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CHAPTER I

Introduction

The United States has the most expensive healthcare system in the world with

healthcare spending reaching $3.0 trillion or $9,523 per person in 2014 (Centers for

Medicare & Medicaid Services 2014). However, reports consistently demonstrate that

the U.S. underperforms on most dimensions of healthcare performance compared to

other countries. Two critical challenges facing healthcare providers, and more broadly

society, are controlling the cost of providing care to patients and improving the qual-

ity of the outcomes. This dissertation addresses these challenges at the patient level

by developing stochastic control and optimization methods to better personalize the

medical care and the delivery of care. The main unifying theme of this dissertation

is the unprecedented use of data/information to design innovative decision support

tools that keep the focus of care on the patients, their experience, and their outcomes

and reduction of wasted resources. In other words, we leverage operations research

techniques to develop patient-centered optimization models and decision methods to

improve the quality of care, patient safety, and timeliness of access to care at lower

cost, which all will result in better patient outcomes and therefore, a healthier society.

This dissertation is presented in a multiple manuscript format. The results in Chap-

ters II, III and IV have appeared as individual research papers Kazemian et al.

(2016a), Kazemian et al. (2014), and Kazemian et al. (2016b).
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In Chapter II, we take a step toward improving the quality of care and cost con-

tainment by integrating and personalizing the monitoring and treatment of chronic

diseases. Chronic diseases affect almost one out of every two adults (Ward et al.

2014) and the treatment of them accounts for the expenditure of over 75% of direct

healthcare costs in the U.S. (Thrall 2005). To effectively manage chronic disease pa-

tients, clinicians must know (1) how to monitor each patient, and (2) how to control

the disease. In the treatment of chronic diseases, patients are quantitatively tested

at prescribed intervals to monitor the degree of disease progression and subsequently

whether a change in treatment is warranted. Hence, there are decisions on which

tests to take and when to take them, as well as what treatments/interventions are

needed. Tests are associated with costs to account for side-effects, discomfort, and

inconvenience as well as the monetary cost of the test itself. Chapter II presents a

dynamic personalized modeling framework that enables clinicians to (1) specify the

optimal timing of each office visit and the appropriate subset of tests to perform

at that visit considering the costs and value of each test and the uncertainty about

the patient’s disease state so as to achieve an accurate perception of disease progres-

sion without burdening patients and the healthcare system with over-testing [disease

monitoring], and (2) identify optimal target levels for controllable disease risk factors

to slow the rate of disease progression to an acceptable level without over-treating

or under-treating the patient [treatment control]. We do so by providing the jointly

optimal solution to a novel linear quadratic Gaussian state space model. For the new

objective of minimizing the relative change in state over time (i.e., disease progres-

sion), which is necessary for management of irreversible chronic diseases, we show that

the classical two-way separation of estimation and control holds, thereby making a

previously intractable problem solvable by decomposition into two separate, tractable

problems while maintaining optimality. The resulting optimization is applied to the

management of glaucoma. Based on data from two large randomized clinical trials,
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we validate our model and demonstrate how our decision support tool can provide

actionable insights to the clinician caring for a patient with glaucoma. This method-

ology can be applied to a broad range of irreversible chronic diseases to optimally

devise patient-specific monitoring and treatment plans. It can assist in managing the

tradeoff between maximizing information about the disease and its control and the

amount of healthcare resources (e.g., office visits and tests) to be provided. Further,

this approach can broaden the quality of care to more people because it elevates the

care even when provided by non-experts (e.g., optometrists and general ophthalmol-

ogists taking care of glaucoma patients). Therefore, the statistical and optimization

framework developed in this work has the potential for broad impact on longitudinal

patient care as well as cost containment.

Chapter III focuses on improving patient safety and therefore, improving health out-

comes. This research was motivated by the new Accreditation Council for Graduate

Medical Education (ACGME) duty-hour standards for residents and fellows that went

into effect in 2011. These regulations were designed to reduce fatigue-related medical

errors and improve patient safety. The new shift restrictions, however, have led to

more frequent transitions in patient care (handoffs), resulting in greater opportunity

for communication breakdowns between caregivers, which correlate with medical er-

rors and adverse events. Recent research has focused on improving the quality of these

transitions through standardization of the handoff protocols; however, no attention

has been given to reducing the number of transitions in patient care. Chapter III

leverages integer programming methods to design a work shift schedule for trainees

that minimizes the number of error-prone patient handoffs which will result in fewer

medical errors due to communication breakdowns. The new schedule complies with

all ACGME duty-hour standards, provides required coverage, and maintains physi-

cian quality of life. We add constraints on physician’s sleep hours, circadian rhythm

and other human factors issues to reduce the fatigue-related medical errors and fur-
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ther improve the patient safety. Moreover, this approach can reduce healthcare costs

by optimizing the number of providers required. In a case study of redesigning the

trainees’ schedule for a Mayo Clinic Intensive Care Unit (ICU), we show that the

number of patient handoffs can be reduced by 23% and still meet all required and

most desired scheduling constraints. Furthermore, a 48% reduction in handoffs could

be achieved if only the minimum required rules are satisfied.

Chapter IV addresses timely access to care and coordinated care delivery. Providing

timely access to surgery is crucial for patients with high acuity diseases like can-

cer. In Chapter IV, we present a methodological framework to make efficient use of

scarce resources including surgeons, operating rooms, and clinic time slots to meet

the access delay service level for elective surgery using colorectal surgery (CRS) at

the Mayo Clinic as a case study. We personalize the system to offer different tiers

of access based on the acuity of patient’s disease so that the more urgent cases are

treated more promptly. Further, we increase the level of performance of the system

to reduce waste of precious operating room time. In this chapter, we propose and

evaluate 6 heuristic scheduling policies. All policies dramatically outperform the cur-

rent scheduling protocol. The underlying idea behind these scheduling policies is the

efficient and innovative use of patient information to tentatively book a surgery day

at the same time the clinic appointment is set. We develop a logistic regression model

to calculate for each clinic appointment order the probability that it will result in a

surgery in CRS. Then, we creatively space out the clinic and surgery appointments

such that if the patient does not need his/her surgery appointment, we have enough

time to offer that to another patient. We develop a 2-stage stochastic and dynamic

discrete-event simulation model to evaluate the 6 scheduling policies. In the first stage

of the simulation, these policies are compared in terms of the average operating room

overtime per day. The second stage involves fine-tuning the winning policy. This

methodology is applied to historical patient data from Mayo CRS. Numerical results
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Table 1.1: Overview of the dissertation topics and their main contributions.

demonstrate that the optimal policy performs 52% better than the current schedul-

ing policy. Table 1.1 outlines the three main research topics of this dissertation and

enumerates the main contributions of each chapter.
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CHAPTER II

Dynamic Monitoring and Control of Irreversible

Chronic Diseases with Application to Glaucoma

2.1 Introduction

Chronic diseases are the leading cause of death and disability and affect almost one

out of every two adults in the United States (Ward et al., 2014). In the management

of chronic diseases, patients are quantitatively tested at prescribed intervals using a

selected set of testing modalities to assess disease progression and decide whether a

change in treatment is warranted. In this context, proper testing and treatment guid-

ance is critical to both cost containment and patient outcomes in the management

of chronic disease. In this chapter we develop a modeling framework for dynamic

management of irreversible chronic diseases that enables us to (1) specify the optimal

timing of each office visit and the appropriate suite of tests (i.e., the selection of test-

ing modalities) to perform at that visit considering the costs and value of each test

and the uncertainty about the patient’s disease progression [disease monitoring], and

(2) identify optimal target levels for controllable disease risk factors to slow the rate

of disease progression without over-treating or under-treating the patient [treatment

control].

To do so, we introduce and solve a new type of objective function for linear quadratic
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Gaussian (LQG) systems that minimizes the relative change in state (i.e., disease

progression) rather than the traditional objective of minimizing the cost of being

in each state. We extend LQG theory by proving for this new objective that the

classical two-way separation of optimal state estimation and control applies. This

separation ensures computational tractability for the simultaneous optimization of

disease monitoring and treatment control. This innovative modeling of dynamic dis-

ease monitoring and treatment control is developed generally to be applicable to many

irreversible chronic diseases. As a proof of concept, we demonstrate the capabilities

of this methodology by applying it to glaucoma, a chronic disease causing progressive

blindness.

2.1.1 Scope of the Research

It is important to distinguish the disease monitoring problem from screening for

a disease. The goal of disease screening is to determine whether or not a patient has

a particular disease. A screening test is taken when the patient is considered to be

at some risk of developing a condition but exhibits no symptoms of the illness. In

contrast, for the disease monitoring problem the patient is already known to have

the disease and the goal is to quickly detect the presence of disease progression and

identify whether/how to adjust the treatment plan to slow/avert further disease pro-

gression.

For the treatment control portion of the problem, the goal is to determine the time-

dependent intensity of treatment over a treatment cycle based on dynamically updat-

ing information on patient disease state from the monitoring portion. We emphasize

that our model does not suggest a specific intervention. Rather, it provides patient-

specific target levels for controllable/modifiable disease risk factors that help guide

the doctor in selecting an appropriate treatment plan for the patient. Though one

might try to model how each intervention affects the disease progression dynamics,

7



we feel it best to leave it to the clinician to employ his/her experience and expertise

to decide what therapeutic interventions are most likely able to achieve the target

levels suggested by our model.

2.1.2 Main Contributions

• Theoretical: (1) To the best of our knowledge, this is the first research to em-

ploy measurement adaptive systems theory to monitoring and control of chronic

diseases (or even to any healthcare operations research problem), and this new

application requires a major extension of the underlying theory. We extend

the LQG state space modeling literature by introducing a new objective that

minimizes the relative change in system state over time (i.e., the difference in

estimated state elements between the current period and the previous period),

rather than minimizing the cost of current state. In the previous literature, the

goal of the controller has been to keep the system state on a static desired tra-

jectory using costly control actions by minimizing the deviation of the current

system position from the desired trajectory. However, in irreversible diseases

such as glaucoma, once the disease has progressed, it is biologically impossible

to recover the damage. In the context, the desired trajectory is to maintain the

“current disease state position” (i.e. stop the disease from worsening), which

the model dynamically updates as the disease progresses over time. This neces-

sitates a new structure for the objective function (Eq. 2.3) not yet studied in

LQG literature.

(2) For LQG systems theory, the two-way separation of optimal state estimation

and control (known as the separation principle) has been a critical foundation

upon which to tractably and simultaneously optimize estimation and control

of probabilistic systems (see Witsenhausen 1971). Our main theoretical results

show that the two-way separation of optimal estimation and control extends
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to this new objective of relative system state change, which involves two cor-

related state variables from the current and previous time periods. The treat-

ment control can be optimized in closed form as a linear function of the best

estimate of the patient’s current disease state (i.e., filtered state mean given

by the Kalman filter) via completion of squares. Furthermore, we show that

the monitoring problem can be reduced to a continuous-state discrete-action

Markov decision process (MDP) model with filtered and smoothed covariance

matrices of the state serving as the information state and the Kalman filter and

smoother equations acting as the system dynamics. The MDP can be solved

via branch-and-bound dynamic programming to find the optimal monitoring

schedule specific to each individual patient.

(3) Kalman filter and smoother are built into our modeling framework to ex-

tract noise from the raw measurements and to optimally estimate the disease

state in each time period based on imperfect/noisy measurements. This is a

key to accurately identifying genuine disease progression from testing artifacts.

Kalman smoother is a new feature in our model (compared with the traditional

LQG models), which is essential because of the new objective function we em-

ploy. State smoothing means using information gained at time t to update the

prior estimate made at t− 1 of the value of the state at t− 1; filtering refers to

estimating the current disease state based on new test results.

• Practical: (1) We develop an integrated, feedback-driven stochastic control

model to provide the jointly optimal solution to both the disease monitoring

and treatment control problems. It is worth noting that the disease control prob-

lem is affected by the monitoring regime because as new tests are performed,

more information about the patient’s disease state and disease dynamics be-

come available. Such information can affect how the doctor controls/slows the

progression of the disease. Therefore, it is critical to model and solve the disease
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monitoring and control problems together to capture the interaction between

them.

(2) The model explicitly determines which suite of tests to take at each time

period. Some tests are significantly easier and cheaper to do than others. Dif-

ferent tests may provide less or more information about the patient’s disease

state. Therefore, it is important to be able to differentiate which tests to do at

each time point in terms of improved monitoring and cost containment.

(3) We develop a data-driven decision support tool that provides a menu of

options to the doctor based on how aggressively he/she wants to monitor and

control the patient. The doctor can select an appropriate aggressiveness op-

tion depending on the patient’s life expectancy, severity of disease, and other

personal and clinical factors. For each aggressiveness option, the model incor-

porates new and past test results as well as clinically-believed and data-verified

disease dynamics to predict and graph the future disease trajectory and rec-

ommend a patient specific monitoring regime and target level for controllable

disease risk factors.

• Data: (1) We parametrize and validate our model using data from two land-

mark randomized clinical trials of patients with glaucoma. Our numerical re-

sults confirm that the model demonstrates low error in predicting the future

disease trajectory.

(2) Our model demonstrates potential for improving both patient outcomes and

system cost when applied to patients from the clinical trial, which are already

receiving a high level of care. This potential is likely greater for patients being

treated by non-glaucoma specialists.
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2.2 Literature Review

Papers relevant to this research are classified into three categories: (1) theoretical

papers on measurement adaptive systems and sensor scheduling, (2) medical decision

making papers on disease screening, diagnosis, and monitoring, and (3) optimization

models on treatment planning and disease control. In this section we highlight some

prominent papers in each category and briefly describe how our research methodolo-

gies and objectives are different.

Measurement Adaptive Systems and Sensor Scheduling: The closest paper

to our work in terms of theory is Meier et al. (1967). This paper lays the foun-

dations for measurement adaptive systems in which the controller tries to keep the

system state on a static desired trajectory and simultaneously obtain information

about the system state with minimum total cost over a finite horizon. They show

that in the special case of discrete-time systems, linear system dynamics, quadratic

cost of the current state, and Gaussian random noise processes, the problem of finding

the optimal measurement policy reduces to the solution of a nonlinear, deterministic

control problem. Baron and Kleinman (1969) extend their work to continuous-time

measurements and investigate the optimal measurement duration for a human op-

erator. Bansal and Başar (1989) provide an extension of this framework to the

infinite-horizon setting with discounted costs. Our work differs in that it deals with a

dynamic desired trajectory, minimizing the relative change in state in each time pe-

riod (i.e., disease progression), which is essential for the management of irreversible

chronic diseases as discussed in Subsection 2.1.2. For example, experiments using the

model provided by Meier et al. (1967) lead to results that were considered clinically

incorrect/unbelievable in the experience of our clinical co-author, a glaucoma special-

ist.

There is also extensive literature on sensor scheduling problems, in which a set of

sensors is used to estimate a stochastic process, but because of cost or design con-
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straints only one or a subset of them takes measurements at each time point. Athans

(1972) considers the problem in which the controller has to select, at each time step,

one measurement provided by one sensor out of many available sensors (with dif-

ferent measurement costs), such that a weighted combination of prediction accuracy

and accumulated observation cost is minimized. Examples of other work in this area

include Gupta et al. (2006), Mehra (1976), and Vitus et al. (2012). However, these

papers differ from ours in that they do not consider the tradeoff between exploration

vs. exploitation.

Disease Screening, Diagnosis, and Monitoring: While there is an extensive lit-

erature on disease screening and diagnosis problems, there is relatively little work on

the disease monitoring problem that we defined in Section 2.1.1. Helm et al. (2015)

and Schell et al. (2014) provide a heuristic approach for finding the time to next test

based on patient’s probability of progression. Ayer et al. (2012) provide a partially ob-

servable Markov decision process (POMDP) approach to personalize mammography

screening decisions based on the prior screening history and personal risk character-

istics of women. Chhatwal et al. (2010) develop a finite-horizon discrete-time Markov

decision process (MDP) model to help radiologists determine the best time for biopsy

based on the initial mammography findings and patient demographics to maximize a

patient’s total expected quality-adjusted life years. The works of Yang et al. (2013),

Mangasarian et al. (1995), and Saaty and Vargas (1998) are other examples of dis-

ease screening models. These works differ from ours in that they focus on screening

problem where the goal is to detect the presence of a particular disease with minimum

delay. They do not provide any insights on how to monitor the patient if the presence

of the disease is confirmed and progression trajectory can be monitored over time;

nor do they consider treatment planning.

Treatment Planning and Disease Control: There has been a variety of works

considering when to start treatment of a patient when the presence of disease is con-
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firmed (also known as surveillance problems). Lavieri et al. (2012) develop a Kalman

filter-based approach to help clinicians decide when to start radiation therapy in

patients with prostate cancer based on predictions of the time when the patient’s

prostate specific antigen (PSA) level reaches its lowest point. Shechter et al. (2008)

employ Markov decision processes (MDP) to optimize the time to initiate HIV treat-

ment to maximize quality-adjusted life years of a patient. Mason et al. (2014) present

an MDP model to determine the optimal timing of blood pressure and cholesterol

medications. All of these works assume a measurement of the patient’s health is

taken periodically. Our work differs in that it solves the joint problem of optimal

timing of each test and optimal treatment control.

Moreover, in most of the previous research mentioned, the patient’s disease dynamics

are assumed to be known or are estimated from population-based models. In our

model, the population data is integrated with individual patient measurements that

are gathered from sequential testing so that the predictions and decisions made are

unique to each patient. Capturing the complex patient disease dynamics requires

incorporating several health indices into the state vector. We employ a continuous

state space that easily accommodates multivariate states (e.g. 9 dimensions in our

model for glaucoma) and provide the jointly optimal solutions to both disease moni-

toring and control problems. Employing a continuous state space model is important

as many quantitative tests for disease monitoring are in continuum. Problems with

such a multivariate, continuous state-space often become intractable for MDP-based

approaches due to the curse of dimensionality. Discretization of the state space and

using approximate dynamic programming (ADP) to mitigate the curse of dimension-

ality of MDP models is an alternative approach when our modeling framework does

not fit. For example, strongly discrete state variables, highly non-linear disease dy-

namics, and highly non-Gaussian random noises are features that are difficult for our

model to handle.
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2.3 The Modeling Framework

A continuous state space model is employed at the heart of our modeling frame-

work with two key components: (1) a state transition process to model disease pro-

gression dynamics, and (2) a measurement/testing process to model how the true

disease state is observed. Both processes (Eq.’s 2.1 and 2.2) are in the form of first

order vector difference equations with additive Gaussian white noise (i.e., noise inputs

at time t and t′ are independent).

2.3.1 State Transition Process

The recursive state transition equation for our N-stage time horizon is given by

αt+1 = Ttαt +Gtβt + ηt, t = 1, ..., N, (2.1)

where αt is the random variable representing the state of the disease at time t, βt

is the “disease control” variable administered at time t, ηt is the vector of Gaussian

white noise that represents unmodeled disease process noise with E [ηt] = 0 and

V ar (ηt) = Qt, Tt is the state transition matrix governing the underlying disease

progression dynamics and Gt is a vector capturing the effect of disease control variable

βt on the next period state, αt+1. βt is one of the two optimization variables of the

model. It determines how the modifiable disease risk factors should be adjusted at

time t to optimally slow the progression of disease. Having such information will help

clinicians select the appropriate treatment plan for the patient.
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2.3.2 Measurement/Testing Process

The measurement equation gives the relationship between the true disease state,

αt, and the noisy raw reading/observation, zt, as follows.

zt = Ztαt + εt, t = 1, ..., N, (2.2)

where zt is the observation vector (i.e., the result of test(s) performed on the pa-

tient), Zt is the observation matrix and determines how components of the true state

are observed, εt is the multi-variate Gaussian white test noise with E [εt] = 0 and

V ar (εt) = H
(θt)
t . θt is the “test/measurement control” variable that determines which

subset of tests to take in period t and is the other control variable the model opti-

mizes. H
(θt)
t models the error associated with the tests and is directly affected by the

decision on which test(s) to take at time t (which we highlight by adding (θt) to the

superscript, i.e., H
(θt)
t ). It is worth noting that both αt+1 and zt are Gaussian random

vectors since they are a linear combination of independent Gaussian random variables.

The initial state, α0, is Gaussian with E [α0] = α̂0 = α̂1|0 and V ar (α0) = Σ̂0 = Σ̂1|0.

The random variables α0, {ηt}, and {εt} are mutually independent. Throughout the

chapter, the notation X̂t|t′ means the estimated value of random variable X at time

t with information up to time t′.

2.3.3 Objective Function

The novel objective function (performance criterion) we analyze is given by

J = E

{
N∑
t=1

[
(αt − αt−1)′At (αt − αt−1) + βt

′Btβt + lt(θt)
]

+ (αN+1 − αN)′AN+1 (αN+1 − αN)

}
,

(2.3)
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in which At is the unit cost matrix of further worsening of the disease, Bt is the unit

cost of administering disease control (i.e., further adjusting the modifiable disease

risk factor), and the scalar lt(θt) is the cost of taking tests/measurements in period

t, which depends on the test control variable, θt.

The objective function consists of four terms: (1) (αt − αt−1)′At (αt − αt−1) is the

cost of relative change in the system state random variable (i.e., disease progression)

between the previous period t − 1 and the current period t (whereas the traditional

LQG objective minimizes αt
′Atαt as explained in Subsection 2.1.2), (2) βt

′Btβt is the

cost of controlling the disease risk factors including side effects and complications of

medical or surgical treatments, (3) lt(θt) is the cost of undergoing additional testing,

and (4) (αN+1 − αN)′AN+1 (αN+1 − αN) is the terminal cost of relative state change

at the end of the treatment horizon. The quadratic form of the first part of the ob-

jective function ensures that a large disease worsening is penalized more aggressively

than a small one. Furthermore, achieving a large adjustment in disease risk factors

may require more aggressive treatments (e.g. surgery or laser therapy), which are

associated with higher monetary costs and more side effects and discomfort than a

smaller change in risk factors, which can often be achieved by simpler treatments like

medications. Hence, the cost associated with a big relative change in patient’s disease

risk factors is much higher than a small one, and so the quadratic form of the second

part of the objective function is a good choice for our application.

2.3.4 Kalman Filter and Kalman Smoother

When the state transition and measurement processes are both in the form of first

order difference equations with Gaussian white noises, the optimal state estimation

(to minimize the mean squared error of the estimate) is given by the Kalman filter

(Kalman 1960). The Kalman filter obtains the prediction of state mean and covari-

ance at time t with information up to time t−1, α̂t|t−1 and Σ̂t|t−1 respectively, and the
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current reading, zt, as inputs to the algorithm and calculates the filtered state (i.e.,

optimal estimate of the true state) mean and covariance, α̂t|t and Σ̂t|t respectively.

