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Abstract 

 

 Parkinson disease (PD) is a common, debilitating neurodegenerative disease 

characterized by profound slowing of movement (bradykinesia), resting tremor, rigidity, and 

postural instability. Medical therapy of PD is limited to symptom suppression and has not 

changed substantially in more than forty years, in part because of limited understanding of the 

mechanisms responsible for PD-related neurodegeneration. Accumulating evidence from genetic 

and biochemical studies implicate dysfunction of the endolysosomal pathway as a key feature in 

PD pathogenesis. Most studies have focused on accumulation of neurotoxic alpha-synuclein 

secondary to defects in autophagy as the cause of neurodegeneration, but abnormalities of the 

endolysosomal system likely mediate toxicity through multiple mechanisms. To understand how 

endolysosomal dysfunction causes PD-related neurodegeneration, I conducted in vivo and cell 

biological experiments to examine the effects of PD-associated mutations in the genes ATP13A2 

and LRRK2 on the endolysosomal system. I generated and characterized a murine model of 

Kufor-Rakeb syndrome (KRS), a form of early-onset Parkinsonism with additional neurological 

features caused by recessive loss-of-function mutations in late endosomal/lysosomal protein 

ATP13A2. I show that Atp13a2 null mice develop age-related motor abnormalities that are 

preceded by neuropathological changes including gliosis, accumulation of protein aggregates, 

lipofuscinosis, and lysosomal abnormalities. Contrary to predictions from in vitro data, in vivo 

mouse genetic studies demonstrate that these phenotypes are alpha-synuclein-independent. These 
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findings indicate that lysosomal dysfunction and abnormalities of alpha-synuclein homeostasis 

are not synonymous - even in the context of an endolysosomal genetic defect linked to 

parkinsonism – and highlight the presence of alpha-synuclein-independent neurotoxicity 

consequent to endolysosomal dysfunction. In addition, I describe a novel interaction between the 

PD-related protein LRRK2 and microtubules, the main structures responsible for endolysosomal 

vesicle movement within the cell. Through cell biological studies, I demonstrate that PD-mutant 

forms of LRRK2 closely associate with microtubules and that loss of LRRK2 kinase activity 

affects this interaction. As microtubules are necessary for the movement of vesicles within the 

endolysosomal system, LRRK2 may act as an important signaling molecule on microtubules 

during vesicular movement. These studies advance our understanding of how PD-related 

mutations in ATP13A2 and LRRK2 disrupt the endolysosomal system to contribute to PD 

pathogenesis.  
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Chapter 1 

 

Introduction 

 

Parkinson disease (PD) is a common, debilitating neurodegenerative disorder, 

characterized by profound bradykinesia or slowness of movement, resting tremor, muscle 

rigidity, and postural instability (Dauer and Przedborski, 2003). PD affects 1% of people over 60 

years of age (de Rijk et al., 1995), making it the second most common neurodegenerative 

disease. Patients initially present with motor symptoms such as bradykinesia or tremor, which 

arise primarily from degeneration of dopaminergic neurons in the substantia nigra pars compacta 

(SNpC) and can be successfully treated for many years with dopamine replacement strategies (L-

3,4-dihydroxyphenylalanine (L-DOPA); Lees et al., 2009). However, PD patients also suffer 

from non-motor symptoms including dementia and depression, which increase in frequency and 

severity as degeneration spreads beyond the SNpC. These extra-nigral symptoms are less 

responsive to dopamine replacement therapy, resulting in profound impairment and morbidity. 

Medical treatment of PD remains limited to symptom suppression, in part because of a lack of 

understanding of the mechanisms responsible for PD-related neurodegeneration. 

 PD is a multifactorial disease, with known genetic factors accounting for approximately 

50% of the risk of getting the disease (Hardy, 2010). Over the past 15 years, an increasing 

number of genes have been found to have a role in familial and sporadic forms of disease. 

Studies into the function of these implicated genes suggest several hypotheses regarding disease 
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pathogenesis: 1) altered homeostasis and aggregation of the protein α-synuclein cause selective 

neurotoxicity; 2) dopaminergic cell death due to increased oxidative stress related to 

mitochondrial dysfunction. More recent genetic studies identify a third pathway in which 

endolysosomal dysfunction causes toxicity through an undetermined mechanism. These three 

pathways are not mutually exclusive and clearly co-occur to varying extents in individual 

patients. A main site of convergence for the three hypotheses is the autophagic-lysosomal 

system, which is a major pathway in the cell responsible for clearing both unneeded proteins and 

damaged mitochondria. Indeed, genetic mutations in lysosomal proteins cause familial forms of 

PD, highlighting the importance of this pathway in the disease process.  

A major, unanswered question is how primary endolysosomal dysfunction results in 

disease pathogenesis. Specifically, it is unknown 1) how loss of endolysosomal proteins 

associated with PD cause neuronal toxicity in vivo and 2) how α-synuclein and LRRK2, 

arguably the two most important proteins in PD, contribute to this process. Answering these 

questions will enhance knowledge of a pathway critical to PD and other neurodegenerative 

disorders, with the long-term goal of developing novel therapies to limit neuronal injury and 

disease burden. Therefore, a major goal of my research is to improve our understanding of the 

connection between primary endolysosomal dysfunction, α-synuclein homeostasis, and 

neurodegeneration. 

 

Genetics  

In 1997, mutations in the gene encoding α-synuclein were linked to a familial form of 

early-onset PD (Polymeropoulos et al., 1997). Since then, mutations in thirteen additional genes 

have been linked to familial forms of parkinsonism (Table 1.1) and have implicated new 
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pathways in disease. Genome-wide association studies have identified additional low-risk 

genetic variants associated with sporadic disease. While familial forms of the disease constitute 

less than 5% of PD, known genetic causes account for half of the risk of getting PD (Hardy, 

2010), a proportion likely to increase as investigators employ increasingly advanced genetic 

analyses on large cohorts of PD patients.  

Autosomal dominant causes 

SNCA 

In 1997, the first missense mutation in SNCA was identified in the Contursi kindred 

(Polymeropoulos et al., 1997), with additional SNCA missense mutations subsequently identified 

in other PD kindreds (Kruger et al., 1998; Zarranz et al., 2004). SNCA encodes α-synuclein, a 

synaptic protein consequently found to be highly abundant in Lewy Bodies (LBs), the 

cytoplasmic, proteinaceous inclusions that are the neuropathological hallmark of idiopathic PD 

(Spillantini et al., 1997; Spillantini et al., 1998). These studies demonstrated how rare familial 

forms of PD provide insight into the pathophysiology of more common, sporadic disease. Over 

the past 15 years, familial early-onset PD has been linked to duplication and triplication events 

involving the SNCA gene (Singleton et al., 2003; Chartier-Harlin et al., 2004; Farrer et al., 2004; 

Ibanez et al., 2004; Nishioka et al., 2006; Ahn et al., 2008; Ibanez et al., 2009; Sekine et al., 

2010), with comparable increases in mRNA and insoluble protein levels (Miller et al., 2004).  

Copy number of the SNCA gene correlates with disease severity, as patients with triplication 

events develop symptoms earlier than patients with SNCA duplication, with more severe 

dementia, and with more extensive LB pathology in cortical regions (Devine et al., 2011). 

Together, these genetic linkage studies show that increased levels of the normal α-synuclein 
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protein are sufficient to cause disease. Clinically, patients with SNCA mutations most often 

present with L-DOPA-responsive, late-onset PD, with an earlier age of symptom onset 

(Papapetropoulos et al., 2001) and earlier dementia (Muenter et al., 1998; Nishioka et al., 2006). 

Neuropathologically, SNCA mutations are associated with typical PD pathology, including SNpC 

dopaminergic degeneration and prominent, α-synuclein-positive LBs in the brainstem and 

neocortical regions (Gwinn-Hardy et al., 2000b).  
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LRRK2 

First described in 2004, autosomal dominant mutations in LRRK2, the gene encoding 

leucine-rich repeat kinase 2 (LRRK2), are the most common cause of familial PD (Paisan-Ruiz 

et al., 2004; Zimprich et al., 2004). LRRK2 is a large protein that contains multiple protein-

protein interaction domains and GTPase and kinase domains. Five mutations segregate clearly 

with disease (R1441C, R1441G, Y1699C, G2019S, and I2020T; Cookson, 2010), all of which 

cluster within the GTPase domain (R1441C/G), the kinase domain (G2019S, I2020T), or the 

short linker between the two (Y1699C). Additional mutations (N1437H, R1441H) have been 

suggested as causative in familial PD (Mata et al., 2005; Zabetian et al., 2005; Aasly et al., 2010) 

and variants (R1628P, G2385R) are risk factors in sporadic disease (Cookson, 2012). The most 

common mutation, G2019S, is responsible for 2% of sporadic PD and 5% of familial PD in 

Northern European populations (Houlden and Singleton, 2012). It is especially prominent in 

select populations, with frequencies of ~20% in Ashkenazi PD patients and ~40% of North 

African Berber Arab PD patients (Lesage et al., 2006; Ozelius et al., 2006), likely stemming 

from a common founder effect (Kachergus et al., 2005; Lesage et al., 2005). Clinically, LRRK2 

mutations cause L-DOPA responsive PD, with onset in the 50s to 60s (Houlden and Singleton, 

2012). Most LRRK2 patients show LB-positive pathology in the brainstem. However, case 

reports from patients with non-G2019S mutations show more variable pathology, including pure 

nigral degeneration without LBs (Hasegawa et al., 2009), prominent tau-positive aggregates 

(Zimprich et al., 2004), abundant ubiquitin inclusions (Puschmann et al., 2012), and TDP-43-

positive pathology (Wider et al., 2010). 
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VPS35 

In 2011, two separate groups used exome sequencing to link the D620N mutation in 

VPS35 to multiple families with typical-appearing PD	
   (Vilarino-Guell et al., 2011; Zimprich et 

al., 2011). In total, D620N mutations have been identified in 12 familial and 3 sporadic PD cases	
  

(Vilarino-Guell et al., 2011; Zimprich et al., 2011; Sharma et al., 2012), making VPS35 a new 

cause of monogenic PD, but with no pathological data currently available. The protein VPS35 is 

a crucial component of the retromer, trafficking vesicles from the endosome back to the trans-

Golgi network (Hierro et al., 2007). VPS35 has also been implicated in Alzheimer disease (AD), 

suggesting a broader role for VPS35 and retromer in neurodegenerative processes. 

DNAJC13 

 Whole exome sequencing of a large family with autosomal dominant PD led to the 

recognition of DNAJC13 mutations as causative of late-onset, autosomal dominant PD (Vilarino-

Guell et al., 2013). DNAJC13 encodes receptor mediated endocytosis 8 (RME-8), a protein 

localized to the endosomal membrane and involved in vesicle trafficking (see below). Most 

patients displayed L-DOPA-responsive, late-onset PD (average age of onset: 69 years) with one 

patient showing symptoms of progressive supranuclear palsy (PSP), a related neurodegenerative 

disorder classically associated with tau accumulation, but that may also feautre α-synuclein 

aggregation. Neuropathology of four patients showed LB-positive brainstem pathology in three 

patients and abundant tau deposition consistent with PSP in the fourth (Vilarino-Guell et al., 

2013).  
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GBA 

The identification of mutations in the glucocerebrosidase (GBA) gene as a strong risk 

factor for PD stemmed from the observation that relatives of patients with Gaucher’s disease had 

an increased risk for PD. Since 2004, multiple studies have shown that heterozygous carriers of 

GBA mutations have approximately a five-fold risk of developing PD, making GBA mutations 

the most common genetic risk factor for PD (Lwin et al., 2004; Goker-Alpan et al., 2004; 

Sidransky and Lopez, 2012). The clinical symptoms associated with GBA mutations are similar 

to typical late-onset PD, with patients developing disease in the late 50s (Nichols et al., 2009). 

Age of onset is slightly reduced compared to sporadic PD (by 6 years; (Nichols et al., 2009), and 

patients have an increased risk for dementia and hallucinations relative to non-familial PD	
  

(Neumann et al., 2009), consistent with GBA mutation carriers also having elevated risk for the 

related dementia with Lewy Bodies (DLB; Mata et al., 2008). Post-mortem examination of 

brains from GBA mutation carriers shows LB-type neuropathology throughout the brain with 

increased cortical LBs relative to sporadic PD (Neumann et al., 2009), in keeping with the 

increased rates of dementia and hallucinations.  

Other autosomal dominant disorders that may present with parkinsonism 

A number of other autosomal dominant disorders include PD or L-DOPA-responsive 

parkinsonism in their presentation. Mutations in MAPT, encoding the protein tau, cause a series 

of related disorders collectively referred to as frontotemporal dementia with parkinsonism (FTD-

P; Wszolek et al., 1992; Lynch et al., 1994; Wilhelmsen et al., 1994; Hutton et al., 1998). High 

variability exists in clinical presentation, but some families present with more predominant or 

early parkinsonism (Wszolek et al., 1992; Wilhelmsen et al., 1994), that is frequently less 



	
   9	
  

responsive to L-DOPA than idiopathic PD (van Swieten and Spillantini, 2007). Pathology shows 

similar variation, with strong frontotemporal atrophy, tau inclusions, and a marked absence of 

LBs (Wszolek et al., 1992). Mutations in progranulin gene (PGRN) also cause FTD, with 

parkinsonism being a later feature (Rademakers et al., 2007). 

Parkinsonism is also a rare presentation in families with CAG expansion mutations in 

SCA2 and SCA3 genes, or CGG expansion in FMR1. CAG expansions in SCA2/3 are more 

commonly associated with spinocerebellar ataxia, but shorter repeats can present with early PD, 

especially in certain populations (Gwinn-Hardy et al., 2000a; Gwinn-Hardy et al., 2001; Shan et 

al., 2001; Subramony et al., 2002; Ragothaman et al., 2004). Similarly, low repeat CGG 

expansion in the FMR1 gene, more commonly associated with Fragile X-associated 

tremor/ataxia syndrome, may also present with parkinsonism early in the disease course 

(Hagerman et al., 2001; Jacquemont et al., 2004; Hall et al., 2009). While no neuropathology has 

been reported in PD patients with these mutations, the disease mechanism is presumably related 

to poly-glutamine aggregation (SCA2/3: Costa Mdo and Paulson, 2012) or RNA-mediated 

toxicity (FMR1: Renoux and Todd, 2012) rather than disrupting pathways related to idiopathic or 

common familial PD.  

Finally, several other genes have been linked to syndromes that include parkinsonism, but 

have yet to be independently confirmed: GCH1 (Hjermind et al., 2006), EIF4G1 (Chartier-Harlin 

et al., 2011), and UCHL (Leroy et al., 1998). Case reports of neuropathology show LBs and 

midbrain degeneration, but the data are preliminary (Chartier-Harlin et al., 2011). 
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Autosomal recessive causes of early-onset, typical PD 

Homozygous and compound heterozygous mutations in three genes cause autosomal 

recessive, early-onset familial PD: PARK2 (or PARKIN gene; Kitada et al., 1998), PINK1 

(Valente et al., 2004), and DJ-1 (Bonifati et al., 2003). Mutations in PARK2 are the most 

common, responsible for up to half of familial, early-onset PD (Kann et al., 2002), while 

mutations in PINK1 and DJ-1 are less common (1-8% and 1-2% respectively, of early-onset 

cases; Bonifati, 2014). In one study, the average age of onset for all three was around 25 years 

(Kilarski et al., 2012), though late-onset cases do rarely occur	
  (Lucking et al., 2000). Symptoms 

in these patients typically progress more slowly than for sporadic PD, remain confined largely to 

motor symptoms, with dementia being an unusual feature (Ahlskog, 2009), though rare atypical 

presentations include increased psychiatric symptoms (Samaranch et al., 2010) or pronounced 

early dementia (Annesi et al., 2005). Pathology in the majority of cases consists of relatively 

pure nigral degeneration without LBs (Poulopoulos et al., 2012), but rare α-synuclein-positive 

LBs have been identified in both PARK2 (Farrer et al., 2001; Pramstaller et al., 2005) and PINK1 

(Samaranch et al., 2010) patients. Neuropathological findings have not been reported for patients 

with DJ-1 mutations. All three proteins are believed to be important in protecting cells from 

mitochondrial dysfunction and oxidative stress (see below). 

Autosomal recessive causes of juvenile, atypical parkinsonism 

Rare, autosomal recessive mutations in several genes result in clinical syndromes that 

include early onset or juvenile parkinsonism, often in association with other neurological signs. 

Loss-of-function mutations in ATP13A2 (or PARK9), which encodes a late endosomal ATPase of 

unknown function, cause Kufor-Rakeb Syndrome (KRS), a juvenile, L-DOPA-responsive 
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parkinsonism with accompanying pyramidal signs, dementia, and supranuclear gaze palsy 

(Ramirez et al., 2006). Age of onset is between 10 to 20 years of age (Ramirez et al., 2006; Di 

Fonzo et al., 2007; Ning et al., 2008; Behrens et al., 2010; Paisan-Ruiz et al., 2010; Schneider et 

al., 2010). Neuropathological findings have not been reported. Neuroimaging shows diffuse 

cerebral and cerebellar atrophy, including of the nigrostriatal pathway	
   (Di Fonzo et al., 2007; 

Bruggemann et al., 2010; Schneider et al., 2010; Eiberg et al., 2012), with some reports of basal 

ganglia iron accumulation (Schneider et al., 2010; Chien et al., 2011). Recessive mutations in 

FBXO7 (or PARK15) cause a Parkinsonian-pyramidal syndrome whose features include juvenile-

onset parkinsonism with variable responsiveness to L-DOPA, as well as additional motor 

symptoms like muscle weakness and spasticity (Shojaee et al., 2008; Di Fonzo et al., 2009). 

Neuropathological findings have not been reported.  

More recently, mutations in the genes DNAJC6 and SYNJ1 were identified by whole 

exome sequencing as causative of familial forms of juvenile parkinsonism. DNAJC6 mutations 

were linked to disease in two families (Edvardson et al., 2012; Koroglu et al., 2013). The six 

described patients suffered from juvenile-onset parkinsonism (age of onset: 7 to 11 years old) 

with one family also showing additional neurological features (Koroglu et al., 2013). The same 

homozygous mutation (R258Q) in SYNJ1 was found independently in two families (Krebs et al., 

2013; Quadri et al., 2013) with early onset parkinsonism (age of onset: early 20s) and 

generalized seizures (Krebs et al., 2013) or dystonia and cognitive changes (Quadri et al., 2013). 

All four described patients with SYNJ1 mutations had to stop L-DOPA therapy due to the rapid 

development of severe dyskinesias. Neuropathological findings have not been reported, but 

neuroimaging of SYNJ1 patients showed diffuse cerebral atrophy (Quadri et al., 2013). DNAJC6 
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and SYNJ1 encode for auxilin and synaptojanin 1, respectively, proteins involved in clathrin-

mediated endocytosis (see below). 

Other syndromes have atypical presentations that can include parkinsonism. Recessive 

mutations in the phospholipase A2, group VI (PLA2G6 or PARK14) gene or the pantothenate 

kinase (PANK2) gene cause juvenile-onset infantile neuroaxonal dystrophy and 

neurodegeneration associated with brain iron accumulation (Hayflick et al., 2003; Morgan et al., 

2006). The classic presentation of these disorders occurs before 5 years of age and features 

prominent dystonia, spasticity, and ataxia. Patients with variants of the disease can present with 

later onset (age: 20s to 30s), L-DOPA-responsive dystonia-parkinsonism with psychiatric 

symptoms, dementia, and pyramidal signs	
   (Zhou et al., 2001; Paisan-Ruiz et al., 2009; Paisan-

Ruiz et al., 2010). Neuropathologically, both PLA2G6 and PANK2 patients show iron 

accumulation in the basal ganglia. Post-mortem studies show that PLA2G6 mutation carriers 

develop widespread LB and tau pathology, especially prominent in the neocortex (Paisan-Ruiz et 

al., 2012). PANK2 mutation carriers show more prominent changes in the globus pallidus, with a 

lack of LB pathology and prominent ubiquitin and tau aggregates (Kruer et al., 2011; Li et al., 

2012a). 

Genome-wide association studies 

Recent work has utilized genome-wide association studies (GWAS) as a complementary 

approach to identify common genetic variants associated with risk of sporadic disease. Two 

initial studies found four genes strongly predictive of PD risk in the general population (Satake et 

al., 2009; Simon-Sanchez et al., 2009). Unsurprisingly, SNCA was the first locus identified, 

confirming the importance of α-synuclein in disease pathogenesis. These studies suggest that 
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even a 10% increase in SNCA levels can result in a 40% increase in disease risk in the general 

population (Fuchs et al., 2008; Simon-Sanchez et al., 2009). Variation in the LRRK2 locus also 

associated with disease risk in both studies, though it is unclear if this reflects the high 

prevalence of previously identified LRRK2 mutations in the general population (described above) 

or a new mechanism by which variation in LRRK2 expression influences disease. More 

interestingly, MAPT, the gene encoding tau, was strongly associated with disease risk. Familial 

mutations in MAPT cause FTD-P (Hutton et al., 1998) and tau pathology is frequently seen in, 

though not pathognomonic for, PD. The identification of MAPT as a modifier of risk in sporadic 

PD therefore implicates tau aggregation in PD pathogenesis and links PD to other tauopathies 

like FTD-P and AD. Satake et al. (2009) identified a novel locus, PARK16, which further study 

has refined to the RAB7L1 gene, as a modifier of disease risk (Gan-Or et al., 2012; MacLeod et 

al., 2013). Follow-up studies with more power identified a strong association between variation 

at the major histocompatibility complex (HLA) locus and PD risk (Hamza et al., 2010; Saiki et 

al., 2010). The identification of HLA as a PD-related gene likely reflects how variability in 

immune response to damage can contribute to disease. GWAS studies of other 

neurodegenerative diseases have similarly found that changes to the innate response impacts 

disease risk (Klein et al., 2005; Harold et al., 2009; Lambert et al., 2009). Together, the GWA 

studies reinforce the importance of SNCA and LRRK2 in both familial and sporadic disease, 

highlight a potentially more prominent role for tau, and uncover a new gene (RAB7L1) in the 

endolysosomal pathway implicated in PD pathogenesis. 
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PD pathogenesis 

α-Synuclein proteostasis 

  α-Synuclein’s prominent role in PD pathogenesis has been extensively studied (for 

review, see Cookson, 2005; Lee and Trojanowski, 2006; Gupta et al., 2008; Kalia et al., 2013). 

Genetically, mutations in SNCA cause familial PD, while GWAS show that common variations 

in the SNCA locus associate with elevated risk for sporadic disease	
  (Satake et al., 2009; Simon-

Sanchez et al., 2009). Furthermore, the number of genetic copies of SNCA correlates positively 

with disease severity and inversely with age of onset in familial PD (Devine et al., 2011). Post-

mortem tissue from both sporadic and familial PD patients shows that α-synuclein aggregates 

into intraneuronal LBs (Spillantini et al., 1997) and LB spread correlates with extra-nigral 

symptoms like dementia and hallucinations (Irwin et al., 2013). These studies from human 

patients suggest that increased levels of α-synuclein cause PD-related neurodegeneration (Figure 

1.1).  

α-Synuclein is a small, membrane-associated protein whose normal function important to 

synaptic vesicle release (reviewed in Bendor et al., 2013).	
  Its natively unfolded structure makes it 

particularly aggregation prone and PD-related mutant forms of the protein are	
  more likely to 

self-associate (Bertoncini et al., 2005). This aggregation appears key to its neurotoxicity, similar 

to proteins like amyloid-β and tau that also aggregate to cause toxicity in AD and FTD. 

Overexpression of α-synuclein in midbrain neuronal cultures results in selective dopaminergic 

toxicity (Zhou et al., 2000; Petrucelli et al., 2002; Xu et al., 2002). Multiple transgenic mice 

overexpressing wild type or A53T mutant α-synuclein develop protein aggregates and 

subsequent neurotoxicity, though the SNpC appears remarkably resistant to cell death (Masliah 

et al., 2000; Giasson et al., 2002; Lee et al., 2002). More recent work suggests that oligomeric   
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Figure 1.1. PD-related genes converge on the endolysosomal and autophagic pathways. 
Genes important in familial and sporadic PD (shown in red) encode many proteins involved in 
the degradation of damaged mitochondria (or mitophagy), α-synuclein proteostasis, or the 
endolysosomal system.  
 

  



	
   16	
  

and/or fibrillar α-synuclein are the principle toxic species. Addition of preformed α-synuclein 

fibrils to primary neurons can induce α-synuclein aggregation and cell death (Luk et al., 2009; 

Volpicelli-Daley et al., 2011), while injection of oligomeric or fibrillar α-synuclein into mouse 

brains can cause in vivo neurotoxicity and LB-like protein aggregates (Winner et al., 2011; Luk 

et al., 2012a; Luk et al., 2012b). The precise mechanism of α-synuclein-mediated toxicity 

remains obscure, though its aggregation causes widespread dysfunction including of protein 

degradation pathways, mitochondria function, membrane dynamics and programmed cell death 

(Cookson and van der Brug, 2008). 

α-Synuclein is in part degraded by autophagy, both by macroautophagy (Webb et al., 

2003) and chaperone-mediated autophagy (CMA; Cuervo et al., 2004), particularly during times 

of cell stress (Ebrahimi-Fakhari et al., 2011). Disruption of autophagy results in increases in α-

synuclein, either by pharmacologic inhibition in cell culture models (Webb et al., 2003; Cuervo 

et al., 2004) or through genetic decrease of key autophagic proteins in vivo (Ebrahimi-Fakhari et 

al., 2011; Ahmed et al., 2012; Friedman et al., 2012). Mutant forms of α-synuclein block CMA 

(Martinez-Vicente et al., 2008) while aggregates impair macroautophagy (Tanik et al., 2013). 

This inhibition creates a positive feedback loop whereby mutant or aggregated α-synuclein 

prevents its own degradation, leading to further aggregation and greater autophagy inhibition. 

The lysosomal protease cathepsin D is a likely candidate for a cellular synucleinase (Sevlever et 

al., 2008; Crabtree et al., 2013) and cathepsin D knockout mice show increased α-synuclein 

insolubility and aggregates (Qiao et al., 2008; Cullen et al., 2009). Furthermore, a functional 

interaction between α-synuclein and LRRK2 occurs at the lysosome (Orenstein et al., 2013). 

GBA mutations appear to increase levels of α-synuclein by disrupting lysosomal function 

(Mazzulli et al., 2011). These findings suggest that PD-related mutations in other proteins disrupt 
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α-synuclein homeostasis by impairing its autophagic clearance, potentially providing a unifying 

mechanism for several genetic causes of the disease. Indeed, increasing autophagic flux either 

chemically or genetically protects against α-synuclein-mediated toxicity in vivo (Decressac et al., 

2013; Xilouri et al., 2013). Autophagy is therefore an attractive therapeutic target to reduce the 

impact of α-synuclein-mediated neurodegeneration in PD patients. The details of autophagic 

dysfunction in PD remain unclear, including whether it is a cause or consequence of α-synuclein 

aggregation.  

