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ABSTRACT 

 

NOTCH1 AND NOTCH2 RECEPTORS REGULATE HUMAN AND MOUSE GASTRIC 
EPITHELIAL CELL HOMEOSTASIS 

 

by 

Gail B. Gifford 

 

Chair: Linda C. Samuelson 

 

 The gastric epithelium undergoes constant turnover that is maintained by a 

population of gastric stem cells. Gastric stem cells are under the regulation of multiple 

signaling pathways to promote proper epithelial homeostasis. Previous studies have 

shown that the Notch signaling pathway plays a crucial role in regulating epithelial 

differentiated cell fate, stem cell function, and epithelial cell proliferation in the stomach. 

My thesis work has focused on identifying the mechanisms by which Notch signaling 

regulates gastric epithelial cell homeostasis. 

 I identified Notch1 and Notch2 as the key receptors contributing to the regulation 

of gastric epithelial cells by Notch. Using inhibitory antibodies targeting Notch1 and 

Notch2, I observed a marked reduction in proliferation of both corpus and antral 

epithelial cells that mimicked the reduced proliferation observed with global Notch 

inhibition. Inhibition of Notch1 or Notch2 signaling led to an intermediate reduction in 



 xiii 

proliferation in both regions of the glandular stomach. In the antrum, inhibition of both 

receptors resulted in a general increase in expression of markers of differentiated cells, 

including enteroendocrine, surface mucous, and deep mucous cells. Inhibition of both 

receptors also led to increased secretory granules in antral cells and expression of 

secretory products from other regions of the gastrointestinal tract, including the corpus 

and intestine.  

 To investigate if Notch signaling is intrinsic to the epithelium, I refined the 

conditions for gastric organoid establishment from mouse and human antrum and 

corpus tissue. In mouse and human antral and corpus organoids, inhibition of Notch1 

and Notch2 resulted in a reduction of organoid growth similar to that seen with global 

Notch inhibition. In corpus organoids, inhibition of either Notch1 or Notch2 resulted in an 

intermediate disruption of organoid growth. However, in antral organoids, inhibition of 

Notch1 mimicked growth similar to that seen with global inhibition, suggesting that 

Notch1 may play a more significant role in antral organoid growth than Notch2. 

 In summary, my thesis work has expanded the understanding of the role of Notch 

in gastric epithelial homeostasis. I have illustrated an important role for the Notch1 and 

Notch2 receptors in regulating gastric epithelial proliferation and differentiation in vivo 

and in vitro.  
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CHAPTER 1 

 

INTRODUCTION 

 

 

Stem cells are undifferentiated cells capable of self-renewal and division into 

multiple differentiated cell types. Stem cells are key cells to maintain tissue homeostasis 

in all multicellular organisms. From initial development from a single pluripotent 

embryonic stem cell through adult organ-specific maintenance by tissue-specific stem 

cells, an organism’s viability depends on the proper functioning of these stem cells. The 

balance of proliferation and differentiation is key to not only maintaining proper function, 

but also to prevent unchecked stem cell proliferation that may contribute to disease.  

The epithelium of the adult stomach is maintained through the proper functioning 

of stem cells, which proliferate and differentiate into all glandular cell types. The 

homeostasis of these stem cells is crucial to produce adequate numbers of cells to 

maintain epithelial integrity. Unchecked proliferation of gastric stem cells can contribute 

to hyper-proliferative states, such as gastric cancer. Understanding how these gastric 

stem cells function not only contributes to the advancement of stem cell physiology, but 

also provides a mechanism of how aberrant stem cell activity can contribute to disease 

development.   
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A key question in gastric stem cell biology is how signaling pathways play a role 

in maintaining stem cell homeostasis. The Notch signaling pathway is a conserved cell-

cell signaling pathway that is crucial for maintenance of skin, hematopoietic, intestinal, 

and other tissue-specific stem cells1. In the intestine, Notch is a regulator of stem and 

proliferative cell maintenance and directs cell fate decisions between absorptive versus 

secretory cell types2–7. The components of the Notch pathway involved in intestinal 

regulation have been uncovered, with the Notch receptors Notch1 and Notch2 and 

Notch ligands Delta-like1 (Dll1) and Delta-like 4 (Dll4) maintaining intestinal epithelial 

homeostasis5,6,8,9. Notch is also a key regulator of gastric stem and epithelial cell 

homeostasis10,11. However, the Notch components regulating gastric stem and epithelial 

cells have not been uncovered. The goal of this thesis is to investigate the mechanism 

of Notch regulation of gastric epithelial cell homeostasis. Using transgenic mouse 

models, pharmacologic inhibition, and in vitro organoid culture, my studies addressed 

the role of the Notch receptors in regulating gastric corpus and antral epithelial cell 

homeostasis in mouse and human.  

