 

same as the first state’s wave function above the critical band edge offset energy. The first 

and second states are not degenerate states at the critical band edge offset energy because 

they cannot be truly linearly independent as there is always some non-zero wave function 

overlap. Above the critical band edge offset energy, the second wave function’s similarity to 

the higher order electron wave functions seen in Table 4.2, suggests that azimuthally 

symmetric, lower energy dumbbell states probably exist.  
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Figure 4.9. The dissociation energies and the wave functions of the first and second states of the 

electron are shown above as functions of the band edge offset energy. Energies are reported such 

that negative values are binding. The dissociation energy of the first state is shown in blue and the 

second in green. Positive and negative values of the wave functions are shown in blue and red 

respectively. The critical band edge offset energy is located at ~ 425 meV. 

The sharp transition between the electron residing in the pentacene and the silicon persists 

for all reasonable distances between the hole and  interface. The critical band edge offset 

energy is calculated for a series of hole distances in Figure 4.10. This establishes a design 

parameter space for the energetically favorable separation of electron and hole. Beyond ~ 

15Å, the critical band edge offset is only affected by the Coulomb interaction between the 

hole and electron. Below ~ 15Å, the electron wave function begins to occupy a hybrid state 

between what would be the two lowest states if the hole was further from interface.  
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Figure 4.10. The critical band offset energy is plotted versus the hole distance to the interface. Above 

this line, it is favorable for the electron to reside in the silicon. Likewise, below the line, the electron 

prefers to reside in the pentacene. The dashed red indicated the band edge offset value used in 

Figure 4.7. 

The model explored here is a significant step forward in capturing the long-range 

electrostatic interactions in excited states at interfaces for several reasons. The first is 

portability, this model can easily be used with other materials systems since only six 

materials and two hole parameters are required. The second is computational efficiency, 

most of these calculations were performed on a single desktop computer simply because it 

was more convenient than using the available high performance computing resources. The 

third is extensibility; while full size 3D calculations were found to be too expensive for this 

proof-of-concept implementation, off-the-shelf finite element codes with automatic mesh 

refinements exist, which can alleviate this problem. Finally, there is no theoretical reason 

that prevents the addition of arbitrary potentials, using the time-dependent Schrödinger 

equation, or even coupling to phase field models of ferroelectrics. However, before other 
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interface topologies can be implemented, an efficient computational means calculating self-

polarization energies for arbitrary permittivity distributions must be found.  

4.5 Conclusions 

We have created an efficient model for incorporating the effects of long-range electrostatic 

effects on excited states at interfaces. We find that above a critical band edge offset energy, 

the electron is more stable in the silicon and exhibits Wannier-Mott type behavior. Below 

this value, the electron prefers to remain in the pentacene and exhibits Frenkel type 

behavior. Interestingly, this critical value is less than either the bulk exciton binding energy 

or energy eigenvalue of the first electron state in the pentacene exciton. Above the critical 

band edge offset energy, the size of Wannier-Mott type electron wave function is 

proportional to the frozen hole distance to the interface. As far as we know, this is the first 

time this behavior has been demonstrate in a hybrid inorganic/organic interface system.  
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4.6 Appendices 

Appendix 4.1. Optimal Wave Function Mixer and Coupled 
Iteration Control Algorithm 

To improve convergence and stability when iteratively minimizing the energy of an 

eigenstate wave function, we mix the old and the newly calculated wave function using a 

linear mixing parameter, 𝛼.  

𝜓!"#$% = 𝛼 𝜓!"# + 𝛽 𝜓!"#  

1 − 𝛼 = 𝛽 

We have to then normalize the mixed wave function to get the final wave function: 

𝜓!"#$% =
𝜓!"#$!

𝜓!"#$% 𝜓!"#$%
 

What we really want is to minimize the final energy eigenvalue. 