 

α-Synuclein as a prion-like molecule 

 Emerging work suggests that α-synuclein may transit between cells in a prion-like 

fashion, providing a plausible mechanism for the hypothesis of spreading pathology in PD 

posited by Braak et al. (Braak et al., 2003), though much work remains to test this hypothesis 

more rigorously (Burke et al., 2008). Interest in this mechanism was ignited by two reports of 

LBs in fetal neurons grafted into the striata of PD patients (Kordower et al., 2008a; Kordower et 

al., 2008b; Li et al., 2008). The presence of α-synuclein aggregates in grafted neurons suggested 

either that the toxic environment in late stages of disease promoted intracellular α-synuclein 

aggregation in healthy donor cells or that misfolded α-synuclein spread from neighboring cells to 

seed aggregation. In vitro studies are consistent with the possibility that cells can release (Lee et 

al., 2005) and take up α-synuclein (Lee et al., 2008; Luk et al., 2009; Nonaka et al., 2010; 

Waxman and Giasson, 2010; Volpicelli-Daley et al., 2011), together promoting the cell-to-cell 

spread of toxic species. In vivo work from Virginia Lee and colleagues demonstrated that 

injected α-synuclein fibrils can be taken up by cells and template endogenous α-synuclein into 

misfolded, toxic protein aggregates (Luk et al., 2012a; Luk et al., 2012b). This prion-like 
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hypothesis has important implications for both pathogenesis and	
  therapeutics. It implies that not 

just intracellular protein levels but also the release and uptake of α-synuclein between neurons 

are important aspects of disease pathogenesis. Therapeutically, this pool of extracellular α-

synuclein would present a seemingly tractable target, being more accessible than intracellular 

protein and, if removed, could halt the intercellular spread of disease processes. 

 Prion-like propagation requires both the release and uptake of α-synuclein by cells. 

Under basal conditions, a small amount of α-synuclein is released into the extracellular space 

(Lee et al., 2005; Hansen et al., 2011), an amount that increases under conditions of misfolded 

proteins (Jang et al., 2010). α-Synuclein is present in both cerebrospinal fluid and plasma of 

patients (El-Agnaf et al., 2003; Emmanouilidou et al., 2010) and oligomeric α-synuclein is 

elevated in the plasma of PD patients (El-Agnaf et al., 2006). Cell culture experiments suggest 

that α-synuclein is secreted through non-classical exocytosis (Lee et al., 2005; Emmanouilidou 

et al., 2010; Alvarez-Erviti et al., 2011), likely because of its ability to associate with and 

translocate into multiple components of the endolysosomal pathway, including recycling 

endosomes (Hansen et al., 2011), exosomes (Emmanouilidou et al., 2010), and secretory vesicles	
  

(Lee et al., 2005). Chemical or genetic modulation of autophagy, in either direction, causes a 

corresponding change in α-synuclein release (Ejlerskov et al., 2013; Lee et al., 2013). Similarly, 

preventing lysosome fusion or autophagosome movement along microtubules leads to increased 

secretion of α-synuclein (Ejlerskov et al., 2013). As less α-synuclein is degraded by autophagy, 

flux through the endolysosomal pathway seems to shunt more of it into exocytosis. PD patients, 

who have both increased α-synuclein burden and defects in autophagy, may therefore have 

increased release of α-synuclein into the extracellular space. Independent of controlled α-

synuclein release by cells, processes during cell injury and death may also cause dying cells to 
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spill intracellular α-synuclein into the extracellular space, further increasing extracellular α-

synuclein burden. 

Uptake of α-synuclein similarly relies upon vesicular transport through the 

endolysosomal pathway. Addition of recombinant α-synuclein to cultured cells is taken up via 

endocytosis (Danzer et al., 2007; Danzer et al., 2009; Luk et al., 2009; Nonaka et al., 2010; 

Waxman and Giasson, 2010), but requires high concentrations of recombinant protein, raising 

questions of physiological relevance. Higher order oligomers enter the cell more readily than 

lower order species (Danzer et al., 2007) as does α-synuclein associated with exosomes rather 

than free protein (Danzer et al., 2012). Volpicelli-Daley et al. recently approached more 

physiological conditions in which they incubated primary neurons with preformed α-synuclein 

fibrils (Volpicelli-Daley et al., 2011). The fibrils were successfully endocytosed by the cells and 

templated cytosolic, endogenous α-synuclein into insoluble aggregates that eventually induced 

neuronal dysfunction and cell death. Increased concentration of fibrils resulted in greater 

endocytosis and intracellular aggregation seeding, highlighting the importance of both α-

synuclein levels and oligomer state. However, the cell culture and in vivo experiments described 

have had to utilize extremely high concentrations of α-synuclein over a short time frame that 

causes an overload of normal cellular degradation pathways. These conditions are unlikely to 

reflect human pathogenesis, making it too soon to know the relevance of these findings to human 

disease. 

 

Oxidative stress from defective mitophagy 

 A second major pathway implicated in PD is the defective clearance of damaged 

mitochondria through autophagy, or mitophagy (Figure 1.1), reviewed extensively elsewhere 
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(Dauer and Przedborski, 2003; Banerjee et al., 2009). Both sporadic and familial PD patients 

have increased oxidative damage and mitochondrial dysfunction relative to controls (Hauser and 

Hastings, 2013). Poisons such as MPTP cause rare cases of human disease by inhibiting 

respiratory chain activity, increasing reactive oxygen species and selectively killing 

dopaminergic cells (Langston et al., 1983). As pacemaker cells, dopaminergic SNpC neurons 

have especially high metabolic activity (Surmeier et al., 2012), a greater number of 

mitochondria, and a smaller threshold for oxidative damage (Dauer and Przedborski, 2003). 

Furthermore, the metabolism of dopamine itself generates both reactive oxygen species and the 

toxic compound dopamine-quinone (Graham et al., 1978). Thus, any disease process leading to 

reactive oxygen species may preferentially damage dopaminergic cells. Most human studies, 

however, are by necessity correlative between mitochondrial damage and end-stage human 

disease and provide little evidence of primary mitochondrial dysfunction causing PD. The 

strongest support for the causative role of mitochondrial dysfunction, at least in familial PD, 

came with examination of the cellular pathways disturbed with mutations in parkin, PINK1, DJ-

1, and FBXO7.  

Genetic studies using Drosophila knockout models first demonstrated that PINK1 

functions upstream of parkin in the maintenance of mitochondrial health (Clark et al., 2006; Park 

et al., 2006). In vitro experiments have delineated more of the details. PINK1 normally resides 

within healthy mitochondria where it is rapidly cleaved by proteases and degraded. Following 

membrane depolarization, PINK1 accumulates in the outer mitochondrial membrane (OMM; 

Geisler et al., 2010; Matsuda et al., 2010; Narendra et al., 2010; Vives-Bauza et al., 2010), where 

it recruits parkin to depolarized mitochondria (Jin et al., 2010; Lazarou et al., 2012). Parkin 

ubiquitinates mitochondrial surface proteins like mitofusin 1 and 2. Tagged mitochondria are 
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subsequently engulfed by autophagosomes in a p62-dependent manner and degraded by 

mitophagy (Gegg et al., 2010; Ziviani et al., 2010). More recently, FBXO7, another familial PD 

protein, was shown to function in this same pathway, upstream of parkin recruitment and 

downstream of PINK1 translocation to the OMM (Burchell et al., 2013). DJ-1 likely does not 

operate in the same pathway as PINK1 and parkin (Thomas et al., 2011; though see also Hao et 

al., 2010), but does act as a sensor of mitochondrial oxidative stress (Canet-Aviles et al., 2004). 

Inactivation of DJ-1 causes impairment in mitochondrial complex I activity, production of 

reactive oxygen species, and injury to mitochondria (Ariga et al., 2013). Thus, these genes all 

seem to function in common pathways that sense and mitigate mitochondrial damage and 

oxidative stress. 

Other PD-related proteins, including α-synuclein, glucocerebrosidase, and ATP13A2, 

also affect mitochondria health and function. α-Synuclein interacts with mitochondrial 

membranes in overexpression cell models and in vivo resulting in decreased ATP production, 

increased free radical production, and increased mitochondrial fragmentation (Devi et al., 2008; 

Chinta et al., 2010; Nakamura et al., 2011). Transgenic mice overexpressing α-synuclein develop 

greater mitochondrial defects compared to controls when treated with the complex I inhibitor 

MPTP (Song et al., 2004). Mitochondria from glucocerebrosidase mutant mice similarly show 

reduced membrane potential and increased fragmentation of mitochondria, presumably because 

of decreased mitophagy	
  (Osellame et al., 2013). Cell culture experiments suggest that a similar 

process may occur with loss of ATP13A2. Knockdown of Atp13a2 in primary neurons causes an 

increase in mitochondrial mass and fragmentation, along with increased oxygen consumption 

and reactive oxygen species production (Gusdon et al., 2012). These mitochondrial changes 

appear due to poor mitophagy, rather than a primary mitochondrial defect, as they mimic defects 
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seen with autophagy inhibitors (Gusdon et al., 2012). Mutations in α-synuclein and 

glucocerebrosidase cause broad cellular dysfunction. Mitochondrial dysfunction, therefore, is 

likely not a selective deficit, but may reflect the overall deteriorating health of dying cells. It is 

unknown if ATP13A2 mutations cause widespread dysfunction or are selective to defects in 

mitophagy.  

 As more genes and pathways are identified in PD, it seems likely that mitophagy 

dysfunction does not play a causative role in sporadic disease, even if it does contribute to the 

later stages of cell death. Clinically, the disease linked with PARKIN, PINK1, and DJ-1 

mutations is distinct from the classic, idiopathic disease course (Puschmann et al., 2012). In 

addition to presenting decades earlier than sporadic PD, these mutations cause disease with a 

predominance of motor symptoms and a distinct lack of non-motor symptoms like cognitive 

changes. Symptoms progress more slowly than in idiopathic disease and remain L-DOPA 

responsive for longer. Most importantly, post-mortem tissue shows degeneration confined 

principally to the brainstem and SNpC and an absence of α-synuclein-positive LBs in all but a 

few cases. The absence of α-synuclein aggregation, more than anything else, suggests a 

fundamental difference in pathogenesis with parkin, PINK1, and DJ-1 mutants that may not 

apply to idiopathic disease.  

Endolysosomal dysfunction 

More recent PD genetic studies have linked mutations in endolysosomal proteins to 

familial forms of PD and parkinsonism. These include the lysosomal enzyme glucocerebrosidase 

(GBA), late endosomal/lysosomal ATP13A2 (ATP13A2), and many proteins involved in 

endocytosis and retromer mediated recycling: VPS35 (VPS35), synaptojanin 1 (SYNJ1), RME-8 
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(DNAJC13), auxilin (DNAJC6), and RAB7L1 (RAB7L1/PARK16). Glucocerebrosidase 

mutations directly impair lysosomal function, in keeping with the theory that defective α-

synuclein or mitochondrial degradation drives disease. ATP13A2, initially thought to be a 

lysosomal ATPase, may localize instead to the late endosomal compartment (Kong et al., 2014), 

where mutant forms may either cause autophagy defects (Dehay et al., 2012; Usenovic et al., 

2012) or otherwise impair late endosome function. How dysfunction of late endosomes, 

endocytosis or vesicle recycling contributes to PD pathogenesis needs to be further investigated 

in the context of both familial and sporadic disease. 

 The endolysosomal pathway is a complex intracellular membrane system that sorts and 

transports proteins to allotted destinations. Two of its main functions are: 1) the movement of 

cargo to/from extracellular space and 2) the degradation of organelles and proteins via 

autophagy. Several features of neurons and neuronal function may convey particular 

susceptibility to endolysosomal dysfunction. Effective inter-cellular communication in the 

nervous system relies on precise control of the levels of membrane-embedded neurotransmitted 

receptors and transporters. In addition, the unique biophysical properties of neurons, which may 

bear axons stretching the length of a human leg, require effective intracellular transport great 

distances from the neuronal cell body. Especially for post-mitotic cells, autophagy is crucial for 

the degradation of toxic proteins that accumulate with senescence, and as a source of amino acid 

and lipid building blocks needed to counteract cellular stress.  

 Movement of vesicles within the endolysosomal system requires accurate fusion and 

fission of membranes with one another, a process tightly controlled by signaling pathways of 

which Rab GTPases are key regulators (for review see Ng and Tang, 2008; Stenmark, 2009). 

Within the endolysosome system, different Rab proteins label distinct membranous 
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compartments and facilitate cargo movement by recruiting relevant signaling molecules. 

Evidence implicating Rab proteins in PD came initially from yeast screens designed to identify 

modifiers of toxicity induced by α-synuclein overexpression. α-Synuclein overexpression can 

cause dysfunction in ER to Golgi trafficking (Willingham et al., 2003; Cooper et al., 2006) and 

in retrograde transport from endosomes to Golgi (Soper et al., 2011), presumably by binding to 

vesicular membranes and preventing correct protein recruitment or vesicular movement. 

Overexpressing endolysosomal proteins Rab1, Rab3, and Rab8 rescue α-synuclein-mediated 

toxicity in neurons by offsetting impairments in ER to Golgi trafficking (Cooper et al., 2006; 

Gitler et al., 2009). Work in cell culture and post-mortem tissue has since demonstrated a 

physical interaction between α-synuclein and other Rab proteins, including Rab3 (Dalfo et al., 

2004), Rab5 (Sung et al., 2001), and Rab11 (Liu et al., 2009). At least for Rab3, the association 

is stronger between higher molecular weight α-synuclein species and the Rab protein, suggesting 

a gain of function in disease state (Dalfo et al., 2004). These studies generally employed marked 

overexpression of α-synuclein, which may lead to association with membranes and related 

proteins that do not occur in vivo. Future experiments that more closely reflect in vivo conditions 

will be needed to determine the endolysosomal compartments affected by α-synuclein function 

in normal and disease states. Other familial PD genes suggest three aspects of the endolysosomal 

system potentially important in PD pathogenesis: clathrin-mediated endocytosis, retromer 

mediated recycling, and the autophagic-lysosomal pathway. 

 

Clathrin-mediated endocytosis 

In addition to physically interacting with the synaptic vesicle-associated Rab3 (Dalfo et 

al., 2004) and endosomal Rab5 (Sung et al., 2001), α-synuclein overexpression also causes a 
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reduction in the recycling pool of synaptic vesicles (Nemani et al., 2010; Scott and Roy, 2012) 

causing a decrease in presynaptic dopamine release (Nemani et al., 2010). LRRK2 physically 

interacts with Rab5 to mediate synaptic vesicle endocytosis in primary neurons (Shin et al., 

2008; Heo et al., 2010), suggesting that vesicle recycling might be a common location for 

LRRK2 and α-synuclein function.  

The recent identification of mutations in synaptojanin 1 (SYNJ1) and auxilin (DNAJC6) 

in families with early onset parkinsonism further implicates alterations in clathrin-mediated 

endocytosis in PD. Both proteins are necessary for effective endocytosis of clathrin-coated 

vesicles (McMahon and Boucrot, 2011). Auxilin is recruited to vesicles by phosphatidylinositol 

(4,5)-bisphosphate (PIP2) and works in concert with Hsc70 to uncoat vesicles (Ungewickell et 

al., 1995). Synaptojanin 1 is the main neuronal PIP2 phosphatase, is enriched at synapses, and is 

similarly necessary in both the endocytosis and uncoating of vesicles (Mani et al., 2007). 

Individuals with Down Syndrome (DS), who carry an extra chromosomal copy of SYNJ1, as well 

as DS mouse models, show enlarged endosomes, which are normalized following SYNJ1 

silencing (Cossec et al., 2012). Furthermore, synaptojanin 1 has been implicated in AD (Berman 

et al., 2008). Hemizygosity of Synj1 in mice rescues AD behavioral and synaptic phenotypes 

(McIntire et al., 2012), likely by altering the flux of amyloid precursor protein (APP) away from 

the endosome and towards lysosomal degradation (Zhu et al., 2013). It is unknown how 

mutations in SYNJ1 and DNAJC6 cause parkinsonism, but recessive inheritance and loss of 

phosphatase activity with the R58Q synaptojanin 1 mutation (Krebs et al., 2013) suggest a loss 

of function mechanism.  

Alterations in synaptic clathrin-mediated endocytosis may lead to decreased availability 

of vesicles for dopamine with corresponding increases in extra-vesicular dopamine at the 
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synapse. Increased dopamine within the synapse could react with reactive oxygen species to 

form toxic species. Endocytosis changes could also affect the membrane localization of other 

pre- or post-synaptic proteins at the nigrostriatal synapse (Cheng et al., 2011; Kisos et al., 2014) 

or affect the uptake of α-synuclein during prion-like transmission. Finally, disruption of clathrin-

mediated endocytosis may have still to be determined effects on vesicle trafficking that may 

affect intracellular α-synuclein levels, signaling cascades, or synaptic function. 

 

Retromer mediated recycling 

Recently, two independent studies showed an interaction between several PD-related 

proteins in vesicle trafficking between the trans-Golgi network (TGN) and endosomes. Both 

studies began by looking for genes and proteins that interact with LRRK2, either genetically or 

physically and both identified the Rab GTPase, Rab7L1, whose gene is one of five within the 

PARK16 locus, as functioning in a common pathway with LRRK2. MacLeod et al. found that 

variation in the RAB7L1 gene interacts with LRRK2 to influence risk of sporadic PD (MacLeod 

et al., 2013). Rab7L1 overexpression rescues mutant LRRK2 neurodegenerative phenotypes in 

both primary neurons and Drosophila. To understand the cellular function of these two proteins, 

MacLeod et al. showed that LRRK2 and Rab7L1 function in a common pathway where loss of 

either protein causes lysosomal swelling and decreased recycling of the cation-independent 

mannose-6-phosphate receptor (CI-MPR) to the TGN. Loss of LRRK2 or Rab7L1 caused 

decreased levels of the retromer proteins VPS35 and VPS26, likely accounting for the decreased 

recycling of CI-MPR. The PD-related proteins VPS35 and RME-8 both function in retromer-

mediated recycling, further implicating this pathway in PD pathogenesis.  
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In a complementary study, Beilana et al. used unbiased protein-protein interaction arrays 

to show that LRRK2 forms a co-complex with Rab7L1, Cyclin-G-associated kinase (GAK), and 

Bcl2-associated athanogene (BAG5) (Beilina et al., 2014). In overexpression studies in vitro, this 

co-complex mediates the clearance of the trans-Golgi network via autophagy, which initially 

seems the inverse of the results from MacLeod et al. However, experimental differences make 

direct comparisons difficult between the two. Importantly, two independent screens looking for 

genetic or physical interactors of LRRK2 both identified Rab7L1 as a LRRK2-interacting 

protein. Most likely, the two proteins function (perhaps in conjunction with GAK, BAG5, and/or 

retromer) to coordinate the movement of vesicles between endosomes and TGN. Disruption of 

this complex results in a relative increase in flux from TGN to lysosomes, but whether this 

increase occurs from enhancement of forward trafficking or inhibition of retrograde trafficking is 

unclear. How this retromer-mediated recycling contributes to PD pathogenesis requires more cell 

biological and in vivo studies. Retromer proteins are decreased in post-mortem tissue from AD 

patients (Small et al., 2005), causing increased retention and cleavage of APP into toxic amyloid 

β in the endosomal compartment (Small and Gandy, 2006). A comparable process is unlikely to 

happen with α-synuclein in PD, but perhaps a relative increase in flux to the lysosome affects α-

synuclein degradation or aggregation through another mechanism. 

 

Autophagic-lysosomal pathway 

Autophagy is one of two major degradation pathways in the cell. It allows the delivery of 

cytosolic components to the lysosome for degradation and recycling. Macroautophagy (Figure 

1.1) occurs when a double membrane vesicle sequesters a large portion of the cytosol and then 

fuses with a lysosome or late endosome to mediate the degradation of its contents (Yang and 
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Klionsky, 2010). Microautophagy involves a small invagination of the cytosol directly into the 

lysosome (Uttenweiler and Mayer, 2008). Finally, CMA is a process whereby proteins with 

KFERQ motifs are bound to Hsc70 and translocated across the lysosomal membrane by the 

lysosomal membrane protein LAMP2A (Kaushik and Cuervo, 2012).  

Autophagy was first implicated in PD pathogenesis in studies of α-synuclein proteostasis. 

α-Synuclein degradation is incompletely understood. The ubiquitin-proteasome system, 

macroautophagy, and CMA all can degrade α-synuclein, but the relative proportion of α-

synuclein degraded by these pathways is unclear, and changes depending on folding state, 

cellular localization, or oligomeric state of α-synuclein, and the presence of cellular stressors 

(Webb et al., 2003; Cuervo et al., 2004; Ebrahimi-Fakhari et al., 2011). α-Synuclein itself can 

inhibit macroautophagy (Winslow et al., 2010) and CMA (Cuervo et al., 2004) blocking the 

degradation of itself and other proteins. Inhibition of autophagy upregulates the ubiquitin-

proteasome and vice versa, providing crosstalk between the various intracellular pathways 

(Ebrahimi-Fakhari et al., 2011). One unifying theory, widely embraced, is that an upstream event 

either promotes α-synuclein aggregation or inhibits autophagy, creating a positive feedback loop 

between autophagic deficits and α-synuclein aggregation ultimately leading to cell death.  

One prediction from this theory is that other PD-related proteins could initiate this 

feedback loop by disrupting autophagic function. In vitro, LRRK2 has been found on the 

membranes of multivesicular bodies and autophagic vacuoles, with a PD-mutant LRRK2 causing 

incomplete autophagic degradation (Alegre-Abarrategui et al., 2009). The Drosophila LRRK2 

homolog physically interacts with Rab7 to position lysosomes (Dodson et al., 2012). LRRK2 

null mice develop age-related impairment of autophagy in the kidney, resulting in α-synuclein 

aggregation (Tong et al., 2010). Yet, further study showed that autophagy is initially increased in 
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younger LRRK2 null animals (Tong et al., 2012), making it unclear if LRRK2 serves a primary 

function in autophagy or if the autophagic changes observed were secondary to other cellular 

defects.   

Mazzulli et al. (2011) provide the most compelling evidence for a positive feedback loop 

between autophagy disruption and α-synuclein aggregation using PD-related mutations in 

glucocerebrosidase. Loss of glucocerebrosidase function caused a disruption of lysosomal 

degradation both in vitro and in vivo, causing the accumulation of α-synuclein, and 

corresponding neurotoxicity. Aggregating α-synuclein caused further impairment of lysosomal 

function, completing the loop (Mazzulli et al., 2011). In vitro work suggests a similar mechanism 

for mutations in ATP13A2 (Dehay et al., 2012; Usenovic et al., 2012). Whether other 

endolysosomal proteins implicated in PD have similar effects on autophagic function and α-

synuclein aggregation is unknown and will be important to elucidate pathogenesis. 

 

The discovery of PD-related mutations in multiple endolysosomal proteins suggests 

several lines of inquiry important for future study. First, it will be important to understand the 

specific steps in the endolysosomal pathway that are affected by mutations in these proteins and 

delineate the subsequent sequence of pathogenic events. Vesicle trafficking has predominantly 

been examined in the context of α-synuclein accumulation and transmission. Cell biological and 

in vivo studies are needed to clarify if, and how, primary dysfunction of the lysosome, late 

endosome, retromer, or endocytic pathway causes neurodegeneration. Perhaps most pressing is 

to what extent and how these various pathways interact. Some preliminary studies, primarily in 

cell culture, suggest overlap between α-synuclein homeostasis, mitochondrial dysfunction, 

and/or vesicle trafficking, but no work has demonstrated in vivo if these pathways converge on a 



	
   30	
  

common endpoint or operate in parallel to one another. Depending on the degree of interaction, it 

will be important to identify early sites of dysfunction as points of maximal therapeutic 

intervention. For example, if lysosomal dysfunction is ‘upstream’ of both α-synuclein 

aggregation and oxidative stress, then normalizing lysosomal function early in the disease course 

may limit later sequelae like spreading α-synuclein pathology or non-motor symptoms.  

 

ATP13A2 biology 

ATP13A2 is a P-type ATPase of unknown function that localizes to the lysosome 

(Ramirez et al., 2006) and/or late endosome (Podhajska et al., 2012), though recent work with 

antibody against the endogenous protein raises questions as to precisely which of the two 

compartments it localizes to (Kong et al., 2014). In addition to the established association with 

juvenile-onset KRS (described above), mutations have been linked to a family with early-onset 

neuronal ceroid lipofuscinosis (NCL; Bras et al., 2012) and a form of NCL in Tibetan terriers 

(Farias et al., 2011; Wohlke et al., 2011). Mutations likely cause loss of function of the 

ATP13A2 protein as they have recessive inheritance patterns (Ramirez et al., 2006; Di Fonzo et 

al., 2007; Bras et al., 2012; Eiberg et al., 2012), include early frame-shift mutations or large, in 

frame deletions (Ramirez et al., 2006). 
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Figure 1.2. Predicted topology of human ATP13A2 structure with location of KRS-linked 
mutations. As a P-type ATPase, ATP13A2 has 10 transmembrane domains with an actuator 
domain (A-domain), catalytic phosphorylation site domain (P-domain), and nucleotide binding 
domain. Disease-linked mutations include frameshift mutations (orange hexagon), missense 
mutations (yellow stars), or an in-frame exon skipping (pink shading).  

 

 

Phylogenetically, ATP13A2 is related to ion transporters and lipid flippases (Schultheis 

et al., 2004). It likely functions in the endolysosomal membrane compartments to transport heavy 

metals or alter lipid composition of membrane, though its exact function and substrate remain 

unclear. In vitro studies have tenuously linked it to the transport of multiple heavy metals (Gitler 

et al., 2009; Tan et al., 2011; Covy et al., 2012; Podhajska et al., 2012; Tsunemi and Krainc, 

2013). ATP13A2 knockdown in cell culture causes increased lysosome size and number, 

autophagic deficits, modestly elevated levels of α-synuclein, and neurotoxicity (Dehay et al., 

2012; Usenovic et al., 2012). In a recent report, Atp13a2 null mice show mild behavioral 

abnormalities, increased autofluorescence indicative of lipofuscinosis, and modest increases in 

insoluble α-synuclein (Schultheis et al., 2013). 
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Several features make ATP13A2 an excellent candidate gene for probing the link between 

endolysosomal dysfunction and PD pathogenesis. Human patients with KRS present with 

prominent early parkinsonism (age of onset: 10-20 years old), and with additional neurological 

features suggestive of widespread neurodegeneration. The presence of behavioral abnormalities 

in both a dog (Farias et al., 2011; Wohlke et al., 2011) and mouse model of the disease 

(Schultheis et al., 2013) suggests that the neurodegenerative processes occur within the lifespan 

of a mouse, making it easier to model than other PD-related genes, which have been largely 

unrevealing (Dawson et al., 2010). The changes to autophagy and α-synuclein proteostasis in 

vitro (Dehay et al., 2012; Usenovic et al., 2012) coincide with pathogenesis occurring in a time 

frame amenable to study. Establishment of a Atp13a2 null mouse model will allow the careful 

dissection of the behavioral, pathological, and endolysosome biological changes that result in 

PD-related neurodegeneration.  