The optimal state mean estimate at time t with information up to time t, α̂t|t, is given

by

α̂t|t = α̂t|t−1 +Ktỹt, (2.4)

where α̂t|t−1 is the predicted state mean at time t given information up to time t− 1

and ỹt is the measurement residual (error) given by

α̂t|t−1 = Tt−1α̂t−1|t−1 +Gt−1βt−1, (2.5)

ỹt = zt − Zt(Tt−1α̂t−1|t−1 +Gt−1βt−1), (2.6)

and Kt is the Kalman gain given by

Kt = Σ̂t|t−1Zt
′S−1t , (2.7)

in which St is the predicted covariance around the measurement given by ZtΣ̂t|t−1Zt
′+

H
(θt)
t .

The predicted state covariance at time t given the information up to time t−1, Σ̂t|t−1,

and the most recent state covariance estimate at time t with information up to time

t, Σ̂t|t, satisfy

Σ̂t|t = Σ̂t|t−1 − Σ̂t|t−1Zt
′
(
ZtΣ̂t|t−1Zt

′ +H
(θt)
t

)−1
ZtΣ̂t|t−1 = (I −KtZt) Σ̂t|t−1, (2.8)

Σ̂t|t−1 = Tt−1Σ̂t−1|t−1Tt−1
′ +Qt−1. (2.9)

The initial state mean and covariance, α̂1|0 and Σ̂1|0 respectively, are calculated based

on population data from clinical trials. For more discussion on Kalman filter please
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see Bertsekas et al. (1995) and Harvey (1990).

Because of the special form of the objective function that minimizes relative state

change from time t − 1 to time t (i.e., disease progression) we need to refine the

estimation of previous state mean and covariance after a new measurement is taken

at time t (α̂t−1|t and Σ̂t−1|t respectively). This is called state smoothing and can be

done via fixed-interval Kalman smoother as follows.

α̂t−1|t = α̂t−1|t−1 + Σ̂∗t−1
(
α̂t|t − α̂t|t−1

)
, (2.10)

Σ̂t−1|t = Σ̂t−1|t−1 + Σ̂∗t−1

(
Σ̂t|t − Σ̂t|t−1

)
Σ̂∗t−1

′, (2.11)

in which Σ̂∗t−1 = Σ̂t−1|t−1Tt−1
′Σ̂−1t|t−1. A derivation of the fixed-interval Kalman smooth-

ing can be found in Ansley and Kohn (1982).

The control system block diagram is depicted in Figure 2.1. The dashed arrows in-

dicate that the information is carried over from the current period, t, to the next

period, t + 1. The values in parentheses are not observable. Suppose the patient

is in disease state αt when visiting the doctor’s office. Based on the optimal test

control action θ∗t (already determined in the previous time period), all or a subset of

tests are performed on the patient. The noisy observation/reading, zt, is then sent to

the Kalman Filter. Based on the predicted and observed states, the Kalman Filter

algorithm calculates the best estimate of the mean and covariance of the patient’s

disease state in period t, α̂t|t and Σ̂t|t respectively, and sends the filtered values to

both the Kalman Smoother and the controller (i.e. the decision support system itself

for this analysis). The Kalman Smoother will then modify the best estimates of the

state mean and covariance in period t − 1, α̂t−1|t and Σ̂t−1|t respectively, and send

the smoothed values to the controller. Notice that this is a key departure from the

traditional methodology. The controller receives both the filtered and smoothed val-

ues of the patient’s disease state mean and covariance (the information state for the
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optimization component of the model) and outputs the optimal treatment and test

control actions, β∗t and θ∗t+1. Finally, the prediction of the state mean and covariance

in period t+ 1, α̂t+1|t and Σ̂t+1|t, is sent to the Kalman filter and smoother to be used

in the following time period.

In Section 2.4, we focus on the controller (decision support tool) and show how the

optimal disease and test control actions (β∗t and θ∗t+1, respectively) can be calculated

given the information state ℘t =
(
α̂t|t, Σ̂t|t, α̂t−1|t, Σ̂t−1|t

)
.

Figure 2.1: Control system block diagram.

2.3.5 Separation of Estimation and Control

One-way Separation of Estimation and Control: A control law is a function

selected by the controller from the set of all admissible functions based on all data

available at the time of the decision. This function generates a control action to be

applied to the system. The problem is to make an optimal selection of such functions

for all time steps that achieves the minimum expected cost (defined by the objective

function) for the control horizon of the problem. For the general stochastic control

problem with imperfect observations, given all the observations and previous control
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actions, state estimation from noisy data is always independent of the control law.

This is because the conditional density of the state given all the observations and the

control actions is independent of the control law. This result is called the separation

principle in control theory (see Witsenhausen 1971). The only underlying assumption

for the separation principle to hold is to have one controller (i.e., centralized infor-

mation) with perfect recall (i.e., the information on the previous observations and

control actions do not get lost).

In general, the control law depends on the estimation of the system state; but, the

estimation at time t is independent of all control laws given all observations up to

time t and all the control actions up to time t− 1. This is also known as the one-way

separation of estimation and control. Since our LQG model is a special case of the

general stochastic control problem with centralized information and perfect recall,

the one-way separation principle holds. As seen in Section 2.3.4, the optimal state

estimation at time t, described by α̂t|t and Σ̂t|t, is given by the Kalman filter (Eq.’s

2.4-2.9) and is independent of the control law given all the previous observations and

control actions.

Two-way Separation of Estimation and Control: For LQG stochastic systems

in which (1) the transition and measurement equations are linear in state and control

action, (2) the objective function penalizes the quadratic cost of current state, and

(3) the state and measurement noises are Gaussian, it has been shown that the con-

trol law is also independent of the state estimation (Meier et al. 1967). Therefore, for

this traditional form of LQG models we have two-way separation of the estimation

and the control; namely, the estimation is independent of the control law and the

control law is independent of the estimation. In Section 2.4, we show for the new ob-

jective of minimizing the relative change in state, which involves two correlated state

variables of current and previous time periods and requires smoothing in addition to

filtering and prediction, that the optimal control law is still independent of state es-
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timation. Thus, in this new and more complex environment, the two-way separation

still holds. Furthermore, the optimal control action is linear in state estimation. This

is extremely desirable for application because the control law is data independent

and can be calculated offline (which greatly reduces the computational burden). The

two-way separation of estimation and control for this special case of LQG models is

a fundamental finding, which is critical to solution tractability.

2.4 Derivation of Optimal Disease and Test Controls

In this section we derive the optimal disease and test control actions given the in-

formation state at time t, ℘t, which is defined as the filtered state mean and covariance

at time t with information up to time t and the smoothed state mean and covariance

at time t− 1 with information up to time t, i.e. ℘t =
(
α̂t|t, Σ̂t|t, α̂t−1|t, Σ̂t−1|t

)
.

In terms of ℘t, a dynamic programming algorithm can be derived to find the opti-

mum disease and test controls. The value function, Vt (℘t), can be found recursively

as follows.

Vt (℘t) = min
βt,θt+1

{
Lt(℘t, βt, θt+1) + E

zt+1

[Vt+1 (℘t+1)]

}
, t = 1, . . . , N − 1, (2.12)

where Vt (℘t) is the minimum expected cost from period t to N , the end of the

control horizon, given the information state ℘t, and Lt(℘t, βt, θt+1) is the expected

instantaneous cost incurred in period t if the information state is ℘t and the control

actions βt and θt+1 are chosen, given by

Lt(℘t, βt, θt+1) = E
[
(αt − αt−1)′At (αt − αt−1)

]
+ β′tBtβt + lt+1(θt+1). (2.13)
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The boundary condition is given by

VN (℘N) = min
βN

{
L̃N(℘N , βN)

}
, (2.14)

where L̃N(℘N , βN) is the expected cost incurred in the final period N if the informa-

tion state is ℘N and the disease control action βN is chosen.

The minimum cost during the entire control horizon can, therefore, be obtained by

J∗ = l1(θ1) + V1(℘1), (2.15)

in which l1(θ1) is the cost of initial tests during the patient’s first office visit and

V1(℘1) is the minimum cost to go from period 1 to the end of control horizon obtained

recursively via Eq.’s 2.12 and 2.14. We assume all diagnostic tests are taken at the

first visit.

In the remainder of this section we use an induction argument to prove the following

theorems.

Theorem II.1. For arbitrary time t (t = 1, . . . , N), the control law is independent

of the state estimation (i.e., we have two-way separation of optimal estimation and

control). Moreover, the optimal disease control, β∗t , is linear in the filtered state mean,

α̂t|t.

Theorem II.2. At an arbitrary time t (t = 1, . . . , N), the optimal monitoring sched-

ule, θ∗t+1, θ
∗
t+2, . . ., can be found by solving a continuous-state discrete-action MDP

model with filtered and smoothed covariance matrices of the state serving as the in-

formation state and the Kalman filter and smoother equations acting as the system

dynamics.

Theorem II.3. For arbitrary time t (t = 1, . . . , N), the value function with infor-
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mation up to time t has the following form.

Vt (℘t) =
(
α̂t|t − α̂t−1|t

)′
At
(
α̂t|t − α̂t−1|t

)
+ tr

[
AtΣ̂t|t

]
+ α̂′t|tPtα̂t|t + tr

[
PtΣ̂t|t

]
+ V θ

t

(
℘θt
)

+ bt, (2.16)

in which V θ
t

(
℘θt
)

represents the recursive terms that only depend on measurement

control actions, i.e., when to take tests and which test(s) to take. They do not depend

on the observations or on the disease control actions. Therefore, the measurement

control problem can be solved separately from the treatment control problem. ℘θt rep-

resents those elements of information state that are only affected by measurement

control actions (i.e., ℘θt =
(

Σ̂t|t, Σ̂t−1|t

)
), and bt is a constant. V θ

t

(
℘θt
)

and bt will be

obtained later in the proof.

Proof by induction: In Appendix 2.7.1 we prove that the value function in the

final period is given by

VN (℘N) =
(
α̂N |N − α̂N−1|N

)′
AN
(
α̂N |N − α̂N−1|N

)
+ tr

[
AN Σ̂N |N

]
+ α̂′N |NPN α̂N |N + tr

[
PN Σ̂N |N

]
+ tr

[
AN

(
Σ̂N−1|N − TN−1Σ̂N−1|N − Σ̂N−1|NTN−1

′
)]

+ tr
[
P̃N+1Σ̂N |N

]
+ tr [AN+1QN ] , (2.17)

where tr represents the trace of the matrix. By comparing Eq.’s 2.16 and 2.17 we see

that (induction basis)

V θ
N

(
℘θN
)

= tr
[
AN

(
Σ̂N−1|N − TN−1Σ̂N−1|N − Σ̂N−1|NTN−1

′
)]

+ tr
[
P̃N+1Σ̂N |N

]
,

(2.18)

bN = tr [AN+1QN ] . (2.19)

23



Assume (induction hypothesis)

Vt+1 (℘t+1) =
(
α̂t+1|t+1 − α̂t|t+1

)′
At+1

(
α̂t+1|t+1 − α̂t|t+1

)
+ tr

[
At+1Σ̂t+1|t+1

]
+ α̂′t+1|t+1Pt+1α̂t+1|t+1 + tr

[
Pt+1Σ̂t+1|t+1

]
+ V θ

t+1

(
℘θt+1

)
+ bt+1. (2.20)

We show that Vt (℘t) follows the form given in Eq. 2.16 (induction step).

From Eq. 2.12 we know the general form of value function is

Vt (℘t) = min
βt,θt+1

{
Lt(℘t, βt, θt+1) + E

zt+1

[Vt+1 (℘t+1)]

}
, (2.21)

in which the information state at time t + 1, ℘t+1, is a function of ℘t, βt, θt+1, and

zt+1. The expected instantaneous cost in period t, Lt(℘t, βt, θt+1), is given in Eq.

2.13. Application of Lemma II.6 to the expectation in Eq. 2.13 results in

Lt(℘t, βt, θt+1) =
(
α̂t|t − α̂t−1|t

)′
At
(
α̂t|t − α̂t−1|t

)
+ tr

[
At

(
Σ̂t|t + Σ̂t−1|t − Tt−1Σ̂t−1|t − Σ̂t−1|tTt−1

′
)]

+ β′tBtβt + lt+1(θt+1). (2.22)

Replacing Lt(℘t, βt, θt+1) and Vt+1 (℘t+1) in Eq. 2.21 by their values given by Eq.’s

2.22 and 2.20 respectively, yields

Vt (℘t) = min
βt,θt+1

{
(
α̂t|t − α̂t−1|t

)′
At
(
α̂t|t − α̂t−1|t

)
+ tr

[
At

(
Σ̂t|t + Σ̂t−1|t − Tt−1Σ̂t−1|t − Σ̂t−1|tTt−1

′
)]

+ β′tBtβt + lt+1(θt+1)

+ E
zt+1

[(
α̂t+1|t+1 − α̂t|t+1

)′
At+1

(
α̂t+1|t+1 − α̂t|t+1

)
+ α̂′t+1|t+1Pt+1α̂t+1|t+1

]
+ tr

[
At+1Σ̂t+1|t+1

]
+ tr

[
Pt+1Σ̂t+1|t+1

]
+ V θ

t+1

(
℘θt+1

)
+ bt+1}, (2.23)

Replacing E
zt+1

[(
α̂t+1|t+1 − α̂t|t+1

)′
At+1

(
α̂t+1|t+1 − α̂t|t+1

)]
and E

zt+1

[
α̂′t+1|t+1Pt+1α̂t+1|t+1

]
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using Lemmas II.10 and II.11 in Appendix 2.7.2, respectively, yields

Vt (℘t) = min
βt,θt+1

{
(
α̂t|t − α̂t−1|t

)′
At
(
α̂t|t − α̂t−1|t

)
+ tr

[
At

(
Σ̂t|t + Σ̂t−1|t − Tt−1Σ̂t−1|t − Σ̂t−1|tTt−1

′
)]

+ β′tBtβt + lt+1(θt+1)

+
(
(Tt − I)α̂t|t +Gtβt

)′
At+1

(
(Tt − I)α̂t|t +Gtβt

)
+ tr

[
At+1

(
TtΣ̂t|tTt

′ +Qt − Σ̂t+1|t+1 − Σ̂t+1|t+1Σ̂
∗
t
′ − Σ̂∗t Σ̂t+1|t+1 + Σ̂t|t+1

)]
+ (Ttα̂t|t +Gtβt)

′Pt+1(Ttα̂t|t +Gtβt) + tr
[
Pt+1

(
TtΣ̂t|tTt

′ +Qt − Σ̂t+1|t+1

)]
+ tr

[
At+1Σ̂t+1|t+1

]
+ tr

[
Pt+1Σ̂t+1|t+1

]
+ V θ

t+1

(
℘θt+1

)
+ bt+1}. (2.24)

Canceling terms results in

Vt (℘t) = min
βt,θt+1

{
(
α̂t|t − α̂t−1|t

)′
At
(
α̂t|t − α̂t−1|t

)
+ tr

[
At

(
Σ̂t|t + Σ̂t−1|t − Tt−1Σ̂t−1|t − Σ̂t−1|tTt−1

′
)]

+ β′tBtβt + lt+1(θt+1)

+
(
(Tt − I)α̂t|t +Gtβt

)′
At+1

(
(Tt − I)α̂t|t +Gtβt

)
+ (Ttα̂t|t +Gtβt)

′Pt+1(Ttα̂t|t +Gtβt)

+ tr
[
(At+1 + Pt+1)

(
TtΣ̂t|tTt

′
)]

+ tr [(At+1 + Pt+1)Qt]

+ tr
[
At+1

(
Σ̂t|t+1 − Σ̂∗t Σ̂t+1|t+1 − Σ̂t+1|t+1Σ̂

∗
t
′
)]

+ V θ
t+1

(
℘θt+1

)
+ bt+1}.

(2.25)

The terms in Eq. 2.25 can be separated into three types: (1) those terms whose

value are known at time t with information up to time t, (2) those that depend

only on disease control action, βt, and (3) those that depend only on test control

action, θt+1. Hence, the minimization over βt and θt+1 can be separated as Vt (℘t) =
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V
(1)
t (℘t) + V

(2)
t (℘t) + V

(3)
t (℘t) in which

V
(1)
t (℘t) =

(
α̂t|t − α̂t−1|t

)′
At
(
α̂t|t − α̂t−1|t

)
+ tr

[
At

(
Σ̂t|t + Σ̂t−1|t − Tt−1Σ̂t−1|t − Σ̂t−1|tTt−1

′
)]

+ α̂′t|t ((Tt − I)′At+1(Tt − I) + Tt
′Pt+1Tt) α̂t|t, (2.26)

V
(2)
t (℘t) = min

βt
{βt′ (Bt +Gt

′(At+1 + Pt+1)Gt) βt +
(
α̂t|t((Tt − I)′At+1 + Tt

′Pt+1)Gt

)
βt

+βt
′ (Gt

′(At+1(Tt − I) + Pt+1Tt)α̂t|t
)}
, (2.27)

V
(3)
t (℘t) = tr

[
(At+1 + Pt+1)

(
TtΣ̂t|tTt

′
)]

+ tr [(At+1 + Pt+1)Qt] + bt+1

+ min
θt+1

{
lt+1(θt+1) + tr

[
At+1

(
Σ̂t|t+1 − Σ̂∗t Σ̂t+1|t+1 − Σ̂t+1|t+1Σ̂

∗
t
′
)]

+ V θ
t+1

(
℘θt+1

)}
.

(2.28)

As before, the minimization over βt is denoted by J̃t, so

J̃t = min
βt
{β′t (Bt +Gt

′(At+1 + Pt+1)Gt) βt +
(
α̂′t|t ((Tt − I)′At+1 + Tt

′Pt+1)Gt

)
βt

+ βt
′ (Gt

′ (At+1(Tt − I) + Pt+1Tt) α̂t|t
)
} (2.29)

The minimization over βt can be performed by completion of squares (similar to what

is done in Lemma II.8 for the minimization over βN) to yield Eq.’s 2.30 - 2.33. The

optimal disease control at time t is given by

β∗t = −Utα̂t|t, (2.30)

in which the control law, Ut, is given by

Ut = (Bt +Gt
′(At+1 + Pt+1)Gt)

−1
(Gt

′At+1(Tt − I) +Gt
′Pt+1Tt) . (2.31)
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Moreover, the result of minimization over βt is given by

J̃t = −α̂′t|tP̃t+1α̂t|t, (2.32)

in which

P̃t+1 = ((Tt − I)′At+1Gt + Tt
′Pt+1Gt) (Bt +Gt

′(At+1 + Pt+1)Gt)
−1

(Gt
′Pt+1Tt +Gt

′At+1(Tt − I)) .

(2.33)

As seen in Eq. 2.30 the optimal disease control β∗t is a linear function of the filtered

state mean α̂t|t. It is worth noting that this function (more precisely, the control law

Ut) depends only on parameters of the system dynamics and the objective function

cost inputs. Hence, the control law is data independent and can be calculated off-line

prior to solving the measurement and control problems.

As seen in Eq.’s 2.4 to 2.11, the optimal state estimation is independent of the control

law. We also just showed that the optimal control law is independent of the state

estimation. This completes proof of the Theorem II.1. �

Replacing the minimization over βt in Eq. 2.27 by its value given by Eq. 2.32 results

in

Vt (℘t) =
(
α̂t|t − α̂t−1|t

)′
At
(
α̂t|t − α̂t−1|t

)
+ tr

[
At

(
Σ̂t|t + Σ̂t−1|t − Tt−1Σ̂t−1|t − Σ̂t−1|tTt−1

′
)]

+ α̂′t|t

(
(Tt − I)′At+1(Tt − I) + Tt

′Pt+1Tt − P̃t+1

)
α̂t|t + tr

[
(At+1 + Pt+1)

(
TtΣ̂t|tTt

′
)]

+ min
θt+1

{lt+1(θt+1) + tr
[
At+1

(
Σ̂t|t+1 − Σ̂∗t Σ̂t+1|t+1 − Σ̂t+1|t+1Σ̂

∗
t
′
)]

+ V θ
t+1

(
℘θt+1

)
}

+ tr [(At+1 + Pt+1)Qt] + bt+1. (2.34)

Letting

Pt = (Tt − I)′At+1(Tt − I) + Tt
′Pt+1Tt − P̃t+1, (2.35)
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and replacing tr
[
(At+1 + Pt+1)

(
TtΣ̂t|tTt

′
)]

in Eq. 2.34 by its other form given by

Lemma II.12, Eq. 2.34 can be written as follows to match the form of value function

we claimed in Eq. 2.16.

Vt (℘t) =
(
α̂t|t − α̂t−1|t

)′
At
(
α̂t|t − α̂t−1|t

)
+ tr

[
AtΣ̂t|t

]
+ α̂′t|tPtα̂t|t + tr

[
PtΣ̂t|t

]
+ tr

[
At

(
Σ̂t−1|t − Tt−1Σ̂t−1|t − Σ̂t−1|tTt−1

′
)]

+ tr
[(
P̃t+1 + At+1Tt + Tt

′At+1 − I
)

Σ̂t|t

]
+ min

θt+1

{lt+1(θt+1) + tr
[
At+1

(
Σ̂t|t+1 − Σ̂∗t Σ̂t+1|t+1 − Σ̂t+1|t+1Σ̂

∗
t
′
)]

+ V θ
t+1

(
℘θt+1

)
}

+ tr [(At+1 + Pt+1)Qt] + bt+1. (2.36)

Now, by comparing Eq.’s 2.36 and 2.16, it can be easily seen that for t = 1, . . . , N −1

V θ
t

(
℘θt
)

= tr
[
At

(
Σ̂t−1|t − Tt−1Σ̂t−1|t − Σ̂t−1|tTt−1

′
)]

+ tr
[(
P̃t+1 + At+1Tt + Tt

′At+1 − I
)

Σ̂t|t

]
+ min

θt+1

{lt+1(θt+1) + tr
[
At+1

(
Σ̂t|t+1 − Σ̂∗t Σ̂t+1|t+1 − Σ̂t+1|t+1Σ̂

∗
t
′
)]

+ V θ
t+1

(
℘θt+1

)
},

(2.37)

and

bt = tr [(At+1 + Pt+1)Qt] + bt+1, (2.38)

while from Eq.’s 2.18 and 2.19 we know for t = N

V θ
N

(
℘θN
)

= tr
[
AN

(
Σ̂N−1|N − TN−1Σ̂N−1|N − Σ̂N−1|NTN−1

′
)]

+ tr
[
P̃N+1Σ̂N |N

]
,

(2.39)

and

bN = tr [AN+1QN ] . (2.40)
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Hence, proof of the Theorem II.3 (i.e., the value function we claimed in Eq. 2.16) is

complete. �

Note that the dynamic program defined by value function V θ
t

(
℘θt
)

for t = 1, . . . , N can

be solved using a branch-and-bound-type algorithm to find the optimal monitoring

schedule. The elements of this dynamic program, in a succinct form, are as follows.

*Information state: ℘θt =
(

Σ̂t|t, Σ̂t−1|t

)
*Action space: θ ∈ Θ where Θ is the set of all available tests for the corresponding

disease.