𝐸!"#$% = 𝜓!"#$% 𝐻 𝜓!"#$%  

We can expand the final energy eigenvalue in terms of the mixing parameter: 

𝐸!"#$% =
𝜓!"#$% 𝐻 𝜓!"#$%
𝜓!"#$! 𝜓!"#$%

 

𝐸!"#$% =
𝛼 𝜓!"# + 𝛽 𝜓!"# 𝐻 𝛼 𝜓!"# + 𝛽 𝜓!"#
𝛼 𝜓!"# + 𝛽 𝜓!"# 𝛼 𝜓!"# + 𝛽 𝜓!"#
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𝐸!"#$% =
𝛼 𝜓!"# + 𝛽 𝜓!"# 𝐻 𝛼 𝜓!"# + 𝛽 𝜓!"#

𝛼! 𝜓!"# 𝜓!"# + 𝛽! 𝜓!"# 𝜓!"# + 𝛼𝛽 𝜓!"# 𝜓!"# + 𝜓!"# 𝜓!"#
 

𝐸!"#$%

=
𝛼! 𝜓!"# 𝐻 𝜓!"# + 𝛽! 𝜓!"# 𝐻 𝜓!"# + 𝛼𝛽 𝜓!"# 𝐻 𝜓!"# + 𝜓!"# 𝐻 𝜓!"#

𝛼! 𝜓!"# 𝜓!"# + 𝛽! 𝜓!"# 𝜓!"# + 𝛼𝛽 𝜓!"# 𝜓!"# + 𝜓!"# 𝜓!"#
 

Since our old wave function is normalized and our new one can be easily normalized: 

𝜓!"# 𝜓!"# = 1 

𝜓!"# 𝜓!"# = 1 

And since 𝐻 doesn’t change with iteration: 

𝜓!"# 𝐻 𝜓!"# = 𝐸!"#  

𝜓!"# 𝐻 𝜓!"# = 𝐸!"#  

Also remember these identities: 

𝜓!"# 𝜓!"# ∗ = 𝜓!"# 𝜓!"#  

𝜓!"# 𝐻 𝜓!"#
∗
= 𝜓!"# 𝐻 𝜓!"#  

We can clean up the final energy eigenvalue to a simpler form: 

𝐸!"#$% =
𝛼!𝐸!"# + 𝛽!𝐸!"# + 𝛼𝛽 𝜓!"# 𝐻 𝜓!"#

∗ + 𝜓!"# 𝐻 𝜓!"#
𝛼! + 𝛽! + 𝛼𝛽 𝜓!"# 𝜓!"# ∗ + 𝜓!"# 𝜓!"#

 

But for any complex number: 

𝑧∗ + 𝑧 = 2Re 𝑧  

so: 

𝐸!"#$% =
𝛼!𝐸!"# + 𝛽!𝐸!!" + 2𝛼𝛽Re 𝜓!"# 𝐻 𝜓!"#

𝛼! + 𝛽! + 2𝛼𝛽Re 𝜓!"# 𝜓!"#
 



 
 

101 

And for simplicity: 

𝑉!" = Re 𝜓!"# 𝐻 𝜓!"#  

𝑃!" = Re 𝜓!"# 𝜓!"#  

So: 

𝐸!"#$% =
𝛼!𝐸!"# + 𝛽!𝐸!"# + 2𝛼𝛽𝑉!"

𝛼! + 𝛽! + 2𝛼𝛽𝑃!"
 

Also note that there are no complex terms here, which is nice. 

We can substitute 𝛼 for 𝛽: 

𝐸!"#$% =
𝛼!𝐸!"# + 1 − 𝛼 !𝐸!"# + 2𝛼 1 − 𝛼 𝑉!"

𝛼! + 1 − 𝛼 ! + 2𝛼 1 − 𝛼 𝑃!"
 

We compute the derivative to minimize𝐸!"#$%  with respect to 𝛼. 