 

Research objectives 

Despite recent genetic and biochemical understanding of the link between endolysosomal 

biology and PD, it remains unclear how primary endolysosomal dysfunction results in disease 

pathogenesis. A better knowledge of the mechanisms underlying neurotoxicity is necessary to 

pursue more directed therapeutic strategies that halt or reverse PD progression. My research 

seeks to address this gap in knowledge by concentrating on two major questions. The first 

objective is to establish a novel mouse model in which primary endolysosomal dysfunction 

results in clear behavioral and neuropathological phenotypes consistent with PD-related 

neurodegeneration. In Chapter 2, I present a new mouse model in which the PD-related gene 

Atp13a2 has been knocked out, resulting in age-related motor abnormalities and progressive 
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neuropathology including gliosis, lipofuscinosis, and protein accumulation. I then demonstrate 

via biochemical and genetic studies that these pathological changes are independent of α-

synuclein proteostasis. Chapter 3 then addresses the mechanisms by which loss of Atp13a2 

results in these behavioral and pathological phenotypes and shows the accumulation of 

autophagic substrates and selective changes to cathepsin D maturation. As a secondary objective, 

Chapter 4 explores a novel interaction between the PD-related protein LRRK2 and microtubules, 

the main structures responsible for endolysosomal vesicle movement within the cell. Taken 

together, these results provide new understanding into the mechanisms by which mutations in 

ATP13A2 and LRRK2 result in neurodegeneration and PD.  
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Chapter 2 

 

α-Synuclein-Independent Histopathological and Motor Deficits in Mice Lacking 

the Endolysosomal Parkinsonism Protein Atp13a21 

 

Abstract 

Accumulating evidence from genetic and biochemical studies implicate dysfunction of 

the autophagic-lysosomal pathway as a key feature in the pathogenesis of Parkinson disease 

(PD). Most studies have focused on accumulation of neurotoxic α-synuclein secondary to defects 

in autophagy as the cause of neurodegeneration, but abnormalities of the autophagic-lysosomal 

system likely mediate toxicity through multiple mechanisms. To further explore how 

endolysosomal dysfunction causes PD-related neurodegeneration, I generated a murine model of 

Kufor-Rakeb syndrome (KRS), characterized by early-onset Parkinsonism with additional 

neurological features. KRS is caused by recessive loss-of-function mutations in the ATP13A2 

gene encoding the late endosomal/lysosomal ATPase ATP13A2. I show that Atp13a2 null mice 

develop age-related motor abnormalities that are preceded by neuropathological changes 

including gliosis, accumulation of ubiquitinated protein aggregates, lipofuscinosis, and 

lysosomal abnormalities. Contrary to predictions from in vitro data, in vivo mouse genetic 
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Independent Histopathological and Motor Deficits in Mice Lacking the Lysosomal Parkinsonism Protein Atp13a2.	
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studies demonstrate that these phenotypes are α-synuclein-independent. Our findings indicate 

that lysosomal dysfunction and abnormalities of α-synuclein homeostasis are not synonymous - 

even in the context of a lysosomal genetic defect linked to parkinsonism – and highlight the 

presence of α-synuclein-independent neurotoxicity consequent to endolysosomal dysfunction.	
  	
  

	
  

	
  

Introduction 

Parkinson disease (PD) is a common, debilitating neurodegenerative disease 

characterized by profound slowing of movement (bradykinesia), resting tremor, rigidity, and 

postural instability. Symptoms are linked to degeneration of dopaminergic neurons in the 

substantia nigra pars compacta (SNpC; Dauer and Przedborski, 2003). Patients also suffer from 

gait abnormalities and non-motor symptoms such as depression and dementia, which relate to 

extranigral degeneration; these symptoms are unresponsive to dopamine replacement and cause 

significant morbidity. Medical therapy of PD is limited to symptom suppression and has not 

changed substantially in more than forty years, in part because of limited understanding of the 

mechanisms responsible for PD-related neurodegeneration.  

Autophagic-lysosomal pathway (ALP) dysfunction is increasingly recognized as a key 

element of disease pathogenesis. α-Synuclein, which forms characteristic protein aggregates 

(Lewy Bodies) in PD and other neurodegenerative diseases, is degraded in part by the ALP 

(Webb et al., 2003; Cuervo et al., 2004). Familial PD has been linked to genetic mutations in α-

synuclein and several endolysosomal proteins, including glucocerebrosidase (Aharon-Peretz et 

al., 2004; Sidransky et al., 2009), VPS35 (Vilarino-Guell et al., 2011; Zimprich et al., 2011), 

Rab7L1 (Satake et al., 2009; Simon-Sanchez et al., 2009; MacLeod et al., 2013), synaptojanin 1 

(Krebs et al., 2013; Quadri et al., 2013), and ATP13A2 (Ramirez et al., 2006). Disruption of 
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lysosomal glucocerebrosidase, encoded by GBA, causes ALP dysfunction, α-synuclein 

accumulation, and neurotoxicity (Mazzulli et al., 2011). These studies suggest a common 

mechanism by which ALP dysfunction may cause PD: autophagic dysfunction leading to α-

synuclein accumulation and neurotoxicity. Yet, few studies of lysosomal proteins have directly 

tested this hypothesis and loss of most lysosomal proteins causes accumulation of substrates 

other than α-synuclein suggesting additional mechanisms through which ALP dysfunction can 

cause neurodegeneration.  

Recessive mutations in ATP13A2, the gene encoding late endosomal/lysosomal 

ATP13A2, cause Kufor-Rakeb Syndrome (KRS;	
  Ramirez et al., 2006), an autosomal-recessive 

form of L-DOPA-responsive juvenile parkinsonism with additional neurological features, 

including pyramidal signs, dementia, psychosis, supranuclear gaze palsy, and myoclonus (Najim 

al-Din et al., 1994; Williams et al., 2005; Ramirez et al., 2006; Di Fonzo et al., 2007; Behrens et 

al., 2010; Bruggemann et al., 2010; Fong et al., 2011; Santoro et al., 2011). No neuropathological 

data exists from human patients, though a recent study of Atp13a2 null mice showed increased 

autofluorescence in multiple brain regions (Schultheis et al., 2013), indicative of increases in the 

storage material lipofuscin. Neuroimaging of KRS subjects demonstrates diffuse cerebral and 

cerebellar atrophy (Behrens et al., 2010; Bruggemann et al., 2010). A recessive mutation in 

canine ATP13A2 causes adult-onset neuronal ceroid lipofuscinosis (NCL) in Tibetan terriers 

(Farias et al., 2011; Wohlke et al., 2011). Affected terriers display brain atrophy and behavioral 

changes with diffuse lipofuscinosis (Farias et al., 2011), but SNpC histopathology was not 

commented upon specifically.  

ATP13A2 is a Type 5 P-type ATPase of unknown function. A loss-of-function 

mechanism of disease pathogenesis is suggested by the recessive inheritance pattern and in vitro 
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studies showing that mutant proteins do not traffic correctly to the lysosome (Park et al., 2011; 

Podhajska et al., 2012). ATP13A2 knockdown in cell culture causes increased lysosome size and 

number, reduced protein degradation through the ALP, modestly elevated levels of α-synuclein, 

and neurotoxicity (Dehay et al., 2012; Usenovic et al., 2012).  

To dissect the relationship between endolysosomal dysfunction, α-synuclein 

accumulation, and neurodegeneration in the context of parkinsonism, I generated and 

characterized Atp13a2 null mice. I hypothesized that Atp13a2 null mice would recapitulate key 

features of KRS and the molecular abnormalities identified in vitro, including endolysosomal 

dysfunction, α-synuclein accumulation, neurotoxicity, and consequent behavioral abnormalities. 

Consistent with this hypothesis, Atp13a2 null mice exhibit age-related motor deficits 

accompanied by widespread gliosis, endolysosomal abnormalities, increased lipofuscin deposits 

and ubiquitinated protein aggregates. Strikingly, loss of Atp13a2 caused no α-synuclein-related 

abnormalities in mice up to 18 months old, including absence of α-synuclein aggregates, no 

increase in high molecular weight species or change in steady state α-synuclein levels. Moreover, 

modulating α-synuclein levels by intercrossing Atp13a2 null mice with α-synuclein null or 

overexpressing transgenic lines did not change the onset or extent of pathological changes 

observed in Atp13a2 null mice. These findings highlight that α-synuclein homeostasis may 

remain normal in the presence of significant disruption of the endolysosomal system, and 

emphasize that ALP dysfunction, even when provoked by Parkinson-related triggers, can cause 

neurotoxicity through α-synuclein-independent mechanisms.  
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Results 

Generation of Atp13a2 null mice. 

To investigate the relationship between endolysosomal dysfunction and PD-related 

neurodegeneration, I generated Atp13a2 null mice and examined these animals for relevant 

behavior and histopathological abnormalities. Insertion of LoxP sites around exons 2 and 3 

generated Atp13a2-flx mice. Crossing Atp13a2-flx mice to a Rosa-Cre mouse that expresses Cre 

in the germline resulted in Atp13a2 null mice (Figure 2.1A). RT-PCR analysis and cDNA 

sequencing of RNA derived from these animals confirmed the expected recombination, and 

deletion of Atp13a2 mRNA (Figure 2.1B). Atp13a2 protein levels were not examined due to lack 

of specific Atp13a2 antibodies. 

 

Atp13a2 null mice have decreased spontaneous movement and develop abnormal movements 

All Atp13a2 genotypes were obtained in Mendelian ratios (84 wild type, 150 heterozygous, 87 

Atp13a2 null mice, total 321; χ2 = 1.43, d.f. = 2, p = 0.49). Initially indistinguishable from 

littermate controls, 18-month-old Atp13a2 null mice adopted abnormal clasping positions during 

tail suspension (Figure 2.2A). While wild type mice reflexively kicked their limbs and rarely 

exhibited any form of limb clasping, a significant proportion of Atp13a2 null mice clasped their 

rear limbs, a behavior unseen in any mice at 12 months of age. To further characterize the 

temporal profile of motor abnormalities in these mice, I tested a cohort of 13 null and 16 wild 

type littermate male mice every three months from 9 to 18 months of age in tests of motor 

behavior, including open field, balance beam and accelerating rotarod. Three null mice died 

during the study at 6, 12, and 13 months of age. The 12-month old mouse died of an eye 

infection; the other two died of unknown causes. In the open field, Atp13a2 null mice displayed 
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decreased spontaneous horizontal movement relative to wild type littermates (2-way repeated 

measures ANOVA: Fgenotype(1, 21) = 7.09; p = 0.015; Ftime(3, 63) = 1.31; p = 0.28; Finteraction(3,63) 

= 0.16; p = 0.92; Figure 2.2B). No significant difference was observed in thenumber of rears (2-

way repeated measures ANOVA: Fgenotype(1, 21) = 3.69; p = 0.069; Ftime(3, 63) = 1.83 p = 0.15; 

Finteraction(3,63) = 0.054; p = 0.98; Figure 2.2C). No significant differences between Atp13a2 null 

and littermate control mice were observed in balance beam or Rotarod testing up to 18 months of 

age (Figure 2.2D). To determine the selectivity of the motor abnormalities, I assessed the mice in 

the Morris water maze, a test of learning and memory. At 9 months of age, Atp13a2 null mice 

had no deficits locating the hidden platform both during the learning (Figure 2.2E top) and 

memory (Figure 2.2E bottom) components of the Morris water maze. Atp13a2 null mice located 

a visible platform in the same time as wild type mice, indicating no alteration in motor ability at 

this age (data not shown). 
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Figure 2.1. Generation of Atp13a2 null mice. A, Targeting strategy to generate Atp13a2 null 
mice. Diagram shows the Atp13a2 locus and insertion of LoxP sites around exons 2 and 3. 
Crossing to a mouse that expresses Cre recombinase in the germline resulted in deletion of exons 
2 and 3 and the insertion of a premature stop codon in exon 4. B, Levels of Atp13a2 cDNA 
generated from RNA isolated from 6-month old wild type, heterozygous, or Atp13a2 null mouse 
brain (left). cDNA sequencing of Atp13a2 locus shows successful recombination resulting in a 
premature stop codon (right). 
 

 
  

A. full-length
Atp13a2

gene

wildtype

Atp13a2 flx/flx

Atp13a2 null

LoxP site5’ untranslated region
coding region FRT site

Neo

Flp mediated recombination

Cre mediated recombination

X Premature stop codon

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 4 5 6 7 8

4 5 6 7 82 3
targeting
construct

Homologous recombination

X

B.

Atp13a2 null

Wildtype
Brain RNA

ȕ-actin

W
T KO/+

KO/K
O

Atp13a2

400
300

500

bp

300

200 STOP



	
   41	
  

Figure 2.2. Atp13a2 null mice display age-related motor abnormalities. A, 18-month-old 
wild type (left) or Atp13a2 null mouse (right) during tail suspension. Atp13a2 null mice adopted 
abnormal clasping position, which was quantified as the percentage of mice displaying clasping 
at 12 months and 18 months (χ2 = 7.27, N = 18 wild type, 15 Atp13a2 null, p < 0.05). B, 
Spontaneous beam breaks during 1 hour in the open field apparatus. Wild type and Atp13a2 null 
mice were tested every 3 months from 9 months to 18 months of age, with beam breaks 
measured in five-minute bins for 1 hour. There was an effect of genotype but not of time 
(Repeated measures ANOVA: Fgenotype(1, 21) = 7.09; p = 0.015; Ftime(3, 63) = 1.31; p = 0.28; 
Finteraction(3,63) = 0.16; p = 0.92). A Bonferroni’s post-hoc test showed decreased movements at 
15 months (†; t = 2.42, p = 0.024). C, Spontaneous rears during 1 hour in the open field 
apparatus. Wild type and Atp13a2 null mice were tested every three months from 9- to 18-
months-old, with rears measured in five-minutes bins for 1 hour. D, Wild type and Atp13a2 null 
mice were tested for time to traverse a 5 mm balance beam (left) and latency to fall from an 
accelerating rotarod (right) every three months from 9- to 18-months old. E, Wild type and 
Atp13a2 null mice were trained over five days to find a hidden platform in the Morris water 
maze at 9 months of age (top). Six days after training concluded, mice were probed for ability to 
recall platform location (bottom). N = 13 wild type and 17 Atp13a2 null male mice. Error bars 
represent SEM; statistically significant differences are indicated (* p < 0.05, *** p < 0.001).  
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Atp13a2 null mice develop widespread gliosis  

The decreased horizontal movements observed in open field testing, in combination with 

age-related abnormal movements during tail suspension, suggested that Atp13a2 null mice would 

exhibit neuropathological changes consistent with PD and KRS, including neuroinflammation, 

lipofuscinosis, protein aggregation, and accumulation of α-synuclein. I first examined brains 

from 18-month-old Atp13a2 null mice and littermate controls, the age of onset of the motor 

phenotype. I assessed markers of neurodegeneration, lipofuscinsosis, and protein aggregation. 

Aged Atp13a2 null brains exhibited a pronounced increase in gliosis throughout many brain 

regions, including, but not limited to, cortex, striatum, hippocampus, cerebellum, thalamus, and 

midbrain (Figure 2.3A, B). Gliosis was confirmed by Western blot analysis of microdissected 

brain tissue, with elevated levels of GFAP protein observed in the cortex, cerebellum, 

hippocampus, and midbrain of Atp13a2 null brain lysates relative to wild type controls (Figure 

2.3C). In contrast to the delayed onset of clasping, gliosis was present in the cortex as early as 1 

month of age, though showed the most dramatic increase by 12 months (Figure 2.3D). The 

GFAP-positive percentage of cortex was increased in Atp13a2 null mice at all ages relative to 

their wild type littermates, with a five-fold increase in glial immunostaining at 6 months of age, 

and a 10-fold increase in glial reactivity by 12 months of age, consistent with an age-related 

worsening of gliosis. The neuroinflammation was selective for activation of astrocytes as no 

increase in microglia numbers (as assessed by Iba1) or activation (F4/80) was observed (Figure 

2.3E). 
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Figure 2.3. Atp13a2 null CNS tissue exhibits widespread age-dependent gliosis. A, B, 40 µm 
sagittal sections from 18-month-old wild type (A, above) or Atp13a2 null (A, below) mouse 
brains show diffuse GFAP immunoreactivity throughout the brain, including the cortex, 
cerebellum, and hippocampus. C, Quantitative Western blot analysis of GFAP expression in the 
cortex, cerebellum, hippocampus, midbrain, and striatum of 18-month-old mice; 5 µg protein 
loaded/lane; n = 11 wild type and 10 Atp13a2 null mice. D, Immunohistochemistry for GFAP in 
the cortex of wild type and Atp13a2 null mice at the indicated ages. Quantification (right) shows 
percent area of the cortex that is GFAP-positive normalized to wild type tissue of the same age; n 
= 4 to 8 animals/genotype at each time point. E, Immunostaining for microglia number (Iba1) 
and activation (F4/80) in cortex of 18-month-old wild type or Atp13a2 null mice. Statistically 
significant differences are indicated (* p < 0.05). Error bars indicate SEM. Scale bars: B, D, E, 
200 µm. 
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Increased lipofuscinosis and lysosomal markers in Atp13a2 null mice. 

Previous studies have suggested increased autofluorescence and lipofuscin deposits with 

loss of Atp13a2 in vivo (Farias et al., 2011; Schultheis et al., 2013). Similar to these previous 

reports, I observed increased autofluorescence (Figure 2.4A) and lipofuscinosis (Figure 2.4B) in 

multiple brain regions in Atp13a2 null mice relative to age-matched wild type controls. The 

autofluorescence was successfully quenched by treatment with 0.3% Sudan Black in 70% 

ethanol (Figure 2.4A, right panel), allowing us to perform immunofluorescence in tissue from 

Atp13a2 null brains. Animal models of NCL with increased autofluorescence and gliosis, 

including the Tibetan Terrier model, exhibit lipofuscinosis by electron microscopy (Koike et al., 

2000; Gupta et al., 2001; Katz et al., 2005; Katz et al., 2007; Weimer et al., 2009; Farias et al., 

2011). To determine whether similar abnormalities occurred in aged Atp13a2 null mice, I 

performed electron microscopy on multiple brain regions displaying gliosis and 

autofluorescence, including cortex, cerebellum, hippocampus, and striatum. Similar to other 

animal models of NCL, I observed prominent lipofuscin deposits in neurons from all regions 

displaying autofluorescence and gliosis (Figure 2.4B). The lipofuscin deposits consisted of large, 

electron dense material, frequently containing membranous structures, in close association with 

large lipid droplets. Lipid droplets typically contain neutral lipids such as triglycerides and 

cholesterol esters and are ALP substrates (Singh et al., 2009). Lipid droplets were larger and 

more numerous in Atp13a2 null compared to wild type littermate tissue (Figure 2.4C). To clarify 

the temporal relationship between lipofuscin and gliosis, I performed an EM analysis of cortex 

from one-month-old tissue, when there is gliosis but no autofluorescence. One-month-old 

Atp13a2 null tissue exhibited increases in the number of lipofuscin deposits, but no difference in 
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lipid droplets (Figure 2.4D). This analysis suggests a close association between lipofuscin 

deposition and gliosis, and indicates that abnormalities of lipid homeostasis occur later in the 

pathogenic cascade. 

 

Figure 2.4. Atp13a2 null neurons accumulate lipofuscin and lipid droplets. A, 
Autofluorescence in 40 µm sagittal sections from wild type or Atp13a2 null mice (18-months-
old). Ten-minute incubation with 0.3% Sudan Black in 70% ethanol (right panel) quenched 
autofluorescence. B, Ultrastructural analyses of 12-month-old wild type (top left) or Atp13a2 
null mouse cortex (top middle, right), Purkinje cell of the cerebellum (bottom left), striatum 
(bottom middle) or hippocampus (bottom right); n = 40 neurons/genotype. C, Quantification of 
the number and size of lipid droplets associated with lipofuscin in neurons from 12-month-old 
wild type and Atp13a2 null mice; n = 40 neurons/genotype. D, Ultrastructural analyses of cortex 
from 1-month-old wild type (left) and Atp13a2 null mice (middle, right); n = 40 
neurons/genotype. Scale bars: A, 200 µm, B left, middle, 2 µm, B inset, bottom panels, D, 500 
nm.  
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In vitro studies suggest that loss of ATP13A2 function causes increases in the number 

and size of lysosomes (Dehay et al., 2012; Usenovic et al., 2012), potentially as compensation 

for poor lysosomal function. Similar to these reports, I found increases in immunofluorescent 

staining (Figure 2.5A) and protein levels (Figure 2.5B) of the lysosomal markers LAMP1 and 

LAMP2. Bis(monoacyl-glyceryl)phosphate (BMP) is a lipid species found exclusively within 

late endosomes and lysosomes (Kobayashi et al., 1998; Gallala and Sandhoff, 2011) and has 

been found to accumulate in the lysosomal storage disorder Niemann-Pick type C disease 

(Chevallier et al., 2008) and AD (Chan et al., 2012). Lipidomic analysis demonstrated increased 

levels of BMP in 18-month Atp13a2 null cortical lipid extracts (Figure 2.5C), but no changes in a 

range of other lipid species (see Chapter 3 for discussion of lipidomic analysis), consistent with a 

rather selective perturbation of these organelles. These findings are consistent with the previous 

in vitro studies and may reflect compensatory changes in the ALP following improper clearance 

of lysosomal substrates. Increased LAMP1 immunofluorescence was not observed until six 

months of age (Figure 2.5D), demonstrating that lysosomal accumulation follows abnormal 

lipofuscin deposition and gliosis. Although I observed an increase in cortical lipid droplets by 

ultrastructural analysis, there were no changes to triglycerides and/or cholesterol esters by 

lipidomic analysis (Triglycerides: wild type mol. % = 0.049 + 0.002 %, Atp13a2 null mol. % = 

0.053 + 0.003%, t = 1.085, d.f. = 4, p = 0.34; cholesterol esters: wild type mol. % = 1.635 + 

0.577%, Atp13a2 null mol. % = 1.694 + 0.272%, t = 0.092, d.f. = 4, p = 0.93). 
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Figure 2.5. Age-dependent accumulation of lysosomal proteins and lipids in the Atp13a2 
null CNS. A, 40 µm sections from 18-month-old Atp13a2 null or littermate wild type mouse 
brain sections stained for LAMP2 immunofluorescence in cortex and cerebellum. B, Quantitative 
Western blot analysis of LAMP1 expression in the cortex and cerebellum of 18-month-old mice; 
20 µg protein loaded/lane; n = 7 wild type and 6 Atp13a2 null mice. C, Levels of the lysosomal 
lipid bis(monoacylglyceryl)phosphate (BMP) isolated from 18-month-old cortical lipid extracts 
from wild type and Atp13a2 null animals; n = 3 per genotype. Data are shown as the mean mol 
%, which was calculated by summing up the total moles of all lipid species and then normalizing 
the total to mol %. D, LAMP1 immunofluorescence of cortex from wild type and Atp13a2 null 
mice at the indicated ages. Immunofluorescence was quantified as mean fluorescence intensity 
for images taken from 5 cortical fields per animal and normalized to wild type tissue of the same 
age; n = 4 animals/genotype at each time point. Statistically significant differences are indicated 
(* p < 0.05, *** p < 0.001). Error bars indicate SEM. Scale bars: A, D, 100 µm. 
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Protein aggregation but no α-synuclein abnormalities in Atp13a2 null mice 

The observed lysosomal abnormalities and in vitro studies of ATP13A2 function (Dehay 

et al., 2012; Usenovic et al., 2012) suggested that proteolysis was disrupted in Atp13a2 null 

mice, a situation commonly associated with abnormal deposition of aggregated protein. 

Consistent with this notion, Atp13a2 null tissue exhibited large ubiquitin-positive aggregates 

(Figure 2.6A) most prominently in the cortex and hippocampus, and sparingly in other regions 

such as the SNpC; such deposits were never observed in wild type tissue. These ubiquitin-

positive inclusions co-localized with immunofluorescence for NeuN, but not GFAP or Iba1, 

indicating a selective localization within neurons (Figure 2.6B). Given the central role of α-

synuclein in PD pathogenesis and in vitro data linking ATP13A2 function to α-synuclein 

homeostasis (Dehay et al., 2012; Usenovic et al., 2012), I next assessed aged Atp13a2 null tissue 

for changes in α-synuclein levels or aggregation. In contrast to predictions from in vitro studies, 

no α-synuclein-positive aggregates or changes in α-synuclein levels were observed in Atp13a2 

null tissue (Figure 2.6C, D). Furthermore, α-synuclein antibodies did not co-label the ubiquitin-

positive inclusions found in 18-month-old Atp13a2 null mice (data not shown). No difference in 

α-synuclein solubility was observed in lysates from 18-month-old Atp13a2 null cortex 

sequentially extracted in buffers of increasing detergent (Figure 2.6E; high salt, 1% Triton-X, 

and 1% SDS), consistent with the immunohistochemical and Western blot analyses. The 

neurodegenerative protein tau also accumulates in both human patients with PD and in mouse 

models of the disease (Li et al., 2009), especially as pathology spreads to non-nigral regions 

(Irwin et al., 2013). However, loss of Atp13a2 did not increase tau levels or localization in 18-

month-old mice in any of the brain regions examined (Figure 2.7). 

 



	
   50	
  

Figure 2.6. Abnormal accumulation of ubiquitin-positive aggregates, but absence of α-
synuclein-related pathology in Atp13a2 null mice. A, 40 µm sections of cortex and 
hippocampus from Atp13a2 null or littermate control mouse brains stained for ubiquitin. B, 
Ubiquitin inclusions (shown in red) from Atp13a2 null mice colocalize with the neuronal marker 
NeuN, but not GFAP (shown in green). C, 40 µm sections from 18-month-old wild type or 
Atp13a2 null mouse brains stained for α-synuclein with tissue from α-synuclein null brain shown 
as a control. D, Quantitative Western blotting of α-synuclein protein levels from multiple brain 
regions; 5 µg protein loaded/lane; n = 12 wild type and 10 Atp13a2 null mice. Error bars indicate 
SEM. E, Sequential extraction of cortical lysates from 18-month-old wild type or Atp13a2 null 
mice in either high salt (HS), high salt plus 1% Triton-X100 (HS + Tx), or 1% SDS lysis buffer; 
n = 3 per genotype. Scale bars: A, 200 µm, B, 50 µm, C, 400 µm. 
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Figure 2.7. No alteration to tau levels or localization in 18-month-old Atp13a2 null mice. A, 
Western blotting of total tau protein levels from multiple brain regions of wild type or Atp13a2 
null mice; 5 µg protein loaded/lane. B, 40 µm sections from 18-month-old wild type or Atp13a2 
null cortex stained for tau. Scale bar: 200 µm. 
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While KRS subjects do not develop ataxia or other signs of cerebellar dysfunction, they 

have prominent cerebellar atrophy on neuroimaging (Behrens et al., 2010; Bruggemann et al., 

2010), suggesting degeneration. In addition, Purkinje cells are a population of neurons prone to 

degenerate in other neurodegenerative disorders, including the spinocerebellar ataxias (Costa 

Mdo and Paulson, 2012) and lysosomal storage disorders (Walkley and Suzuki, 2004). I 

therefore examined Purkinje cells for toxicity, protein aggregation, and lysosomal abnormalities. 