This chapter covers three broad topics: (1.1) an overview of gastric stem and 

epithelial cells and signaling pathways involved in maintaining homeostasis, (1.2) the 

Notch signaling pathway, and (1.3) the current understanding of the role of Notch 

signaling on gastrointestinal stem and epithelial cell maintenance. Finally, this chapter 

concludes with an overview of the experimental approaches and main findings of the 

thesis (1.4). 
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1.1: GASTRIC STEM AND EPITHELIAL CELLS 

 

Anatomy and compartments 

The stomach is a muscular organ located in the gastrointestinal tract that is 

important for proper digestion. The mouse stomach can be divided into three parts: the 

forestomach and the glandular corpus and antrum. The glandular stomach regions have 

distinct functions. The corpus is responsible for acid secretion while the antrum is 

responsible for mucous and hormone secretion. A transition zone exists between the 

corpus and antrum and contains features of both regions. The simple columnar 

glandular epithelium is organized into multiple gastric units, or glands, which are 

invaginations of epithelial glands into the underlying mesenchymal tissue. The 

epithelium of the stomach is highly dynamic with continuous proliferation, migration, 

differentiation, and apoptosis. Along with different functions, the architecture and 

epithelial cell types differ in the corpus and antrum. 

 

Corpus gland structure and cell types of the mouse stomach 

The corpus is composed of long tubular glands that open into the stomach lumen 

(Fig 1-1). Corpus glands can be divided into four regions: the pit, isthmus, neck, and 

base. Stem cells located in the isthmus divide to produce new stem cells or transit 

amplifying (TA) cells. TA cells are undifferentiated cells that divide more frequently than 

stem cells to increase the overall cell population in a gastric gland. TA cells include 

preparietal, prepit, or preneck cells12–14. These TA cells are able to migrate  
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Figure 1-1. Mouse corpus gland. (A) Histological section of mouse corpus gland 
stained with haematoxilin and eosin. (B) Cartoon depiction of mouse corpus gland with 
various cell types identified with specific markers used in this study to identify the 
differentiated cell types. Mucin 5AC (MUC5AC), chloride channel accessory 1 (CLCA1), 
trefoil factor 2 (TFF2), griffonia simplicifolia II (GSII), chromogranin A (CHGA), H/K 
ATPase α subunit (ATP4A), gastrin intrinsic factor (GIF). Scale = 25 µm. 
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bidirectionally to differentiate and populate all four regions of the corpus gland (Fig 1-1, 

1-2). 

Surface mucous cells secrete mucous and are primarily located in the pit 

segment of the corpus gland. Surface mucous cells contain densely packed mucous 

granules and express mucin 5AC (MUC5AC), gastrokine-1, and trefoil factor family 1 

(TFF1); they are generated from prepit progenitor cells12,15. The Hedgehog pathway 

may play a role in surface mucous cell generation, with a loss of surface mucous cells in 

primary mouse gastric epithelial cultures treated with cyclopamine, a Hedgehog 

pathway inhibitor16. The transcription factor FoxQ1 has been shown to be required for 

surface mucous cell formation, with a loss of FoxQ1 leading to reduced surface mucous 

cell numbers17. Surface mucous cells turn over every 2-3 days14. 

Parietal cells are the acid-secreting cell type of the stomach and can be located 

in any region of the corpus gland. Parietal cells contain a highly dense canalicular 

network from which acid is secreted into the lumen of the stomach18. Parietal cells 

express H/K ATPase, parathyroid hormone-like hormone (PTHLH), and ADP-

ribosylation factor 1 (ARF1)15. The Hedgehog pathway and epidermal growth factor 

(EGF) are thought to play a key role in parietal cell differentiation, as cultures of canine 

parietal cells stimulated with either EGF or sonic hedgehog increased expression of H/K 