*System dynamics are given by Eq.’s 2.8, 2.9, and 2.11.

*Optimality equation is given by Eq. 2.37.

*Boundary condition is given by Eq. 2.39.

This completes proof of the Theorem II.2. �

2.5 Case Study of Glaucoma

Thus far we have presented the modeling framework in its general form and derived

the optimal disease and test control actions. In this section, we provide a proof of

concept by applying our approach to glaucoma and demonstrating how it can help

guide clinicians tailor their disease monitoring and treatment control.

Glaucoma is a major public health problem affecting almost 3 million patients in

the United States (Vajaranant et al. 2012) and over 60 million patients worldwide

(Tham et al. 2014). Glaucoma is the second leading cause of blindness in the US

and a leading cause of visual impairment among Americans (Stein et al. 2011). In

this section we show how the modeling framework and solution approaches described

in Sections 2.3 and 2.4 can be applied to help clinicians in caring for patients with

glaucoma. Further, we will elaborate on additional features of our approach designed

specifically for glaucoma. Numerical results presented in this section are based on

data from patients who were enrolled in two large glaucoma clinical trials.
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2.5.1 Glaucoma

Glaucoma is a progressive eye disease which can cause irreversible vision loss and

blindness if not adequately monitored and treated. From a societal perspective, the

direct medical costs of managing glaucoma are estimated to total over 2.86 billion

USD annually (Rein et al. 2006). Further, on a per patient basis, costs more than

quadruple when patients progress from early to advanced glaucoma (Lee et al. 2006).

The main risk factors associated with glaucoma and its progression include: non-

white race, older age, elevated IOP, genetics and family history (Tielsch et al. 1990).

It is worth noting that the patient’s IOP (i.e., the pressure inside the eye) is the only

known controllable/modifiable glaucoma risk factor. Therefore, the current manage-

ment of glaucoma focuses on lowering the eye pressure by establishing a “target IOP”,

which is the level of IOP that the clinician feels is low enough to sufficiently slow dis-

ease progression (Jampel 1997).

Patients with glaucoma are monitored for disease progression using quantitative tests.

Two primary methods to monitor a patient include: (1) tonometry (or measuring the

IOP), and (2) perimetry (or visual field (VF) testing). Tonometry measures the pa-

tient’s IOP, is relatively easy to perform, and is part of a standard eye examination.

In most patients, vision loss occurs because elevated IOP damages the optic nerve, the

structure that carries visual information to the brain for processing (Sommer et al.

1991). Lowering IOP reduces the chances of glaucoma progression. With glaucoma,

patients often progressively lose peripheral vision and eventually central vision. The

VF test quantifiably measures the extent and rate of peripheral vision loss by examin-

ing the sensitivity of the eye to light stimuli. It is more time-consuming than checking

IOP, but provides important information on the status of the disease. VF testing can

be anxiety provoking and challenging as it requires patient attention and cooperation.

Two key global performance measures from VF testing include Mean Deviation (MD)

and Pattern Standard Deviation (PSD), which estimate the deviation of peripheral
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vision from a reference population who do not have glaucoma (Choplin and Edwards

1995). MD is usually a negative number; higher values of MD (i.e., values closer to

zero) correspond to better vision quality (less vision loss). PSD is usually a positive

number; lower values of PSD indicate less glaucomatous damage.

It is well established from prior work that both IOP and VF tests can be associated

with noise. For example, patient performance on automated VF test can fluctuate

considerably from one test to the next (Choplin and Edwards 1995). Likewise, IOP

can fluctuate from hour to hour and day to day (Wilensky et al. 1993). To take such

noise into consideration in deciding how to optimally monitor the patient and deter-

mine a target IOP, we harness the Kalman filter method (Kalman 1960) to extract

noise from the raw measurements.

There are a number of treatments available to lower the IOP for a patient with glau-

coma. Different eye drops, laser therapies, and incisional surgery can reduce the IOP

to any number above 6 mmHg. However, glaucoma medications can be expensive

and can have serious side effects including stinging, blurred vision, eye redness, itch-

ing, burning, low blood pressure, reduced pulse rate, fatigue, shortness of breath,

headache, and depression. Therefore, it is important to find a target IOP level for

each patient that sufficiently slows progression while avoiding unnecessary treatment.

It is common in current practice to use fixed-interval monitoring regimes (e.g., an-

nual exams) to test for disease progression. Furthermore, for each patient and eye,

the ophthalmologist must currently make a gestalt-based estimate of a reasonable tar-

get IOP that considers the risk of disease progression and the side effects and costs

associated with lowering the IOP. To our knowledge, no optimization-based approach

presently exists to jointly determine how to monitor a patient with glaucoma and

how to control the disease. Our approach considers the history of the patient (prior

test performances) and her unique disease dynamics to provide clinicians with (1) a

personalized monitoring regime to achieve an accurate assessment of whether there
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is disease progression (exploration), and (2) a menu of target IOP options and how

the glaucoma is likely to progress for different target IOP levels that the doctor can

leverage to devise a treatment plan for the patient (exploitation). As a feature of our

model, the clinician is able to select the desired aggressiveness level to monitor and

treat the patient based on the unique characteristics/circumstances of each individ-

ual. We will elaborate on this menu of options in Subsection 2.5.5.

Figure 2.2 depicts a high-level overview of our dynamic monitoring and control deci-

sion support framework for patients with glaucoma. At each office visit, IOP and/or

VF test(s) are performed. The raw data from these tests (which are known to be

noisy) are fed into a Kalman filter to obtain an optimal estimation of the current

disease state for a particular eye. Then, the estimate of the previous state is refined

via a Kalman smoother given the new information. Each patient’s label/type (fast,

slow, or non-progressor) is determined to estimate how quickly the patient is likely

to progress in the future. The decision support tool provides an optimal monitoring

schedule (i.e., the timing of the next exam/test and which tests the patient should

take) and a personalized target IOP for the patient for different aggressiveness lev-

els/options (super-high, high, moderate, low, or super-low). Finally, the clinician

chooses an aggressiveness option from the menu of choices that is appropriate for the

individual patient.

2.5.2 Patient Disease State

We use a nine-dimensional state vector, αt, to model the patient’s disease state.

The elements of the state vector include Mean Deviation (MD), Pattern Standard

Deviation (PSD) and Intraocular Pressure (IOP) together with their discrete time

first and second derivatives (i.e., velocity and acceleration, respectively);

αt =

[
MD MD′ MD′′ PSD PSD′ PSD′′ IOP IOP ′ IOP ′′

]′
. (2.41)
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Figure 2.2: Big picture of the decision support framework illustrating the model in-
puts and outputs as well as the sequence of main steps of the disease
monitoring and control algorithm.

The non-linear behavior of the disease dynamics is captured by including the velocity

and acceleration of key disease state elements in the state vector. This is known to

be an effective way to linearize a nonlinear model of state evolution (see Bertsekas

et al. 1995). MD′, PSD′, and IOP ′ are the slope of a linear regression of the latest

three MD, PSD, and IOP measurements, respectively. MD′′, PSD′′, and IOP ′′ are

the difference of the latest two MD′, PSD′, and IOP ′ values divided by the time

interval between them.

2.5.3 Data

To parameterize and validate our model, we use data from two multi-center ran-

domized clinical trials: the Collaborative Initial Glaucoma Treatment Study (CIGTS)

(Musch et al. 1999) and the Advanced Glaucoma Intervention Study (AGIS) (Ederer

et al. 1994). These data sets are chosen because they include structured tonome-

try and perimetry data (IOP and VF readings) of glaucoma patients taken every 6

months during the course of the trials. We match the time step of our LQG model

with these data sets to avoid the need for data interpolation (i.e., there is a 6-month

time interval between periods t and t+ 1 in our model).
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CIGTS followed newly-diagnosed glaucoma patients with mild to moderate disease

who were randomized to medical or surgical therapy and followed for up to 11 years

with IOP and VF tests taken every 6 months to assess for disease progression. In

AGIS, patients with advanced glaucoma were randomized to laser therapy or inci-

sional surgery and followed for up to 11 years with IOP and VF readings taken every

6 months.

For the purpose of the case study, we excluded patients from these trials with fewer

than 5 readings. We also restricted our focus to the patients who received either

medical or laser therapy, and excluded glaucoma patients who received incisional

surgical interventions, because incisional surgery can abruptly change disease pro-

gression dynamics. We randomly divided all eligible participants from the trials (571

participants) into two sets of equal size: (1) a training set, and (2) a testing set. Both

sets have approximately the same number of mild, moderate, and advanced glaucoma

patients, with similar number of white and black patients, and equal numbers of pa-

tients contributing data from each trial. The training set is used for parametrization

and calibration of our state space model and the testing set is used to evaluate the

performance of our approach.

2.5.4 Patient Types (Fast/Slow/Non-progressor)

A fast-progressing patient is someone whose glaucoma is rapidly worsening and is

part of the subset of patients at greatest risk of blindness. Although there is presently

no gold standard for defining glaucoma fast-progressors, prior literature considers a

loss of MD greater than 1 dB per year as a reasonable identifying feature of patients

who are exhibiting fast-progression of glaucoma (see Heijl et al. 2013; Gardiner and

Crabb 2002). We built our algorithms based on this definition of fast-progressors.

To classify each patient, we calculated the slope obtained from a linear regression of

their entire set of MD readings and labeled them as a:
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• fast-progressor if the MD progression slope is declining by ≥ 1 dB/year,

• slow-progressor if the MD progression slope is declining between 0 and 1 dB/year,

and

• non-progressor if the MD progression slope is not declining.

2.5.5 Aggressiveness Levels/Options/Policies

In clinical practice, the goals of care must be tailored to the needs of the in-

dividual patient. Rather than proposing one solution, a more powerful and useful

approach is to provide the clinician with a range of options for how much effort (both

from provider and the patient) will be put into monitoring and how aggressively IOP

should be lowered such that future progression can be slowed. For instance, clinicians

will likely see the need to monitor and treat a young patient who only has sight in one

eye more aggressively than an older patient with good vision in both eyes who has

multiple systemic medical comorbidities and is likely to expire before they go blind

from glaucoma. As a useful and not overly complex approach, we develop optimiza-

tion models tailored to three regimes, or “options,” for monitoring and treatment

(suggested by our clinical collaborator for ease of adoption into clinical practice). We

refer to these three options as low, moderate, and high levels of aggressiveness to rep-

resent the level of intensity in care and monitoring. We also define two extreme levels

of aggressiveness: super-high and super-low. Note that we choose these terms only

for convenience in presenting the five options and to make it easier for the reader to

remember the order of them in terms of how aggressively they test and treat patients;

they are not meant to correspond to any existing terms or approaches currently used

in clinical practice. These five options are useful not only for sensitivity analysis, but

also suggest an effective way to implement a decision support system so that clinicians

can pursue monitoring and treatment with the level of intensity that they, together
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with the patient, determine to be the most appropriate for each individual. The five

aggressiveness levels/policies/options follow:

1. Super-high aggressiveness option, which drops the IOP immediately to 6 mmHg

(an ideal level of IOP for patients with any severity of glaucoma, but one that

may be impractical for many patients due to limitations with the effectiveness

of existing interventions, side effects, and/or complications),

2. High aggressiveness option, which tends to lower the IOP by 40%-60% compared

to the patient’s treated level of IOP that was achieved in the CIGTS/AGIS

clinical trials after the initial intervention was given,

3. Moderate aggressiveness option, which tends to lower the IOP by 20% to 40%

compared to the patient’s treated level of IOP that was achieved in the CIGTS/AGIS

clinical trials after the initial intervention was given,

4. Low aggressiveness option, which corresponds to the IOP achieved under no

additional interventions beyond those employed in the CIGTS/AGIS trials,

5. Super-low aggressiveness option, which attempts to estimate progression of an

untreated patient with glaucoma by removing the effect of existing interventions

that were employed in CIGTS/AGIS on the patient’s IOP.

It should be noted that the exact amount of IOP control suggested by high, moder-

ate, and low aggressiveness policies is patient-specific and is optimized to yield the

minimum total cost as defined by the objective function. However, the super-high

and super-low aggressiveness policies are static policies that do not take the objective

function into account. They are mainly added for purposes of analysis and compari-

son, but they can still provide valuable insight in a clinical setting by presenting the

clinician the “best” and “worst” case options and their forecasted impact on disease
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progression dynamics. These five options/policies also provide sensitivity analysis on

the model cost parameters.

2.5.6 System Model Parameterization

The Expectation Maximization (EM) algorithm was employed for parameteriza-

tion of our state space model. EM is an iterative algorithm for finding the maximum

likelihood estimate of model parameters in the presence of missing or unobserved data.

The EM algorithm alternates between expectation step (E-step) and maximization

step (M-step). In the E-step, raw, noisy readings are filtered and missing data is esti-

mated based on the observed data and the most recent estimate of system parameters.

In the M-step, the log-likelihood function of all data points is maximized assuming

the missing data is given by the estimates from the E-step. For more information

about the EM algorithm please see Dempster et al. (1977); Digalakis et al. (1993);

Ghahramani and Hinton (1996). While the model was presented in its general setting

in Section 2.3, for the purpose of this case study we assume the model parameters are

time-invariant. The output of the EM algorithm is the best estimate of system ma-

trices Tt = T , Qt = Q, Zt = Z, H
(θt)
t = H(θt) for t = 1, . . . , N , and initial state mean

and covariance, α̂0 and Σ̂0 (see Subsections 2.3.1 and 2.3.2 for the definition of these

parameters). We further assume that Gt = G =

[
0 0 0 0 0 0 1 0 0

]′
T for

t = 1, . . . , N , because the control variable βt is designed to control only the patient’s

IOP, which is the only controllable glaucoma risk factor. Furthermore, it is known

that the intervention started or employed at time t has instantaneous effect on lower-

ing the patient’s IOP. For example, if patient’s IOP is 20 mmHg at time period 7 and

the control β∗7 = −3 mmHg, the expected value of IOP right after time period 7 is 17

mmHg. This IOP reduction affects other state elements and progression dynamics in

the following time period through the transition equation. We use the EM algorithm

to obtain 4 sets of system parameters. These sets of parameters are obtained from
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(1) all patients in the training set, (2) only fast-progressors, (3) only slow-progressors,

and (4) only non-progressors.

The model cost parameters were estimated based on the input from our glaucoma

specialist collaborator so that the model outputs are reasonable from a clinical per-

spective. Note that it is the relative costs (rather than each absolute cost) that plays

a key role in our analysis. It is beyond our scope to obtain definitive cost parame-

ters; however, signicant sensitivity analysis was performed around those estimates to

better understand the model’s behavior and to ensure that the model in its entirety

provides credible decision support. We confirmed with our glaucoma specialist col-

laborator that the model generates reasonable target IOPs and monitoring schedules

for each patient. For instance, under the high aggressiveness option the model for

fast-progressing patients (i.e., the most aggressive combination) should suggest taking

both IOP and VF tests every six months and a target IOP of around 6 to 9 mmHg.

Under the low aggressiveness option the model for non-progressing patients (i.e., the

least aggressive combination) should suggest no further IOP reduction and taking

IOP and VF tests every two years. This is in line with recommendations put forth

by the American Academy of Ophthalmology Glaucoma Panel (2010). For all other

combinations of aggressiveness level and patient type the model cost parameters are

fine-tuned so that it suggests a monitoring regime and target IOP level that are rea-

sonable in expert clinical opinion and are in between the two extreme combinations.

The behavior of optimal policies is discussed in more detail in Section 2.5.8.2.

2.5.7 Model Usage for a Glaucoma Patient

For a patient who is newly diagnosed with glaucoma with no prior history of IOP

and VF readings, both tests are taken in every period (i.e., every 6 months) for the

first 5 periods. Gardiner and Crabb (2002) found that predictions based on 5 initial

VF test results is a reasonable predictor of future vision loss in most patients. These 5
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readings are used to (1) obtain baseline values for key disease state elements (i.e., MD,

PSD, and IOP), (2) calculate the velocities and accelerations of key state elements,

(3) warmup the Kalman filter and smoother, (4) reduce the initial uncertainty sur-

rounding a given patient’s disease state, (5) calculate the initial 5-period rate/slope

of MD progression to label the patient as fast, slow, or non-progressor, and (6) differ-

entiate the patient from the population mean and tailor the disease transition model

to the specific patient. If the patient already has a history of IOP and VF readings,

then these values can be used to create the initial state, or warmup, for our model.

The system parameters obtained from all training patients are used in the Kalman fil-

ter and the Kalman smoother during the warmup period. At the end of the warmup

period (i.e. after 5 readings), the patient is labeled as a fast-progressor, a slow-

progressor, or a non-progressor based on her MD progression rate. Thereafter, only

the type-specific system parameters (i.e., fast, slow, or non-progressor set of param-

eters) are used in the Kalman filter and smoother. Each time a test is taken, the

MD progression slope is recalculated. We always consider the latest 5 filtered MD

values to update the MD slope (i.e., a sliding window of length 5). Whenever the

patient’s latest MD slope indicates a label upgrade (i.e., the patient moves from non-

progressor to slow/fast-progressor, or from slow-progressor to fast-progressor), the

model (1) calls for a follow-up visit to take IOP and VF testing in the following

time period, and (2) labels the patient as a suspect of the higher label/category (e.g.,

slow-progressor suspect or fast-progressor suspect). If the label change is confirmed

at the next follow-up visit, the higher label is assigned to the patient; otherwise, the

patient is returned to the previous lower label status. Note that in our analyses, we

take a conservative approach and do not allow any label downgrading (on the recom-

mendation of our glaucoma specialist collaborator). Once the label is upgraded for a

patient, the model will recommend applying more IOP control (i.e., greater intensity

of interventions) to slow glaucoma progression. Therefore, it can be expected that

39



the MD will tend to decline less rapidly once the amount of IOP control is increased,

thus resulting in a lower classification/label at some point. However, if we were to

downgrade the patient’s label and let the model decrease the amount of IOP control,

the patient would be at risk to start losing vision at the same rate as earlier in the

disease course, which is not desirable. Therefore, we do not allow label downgrading

for any patient once the label upgrade is confirmed. If a patient suspected to belong

to a higher category does not get a confirmatory result at the very next follow-up

visit, then, the patient remains at the original/lower label he/she was previously at.

The glaucoma monitoring and treatment control algorithm steps are illustrated in

Figure 2.3.

2.5.8 Numerical Results

In this subsection, we test the performance of our dynamic disease monitoring

and control algorithm on glaucoma patients of CIGTS and AGIS clinical trials. We

first validate our prediction model on the testing dataset, using the training dataset

for parameterization. Then, we provide numerical results and examples on how the

optimal policies behave. Lastly, we provide further results on the impact of optimal

policies on patients with glaucoma.

2.5.8.1 Validation:

We first validate that the model is good at forecasting future disease progression

trajectory and then validate that the results are consistent with clinical expectations.

Our modeling approach efficiently captures the system and measurement noises using

a set of stochastic first-order vector difference equations. To evaluate the performance

of our prediction model, we used the first five data points of each patient in the

testing dataset to warm up the Kalman filter and determine the patient type. Then,

we predicted MD values for five periods into the future for each patient type (fast-
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Figure 2.3: Glaucoma monitoring and treatment control flow diagram.

progressor, slow-progressor, and non-progressor) and calculated the prediction error

(i.e., the predicted state mean minus the actual reading as obtained from the patients

during their followup in the trial). Figure 2.4 shows the mean MD prediction error for

up to five periods (2.5 years) into the future (each period represents a 6 month time

interval). The dots correspond to the mean error and the bars represent the 95%

confidence interval for the mean. These interval plots confirm that our prediction

model has very little error in predicting the glaucoma state progression. One also

sees that the fast-progressors (as defined in Subsection 2.5.4) vary the most in the

datasets, and this is reflected in greater uncertainty and error. In here, we present
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Figure 2.4: Interval plot of mean MD prediction error for different prediction lengths.
The dots correspond to mean error and the bars represent 95% confidence
interval for the mean.

the results for MD as it is the most clinically useful state variable. Similar results

were obtained for other state elements (PSD and IOP).

2.5.8.2 Evaluation of the Optimal Policies:

Now that we have confirmed that the model creates an accurate forecast of dis-

ease progression, we next test that the output provides clinically reasonable results

as confirmed by our clinical collaborator. The structure of optimal IOP control gen-

erated by our model under the moderate or high aggressiveness policy is a key to

identifying the target IOP for each patient. We applied the high and moderate ag-

gressiveness policies to all fast and slow-progressing patients in the test dataset to

achieve a statistical characterization of how each policy behaves. For each group and

each aggressiveness policy, we used the first five data points to warmup our model.

42



We then recorded the amount of optimal IOP control suggested by our model in the

next 20 time periods (i.e., the following 10 years). Figure 2.5 depicts the results over

all the patients in the testing dataset as box plots of optimal additional IOP control

(β∗t ) applied in the current (i.e., period 0) and the following time periods. An IOP

control of −x mmHg corresponds to lowering the patient’s IOP by x mmHg more

than what was achieved in AGIS/CIGTS. The bottom and top of each box are the

first and third quartiles, respectively. The lower and upper whiskers extend to the

minimum and maximum data points within 1.5 box heights from the bottom and top

of the box, respectively. As seen in the figure, our feedback-driven model recommends

further lowering the IOP within the first few time periods. Afterwards, the optimal

additional IOP control is close to zero. This results in the patient’s IOP converging

to “a number” over time. We call this number the “target IOP,” per the common

terminology used in the glaucoma community. As one would expect, the group of

non-progressing patients do not get additional benefit from further lowering their

IOP since they exhibit no signs of progression at the IOP levels they are maintaining

from the treatments already employed in the trials. Therefore, they are not included

in the graph.

We applied the five aggressiveness options to fast and slow-progressing patients in

the test dataset and obtained the following IOP-related metrics for each combination

of patient type and aggressiveness policy: (1) target IOP [mmHg] or the 10-year pre-

dicted IOP, (2) additional IOP control [mmHg] applied in 10 years (representing the

amount/intensity of treatment), and (3) percentage of IOP change after 10 years. For

each metric, we report the median and interquartile range (IQR), which are robust

measures of location and scale respectively. The IQR is the difference between the

upper and lower quartiles and provides a range that contains 50% of the data. As

seen in Figure 2.5, the optimal additional IOP reduction is almost entirely applied

during the first 6 periods (3 years) of employing the control policy. Hence, we evaluate
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Figure 2.5: Optimal IOP controls suggested by our model for fast and slow-
progressing patients under the high and moderate aggressiveness policies
over 10 years. Period 0 is the current time period (i.e., the period at
which the IOP control starts).

the patient’s IOP after 10 years, which is a sufficiently long horizon for the IOP to

become stable under treatment. We tested our IOP control model with longer time

horizons and obtained similar results.