𝜕𝐸!"#$%
𝜕𝛼

=
2 𝑃!" − 1 𝐸!"# − 𝐸!"# 𝛼! + 2𝑃!"𝐸!"# − 2𝑉!" + 𝐸!"# − 𝐸!"# 𝛼 + 𝑉!" − 𝑃!"𝐸!"#

2𝛼! 𝑃!" − 1 − 2𝛼 𝑃!" − 1 − 1 !  

Since we are looking for extrema, we need the zeros of the numerator this rational function 

since the denominator is always positive. Using the quadratic equation to find the zeros of 

the numerator gives two values of 𝛼 that correspond to the extrema points.  

𝑃!" − 1 𝐸!"# − 𝐸!"# = 𝑎 

2𝑃!"𝐸!"# − 2𝑉!" + 𝐸!"# − 𝐸!"# = 𝑏 

𝑉!" − 𝑃!"𝐸!"# = 𝑐 

𝛼!" =
−𝑏 ± 𝑏! − 4𝑎𝑐

2𝑎
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We know which roots we want based on the concavity of the numerator, if the function is 

concave up, then the minima occurs at the larger root. If the function is concave down, the 

minima occurs at smaller root. We can write this simply: 

𝛼!"#$%&' =
−𝑏 + sign 𝑎 𝑏! − 4𝑎𝑐

2𝑎
 

If the discriminant is negative there is no optimal value inside the bounds of (0,1]. If the 

computed 𝛼!"#$%&', is less than 0, there is no optimal value inside the bounds of (0,1]. In 

both cases we simply defer to a preset minimum value of the mixing parameter. If the 

computed value of 𝛼!"#$%&'  is greater than one, we simply use 𝛼!"#$%&' = 1.  We couple 

the value of 𝛼!"#$%&'  to the number of solver iterations used per step through a 

rudimentary control mechanism. If the minimum value of the mixing parameter we used, 

we decrease the number of solver iterations. If the value of 𝛼!"#$%&'  is greater than some 

cut-off value (usually 0.8) the number if solver iterations is increased. Using this method, 

the energies converge more quickly and less noisily while the solver rarely requires any hand 

tuning. 
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Appendix 4.2. Numerical Model For The Self-Potential of a Point 
Charge near a Gradual Dielectric Interface. 

This model is taken from Xue and Deng and has been reformulated to be concise and easier 

to implement. [13]The dielectric function is defined as a piecewise function: 

𝛽 =
𝜖!"#! − 𝜖!"#

𝛿
 

𝛼 =
𝜖!"#! + 𝜖!"#

2
 

𝜖 𝑧 =

𝜖!"# , 𝑧 ≤ −
𝛿
2

𝛼 + 𝛽𝑧 !, −
𝛿
2
< 𝑧 <

𝛿
2

𝜖!"#! , 𝑧 ≥
𝛿
2

 

The self-polarization potential energy (or image potential energy) as a function of the source 

point charge position 𝑧! is given by: 

Σ! 𝑧! =
𝑄!
2

𝐹 𝑘, 𝑧!
8𝜋

𝑑𝑘
!

!

 

The charge of the self-interaction particle is 𝑄! and the famous ½ term is due to this being a 

self-energy. The function 𝐹 is the difference between the Coulomb Green’s function for the 

gradual interface and the ordinary Coulomb Green’s in a Fourier-Bessel form. 

Unsurprisingly, 𝐹 is also piecewise and is defined as follows. 
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𝐹 𝑧! =

𝐹!"# , 𝑧! ≤ −
𝛿
2

𝐹!"#$% , −
𝛿
2
< 𝑧! <

𝛿
2

𝐹!"#! , 𝑧! ≥
𝛿
2

 

𝐹!"# =
𝑄!

𝜖!"#𝑆 𝑘
𝑒!!!!2𝛽 𝑘 𝜖!"#!𝑒!" − 𝜖!"#𝑒!!" − 𝛽 sinh 𝑘𝛿  

𝐹!"#$%

=
𝑄!