ATPase19. The bone morphogenic pathway (BMP) also plays a role in parietal cell 

differentiation; a mouse model expressing the BMP antagonist noggin in parietal cells 

exhibited loss of parietal cells and increased proliferation20. Parietal cells are generated 

from preparietal cells and turnover every 54 days14. 
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Figure 1-2. Schematic of gastric epithelial differentiation. Schematic depicting the 
key pathways or transcription factors for development of differentiated cell types of the 
corpus and antral epithelium. Key transcription factors described in text.  
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The pre-neck transition cells give rise to mucus-secreting mucous neck cells in 

the neck region of the corpus gland, and eventually mature into digestive enzyme 

secreting chief cells21. Mist1 is a key transcription factor regulating this maturation. A 

genetic loss of Mist1 leads to structural abnormalities in chief cells and an increase in 

pre-neck transition cells21. Chief cells are the longest-lived differentiated cell type of the 

stomach, with a half life of 194 days22.  Mucous neck cells express trefoil factor family 2 

(TFF2) while chief cells express pepsinogen C (PGC) and gastric intrinsic factor (GIF)23–

25.  

Scattered throughout the corpus gland are enteroendocrine cells, which are 

broadly marked by chromogranin A (CHGA)26. The histamine-secreting 

enterochromaffin-like (ECL) cells are the primary enteroendocrine cell type in the 

corpus, but there are also ghrelin-, somatostatin-, and serotonin-secreting cells27. There 

has not been a significant amount of work characterizing these cell types, but 

approximately 50% of CHGA-expressing enteroendocrine cells in the corpus, including 

all ECL and serotonin-expressing cells, originate from NeuroD-expressing cells28.    

 

Antral gland structure and cell types of the mouse stomach 

In the antral region, key features of gland architecture and cellular make-up 

differentiate this region from the corpus. Shorter gastric units resemble intestinal crypts, 

with stem cells housed in the base of the gland (Fig 1-3)29. These antral stem cells 

(marked by leucine-rich repeat-containing G-protein coupled receptor 5 [LGR5]) 

differentiate into surface mucous, deep mucous and enteroendocrine cells (Fig 1-2). 

The antral epithelium undergoes turnover much faster than the corpus, with complete  
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Figure 1-3. Mouse antral gland. (A) Histological section of mouse antral gland stained 
with haematoxilin and eosin. (B) Cartoon depiction of mouse antral gland with various 
cell types identified with specific markers used in this study to identify the differentiated 
cell types. Mucin 5AC (MUC5AC), chloride channel accessory 1 (CLCA1), trefoil factor 
2 (TFF2), griffonia simplicifolia II (GSII), chromogranin A (CHGA), gastrin (GAST), 
leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5).  Scale = 25 µm.  
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turnover in 7-10 days30. In the antrum the majority of enteroendocrine cells are 

descendants of Neurog3 expressing progenitors31. The transcription factor SPDEF is 

required for mucous neck cell differentiation in the antrum, suggested from studies 

showing genetic mouse models lacking Spdef had impaired terminal maturation of deep 

mucous cells and reduced numbers of secretory granules32. Similar to the corpus, 

FOXQ1 is a necessary transcription factor for proper differentiation of deep mucous 

cells17.  

 

Features of the human stomach 

The human stomach exhibits some differences compared to the mouse 

stomach33. The human stomach lacks a forestomach, but does include a glandular 

cardia region around the gastroesophageal junction. Human gastric glands are typically 

branched with multiple glands leading to a single luminal pit. While the mouse stomach 

is characterized by the restriction of parietal cells to the corpus, parietal cells in the 

human stomach are seen throughout the corpus and in over 50% of antral glands33. 

Human antral glands are subgrouped into three types: oxyntic-type (containing parietal 

and chief cells), antral type (containing G-cells and TFF2-positive mucous cells) and 

mixed-type (containing both parietal and G-cells). The human corpus is distinguished by 

the expression of ghrelin, and the antrum by gastrin33.  

 

Gastric stem cells 

The homeostasis of adult tissues relies on small populations of resident stem 

cells. These specialized cells are able to maintain themselves over long periods of time 
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(self-renewal) and generate all differentiated cell types of the resident tissue 

(multipotency). The balance between stem cell self-renewal and differentiation must 

remain under tight control to maintain proper development and avoid uncontrolled 

proliferation that may lead to cancer. Stem cells exist in two states: quiescent and 

active34. Active stem cells undergo frequent division and contribute to normal epithelial 

homeostasis. Quiescent stem cells divide infrequently and typically contribute to 

epithelial cell renewal under injury conditions where active stem cells may be damaged. 