Table 2.1 summarizes the IOP-related results. For instance, applying the high ag-

gressiveness policy to fast-progressors results in a median target IOP of 7.17 mmHg;

this can be achieved by administering a median additional 9.36 mmHg IOP reduction

from the baseline level of IOP attained in the trials. Such a target IOP is, on aver-

age, 55.24% lower than the baseline IOP (the IOP at the beginning of the 10-year

prediction period) of fast-progressing patients in the trials. Since target IOP is an

important metric that helps guide clinicians in selecting the appropriate treatment

plan for the patient, the distribution of target IOPs is also given in Figure 2.9 in
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Table 2.1: Comparison of the effect of different aggressiveness options on patient’s
IOP for fast and slow-progressing patients in CIGTS and AGIS.

Appendix 2.7.3.

Table 2.2 summarizes the optimal monitoring regime for different combinations of

patient type and aggressiveness level. For example, under the moderate aggressive-

ness level, the model for slow-progressing patients recommends measuring IOP every

6 months and checking the visual field every 12 months. It is worth noting that these

protocols remain optimal as long as (1) the patient follows the monitoring schedule

(i.e., does not miss a test), (2) the patient type/label remains unchanged, and (3) the

doctor does not change the aggressiveness level. If any of the three criteria is not met,

the model modifies the monitoring schedule to account for the missing information or

the change in patient label/aggressiveness level. The monitoring regimes presented in

Table 2.2 and the range and mean of target IOPs presented in Figure 2.9 are clinically

appropriate in the professional opinion of our glaucoma specialist collaborator.

2.5.8.3 Menu of Options:

Now that we have validated our model and elaborated on the structure of the op-

timal policies, we provide an example of how our decision support tool can help guide
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Table 2.2: Optimal monitoring regime for different combinations of patient type and
aggressiveness level.

clinicians in managing a patient with glaucoma. Figure 2.6 depicts the glaucoma pro-

gression trajectory (change in MD over time) for a randomly chosen fast-progressing

patient from the AGIS trial. The figure depicts a sample output of the decision sup-

port tool (in regards to disease control) that compares how this patient is likely to

progress over the following 10 periods (5 years) under different aggressiveness options

defined in Subsection 2.5.5. As demonstrated in the figure, the patient progresses

much slower and would have better MD value (i.e., vision quality) 5 years into the

future as the aggressiveness of IOP control is increased. This graph demonstrates the

type of insight our decision support tool can offer the clinicians. It provides a menu

of options related to how aggressively the doctor wants to treat the patient, depicts

the future disease progression trajectory, and provides the optimal target IOP and

monitoring schedule for each aggressiveness option. The doctor is then able to select

the right aggressiveness option based on evolving needs of the patient, adherence,

health status, and other personal or clinical factors.

2.5.8.4 Insights into Treatment Effectiveness by Patient Type:

Figure 2.7 graphs the average MD loss per year against the total IOP reduction ap-

plied under different aggressiveness policies for all fast and slow-progressing patients

in the test set of CIGTS and AGIS trials. This graph provides important insights

for managing patients with glaucoma: (1) As seen in the graph, the curve for fast-
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Figure 2.6: An example of the trajectory of glaucomatous progression as captured
by changes to MD over time by employing each of the five different ag-
gressiveness policies for a sample fast-progressing patient from the AGIS
study (note: higher MD correlates with better vision quality).

progressors has a steeper slope, which indicates that this group of glaucoma patients

benefits the most from further lowering of IOP. (2) It can be deduced from Figure

2.7 that the low aggressiveness policy (point B), which roughly speaking corresponds

to treatment using eye drops, works well enough for most slow-progressors since the

curve is fairly flat around point B on the slow-progressors curve. In other words,

increasing the aggressiveness level from low to moderate/high has only minimal ad-

vantage for this group of patients. This highlights the importance of differentiating

patients by progression type. Treating all patients the same risks over-treating for

little gain or irreversible vision loss due to under-treating. It can also be seen that

slow-progressors gain long-term benefit if treated under the super-high aggressiveness

policy (point E), which roughly speaking corresponds to incisional surgery. There-
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Figure 2.7: Average MD loss per year can be reduced by applying more IOP control.
Fast-progressors get more benefit from lowering their eye pressure.

fore, for slow-progressing patients, the doctor may choose either the low or super-high

aggressiveness policy, depending on the individual’s life expectancy, severity of glau-

coma, other personal and medical factors, and the preferences of the patient. (3)

The steep slope of the fast-progressors’ curve around point B implies that vision loss

could be significantly averted (even in the short-term) by further reduction of their

IOP. Hence, moderate, high, or super-high aggressiveness policies (points C, D, and E

on the graph, respectively) may be more suitable for most fast-progressing glaucoma

patients.

The same result is also verified by plotting the MD loss averted over 10 years by fol-

lowing the IOP controls suggested by our model. Please see Figure 2.10 in Appendix

2.7.3.

2.5.8.5 Sample Application of the Model in Practice:

In this subsection, we provide an illustration of how our modeling framework may

be used to guide monitoring and control of a glaucoma patient. Figure 2.8 portrays
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the disease trajectory of a sample patient. After the warmup period (i.e., the first

5 periods) the patient is initially identified as a non-progressor. In our example, the

clinician chooses the low aggressiveness option to monitor and control the patient.

Subsequently, the model suggests taking an IOP reading every year and a VF test

every other year. We assume the clinician and the patient follow this protocol. The

patient remains a non-progressor up to period 13, when she becomes classified as a

slow-progressor suspect. This slow-progressor status is confirmed after obtaining IOP

and VF testing at a follow-up visit in time period 14. When the patient becomes a

confirmed slow-progressor, for the sake of this example, assume the doctor decides to

increases the aggressiveness level to the moderate aggressiveness policy. Under this

policy, the model recommends (1) lowering the IOP from 24 to about 21 mmHg, (2)

measuring the IOP every six months, and (3) taking a VF test every year. After

1.5 years (i.e., at time period 17) the doctor and patient decide to further increase

the aggressiveness level and continue care under the high aggressiveness policy. This

policy suggests taking both IOP and VF tests every six months and recommends

additional IOP reduction. Figure 2.8 also illustrates how the patient’s glaucoma

would likely progress after period 14 should the doctor have maintained the low

aggressiveness IOP control policy during periods 5-14.

While this example relates to the management of a single patient, a few aspects should

be highlighted. (1) As described in Subsection 2.5.7, glaucoma patients do not always

maintain the same progression rate over time. Recall that each time a test is taken,

the model updates the MD slope estimate; hence, it is possible that a patient moves

from non-progressor status to slow/fast-progressor, or from slow-progressor to fast-

progressor status. (2) As described in Subsection 2.5.8.2, whenever the patient’s label

is changed or the doctor decides to change the aggressiveness level, the model modifies

the monitoring regime subsequently. (3) As described in Subsection 2.5.8.4, there is

little gain (in terms of preventing vision loss) in increasing the aggressiveness level
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Figure 2.8: A non-progressing patient becomes slow-progressor. The clinician tailors
care by increasing the aggressiveness level. The first 5 periods are warmup
time. From period 5 to 13, the patient is a non-progrssor and the doctor
selects the low aggressiveness policy. In period 13, the patient becomes a
slow-progressor suspect and this label upgrade is confirmed in period 14.
The doctor treats the patient under moderate aggressiveness policy from
period 14 to 17. In period 17, the doctor increases the aggressiveness
plociy to high in order to further slow the progresson rate. Periods 14-25
show forecasted values.

from low to high for slow progressing patients. Note the big gap in the optimal IOP

under the low and high aggressiveness policies at time period 25. However, this gap

results in a very small difference in the patient’s MD values. Benefiting from this type

of insight in a busy clinic can significantly enhance the ability of ophthalmologists

and optometrists to appropriately take care of patients with glaucoma.
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2.6 Conclusions

In this chapter we developed a dynamic personalized modeling paradigm for si-

multaneous monitoring and control of irreversible chronic diseases (e.g., glaucoma).

Our model incorporates each patient’s past and present readings in a feedback-driven

control model to provide the jointly optimal solution to two critical questions fac-

ing clinicians: (1) when to schedule office visits and which suite of tests to perform

to monitor for disease progression (exploration); and (2) what levels of controllable

disease risk factors should be targeted to slow the rate of disease progression (ex-

ploitation).

Kalman filtering methodology is built into our modeling framework to extract noise

from the raw measurements and to optimally estimate the disease state in each time

period based on imperfect observations. This is a key to accurately identifying genuine

disease progression from testing artifacts. We developed a multivariate continuous

state space model of disease progression and model the state transition and the test-

ing processes as first order vector difference equations with multivariate Gaussian

random noises. For the new objective of minimizing the relative change in state (i.e.,

disease progression), which is imperative for management of irreversible chronic dis-

eases, we proved the two-way separation of optimal estimation and control. This is a

fundamental finding upon which solution tractability depends.

To demonstrate the effectiveness of our approach, we harnessed data from two land-

mark glaucoma randomized clinical trials to parametrize and validate our model.

We showed that our Kalman filter-based model has low error in predicting the future

disease progression trajectory. Further, we showed that our decision support tool pro-

vides a menu of options for the clinician based on how aggressively the doctor wants

to manage the patient. For each aggressiveness option, the model provides for each

glaucoma patient (1) future disease progression trajectory, (2) optimal monitoring

schedule, (3) optimal target IOP. The doctor has the choice to select an appropriate
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aggressiveness level depending on the patient’s life expectancy, severity of glaucoma,

and other personal and clinical factors. Our numerical results demonstrated that

following the recommendations of our model not only results in patients with bet-

ter vision quality over the treatment horizon, but also achieves significantly slower

glaucoma progression rate, which means patients will keep their sight longer.

2.7 Appendix

2.7.1 Optimization of the Final Period Disease Control Action

The value function in the last period is given by

VN (℘N) = min
βN
{E
[
(αN − αN−1)′AN (αN − αN−1)

]
+ βN

′BNβN

+ E
[
(αN+1 − αN)′AN+1 (αN+1 − αN)

]
}. (2.42)

ReplacingE
[
(αN − αN−1)′AN (αN − αN−1)

]
and E

[
(αN+1 − αN)′AN+1 (αN+1 − αN)

]
by their values given by Lemmas II.6 and II.7 in Appendix 2.7.2 respectively, and

combining terms results in

VN (℘N) =
(
α̂N |N − α̂N−1|N

)′
AN
(
α̂N |N − α̂N−1|N

)
+ α̂′N |N

(
(TN − I)′AN+1(TN − I)

)
α̂N |N

+ tr
[
AN

(
Σ̂N |N + Σ̂N−1|N − TN−1Σ̂N−1|N − Σ̂N−1|NTN−1

′
)]

+ tr
[
AN+1

(
(TN − I)Σ̂N |N(TN − I)′ +QN

)]
+ min

βN
{βN ′(GN

′AN+1GN +BN)βN + βN
′(GN

′AN+1(TN − I)α̂N |N)

+ (α̂′N |N(TN − I)′AN+1GN)βN}, (2.43)
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where tr represents the trace of the matrix. Let the minimization term in Eq. 2.43

be denoted by J̃N . That is, let

J̃N = min
βN
{βN ′(GN

′AN+1GN +BN)βN + βN
′(GN

′AN+1(TN − I)α̂N |N)

+ (α̂′N |N(TN − I)′AN+1GN)βN}. (2.44)

This minimization can be performed by completion of squares as described in Lemma

II.8 in Appendix 2.7.2. Eq.’s 2.45 - 2.48 give the optimum disease control β∗N and the

result of minimization J̃N . The optimum disease control at time N is given by

β∗N = −UN α̂N |N , (2.45)

where the control law of last time period, UN , is given by

UN = (GN
′AN+1GN +BN)

−1
GN

′AN+1(TN − I), (2.46)

and the result of minimization over βN is given by

J̃N = −α̂′N |N P̃N+1α̂N |N , (2.47)

where

P̃N+1 = (TN − I)′AN+1GN(G′NAN+1GN +BN)−1G′NAN+1(TN − I). (2.48)
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Substitution of Eq. 2.47 into Eq. 2.43 yields

VN (℘N) =
(
α̂N |N − α̂N−1|N

)′
AN
(
α̂N |N − α̂N−1|N

)
+ α̂′N |N

(
(TN − I)′AN+1(TN − I)− P̃N+1

)
α̂N |N

+ tr
[
AN

(
Σ̂N |N + Σ̂N−1|N − TN−1Σ̂N−1|N − Σ̂N−1|NTN−1

′
)]

+ tr
[
AN+1

(
(TN − I)Σ̂N |N(TN − I)′

)]
+ tr [AN+1QN ] . (2.49)

Defining PN as follows,

PN = (TN − I)′AN+1(TN − I)− P̃N+1, (2.50)

and also replacing tr
[
AN+1

(
(TN − I)Σ̂N |N(TN − I)′

)]
by its simpler form as identi-

fied in Lemma II.9 in Appendix 2.7.2, we can further simplify Eq. 2.49 as follows.

VN (℘N) =
(
α̂N |N − α̂N−1|N

)′
AN
(
α̂N |N − α̂N−1|N

)
+ tr

[
AN Σ̂N |N

]
+ α̂′N |NPN α̂N |N + tr

[
PN Σ̂N |N

]
+ tr

[
AN

(
Σ̂N−1|N − TN−1Σ̂N−1|N − Σ̂N−1|NTN−1

′
)]

+ tr
[
P̃N+1Σ̂N |N

]
+ tr [AN+1QN ] . (2.51)

2.7.2 Lemmas

In the derivation of optimal control the following lemmas are needed.

Lemma II.4. For any symmetric n ∗ n matrix A, the following holds.

E [x′Ay] = x̄′Aȳ + tr [AVx,y] . (2.52)
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Where

x̄ = E[x], (2.53)

ȳ = E[y], (2.54)

Vx,y = E [(x− x̄)(y − ȳ)′] . (2.55)

Proof. By writing the matrix operations in terms of summations we will have

x′Ay =
n∑
i=1

n∑
j=1

xiAijyj. (2.56)

Hence

E [x′Ay] =
n∑
i=1

n∑
j=1

AijE[xiyj], (2.57)

but

E[xiyj] = E[xi]E[yj] + E [(xi − E[xi]) (yj − E[yj])] = x̄iȳj + Vxi,yj . (2.58)

When Eq. 2.58 is substituted in Eq. 2.57:

E [x′Ay] = x̄′Aȳ +
n∑
i=1

n∑
j=1

AijVxi,yj = x̄′Aȳ + tr [AVx,y] , (2.59)

where tr [M ] stands for trace of M (i.e., sum of diagonal terms).

Lemma II.5. With information up to time t, we have the following covariance rela-
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tions.

Cov(αt, αt+1|℘t) = Σ̂t|tTt
′, (2.60)

Cov(αt+1, αt|℘t) = TtΣ̂t|t, (2.61)

Cov(αt, αt−1|℘t) = Tt−1Σ̂t−1|t, (2.62)

Cov(αt−1, αt|℘t) = Σ̂t−1|tTt−1
′. (2.63)

Proof. Before we start proving these equations note that

Cov (αt, αt|℘t) = E [αtαt
′]− E [αt]E[αt]

′ → E [αtαt
′] = Σ̂t|t + α̂t|tα̂

′
t|t. (2.64)

Therefore,

Cov(αt, αt+1|℘t) = E [αtαt+1
′]− E [αt]E[αt+1]

′

= E
[
αt(Ttαt +Gtβt + ηt)

′]− E [αt]E[Ttαt +Gtβt + ηt]
′

= E [αtαt
′] Tt

′ + α̂t|tβt
′Gt
′ − α̂t|t

(
α̂′t|tTt

′ + βt
′Gt
′)

=
(

Σ̂t|t + α̂t|tα̂
′
t|t

)
Tt
′ − α̂t|tα̂′t|tTt

′

= Σ̂t|tTt
′, (2.65)

and similarly

Cov(αt+1, αt|℘t) = TtΣ̂t|t. (2.66)
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Furthermore,

Cov(αt, αt−1|℘t) = E [αtαt−1
′]− E [αt]E[αt−1]

′

= E [(Tt−1αt−1 +Gt−1βt−1 + ηt−1)αt−1
′]

− E [Tt−1αt−1 +Gt−1βt−1 + ηt−1]E[αt−1]
′

= Tt−1E [αt−1αt−1
′] +Gt−1βt−1α̂

′
t−1|t − Tt−1α̂t−1|tα̂

′
t−1|t −Gt−1βt−1α̂

′
t−1|t

= Tt−1

(
Σ̂t−1|t + α̂t−1|tα̂

′
t−1|t

)
− Tt−1α̂t−1|tα̂

′
t−1|t

= Tt−1Σ̂t−1|t, (2.67)

and similarly

Cov(αt−1, αt|℘t) = Σ̂t−1|tTt−1
′. (2.68)

Lemma II.6. With information up to time t, the expected quadratic penalty of disease

progression from period t− 1 to t can be calculated as follows.

E
[
(αt − αt−1)′At (αt − αt−1) |℘t

]
=
(
α̂t|t − α̂t−1|t

)′
At
(
α̂t|t − α̂t−1|t

)
+ tr

[
At

(
Σ̂t|t + Σ̂t−1|t − Tt−1Σ̂t−1|t − Σ̂t−1|tTt−1

′
)]
.

(2.69)

57



Proof. Using Lemma II.4 and Lemma II.5,

E
[
(αt − αt−1)′At (αt − αt−1) |℘t

]
= E [αt

′Atαt|℘t] + E [αt−1
′Atαt−1|℘t]

− E [αt
′Atαt−1|℘t]− E [αt−1

′Atαt|℘t]

= α̂′t|tAtα̂t|t + tr[AtΣ̂t|t] + α̂′t−1|tAtα̂t−1|t + tr[AtΣ̂t−1|t]

− α̂′t|tAtα̂t−1|t − tr[AtTt−1Σ̂t−1|t]− α̂′t−1|tAtα̂t|t − tr[AtΣ̂t−1|tTt−1
′]

=
(
α̂t|t − α̂t−1|t

)′
At
(
α̂t|t − α̂t−1|t

)
+ tr

[
At

(
Σ̂t|t + Σ̂t−1|t − Tt−1Σ̂t−1|t − Σ̂t−1|tTt−1

′
)]
.

(2.70)

Lemma II.7. With information up to time t, the expected quadratic penalty of disease

progression from period t to t+ 1 can be calculated as follows.

E
[
(αt+1 − αt)′At+1 (αt+1 − αt) |℘t

]
= α̂′t|t

(
(Tt − I)′At+1(Tt − I)

)
α̂t|t + βt

′(Gt
′At+1Gt)βt + βt

′(Gt
′At+1(Tt − I)α̂t|t)

+ (α̂′t|t(Tt − I)′At+1Gt)βt + tr
[
At+1

(
(Tt − I)Σ̂t|t(Tt − I)′ +Qt

)]
. (2.71)
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Proof. Using Eq. 2.1, Lemma II.4 and Lemma II.5,

E
[
(αt+1 − αt)′At+1 (αt+1 − αt) |℘t

]
= E [αt+1

′At+1αt+1|℘t] + E [αt
′At+1αt|℘t]

− E [αt+1
′At+1αt|℘t]− E [αt

′At+1αt+1|℘t]

= (Ttα̂t|t +Gtβt)
′At+1(Ttα̂t|t +Gtβt) + tr

[
At+1(TtΣ̂t|tTt

′ +Qt)
]

+ α̂′t|tAt+1α̂t|t + tr[At+1Σ̂t|t]

− (Ttα̂t|t +Gtβt)
′At+1α̂t|t − tr

[
At+1TtΣ̂t|t

]
− α̂′t|tAt+1(Ttα̂t|t +Gtβt)− tr

[
At+1Σ̂t|tTt

′
]

= α̂′t|t
(
(Tt − I)′At+1(Tt − I)

)
α̂t|t + βt

′(Gt
′At+1Gt)βt + βt

′(Gt
′At+1(Tt − I)α̂t|t)

+ (α̂′t|t(Tt − I)′At+1Gt)βt + tr
[
At+1

(
(Tt − I)Σ̂t|t(Tt − I)′ +Qt

)]
. (2.72)

Lemma II.8.

J̃N = min
βN
{βN ′(GN

′AN+1GN +BN)βN + βN
′(GN

′AN+1(TN − I)α̂N |N)

+ (α̂′N |N(TN − I)′AN+1GN)βN} = −α̂′N |N P̃N+1α̂N |N . (2.73)

Proof. The minimization over βN can be performed by completion of squares. For a

detailed discussion on how to take minimization by completion of squares please see

Section 3.3 of Sayed (2011). In here, we provide a short proof.

J̃N can be expressed in matrix form as follows.

J̃N = min
βN


[

1 βN
′
] 0 α̂′N |N(TN − I)′AN+1GN

GN
′AN+1(TN − I)α̂N |N GN

′AN+1GN +BN


 1

βN


 .

(2.74)

The center matrix in 2.74 can be factored into a product of upper-triangular, diagonal,
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and lower-triangular matrices as follows.

J̃N = min
βN
{
[

1 βN
′
] 1 ωN

′

0 I


 −α̂′N |N(TN − I)′AN+1GNωN 0

0 GN
′AN+1GN +BN


 1 0

ωN I


 1

βN

}, (2.75)

where

ωN = (GN
′AN+1GN +BN)

−1
GN

′AN+1(TN − I)α̂N |N . (2.76)

Expanding the right-hand-side of Eq. 2.75 yields

J̃N = min
βN

{
−α̂′N |N(TN − I)′AN+1GNωN + (βN + ωN)′ (GN

′AN+1GN +BN) (βN + ωN)
}
,

(2.77)

in which only the second term depends on the unknown βN . Note that (GN
′AN+1GN+

BN) is positive semidefinite. This is because AN+1 and BN are diagonal cost matrices

with only positive terms on the main diagonal. So, the second term in Eq. 2.77 is

always nonnegative and will be minimized by choosing βN = −ωN .

Therefore, the optimum disease control β∗N and the result of minimization, i.e. J̃N ,

are given by the following equations respectively.

β∗N = −UN α̂N |N , (2.78)

where

UN = (GN
′AN+1GN +BN)

−1
GN

′AN+1(TN − I), (2.79)
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and

J̃N = −α̂′N |N P̃N+1α̂N |N , (2.80)

where

P̃N+1 = (TN − I)′AN+1GN(G′NAN+1GN +BN)−1G′NAN+1(TN − I). (2.81)

Lemma II.9.

tr
[
AN+1

(
(TN − I)Σ̂N |N(TN − I)′

)]
= tr

[
PN Σ̂N |N

]
+ tr

[
P̃N+1Σ̂N |N

]
(2.82)

Proof. We know tr [XY ] = tr [Y X], tr [X (Y Z)] = tr [(XY )Z] and tr [(X + Y )Z] =

tr [XZ] + tr [Y Z]. Therefore,

tr
[
AN+1

(
(TN − I)Σ̂N |N(TN − I)′

)]
= tr

[
((TN − I)′AN+1(TN − I)) Σ̂N |N

]
(2.83)

From Eq. 2.50 we know (TN − I)′AN+1(TN − I) = PN + P̃N+1. Hence,

tr
[
((TN − I)′AN+1(TN − I)) Σ̂N |N

]
= tr

[(
PN + P̃N+1

)
Σ̂N |N

]
= tr

[
PN Σ̂N |N

]
+ tr

[
P̃N+1Σ̂N |N

]
(2.84)
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Lemma II.10.