𝜖 𝑧! 𝑆 𝑘
𝑒!!"2𝛽 𝑘 𝜖!"#!𝑒!!!!! − 𝜖!"#𝑒!!!! + 𝛽 𝑒!!" − cosh 2𝑘𝑧!  

𝐹!"#! =
𝑄!

𝜖!"#!𝑆 𝑘
𝑒!!!!!  2𝛽 𝑘 𝜖!"#!𝑒!!" − 𝜖!"#𝑒!" − 𝛽 sinh 𝑘𝛿  

We separate the dominator as a separate function since it has no dependence on 𝑧! 

𝑆 𝑘 = −2𝑘 𝜖!"#! + 𝛽 2𝑘 𝜖!"# + 𝛽 − 𝛽!𝑒!!!"  

For our numerical evaluation of the self-polarization potential energy integral, we simply 

used Simpson’s rule with 𝑑𝑘 = 0.001 Å!! and 𝑘!"# = 100 Å!! which provides us with 

sufficient accuracy. For anyone wishing to reproduce this work, we suggest reading Refs. 

[13] and [20]. 
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CHAPTER 5 

 Outlook 

Computer-based materials modeling has made substantial progress in the last 30 years, with 

great strides in both available computing power, and computational methodology.  

Prediction of materials properties via simulation is becoming routine, accurate, and more 

important across almost all materials systems. However, there still exists the grand 

challenge in materials science of predicting crystal structures especially from molecular 

structures. For any reliable means of high throughput design of molecular materials, there 

will need to be improvements to the current methods.  

In this work, I have predicted the structure of a series of subphthalocyanine-based 

compounds that have never been synthesized, and their crystal structures, symmetry, optical 

band gaps and permittivities.  The ability to examine new compounds for design of materials 

is a key point in the development of modern technology.  Furthermore, I have applied 

similar techniques to the examination of organic-silicon interfaces, and calculated 

corrections for the long-range electrostatic effects on the excited states.  Finally, I have 

created a self-consistent model to understand the excited state structure of an 

organic/inorganic interface. Through this approach, I gained deeper insight into the 

behavior of excited states at this complex boundary, which will allow further understanding 

and engineering new hybrid organic/inorganic materials for energy production.  With all of 

this, there is still a great deal left to explore in terms of accurate electronic modeling of 

materials. 
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In the realm of interfacial engineering, there are more interface topologies that can be 

investigated beyond the simple planar interfaces used here in chapters 2 and 4. There is 

enough, probably, to create another thesis. Yet, the classical self-polarization energy of 

point charges seems to lack any efficient algorithm for the one to one mapping from 

permittivity to self-polarization energy. If this is not equivalent to another problem class, 

then there is likely a very good applied mathematics publication to be had. This would also 

be a good edition to any future second-principles models.  

In the literature regarding these second principles models, there is almost no application of 

time-dependence in any form, which would be useful to capture dissociation kinetics. There 

are several ways to attempt this: direct implementation of the time-dependent Schrodinger 

equation, the use of non-equilibrium Green’s functions, the time-dependent Bethe-Salpeter 

equation, and possibly kinetic Monte Carlo. The merits of each would have to be 

investigated.  

Another question with second principles models, is there a self-consistent means to un-

freeze the hole, which produces reasonable results for the exciton binding energy and hole 

wave function while using realistic inputs? Could molecular site energies be used better 

localize the hole (and possibly electron) while giving good results and what would that 

formulation look like?  

In terms of improving solar cells, all of this thesis will not be helpful if no materials system 

can ever best the reigning champion, silicon, but at this point it is not known what the best 

technology will turn out to be. Furthermore, these results have direct application to organic 

light emitting diodes, which are already in use as displays.  It is likely that these models 

could be helpful, albeit in the reverse process, of light production.   

 