Both active and quiescent stem cells have been defined for the gastric epithelium29,35–37. 

Stem cells reside in specific microenvironments (niches) that support crucial 

stem cell maintenance. The localization of gastric stem cells was first identified in the 

1940s, when 32P nucleotides were incorporated into nuclei of dividing cells, which 

appeared in the isthmus region of corpus glands38. The investigators concluded that this 

region was the site of cellular renewal in undamaged tissue. These cells were 

characterized as “nondifferentiated cells”, with a high nucleus-to-cytoplasm ratio, open 

chromatin, lack of granules, and many free ribosomes with few mitochondria39. Similar 

cells have been localized in the isthmus region of the antrum29.  

The concept of gland monoclonality, or the derivation of all mature lineages in a 

gland from a single stem cell, has been shown in the intestine to occur through neutral 

competition of stem cell progeny for niche space, or neutral drift40. In the adult antrum, 

each gland houses 3-4 active stem cells in its base29. Gastric glands also exhibit 

monoclonality, with an entire gastric gland being populated by a single stem cell. This 

conclusion comes from studies by Nomura et al.41 where they followed expression of an 

X-linked LacZ transgene, which is inactivated randomly in females, to observe the blue 
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(LacZ-positive) white patterning to determine if the gland was being fed by one or 

multiple stem cell. In adult mice, most units were completely blue or white, suggesting 

monoclonality41. This finding was verified and expanded by the Barker lab with 

observation of LGR5-positive stem cells in the antrum drifting towards monoclonality 

over time42. 

A key approach to determining if a specific population of cells are stem cells is 

lineage tracing. This technique marks a single cell with a permanent genetic reporter; 

thus all the cell’s progeny will retain the mark resulting in labeled clones. Lineage 

tracing provides information about the number of progeny from a specific cell, their 

location, and the differentiated cell types that come from a specific cell43. For gastric 

stem cells, a long-lived lineage trace is observed in an entire gastric gland and 

encompasses all differentiated cell types of either the antrum or corpus. The Clevers lab 

identified Lgr5 as a marker of antral stem cells by observing full gland lineage tracing 

with a Lgr5 gene-induced genetic mark that persisted for over a year29. 

 

Gastrointestinal organoids 

Recently, there have been significant advances in the in vitro culture of mouse 

and human gastrointestinal epithelial cells. The intestinal organoid culture technique 

was pioneered by the Clevers’ lab and involves the establishment of intestinal stem 

cells in culture to form physiologically relevant 3D spheroids that thrive without the 

support of mesenchymal cells, and has been applied to other tissues such as the 

stomach (Fig 1-4)44. Intestinal organoids exhibit crypts with morphology similar to the 

adult small intestine though they lack villi. Cellular proliferation, 
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Figure 1-4. Schematic of gastric organoid establishment. For human and mouse 
gastric organoid establishment, glands are isolated from gastric tissue and plated in 
Matrigel. With the addition of specific growth factors, such a Wnt, R-spondin, and 
Noggin, spheroids contain differentiated cell types typical for the mouse stomach.  
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differentiation, and apoptosis in these organoids mimics in vivo cellular homeostasis44. 

This system is a powerful tool due to the ability to sustain growth of intestinal stem cells 

in vitro for many months to years44. 

The development of organoids from single isolated cells has proven to be 

another key test to validate gastrointestinal stem cell identity. Single LGR5-expressing 

intestinal cells were demonstrated to form organoids in vitro, which present crypt-villus 

compartments and all differentiated cell types of the adult epithelium44. Lgr5-expressing 

antral cells were also shown to form long-lived antral organoid cultures29. The use of 

organoids is a powerful approach to test multipotency and stemness as well as 

epithelial-specific regulation of stem cell function. 

Since the introduction of intestinal organoids by Sato et al44, the technique has 

been adapted to other organs from the neonatal and adult mouse such as the liver45, 

pancreas46, and stomach29, but also to human tissues from the stomach, small intestine, 

and colon47,48. The organoid culture system has become an exciting new tool in the 

study of human development, disease, and homeostasis across numerous tissue types.  

 

Markers of gastric stem cells 

A significant limitation of our current understanding of gastric stem cell regulation 

is the few robust markers identified for both active and quiescent gastric stem cells. 