E
zt+1

[
α̂′t+1|t+1Pt+1α̂t+1|t+1|℘t

]
= (Ttα̂t|t +Gtβt)

′Pt+1(Ttα̂t|t +Gtβt)

+ tr
[
Pt+1

(
TtΣ̂t|tTt

′ +Qt − Σ̂t+1|t+1

)]
. (2.85)

Proof. From Lemma II.4 and Eq. 2.4

E
zt+1

[
α̂′t+1|t+1Pt+1α̂t+1|t+1|℘t

]
= E

zt+1

[
α̂t+1|t+1|℘t

]′
Pt+1 E

zt+1

[
α̂t+1|t+1|℘t

]
+ tr

[
Pt+1 E

zt+1

[(
α̂t+1|t+1 − E

zt+1

[
α̂t+1|t+1|℘t

])(
α̂t+1|t+1 − E

zt+1

[
α̂t+1|t+1|℘t

])′]]
= (Ttα̂t|t +Gtβt)

′Pt+1(Ttα̂t|t +Gtβt) + tr

[
Pt+1Kt+1 E

zt+1

[
ỹt+1ỹ

′
t+1

]
Kt+1

′
]
, (2.86)

in which

E
zt+1

[
ỹt+1ỹ

′
t+1

]
= E

zt+1

[(
zt+1 − Zt+1(Ttα̂t|t +Gtβt)

) (
zt+1 − Zt+1(Ttα̂t|t +Gtβt)

)′]
.

(2.87)

Replacing zt+1 by its value given by Eq. 2.2 yields

E
zt+1

[
ỹt+1ỹ

′
t+1

]
= E

zt+1

[(
εt+1 + Zt+1(αt+1 − Ttα̂t|t −Gtβt)

) (
εt+1 + Zt+1(αt+1 − Ttα̂t|t −Gtβt)

)′]
= E

zt+1

[
(εt+1 + Zt+1(αt+1 − E[αt+1])) (εt+1 + Zt+1(αt+1 − E[αt+1]))

′]
= H

(θt+1)
t+1 + Zt+1

(
Tt
′Σ̂t|tTt +Qt

)
Z ′t+1

= St+1. (2.88)
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Substitution of Eq. 2.88 into Eq. 2.86 results

E
zt+1

[
α̂′t+1|t+1Pt+1α̂t+1|t+1|℘t

]
= (Ttα̂t|t +Gtβt)

′Pt+1(Ttα̂t|t +Gtβt) + tr [Pt+1Kt+1St+1Kt+1
′] .

(2.89)

Using Eq.’s 2.35, 2.7 - 2.9 yields

E
zt+1

[
α̂′t+1|t+1Pt+1α̂t+1|t+1|℘t

]
= (Ttα̂t|t +Gtβt)

′Pt+1(Ttα̂t|t +Gtβt)

+ tr
[
Pt+1

(
TtΣ̂t|tTt

′ +Qt − Σ̂t+1|t+1

)]
. (2.90)

Lemma II.11.

E
zt+1

[(
α̂t+1|t+1 − α̂t|t+1

)′
At+1

(
α̂t+1|t+1 − α̂t|t+1

)
|℘t
]

=
(
(Tt − I)α̂t|t +Gtβt

)′
At+1

(
(Tt − I)α̂t|t +Gtβt

)
+ tr

[
At+1

(
TtΣ̂t|tTt

′ +Qt − Σ̂t+1|t+1 − Σ̂t+1|t+1Σ̂
∗
t
′ − Σ̂∗t Σ̂t+1|t+1 + Σ̂t|t+1

)]
.

(2.91)

Proof. This expectation can be divided into four parts as follows.

E
zt+1

[(
α̂t+1|t+1 − α̂t|t+1

)′
At+1

(
α̂t+1|t+1 − α̂t|t+1

)
|℘t
]

= E
zt+1

[
α̂′t+1|t+1At+1α̂t+1|t+1|℘t

]
− E

zt+1

[
α̂′t+1|t+1At+1α̂t|t+1|℘t

]
− E

zt+1

[
α̂′t|t+1At+1α̂t+1|t+1|℘t

]
+ E

zt+1

[
α̂′t|t+1At+1α̂t|t+1|℘t

]
.

(2.92)

63



The first expectation in 2.92 is similar to the expectation of Lemma II.10. Therefore,

E
zt+1

[
α̂′t+1|t+1At+1α̂t+1|t+1|℘t

]
= (Ttα̂t|t +Gtβt)

′At+1(Ttα̂t|t +Gtβt)

+ tr
[
At+1

(
TtΣ̂t|tTt

′ +Qt − Σ̂t+1|t+1

)]
. (2.93)

The second expectation in 2.92 can be simplified as follows.

E
zt+1

[
α̂′t+1|t+1At+1α̂t|t+1|℘t

]
= E

zt+1

[
α̂t+1|t+1|℘t

]′
At+1 E

zt+1

[
α̂t|t+1|℘t

]
+ tr

[
At+1Cov

(
α̂t+1|t+1, α̂t|t+1

)]
= (Ttα̂t|t +Gtβt)

′At+1α̂t|t + tr
[
At+1Cov

(
α̂t+1|t+1, α̂t|t+1

)]
,

(2.94)

in which

Cov
(
α̂t+1|t+1, α̂t|t+1|℘t

)
= E

[
α̂t+1|t+1α̂

′
t|t+1|℘t

]
− E

[
α̂t+1|t+1|℘t

]
E
[
α̂t|t+1|℘t

]′
= E

[
α̂t+1|t+1

(
α̂t|t + Σ̂∗t (α̂t+1|t+1 − α̂t+1|t)

)′
|℘t
]

− E
[
α̂t+1|t+1|℘t

]
α̂′t|t

= E
[
α̂t+1|t+1(α̂t+1|t+1 − α̂t+1|t)

′|℘t
]

Σ̂∗′t

= E
[
α̂t+1|t+1α̂

′
t+1|t+1|℘t

]
Σ̂∗′t − E

[
α̂t+1|t+1|℘t

]
(Ttα̂t|t +Gtβt)

′Σ̂∗′t

= Σ̂t+1|t+1Σ̂
∗′
t + (Ttα̂t|t +Gtβt)(Ttα̂t|t +Gtβt)

′Σ̂∗′t

− (Ttα̂t|t +Gtβt)(Ttα̂t|t +Gtβt)
′Σ̂∗′t

= Σ̂t+1|t+1Σ̂
∗′
t . (2.95)

Therefore,

E
zt+1

[
α̂′t+1|t+1At+1α̂t|t+1|℘t

]
= (Ttα̂t|t +Gtβt)

′At+1α̂t|t + tr
[
At+1Σ̂t+1|t+1Σ̂

∗
t
′
]
. (2.96)
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In similar way, the third and fourth expectations in 2.92 can be simplified as follows.

E
zt+1

[
α̂′t|t+1At+1α̂t+1|t+1|℘t

]
= α̂′t|tAt+1(Ttα̂t|t +Gtβt) + tr

[
At+1Σ̂

∗
t Σ̂t+1|t+1

]
, (2.97)

E
zt+1

[
α̂′t|t+1At+1α̂t|t+1|℘t

]
= α̂′t|tAt+1α̂t|t + tr

[
At+1Σ̂t|t+1

]
. (2.98)

Replacing Eq.’s 2.93, 2.96, 2.97 and 2.98 into 2.92 yields

E
zt+1

[(
α̂t+1|t+1 − α̂t|t+1

)′
At+1

(
α̂t+1|t+1 − α̂t|t+1

)
|℘t
]

= (Ttα̂t|t +Gtβt)
′At+1(Ttα̂t|t +Gtβt)

+ tr
[
At+1

(
TtΣ̂t|tTt

′ +Qt − Σ̂t+1|t+1

)]
− (Ttα̂t|t +Gtβt)

′At+1α̂t|t − tr
[
At+1Σ̂t+1|t+1Σ̂

∗
t
′
]

− α̂′t|tAt+1(Ttα̂t|t +Gtβt)− tr
[
At+1Σ̂

∗
t Σ̂t+1|t+1

]
+ α̂′t|tAt+1α̂t|t + tr

[
At+1Σ̂t|t+1

]
=
(
(Tt − I)α̂t|t +Gtβt

)′
At+1

(
(Tt − I)α̂t|t +Gtβt

)
+ tr

[
At+1

(
TtΣ̂t|tTt

′ +Qt − Σ̂t+1|t+1 − Σ̂t+1|t+1Σ̂
∗
t
′ − Σ̂∗t Σ̂t+1|t+1 + Σ̂t|t+1

)]
.

(2.99)

Lemma II.12.

tr
[
(At+1 + Pt+1)

(
TtΣ̂t|tTt

′
)]

= tr
[
PtΣ̂t|t

]
+ tr

[(
P̃t+1 + At+1Tt + Tt

′At+1 − I
)

Σ̂t|t

]
(2.100)

Proof. We know tr [XY ] = tr [Y X], tr [X (Y Z)] = tr [(XY )Z] and tr [(X + Y )Z] =

tr [XZ] + tr [Y Z]. Therefore,

tr
[
(At+1 + Pt+1)

(
TtΣ̂t|tTt

′
)]

= tr
[
(Tt
′ (At+1 + Pt+1)Tt) Σ̂t|t

]
(2.101)
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Using Eq. 2.35 to replace Tt
′ (At+1 + Pt+1)Tt we have

tr
[
(Tt
′ (At+1 + Pt+1)Tt) Σ̂t|t

]
= tr

[(
P̃t+1 + Pt + At+1Tt + Tt

′At+1 − I
)

Σ̂t|t

]
= tr

[
PtΣ̂t|t

]
+ tr

[(
P̃t+1 + At+1Tt + Tt

′At+1 − I
)

Σ̂t|t

]
.

(2.102)

2.7.3 Results on Target IOP and MD Loss Averted

Since target IOP is an important metric that helps guide clinicians in selecting

the appropriate treatment plan for the patient, the distribution of target IOPs is

also of interest. Figure 2.9 shows the histogram of target IOPs for fast and slow-

progressing patients under the high and moderate aggressiveness policies. The range

and mean of each category is clinically appropriate in the professional opinion of our

glaucoma specialist collaborator. Figure 2.10 graphs the MD loss averted in [dB]

Figure 2.9: Histogram of target IOPs for CIGTS and AGIS patients under different
aggressiveness policies.
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for fast and slow-progressing patients under the high and moderate aggressiveness

policies compared against the low aggressiveness policy over 10 years of following the

IOP controls suggested by our model. As seen in the Figure, fast-progressing patients

will lose fewer MD points (i.e., experience better vision quality) resulting from further

lowering their eye pressure in short term, whether the doctor chooses moderate or

high aggressiveness level. Slow-progressors, if treated under the high aggressiveness

policy, could benefit from losing fewer MD points in the long term. However, this

group of glaucoma patients does not gain evident benefit from employing the moderate

aggressiveness policy even in the long term.

Figure 2.10: MD loss averted [dB] for fast and slow-progressing patients under the
high and moderate aggressiveness policies compared against the low ag-
gressiveness policy (i.e., no additional IOP reduction beyond those em-
ployed in trials) over 10 years of following the IOP control suggested by
our model. Period 1 is six months into the future; period 20 is 10 years
into the future.
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CHAPTER III

Healthcare Provider Shift Design to Minimize

Patient Handoffs

3.1 Introduction and Background

In November 1999, the U.S. Institute of Medicine (IOM) issued a report on medi-

cal errors estimating that nearly 100,000 patients die each year as a result of medical

errors and another 15 million are harmed (Kohn et al. 2000). Root cause analysis of

reported sentinel events from 1994 to 2004 revealed that two-thirds of these errors

were due to communication failures (Volpp and Grande 2003). According to Dr. Lu-

cien Leape, the number of deaths from medical errors in hospitals is equivalent to

the death toll from three jumbo jet crashes every two days (Leape et al. 1999). In

fact, more people die as a result of medical errors than from motor vehicle accidents,

breast cancer, or AIDS. Recent reports continue to support the initial findings from

IOM (Institute of Medicine, Committee on Quality of Health Care in America 2001)

and connect fatigue-related medical errors with residents’ duty hours (Ulmer et al.

2008).

In September 2010, the Accreditation Council for Graduate Medical Education (ACGME)

enacted new duty-hour regulations for residents and fellows (see Nasca et al. 2010)

that limited weekly work hours, length of duty periods, off time between shifts, and
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frequency of consecutive on-call days and nights. These stricter duty-hour require-

ments went into effect on July 1, 2011. The goal was to reduce fatigue-related medical

errors and improve patient safety by limiting residents/fellows (trainees) work hours.

However, the more restrictive shifts have resulted in a significant increase in patient

handoffs and communication failures (see Vidyarthi et al. 2006; Horwitz et al. 2006;

Philibert and Leach 2005; Horwitz et al. 2007; Hutter et al. 2006; Lockley et al. 2006).

Patient handoff is defined as “the process of transferring primary authority and re-

sponsibility for providing clinical care to a patient from one departing caregiver to

one oncoming caregiver” (Patterson and Wears 2010). Some other terms that have

commonly been used for handoff in the literature are handover, sign-out, turnover,

transition of care, transfer of care and shift change transfer. It is worth noting that

the working shifts of both residents and fellows must comply with the ACGME duty

hour regulations. For ease of reference, we use the term “trainees” to refer to both

residents and fellows in the rest of the chapter. We also refer to postgraduate year 2

(PGY-2) and above residents and all fellows as “senior trainees”.

Several studies have correlated increased patient handoffs with more medical errors

caused by communication breakdowns and therefore worse patient outcomes (see

Risser et al. 1999; Sutcliffe et al. 2004; Arora et al. 2007; Frankel et al. 2006; Jagsi

et al. 2005; Greenberg et al. 2007; Landrigan et al. 2004; Petersen et al. 1994; Li et al.

2011; Kitch et al. 2008; Gandhi 2005). It is believed that 20% - 30% of information

conveyed during patient handoffs is not documented in the medical record (see Sexton

et al. 2004; Risser et al. 1999). Figure 3.1 depicts the connection between the new

ACGME duty-hour regulations and medical errors.

Several studies have focused on the communication aspects of handoffs and have

provided recommendations to achieve high quality handoffs (see Ye et al. 2007; Arora

and Johnson 2006; Solet et al. 2005, 2004; Nemeth 2012; Arora et al. 2005, 2008; Hen-

riksen et al. 2008; Cheung et al. 2010; Donchin et al. 2003; Kemp et al. 2008). For
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Figure 3.1: Connection between ACGME standards and medical errors - the net effect
is uncertain.

example, Kemp et al. (2008) presented a methodology for conducting safe and effec-

tive sign-outs in a surgical service. Clark et al. (2011) designed a sign-out template to

standardize the handoff process in a general surgery residency program. Other studies

have focused on the overall handoff process. For instance, Abraham et al. (2012) pro-

posed a clinician-centered approach that captures the entire clinician workflow prior

to, during, and after handoff communication. Most of these studies have employed

interviews, surveys, and observations to understand handoff failures and provide sug-

gestions to enhance handoff fidelity.

While a high-quality, structured handoff process is important, decreasing number of

patient handoffs is an additional and fundamental way to reduce opportunities for

medical errors caused by communication breakdowns, supporting safer and more ef-

ficient patient care. The new ACGME duty-hour standards themselves specifically

emphasize the importance of reducing handoffs:

“Programs must design clinical assignments to minimize the number of transitions in

patient care.”

Borman et al. (2012) recently surveyed surgery residents and identified that resident

perceptions of causes of medical errors suggest that system changes are more likely to

enhance patient safety than further hour limits. This research provides mathemati-

cal methods for effecting such system change, by redesigning schedules to reduce the
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number of patient handoffs, hence reducing the opportunity for communication error.

While recent research has focused on improving the quality of communication during

the handoff process (i.e. improving box 6 in Figure 3.1) to reduce medical errors

caused by communication breakdowns, to the best of our knowledge, no prior work

leverages physician scheduling to reduce the quantity of handoffs (i.e. improving box

5 in Figure 3.1). This research contributes to the handoff literature by providing an

Integer Programming (IP) approach to design trainees’ schedules in a patient-centered

manner that minimizes number of handoffs while respecting ACGME duty-hour stan-

dards. The methodology we develop is highly generalizable and, while the proof of

concept is developed for an Intensive Care Unit (ICU), our approach can be ap-

plied to many different care units in hospitals, including different intensive care unit

types (e.g. Medical ICU, Surgical ICU, Pediatric ICU, Critical Care Unit, etc.), the

emergency department, and general floor care (internal medicine or surgery). This

approach can also be employed for different provider levels, e.g. attending physicians,

fellows, residents, nurses, etc.

Mathematical optimization techniques have been widely used to solve the physician

and nurse scheduling problems in a provider-centered manner (see Carter and Lapierre

2001; Ernst et al. 2004; Aickelin and Dowsland 2004; Gutjahr and Rauner 2007). In

the physician scheduling problem, given a set of doctors, a set of shifts and a planning

period, one seeks to find fair schedules for all physicians (Gendreau et al. 2006). In

the nurse scheduling problem, the cost of salaries should also be minimized.

Several studies have employed integer programming to formulate and solve the physi-

cian and nurse scheduling problems (see Gascon et al. 2000; Bard and Purnomo 2005;

Beaulieu et al. 2000; Sherali et al. 2002; Cohn et al. 2009). These studies provide

mathematical models to assign healthcare providers to pre-determined fixed shifts

(i.e. shift assignment models). Gascon et al. (2000) studied the flying squad nurse

scheduling problem. A multi-objective integer programming problem with binary
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variables was employed to find a feasible schedule satisfying most of the constraints.

The paper combined the sequential and the weighted method to obtain the best

nurse schedule for minimizing the deviation measures in soft constraints. Bard and

Purnomo (2005) developed an integer programming model to produce a revised sched-

ule for regular and pool nurses to efficiently use them in the event of surge in demand

for nursing services. The objective is to achieve sufficient coverage with the minimum

cost of revising nurses’ schedules. Beaulieu et al. (2000) addressed the problem of

physician scheduling. This paper employed integer programming to make a sched-

ule for physicians in the emergency room of a major hospital in Montreal, Canada.

The model was able to generate a better schedule with smaller deviations from de-

sired metrics in much shorter amount of time than the current method being used by

hospital staff. Sherali et al. (2002) proposed mixed-integer programming models to

address the resident scheduling problem concerned with prescribing work-nights for

residents. Heuristic solution approaches were developed to solve the problem under

different scenarios. Cohn et al. (2009) also combined IP-based techniques with user

expertise and heuristic approaches to construct high-quality schedules for residents

in the psychiatry program at Boston University School of Medicine based on their

individual preferences.

Our IP-based shift design and assignment model differs in that it simultaneously

(1) finds the best times for starting and ending the shifts to minimize the number

of patient handoffs (this is the shift design part), and (2) assigns physicians to the

shifts such that all ACGME duty-hour regulations are satisfied, required coverage is

achieved, and livability rules are met (this is the shift assignment part). The shift

design concept brings a new perspective to the problem of how best to incorporate the

ACGME rules and provides a systematic, model-driven method for designing physi-

cians’ schedules compared to the conventional approach of selecting between either

two 12-hour shifts or three 8-hour shifts per day. It further benefits patients by min-
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imizing error-contributing handoffs while maintaining physicians’ quality of life.

3.2 Model Development

In this section we present model assumptions, sets, parameters, variables, con-

straints and objective function. The parametric model in this section is based on

the ICU setting for scheduling trainees at the Mayo Clinic; however, the same model

(perhaps with slight modification) could be used for other hospital care units.

3.2.1 Assumptions

Because of the IP framework and also to ensure tractable and practical solutions,

it is necessary to divide each day into discrete time blocks and to assume that shift

change can happen only at the start/end of these time blocks. For example, if a day is

divided evenly into 6 time blocks, each block would be 4 hours and shift changes can

occur only at times 0, 4, 8, 12, 16 and 20. In other words, each physician can either

work or not work in a full time block. We also approximate the number of patients

handed off in each shift change based on historical data on ICU patient census by

time of day and day of week.

3.2.2 Sets and Parameters

We use the following sets in our model.

• I: set of trainees,

• J : set of days within the planning horizon,

• T : set of weeks within the planning horizon,

• K: set of time blocks within a day,
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• Kn: set of time blocks corresponding to night shift,

• Kr: set of time blocks that end during rounding time interval,

• Kinc: set of time blocks that end during inconvenient time interval for shift

change (usually considered as late night and early morning).

The main model parameters are listed below.

• NbF : number of trainees (fellows or residents),

• NbD: number of days within the planning horizon,

• NbW : number of weeks within the planning horizon,

• NbB: number of time blocks within a day,

• ShL: maximum shift length allowed in hours,

• cjk: approximate number of patient handoffs incurred by a shift change at the

end of time block k in day j, calculated based on the average number of patients

in the ICU at the time of shift change,

• djk: minimum number of trainees required to be on-call at time block k of day

j.

We also use a few auxiliary parameters in our model to simplify the notation. They

are directly calculated from the main parameters.

• BL = 24
NbB

: length of each time block in hours,

• BShL =
⌊
ShL
BL

⌋
: maximum number of consecutive time blocks which do not

exceed ShL hours,

• B10 = d10/BLe: minimum number of consecutive time blocks which exceed 10

hours.
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3.2.3 Decision Variables

The following decision variables are used in the model.

• xijk: 1 if trainee i is assigned to time block k on day j, and 0 otherwise;

• yjk: 1 if there is a shift change at the end of time block k on day j, and 0

otherwise;

• zij: 1 if trainee i is totally off-duty on day j, and 0 otherwise;

• wij: 1 if trainee i works at night on day j, and 0 otherwise.

3.2.4 Constraints

The model constraints can be classified into three categories: (1) required and

(2) desirable constraints are associated with mandatory and optional scheduling rules

respectively, while (3) linkage constraints enforce model dynamics.

3.2.4.1 Required Constraints

Certain constraints are required by regulation or organizational policy. The first

five of these constraints are required by ACGME duty-hour regulations, while the

last two are required by organizational policy.

1. Duty periods of postgraduate year 1 (PGY-1) residents must not exceed 16

hours in duration; however, senior trainees may be scheduled to a maximum

of 24 hours of continuous duty. The following inequalities ensure that trainees

do not work shifts longer than ShL hours. ShL is the maximum shift length

allowed in hours so we use this value as an upper bound for shift length.

BShL+s∑
k=s

xijk ≤
ShL

BL
∀i ∈ I,∀j ∈ J,∀s ∈ {1, ..., (NbB −BShL)}, (3.1)
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NbB∑
k=s

xijk +

s−(NbB−BShL)∑
k=1

xi,j+1,k ≤
ShL

BL
∀i ∈ I,∀j ∈ {1, ..., NbD − 1},

∀s ∈ {(NbB −BShL) + 1, ..., NbB}.