Atp13a2 null mice had no overt loss of calbindin-positive Purkinje cells (Figure 2.8C), nor 

ubiquitin aggregates in the cerebellum at 18-months age (data not shown). Increased LAMP1 and 

LAMP2 staining occurred in calbindin-positive neurons (Figure 2.8C). Purkinje neurons 

therefore develop some of the observed pathological abnormalities, but are no more susceptible 

to protein aggregation or neurotoxicity than other neuronal populations in Atp13a2 null mice. 
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Figure 2.8. Midbrain dopaminergic neurons and Purkinje cells do not degenerate in 
Atp13a2 null mice. A, Stereological analysis of SNpC neurons with tyrosine hydroxylase (TH) 
immunostaining or Nissl staining. The number of dopaminergic neurons in the SNpC was 
identified by TH immunoreactivity at 18 months of age; n = 10 wild type and 7 Atp13a2 null 
mice. B, Immunofluorescence of midbrain structures for GFAP (green) or tyrosine hydroxylase 
(TH; red) of 18-month-old wild type or Atp13a2 null mice. C, Immunofluorescence for calbindin 
(red) or LAMP1 (green) in cerebellum of 18-month-old wild type or Atp13a2 null mice. Scale 
bars: 100 µm. 
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I eliminated α-synuclein by generating α-synuclein/Atp13a2 double knockouts using an 

established knockout line (Dauer et al., 2002). Loss of α-synuclein did not affect the extent of 
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gliosis or accumulation of lysosomes as assessed at 3 months of age, shortly following the onset 

of these pathologies (Figure 2.9A; quantification in Figure 2.9B and C). Conversely, I increased 

α-synuclein levels by at least four-fold in the cortex (Giasson et al., 2002) by ingressing a α-

synuclein-overexpressing transgene (Giasson et al., 2002) onto the Atp13a2 null background and 

examined onset and severity of pathology at 1-month (prior to the onset of pathology), 3-months 

(earliest observed pathology) and 9-months (onset of protein inclusions). This substantial 

increase in α-synuclein levels did not accelerate the time of onset of gliosis or lysosomal 

accumulation, as no pathology was observed at 1-month (data not shown), and a similar extent of 

pathology was observed at 3-months (Figure 2.9D). Similarly, severity of histopathology at 9-

months did not differ in double mutant compared to the Atp13a2 null animals (Figure 2.9E; 

quantified in 2.9F, G). These in vivo genetic studies are in accordance with biochemical studies 

and suggest that the neuropathological changes in Atp13a2 null mice are independent of 

disruption in α-synuclein homeostasis. 
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Figure 2.9. Genetic modulation of α-synuclein levels does not affect the onset or extent of 
histopathology in Atp13a2 null mice. A, 40 µm sections from cortex or cerebellum of 3-month-
old wild type, Atp13a2 null, or Atp13a2 null/SNCA null stained for GFAP, LAMP1, or α-
synuclein. B, Quantification of percent area of the cortex positive for GFAP immunoreactivity, 
as in Figure 2.3D (One-way ANOVA: F = 33.99, p < 0 .0001; n = 6 animals/genotype). Tukey’s 
multiple comparisons tests were performed to detect differences between individual genotypes. 
Statistically significant differences are indicated (* p < 0.05). C, Quantification of average 
fluorescence intensity of the cortex (left) or Purkinje cell layer of the cerebellum (right), as in 
Figure 2.5D (One-way ANOVA: Fcortex = 8.24, p = 0.001; Fcerebellum = 5.50, p = 0.008; n = 6 
animals/genotype). Tukey’s multiple comparisons tests were used to detect differences between 
individual genotypes. Statistically significant differences are indicated (* p < 0.05). D, E, 40 µm 
sections from cortex of 3- (D) or 9-month-old (E) wild type, Atp13a2 null, or Atp13a2 
null/SNCA transgenic (Tg) either unstained or stained for GFAP, LAMP1, ubiquitin, or α-
synuclein. F, Quantification of percent area of the cortex positive for GFAP immunoreactivity, 
as in Figure 2.3D (One-way ANOVA: F = 4.71, p = 0.01; n = 9 animals/genotype). Tukey’s 
multiple comparisons tests were used to detect differences between individual genotypes. 
Statistically significant differences are indicated (* p < 0.05). G, Quantification of fluorescence 
intensity of the cortex (left) or Purkinje cell layer of the cerebellum (right) as in Figure 2.5D 
(One-way ANOVA: Fcortex = 23.20, p < 0.0001; Fcerebellum = 18.03, p = 0.0001; n = 9 
animals/genotype). Tukey’s multiple comparisons tests were used to detect differences between 
individual genotypes. Statistically significant differences are indicated (* p < 0.05). Scale bars as 
indicated in panels A, D, and E. 
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Discussion 

Considerable attention has focused on the hypothesis that in PD, endolysosomal 

dysfunction causes neurodegeneration by increasing α-synuclein levels. Our findings dissociate 

alterations in α-synuclein homeostasis from neuropathological and behavioral abnormalities in a 

model of endolysosomal dysfunction similar to that causing L-DOPA-responsive parkinsonism 

in humans. Even in the absence of α-synuclein, the neuropathological consequences of Atp13a2 

loss-of-function emerge with the same time course and progress to the same extent as in its 

presence, emphasizing the α-synuclein independence of these abnormalities. Our findings 

emphasize that, even in the context of a PD-related insult, endolysosomal dysfunction and 

abnormalities of α-synuclein are not synonymous. These findings highlight the importance of 

broadly considering the consequences of endolysosomal dysfunction that may contribute to 

neurodegeneration in PD. 

I describe novel molecular, neuropathological and behavioral features of Atp13a2 loss-of-

function, and outline the temporal sequence of these events in vivo - information critical for 

unraveling the pathogenic cascade leading to neurodegeneration. Atp13a2 null mice develop age-

related neuropathological changes, including reactive astrocytosis, lipofuscinosis, protein 

aggregation, and lysosomal abnormalities in multiple brain regions, including the cortex, 

cerebellum, hippocampus, and striatum (see Figure 2.10 for summary of progression). The 

widespread distribution of these changes, with particularly prominent abnormalities in cortex and 

cerebellum, are consistent with the clinical features of KRS. Similar to lipid changes seen in 

Niemann-Pick type C (Chevallier et al., 2008), AD (Chan et al., 2012), and in cathepsin D 

deficient mice (Jabs et al., 2008), I describe a rather selective increase in the lipid BMP, 
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suggesting changes to both late endosomal/lysosomal proteins and lipids following Atp13a2 

deficiency. 

 

Figure 2.10. Summary of the progression of behavioral and neuropathological changes in 
Atp13a2 null mice. Behavioral changes are indicated in blue, pathological changes are indicated 
in green, and progression of changes is shown by the color gradient. 
 

 

Several of our findings are consistent with previous work, including the identification of 

abnormalities of lysosomal size and number, alterations in protein homeostasis and autophagy, 

and impaired neuronal viability (Dehay et al., 2012; Usenovic et al., 2012). My work is the first, 

however, to demonstrate several additional features of Atp13a2 deletion, including astrocytosis, 

protein aggregation, and ultrastructural evidence of lipofuscin and lipid accumulation. Together, 

these results suggest a model by which loss of Atp13a2 results in lysosomal dysfunction, an 

increase in lysosomal proteins and lipids, and decreased clearance of autophagic substrates 

including lipid droplets and ubiquitin. The temporal sequence of abnormalities in this KRS 
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model is particularly informative. I find that lipofuscin accumulation and glial activation occur 

early in the course of these pathological changes, months prior to observable abnormalities in 

lysosomes and protein aggregation. This early accumulation of lipofuscin and inflammation, in 

combination with alterations to protein homeostasis, likely disrupts neuronal health and function 

prior to the accumulation of protein aggregates. The identification of the temporal sequence of 

these events will enable future work aimed at blocking early abnormalities, which will be 

required to determine causal relationships. 

In contrast to previous work in vivo (Schultheis et al., 2013), I find that Atp13a2 null 

mice do not develop changes in α-synuclein solubility, despite exhibiting abnormal accumulation 

of ubiquitinated protein aggregates. This absence of α-synuclein pathology differs from in vitro 

studies which report a modest increase in α-synuclein levels in cells following ATP13A2 

knockdown or mutation (Dehay et al., 2012; Usenovic et al., 2012) and is in clear contrast with 

other cell and mouse models of PD where autophagic-lysosomal dysfunction seems to cause 

neurotoxicity and elevated α-synuclein levels (Mazzulli et al., 2011; Ahmed et al., 2012; 

Friedman et al., 2012). These findings could not exclude the possibility that soluble toxic forms 

of α-synuclein not detected by our methods might contribute to the abnormalities in Atp13a2 null 

mice. To rigorously explore this possibility, I genetically altered α-synuclein levels by crossing 

Atp13a2 null mice to either mice lacking or overexpressing α-synuclein. In these double mutants, 

I observed no change in the neuropathology seen in Atp13a2 null mice, even up to 9 months of 

age. These results suggest that abnormalities of α-synuclein homeostasis or folding are not 

required for the development of gliosis, lipofuscinosis, or neuronal injury resulting from Atp13a2 

loss of function. 
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α-Synuclein aggregation is a frequent byproduct following complete loss of specific 

lysosomal enzymes such as glucocerebrosidase (Mazzulli et al., 2011) or cathepsin D (Cullen et 

al., 2009) or direct alterations in the delivery of α-synuclein to lysosomes by autophagic 

pathways (Webb et al., 2003; Cuervo et al., 2004; Orenstein et al., 2013). In contrast, our results 

suggest that loss of Atp13a2 does not prevent lysosomal targeting or degradation of α-synuclein. 

In KRS patients, then, the principle insult may result not from α-synuclein, but from either 

neuroinflammation caused by early astrocytic activation, or from increased burden within 

neurons from lipofuscinosis and aggregation of proteins other than α-synuclein. My results do 

not preclude the possibility that α-synuclein aggregation occurs later in the course of the disease, 

beyond the 18-month age time point that I examined.  

 Many aspects of our KRS model more closely resemble the lysosomal storage disorders of 

NCL than PD. Most strikingly, Atp13a2 null mice develop extensive autofluorescence and 

lipofuscinosis in the cortex, hippocampus, and cerebellum. This accumulation of granular 

osmophilic deposits is similar in appearance and regional selectivity to that seen in both Tibetan 

terriers with NCL (Riis et al., 1992; Katz et al., 2005; Katz et al., 2007; Farias et al., 2011) and 

mouse models of NCLs (Koike et al., 2000; Gupta et al., 2001; Weimer et al., 2009). Similar to 

our findings, NCL mouse models display motor dysfunction, including abnormal clasping (Sleat 

et al., 2004; Macauley et al., 2009; Weimer et al., 2009). The enhanced vulnerability of cortical, 

cerebellar, and hippocampal neurons replicates findings in NCL models lacking Ppt1 (Gupta et 

al., 2001; Bible et al., 2004; Macauley et al., 2009), Tpp1 (Chang et al., 2008), and Cln3 

(Weimer et al., 2009). Early gliosis precedes neuronal loss in NCL models (Kopra et al., 2004; 

Chang et al., 2008), similar to my observations of prominent gliosis in Atp13a2 null mice as 

young as one-month-old. Finally, similar to the subcellular localization of ATP13A2, most 
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proteins linked to human NCL reside in the lysosome.  

Increasingly, genetic, biochemical, and mouse studies emphasize the importance of 

lysosomal dysfunction in many neurodegenerative diseases, including PD. Mutations in multiple 

proteins related to the endolysosomal system, including the Gaucher’s protein 

glucocerebrosidase, VSP35, Rab7L1, synaptojanin 1, and ATP13A2, lead to increased risk for 

familial forms of parkinsonism. While loss of endogenous Atp13a2 in the mouse more closely 

resembles neuronal ceroid lipofuscinoses, this does not preclude dopaminergic degeneration in 

human patients with KRS. Many genetic models of Parkinson disease do not display overt loss of 

neurons in the SNpC (Dawson et al., 2010), suggesting fundamental differences between 

neuronal susceptibility in humans and mice. Our findings highlight the importance of defining 

more clearly how particular alterations to the autophagic-lysosomal system results in 

neurodegeneration, in the context of NCL, PD, and other neurological disease. 

 

Materials and Methods  

Antibodies and materials. The following antibodies were used: calbindin (1:500; Sigma Aldrich 

#C9848), cathepsin B (1:500; Santa Cruz Biotechnology Inc. #sc-6493), cathepsin D (1:300; 

Santa Cruz Biotechnology Inc. #sc-6486), cathepsin L (1:200; Santa Cruz Biotechnology Inc. 

#sc-10778), EEA1 (1:5000; BD Biosciences #610456), glial fibrillary acidic protein (GFAP; 

IHC: 1:2000; WB: 1:50,000; Dako Cytomation #Z0334), GAPDH (1:3000; Abcam #AB8245), 

hsc-70 (1:5000; Novus Biologicals #NB120-2788), ionized calcium-binding adaptor molecule-1 

(Iba1; 1:500; Wako Chemicals #019-19741), LAMP1 (1:1000; Developmental Studies 

Hybridoma Bank #1D4B-C), LAMP2 (1:1000; Developmental Studies Hybridoma Bank #ABL-

93-C), LAMP2A (1:1000; Invitrogen #51-2200), LC3 (1:5000; Novus Biologicals #NB100-
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2220), NeuN (1:1000; Millipore #MAB377), p62/SQSTM1 (WB: 1:10,000; AbNova 

#H00008878-01; IF: 1:1000; American Research Products #03-GP62-C), Rab9 (1:3000; Santa 

Cruz Biotechnology Inc. #sc-28573), α-synuclein (1:10,000; Santa Cruz Biotechnology Inc. #sc-

5587 or 1:500; BD Biosciences #610786), human α-synuclein (LB509; 1:10,000; Santa Cruz 

Biotechnology Inc. #sc-58480), tau (IHC: 1:200; WB: 1:5000; Santa Cruz Biotechnology Inc. 

#sc-5587), tyrosine hydroxylase (TH; IHC: 1:2000; Chemicon #AB152; IF: 1:2000; Millipore 

#AB1542), ubiquitin (1:500; Dako Cytomation #Z0458) and Vps4 (1:2000; Sigma-Aldrich, 

#SAB4200025).  

 

Mouse lines. Atp13a2 null mice were generated by inserting LoxP sites around Exons 2 and 3 

(Figure 2.1A) to create an Atp13a2-flx line on a mixed C57Bl6/129 background. Floxed Atp13a2 

mice were intercrossed with a germline-expressing “Cre-deletor” mouse to create Atp13a2-KO/+ 

heterozygous mice. Intercrossing KO/+ heterozygotes produced Atp13a2 null mice and wild type 

littermates. The α-synuclein null and transgenic mouse lines have been characterized previously 

(Dauer et al., 2002; Giasson et al., 2002). Double mutants were generated by crossing Atp13a2 

null mice to α-synuclein null mice to generate double heterozygotes. Double heterozygotes were 

then intercrossed to generate double null mice and the appropriate control mice. Atp13a2 

null/SNCA transgenics were generated in a similar manner. 

 

Motor Behavior. Mice were housed 4 per cage and maintained on a 12-hour light/dark schedule 

(lights on at 6:00am). Food and water were provided ad libitum. Behavioral testing was 

conducted in accordance with the National Institutes of Health laboratory animal care guidelines 

and with the University Committee of Use and Care of Animals at the University of Michigan 
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approval. Male littermates (n = 16 wild type and 13 Atp13a2 null) were tested for motor behavior 

every three months from 9 months to 18 months of age in the open field, rotarod, balance beam, 

and tail suspension tests. 

 

Open field. Mice at the indicated ages were tested for spontaneous activity during a 60-min 

period using the Open Field 16 x 16 Photobeam Activiation System and Flex-Field software (San 

Diego Instruments, San Diego, CA). Data were analyzed as number of beam breaks and number 

of rears over time. 

 

Rotarod. Mice were placed in one of five slots on an accelerating rotarod apparatus (Ugo Basile, 

Comerio, Italy) and latency to fall was recorded using an accelerating rotarod protocol from 3 

rpm to 30 rpm over 5 min. Mice were trained on 2 consecutive days with each trial ending with 

the mouse’s fall or when 300 seconds elapsed. On the third day, mice were tested with an 

accelerating rotarod from 3 rpm to 30 rpm over 5 min, for 3 trials, with the endpoint being 

latency to fall in each trial up to 300 seconds. 

 

Balance beam. Mice were trained to cross a square, 5 mm wide, 41-cm-long Plexiglass beam. 

The beam was placed horizontally 50 cm above a table, with a bright light illuminating the start 

platform and a darkened enclosed 8000 cm3 escape box (20 x 20 x 20 cm; PlasticTech, Ann 

Arbor, MI) at the end of the beam. Mice were trained for 3 consecutive days with 4 trials per 

day. The fourth day, mice were tested with 3 consecutive trials. The time to traverse was 

recorded for each trial with a 30 s maximum cutoff and falls scored as 30 s. The number of 

footslips was also recorded. 
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Tail suspension test. At 12 months and 18 months of age, mice were suspended by the tail and 

videotaped for 30 seconds. An observer blinded to genotype scored the videos for presence of 

clasping behavior of at least 2 seconds duration. 

 

Morris water maze. The Morris water maze was performed as previously described (McKinney 

and Murphy, 2006). A 1.2 m diameter pool was filled with opaque water with a 10-cm2 escape 

platform submerged 0.5 cm below the surface of the water in the center of one of the quadrants. 

Distinctive, high-contrast posters on the walls provided distal cues. For 2 weeks prior to training, 

9-month-old male mice were handled daily to acclimatize them (13 wild type, 17 Atp13a2 null 

mice). During training, each mouse was placed into the water facing the wall of the pool and 

allowed to search for the platform. The trial ended when the mouse successfully located the 

platform or 60 s elapsed. At the end of each trial, the mouse was allowed to rest on the platform 

for 15 s before return to its home cage. Training consisted of six trials per day (in blocks of two 

trials, 1-min intertrial intervals and 1-h interblock intervals) for 5 days, with the starting position 

chosen pseudorandomly among six start positions. 24 hours after the last training day, mice were 

tested for time to locate the hidden platform. Subsequent to the test day, mice were run through 

the Morris water maze with a visible platform to control for motor performance. The visible 

platform version consisted of a single day of training with six trials during which the platform 

was moved to a new location and marked with a distinct local cue. Data were acquired with a 

digital video camera 1.5 m from the water surface. Images from the digital camera were 

processed with Actimetrics WATERMAZE version 2.6 software (Actimetrics, Wilmette, IL, 

USA).  
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cDNA synthesis and sequencing. Total RNA was extracted from whole brains of 6-month old 

wild type, Atp13a2 heterozygous, or Atp13a2 null mice using TRIzol Reagent (Invitrogen, 

Carlsbad, CA) according to manufacturer instructions. Complementary DNA (cDNA) was 

synthesized from 5 µg of purified total RNA using SuperScript III One-Step RT-PCR System 

(Invitrogen). cDNA was amplified with primers specific for Atp13a2 RNA (forward: 5’-

GCGAGGAGCCGAAATGAG-3’; reverse: 5’-CGTAAATGGTCTTCCTCGTAGC-3’). The 

resulting PCR product was sequenced at the University of Michigan Sequencing Core. 

 

Immunocytochemistry. Wild type and Atp13a2 null male mice at the indicated ages were 

anesthetized with a lethal dose of xylazine and ketamine HCl and transcardially perfused with a 

0.9% saline solution followed by 4% paraformaldehyde in phosphate buffer. Whole brains were 

post-fixed overnight, equilibrated in 30% sucrose, and embedded in O.C.T. (Tissue-Tek, Sakura 

Finetek Europe, The Netherlands). 40 µm frozen sagittal sections were collected on a Leica 

CM1850 cryostat (Leica Biosystems, Buffalo Grove, IL). For immunofluorescence, sections 

were blocked in 5% Normal Donkey Serum (NDS) in PBS-Tx (PBS plus 0.01% TritonX-100). 

Following overnight incubation at 4°C in primary antibodies in 1.5% NDS/PBS-Tx, sections 

were incubated in an AlexaFluor 488- or 555-conjugated secondary (Invitrogen), incubated with 

0.3% Sudan Black in 70% ethanol to quench autofluorescence, and mounted using ProLong 

Gold. For DAB immunohistochemistry, the following modifications were made to the above 

protocol. Prior to block, sections were first subjected to 30 min in 0.3% H2O2 in PBS to quench 

endogenous peroxidase activity. After a 1-hour incubation in a biotinylated secondary antibody 

(Jackson ImmunoResearch, West Grove, PA), sections were incubated in ABC for 1 hour 
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(Vector Laboratories, Burlingame, CA) followed by DAB reaction (Sigma-Aldrich). Images 

were acquired with a Zeiss Axioskop microscope (Carl Zeiss Group, Jena, Germany). Confocal 

images were acquired on an Olympus FluoView 500 (Olympus America, Centerville, PA) in the 

University of Michigan Microscopy and Image Analysis Laboratory. For each experiment, a 

representative image was selected after examination of four to ten animals. 

 

Stereology. Dopamine cell number in the SNpC of 18-month-old Atp13a2 null or wild type mice 

was assessed by unbiased stereology using TH immunocytochemistry and Nissl stain as 

previously described (Tieu et al., 2003). 

 

Tissue homogenization and Western blot. To prepare brain lysates, microdissected frozen brains 

were homogenized with a Dounce homogenizer in an appropriate volume of ice-cold RIPA 

buffer (50mM Tris-HCl, pH 7.4, 150 mM NaCl, 0.1% SDS, 0.5% SDOC, and 1% NP-40) 

containing protease inhibitors (Roche Molecular Biochemicals, Indianapolis, IN). The samples 

were then sonicated to solubilize all proteins. Protein concentrations were determined using the 

BCA assay (Pierce Biotechnology, Rockford, IL). Proteins were separated by SDS-PAGE using 

Tris-HCl 4-20% gradient gels (BioRad, Hercules, CA) and transferred onto PVDF membranes 

(BioRad). Membranes were blocked in 5% non-fat milk in TBS-T (TBS plus 0.1% (v/v) Tween 

20) for 1 hour, followed by overnight incubation at 4°C in primary antibodies in 5% non-fat milk 

in TBS-T. After a 1-hour incubation in an HRP-conjugated secondary antibody, immunoreactive 

bands were visualized on film by enhanced chemiluminescence (SuperSignal West Pico, Pierce 

Biotechnology).  



	
   67	
  

Cortical homogenates were sequentially extracted in increasing detergents using a 

protocol previously described (Luk et al., 2012b). Briefly, cortices from 18-month-old mice were 

microdissected and sequentially extracted in buffers containing high salt (HS; 50 mM Tris, pH 

7.5, 750 mM NaCl, and 5 mM EDTA), HS buffer containing 1% Triton-X100, and 1% SDS 

buffer (50 mM Tris, pH 7.5, and 1% SDS). Protease and phosphatase inhibitors (Roche) were 

added to buffers before use. Following extraction, samples were sonicated and subjected to 

ultracentrifugation at 100,000 x g for 30 min in a 70.1 Ti rotor (Beckman Coulter Inc., Brea, 

CA). At each step, the supernatant was removed and the pellet extracted in 3 mL buffer per gram 

of tissue. Proteins were then subjected to SDS-PAGE analysis as described above.  

 

Transmission electron microscopy. 1- or 12-month-old Atp13a2 null or wild type mice were 

prepared for ultrastructural analysis as previously described (Goodchild et al., 2005). Briefly, 

mice were transcardially perfused with 4% paraformaldehyde/ 2.5% glutaraldehyde in 100 mM 

sodium phosphate buffer (pH 7.4), followed by overnight postfixation in the same solution. 

Samples were postfixed with 1% osmium tetroxide in 0.1 M cacodylate buffer (pH 7.4) for 1 

hour, followed by treatment with 3% uranyl acetate, dehydration with alcohol, propylene oxide 

treatment, and embedding in Embed 812 (Electron Microscopy Sciences, Fort Washington, PA). 

The resin was polymerized in a 60°C oven for 2 days and sections were cut with a Dupont 

diamond knife on a Reichart Ultracut-E microtome (Leica), collected on copper grids, and 

double stained with saturated aqueous uranyl acetate and lead citrate. Images were taken using a 

Philips CM-100 transmission electron microscope (Philips Research, Eindhoven, The 

Netherlands) and AMTV540 image capture software (Advanced Microscopy Techniques, 

Woburn, MA) in the University of Michigan Microscopy and Image Analysis Laboratory. 
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Lipid analysis using high performance liquid chromatography-mass spectrometry. Lipid extracts 

were prepared from 18-month-old cortical lysates using a modified Bligh/Dyer extraction 

procedure as previously described (Chan et al., 2012). Samples were analyzed using an Agilent 

Technologies 6490 Ion Funnel LC/MS Triple Quadrupole system with front end 1260 Infinity 

HPLC. Phospholipids and sphingolipids were separated by normal phase HPLC while neutral 

lipids were separated using reverse phase HPLC. For normal phase analysis, lipids were 

separated on an Agilent Rx-Sil column (i.d. 2.1 x 100 mm) using a gradient consisting of A: 

chloroform/methanol/ammonium hydroxide (89.9:10:0.1) and B: chloroform/methanol/water/ 

ammonium hydroxide (55:39:5.9:0.1), starting at 5% B and ramping to 70% B over a 20 min 

period before returning back to 5% B. Neutral lipids were separated on an Agilent Zorbax XDB-

C18 column (i.d. 4.6 x 100 mm) using an isocratic mobile phase chloroform:methanol:0.1M 

ammonium acetate (100:100:4) at a flow rate of 300 µL/min. Multiple reaction monitoring 

transitions were set up for quantitative analysis of different lipid species and their corresponding 

internal standards as described previously (Chan et al., 2012). Lipid levels for each sample were 

calculated relative to the spiked internal standards and then normalized to the total amount of all 

lipid species measured and presented as relative mol %. Data are presented as mean mol % for 3 

samples of each genotype. 

 

Statistics. Results were analyzed using GraphPad Prism 5.0. A χ2 test was used to determine 

Mendelian ratios and analyze tail suspension behavioral test. Behavioral studies were performed 

blind. Data were first examined for equal variance and then subjected to two-way Repeated 

Measures ANOVA with time and genotype as variables, with Bonferroni’s post-hoc tests at 
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specific ages. Student’s t-tests were used for Western blotting analyses. In all studies, n indicates 

the number of samples per group and a critical value of p < 0.05 was used. Data are plotted as 

means + SEM. 
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Chapter 3 

 

Selective defects in endolysosomal function in Atp13a2 null mice 

 

Abstract 

 Genetic mutations in ATP13A2 cause Kufor-Rakeb Syndrome (KRS), a neurological 

disorder whose features include juvenile-onset parkinsonism. ATP13A2 is a late 

endosomal/lysosomal ATPase of unknown function whose loss in vitro causes lysosomal 

abnormalities, proteolysis defects, increased oxygen consumption, and signs of mitochondrial 

injury. I showed in Chapter 2 that loss of Atp13a2 in vivo causes age-related behavioral and 

neuropathological abnormalities including protein aggregation and lysosomal accumulation. 

Both autophagy and mitophagy have been implicated in PD pathogenesis, so I therefore 

undertook detailed analyses of autophagic-lysosomal function as well as mitochondrial health 

from aged Atp13a2 null mice. Despite widespread changes to CNS pathology, I observed 

selective alterations to autophagic function in 18-month-old Atp13a2 null mice including altered 

processing of cathepsin D and the accumulation of ubiquitin and p62-positive aggregates. In 

contrast to previous in vitro reports, these results suggest a selective role for Atp13a2 in 

lysosomes that result in neuronal injury and motor deficits. 
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Introduction 

ATP13A2 is a P-type ATPase of unknown function that localizes to the lysosome 

(Ramirez et al., 2006) and late endosome (Podhajska et al., 2012). Phylogenetically, ATP13A2 is 

related to ion transporters and lipid flippases (Schultheis et al., 2004). It therefore likely 

functions in the late endosomal/lysosomal membrane to move heavy metals or lipids across the 

lysosomal membrane. Its exact function and substrate remain unclear, though in vitro studies 

have tenuously linked it to the transport of multiple heavy metals (Gitler et al., 2009; Tan et al., 

2011; Covy et al., 2012; Podhajska et al., 2012; Tsunemi and Krainc, 2013). ATP13A2 

knockdown in cell culture causes increased lysosome size and number and autophagic deficits 

(Dehay et al., 2012; Usenovic et al., 2012), increased mitochondrial oxygen consumption 

(Gusdon et al., 2012), and zinc dyshomeostasis (Tsunemi and Krainc, 2013; Park et al., 2014). 

Based on these in vitro studies and prevailing theories, loss of Atp13a2 in our novel mouse 

model could be causing neuronal injury in a PD-related mechanism through autophagic deficits, 

changes in lipid signaling, dysfunctional mitophagy, or ion imbalances. 

Autophagy dysfunction is increasingly recognized as a key element of PD pathogenesis. 

α-Synuclein is degraded in part by autophagy (Webb et al., 2003; Cuervo et al., 2004), by both 

macroautophagy and chaperone-mediated autophagy (CMA). Mutations in the 

glucocerebrosidase gene are the most common risk factor for PD (Sidransky et al., 2009) and 

disruption of glucocerebrosidase causes autophagy dysfunction, α-synuclein accumulation, and 

neurotoxicity (Mazzulli et al., 2011). α-Synuclein accumulation in turn feeds back to further 

inhibit glucocerebrosidase function. These studies suggest a common mechanism by which loss 

of lysosomal proteins may cause PD: autophagic dysfunction leading to α-synuclein 

accumulation and neurotoxicity. Yet, few studies of lysosomal proteins have directly tested this 
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hypothesis and loss of most lysosomal proteins causes accumulation of substrates other than α-

synuclein suggesting additional mechanisms through which autophagic deficits can cause 

neurodegeneration.  

Another likely mechanism by which loss of Atp13a2 may cause neuronal injury is by 

altering mitophagy. The PD-related proteins PINK1, parkin, and FBXO7 function in a common 

pathway to mediate the clearance of damaged or depolarized mitochondria (Jin et al., 2010; 

Lazarou et al., 2012; Burchell et al., 2013). Loss-of-function mutations in these genes cause a 

build-up of abnormal mitochondria, reactive oxygen species, and alterations to oxygen 

consumption (Exner et al., 2007; Dagda et al., 2009; Lutz et al., 2009; Amo et al., 2011). 

Similarly, PD-related mutations in mouse glucocerebrosidase cause mitochondria to become 

fragmented and dysfunctional, with impaired mitochondrial respiration and decreased potential 

(Osellame et al., 2013). Cell culture experiments suggest that a similar process may occur with 

loss of ATP13A2. Knockdown of Atp13a2 in primary neurons caused an increase in 

mitochondrial mass and fragmentation, along with increased oxygen consumption and reactive 

oxygen species production (Gusdon et al., 2012). These mitochondrial changes appear due to 

poor mitophagy, rather than a primary mitochondrial defect, as they mimic defects seen with 

autophagy inhibitors (Gusdon et al., 2012) and have concomitant build up of other autophagy 

substrates like p62 and ubiquitinated proteins (Osellame et al., 2013). 

Finally, as a putative lipid flippase, loss of Atp13a2 may cause neuronal injury through 

changes to lipid profiles and signaling at the lysosomal membrane. Lipid alterations are 

increasingly recognized as an important component of neurodegenerative disease. Some 

diseases, such as the neuronal ceroid lipofuscinsoses, Niemann Pick type C, and Gaucher’s 

disease, have selective lipid accumulation and neurodegeneration due to improper lysosomal 



	
   73	
  

degradation. In other multifactorial diseases, such as Alzheimer disease (AD), lipid regulation is 

a major contributing factor (Di Paolo and Kim, 2011).  The cholesterol regulator APOE4 is the 

single biggest risk factor for sporadic AD and alters the endosomal compartment and consequent 

processing of key AD proteins like amyloid precursor protein and β-secretase (Cataldo et al., 

1997; Li et al., 2012b; Zhao et al., 2014). In PD, lipid changes are similarly a contributing factor 

to disease. α-Synuclein binds to lipids (Sharon et al., 2001) and α-synuclein null or transgenic 

mice have CNS lipid alterations (Barcelo-Coblijn et al., 2007; Rappley et al., 2009). Lipids 

promote the formation of Lewy Bodies (LBs), and lipid profiles changes occur in post-mortem 

tissue from PD patients (Sharon et al., 2003; Assayag et al., 2007). Increased risk of 

parkinsonism with mutations in glucocerebrosidase, PLA2G6, and synaptojanin 1, all of which 

are enzymes involved in lipid metabolism, further suggests that altered lipid metabolism may be 

causative for increased risk of familial PD. 

To investigate the mechanism by which loss of ATP13A2 causes parkinsonism, I utilized 

our novel mouse model to probe autophagy function, mitochondrial health, and lipid profiles in 

the context of Atp13a2 loss. Atp13a2 null mice show alterations to autophagy, including p62 

accumulation and altered cathepsin D processing, that likely contribute to the neuropathology 

and behavioral abnormalities observed in these mice. These changes to p62 and cathepsin D 

occur in the absence of more widespread lysosomal dysfunction, with no change to proteolysis, 

lysosome acidification, or chaperone-mediated autophagy. Similarly, despite subtle alterations to 

mitochondrial morphology, mitochondria isolated from Atp13a2 null mice had normal oxygen 

consumption rates, suggesting that mitophagy was not dramatically impaired. These results, 

together with the neuropathology studies, suggest that even minor alterations to lysosomal 

function can result in widespread CNS abnormalities. 



	
   74	
  

Results 

Selective defects in autophagy function in Atp13a2 null mice 

Based on its localization to the lysosome, the presence of ubiquitin aggregates in aged 

mice (Figure 2.6A), and in vitro evidence (Dehay et al., 2012; Usenovic et al., 2012), I 

hypothesized that loss of Atp13a2 would result in autophagic defects in Atp13a2 null mice. P62 

is an autophagy substrate commonly used as a marker of autophagy function. I observed 

increased p62 levels in the striatum, cerebellum, and midbrain of Atp13a2 null tissue compared 

to littermate controls (Figure 3.1A). Despite comparable p62 protein levels, the presence of p62-

positive protein aggregates in the cortex of Atp13a2 null tissue (Figure 3.1B) provided further 

evidence of defective proteostasis in these mutants. To assess autophagy induction, I examined 

LC3 levels. Steady-state levels of LC3-II did not differ between Atp13a2 null and wild type 

tissue (Figure 3.1C), consistent with an absence of marked change in the abundance of 

autophagic vacuoles by ultrastructural analysis (data not shown).  
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Figure 3.1. Lysosomal processing of p62 is abnormal in Atp13a2 null CNS tissue. A, 
Quantitative Western blotting of p62 levels from 18-month-old mice; 5 µg protein loaded/lane; n 
= 12 wild type and 10 Atp13a2 null mice. B, P62 immunohistochemistry of 18-month-old wild 
type or Atp13a2 null cortex.  Scale bar: 100 µm. C, Western blotting of LC3-II from 18-month-
old mice; quantitation shown on right. 30 µg protein loaded/lane; n = 7 wild type and 6 Atp13a2 
null mice. Statistically significant differences are indicated (* p < 0.05, ** p < 0.01). Error bars 
indicate SEM. 
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cerebellar lysates, which exhibited higher levels of the immature and intermediate forms and a 

corresponding decrease in the cleaved, mature form (Figure 3.2A). These abnormalities in 

cathepsin D processing (defined as mature/total cathepsin D) were not observed in 9-month-old 

Atp13a2 null tissue, demonstrating that this defect occurs relatively late in the pathogenic 

cascade, long after the onset of reactive astrocytosis and lysosome accumulation (see Figure 2.10 

for summary timeline of phenotypes). In contrast to the defects identified for cathepsin D, levels 

and maturation of cathepsin B and cathepsin L did not differ from wild type controls (Figure 

3.2B). The selective abnormality in cathepsin D processing and the lack of differences between 

wild type and Atp13a2 null mice in the analyzed markers of different endocytic compartments 

(early endosomes, multivesicular bodies and late endosomes markers shown in Figure 3.2C) 

raised the possibility that loss of Atp13a2 function may disrupt only a subset of ALP components 

and suggested that the compartment most severely affected were secondary lysosomes (also 

termed autolysosomes). 
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Figure 3.2. Lysosomal processing of cathepsin D is abnormal in Atp13a2 null CNS tissue. A, 
Quantitative Western blot of cathepsin D levels in the cortex and cerebellum of 18-month-old 
mice; 30 µg protein loaded/lane; n = 7 wild type and 6 Atp13a2 null mice. Cathepsin D 
processing was defined as the ratio of mature cathepsin D to total cathepsin D (mature + 
intermediate). B, C, Western blotting of cathepsin B and cathepsin L (B) and of markers of early, 
late and multivesicular endocytic compartments (C) from whole brain homogenates from 18-
month-old mice; n = 4 samples of 2 pooled brains from wild type and Atp13a2 null mice.  
Statistically significant differences are indicated (* p < 0.05, ** p < 0.01). Error bars indicate 
SEM. Panels B, C in collaboration with B. Stiller and I. Tasset, Cuervo laboratory. 
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lysosomes from wild type or Atp13a2 null mice, as measured by the amount of hexosaminidase 

in the extralysosomal media during isolation (Figure 3.3C), indicating that the loss of Atp13a2 

does not render lysosomal membranes more fragile. Consistent with the decrease in cathepsin D 

processing observed in cortical and cerebellar tissue lysates (Figure 3.2A), levels of mature 

cathepsin D were decreased in both populations of lysosomes from Atp13a2 null tissue (Figure 

3.3B). The abnormality in cathepsin D processing raised the possibility that loss of Atp13a2 may 

compromise lysosomal acidification, as cathepsin maturation is a pH-dependent process (Zaidi et 

al., 2008). However, contrary to the increase in the intermediate form of cathepsin D observed in 

total lysates, levels of this intermediate form were reduced in the two groups of secondary 

lysosomes from Atp13a2 null mice (Figure 3.3A). These findings suggest that rather than a 

problem of cathepsin D processing within lysosomes, the reduced levels in mature cathepsin D 

were mainly a consequence of compromised trafficking of this cathepsin to lysosomes. Several 

other findings support the selectivity of the cathepsin D defect and argue against a global 

disruption of the lysosomal pH gradient in these organelles. I observed no changes in the 

maturation of other cathepsins (Figure 3.3B), and no differences in the total proteolytic activity 

(Figure 3.3B) or the activity of other lysosomal hydrolases (hexosaminidase shown in Figure 

3.3C). In addition, despite a previous report of pH neutralization in lysosomes of ATP13A2 

mutant fibroblasts (Dehay et al. 2012), I observed no difference in lysosomal pH in Atp13a2 null 

mouse embryonic fibroblasts as measured by Oregon Green-dextran ratio (Figure 3.3D; pHwild 

type = 4.30 + 0.22, n = 174 cells; pHAtp13a2 null = 4.26 + 0.33, n = 154 cells; t = 1.16, d.f. = 326, p = 

0.25). 
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Figure 3.3. Isolated lysosomes from Atp13a2 null tissue have decreased cathepsin D levels, 
but normal proteolytic activity.  Lysosomes were isolated from 2 pooled brains of 18-month-
old wild type or Atp13a2 null mice and probed for endolysosomal proteins and substrates.  A, 
Western blotting of the indicated proteins of lysosomal compartments preferentially related with 
either chaperone-mediated autophagy (CMA) or with macroautophagy (MA).  Protein levels 
were determined by densitometry (bottom).  B, Proteolytic activity of freshly isolated lysosomes. 
Proteolysis was measured by incubating a pool of radiolabeled cytosolic proteins with the two 
subpopulations of lysosomes after disruption of their membranes by a hypotonic shock.  Results 
are expressed as percent degradation per µg protein and are the average values of triplicate 
samples from 4 samples pooled from 8 brains of either wild type or Atp13a2 null mice. C, 
Hexosaminidase activity in total homogenates and the two subpopulations of lysosomes isolated 
from the same animals as in B. Values are expressed as percentage of those in wild type control 
samples. D, Lysosomal pH, measured by ratiometric imaging following uptake of Oregon Green 
dextran. Calibration curve (above) was generated by holding wild type cells at set pH values, and 
allowed the conversion of C2/C1 ratio to pH (bottom) for wild type and Atp13a2 null fibroblasts. 
n = 174 cells for wild type, 151 cells for Atp13a2 null cells. Statistically significant differences 
are indicated (*p < 0.05).  Error bars indicate SEM. Panels A-C in collaboration with Cuervo lab. 
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were detected in wild type and Atp13a2 null lysosomes and α-synuclein was more abundant in 

the subgroup of lysosomes with higher CMA activity (Figure 3.4A), as described previously 

(Martinez-Vicente et al., 2008). Levels of other well-characterized CMA substrate proteins such 

as GAPDH were also comparable in wild type and Atp13a2 null lysosomes (Figure 3.4B). 

To directly analyze the ability of Atp13a2 null lysosomes to take up α-synuclein via 

CMA, we incubated CMA active lysosomes with GST-tagged α-synuclein (Figure 3.4C). While 

results varied somewhat between samples preparations, Atp13a2 loss was not associated with 

reduced lysosomal uptake of α-synuclein or increased formation of oligomeric forms of α-

synuclein. These findings are in contrast to such changes reported with the PD-related genes α-

synuclein and LRRK2 (Martinez-Vicente et al., 2008; Orenstein et al., 2013). The normal ability 

of Atp13a2 null lysosomes to internalize and degrade a mixture of radiolabeled proteins (Figure 

3.4D), together with the normal lysosomal levels of both α-synuclein and GAPDH, provide 

substantial evidence indicating that lysosomal uptake and degradation of protein functions 

normally in the absence of Atp13a2. 
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Figure 3.4. Isolated lysosomes from Atp13a2 null tissue have normal proteolysis of α-
synuclein.  A, Endogenous levels of α-synuclein and GAPDH in intact lysosomes from brains of 
wild type or Atp13a2 null mice. Levels of the indicated proteins were calculated by densitometry 
(bottom). B, Association of recombinant GST-α-synuclein with CMA active lysosomes 
previously incubated or not with protease inhibitors (PI) to determine binding and uptake via 
CMA. L indicates lysosomes incubated without GST-α-synuclein and I indicates input (1/10 of 
added protein). Samples correspond to lysosomes isolated on two different days. Bottom shows 
high exposure of the high molecular region of the immunoblot to highlight oligomeric forms of 
GST-α-synuclein not present in the lysosomes alone or in the input. Percentage of monomeric 
GST-α-synuclein bound and taken up by lysosomes or associated to lysosomes as oligomers is 
shown on the right. C, Degradation of a pool of radiolabeled cytosolic proteins by the two 
subpopulations of lysosomes isolated from brains of wild type or Atp13a2 null mice was 
performed as in Figure 3.3B but using intact, instead of disrupted lysosomes. In collaboration 
with Cuervo lab. 
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(Grunewald et al., 2012; Gusdon et al., 2012). During our electron microscopy study, we 

incidentally noticed abnormalities in mitochondria in close association with lipofuscin deposits 

(Figure 3.5A), suggestive that abnormal mitophagy may account for the CNS neuropathology 

observed in Atp13a2 null mice. We assessed the oxygen consumption rate (OCR) of 

mitochondria isolated from cortical lysates of aged mice (12 to 18 months old) using the 

Seahorse XF24 Analyzer (Figure 3.5B, C). The Seahorse XF24 Analyzer allows the rapid 

screening of the bioenergetic profiles of mitochondria using different substrates and inhibitors to 

assess the state of each complex in the mitochondrial respiratory chain (Gusdon et al., 2012; Park 

et al., 2013). Mitochondria from aged Atp13a2 null mice had a comparable OCR to wild type 

mitochondria both during basal conditions and during maximal oxygen consumption (state 4, 

FCCP). Fluorescence studies of mitochondria from wild type and Atp13a2 null mouse embryonic 

fibroblasts using MitoTracker and MitoSox showed no change in overall mitochondrial levels, 

localization, or amount of oxidized mitochondria (Figure 3.5D). These studies suggest that while 

subtle alterations to mitochondrial morphology may occur, mitochondrial abnormalities are not a 

driving cause of CNS dysfunction in Atp13a2 null mice. 
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Figure 3.5. Mitochondria from Atp13a2 null CNS tissue have normal oxygen consumption 
rates. A, Transmission electron microscope images of mitochondria in association with lipid 
droplets in 18-month-old Atp13a2 null mouse cortex. Left: healthy mitochondria in close 
proximity to lipid droplet, right top: abnormal mitochondria with widened cristae, right bottom: 
partially degraded mitochondria contained within lipofuscin deposit. B, Relative oxygen 
consumption rates (OCR) of mitochondria isolated from wild type or Atp13a2 null mouse cortex 
(12- to 18-months-old) with substrates that enter the electron transport chain via different 
complexes. Relative OCR is defined as the ratio of state 3 consumption rate (ADP) to state 4 
consumption rate (oligomycin). C, OCR of mitochondria during different respiratory states. 
Bottom graphs are representative OCR of wild type (red/pink) or Atp13a2 null (blue/teal) 
mitochondria from one preparation while bar graphs are the average relative OCR of five 
independent experiments performed in quadruplicate on a littermate wild type/null pair. D, 
Immunofluorescence of normal and oxidized mitochondria (MitoTracker and MitoSox 
respectively) in wild type or Atp13a2 null mouse embryonic fibroblasts. Average cellular 
fluorescence was quantified as in Figure 2.4D for 20 cells/experiment in three independent 
experiments. Statistically significant differences are shown. Error bars indicate SEM. Scale bars: 
A, 500 nm, D, 20 µm. Panels B, C in collaboration with Jeongsoon Park, Lombard lab. 
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Selective alterations in BMP in Atp13a2 null cortex by lipidomic analysis 

 Our observation of prominent lipid droplets in multiple brain regions of Atp13a2 null 

mice (Figure 2.4) suggested that Atp13a2 may directly or indirectly affect the cell’s lipid profile.  

We therefore conducted an unbiased lipidomics study of cortical lipid extracts from 18-month-

old wild type or Atp13a2 null mice, examining over 500 lipid species from 31 lipid subclasses. 

Both wild type and Atp13a2 null lipid extracts showed similar lipid profiles to other lipidomic 

studies from mouse cortex (Chan et al., 2012). Free cholesterol levels occupied the bulk of the 

measured lipidome (WT: 66%, KO: 67%; Figure 3.6A), with the remainder comprised of bulk 

glycerophospholipids such as phosphatidylserine (PS; WT: 9.9%, KO: 9.6%), 

phosphatidylcholine (PC; WT: 6.8%, KO 6.4%), phosphatidylethanolamine (PE; WT: 2.5%, KO: 

2.3%), plasmalogen phosphatidylethanolamine (pPE; WT: 3.8%, KO: 3.5%), 

phosphatidylinositol (PI; WT: 3.4%, KO: 3.2%), cholesterol esters (CE; WT: 1.6%, KO: 1.7%)  

and sphingolipids like sphingomyelin (SM; WT: 2.3%, KO: 2.2%) and sulfatide (Sulf; WT: 

1.2%, KO: 1.3%). Contributing less than 4% of the total lipidome were a range of other lipids 

(Figure 3.6A). Despite increased lipid droplets by ultrastructural analysis, there were no changes 

to lipids commonly found in lipid droplets (Triglycerides: wild type mol. % = 0.049 + 0.002 %, 

Atp13a2 null mol. % = 0.053 + 0.003%, t = 1.085, d.f. = 4, p = 0.34; cholesterol esters: wild type 

mol. % = 1.635 + 0.577%, Atp13a2 null mol. % = 1.694 + 0.272%, t = 0.092, d.f. = 4, p = 0.93). 

Atp13a2 null cortical lipid extracts had a selective increase of the lysosomal/late 

endosomal lipid BMP (BMPwild type mol % = 0.0276 + 0.0015%, BMPAtp13a2 null mol % = 0.0834 + 

0.0017%, t = 3.335, d.f. = 4, p = 0.02; Figure 3.6A), consistent with selective perturbations to the 

lysosomal compartment. Further examination of specific BMP lipid species showed an increase 

in medium (36C) and long-chain fatty acyl chains composed of 38 or more carbon lengths rather 
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than short-chain (<34C; Figure 3.6B). Corresponding to the long fatty acid chain length, Atp13a2 

null cortical lipid extracts had increased polyunsaturated phospholipids (Figure 3.6C). 

 
Figure 3.6. Selective increase in late endosome/lysosome lipid BMP in cortical lipid extracts 
of Atp13a2 null tissue. A, Lipid profiles of wild type or Atp13a2 null cortical lysates. Lipid 
subclasses are expressed as mean mol % of all lipid species measured. B, C, Analyses of BMP 
mean mol % based on the total number of carbon atoms in the fatty acid moieties (B) or the 
number of unsaturated bonds (C). Error bars indicate SEM. In collaboration with Di Paolo lab. 
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Discussion 

 I sought to understand how loss of endolysosomal Atp13a2 causes the neuropathological 

and behavioral abnormalities described in chapter 2 through detailed studies of autophagy and 

lysosomal function, mitochondrial oxygen consumption, and lipid profiles in aged mice. Because 

many of the pathological changes were age-dependent and did not arise until late in the mouse 

lifespan (>12 months), I utilized techniques that allowed the analysis of mitochondrial and 

lysosomal compartments isolated from aged mice. In contrast to in vitro reports of widespread 

autophagy and mitophagy disruption (Dehay et al., 2012; Gusdon et al., 2012; Usenovic et al., 

2012), my studies show that loss of Atp13a2 in vivo caused highly selective changes to 

lysosomal function. I observed increased accumulation of p62 in multiple brain regions, 

consistent with the presence of ubiquitinated aggregates in the cortex and hippocampus of aged 

Atp13a2 null mice. I also find selective abnormalities in cathepsin D trafficking. Despite 

increased overall levels of cathepsin D, less cathepsin D is trafficked to the lysosome and 

cleaved into its mature form (Figure 3.2, 3.3). This abnormal trafficking appears to be specific to 

this protease, as other cathepsins (B and L; Figure 3.2B) and other digestive enzymes 

(hexosaminidase; Figure 3.3C) are unaltered. How loss of Atp13a2 causes such a selective defect 

in cathepsin D trafficking is unclear, but could suggest that Atp13a2 is a necessary cofactor in 

the delivery of cathepsin D to the lysosome. 

Similar to histopathological and genetic studies, biochemical studies suggest that 

Atp13a2 does not change α-synuclein proteostasis. Atp13a2 null lysosomes were able to bind, 

uptake, and degrade α-synuclein to the same extent as wild type lysosomes (Figure 3.4B). 

Cathepsin D is known to degrade α-synuclein (Qiao et al., 2008; Sevlever et al., 2008; Cullen et 
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al., 2009). Complete loss of cathepsin D, as seen in cathepsin D null mice, results in much earlier 

onset of lipofuscin accumulation (Koike et al., 2000), glial activation, and neurotoxicity 

(Partanen et al., 2008).  While cathepsin D null mice show increased levels of insoluble α-

synuclein (Cullen et al., 2009), heterozygous mice do not show changes to α-synuclein levels 

(Crabtree et al., 2013), consistent with our finding that α-synuclein does not change in the 

presence of partial loss of lysosomal cathepsin D.  

 Studies of mitochondrial function and lipidomics revealed similarly selective changes to 

these cellular compartments. Incidental findings of abnormal mitochondrial morphology 

prompted us to investigate the OCR of mitochondria derived from aged mice. Mitochondria 

derived from aged Atp13a2 null mice showed no changes in basal or maximal OCR utilizing 

different substrates (Figure 3.5B, C). Slight abnormalities in mitochondrial structure, which need 

to be confirmed, may be secondary to primary lysosomal deficits and are likely not a driving 

force of neuronal dysfunction in Atp13a2 null mice. Simialrly, lipidomics studies showed 

selective alterations to lysosomal compartments. Cortical lipid extracts showed increased levels 

of the lysosome/late endosome lipid BMP, confirming the upregulation of lysosome associated 

proteins like LAMP1 and LAMP2 in aged Atp13a2 null mice. Despite prominent lipid droplets 

in the cortex at 18 months, lipidomics showed no other subclass of lipid elevated in Atp13a2 null 

mice, possibly because the lipids contained within lipid droplets were diluted out by total cortical 

lipids. This result does not rule out ATP13A2 functioning as a lysosomal lipid flippase as these 

studies did not distinguish between the different sides of the phospholipid bilayer. It does 

suggest, however, that loss of Atp13a2 is not profoundly changing the lipid profile in contrast to 

models of Niemann Pick type C or AD (Chevallier et al., 2008; Chan et al., 2012). 
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 In contrast to in vitro studies, I show that loss of Atp13a2 in vivo causes selective 

disruption of lysosomal function, specifically leading to alterations in cathepsin D processing 

and accumulation of p62. With increasing emphasis on disruptions in the endolysosomal system 

causing PD and related neurodegenerative diseases, it is important to understand how changes to 

intracellular trafficking cause disease pathogenesis. I present, for the first time, a mouse model of 

PD in which neuropathological and behavioral abnormalities occur with specific changes to the 

lysosomal compartment, such as increases in lysosomal proteins and lipids, accumulation of 

autophagy substrates like p62, ubiquitin, and lipid droplets, and selective trafficking defects in 

cathepsin D. This selectivity is in contrast to the working model of PD and autophagy in which 

PD genes cause neurotoxicity through widespread autophagy deficits and the accumulation of 

neurotoxic α-synuclein. Indeed, I see no accumulation of α-synuclein, nor alterations to α-

synuclein’s ability to bind or be degraded by Atp13a2 null lysosomes. These studies therefore 

prompt a deeper inquiry into endolysosomal dysfunction in the context of PD-related genetic 

insults. 