(3.2)

If ShL = 24 (i.e. the maximum allowed shift length is 24 hours), inequality 3.1

is not needed and only inequality 3.2 is kept.

2. Weekly duty hours must not exceed 80 hours:

7t∑
j=7(t−1)+1

∑
k∈K

xijk ≤
80

BL
∀i ∈ I,∀t ∈ T. (3.3)

3. Trainees must have a minimum of 10 hours free of duty between scheduled duty

periods:

xi,j,k − xi,j,k+1 + xi,j,k+s+2 ≤ 1 ∀i ∈ I,∀j ∈ J,∀k ∈ {1, ..., NbB −B10},

∀s ∈ {0, ..., B10 − 2}, (3.4)

xi,j,k − xi,j,k+1 + xi,j,k+s+1 ≤ 1 ∀i ∈ I,∀j ∈ J,

∀k ∈ {NbB −B10 + 1, ..., NbB − 1},

∀s ∈ {0, ..., (NbB − 1)− k}, (3.5)

xi,j,k − xi,j,k+1 + xi,j+1,s+1 ≤ 1 ∀i ∈ I,∀j ∈ {1, ..., NbD − 1},

∀k ∈ {NbB −B10 + 1, ..., NbB − 1},

∀s ∈ {0, ..., k − (NbB −B10 + 1)}, (3.6)
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xi,j,NbB − xi,j+1,1 + xi,j+1,s+2 ≤ 1 ∀i ∈ I,∀j ∈ {1, ..., NbD − 1},

∀s ∈ {0, ..., B10 − 2}. (3.7)

If NbB ≥ 3, inequalities 3.4 - 3.7 are required. Otherwise, this rule is automat-

ically satisfied by other required constraints and the above inequalities are not

needed to make sure trainees will get at least 10 hours off between shifts.

4. Trainees must get at least one day off per 7-day period (when averaged over 4

weeks):

7(t−1)+28∑
j=7(t−1)+1

zij ≥ 4 ∀i ∈ I,∀t ∈ {1, ..., NbW − 3}. (3.8)

5. Trainees must not be scheduled for more than 6 consecutive shifts of night duty

(night float):

6∑
s=0

wi,j+s ≤ 6 ∀i ∈ I,∀j ∈ {1, ..., NbD − 6}. (3.9)

6. The required coverage must be satisfied (coverage constraint):

∑
i∈I

xijk ≥ djk ∀j ∈ J,∀k ∈ K. (3.10)

7. Shift change is not allowed during bedside multi-disciplinary rounds because

this would disrupt the rounding process and impact the educational benefit to

trainees:

yjk = 0 ∀j ∈ J,∀k ∈ Kr. (3.11)
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3.2.4.2 Linkage Constraints

The following inequalities serve as linkage constraints to connect x, y, z and w

variables.

1. Inequalities 3.12 - 3.15 ensure that whenever there is a shift change at the end

of time block k on day j, variable yjk is assigned value 1.

yjk ≥ xijk − xi,j,k+1 ∀i ∈ I,∀j ∈ J,∀k ∈ {1, ..., NbB − 1}, (3.12)

yjk ≥ xi,j,k+1 − xijk ∀i ∈ I,∀j ∈ J,∀k ∈ {1, ..., NbB − 1}, (3.13)

yj,NbB ≥ xi,j,NbB − xi,j+1,1 ∀i ∈ I,∀j ∈ {1, ..., NbD − 1}, (3.14)

yj,NbB ≥ xi,j+1,1 − xi,j,NbB ∀i ∈ I,∀j ∈ {1, ..., NbD − 1}. (3.15)

2. The following inequality ensures that whenever zij is 1, trainee i is off-duty on

day j.

∑
k∈K

xijk ≤ NbB(1− zij) ∀i ∈ I,∀j ∈ J. (3.16)

3. Inequalities 3.17 and 3.18 ensure that wij is 1 when trainee i works at night on

day j, and 0 otherwise.

xijk ≤ wij ∀i ∈ I,∀j ∈ J,∀k ∈ Kn, (3.17)

wij ≤
∑
k∈Kn

xijk ∀i ∈ I,∀j ∈ J. (3.18)

3.2.4.3 Desired Constraints

In addition to the required constraints, there are some other characteristics for a

schedule which are not required, but are desirable to obtain more convenient and liv-

able schedules. These could include vacation requests, sleep hours, circadian rhythm
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or other human factors issues. In this part, we discuss the desired constraints in our

model. These rules have been developed through several meetings and discussions

with program directors, consultants, chief residents and fellows at Mayo Clinic.

1. To maintain regular sleep hours for trainees, we disallow shift changes at late

night or early morning (inconvenient times).

yjk = 0 ∀j ∈ J,∀k ∈ Kinc. (3.19)

2. ACGME rules only require one day off per 7-day period (when averaged over 4

weeks). However, working several days in a row could cause fatigue, irritability

and reduced concentration for trainees. Hence, the desire is to provide at least

one day off per any 7-day period (without averaging). This means that, trainees

are permitted to work no more than six days in a row.

6∑
s=0

zi,j+s ≥ 1 ∀i ∈ I,∀j ∈ {1, ..., NbD − 6}. (3.20)

3. Based on ACGME regulations, trainees are allowed to be on call for up to six

consecutive night shifts. Nevertheless, it is believed that doing a lengthy run

of night shifts might be associated with extreme fatigue, insomnia, and sleep

deprivation. Hence, we limit the night float to a maximum of four consecutive

night shifts.

4∑
s=0

wi,j+s ≤ 4 ∀i ∈ I,∀j ∈ {1, ..., NbD − 4}. (3.21)

4. The minimum required off-time between scheduled duty periods is considered

as 10 hours by ACGME. However, switching to day time work after doing a run

of night shifts is hard for human brain. Preferably, trainees would have at least
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Table 3.1: Scheduling constraints: required constraints (RC) and desired constraints
(DC).

one whole day off (in addition to the post-call day) after doing a run of night

shifts to better adjust their sleep pattern. The following inequality ensures that

after each night shift, either another night shift or a day off should be assigned

to trainees.

wij − wi,j+1 − zi,j+1 ≤ 0 ∀i ∈ I,∀j ∈ {1, ..., NbD − 1}. (3.22)

5. Although ACGME duty hour regulations allow a shift to last up to 16 hours

for PGY-1 and 24 hours for PGY-2 and above, shifts longer than 12 hours

are believed to be associated with fatigue, headaches, irritability and reduced

concentration. Hence, we limit the shift length to 12 hours by setting the value

of ShL parameter to 12 in inequalities 3.1 and 3.2.

To summarize our discussion in this section, all the Required Constraints (RCs) and

Desired Constraints (DCs) are listed in Table 3.1.
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3.2.5 Objective Function

The objective is to minimize the approximate number of patient handoffs during

the scheduling horizon, calculated based on the average ICU patient census at the

time of shift change. Figure 3.2 provides two examples of how the number of patient

handoffs is affected by the number of patients in the ICU. In Fig. 3.2(a), there are

two shift changes (provider transfers) at 7 am/pm. At the 7 am shift change there

are two patients in ICU, so we incur two handoffs, while at 7 pm there is one patient

in ICU and we incur one handoff. Fig. 3.2(b) illustrates the same scenario, but with

only one shift change at noon, where 4 patients are handed off. Clearly, minimizing

number of patient handoffs is not equivalent to minimizing number of shift changes.

Furthermore, longer shifts do not guarantee fewer handoffs as seen in the example

of Figure 3.2 (which also illustrates how the number of handoffs is calculated in our

model). The challenge lies in designing a schedule that complies with all required

constraints (and preferably most desired constraints) in a way that fewer patients

have to be handed off. The objective function can be written as follows:

min
∑
j∈J

∑
k∈K

cjkyjk. (3.23)

3.3 Case Study

This section presents a detailed discussion of how our model can be applied in a

healthcare setting to help redesign trainees’ on-call shifts to minimize the number of

patient handoffs. We applied our model to the Medical Intensive Care Unit (MICU) at

Saint Marys hospital in Rochester, Minnesota operated by Mayo Clinic. The MICU

at Saint Marys hospital is a 24-bed unit. Our focus is on redesigning the fellows’

shifts, as their service has the most impact on patient outcomes. Similar analysis can

be applied to other provider levels (e.g., residents, attending consultants, etc.) and
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Figure 3.2: Examples of how the number of patient handoffs is calculated in the
performance analysis model: (a) 2 shift changes and 3 patient handoffs,
(b) 1 shift change and 4 patient handoffs.

other hospital units as well.

3.3.1 Assumptions

The detailed parameterization of the model for the case study was obtained

through several meetings with residency and fellowship program directors, chief resi-

dents and fellows, as well as feedback from different medical providers at Mayo Clinic.

For the case study, we consider a 4-week scheduling horizon which starts on a Satur-

day and ends on a Friday as trainees at Mayo Clinic rotate between different units

every four weeks. Two years of MICU admission and discharge data were used to

calculate the approximate MICU census for different days of week and times of day.

Each day was divided into 12 time blocks. Hence, shift changes can happen at any

of times 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 and 22 in military time format. One nice

property of the 2-hour time block is that, for this case study, the resulting schedule

has a symmetric structure. The symmetric structure of our proposed schedule makes

it easy to remember and much more appealing for implementation.

Based on ACGME rules, the maximum shift length is 16 hours for postgraduate year
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1 (PGY-1) residents and 24 hours for senior trainees. Because the 24-hour shifts

are believed to cause extreme tiredness and sleep deprivation contributing to more

fatigue-related medical errors and poor patient outcomes, we limit the maximum shift

length to 16 hours for fellows. Currently fellows work 12-hour shifts in the MICU. We

start our analysis with a 16-hour limit on shift length, but will perform a sensitivity

analysis on shorter and longer shifts later.

Some constraints deal with night shifts. In our study, we define night to be from

10:00 pm to 6:00 am. Hence, if a fellow is on call at any time in this interval, we

assume he/she is on a night shift.

To provide 24/7 coverage, at least three fellows are required. This is because each

fellow can work a maximum of 80 hours per week and we want to provide 24∗7 = 168

hours weekly coverage. Hence, we need at least
⌈
168
80

⌉
= 3 fellows.

For inequality 3.11, which ensures there is no shift change during the bedside multi-

disciplinary rounds, we need to determine the set of time blocks that end during this

interval. Currently, the bedside rounds happen from 8:30 am to 11:00 am in the

MICU.

Finally, a shift change is not allowed at inconvenient times (late night and early morn-

ing) through inequality 3.19. In this case study, we assume any time after 10:00 pm

and before 4:00 am is inconvenient for a shift change.

3.3.2 Set and Parameter Values

Based on our previous discussion, model sets and parameters are assigned the

following values.

Sets:

• I = {1, 2, 3},

• J = {1, 2, ..., 28},
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• T = {1, 2, 3, 4},

• K = {1, 2, ..., 12},

• Kn = {1, 2, 3, 12},

• Kr = {5},

• Kinc = {1, 2, 12}.

Parameters:

• NbF = 3,

• NbD = 28,

• NbW = 4,

• NbB = 12,

• ShL is equal to 12 if DC5 is included in the scenario under consideration, and

16 otherwise,

• djk =


1 . . . 1

...
. . .

...

1 · · · 1


28∗12

,

• BL = 24
NbB

= 2,

• BShL =
⌊
ShL
BL

⌋
= 8,

• B10 = d10/BLe = 5,

• cjk is equal to the average MICU patient census at the end of time block k in

day j.
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3.3.3 Data Collection

We used two years of MICU admission and discharge data to obtain patient census

profiled by time of day and day of week. A computer program was developed to

extract the required data from the dataset and to keep track of patient admissions

and discharges for each time block of every day. Figure 3.3 shows the average MICU

admission and discharge patterns during the day. As seen in this graph, there are

almost no discharges at nights. Bedside rounds start at 8:30 am during which the

discharge decisions are made by the team of residents, fellows and consultants. Patient

discharges typically start around 9:00 am. The admission process is smoother with

a higher average during the daytime. Figures 3.4 and 3.5 show the average MICU

patient census versus different times of day and days of week. Mornings are more

crowded than evenings since there is no discharge from the MICU at nights and

before the rounds start in the morning. These results make sense intuitively and are

in line with expert opinion which supports our data collection. Although the MICU

census fluctuates from month to month, the pattern for different times of day and

different days of week is similar. Since the census pattern is what matters for our

shift design study (rather than the actual census numbers), we take the grand average

census over months of year and use these numbers to approximate number of patient

handoffs in our data-driven numerical analysis.

3.3.4 Experimental Scenarios

In this section, we solve the scheduling problem for different combinations of con-

straints to determine their effect on the objective function. The intent is to determine

which desired constraints have the most impact on the number of patient handoffs.

As discussed before, required constraints are those constraints that must be enforced

in order to obtain valid or feasible schedules. Desired constraints are not required

to be satisfied, but they make the resulting schedule more appealing. We perform
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Figure 3.3: MICU admissions and discharges.

our analysis by adding one or a combination of desired constraints to the model and

study their impact on the objective value (number of patient handoffs). If a desired

constraint results in a great increase in the number of patient handoffs, loosening its

bound or removing it will help avoid an increase in handoffs. This provides insight

into the relative cost in terms of handoffs of a desired constraint.

There are 32 combinations of the five desired constraints. Those include having no

desired constraints satisfied (1 case), having one desired constraint satisfied (5 cases),

and so on. We will show the approximate number of patient handoffs for each case

later in this section. First, we start with two extreme cases.

Scenario A - Only Required Constraints: The first scenario we investigate is the case

in which only required constraints are satisfied. The resulting schedule will provide a

lower bound on the minimum achievable number of handoffs. The number of patient

handoffs from this case is used as the baseline for our comparison. The solution yields

635 patient handoffs over the 4-week scheduling horizon.

Scenario B - All Required Constraints and All Desired Constraints: The second sce-
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Figure 3.4: Average MICU patient census vs. time of day.

nario we study is the case in which all required and desired constraints are satisfied.

This provides an upper bound on the number of patient handoffs. Interestingly, the

resulting schedule was the same as current MICU schedule with 831 patients handed

off during the 4-week horizon. The cost of having all desired constraints satisfied is a

31% increase in the number of patient handoffs.

Scenario C - All Required Constraints Together With One Desired Constraint: The

previous scenarios provide a lower and an upper bound for the number of patient

handoffs (635 and 831 respectively). In this scenario, we study the impact of each

desired constraint on the number of patient handoffs by including them in the model

individually. Scenarios C1, C2, C3, C4 and C5 are related to the cases in which DC1,

DC2, DC3, DC4 and DC5 are added to the model respectively. The results show that

adding DC2 or DC4 does not increase the number of patient handoffs, while adding

DC1 or DC3 results in 641 patient handoffs (1% increase). On the other hand, adding

DC5 (limiting shift length to 12 hours) results in 831 patient handoffs, the same result

as the upper bound.
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Figure 3.5: Average MICU patient census vs. day of week.

Scenario D - All Required Constraints Together With DC1-DC4: The results of previ-

ous scenarios revealed that each of these constraints individually does not significantly

degrade the objective function. Including all of them simultaneously leads to a sched-

ule with 641 patient handoffs on average over the 4-week horizon. This is only 1%

greater than the lower bound (Scenario A), which includes none of the desired con-

straints.

Scenario E - All Required Constraints Together With DC2 and DC4: In scenario C,

we saw that adding DC2 or DC4 to the model one at a time would not increase the

number of patient handoffs. In this scenario, we investigate the effect of having both

of them satisfied. The solution results in 641 handoffs, exactly the same as scenario

D where DC1-DC4 are satisfied. Consequently, scenario E is dominated by scenario

D.

Table 3.2 summarizes the results in this section. It shows all cases together with the

scenarios we discussed in this section, the number of patient handoffs for each case,

and whether each case is efficient or not. Those cases that are not dominated by any
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other case are efficient schedules.

As seen in Table 3.2, scenarios B, C2, C4 and D are efficient schedules. However,

from a practical standpoint, scenario D is preferred to scenarios C2 and C4, since DC1

- DC4 are satisfied with only 1% increase in the number of patient handoffs. Hence,

from practical standpoint, only scenarios B and D are efficient schedules. The only

difference between these two schedules is the limit on shift length. Figure 3.6 shows

the resulting schedules corresponding to scenarios B and D (12 hours and 16 hours

shift length limit, respectively).

Fellows at the Mayo MICU are currently working 12-hour shifts with shift changes

happening at 6 am and 6 pm. Our analysis in this part showed that the current

on-call schedule for fellows at Mayo’s MICU is indeed optimal if we want to maintain

12-hour shifts; however, the 16-hour shift length of scenario D is very attractive due

to the large number of handoffs saved (190 or 23% fewer).

Figure 3.6: Resulting schedules with (a) 12 hours per scenario B and (b) Scenario D
with 16 hours shift length limit. Each number and color refers to one of
the three fellows who is assigned to the corresponding time block.
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Table 3.2: Summary of results of experimental scenarios.
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3.3.5 Sensitivity Analysis and Discussion

In this section, we briefly review the main results from the previous section and

then provide further analysis of the shift length constraint.

The previous section showed that most of the desired constraints can be accommo-

dated without significantly increasing the number of patient handoffs. Those con-

straints include: no shift change at late night or early morning, at least one day off

every seven days, no more than four night shifts in a row and a minimum one day

off after a run of night shifts. The desired constraint that restricts shift length to 12

hours, however, increases the number of patient handoffs by more than 30%.

Based on ACGME duty-hour regulations, on-call shifts of residents in PGY-1 must

not exceed 16 hours while senior trainees (PGY-2 and above residents and all fellows)

may be scheduled for a maximum of 24 hours of continuous duty. To explore the

effect of shift length, we run the model for different shift lengths from 12 hours to

24 hours (in 2-hour increments). We keep all other required and desired constraints

active and only change the shift length bound (ShL parameter). Figure 3.7 shows

the resulting change in number of patient handoffs.

As seen in Figure 3.7, increasing shift length limit results in fewer patient hand-

offs. The current 12-hour shifts in Mayo MICU cause an average of 831 patients to

be handed off per month. Should the shift length be extended to 16 hours, this will

result in nearly a 23% reduction in number of patient handoffs per month. Increasing

the shift length to its maximum allowed limit, i.e. 24 hours, results in almost a 48%

reduction in number of patient handoffs per month. On one hand, shorter shifts cor-

relate with more frequent patient handoffs, which potentially results in more medical

errors due to communication breakdown and loss of information during the handoff

process. On the other hand, longer shifts are associated with extreme tiredness and

sleep deprivation which can also contribute to fatigue-related medical errors.

A reasonable tradeoff between fatigue and handoffs should be established to mini-
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Figure 3.7: Number of patient handoffs for different shift length limits.

mize medical errors and achieve the best patient outcomes. However, to date there

is no solid methodology to quantify physicians’ fatigue and the effect of fatigue on

quality of care and patient outcomes. The best we could do was to collect expert

opinions. Several program directors and physicians that we have interviewed believe

that 24-hour shifts are acceptable and worth the benefit of fewer patient handoffs. A

majority of program directors, chief residents and fellows believe 16-hour shifts are

very reasonable and worth the benefit of the 20%-25% reduction in patient handoffs

(compared to 12-hour shifts). The 16-hour shift length limit is permitted by ACGME

and could be applied to different trainee levels (i.e. PGY-1 residents, senior (PGY-2

and above) residents, and fellows). This appears to provide a good tradeoff between

the adverse effects of physicians’ fatigue and the adverse effects of more frequent pa-

tient handoffs.

One final point is the importance of maintaining fairness and balance among the
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trainees’ schedules. While this is not a mandated requirement, it is clearly important

for implementation and trainee morale. Therefore, we added measures and associated

constraints to ensure balance among the schedules for average duty hours, number

of night shifts, and the number of days off. Figure 3.8 shows the resulting equitable

schedule and associated fairness values that yields the same 641 patient handoffs

(with the shift length limit set at 16 hours).

Figure 3.8: Equitable schedule with all required and desired constraints and 16-hour
shift length limits.

3.4 Conclusions

In this chapter, we developed a new patient-centered model for scheduling resi-

dents and fellows (trainees) to minimize number of patient handoffs, which have been

linked with medical errors caused by communication breakdowns and adverse events.

While previous literature focuses on the logistics of the handoff, we bring a new sys-
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tems perspective to this problem by designing schedules that minimize the number of

patients that are handed off, thereby reducing the opportunity for serious error. Our

integer programming model designs on-call shifts such that all ACGME duty-hour

regulations are satisfied, required coverage is achieved, livability rules are met, and

patient handoffs are minimized. The general form of our model can be used by any

healthcare operation that wants to reduce patient handoffs and that has duty-hour

restrictions and similar livability constraints. Should the size of the model render

the problem intractable for other healthcare units, heuristics approaches such as the

Tabu Search and Ant Colony Optimization can be employed to solve the integer pro-

gram (see, for example, Balas and Martin 1980; Azadeh et al. 2013; Lokketangen and

Glover 1998).

In a case study of an ICU at an academic medical center (the Mayo Clinic in

Rochester, Minnesota) we demonstrated how our model could be applied to reduce

the number of patient handoffs. We found that most desired constraints (livability

rules) can be satisfied with a negligible increase in number of patient handoffs. The

desired constraint that had the largest impact on handoffs was the shift length. By

increasing the shift length from 12 to 16 hours it was possible to reduce handoffs by

23% relative to the current MICU schedule. 24-hour shifts (the maximum allowable

shift length) resulted in a 48% reduction in the number of patient handoffs. It is

worth noting that in the proposed schedule no new trainees (fellow for the case study

of Mayo MICU) need to be added beyond the minimum number needed to provide

the required coverage specified by the 10th required constraint (require coverage is

24/7 for the case study). Therefore, in terms of financial costs, the as-is schedule and

the proposed schedules are exactly the same.

Based on discussions with staff at Mayo Clinic, we found that 16-hour shifts provided

a reasonable tradeoff between medical errors due to trainee fatigue and medical errors

due to communication breakdowns as a result of more frequent patient handoffs. The
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new shift design approach discussed in this chapter is under consideration for imple-

mentation at Mayo Clinic. A shift assignment approach based on the work discussed

in this chapter was accepted by the practice and additional services are considering

the use of the general methodology to assist in staff scheduling at Mayo Clinic.
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CHAPTER IV

Coordinating Clinic and Surgery Appointments to

Meet Access Delay Service Level for Elective

Surgery

4.1 Introduction

The United States healthcare is facing a significant challenge in providing timely

access to care (Davis et al. 2014), which not only affects patient satisfaction but also

directly influences patient safety and health outcomes (Murray and Berwick 2003;

Koopmanschap et al. 2005). Long wait times may also result in elevated healthcare

costs because of additional treatments (Somasekar et al. 2002; Hilkhuysen et al. 2005).

To ensure patients can get medical care when they need it, it is critical to make effi-

cient use of the current healthcare resources to minimize access delay, which can lead

to a healthier society.

In this paper, we leverage systems engineering and operations research to improve

access to elective surgery in a highly specialized surgical unit. Our research is mo-

tivated by the issue of long waiting times for patients who need a surgery in the

colorectal surgery (CRS) department at the Mayo Clinic in Rochester, MN. In CRS,

like many surgical units across the country, the increase of patient demand is outpac-

ing the growth of surgical capacity, leading to long wait times. We define wait time
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as the number of business days between the day a patient is referred to CRS and the

day he or she is operated in the operating room (OR). Previous research indicates

that ineffective scheduling regimes are among the main factors contributing to un-

derutilization of ORs (see Weinbroum et al. 2003; Jonnalagadda et al. 2005). In this

paper, we propose and evaluate 6 carefully chosen scheduling policies that work better

than the current scheduling protocol. The underlying idea behind these scheduling

protocols is to efficiently use patient information to integrate and coordinate clinic

and surgery appointment scheduling such that patients can get a clinic visit and a

surgery appointment within a time period that is clinically safe for them while the

OR overtime is minimized.

4.2 Problem Description

CRS at the Mayo Clinic includes 8 surgeons. They form 2 teams of orange and

blue each consists of 4 surgeons. On any given day, one team sees patients in the clinic

and the other team is operating in the OR. The teams switch places on the following

business day. Therefore, each surgeon has a clinical and a surgical calendar. CRS

receives patient appointment requests from two separate channels: (1) the surgeon’s

desk (internal referrals), and (2) the direct clinic (external referrals). About 75%

of the requests come through the surgeon’s desk, which are usually referred by the

gastrointestinal (GI) department at the Mayo Clinic. The remaining 25% are referred

from other hospitals. Each new request needs a clinic appointment with a CRS

surgeon. The clinic visit may need to be followed by a surgery. Recently, CRS has

experienced an increase in the earliest surgery time they can offer to their patients.

The chief surgeon is worried that the long wait times can lead to adverse events and

poor patient outcomes especially for the urgent patients (e.g. colon cancer patients).

Figure 4.1 shows the two appointment request channels.

Current scheduling policy: Presently, the scheduling protocol/policy at CRS is
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Figure 4.1: CRS appointment request diagram.

focused strictly on finding the surgeon with the first available clinic slot and schedul-

ing a clinic visit for the patient with that surgeon. During the clinic visit, it is

determined whether or not surgery is required and the details concerning surgery. If

it is determined that the patient needs a surgery, the surgeon then looks into his/her

surgical calendar and offers the earliest date he/she can perform the surgery.

The above protocol now used in practice often results in a long wait time for urgent

patients to obtain surgery, because it waits until the day of the clinic visit to reserve

a date for surgery. A common scenario that motivated this research is as follows. A

cancer patient is assigned to surgeon X based on the clinical availability of surgeons.

When surgeon X sees the patient in the clinic, the surgeon and the patient jointly

determine to proceed with surgery. The surgery should be performed as soon as pos-

sible to prevent the tumor from further growing. Surgeon X looks into his surgical

calendar and finds out that his next surgical availability is 3 weeks into the future;

but, one of his colleagues, say surgeon Y, has surgical availability in 4 days. Surgeon

X asks the patient if he/she prefers to wait 3 weeks or be operated by surgeon Y. The

patient almost always prefers to wait and get the surgery with the same surgeon that

they got to know during the clinic visit rather than a colleague they have never met.

This is because the patient has already established some trust and a relationship with

surgeon X. Therefore, in this paper we assume that the surgery must be performed

by the same surgeon who has seen the patient in clinic.

98



4.3 Literature Review

Appointment scheduling has been a topic of interest for many researchers over

the past few decades. Gupta and Denton (2008) provide a literature survey on ap-

pointment scheduling systems in 3 different healthcare settings: (1) primary care, (2)

specialty clinic, and (3) elective surgery. They describe the goal of a well-designed

appointment system as delivering timely access to health services for all patients.

This is in line with our main objective in this paper. Gupta and Denton (2008) also

indicate that most of the previous research has focused on minimizing the direct wait

time, which is the time from the moment patient enters the clinic to the time he/she

sees the doctor. Our focus in this research is to reduce the indirect wait time, which

corresponds to the number of days from the day of appointment request until the day

of appointment itself.

Two closely related papers to our work are Patrick et al. (2008) and Saure et al.

(2012). Patrick et al. (2008) present a Markov decision process (MDP) model with

rolling horizon to dynamically allocate the available capacity of a diagnostic resource

(CT scanner) between different patient priority classes. Each patient requires one

appointment slot. Surge capacity is diverted or delayed. Their objective is to min-

imize the number of patients who does not get an appointment by their maximum

wait time target. They solve the equivalent linear program through approximate

dynamic programming (ADP) to mitigate the curse of dimensionality of the MDP

model. Saure et al. (2012) develop an MDP-based modeling framework to allocate

available treatment capacity to incoming demand for scheduling cancer treatments in

radiation therapy units while reducing wait times. They consider multiple identical

radiation therapy machines and determine the total capacity by aggregating the in-

dividual capacities of machines. Each patient visit triggers a sequence of visits with

different number of appointment slots for each visit. Surge capacity is delayed or

accommodated using overtime. They use an ADP approach similar to Patrick et al.
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(2008) in order to solve the model. There are a number of differences between these

papers and our work. First, we consider multiple non-identical surgeons as scarce

resources and directly book appointments with them considering the individual ca-

pacities as opposed to considering one single resource or multiple identical resources

and aggregating the individual capacities. Second, they consider off-line scheduling

in which the scheduling decisions are made once a day; whereas, we consider online

scheduling in which the orders are scheduled one by one as they arrive to CRS. Third,

they consider that each new request requires either one or multiple visits and each

visit requires either one or multiple appointment slots; but, these are all assumed to

be known at the time the request is received. However, in our problem, each request

requires a clinic appointment and may or may not be followed by a surgery. The

uncertainty about needing a surgery is realized during the patient’s clinic visit. If it

is deemed that the patient does need a surgery, the actual surgery duration is not

realized until after the surgery is done, but can be estimated beforehand using his-

torical data.

Gupta and Wang (2008) develop a model to decide whether to accept or reject an

appointment request to maximize revenue while incorporating the patients’ prefer-

ences in terms of which doctor to see and the time of appointment into their decision

making. Wang and Gupta (2011) present a novel decision support tool that dynam-

ically learns and updates patients’ preferences and use this information to improve

booking decisions. Liu et al. (2010) propose heuristic dynamic policies for scheduling

patient appointments considering no-shows and cancelations and evaluate them using

computer simulation. In this paper, we do not consider patient no-shows and cance-

lations as they rarely happen in a highly-specialized care unit like colorectal surgery.

We also do not honor patients’ surgeon preference per recommendation of the chief

CRS surgeon. Clearly, in many healthcare environments, the patient can prioritize

the selection of the provider with whom they feel most comfortable. Our scope is,
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however, limited to the important class of environments in which the patients typi-

cally accept the surgeon offering the earliest access. It should be noted that it is not

too difficult to manually intervene in cases in which the algorithmic solution needs to

be tweaked to account for the occasional patient with strong provider preferences, if

they are willing to accept the potential delay.

Many researchers have used computer simulation to study appointment and/or surgery

scheduling and to test the performance of heuristic scheduling rules (Erdogan and

Denton 2011). Simulation is a powerful tool for assessing the potential response of a

health system to policy changes (Fone et al. 2003). For instance, Ho and Lau (1992)

study the performance of over 50 scheduling rules using simulation and conclude

that their performances are affected by the environmental conditions of the operating

environment. Vasilakis et al. (2007) develop a discrete event simulation model to com-

pare two methods of scheduling outpatient clinic appointments (individual surgeon

vs. pooled lists) in terms of number of patients waiting for appointments and wait

times to appointment and surgery. LaGanga and Lawrence (2007) leverage discrete

event simulation to investigate appointment over-booking as one means of reducing

the negative impact of no-shows and conclude that over-booking can improve patient

access, provider productivity, and overall clinic performance. Everett (2002), Gul

et al. (2011), Berg et al. (2014), Liang et al. (2015), and Zhang and Xie (2015) have

also used computer simulation to study appointment/surgery scheduling. The most

important difference between our work and the previous papers mentioned is that

we expand our view to proactively coordinate the scheduling of clinic and surgery

appointments such that patients with different levels of urgency can be served within

their maximum wait time target windows with minimum OR overtime. The concept

of coordinating clinic and surgery appointments is unique and novel in our work and

has never been studied before in the context of surgery scheduling and planning.

Unlike some surgical scheduling papers, our paper does not strive to determine how
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many ORs to open on each day and how to allocate the available OR time to the sur-

geons. In other words, we assume each surgeon has rigidly allocated block time. We

also do not specify the start time and the sequence of surgeries listed to be performed

on each day. Our model is concerned with determining (1) a clinic appointment day,

(2) a tentative surgery day, and (3) a surgeon to assign to both the clinic and the

surgery appointments for each new patient referred to CRS.

4.4 Solution Approach

In this section, we describe our solution approach to the problem of long wait

time to surgery in Mayo CRS that was described in Section 4.2. We tentatively

book/reserve a surgery day for all patients at the same time we are scheduling the

patient’s clinic appointment. In other words, instead of waiting until the patient’s

clinic appointment to figure out if they need a surgery and then try to book a surgery

day if they need one, we proactively schedule a tentative surgery day together with

a clinic appointment when the patient referral is received by CRS. This guarantees

timely access to surgery for all patients.

4.4.1 Data

We use 5-year historical data (2011 to 2015) on the CRS clinic and surgery ap-

pointments to perform our analysis. This includes data on about 12,000 patients.

When CRS receives a new appointment request (either through the surgeon’s desk or

the direct clinic), the following patient information are among the available data:

1. indication (i.e., colon cancer, anal cancer, rectal cancer, Crohn’s disease, chronic

ulcerative colitis, diverticulitis, neoplasi/polyp, rectal prolapse, slow transit con-

stipation, hernia, ostomy, or CRS other),

2. geographical location (i.e., local, regional, or national/international),
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3. age

4. referral type (i.e., internal or external),

5. estimated surgery duration (predicted from historical surgery duration data).

In addition to the above data, we have the actual surgery durations for cases that

have resulted in a surgery.

As mentioned in Section 4.2, on any given day, there are 4 surgeons in the OR and

4 in the clinic. On average, 2 of the surgeons get two ORs and 2 of them get one

OR. Those surgeons who get two ORs can schedule parallel-staggered surgeries and

let their team do the preparation, cutting, and closing of the patient. In this paper,

we assume surgeons with one OR and those with two or more ORs can schedule 8

and 12 hours of surgery per day, respectively. Per the recommendation of our clinical

collaborators, we also assume no limit for the clinical capacity of the surgeons. This

is because the clinic visits are relatively short (each clinic visit takes only 15 to 30

minutes); so, they are never the bottleneck and can be accommodated easily. Further,

the surgeons are willing to use clinic overtime to see a patient in clinic if it benefits

OR utilization and patient outcomes.

4.4.2 Patient Priority Levels/Types

Mullen (2003) and MacCormick et al. (2003) provide a comprehensive survey on

prioritizing patients in a waiting list. One common way to do so is based on the

patients’ acuity of disease. In this research, we use expert opinion to label each

patient as either priority type 1, 2, 3, 4, or 5 based on a combination of (1) the

indication of the patient, (2) the geographical zone, and (3) the referral type. Type

1 is for the most urgent cases, while on the other extreme, type type 5 is assigned to

patients who only need a clinic appointment for follow-up/consult or those who don’t

need a surgery in near future. Each priority type corresponds to a maximum wait
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time target (MWTT) to surgery, except that type 5 that does not require a surgery.

MWTT is the maximum time that the patient’s surgery can be safely delayed. We

determined this based on the input from our clinical collaborators. This is a common

approach in the literature for patient prioritization (see, for example, Naylor 1991).

Our goal is to guarantee that all patients are offered at least one surgery day within

their MWTT in the planning solution. It is worth noting that if a patient doesn’t seize

the offered surgery date (for any reason), we can offer them the next available surgery

date but we cannot guarantee that the alternative date is within their MWTT. Table

4.1 summarizes the patient priority type for each combination of indication, referral

type, and geographical zone. Table 4.2 provides the MWTT for each priority type in

business days. For example, a colon cancer patient who has traveled from overseas and

is referred to CRS internally is considered as priority 1. Consequently, we would like to

offer a clinic and a surgery appointment to him/her within 3 business days. Note that

rectal cancer patients are considered as type 5 because of the long required duration

between clinic appointment and surgery due to chemotherapy. Also, throughout this

paper, we only focus on business days since CRS is off during the weekends.

4.4.3 Logistic Regression

In this section, we develop a logistic regression model (also known as the logit

model) in order to predict the probability of a new clinic appointment order will

result in a surgery. We refer to this as the “probability of surgery” from now on. In

the logit model the log odds of the outcome (response variable) is modeled as a linear

combination of the independent variables (covariates). The patient’s indication, age,

and referral type are the covariates of the logit model. Eq. 4.1 presents the logit

model in which y is the logit transform of the probability of surgery and I(x) is an

indicator function. For example I(Crohn′s) is equal to 1 if the patient’s indication is
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Table 4.1: Patient priority type for different combinations of patient indication, re-
ferral type, and zone. Smaller priority level numbers are associated with
more urgent patients. Priorities 1, 2, 3, and 4 are assigned to patients
who might need a surgery following their clinic visit to CRS. Priority 5 is
assigned to patients who only need a clinic visit for follow-up/consult.

Table 4.2: Maximum wait time target to surgery for different patient priority types.
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Crohn’s disease and 0 otherwise.

y = 0.72279 ∗ I(crohn′s)− 0.45483 ∗ I(neoplasi)− 0.69236 ∗ I(STC)− 0.65543 ∗ I(other)

− 0.00937 ∗ age+ 0.53546 ∗ I(internal referral) + 0.39429 ∗ I(external referral).

(4.1)

Therefore, the probability of surgery can be obtained via

p =
ey

1 + ey
. (4.2)

4.4.4 Scheduling Policies/Protocols

In this subsection, we introduce 6 scheduling policies considered in our analysis.

We evaluate the performance of these policies in terms of average OR overtime per

day in the Section 4.5 using a 2-stage stochastic and dynamic simulation model.

In order to define the policies, the following terminology is needed:

• Earliest Feasible Clinic (EFC) is the earliest day we can schedule a clinic visit

appointment for the patient. For a clinic appointment request that is received

on day t, if it is an internally referred patient (meaning that the patient is

physically at the Mayo Clinic), we assume EFC is the same day (i.e., day t).

For external referrals, we assume EFC is 5 business days from the day the

appointment request is received (i.e., t + 5) to give the patients at least one

week to make travel arrangements to Mayo. In other words,

EFC = t+ 0× I(internal referral) + 5× I(external referral). (4.3)

• Clinic to Surgery Gap (CSG) is an arbitrary number that corresponds to the

required number of days between the patient’s clinic and surgery appointments.

This number depends on the patient’s priority type and the probability of
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surgery obtained from the logistic regression model. Recall that (1) we ten-

tatively reserve a surgery date for all patients before we know if the patient will

require a surgery, and (2) the decision of whether or not to perform a surgery is

made during the patient’s clinic visit. To avoid the waste of OR time in cases

where the patient doesn’t end up pursuing a surgery, we space out the clinic and

surgery appointments for patients with low probability of surgery. In general,

the lower the probability of surgery is, the larger the CSG should be. This gives

us some time to assign the OR time of a canceled tentatively booked surgery

to a new patient and prevent the OR time from getting wasted.

• Earliest Feasible Surgery (EFS) is the earliest day we can schedule the surgery

for the patient. Per definition, EFS = EFC + CSG for all patients.

The above definitions and approach represent a new paradigm for setting appoint-

ments in advance while being sensitive to waiting times for service. The concept is

intuitive and relatively simple to implement. There are, however, details that must be

resolved to render the approach effective. Next, we are going to define the scheduling

policies. These policies first find a tentative surgery day and a surgeon for the patient;

then, they schedule a clinic appointment with the same surgeon prior to the tentative

surgery day. Both are done at the time the order for clinic appointment is received

by CRS. We first describe how each policy finds a tentative surgery day. Then, we

elaborate on how the clinic appointment day is determined. Recall that the current

scheduling policy of CRS was defined in Section 4.2.

4.4.4.1 Finding a tentative surgery day

Policy A: Assign the patient to the surgeon with the earliest OR availability

in the interval [EFS,MWTT ] starting from EFS and moving forward in time. If

there is no availability in this interval, assign her to the surgeon-day with the most

remaining surgical availability in this interval and use OR overtime.
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Policy B: If the patient is of priority 1, follow the rules of Policy A. If the patient

is of priority 2, 3, or 4, assign her to a surgeon with sufficient OR availability in the

interval [EFS,MWTT ] starting with day MWTT and moving backward in time. If

there is no availability in this interval, assign her to the surgeon-day with the most

remaining surgical availability in this interval and use OR overtime. This is similar

to the policy derived in Patrick et al. (2008).

Policy C: If the patient is of priority 1, follow the rules of Policy A. If the patient is

of priority 2, 3, or 4, sort the days in the interval [EFS,MWTT ] in descending order

of aggregated surgical availability. Assign the patient to a surgeon with sufficient OR

availability starting with the first day on this list (i.e., the least busy day) and moving

down the list. If there is no availability in this interval, assign her to the surgeon-day

with the most remaining surgical availability in this interval and use OR overtime.

Policy D: If the patient is of priority 1, follow the rules of Policy A. If the patient is of

priority 2, 3, or 4, follow the procedure of Policy C in order to find a tentative surgery

date for the patient using regular OR time. If there is no availability in the interval

[EFS,MWTT ], calculate the “expected” surgical workload of each surgeon-day on

this interval. Then, assign the patient to the surgeon-day with the least expected

surgical workload (i.e., the most expected surgical availability) and use OR overtime.

The expected surgical workload of surgeon i on day t is calculated via

E[W (i, t)] =
∑

s∈S(i,t)

psE[Ds], (4.4)

where E[W (i, t)] is the expected workload of surgeon i on day t, S(i, t) is the set of

surgeries assigned to surgeon i on day t, ps is the probability of surgery s (obtained

via the logit model), and E[Ds] is the expected duration of surgery s. The idea

behind policy D is to take the uncertainty of the tentatively booked surgeries into

consideration when we select a surgeon-day for using OR overtime. For example,
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consider days t1 and t2 as the candidate surgery days for a new order with expected

surgery duration of 3 hours. Further, assume that we have only one surgeon with

surgical capacity of 8 hours per day. Day t1 includes two tentatively booked surgeries

of length 3 and 4 hours with probabilities of surgery of 0.3 and 0.2, respectively. Day

t2 includes two other tentatively booked surgeries of length 2 and 4 hours with 0.8

probability of surgery for both. Under policy C, day t2 is selected for the new order

because 2+4 < 3+4. However, under Policy D, day t1 is selected because the effective

surgical workload of the surgeon on day t1 (0.3 ∗ 3 + 0.2 ∗ 4 = 1.7 hrs) is less than

that of day t2 (0.8 ∗ 2 + 0.8 ∗ 4 = 4.8 hrs).

Policy E: If the patient is of priority 1, follow the rules of Policy A. If the patient

is of priority 2, 3, or 4 (i.e., p ∈ {2, 3, 4}), follow the same procedure as Policy C but

limit the search for a surgery day to the interval [max(EFS,MWTTp−1),MWTTp].

In here, MWTTp is the MWTT of the patient under consideration whose priority is

p and MWTTp−1 is the MWTT of priority p− 1 patients.

Policy F: If the patient is of priority 1, follow the rules of Policy A. If the patient is

of priority 2, 3, or 4 (i.e., p ∈ {2, 3, 4}), follow the same procedure as Policy D but

limit the search for a surgery day to the interval [max(EFS,MWTTp−1),MWTTp].

4.4.4.2 Finding a clinic appointment day

While the 6 scheduling policies differ in how they find a tentative surgery day

for the patient, they all follow the same procedure in order to determine the clinic

appointment day. If the patient is internally referred to CRS (i.e., he/she is physically

located at the Mayo Clinic) on day t, the policies book a clinic appointment with the

same surgeon with whom the tentative surgery is booked either on the same day or

the following day (i.e., either on day t or t+ 1) depending on which day is a clinical

day for the corresponding surgeon. However, if the order is an external referral (i.e.,

the patient is not physically located at the Mayo Clinic), the clinic appointment is
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scheduled CSG days prior to the tentative surgery day. For example, suppose the

tentative surgery day is set to day t+ 10 and CSG = 3 days. If the patient is already

at Mayo (i.e., internal referral) we can offer a clinic appointment as soon as possible to

remove the uncertainty regarding the surgery decision; hence, the clinic appointment

is scheduled with the same surgeon on day t + 1. If the patient is not physically at

Mayo (i.e., external referral) the clinic appointment is scheduled on t+ 7, which gives

the patient some time to make travel plans. Mathematically, we can obtain the clinic

appointment day via Eq. 4.5,

clinic app. day = (EFC + mod(tent. surgery day − EFC + 1, 2))× I(internal referral)

+ (tent. surgery day − CSG)× I(external referral), (4.5)

in which mod(x, 2) returns the remainder after division of x by 2.

4.4.5 Performance Criteria/Penalty Function

In order to evaluate and compare the scheduling policies, we define a piecewise-

linear function that penalizes OR overtime. Per recommendation of our clinical col-

laborators, we consider 1 hour prior to and past 5 pm (i.e., 4 pm to 6 pm) as the

sweet spot for ending the surgeon’s day. Hence, we assign no penalty to the first 60

minutes of overtime for each surgeon. After that, a linear penalty is considered. Sup-

pose C(i, t) and W (i, t) are the surgical capacity and the actual/effective workload of

surgeon i on day t, respectively. The penalty of day t for surgeon i is obtained via

f(i, t) = (W (i, t)− C(i, t)− 60)+, (4.6)

in which x+ = max{x, 0}. It is worth noting that OR overtime happens because of

(1) lack of accuracy in estimating the surgery duration, and (2) intentionally “over-

booking” on some days to maintain the access delay service level.
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4.5 Simulation Optimization Results

We begin this section by describing our 2-stage stochastic and dynamic discrete-

event simulation and continue by presenting numerical results. In the first stage of

our simulation model, we evaluate the performance of the 6 policies described in

Subsection 4.4.4 for different order arrival rates under a fixed assumption on clinic to

surgery gap (CSG). In the second stage, we fine-tune the winning policy of stage 1

by investigating the CSG function. We will call the fine-tuned version of the winning

policy “the optimal policy” and further evaluate its performance.