 

Materials and Methods 

Antibodies and materials. The following antibodies were used: cathepsin B (1:500; Santa Cruz 

Biotechnology Inc. #sc-6493), cathepsin D (1:300; Santa Cruz Biotechnology Inc. #sc-6486), 

cathepsin L (1:200; Santa Cruz Biotechnology Inc. #sc-10778), EEA1 (1:5000; BD Biosciences 

#610456), GAPDH (1:3000; Abcam #AB8245), LAMP2A (1:1000; Invitrogen #51-2200), LC3 

(1:5000; Novus Biologicals #NB100-2220), p62/SQSTM1 (WB: 1:10,000; AbNova 

#H00008878-01; IHC: 1:1000; American Research Products #03-GP62-C), Rab9 (1:3000; Santa 

Cruz Biotechnology Inc. #sc-28573), α-synuclein (1:10,000; Santa Cruz Biotechnology Inc. #sc-



	
   90	
  

5587 or 1:500; BD Biosciences #610786), and Vps4 (1:2000; Sigma-Aldrich, #SAB4200025). 

OregonGreen Dextran, MitoTracker, and MitoSox were from Invitrogen Corp. 

 

Tissue homogenization and Western blot. To prepare brain lysates, microdissected frozen brains 

were homogenized with a Dounce homogenizer in an appropriate volume of ice-cold RIPA 

buffer (50mM Tris-HCl, pH 7.4, 150 mM NaCl, 0.1% SDS, 0.5% SDOC, and 1% NP-40) 

containing protease inhibitors (Roche Molecular Biochemicals). The samples were then 

sonicated to solubilize all proteins. Protein concentrations were determined using the BCA assay 

(Pierce Biotechnology). Proteins were separated by SDS-PAGE using Tris-HCl 4-20% gradient 

gels (BioRad) and transferred onto PVDF membranes (BioRad). Membranes were blocked in 5% 

non-fat milk in TBS-T (TBS plus 0.1% (v/v) Tween 20) for 1 hour, followed by overnight 

incubation at 4°C in primary antibodies in 5% non-fat milk in TBS-T. After a 1-hour incubation 

in an HRP-conjugated secondary antibody, immunoreactive bands were visualized on film by 

enhanced chemiluminescence (SuperSignal West Pico).  

 

Immunocytochemistry. Wild type and Atp13a2 null male mice at the indicated ages were 

anesthetized with a lethal dose of xylazine and ketamine HCl and transcardially perfused with a 

0.9% saline solution followed by 4% paraformaldehyde in phosphate buffer. Whole brains were 

post-fixed overnight, equilibrated in 30% sucrose, and embedded in O.C.T. (Tissue-Tek). 40 µm 

frozen sagittal sections were collected on a Leica CM1850 cryostat (Leica Biosystems). For 

immunofluorescence, sections were blocked in 5% Normal Donkey Serum (NDS) in PBS-Tx 

(PBS plus 0.01% TritonX-100). Following overnight incubation at 4°C in primary antibodies in 

1.5% NDS/PBS-Tx, sections were incubated in an AlexaFluor 488- or 555-conjugated secondary 
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(Invitrogen), incubated with 0.3% Sudan Black in 70% ethanol to quench autofluorescence, and 

mounted using ProLong Gold. For DAB immunohistochemistry, the following modifications 

were made to the above protocol. Prior to block, sections were first subjected to 30 min in 0.3% 

H2O2 in PBS to quench endogenous peroxidase activity. After a 1-hour incubation in a 

biotinylated secondary antibody (Jackson ImmunoResearch), sections were incubated in ABC 

for 1 hour (Vector Laboratories) followed by DAB reaction (Sigma-Aldrich). Images were 

acquired with a Zeiss Axioskop microscope (Carl Zeiss Group). Confocal images were acquired 

on an Olympus FluoView 500 (Olympus America) in the University of Michigan Microscopy 

and Image Analysis Laboratory. For each experiment, a representative image was selected after 

examination of four to ten animals. 

 

Mouse embryonic fibroblast culture. Mouse embryos from an E12.5 female were dissected into 

ice-cold PBS. The head, liver, and heart were removed and the remaining tissue was trypsinized 

(0.25% trypsin in HBSS) at 37°C for 10 min. Trypsinized tissue was centrifuged (300 x g for 5 

min), and washed two times with HBSS. The pelleted cells were resuspended in media (DMEM 

+ 10% fetal bovine serum) and plated on 10 cm dishes. For mitochondrial studies, MitoTracker 

and MitoSox were used according to manufacturer instructions. 

 

Lysosomal isolation. Two different lysosomal populations preferentially involved in chaperone-

mediated autophagy (CMA) or in macroautophagy (MA) were isolated by centrifugation from a 

light mitochondrial/lysosomal fraction of a pool of 2 mice brains in a discontinuous metrizamide 

density gradient as reported before (Cuervo et al., 1997). Lysosomal integrity was verified after 
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isolation by measuring β-hexosaminidase latency and only preparations with more than 90% 

intact lysosomes were used.	
  	
  

 

Degradation of substrate proteins by lysosomes in vitro. Intact freshly isolated lysosomal 

subpopulations isolated as described above were incubated with a pool of radiolabeled proteins 

in 3-(N-morpholino)propanesulfonic acid (MOPS) buffer (10 mM MOPS, pH 7.3, 0.3 M 

sucrose, 1 mM dithiothreitol and 5.4 µM cysteine) for 30 min at 37°C as described before	
  

(Kaushik and Cuervo, 2009). Reactions were stopped with 20% TCA, filtered through a 

Millipore Multiscreen Assay System (Millipore, Billerica, MA) and detected in a liquid 

scintillation analyzer (PerkinElmer Wallac, Gaithersburg, MD). Proteolysis was measured as the 

percentage of the initial acid-insoluble radioactivity (protein) transformed into acid-soluble 

radioactivity (peptides and free aminoacids). To analyze total proteolytic activity this assay was 

performed instead with lysosomes whose membrane had been disrupted by a hypotonic shock 

and addition of 0.1% Triton X-100. 

 

Binding and uptake of α-synuclein as a CMA substrate by isolated lysosomes. Freshly isolated 

intact CMA active lysosomes were incubated with the substrate protein α-synuclein in MOPS 

buffer at 37°C for 20 min. Where indicated, lysosomes were preincubated with a cocktail of 

protease inhibitors for 10 min at 0°C to inhibit degradation of the substrate inside the lysosomes 

as described before (Cuervo et al., 2004). Lysosomes were collected by centrifugation, washed 

with MOPS buffer and subjected to SDS-PAGE, and immunoblotted for α-synuclein. Binding 

was calculated from the densitometric analysis as the amount of substrate protein bound to the 

lysosomal membrane in the absence of protease inhibitors. Uptake was calculated by subtracting 



	
   93	
  

the amount of protein associated with lysosomes in the presence (protein bound to the lysosomal 

membrane and taken up by lysosomes) and absence (protein bound to the lysosomal membrane) 

of protease inhibitors. 

 

Lysosomal pH. Lysosomal pH was determined using ratiometric imaging of endocytosed Oregon 

Green Dextran as described (Elrick et al., 2012). Oregon Green Dextran has both a pH-

independent (440nm) and pH-dependent (492 nm) excitation maximum, with a pKa of 4.7, 

allowing the measurement of pH in living cells. Briefly, mouse embryonic fibroblasts grown on 

glass coverslips were pulsed overnight with 150 µg/mL Oregon Green Dextran in culture 

medium, which was then chased into lysosomes by washing 3 times and incubating in regular 

medium for 3-5 hours. Cells were then rinsed and imaged in Ringer’s buffer (155 mM NaCl, 5 

mM KCl, 2 mM CaCl2, 1 mM MgCl2, 2 mM NaH2PO4, 10 mM HEPES, and 10 mM glucose) 

using a Nikon TE300 inverted microscope with two filter pairs (Excitation/emission wavelengths 

- C1: 436/535 nm; C2: 492/535 nm). Calibration was performed as described (Elrick et al., 

2012). Using GraphPad Prism 5.0, the standards were fit to a sigmoidal curve by the least 

squares method, and unknown pH values were interpolated from this curve. 

 

Transmission electron microscopy. 12-month-old Atp13a2 null or wild type mice were prepared 

for ultrastructural analysis as previously described (Goodchild et al., 2005). Briefly, mice were 

transcardially perfused with 4% paraformaldehyde/2.5% glutaraldehyde in 100 mM sodium 

phosphate buffer (pH 7.4), followed by overnight postfixation in the same solution. Samples 

were postfixed with 1% osmium tetroxide in 0.1 M cacodylate buffer (pH 7.4) for 1 hour, 

followed by treatment with 3% uranyl acetate, dehydration with alcohol, propylene oxide 
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treatment, and embedding in Embed 812 (Electron Microscopy Sciences, Fort Washington, PA). 

The resin was polymerized in a 60°C oven for 2 days and sections were cut with a Dupont 

diamond knife on a Reichart Ultracut-E microtome (Leica), collected on copper grids, and 

double stained with saturated aqueous uranyl acetate and lead citrate. Images were taken using a 

Philips CM-100 transmission electron microscope (Philips Research) and AMTV540 image 

capture software (Advanced Microscopy Techniques) in the University of Michigan Microscopy 

and Image Analysis Laboratory. 

 

Mitochondrial respiration. Respiration of isolated mitochondria was measured with a Seahorse 

XF-24 Analyzer (Seahorse Bioscience, North Billerica, MA USA) as previously described (Park 

et al., 2013). Cortices were isolated from 18-month old Atp13a2 null or wild type mice and 

gently homogenized in hypotonic buffer (10 mM Hepes pH 7.9, 10 mM KCl, 0.1 mM EDTA) 

containing protease inhibitors (Roche) for 15 min on ice with a Dounce homogenizer. 

Mitochondria were isolated by centrifugation at 800 x g for 5 min at 4°C to pellet nuclei. The 

resulting supernatant was centrifuged at 6200 x g for 10 min at 4°C to pellet mitochondria. 

Mitochondria were diluted to 0.2 mg/ml in BSA-free LM (70 mM sucrose, 220 mM mannitol, 1 

mM EGTA, 2 mM HEPES, 1% w/v defatted BSA, pH 7.2; Mailloux et al., 2013). 10 µg 

mitochondria (except for ascorbate/TMPD where 5 µg was used) was loaded into Seahorse tissue 

culture plate wells and centrifuged at 2000 x g for 10 min at 4°C to attach mitochondria to the 

plate. OCR was first measured under state 2 conditions (substrate only: 10 mM pyruvate and 5 

mM malate, or 5 mM succinate and 2 µM rotenone, or 5 mM glutamate and 5 mM malate, or 1 

mM TMPD and 100 mM ascorbate). State 3, state 4 (proton leak-dependent respiration), 

maximal respiration, and respiration independent of the respiratory chain were tested by the 
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sequential injection of 0.1 mM ADP (state 3), 2.5 µg/mL oligomycin (state 4), 2 µM FCCP 

(maximal respiration), and 5 mM fluoropyruvate or 2 µM rotenone or 4 µM antimycin A or 

sodium azide (respiration independent of the respiratory chain) respectively. Relative OCR was 

defined as the ratio of OCR during State 3 to State 4 respiration. Four independent 

measurements, in triplicate, were recorded at baseline, and after the addition of each compound. 

Mitochondria isolated from five mice were analyzed separately and averaged together to obtain 

final values. 

 

Lipid analysis using high performance liquid chromatography-mass spectrometry. Lipid extracts 

were prepared from 18-month-old cortical lysates using a modified Bligh/Dyer extraction 

procedure as previously described (Chan et al., 2012). Samples were analyzed using an Agilent 

Technologies 6490 Ion Funnel LC/MS Triple Quadrupole system with front end 1260 Infinity 

HPLC. Phospholipids and sphingolipids were separated by normal phase HPLC while neutral 

lipids were separated using reverse phase HPLC. For normal phase analysis, lipids were 

separated on an Agilent Rx-Sil column (i.d. 2.1 x 100 mm) using a gradient consisting of A: 

chloroform/methanol/ammonium hydroxide (89.9:10:0.1) and B: chloroform/methanol/water/ 

ammonium hydroxide (55:39:5.9:0.1), starting at 5% B and ramping to 70% B over a 20 min 

period before returning back to 5% B. Neutral lipids were separated on an Agilent Zorbax XDB-

C18 column (i.d. 4.6 x 100 mm) using an isocratic mobile phase chloroform:methanol:0.1M 

ammonium acetate (100:100:4) at a flow rate of 300 µL/min. Multiple reaction monitoring 

(MRM) transitions were set up for quantitative analysis of different lipid species and their 

corresponding internal standards as described previously (Chan et al., 2012). Lipid levels for 

each sample were calculated relative to the spiked internal standards and then normalized to the 
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total amount of all lipid species measured and presented as relative mol %. Data are presented as 

mean mol % for 3 samples of each genotype. 

 

Statistics. Results were analyzed using GraphPad Prism 5.0. Data were first examined for equal 

variance and then subjected to student’s t-tests as indicated. In all studies, n indicates the number 

of samples per group and a critical value of p < 0.05 was used. Data are plotted as means + SEM. 
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Chapter 4 

 

Association between LRRK2 and microtubules enhanced by Parkinson disease  

mutations and kinase inhibition by LRRK2-IN-12 

 

Abstract 

Dominant missense mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common 

genetic causes of Parkinson disease (PD) and genome-wide association studies identify LRRK2 

sequence variants as risk factors for sporadic PD. Intact kinase function appears critical for 

toxicity of LRRK2 PD mutants, yet our understanding of how LRRK2 causes neurodegeneration 

remains limited. I find that most LRRK2 PD mutants abnormally enhance LRRK2 

oligomerization, causing it to form filamentous structures in transfection of cell lines or primary 

neuronal cultures. Strikingly, ultrastructural analyses, including immuno-electron microscopy 

and electron microscopic tomography, demonstrate that these filaments consist of LRRK2 

recruited onto part of the cellular microtubule network in a well-ordered, periodic fashion. Like 

LRRK2-related neurodegeneration, microtubule association is abolished with the introduction of 

kinase-dead mutations or mutations that remove the WD40 domain, potentially linking 

microtubule binding and neurodegeneration. Treatment with the inhibitor LRRK2-IN-1 caused 

increased filament formation in both wild type and G2019S-LRRK2 transfected cells, suggesting 
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that LRRK2-microtubule association may be a normal physiological process that is enhanced 

with PD mutations or kinase inhibition. These observations identify a novel effect of LRRK2 PD 

mutations and highlight a potential role for microtubules in the pathogenesis of LRRK2-related 

neurodegeneration. 

 

Introduction 

The currently understood biology of leucine-rich repeat kinase 2 (LRRK2) suggests that 

studies of this protein may provide new insights into neurodegeneration that are broadly relevant 

to sporadic Parkinson disease (PD) and amenable to therapeutic targeting. Genome-wide 

association studies demonstrate that common variation around the locus that encodes LRRK2 

segregates with increased risk for PD (Satake et al., 2009; Simon-Sanchez et al., 2009) and 

missense mutations in LRRK2 cause a clinical and neuropathological syndrome 

indistinguishable from typical-appearing sporadic PD (Zimprich et al., 2004). LRRK2 contains 

GTPase and kinase domains, as well as leucine-rich repeat (LRR) and WD40 protein-protein 

interaction domains (Figure 4.1A). Many potentially pathogenic sequence alterations have been 

identified in LRRK2, but only five missense mutations (Figure 4.1A) clearly segregate with PD 

in large family studies (Bonifati, 2007). Two of these mutations (R1441G, R1441C) are located 

in the GTPase domain (termed Ras of complex proteins, or ‘Roc’ domain), a third (Y1699C) 

falls in a region between the GTPase and kinase domains (termed the C-terminal of Roc, or 

‘COR’ domain) and two other mutations (G2019S and I2020T) are in the kinase domain. 

 LRRK2 appears to exist as a dimer (Greggio et al., 2006; Deng et al., 2008; Jorgensen et 

al., 2009), and studies of fragments of LRRK2 or its prokaryotic homolog indicate that 

dimerization occurs in the Roc-COR region (Deng et al., 2008). Structural analyses of these 
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fragments indicate that the R1441C PD mutation (or mutation of the analogous residue in the 

prokaryotic protein) can destabilize the dimer formed by these fragments (Deng et al., 2008; 

Gotthardt et al., 2008). Yet, available data do not define the functional significance of LRRK2 

self-association and it is unclear whether this property is altered in PD mutant forms of the full-

length protein. One possibility is that LRRK2 self-association regulates its kinase activity, but 

only the G2019S mutation clearly increases kinase activity (by ~3-5-fold), whereas the other 

mutations appear to have little or no effect on kinase function (Greggio et al., 2006; MacLeod et 

al., 2006; Smith et al., 2006; Jaleel et al., 2007; West et al., 2007), at least in the in vitro assays 

used thus far. Intact kinase function does appear necessary for LRRK2 toxicity in vitro and in 

vivo (Greggio et al., 2006; Smith et al., 2006; Lee et al., 2010). LRRK2-induced 

neurodegeneration of primary neuronal cultures is caspase-dependent, and may involve 

activation of the fas-associated protein with death domain (FADD)-caspase-8 pathway (Ho et al., 

2009). One site of LRRK2 toxicity may be in neuronal processes, as overexpression of LRRK2 

in vitro or in vivo causes neurite shortening, whereas the loss of LRRK2 function leads to 

increased neuron length and branching (MacLeod et al., 2006). The molecular details that 

underlie LRRK2 effects in neuronal processes are not clear, but may involve interactions with 

the cytoskeleton or cytoskeletal-related molecules (Jaleel et al., 2007; Gandhi et al., 2008; 

Gillardon, 2009; Parisiadou et al., 2009). 

 Here, I present evidence that four PD mutations (R1441C, R1441G, Y1699C, I2020T) 

cause LRRK2 to decorate microtubules in a well-ordered periodic fashion, as evidenced by 

immunofluorescence, immuno-electron microscopy (EM) and EM tomographic studies. 

Microtubule-associated LRRK2 appears as filamentous structures in transfected cell lines or 

primary neuronal cultures, and the frequency of these structures increases with microtubule 
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stabilization (taxol) and decreases with microtubule dissolution (nocodazole). Similar to 

LRRK2-induced neurodegeneration, filament formation returns to baseline in LRRK2 mutants 

containing kinase-dead mutations or mutants lacking the WD40 domain, potentially linking 

LRRK2-microtubule association to neurodegeneration. Similar filament formation occurs rapidly 

in wild type and G2019S-LRRK2 transfected cells following treatment with LRRK2 kinase 

inhibitors, potentially implicating improper LRRK2 signaling in its microtubule association. 

These observations identify a novel effect of LRRK2 PD mutations, and provide a platform to 

further dissect LRRK2-related signals by identifying factors that modulate the interaction 

between LRRK2 and microtubules. 

 

Results 

LRRK2 mutations enhance filament formation 

 In multiple cell lines (including Cath.a-differentiated (CAD), human embryonic kidney 

(HEK293T), and HeLa) transfected with wild type (WT) LRRK2, LRRK2 adopted a primarily 

diffuse cytosolic distribution, but we also observed LRRK2-positive aggregates and a distinct 

pattern of filament formation (Figure 4.1B). These patterns were observed with different epitope 

tags (e.g. GFP and V5) as well as with untagged protein (data not shown). To determine whether 

PD mutations alter the subcellular distribution of LRRK2, we quantified the frequency of these 

patterns (diffuse, aggregate or filament) for WT and all PD mutant alleles (Figure 4.1C and E). 

This analysis was performed in the neuronal catecholaminergic CAD cell line because of the 

robust transfection efficiency possible with this system. The percentage of cells with punctate 

aggregates was not increased by any of the PD mutant alleles (Figure 4.1C), so these structures 

likely represent a non-specific effect of LRRK2 overexpression. In contrast, filament formation 
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was enhanced by all LRRK2 PD mutations that do not consistently enhance kinase function 

(Greggio et al., 2006; Smith et al., 2006; Jaleel et al., 2007), whereas no effect on filament 

formation was observed for the single mutant, G2019S, that consistently increases kinase activity 

(Figure 4.1D and E; Greggio et al., 2006; Smith et al., 2006; Jaleel et al., 2007). Notably, steady-

state protein levels of WT and PD mutant LRRK2 are similar (data not shown), so these 

filament-forming mutations do not appear to act by altering LRRK2 stability. Morphologically, 

these filaments are reminiscent of death-effector filaments formed by FADD, caspase-8, tumor 

necrosis factor receptor type 1-associated death domain protein, and BCL10 (Siegel et al., 1998; 

Guiet and Vito, 2000; Fotin-Mleczek et al., 2002). All of these filament-forming proteins 

participate in cell death-related signaling, potentially providing a clue to LRRK2 function 

relevant to neurodegeneration. LRRK2 filaments also occur in LRRK2-transfected primary 

neurons, both in the cell body and in neurites, and with both yellow fluorescent protein (YFP)-

tagged as well as untagged protein (Figure 4.1F). 

 For previously characterized filament-forming proteins, filament formation reflects a 

homotypic protein-protein interaction that is required for their normal signaling function (Guiet 

and Vito, 2000; Fotin-Mleczek et al., 2002; Muppidi et al., 2006). Oligomerization is also a 

signaling mechanism employed by RIP1 and RIP2 kinases (Inohara et al., 2000), close 

phylogenetic relatives of LRRK2. These facts led to the hypothesis that the filaments represent 

enhanced LRRK2 oligomerization. To investigate the extent to which LRRK2 oligomerizes, we 

co-expressed GFP- and V5-LRRK2 in CAD cells and tested whether they co-immunoprecipitate 

(co-IP). Lysates were immunoprecipitated with a GFP antibody and probed for associated V5-

LRRK2. Differentially tagged WT-LRRK2 molecules did co-purify (Figure 4.1G), indicating 

that LRRK2 can oligomerize. Moreover, LRRK2 oliogmerization was clearly enhanced by 
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filament-forming PD mutations (R1441C, Y1699C, I2020T), whereas the non-filament-inducing 

mutant (G2019S) did not differ from the WT-LRRK2 control (Figure 4.1G). The oligomerization 

status of LRRK2 mutants therefore correlates with the level of filament formation, indicating that 

the cytosolic filaments are related to the oligomerization aspect of LRRK2 biology. 

 LRRK2 filaments appear similar to cytoskeletal structures, suggesting that LRRK2 was 

either templating onto existing cytoskeletal elements or forming novel ‘LRRK2 only’ structures. 

To determine which, if any, cytoskeletal structures LRRK2 may interact with, I examined cells 

transfected with FLAG-LRRK2-I2020T with both anti-FLAG and a panel of antibodies against 

the major cytoskeletal elements, as well as with MitoTracker and caspase-8, since mitochondria 

exist in filamentous strands and caspase-8 has been shown to associate with LRRK2 (Ho et al., 

2009). However, LRRK2 filaments staining did not colocalize with any of these markers (data 

not shown). 

  



	
   103	
  

Figure 4.1. Multiple pathogenic mutations enhance LRRK2 oligomerization and filament 
formation in a kinase-dependent manner. A, Domain structure and Parkinson’s disease 
mutations of LRRK2. LRR, leucine-rich repeat; GTP, GTPase domain (also called Roc domain, 
Ras of complex proteins). Five PD-causing missense mutations are shown. B-E, The formation 
of LRRK2 filaments is enhanced by multiple PD mutations. Cath.a-differentiated (CAD) cells 
were transfected with WT (B) or PD mutant forms (D; R1441C, R1441G, Y1699C, G2019S, 
I2020T) of GFP-tagged LRRK2. WT-LRRK2 adopted either a diffuse, aggregated or 
filamentous pattern of subcellular localization (B; labeled using anti-GFP antibody). The 
frequency of cells bearing LRRK2 aggregates or filaments was quantified 48 hour after 
transfection (C and E). Multiple PD mutations increased the percentage of cells with LRRK2 
filaments (labeled using anti-GFP antibody). Data are means + S.E.M. of four to five 
independent experiments (** p < 0.01, *** p < 0.001, n.s., non-significant; ANOVA with 
Tukey’s test). F, Expression of LRRK2 in neuronal processes. Yellow fluorescent protein (YFP)-
LRRK2-Y1699C was transfected into primary cortical neurons and imaged by confocal 
microscopy (left image, YFP fluorescence shown in green). A similar pattern of filament 
formation was observed in neurites in primary neurons transfected with untagged LRRK2-
I2020T (right image, labeled using an anti-LRRK2 antibody shown in red). G, WT LRRK2 
oligomerizes and multiple LRRK2 PD mutations enhance its oligomerization. V5-LRRK2 was 
co-expressed in CAD cells with GFP or GFP-LRRK2. Lysates were immunoprecipitated with 
anti-GFP 48 hour after transfection, and the immunoprecipitates were analyzed with anti-V5 and 
anti-GFP immunoblots. The oligomeric state of LRRK2 is shown as a relative ratio of co-
purified V5-LRRK2 to GFP-LRRK2, normalized to the WT-LRRK2 ratio. In collaboration with 
C.C. Ho, H. Rideout, Dauer lab. 
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LRRK2 decorates microtubules in an organized manner 

 To further explore the nature of LRRK2 filaments, we employed EM to define the 

ultrastructure of these structures. A correlated light and EM study was conducted by transfecting 

HEK293T cells with YFP-LRRK2-I2020T, using YFP fluorescence to identify filament-bearing 

cells, and then processed the same samples for EM to obtain high-resolution information on 

LRRK2 distribution in specific subcellular domains. Figure 4.2 shows filament formation 

identified by YFP fluorescence (Figure 4.2A-C) and the corresponding low-magnification 

electron micrograph of a thin section from the same area (Figure 4.2D). Increasing 

magnifications (Figure 4.2E and F) reveal filamentous structures organized in parallel arrays. 

The filaments consist of microtubules, identified by their characteristic structure in high-

resolution EM as well as the correlated immunofluorescence, and these consist of LRRK2 

apparently recruited onto parts of these unusually arrayed microtubules (Figure 4.2F and G). 

Areas of naked microtubules (indicated by black arrows in Figure 4.2G) were interrupted by 

bundles of microtubules decorated by electron densities around them (indicated by black 

arrowheads in Figure 4.2G). Immuno-EM using a specific antibody against LRRK2 confirmed 

the specificity of LRRK2 densities around the microtubules (Figure 4.3A). To further examine 

the organization of the filaments, we performed electron tomography on 250 nm thick sections. 

The tomograms show that LRRK2 appears to interact closely with the microtubules in a well-

ordered, periodic fashion (Figure 4.3B-E). 
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Figure 4.2. Pattern of expression of LRRK2 using correlated light and EM. (A–C) The 
distribution of LRRK2 filaments was revealed in HEK293T cells expressing YFP-LRRK2-
I2020T by the YFP fluorescence, (D) correlated image at low-power EM and (E–G) intermediate 
magnifications. Intermediate magnification of filaments (G) shows areas of naked microtubules 
(arrows) as well as electron densities (arrowheads) around them. In collaboration with D. Boassa, 
Ellisman lab. 
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Figure 4.3. Immuno-EM and electron tomography of LRRK2 filaments. A, Immuno-EM 
was performed with a LRRK2-specific antibody. Immuno-gold signals appear as black dots 
(indicated by white arrows) on bundles of microtubules. B-E, Electron tomography of LRRK2 
filaments. Higher magnification images of non-decorated tubules (B) and decorated microtubules 
(C) from electron tomograms are shown as well as a low power field from the area reconstructed 
by electron tomography (D) from which a graphical reconstruction was produced using Amira 
(E). In collaboration with D. Boassa, Ellisman lab. 

 

 

 The tomographic data showing LRRK2 ‘coating’ microtubules suggested that masking of 

the tubulin epitope by LRRK2 could explain the lack of co-localization between tubulin and 

LRRK2 immunofluorescence. Indeed a re-examination of individual Z-images from the 

immunofluorescent staining (rather than the maximal intensity projection) showed distinct 
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regions in which LRRK2 filaments appear as direct continuations of microtubules (Figure 4.4A-

G). I further explored the LRRK2-microtubule association by testing whether the frequency of 

filament formation was altered by microtubule stability. To accomplish this, I treated LRRK2-

transfected CAD cells with the microtubule-stabilizing drug taxol (10 µM for 5 hours), the 

microtubule-destabilizing drug nocodazole (100 nM for 1 hour), or vehicle [dimethyl sulfoxide 

(DMSO)] control. An examiner blinded to genotype and drug treatment then counted the 

proportion of cells with filaments. Analysis of filament proportion showed an effect of genotype, 

drug treatment, and the interaction between the two [two-way analysis of variance (ANOVA): F 

= 14.36, P < 0.0001]. In cells transfected with either GFP-LRRK2-I2020T or Y1699C, taxol 

increased the percentage of filament-bearing cells, whereas this percentage was decreased by 

nocodazole (Figure 4.4H). In contrast, taxol or nocodazole did not change the percentage of 

filament-bearing cells transfected with GFP-LRRK2-WT or G2019S. This distinction between 

the behavior of the G2019S and the other PD mutations is similar to that observed for their 

kinase activity (Greggio et al., 2006; MacLeod et al., 2006; Smith et al., 2006; Jaleel et al., 2007; 

West et al., 2007). Taken together with the observations of LRRK2-coating microtubules by EM 

tomography, these data further indicate that multiple LRRK2 PD mutations (but not G2019S) 

enhance its ability to associate with microtubules under normal cellular conditions. As cellular 

stressors, it is possible that taxol and nocodazole treatment alter LRRK2 behavior through 

indirect mechanisms, although the fact that they modulate filament formation in opposite 

directions makes it unlikely. 
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Figure 4.4. LRRK2 filaments associate with microtubules and are modified by 
microtubule-altering drugs. A-G, LRRK2 filaments localize to microtubules. HEK293T cells 
transfected with FLAG-LRRK2-I2020T were double labeled with anti-FLAG (D and G) and 
anti-alpha tubulin (C and F) antibodies. LRRK2 filaments appear as continuations of 
microtubules (A, B, and E, merged images showing tubulin in red, LRRK2-FLAG in green and 
nuclei in blue; insets in B are shown in E, F, and G). Arrows denote portions of microtubules 
positive for LRRK2 staining, but lacking tubulin staining. Scale bar is 10 µm. H, Treatment with 
microtubule-altering drugs changed the filament proportion. CAD cells were transfected with 
WT or PD mutant forms (G2019S, I2020T or Y1699C) of GFP-LRRK2. Forty-eight hours post-
transfection, cells were treated with the microtubule-stabilizing drug taxol (10 µM for 5 hours), 
the microtubule-destabilizing drug nocodazole (100 nM for 1 hour) or dimethyl sulfoxide 
(DMSO) control. Following drug treatment, cells were fixed, stained for GFP and the frequency 
of cells with filaments was quantified. Data are means + SE of three independent experiments. (* 
p < 0.05, *** p < 0.001, n.s. non-significant; two-way analysis of variance (ANOVA) with post-
hoc Tukey’s test). 
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LRRK2-microtubule association affected by kinase-dead mutations and requires the WD40 

domain 

 Kinase-dead mutants prevent the neurotoxicity of LRRK2 PD mutants (Greggio et al., 

2006; Smith et al., 2006) and may therefore prevent the enhanced microtubule association caused 

by LRRK2 PD mutations. Consistent with the neurotoxicity data, blocking kinase activity by 

introducing a second mutation in the kinase domain, K1906R, completely abolished the effect of 

LRRK2 PD mutations on microtubule association (Figure 4.5A). To further elucidate the 

mechanism whereby LRRK2 PD mutations provoke enhanced microtubule association, we 

attempted to define a microtubule association domain by performing a structure-function study, 

testing which regions of LRRK2 are required (or are dispensable) for filament formation. The 

I2020T mutant was used as a representative mutation for these studies because the behavior of 

this mutant does not differ from R1441C or Y1699C (Figure 4.1 and 4.4). This analysis 

demonstrated that the WD40 domain was necessary for filament formation (Figure 4.5B), 

whereas the entire N-terminus, prior to the LRR domain, is dispensable for microtubule binding. 

Jorgensen et al. reported previously that ΔWD40-LRRK2 is unable to autophosphorylate yet 

retains the ability to trans-phosphorylate the model substrate MBP, suggesting a potential 

relationship between autophosphorylation and microtubule association (Jorgensen et al., 2009). 

Such a relationship could contribute to an explanation of why blocking kinase function through 

the presence of the K1906R kinase dead mutant virtually abolishes microtubule association 

(Figure 4.5A). 
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Figure 4.5. Kinase dead mutations and loss of the WD40 domain disrupt LRRK2-
microtubule association. A, The microtubule-association effect of LRRK2 PD mutations is 
diminished by the kinase-dead mutant K1906R. Blocking LRRK2 kinase function blocks the 
effect of filament formation caused by PD mutations. CAD cells were transfected with WT 
LRRK2-GFP or ‘double mutant’ constructs containing a LRRK2 PD mutation and a kinase-
deficient mutation (K1906R) and stained for filaments with an anti-GFP antibody. Quantification 
of filament formation was done as in Figure 4.1E. Data are means + S.E.M. of three independent 
experiments (** p < 0.01, n.s.: non-significant; ANOVA with Tukey’s test). B, Filament 
formation requires the WD40 domain of LRRK2. CAD cells were transfected with full-length 
GFP-LRRK2-I2020T (FL-IT), GFP-LRRK2-I2020T lacking the WD40 domain (∆WD40) or the 
Roc and WD40 domains of LRRK2-I2020T (Roc-WD-IT). Forty-eight hours after transfection, 
the cells were assessed for filament formation. Anti-GFP immunoblot of transfected cell lysate 
demonstrates that truncated proteins are produced at the same or greater level of expression as 
full-length LRRK2. In collaboration with C.C. Ho, H. Rideout, Dauer lab. 
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Kinase inhibition with LRRK2-IN-1 increases filament formation in WT- and G2019S-LRRK2-

GFP transfected cells 

 To better understand the apparent kinase-dependent nature of filament formation, I 

utilized a recently described LRRK2-specific inhibitor (LRRK2-IN-1: Deng et al., 2011). 

Pharmacological kinase inhibitors, in comparison to the K1906R kinase-dead mutation, allow the 

rapid inhibition of LRRK2 kinase as well as abrogate the need for multiple mutations in the 

LRRK2 protein, reducing the likelihood of abnormal, non-physiological folding. Deng et al. 

(2011) reported filaments following treatment with LRRK2-IN-1 that appeared similar to those 

observed, suggesting discrepancies between the kinase-dead, K1906R mutations and chemical 

kinase inhibition. To clarify this difference between chronic, genetic kinase inhibition and acute, 

chemical kinase inhibition, I treated CAD cells transfected with WT, PD mutant, or kinase-dead 

‘double mutants’ with 1 µM LRRK2-IN-1 for 2 hours, a dose that achieves near-complete 

LRRK2 kinase inhibition and was used previously to induce filaments similar to those observed 

(Deng et al., 2011). Following treatment, I fixed and stained transfected cells for GFP. An 

observer blinded to genotype quantified the proportion of cells with filaments. Similar to Deng et 

al. (2011), I observed dramatic LRRK2 filamentation in LRRK1-IN-1-treated cells in G2019S-

LRRK2-GFP cells (Figure 4.6A), the only PD mutant that does not show a high proportion of 

filaments in basal conditions. Filament proportion also increased with LRRK2-IN-1 treatment of 

WT-LRRK2-GFP transfected cells (Figure 4.6B). The relative	
  increase in filamentation differed 

between WT and G2019S-LRRK2-transfected cells, suggesting that kinase inhibition affected 

the PD mutant more than wild type. In other PD mutants (I2020T, Y1699C, R1441C) that 

already have a high proportion of filaments under basal conditions, LRRK2-IN-1 had a lesser 

effect on filamentation (Figure 4.6B). This result likely reflects a ceiling effect of filamentation 
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for these PD mutants rather than reduced efficacy of LRRK2-IN-1. These mutants already have 

filaments in 30-40% of cells and the proportion of filaments never exceeded 50% of cells in all 

conditions and experiments. Lastly, I treated cells transfected with LRRK2 ‘double mutants’ 

containing both a PD mutation and the kinase-dead mutation, K1906R, which prevents filament 

formation under basal conditions (Figure 4.5A). Similar to basal conditions, the presence of the 

K1906R reduced the proportion of filaments in all mutants (Figure 4.6B) and reflects profound 

differences between genetic and chemical inhibition of LRRK2. 

 I was interested in the differential response to kinase inhibition between WT and PD 

mutant LRRK2 and so performed a dose-response study using ten-fold changes in LRRK2-IN-1 

concentration and WT-, G2019S-, and I2020T-LRRK2-GFP, with I2020T as a representative 

filament-forming PD mutant. Both WT- and G2019S-LRRK2-transfected cells showed increased 

filamentation with increasing concentrations of LRRK2-IN-1 (Figure 4.6C). Consistent with the 

initial study, G2019S-LRRK2 transfected cells had increased sensitivity to LRRK2-IN-1 

compared to WT-LRRK2 cells. At both 100 nM and 1 µM LRRK2-IN-1, G2019S-LRRK2 cells 

had a greater proportion of filaments than WT-LRRK2 transfected cells, before reaching an 

apparent ceiling at 10 µM LRRK2-IN-1 (Two-way ANOVA: Fgenotype (2,140) = 70.06, p < 

0.0001; Ftreatment (3,140) = 86.33, p < 0.0001; Finteraction(6,140) = 16.62, p < 0.0001; followed by 

post-hoc Tukey’s tests corrected for multiple comparisons). A correlated light and EM study of 

G2019S-LRRK2-GFP cells treated with 1µM LRRK2-IN-1 for 2 hours confirmed that these 

filaments were similar to filaments previously described (Figure 4.1-4.5). Similar to those in 

Figure 4.2, LRRK2-IN-1-induced filaments showed electron dense material around microtubules 

(Figure 4.6D), reinforcing that the two filaments are of similar composition. 
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Figure 4.6. Inhibition of kinase activity by LRRK2-IN-1 increases LRRK2-microtubule 
association. A, Treatment of cells transfected with G2019S-LRRK2-GFP with 1 µM LRRK2-
IN-1 for 2 hours (right) resulted in increased LRRK2 filamentation. DMSO-treated cells shown 
as control (left). B, Quantitation of LRRK2-IN-1-induced filamentation. CAD cells were 
transfected with WT LRRK2-GFP, LRRK2 PD mutant constructs, or ‘double mutant’ constructs 
containing a LRRK2 PD mutation and a kinase-deficient mutation (K1906R). 48 hours post-
transfection, cells were treated with either 1 µM LRRK2-IN-1 or DMSO control and stained for 
filaments with an anti-GFP antibody. Quantification of filament formation was done as in Figure 
4.1E. Data are means + S.E.M. of three independent experiments (* p < 0.05, ***p < 0.001, n.s.: 
non-significant; 2-way ANOVA with post-hoc Tukey’s tests controlled for multiple 
comparisons). C, Dose-response of LRRK2-IN-1 filamentation in WT, G2019S, or I2020T 
LRRK2-GFP transfected CAD cells. 48 hours post-transfection, cells were treated with either 
100 nM, 1 µM, or 100 µM LRRK2-IN-1 or DMSO control for 2 hours and stained for filaments 
with an anti-GFP antibody. Quantification of filament formation was done as in Figure 4.1E. 
Data are means + S.E.M. of three independent experiments (statistically different conditions are 
indicated with different letters (a, b, c); 2-way ANOVA with post-hoc Tukey’s tests controlled 
for multiple comparisons). D, Correlated light and EM of LRRK2-IN-1-induced filaments in 
G2019S-LRRK2-GFP transfected cells show similar ultrastructure to I2020T-LRRK2-GFP 
filaments shown in Figure 4.2. G2019S-LRRK2-GFP transfected HEK293T cells were treated 
with 1 µM LRRK2-IN-1 for 2 hours and processed for correlated light and EM. LRRK2-IN-1 
treated cells showed similar undecorated microtubules (arrows) and electron densities 
(arrowheads) to I2020T-LRRK2-GFP transfected cells (Figure 4.2). 
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 The rapid induction of filamentation following LRRK2-IN-1 treatment led me to probe 

the dynamics of LRRK2 filamentation, specifically how stable filaments are, how rapidly they 

form, and the kinetics of their formation. To examine stability, I induced filaments by treating 

G2019S-LRRK2-GFP transfected CAD cells with 1 µM LRRK2-IN-1 for 2 hours. After filament 

induction, the cells were washed and incubated in media lacking LRRK2-IN-1 for a variable 

time (one hour to 24 hours). Within one hour of drug removal, the proportion of cells with 

filaments decreased by approximately half (Figure 4.7); however, the proportion then remained 

unchanged up to 24 hours after drug treatment, suggesting that while filament turnover can occur 

rapidly, the association between LRRK2 and microtubules is quite stable once formed. 

 I next examined filament formation by live cell imaging using the Deltavision-RT Live 

Cell Imaging System (University of Michigan Microscopy and Image Analysis Laboratory). 

CAD cells transfected with G2019S-LRRK2-GFP were identified by fluorescence and confirmed 

visually to contain no filaments. Media containing 1µM LRRK2-IN-1 was added to the cells and 

cells were repeatedly imaged every 10 minutes starting 15 minutes after drug treatment. During 

five independent experiments, forty-seven of 140 imaged cells developed filaments. Image series 

were then examined for the frame at which filament formation began (Figure 4.7B). While 

variable in terms of filament onset, the majority of filaments started forming between 35 to 65 

minutes after drug treatment (Figure 4.7C), confirming that filament formation can occur rapidly 

following kinase inhibition. Furthermore, examination of individual filaments across images 

revealed extension of filaments over time (see arrowheads, Figure 4.7C), rather than the 

instantaneous formation of complete LRRK2 filaments. 
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Figure 4.7. Kinetics of LRRK2-IN-1 induced filamentation in LRRK2-G2019S transfected 
cells. A, Washout of LRRK2-IN-1 demonstrates that a portion of filaments are stable up to 24 h 
after drug treatment. Forty-eight hours after transfection with G2019S-LRRK2-GFP, CAD cells 
were treated with 1 µM LRRK2-IN-1 for 2 h. Cells were then washed three times and incubated 
in media without drug. Frequency of LRRK2 filaments was quantified. Data are mean + S.E.M. 
of three independent experiments, done in triplicate (* p < 0.05; ANOVA with Tukey’s test). B-
C, Live cell imaging of LRRK2-IN-1 induced filaments in G2019S-LRRK2-GFP transfected 
cells. CAD cells were transfected with G2019S-LRRK2-GFP. Forty-eight hours post-
transfection, LRRK2-GFP-positive cells without filaments were identified by fluorescence. 
Media was replaced with DMEM/F12 containing 1 µM LRRK2-IN-1 and images were captured 
of identified cells every 10 minutes starting 15 minutes after drug treatment. B, Example of 
transfected cell with filament formation. Arrowheads indicate locations of filament growth not 
present at previous time point. C, Histogram of number of new filaments identified at each time 
point after drug addition. Data are from five independent experiments with 20-30 cells identified 
and followed in each experiment.  
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Variability in the effects of kinase inhibitors on LRRK2 filamentation 

 Dzamko et al. reported similar appearing filaments following LRRK2 inhibition with H-

1152 (Dzamko et al., 2010). In addition, LRRK2-IN-1 has been reported to have many off-target 

effects (Luerman et al., 2013). To understand the specificity of filamentation following kinase 

inhibition, I examined LRRK2 filament formation in transfected CAD cells treated with two 

additional LRRK2-specific kinase inhibitors [TAE684: (Zhang et al., 2012); Su6656: Y. Peng, 

Dauer lab, data not shown]. For both drugs, I first conducted a dose-response curve and time-

course to ascertain a dose with no cellular toxicity, but well above the in vitro IC50 values for the 

two inhibitors [IC50 for TAE684: 7.8 nM (Zhang et al., 2012); IC50 for Su6656: < 5 nM, Y. Peng, 

data not shown]. Once optimal doses were established with WT-LRRK2-GFP and G2019S-

LRRK2-GFP, I treated CAD cells transfected with WT, PD mutant, and ‘double mutant’ forms 

of LRRK2-GFP with 300 nM TAE684 for 2 h, 50 nM Su6656 for 4 h, or DMSO. TAE684 

promoted filamentation in WT- and G2019S-LRRK2 transfected cells (Figure 4.8A), but Su6656 

did not (Figure 4.8B). These results suggested that different LRRK2 kinase inhibitors have 

variable effects on filamentation in WT and G2019S-transfected cells, though whether from 

variability in off-target effects or on structural changes to LRRK2 is not currently known.  
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Figure 4.8. LRRK2 kinase inhibitors show variable effect on LRRK2-microtubule 
association. The formation of LRRK2 filaments in WT-LRRK2 or G2019S-LRRK2 is enhanced 
by treatment with the kinase inhibitor TAE684, but not Su6656. CAD cells were transfected with 
WT, PD mutant forms, or ‘double mutants’ containing a PD mutation and kinase-dead, K1906R 
mutation. Forty-eight hours after transfection, cells were treated with either 0.3 µM TAE684 for 
2 hours (A) or 50 nM Su6656 for 4 hours (B). The frequency of cells with LRRK2 filaments was 
quantified. Data are mean + S.E.M. of three independent experiments (*** p < 0.001; ANOVA 
with Tukey’s test). 
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Discussion 

This study is the first to provide evidence that multiple PD mutations enhance the 

association of LRRK2 with microtubules. Several characteristics of this interaction indicate that 

it may contribute to LRRK2-dependent neurodegeneration. First, similar to LRRK2 

neurotoxicity, this effect requires the WD40 domain (Jorgensen et al., 2009) and is abolished by 

the presence of kinase-dead mutations (Greggio et al., 2006; Smith et al., 2006; Jorgensen et al., 

2009; Lee et al., 2010). Secondly, the colocalization and ultrastructural analyses show that 

LRRK2 interacts closely with microtubules in a well-ordered, periodic fashion, suggesting the 

existence of a LRRK2-binding site on microtubules or microtubule-bound proteins. Conversely, 

the specific requirement of the WD40 domain (but not the N-terminus) for microtubule binding 

indicates that specific regions of LRRK2 mediate microtubule association, recently confirmed to 

be in the Roc-COR region of LRRK2 (Law et al., 2014). Our studies also show that LRRK2 

filaments appear similar to linear arrays of electron dense structures observed in human post-

mortem substantia nigra tissue from a patient carrying the filament-forming Y1699C mutation 

(Wszolek et al., 1997). With the development of better LRRK2 antibodies for 

immunohistochemical studies, it will be interesting to see if similar filaments are observed in the 

brains of PD patients with LRRK2 mutations. 

The link between visible microtubule association (filaments) and toxicity mirrors those 

observed for protein aggregates seen with α-synuclein and other neurodegenerative-related 

proteins: neurotoxicity occurs in the population of LRRK2-transfected neurons, whereas visible 

filaments are seen in a minority of cells. In all of these cases, the visible protein lesions 

(filaments or aggregates) appear to reflect toxic events that also occur in soluble (and therefore 

not visualizable) protein. The co-IP results (Figure 4.1G) support such a scenario since these 
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studies, which assess the entire cell population (including untransfected cells), show a markedly 

increased association for filament-forming LRRK2 PD mutations. 

Similar filaments have been reported by Alegre-Abarrategui et al. (2009) for R1441C-

LRRK2. That report suggested that LRRK2 filaments were a form of multivesicular bodies, yet 

used a LRRK2 antibody for immuno-EM that has not been validated using LRRK2 knockout 

tissue, and no multivesicular body markers were shown to colocalize with LRRK2 filaments. In 

contrast, we used a validated LRRK2 antibody for detection (as well as an epitope tag), and 

employed correlated light and EM to ensure that the ultrastructural features reflected the same 

structures visualized by immunofluorescence. Membrane was never observed in association with 

LRRK2 filaments, either by EM or using membrane dyes on LRRK2-transfected cells (data not 

shown). 

The discrepancy in filament formation between LRRK2 chemical inhibition (Figure 4.6-

4.8) and genetic inhibition (Figure 4.5) has larger implications for our understanding of LRRK2 

biology. Our laboratory and others have relied predominantly on genetic mutations that disrupt 

the binding of ATP to LRRK2 and thereby disrupt kinase function. These genetic ‘kinase-dead’ 

mutants have implicated LRRK2 kinase function in autophagy, neurite outgrowth, the interaction 

between the kinase and GTPase domains, and neurotoxicity (Greggio et al., 2006; West et al., 

2007; Plowey et al., 2008; Greggio et al., 2009; Jorgensen et al., 2009; Skibinski et al., 2014). 

Yet, in contrast to LRRK2 ‘kinase-dead’ mutations, which diminish filament formation (Figure 

4.5), the LRRK2-specific kinase inhibitors LRRK2-IN-1 and TAE684 [and H-1152 (Dzamko et 

al., 2010)] result in an increase in filament formation. Most likely, the introduction of a second, 

non-physiological mutation causes abnormalities in LRRK2 protein folding, despite normal 

protein levels (data not shown). With the development of more specific LRRK2 kinase 
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inhibitors, it will be vital to use chemical inhibition to revisit the role of kinase activity in 

LRRK2 function. The kinase inhibitor Su6656 had no effect on filamentation, suggesting that the 

location of binding to LRRK2 kinase may alter secondary structure and allow for microtubule 

binding. Substantial off-target effects of LRRK2-IN-1 have been reported (Luerman et al., 2013), 

raising the possibility that inhibition of another kinase has secondary effects on LRRK2-

microtubule association. Finally, it is possible that chronic, genetic inhibition results in 

secondary effects within the cell that differ from acute, chemical inhibition. 

The interaction of LRRK2 with microtubules could affect microtubule dynamics or 

microtubule-related transport, or microtubules could serve as a scaffold to concentrate LRRK2 

signaling events such as the recruitment of the FADD/caspase-8 complex. In vitro, LRRK2 can 

bind alpha/beta-tubulin heterodimers (Gandhi et al., 2008), and can phosphorylate beta-tubulin 

(Gillardon, 2009). Active (but not kinase dead) LRRK2 enhances the polymerization of tubulin 

(isolated from bovine brain) in the presence of microtubule-associated proteins (Gillardon, 

2009). More recent work has suggested microtubule binding to the Roc-COR domain (Law et al., 

2014) and that binding enhances GTPase activity (Caesar et al., 2013). Further support for a 

LRRK2 interaction with the cytoskeleton includes the findings of deficient microtubule 

associated protein tau phosphorylation in brain lysates from LRRK2 null mice (Gillardon, 2009), 

and multiple reports of alterations of neurite length and branching in situations of LRRK2 

deficiency or overexpression (MacLeod et al., 2006; Plowey et al., 2008; Cookson, 2010; 

Dachsel et al., 2010; Lin et al., 2010).  

In light of an emerging role for endolysosomal dysfunction in PD, LRRK2 may act on 

microtubules to facilitate vesicular transport via the recruitment of necessary proteins. 

Microtubules are the major conduit for long-distance movement within the cell. Rab proteins, the 
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small GTPases that function to identify and sort specific vesicles within the endolysosomal 

system, interact with microtubules to coordinate both forward and retrograde movement 

(Stenmark, 2009; Horgan and McCaffrey, 2011). LRRK2 also physically interacts with multiple 

Rab proteins like Rab5, Rab7, and Rab7L1 (Shin et al., 2008; Heo et al., 2010; Dodson et al., 

2012; MacLeod et al., 2013; Beilina et al., 2014) to coordinate intracellular vesicular 

localization. Enhanced microtubule association of mutant LRRK2 may promote the recruitment 

of Rabs and other signaling molecules to alter vesicle movement. LRRK2 is reported to signal 

via the FADD/caspase-8 pathway (Ho et al., 2009), and in olfactory receptor neurons, 

degeneration of the axon and soma require synaptically activated caspase-8 that is retrogradely 

transported along microtubules (Carson et al., 2005). LRRK2 might therefore modulate the 

axonal transport of caspase-8 or other cargo, a notion consistent with the potentially central role 

of axonal degeneration in PD (Cheng et al., 2010). Alternately, LRRK2 was recently reported to 

form a co-complex with Rab7L1, BAG5, GAK, and/or retromer that alters trafficking of vesicles 

between the early endosome and trans-Golgi network (MacLeod et al., 2013; Beilina et al., 

2014). LRRK2 recruitment to microtubules may provide the scaffold upon which these other 

proteins are brought together. 