We created a stochastic discrete-event simulation model of the CRS appointment

system in MATLAB. It is assumed that requests/orders for clinic appointment arrive

to CRS according to a Poisson process with rate λ. We consider online scheduling

of orders. In other words, orders arrive one by one and get scheduled in the order

they arrive. Each order is generated as a random sample from our large dataset.

When a new order arrives (1) the patient’s priority level is determined based on

Table 4.1, (2) the maximum wait time target (MWTT) is determined based on Table

4.2, (3) the probability of surgery is calculated via Eq. 4.2, (4) the earliest feasible

clinic (EFC) appointment day is determined via Eq. 4.3, (5) the clinic to surgery

gap (CSG) is considered as 1 day if the priority level is 1 and 3 days otherwise

(this will be further studied in the second stage of our simulation model), (6) a

tentative surgery appointment is scheduled following the rules of the policy under

consideration (see Section 4.4.4.1 for more details), and (7) a clinic appointment is

scheduled according to the approach described in Section 4.4.4.2. At the end of an

arbitrary day t, the simulation model either confirms or cancels the tentatively booked

surgery appointments for patients whose clinic appointment was scheduled on day t.

This is done by generating a random uniformly distributed number between 0 and

1 and comparing it against the patient’s probability of surgery. Note that to better

reflect practice we are taking a conservative approach and assume that the tentative
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surgery appointments that are canceled throughout the day are realized at the end

of the day (therefore, they cannot be rebooked until the following day).

Each replication of simulation is run for 350 days. Since we start with an empty

system (i.e., all surgeons have full availability at the start of the simulation) we allow

100 days of warmup and use the data of days 101 to 350 (roughly one year since

these are business days) to compare the policies. Note that orders may be scheduled

beyond day 350; therefore, there is no end-of-horizon effect.

4.5.1 Simulation stage 1: comparing policies to find the winning policy

In the first stage of our stochastic simulation approach, we compare the scheduling

policies for different rates of Poisson arrival process. We use the penalty function of

Eq. 4.6 to calculate a penalty score for each policy. Mayo CRS performs about 200

surgeries per month. This corresponds to a rate of about 30 orders per day (remember

that not every order results in a surgery). In this paper, we investigate arrival rates

from 20 to 40 orders per day in increments of 2. We performed 200 replications

of the simulation and calculated the daily overtime penalty of each replication (i.e.,

1
250

350∑
t=101

8∑
i=1

f(i, t), where f(i, t) is given in Eq. 4.6), then took the average of these

daily overtime penalties. Table 4.3 summarizes the results. As can be seen in Table

4.3, Policy D performs better than the other scheduling policies and results in smaller

average overtime penalty per day. We also simulated the current scheduling policy

described in Section 4.2. It is worth noting that all of the 6 scheduling policies, which

tentatively book a surgery day at the same time the clinic appointment day is set,

significantly outperform the current policy that waits until the clinic visit to book

the surgery. Figure 4.2 portrays the variation of overtime penalty per day among

simulation runs using jitter and box plots. Figure 4.3 depicts the average overtime

penalty per day for Policy D and the current policy for different rates of the arrival

process. At the rate of 30 orders per day (about 200 surgeries per month) which
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Table 4.3: Average overtime penalty per day for the 6 scheduling policies and the
policy of the current practice under different arrival rates. Policy D out-
performs the rest for every rate in the range.

corresponds to the present business of Mayo CRS, Policy D performs 43% better

than the current scheduling policy.

4.5.2 Simulation stage 2: fine-tuning the winning policy

Having found strong evidence that Policy D is the best policy among the 6 policies

we investigated, we next fine-tune Policy D by evaluating its performance under

different clinic to surgery gaps (CSGs). Recall that in the first stage of the simulation

we assumed a CSG of 1 day for priority 1 and 3 days for other priority type patients.

Now, we assume that the CSG can be 1, 3, or 5 days, and set the value based on the

particular patient’s probability of surgery, which is obtained from the logit model.

The lower the probability of surgery is, the longer the gap between clinic and surgery

appointments should be. This is because we are tentatively booking a surgery day

for all patients before knowing whether the patient will actually need a surgery. If

during the clinic visit it is deemed that the patient does not need a surgery, we will

have CSG− 1 days to assign that OR time to another patient. Note that (1) we do

not consider CSGs of 2 and 4 days because if the tentative surgery is scheduled on

day t, the surgeon will not be in the clinic on days t− 2 and t− 4 to see the patient;
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Figure 4.2: The overtime penalty per day of different scheduling policies and the
current policy. All six policies outperform the current policy. Policy D
performs the best, followed closely by Policy F.

and (2) the CSG cannot be 5 days for priority 1 patients because the MWTT for

them is 3 days. Therefore, we consider the following CSG function:

CSG =

 1× I(p ≥ α) + 3× I(p < α) if priority = 1

1× I(p ≥ β) + 3× I(γ ≤ p < β) + 5× I(p < γ) if priority ∈ {2, 3, 4}

(4.7)

in which p is the patient’s probability of surgery and α, β, and γ are probability

thresholds that determine which indicator functions are equal to 1. In this subsection,

our goal is to find a good combination of α, β, and γ. We assume CSG is 3 days for
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Figure 4.3: The average overtime penalty per day of Policy D and the current policy
for different rates of the arrival process. The Policy D results in 43% less
overtime penalty compared with the current scheduling policy of CRS at
200 surgeries per month.

all priority 2, 3, and 4 patients (i.e., β = 1 and γ = 0) and evaluate Policy D under

different values of α. For each value we calculate the average overtime penalty per

day based on 200 replications of the simulation model. Table 4.4 provides the results.

It reveals that a threshold level of α = 0.4 results in slightly better performance of

this policy. Now that we have approximated the optimum value of α, we evaluate

the performance of Policy D under different values of β and γ fixing α at 0.4. Table

4.5 presents the results. As can be seen in the table, Policy D performs better with

threshold levels of β = 0.8 and γ = 0.5. From now on, we call the fine-tuned version

of Policy D “the optimal policy” or “Policy D*”.
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Table 4.4: Average overtime penalty per day under Policy D for different values of α
when β = 1 and γ = 0. The threshold level of α = 0.4 results in slightly
better performance.

4.5.3 The optimal policy (Policy D*)

Now that we found a good combination of the probability thresholds in the CSG

function proposed in Eq. 4.7, below we summarize the steps of our methodological

framework for coordinating clinic and surgery appointments to meet access delay

service levels using the optimal policy (policy D*). For each new clinic appointment

order/request take the following procedure:

Step 1: determine the patient’s priority level, MWTT, probability of yielding a

surgery, and EFC using Table 4.1, Table 4.2, and Eq. 4.2, and Eq. 4.3, respectively.

Step 2: Use Eq. 4.7 to calculate the CSG with α = 0.4, β = 0.8 and γ = 0.5.

Step 3: Perform the following in order to schedule a tentative surgery day:

• If the patient is of priority 1, assign her to the surgeon with the earliest OR avail-

ability in the interval [EFS,MWTT ] starting from EFS and moving forward

in time. If there is no availability in this interval, assign her to the surgeon-day
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Table 4.5: Average overtime penalty per day under Policy D for different values of β
and γ when α = 0.4. The Policy D performs better with threshold levels
of β = 0.8 and γ = 0.5.

with the most remaining surgical availability (or the least amount of overtime)

in this interval and use OR overtime.

• If the patient is of priority 2, 3, or 4, sort the days in the interval [EFS,MWTT ]

in descending order of aggregated surgical availability. Assign the patient to a

surgeon with sufficient OR availability for the expected surgery length of the

case starting with the first day on this list (i.e., the least busy day) and moving

down the list. If there is no availability in the interval [EFS,MWTT ], calculate

the expected surgical workload of each surgeon-day on this interval using Eq.

4.4. Then, assign the patient to the surgeon-day with the least expected surgical

workload (i.e., the most expected surgical availability) and use OR overtime.

Step 4: Use Eq. 4.5 in order to schedule a clinic appointment day for the patient

with the same surgeon.

Step 5: During the clinic appointment, if the surgeon and the patient decide to
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pursue a surgery, offer the tentatively booked surgery day (this is guaranteed to be

within their MWTT). If that day does not work for the patient, go to step 6.

Step 6: Offer the surgeon’s next surgical availability (this is not guaranteed to be

within the patient’s MWTT). If that day does not work for them, repeat step 6 until

a surgery day is found.

4.5.4 The optimal vs. the current policy

In this subsection, we compare the average overtime penalty per day of Policy D*

with that of Policy D and the current policy (i.e., the scheduling policy in current

practice) using the previous simulation performance analysis approach. Figure 4.4

depicts the results. It can be seen in Figure 4.4 that at arrival rate of 30 orders per

day (about 200 surgeries per month), Policy D* performs 17% better than Policy D

and 52% better that the current policy. Figure 4.5 shows the box plots of the three

policies at different arrival rates to depict the variation of overtime penalty per day

among simulation runs. Note that in this figure the horizontal axis is a factorial

vector of arrival rates with 11 levels (from 20 to 40 in increments of 2) and not a

continuous scale.

4.6 Conclusions

Patients are referred to the colorectal surgery (CRS) department at the Mayo

Clinic either internally or externally. They first see a surgeon in the clinic, and

usually the clinic visit is followed by a surgery. Recently, CRS has been experiencing

a rapid increase in the waiting time for the next available surgery day they can offer

to the patients. The increased wait times can negatively impact patient safety and

health outcomes.

In this paper, we presented a 2-stage stochastic and dynamic discrete-event simulation

model that finds (1) a tentative surgery day with a surgeon in CRS, and (2) a clinic
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Figure 4.4: The average overtime penalty per day of Policies D*, D, and the current
policy for different rates of the arrival process. The optimal policy (Pol-
icy D*) results in 52% less overtime penalty compared with the current
scheduling policy of CRS at 200 surgeries per month.

appointment day with the same surgeon, for all new patents referred to CRS such that

(1) all patients are offered at least one clinic and surgery day prior to their maximum

wait time target (MWTT), and (2) OR overtime is minimized. To evaluate scheduling

policies we developed a simulation model based on historical patient data from Mayo

CRS. In the first stage of our approach, we investigated 6 different scheduling policies

that all outperform the current scheduling policy and found the best/winning policy.

In the second stage, the winning policy was fine-tuned through the investigation of

different variations of the clinic to surgery gap. The fine-tuned version of the winning

policy (i.e., the optimal policy) was compared against the current practice. Numerical

results confirm that the optimal policy performs 52% better that the current policy

in terms of the average overtime per day.
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Figure 4.5: The box plots of overtime penalty per day of Policies D*, D, and the
current policy for different rates of the arrival process. Policy D* clearly
performs the best.
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CHAPTER V

Conclusions and Future Research

This dissertation has focused on developing new stochastic control and optimiza-

tion models to improve medical decision making and healthcare operations with the

objective of improving health outcomes and cost containment. These objectives were

achieved through better personalizing both the medical care itself and the operational

aspects of the delivery of care in the work on medical decision making for chronic dis-

eases, which focused on glaucoma. In other chapters, the operational/logistical aspect

of care delivery was addressed through improving patient safety by reducing medical

errors and providing timely access to care to the right patients based on the urgency

needs of different types of patients.

Chapter II contributes to the medical decision making literature by developing a dy-

namic, personalized modeling paradigm for simultaneous monitoring and control of

chronic diseases. Unlike previous research that solves the monitoring and treatment

control problems in isolation, we provide a joint optimal solution to both problems in

an integrated model. Our model incorporates each patient’s past and present read-

ings in a feedback-driven control model to provide the answer to two critical questions

facing clinicians: (1) when to schedule office visits and which suite of test to perform

to monitor disease progression (exploration); and (2) what levels of key disease risk

factors should be targeted to slow the rate of disease progression (exploitation). For
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glaucoma, a progressive eye disease that can lead to blindness, our model determines

the best time to measure patient’s intraocular pressure (IOP) and/or take a visual

field (VF) test. Additionally, it provides a patient-specific target IOP to slow glau-

coma progression. Since IOP is the only modifiable glaucoma risk factor, having such

information will help the doctor select the appropriate treatment plan for the patient.

Kalman filtering methodology is built into our modeling framework to extract noise

from the raw measurements and to optimally estimate the disease state in each time

period based on imperfect observations. This is a key to accurately identify genuine

disease progression from testing artifact since both IOP and VF tests are associated

with significant noise. Further, the algorithm can perform at different aggressiveness

levels (low, moderate, and high-aggressiveness) based on individual patient charac-

teristics (e.g. a 40-year-old patient with advanced disease vs. a 90-year-old patient

with mild disease).

Capturing the complex patient disease dynamics requires incorporating several phys-

iological indicators into the state vector. These state elements are best modeled

with continuous state space model, reflecting continuous test measurements which

have been found to have approximately Normal additive noise. A vector state space

model of patient disease progression based on the linear quadratic Gaussian (LQG)

dynamic control framework allowed us to create a data-driven model that separates

process noise from measurement noise, and allows for incomplete/imperfect state ob-

servations. Our models can be described as possessing “measurement subsystems

control,” because the optimization and control must dynamically decide which mea-

surements (tests of the patient) to take at each instant of time, thereby controlling

the times at which tests are taken. Furthermore, the need to model testing process

noise makes approximate dynamic programming (ADP), partially observable Markov

decision processes (POMDP), and other approaches common in the medical decision

making literature less effective in developing tractable solution methods for monitor-
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ing and treatment control for chronic diseases. By developing a multivariate continu-

ous state space model of disease progression and modeling the state transition and the

testing processes as first order vector difference equations with multivariate Gaussian

random noises, we surmount the computational hurdles of these other methods.

Chapter II also contributes to the literature on linear quadratic Gaussian (LQG) state

space systems modeling and the theory of optimal control of measurement adaptive

systems by introducing a new objective that minimizes the relative change in state

(i.e., disease progression) rather than the traditional objective of simply minimizing

the cost of being in each state. This new objective is important for our application

since the goal is to prevent the patient from getting worse (in the setting of progress-

ing diseases which are irreversible but can be slowed or arrested). Further, we proved

an important result that the classical two-way separation of optimal estimation and

control extends to this new objective of relative system state change. This is a funda-

mental finding upon which solution tractability depends. Leveraging this result, we

were able to show that the optimal treatment control action at each time point is a

linear function of filtered state mean, while the function itself (i.e., the control law)

can be calculated offline. Moreover, we showed that the optimal monitoring schedule

can be obtained by solving a recursive value function of filtered and smoothed covari-

ance matrices of the state via branch and bound dynamic programming.

To demonstrate the effectiveness of our approach, we harnessed two 10+ year ran-

domized clinical trials to parametrize and validate our model: the Collaborative Ini-

tial Glaucoma Treatment Study (CIGTS) and the Advanced Glaucoma Intervention

Study (AGIS). Our numerical results demonstrated that our model not only results

in patients with better vision quality over the treatment horizon, but also achieves

significantly slower glaucoma progression rate, which means patients keep their sight

longer.

Given the power of our approach, we expect that our new medical decision making
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formulation and solution approach will be confirmed by future work from other re-

searchers, and that a new research area for the healthcare operations research and

medical community will flourish to advance quality of care and quality of life for pa-

tients with chronic diseases.

While our modeling framework has shown great potential in improving the monitoring

and control of chronic disease patients with glaucoma, it comes with a few limitations

and areas for improvement. First, we only considered the IOP and VF tests in devel-

oping a monitoring schedule for the patient, whereas in practice there are additional

tests that can also be used to monitor glaucomatous progression. For instance, op-

tical coherence tomography (OCT) is a non-invasive imaging test that measures the

thickness of retinal nerve fiber layer (RNFL) (see Schuman et al. (2004)). This newer

testing modality was not commercially available at the time of the CIGTS and AGIS

clinical trials on which our analysis is based. Fortunately, the decision framework we

have developed is scalable and can easily accommodate quantitative data of tests such

as OCT. Should newer modalities for quantitatively assessing the status of a patient’s

glaucoma arise, data from such modalities can be incorporated into the model as well.

In the future, we hope to acquire access to other data sources which contain OCT

data and expand our state vector to accommodate data from this testing modality.

Second, the focus of our work is on patients who already have glaucoma (mild, moder-

ate, or advance glaucoma). Our model provides scheduling regimes and IOP reduction

suggestions to optimally monitor and control the progression of glaucoma. However,

some patients have elevated eye pressures (i.e., ocular hypertension) with no signs of

glaucoma. These patients are usually considered as “glaucoma suspects” and are at

risk of developing glaucoma. Future research can enhance the model to help forecast

which of these patients will go on to develop glaucoma and how often these patients

should be monitored to see if they develop glaucoma.

Third, we used 6-month spaced time intervals because CIGTS and AGIS datasets
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contain readings of patient’s IOP and VF every six months. One can leverage the

same modeling framework for data that is collected more or less frequently (e.g.,

monthly or every 3 months) without loss of generality. However, expanding our al-

gorithm to automatically handle unequally spaced data is another potential path for

future research.

Moreover, it is important to emphasize that our model does not suggest a specific

medicine, laser therapy, or surgery. Rather, it provides a patient specific target IOP

that helps guide the doctor in selecting an appropriate treatment plan. Though one

might try to model how each glaucoma intervention affects the disease progression

dynamics, we feel that it is best to leave it to the clinician to employ his/her expe-

rience and expertise to decide what therapeutic interventions are most likely able to

achieve the target IOP suggested by our model.

Finally, future research can focus on further studying the model cost parameters. In

this research, we relied on expert opinion and developed a set of cost parameters for

each aggressiveness policy that performed on our extant data. Future research, how-

ever, can try to develop algorithms to optimize the balance between the cost of losing

vision over time from glaucoma, cost of purchasing medications/undergoing surgery,

cost of office visit and diagnostic testing, anxiety and stress of undergoing glaucoma

tests, and side effects and complications of medical and surgical therapy to lower IOP

further.

In Chapter III we aimed to reduce medical errors and therefore, improve patient

safety, by designing a new work shift schedules for residents and fellows to mini-

mize the number of error-prone patient handoffs. Patient handoffs are among the

primary sources of medical errors in inpatient hospital care due to communication

breakdowns. Several studies have focused on the fidelity of handoffs and provided

recommendations and protocols to improve the communication aspects of handoffs.

In this chapter, we contributed to the patient handoff literature by providing an
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integer programming-based approach to design physician’s work shift schedule in a

patient-centered manner that minimizes the number of patient handoffs while respect-

ing duty-hour standards. The ACGME rules allow shifts up to 24 hours. Based on

several discussions with our medical collaborators at the Mayo Clinic, we found that

limiting the shift length to 16-hours provided a reasonable tradeoff between medical

errors due to physician fatigue and medical errors due to communication breakdowns

as a result of more frequent patient handoffs. Therefore, we proposed to increase the

current shift length from 12 to 16 hours, which reduces the number of handoffs while

avoiding high fatigue-inducing shifts.

Using historical data from a medical ICU at the Mayo Clinic, we demonstrated that

the computer-generated schedule with 16-hour shifts results in 23% reduction in the

number of patient handoffs. It is worth noting that the proposed schedule satisfies all

of the required scheduling rules, provide the required coverage, and maintains physi-

cian quality of life by satisfying a set of desired livability constraints in addition to

the required constraints. Further, we added fairness constraints to ensure that all the

physicians get almost the same number of hours on duty, night shifts, and days off.

There are, however, several directions for future research in this line. First, it is not

currently known how much the extra weariness due to longer shifts contributes to

fatigue-related medical errors. If physician fatigue and its effect on medical errors

can be quantified in a systematic way, it will help in scientifically evaluating sched-

ules that minimize the number of patient handoffs. Second, the connection between

ICU rounding time and patient census pattern could be further investigated. In this

study, we included a required constraint to keep bedside rounds at the current time

to avoid the complex effect of rounding time on the patient discharge process, which

directly influences ICU patient census.

Chapter IV presented novel ideas on coordinating clinic and surgery appointment

scheduling with the objective of improving timeliness of access to surgery. In collab-
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oration with colorectal surgery (CRS) at the Mayo Clinic, we showed how patient

information can be used to proactively schedule a tentative surgery day for all pa-

tients at the same time that we schedule a clinic appointment for them. Patients are

classified into different types based on their indication, geographical zone, and referral

source. Each type is associated with a maximum wait time target (MWTT) that is

determined based on expert opinion from the leadership of Mayo Clinic. This is the

maximum time each patient’s surgery can be safely delayed. Further, we developed

a logit model to calculate the probability that an arriving patient of any type will

yield a surgery in CRS. Surgery duration is also estimated for all incoming patient

types based on historical patient data. We schedule a clinic appointment day and a

tentative surgery day for all patients by their MWTT to guarantee that at least one

surgery day is offered to all patients without jeopardizing their health status due to

access delay. Overtime is used if it is the only way to achieve the MWTT access.

However, the clinic appointment days and the tentative surgery days are determined

by algorithms that carefully space them out to ensure that when the tentative surgery

bookings are not needed (i.e., get canceled) they can be assigned to other patients.

This tradeoff of utilization/overtime versus waiting time is a difficult one at the core

of this chapter.

To solve this problem, we developed a 2-stage stochastic and dynamic discrete event

simulation model to compare the performance of 6 heuristic scheduling policies. It is

worth noting that all 6 policies significantly outperform the current scheduling policy.

The current policy sets a surgery day for the patient at the time of his/her clinic visit.

In the first stage of the simulation model, we found the policy that works best among

the 6 policies (which we call the winning policy). In the second stage, we fine-tuned

the winning policy by optimizing the rules that determine the distance/gap between

clinic and surgery days. All of the policies will achieve the MWTT goals, using over-

time when needed. Numerical results confirm that the optimal policy performs 52%
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better that the current policy in terms of the average overtime per day. While the

proof of concept study is given for Mayo CRS, this methodology can be applied to any

specialty care unit that provides clinic and surgery appointments. Future research

can study the effect of MWTTs on the optimal policy and/or develop a modeling

framework to dynamically update the MWTTs based on the current workload of the

surgeons. Moreover, in this research we assumed that (1) all patients must get at least

one clinic and surgery day by their MWTT, and (2) overtime will be used as needed

to accommodate the surge capacity. One can relax this assumption by trying to bal-

ance the tradeoff between using overtime and missing the MWTTs. In this case, the

system should be penalized more for missing the MWTT of higher priority patients.

Lastly, while we studied the performance of 6 carefully chosen scheduling policies, it

is possible to investigate additional heuristic scheduling policies, in particular those

that belong to the category of threshold policies. In this type of policies, a certain

percentage of capacity is reserved for each priority type patients. The threshold limit

of each day may be relaxed as we get close to the day to avoid the risk of ending

up with unused clinic and operating room time. All of the research presented in this

dissertation has been done in close collaboration with several medical collaborators

from cutting-edge healthcare organizations (i.e., University of Michigan Health Sys-

tem and the Mayo Clinic) to identify real-world problems, obtain relevant datasets,

and ensure practical significance. Combining the ideas and methods developed in this

dissertation will result in a step toward bending the cost curve of healthcare spending

and can contribute to a positive impact on health outcomes and improve the quality

of life for many people.
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