One potential mechanism for the enhanced microtubule association of mutant LRRK2 is 

that PD mutations may directly enhance the affinity of LRRK2 for microtubules or microtubule-

bound proteins. Alternatively, PD mutations may enhance LRRK2 homo-oligomerization or 

complex formation with other cytosolic proteins like Rab7L1 or retromer, and these homo-

oligomers or protein complexes may themselves have enhanced affinity for microtubules. Our 

data provide evidence that multiple pathogenic mutations enhance LRRK2-LRRK2 interactions, 

an effect abrogated by kinase-dead mutations and correlated with filament formation. Studies 
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from Wittinghofer and colleagues (Gotthardt et al., 2008) suggest that the COR domain is 

important for LRRK2 dimerization, and data from Cookson and colleagues (Deng et al., 2008) 

suggest that PD mutations that replace the arginine at position 1441 with either cysteine or 

glycine (which cause filaments) weaken the interaction in the Roc-COR region. The structural 

alteration produced by weakening of this interaction may expose a protein-protein interaction 

domain, providing a potential mechanism for how PD mutations enhance LRRK2-microtubule 

association. The fact that all PD mutations provoke LRRK2 filaments, either in basal conditions 

or in the presence of LRRK2 kinase inhibitors, indicates that other insults, such as those that 

occur in idiopathic PD, might also promote abnormal LRRK2 association with microtubules. 

 

Materials and Methods 

Plasmids. LRRK2 cDNA from HEK293T cells was cloned in pCMS-EGFP (Clontech 

Laboratories Inc., Mountain View, CA), pcDNA-DEST53 and –DEST40 (Invitrogen). All 

subsequent mutants were generated using site-directed mutagenesis and all mutant clones were 

re-sequenced to confirm their accuracy. 

 

Cell lines and primary cortical neuron cultures. CAD cells were grown in Dulbecco’s modified 

eagle medium (DMEM)/F12 (Gibco, Grand Island, NY) supplemented with 8% fetal bovine 

serum. HEK293T cells were grown in DMEM (Gibco) with 10% serum. Cells were transfected 

with Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions. Cultures of 

cortical neurons from E16 mice were maintained in Neurobasal medium containing B-27 

supplements (Gibco), and transfected with Lipofectamine 2000 four days after being plated. 

Primary neurons were transfected with LRRK2 expression constructs and pCMS-EGFP at 10:1 
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ratio. Each experiment was performed on cover slips in triplicate three times, with >100 cells on 

each cover slip being quantified. 

 

Antibodies. We used the following antibodies: rabbit anti-GFP (Abcam, Cambridge, MA, 

#ab6656); mouse anti-GFP (Roche Applied Science, #11814460001); mouse anti-V5 

(Invitrogen, #R960-25); rabbit monoclonal anti-LRRK2 (Epitomics, Burlingame, CA, #3514-1); 

mouse monoclonal anti-alpha tubulin (Sigma-Aldrich, #T6074); and rabbit polyclonal anti-

FLAG (Abnova, Taipei City, Taiwan, #PAB0900). The rabbit anti-LRRK2 used to immunostain 

untagged LRRK2 was a kind gift from Dr. Benoit Giasson (University of Pennsylvania, 

Philadelphia, PA). 

 

Cell preparation for EM. HEK293T cells transfected with YFP-LRRK2-IT or GFP-LRRK2-GS 

were fixed for 30 min in 2% glutaraldehyde in 0.1M sodium cacodylate buffer (pH 7.4) on ice. 

After washes in 0.1M cacodylate buffer, cells were post-fixed with 1% osmium tetraoxide for 30 

min, stained with 2% uranyl acetate and then dehydrated and embedded in Curcupan epoxy 

resin. Sections were cut using a diamond knife at a thickness of 70-90 nm for thin sections and 

250 nm for thick sections. Post-staining of grids was done with 2% uranyl acetate for 5 min and 

lead citrate for 1 min. Thin sections were examined using a JEOL 1200 FX1 operated at 120 kV. 

 

Electron tomography. Colloidal gold particles (10 nm diameter) were deposited on opposite 

sides of the thick epoxy sections to serve as fiducial markers. For stability in the beam, the 

section was coated with carbon on both sides. For reconstruction, a triple series of images at 

regular tilt (angular increments of 2° from -60° to +60° increments) was collected with a JEOL 
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4000EX intermediate-voltage electron microscope operated at 400 kV. The specimens were 

irradiated before initiating a tilt series to limit anisotropic specimen thinning during image 

collection. Tilt series were recorded using a slow-scan CCD camera. The pixel dimensions of the 

CCD camera were 4000 x 4000 and the pixel resolution was 0.754 nm. Fine alignment and 

reconstruction were performed using the TxBR software package (Lawrence et al., 2006). 

 

Post-embedding immuno-EM. For ultrastructural analysis of the filaments, we used an anti-

LRRK2 antibody using 10 nm gold particles to identify the LRRK2 protein around the 

microtubules. After labeling, grids were washed and post-stained with 2% uranyl acetate for 5 

min and lead citrate for 1 min. 

 

Immunofluorescent labeling. Forty-eight hours after transfection, methanol- or 4% 

paraformaldehyde-fixed HEK293T or CAD cells on poly-D-lysine coated glass cover slips were 

blocked in phosphate buffered saline (PBS) containing 0.3% Triton X-100 and 5% bovine serum 

albumin. Cover slips were then incubated overnight at 4°C in primary antibodies diluted in block 

solution. The next day, cover slips were washed, incubated with Alexa488-, Alexa555-, or 

Alexa647-conjugated antibodies (Invitrogen) and washed in PBS before mounting using 

ProLong Gold antifade reagent with 4’,6-diamidino-2-phenylindole (Invitrogen). Data was done 

with an Olympus FluoView1000 laser-scanning confocal microscope (Olympus Inc., Center 

Valley, PA), using a 60X1.42 NA lengs or with a 100x oil-immersion objective with a Zeiss 

LSM510 2-photon confocal microscope (Carl Zeiss Microscopy, Thornwood, NY). Image 

analysis of z-scan was done using the Imaris Software (Bitplane AG, St. Paul, MN) and the 

Image J software (rsb.info.nih.gov/ij). 
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Live cell imaging. Forty-eight hours after transfection with GFP-LRRK2-G2019S, cells grown 

on glass coverslips on 35 mm dishes (MatTek Corp., Ashland, MA) were imaged using 

Deltavision-RT Live Cell Imaging System with a Photometrics CoolSNAP HQ camera. GFP-

positive cells without filaments were identified and then 1 µM LRRK2-IN-1 was added to fresh 

media (DMEM/F12 without phenol red, Gibco). Images of the identified cells were acquired 

using a 60x Olympus PlanApo N oil immersion objective, NA of 1.42, with images being 

collected every 10 min starting 15 min after drug was added. Images were subsequently 

deconvolved using softWoRx 3.5.1 software (GE Healthcare, Issaquah, WA). Image series were 

then studied in ImageJ to identify time points at which filaments first appeared. 

 

Drug treatment. Forty-eight hours after transfection, cells on coverslips were treated with taxol 

(10 µM in DMSO for 5 h; Sigma), nocodazole (100 nM in DMSO for 1 h; Sigma) or DMSO. For 

kinase inhibitor experiments, forty-eight hours after transfection, cells were treated with LRRK2-

IN-1 (EMD Millipore, Billerica, MA), Su6656 (Sigma), TAE684 (SelleckChem, Houston, TX), 

or DMSO. Concentrations and incubation times are indicated in the relevant figures and text. 

 

Co-IP analysis. HEK293T or CAD cells transfected with various expression constructs were 

Dounce homogenized in lysis buffer (20 mM 4-(2-hydroxyethyl)-1-piperzaineethanesulfonic 

acid, pH 7.4, 150 mM NaCl, 0.1-0.5% NP40, 2 mM ethylene glycol tetraacetic acid, 2 mM 

MgCl2, 10% glycerol, 1 mM sodium orthovanadate, 10 mM NaF, 25 mM β-glycerophosphate, 

pH 7.2 and protease inhibitors). Following centrifugation at 20,000 x g for 15 min, the 

supernatants were pre-cleared with protein-A agarose (Roche) for 30 min. Lysates containing 2 
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mg total protein were immunoprecipitated with rabbit anti-GFP for 1 h – overnight followed by 

incubation with protein-A beads for 2 h at 4°C. 

 

Western blotting. Cellular lysates were prepared by homogenizing confluent transfected 

HEK293T or CAD cells with a Dounce homogenizer in an appropriate volume of ice-cold RIPA 

buffer (10mM Tris-HCl, 150 mM NaCl, 0.1% SDS, 0.1% SDOC, and 0.01% Triton-X 100) 

containing protease inhibitors (Roche). The samples were then sonicated to solubilize all 

proteins. Protein concentrations were determined using the BCA assay (Pierce Biotechnology). 

Proteins were separated by SDS-PAGE using Tris-HCl 4-20% gradient gels (BioRad) and 

transferred onto PVDF membranes (BioRad). Membranes were blocked in 5% non-fat milk in 

TBS-T (TBS plus 0.1% (v/v) Tween 20) for 1 hour, followed by overnight incubation at 4°C in 

primary antibodies in 5% non-fat milk in TBS-T. After a 1-hour incubation in an HRP-

conjugated secondary antibody, immunoreactive bands were visualized on film by enhanced 

chemiluminescence (SuperSignal West Pico, Pierce Biotechnology).  
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Chapter 5 

 

Conclusions 

 

 Considerable data implicate endolysosomal dysfunction as a key feature of PD 

pathogenesis. Based on these data, and genetic studies linking parkinsonism to ATP13A2, a 

protein localized to this pathway, I generated and characterized a novel Atp13a2 null mouse 

model of PD-related neurodegeneration. The goal of these studies was: 1) to generate a model of 

PD-related neurotoxicity linked to endolysosomal dysfunction, and 2) to exploit this model to 

identify key events by which endolysosomal dysfunction causes neurodegeneration. Atp13a2 

null mice develop early gliosis and lysosomal changes followed by aggregation of autophagy 

substrates and behavioral abnormalities. In contrast to the prevailing theory suggesting a crucial 

role for α-synuclein, I demonstrated these changes are not significantly altered by α-synuclein 

levels, emerging at the same time and progressing to a similar extent following loss or 

overexpression of α-synuclein. Furthermore, in contrast to previous reports, I showed that in vivo 

loss of Atp13a2 caused minimal alterations to lysosomal function, without broad deficits in 

proteolysis, mitophagy, or lipid profiles. Loss of Atp13a2 does cause selective perturbations in 

the trafficking of cathepsin D, a lysosomal protease linked to other neurodegenerative disorders 

and a putative cellular synucleinase. Together, these results are among the first to examine how 

primary endolysosomal dysfunction in vivo results in PD-related neurodegeneration and 



	
   130	
  

challenges the assumption that loss of Atp13a2 causes parkinsonism through autophagy deficits 

and α-synuclein aggregation.  

In cell biological studies, I probe the interactions between LRRK2 and microtubules, 

structures critical for normal endolysosomal function. I demonstrated that PD-mutant forms of 

LRRK2 closely associate with microtubules and that loss of LRRK2 kinase activity affects this 

interaction. As microtubules are necessary for the movement of vesicles within the 

endolysosomal system, LRRK2 may act as an important signaling molecule on microtubules 

during vesicular movement. Enhanced association with microtubules may then alter the signaling 

of PD mutant forms of LRRK2. In the remainder of this chapter, I will discuss my findings in the 

context of current views of PD pathogenesis, highlighting aspects of this work that challenge 

current views, questions this work prompts, and fruitful directions for future study.  

 

Endolysosomal dysfunction in PD 

To understand the mechanism underlying pathogenesis in Atp13a2 null mice, I undertook 

detailed studies of lysosomal function in vivo, especially with respect to autophagy and 

mitophagy. Loss of key autophagy genes in the SNpC causes accumulation of α-synuclein 

(Ahmed et al., 2012; Friedman et al., 2012) and mice lacking key lysosomal enzymes like 

glucocerebrosidase or cathepsin D develop α-synuclein aggregation (Cullen et al., 2009; 

Mazzulli et al., 2011) and mitochondrial abnormalities (Osellame et al., 2013). Loss of Atp13a2 

did not cause α-synuclein aggregation, but did result in accumulation of other autophagy 

substrates including ubiquitin, p62, and lipofuscin. P62 and ubiquitin aggregation has been 

identified in virtually every neurodegenerative disease and likely represents a cellular stress 

response (Zatloukal et al., 2002; Komatsu and Ichimura, 2010). Lipofuscin deposits are similarly 
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found in many neurodegenerative disorders, most notably the neuronal ceroid lipofuscinoses 

(Palmer et al., 2013), but also AD (Hirai et al., 2001). Yet, despite having prominent deposits 

throughout the cortex, detailed study of cortical lysosomal function revealed abnormalities 

limited to cathepsin D maturation. Indeed, examination of lysosomes isolated from the cortex of 

Atp13a2 null mice showed normal function in assays of bulk proteolysis and chaperone-mediated 

autophagy, but did show decreased levels of cathepsin D. These studies point to a selective 

deficit in cathepsin D trafficking. 

How Atp13a2 selectively affects cathepsin D processing and if cathepsin D loss alone is 

responsible for other pathological changes in Atp13a2 null mice is unknown. Cathepsin D 

abnormalities occurred after the onset of reactive astrocytosis and the accumulation of lysosomal 

proteins and lipids (Figure 2.10), suggesting that cathepsin D trafficking deficits may be a later 

and, therefore, more distal sequela of Atp13a2 loss. Yet, cathepsin D abnormalities occurred in a 

similar time frame to the onset of lipofuscinosis, p62 and ubiquitin aggregation, and prior to 

behavioral changes in Atp13a2 null mice. Furthermore, alterations to cathepsin D are 

increasingly identified in genetic forms of PD. Cathepsin D is known to degrade α-synuclein 

(Qiao et al., 2008; Sevlever et al., 2008; Cullen et al., 2009). Complete loss of cathepsin D, as 

seen in cathepsin D null mice, results in much earlier onset of lipofuscin accumulation (Koike et 

al., 2000), glial activation, and neurotoxicity (Partanen et al., 2008), potentially linking cathepsin 

D loss to the pathological changes observed in Atp13a2 null mice.  While cathepsin D null mice 

show increased levels of insoluble α-synuclein (Cullen et al., 2009), heterozygous mice do not 

show changes to α-synuclein levels (Crabtree et al., 2013), consistent with my finding that α-

synuclein does not change in the presence of partial loss of lysosomal cathepsin D. Similarly, 

cell biological studies showed that the D620N mutation in VPS35 also decreases the trafficking 
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of cathepsin D to the lysosome, presumably through defects in the trafficking of the cation-

independent mannose-6-phosphate receptor (CI-MPR; Follett et al., 2014). Such alterations in 

lysosomal cathepsin D could contribute to selective neurodegeneration, which my work suggests 

occurs independent of α-synuclein.  

Another possible explanation is that the selective deficits in cathepsin D processing 

reflect larger upstream alterations to endolysosomal vesicle trafficking. Follett et al. recently 

showed that the D620N mutation in VPS35 leads to defects in endosome maturation and 

distribution within the cell. Improper retrograde trafficking of the CI-MPR in VPS35 D620N 

cells led to decreased delivery of CI-MPR substrates to the lysosomes (Follett et al., 2014). 

Similar trafficking defects of CI-MPR occurred with loss or mutation of LRRK2 or Rab7L1 

(MacLeod et al., 2013). I also observed increases in early endosome (EEA-positive) and 

lysosome number in the cell body and proximal dendrites of primary neurons isolated from 

Atp13a2 null mice (data not shown), and accumulation of lysosomal proteins and lipids preceded 

altered cathepsin D processing in Atp13a2 null mice. Perhaps lysosomal upregulation is not in 

response to improper degradation of autophagy substrates, but instead reflects compensation for 

abnormal movement of vesicles along microtubules or improper maturation of late 

endosomes/lysosomes. Further study of the effect of PD-related proteins on vesicle movement 

and the trafficking of specific cargo proteins will shed valuable light on these possibilities. 

 Endolysosomal dysfunction has been studied longer in the context of AD pathogenesis. 

In early endosomes, β-secretase cleaves amyloid precursor protein (APP) to initiate the 

amyloidogenic cascade (Small and Gandy, 2006). Mutations that increase the early endosomal 

pool or enhance substrate time within early endosomes promote this cleavage and 

amyloidogenesis. For example, increases in synaptojanin 1, as seen in individuals with Down 
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Syndrome, almost all of whom go on to develop AD, increase the uptake of cell surface proteins 

like APP and β-secretase into the endosome (Cossec et al., 2012). Hemizygosity of Synj1 in mice 

rescues AD behavioral and synaptic phenotypes (McIntire et al., 2012), likely by altering the flux 

of APP away from the endosome and towards lysosomal degradation (Zhu et al., 2013). 

Conversely, retromer proteins are decreased in post-mortem tissue from AD patients (Small et 

al., 2005), causing increased retention of APP within the endosome and its subsequent cleavage 

into amyloid-β. As multiple endolysosomal proteins are linked to PD pathogenesis, it is tempting 

to look for similar patterns, especially with respect to α-synuclein. However, PD mutations 

cluster in several distinct parts of the endolysosomal system: the lysosome, clathrin-mediated 

endocytosis, and retromer trafficking. It is not immediately clear what effect most of these 

mutations have on these various compartments and there is not yet a clear locus in which 

pathogenic events converge. 

 

α-Synuclein in PD-related neurodegeneration 

Considerable attention has focused on the hypothesis that in PD, endolysosomal 

dysfunction causes neurodegeneration by increasing α-synuclein levels. In contrast to previous 

work in vivo (Schultheis et al., 2013), I find that Atp13a2 null mice do not develop changes in α-

synuclein solubility, despite exhibiting abnormal accumulation of ubiquitinated protein 

aggregates. This absence of α-synuclein pathology differs from in vitro studies which report a 

modest increase in α-synuclein levels in cells following ATP13A2 knockdown or mutation 

(Dehay et al., 2012; Usenovic et al., 2012) and is in clear contrast with other cell and mouse 

models of PD where autophagic-lysosomal dysfunction seems to cause neurotoxicity and 

elevated α-synuclein levels (Mazzulli et al., 2011; Ahmed et al., 2012; Friedman et al., 2012). 



	
   134	
  

These findings could not exclude the possibility that soluble toxic forms of α-synuclein not 

detected by our methods might contribute to the abnormalities in Atp13a2 null mice. To explore 

this possibility, I genetically altered α-synuclein levels by crossing Atp13a2 null mice to either 

mice lacking or overexpressing α-synuclein. In these double mutants, I observed no change in 

the onset or extent of neuropathology seen in Atp13a2 null mice, even up to 9 months of age. My 

findings dissociate alterations in α-synuclein homeostasis from neuropathological and behavioral 

abnormalities in a model of endolysosomal dysfunction similar to that causing L-DOPA-

responsive parkinsonism in humans. My results emphasize that, even in the context of a PD-

related insult, endolysosomal dysfunction and defective α-synuclein proteostasis are not 

synonymous. These findings highlight the importance of broadly considering the consequences 

of endolysosomal dysfunction that may contribute to neurodegeneration in PD. The 

endolysosomal system tightly regulates the intracellular and extracellular fate of many proteins. 

Endolysosomal dysfunction, therefore, may cause a host of cellular abnormalities any of which 

may contribute to cellular injury and death independent of α-synuclein. As more genetic 

mutations in endolysosomal proteins are found to increase disease risk, it will be crucial to know 

if patients with these mutations accumulate α-synuclein. Behavioral and pathological study of 

animal models of these genes similar to the work presented here will allow further dissection of 

the sequence of pathological changes both with respect to and independent of α-synuclein. At the 

same time, more detailed examination of protein trafficking, secretion, and degradation in the 

context of PD-related mutations is necessary to understand how endolysosomal dysfunction 

contributes to neurodegeneration. 

 Relatively little is known about the precise mechanism by which α-synuclein causes 

neurotoxicity. An understudied component of α-synuclein proteostasis is its impact on the 
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endolysosomal system. Yeast studies show that overexpression of α-synuclein causes broad 

dysfunction on vesicular trafficking (Cooper et al., 2006; Gitler et al., 2009; Soper et al., 2011) 

and α-synuclein is known to bind not only to membranes, but also multiple members of the Rab 

family (Sung et al., 2001; Dalfo et al., 2004; Liu et al., 2009). Higher molecular weight α-

synuclein species interact more tightly with Rab3 (Dalfo et al., 2004), suggesting a potential gain 

of function in disease state. Perhaps part of α-synuclein-mediated toxicity occurs through 

perturbations in endolysosomal trafficking or signaling. Future experiments that more closely 

reflect in vivo conditions will be needed to determine the endolysosomal compartments that are 

affected by α-synuclein function in normal and disease states. 

 

Atp13a2 null mice as a new model of PD-related neurodegeneration 

Despite increased understanding of the genetic mutations underlying PD risk, PD-related 

research has suffered from the lack of genetic mouse models that display the hallmarks of 

disease: age-related motor abnormalities, progressive neurodegeneration, SNpC cell loss, and α-

synuclein aggregation (Dawson et al., 2010). Without reliable animal models, it is difficult to 

reconstruct the sequence of events leading to neurodegeneration or develop novel therapeutics to 

halt early events in pathogenesis. I generated a novel mouse model where loss of a PD-related 

gene causes age-related lysosomal abnormalities, protein aggregation, gliosis, and ultimately 

motor deficits. Similar to PD, in which up to 80% of dopaminergic cells are lost prior to the 

onset of symptoms, neuropathological changes in Atp13a2 null mice precede behavioral 

abnormalities by many months. This delay in behavioral changes provides a prolonged time 

period during which therapeutic intervention may halt or reverse the lysosomal dysfunction. 

Similar to other genetic mouse models of PD, Atp13a2 null mice do not lose dopaminergic SNpC 
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neurons, potentially reflecting important differences in the susceptibility to selective 

neurodegeneration between mouse and human dopaminergic neurons. It may be valuable to 

explore how the SNpC in Atp13a2 null mice remains relatively immune to lysosomal 

accumulation, gliosis, and neuronal injury. In contrast to transgenic and knockout mouse lines, 

viral injection of α-synuclein and mutant LRRK2 into the SNpC does cause neuronal cell death 

(Lo Bianco et al., 2002; Kirik et al., 2003; Lee et al., 2010; Dusonchet et al., 2011). This 

difference in outcome may arise from compensatory mechanisms during development that allow 

the mouse SNpC to counteract increased α-synuclein or loss of Atp13a2, for example. Use of our 

Atp13a2-flx line would allow the excision of Atp13a2 in adulthood, causing a more abrupt hit to 

the lysosomal system, and perhaps more pronounced pathology. 

 

LRRK2, microtubules, and the endolysosomal system 

The work in this dissertation is among the first to show that multiple PD mutations 

enhance the binding of LRRK2 to microtubules. Subsequent work has proposed a binding site 

for β-tubulin in the GTPase domain of LRRK2 (Law et al., 2014), a location that may be altered 

by the PD mutations that are located in the both the GTPase domain (R1441G, R1441C) and the 

nearby COR domain (Y1699C). The association between LRRK2 and microtubules is dependent 

on LRRK2 enzymatic activity; chemical kinase inhibition causes increased filamentation in both 

wild type and G2019S-LRRK2. LRRK2 kinase inhibitors have been heavily pursued as 

therapeutic agents, but my studies suggest that kinase inhibitors have consequences such as 

enhanced binding to microtubules that may promote unanticipated toxicity. Further 

understanding of the precise role of the GTPase and kinase domains in normal LRRK2 function 

is clearly needed, as is identification of in vivo substrates. 
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The normal cellular function of LRRK2 remains unknown. LRRK2 has been implicated 

in diverse cellular pathways (reviewed in Kett and Dauer, 2012), including regulation of 

transcription (Kanao et al., 2010), translation (Imai et al., 2008), apoptosis (Ho et al., 2009), and 

mitochondrial function (Smith et al., 2005). LRRK2 most consistently localizes to intracellular 

membranous structures including mitochondria (West et al., 2005; Biskup et al., 2006; Gloeckner 

et al., 2006; Hatano et al., 2007), endolysosomal membranes (Alegre-Abarrategui et al., 2009), 

endoplasmic reticulum (ER; Gloeckner et al., 2006; Vitte et al., 2010), and Golgi (Biskup et al., 

2006; Gloeckner et al., 2006; Hatano et al., 2007). The localization of LRRK2 to microtubules 

under both physiological and pathological conditions may help explain the varied reports of 

LRRK2 function. Microtubules serve as major conduits for the long-distance movement of 

vesicles and organelles within the cell (Stenmark, 2009). Microtubules could serve as a scaffold 

to concentrate LRRK2 signaling events such as the recruitment of the FADD/caspase-8 complex 

(Ho et al., 2009). LRRK2 may exist in a complex with the PD-related proteins Rab7L1, GAK, 

BAG5 and/or retromer to mediate the shuttling of cargo between the trans-Golgi network and 

early endosomes (MacLeod et al., 2013; Beilina et al., 2014). LRRK2’s association with 

microtubules may provide the necessary platform to mediate the recruitment of the other proteins 

in this co-complex and facilitate the movement of vesicles to/from the Golgi. Follow up to these 

studies will help delineate how LRRK2 interacts with the endolysosomal system, via 

microtubules or other protein-protein complexes, its cellular function, and the effect of PD 

mutations. 

With the identification of more genetic mutations linked to PD, a major question is 

whether all of these mutations converge on a common cellular pathway. This question is 

particularly pressing for α-synuclein and LRRK2, the two most important proteins in both 
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familial and sporadic disease. It is notable that while SNCA mutations are nearly 85% penetrant 

(in one study), LRRK2 mutations are associated with much lower penetrance (Polymeropoulos et 

al., 1997; Healy et al., 2008). One potential reason for reduced penetrance is the presence of 

genetic modifiers, possibly of other endolysosomal proteins, that decrease disease risk in known 

LRRK2 mutation carriers. Enhanced genetic techniques will permit the study of such genetic 

modifiers. An example of this type of study came with the identification of RAB7L1 as a 

modifier of LRRK2 risk in sporadic disease (MacLeod et al., 2013). Whole exome sequencing 

has recently identified three additional genetic mutations in familial forms of PD (Edvardson et 

al., 2012; Krebs et al., 2013; Vilarino-Guell et al., 2013).  

 

 Parkinson disease is a devastating disorder that affects millions of patients with profound 

impairment and morbidity. Medical treatment of PD remains focused on symptom management, 

because of a lack of understanding of the mechanisms responsible for PD-related 

neurodegeneration. Over the past 15 years, genetic advancements have profoundly shifted our 

comprehension of underlying pathogenesis, but have yielded disappointing therapeutic results. A 

new wave of genetic, biochemical, and animal studies is revealing the complexity of 

endolysosomal dysfunction in PD. The work in this dissertation captures this complexity and 

provides advancement in our understanding of the normal and pathological effects of two PD-

related proteins, ATP13A2 and LRRK2. I hope that this work will contribute to a broader 

understanding of the cellular mechanisms occurring in PD, with the ultimate goal of developing 

novel therapeutic targets that will finally be able to halt or even reverse the neurodegenerative 

process. 
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