These markers are useful for visualizing stem cells and for generation of cell-specific 

genetic tools to study how a marked cell population might contributes to gastric 

epithelial homeostasis. Below are summaries of defined gastric stem or progenitor cell 

markers. Importantly most of these conclusions were defined in a single mouse study 
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and are generally not thoroughly characterized. A summary of gastric stem cell markers 

is provided in Table 1-1. 

Similar to the intestine, the Wnt target gene Lgr5 marks adult stem cells located 

at the base of the antral glands29. There are 3-4 long-lived LGR5-positive stem cells 

located at the base of each gland that give rise to all differentiated cell types of the 

antral epithelium. Lgr5-expressing cells were found to be able to give rise to all cell 

types of the antrum with long-term renewal, with lineage tracing persisting over 620 

days. Isolated LGR5-positive cells are also capable of generating and maintaining 

gastric organoids in vitro that give rise to antral cell types29.  LGR5-expressing cells are 

present throughout the gastric antrum, with few LGR5-expressing cells present in the 

corpus region, mainly confined to chief cells along the lesser curvature of the stomach49. 

LGR5 also marks stem cell precursors in the corpus and antrum of immature mouse 

stomachs29. 

SOX2 marks uncommitted cells in the gastric corpus and antrum50. Long-term 

lineage tracing from a Sox2-CreERT2 transgenic mouse showed that Sox2-positive 

cells give rise to all differentiated cell types in both the corpus and antrum. SOX2 does 

not mark LGR5-positive cells. Long-term lineage tracing showed persistent tracing of 

both corpus and antral glands for over a year. Co-staining of SOX2 with the proliferation 

marker Ki67 showed that roughly half of the SOX2-positive cells are actively cycling. 

Analysis of Sox2-CreERT2;ROSA26-lsl-eYFP mice one day or one week after 

tamoxifen administration showed that some Sox2-positive cells are cycling and give rise 

to eYFP patches after one week, while other Sox2-positive cells appear to be slow 

cycling and remain as singly labeled cells50. 
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Table 1-1. Description of genetic markers of mouse gastric stem cells. 

Gene Mouse Model Corpus or 
Antrum 

Active or 
Quiescent Reference 

Lgr5 Lgr5-EGFP-ires-
CreERT2 Antrum Active 29 

Sox2 Sox2-CreERT2 Both Active 50 

Cckbr CCK2R-CreERT-
BAC Antrum Active 51 

Lrig1 Lrig-CreERT2 Both Quiescent 36 
Vil1 Vil-LacZ Antrum Quiescent 37 

Tnfrsf19 Troy-eGFP-ires-
CreERT2 Corpus Quiescent 35 
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The gastrin receptor cholecystokinin B receptor (Cckbr also designated as Cck2r) 

labels long-lived actively cycling stem cells of the antrum51. Analysis of Cck2r-CreERT-

BAC transgenic mice crossed to a ROSA reporter mouse identified CCK2R-expressing 

cells near the base of antral glands above LGR5-expressing cells. Tamoxifen activation 

of gave rise to long-lived lineage tracing of antral glands, including all mature antral cell 

lineages51.    

LRIG1 has been suggested to be a quiescent intestinal stem cell marker based 

on slower proliferation rates than active LGR5-marked stem cells36,52. Limited data has 

been published in regard to expression in gastric stem cells, but lineage-tracing studies 

showed long-lived tracing from a Lrig-CreERT2 transgene in both the corpus and antral 

regions of the mouse stomach36.  

A rare subpopulation of gastric progenitors was identified by a marked allele of 

the villin (Vil1) gene, Vil-LacZ37. These LacZ-positive cells were localized in the antrum 

at or below the isthmus region of the gland. This is a quiescent population that does not 

normally proliferate or contribute to normal gastric epithelial lineages. However, after 

stimulation with the proinflammatory cytokine interferon-γ this population exhibits 

multilineage potential with lineage-traced cells populating entire antral glands37. These 

cells are not seen in the corpus. 

Tnfrsf19 (Troy) is a marker of a subset of fully differentiated chief and parietal 

cells in the gastric corpus35. A Troy-eGFP-ires-CreERT2 knock-in mouse was generated 

and expression of eGFP was seen at the base of corpus glands in occasional chief and 

parietal cells. Crossing to a ROSA reporter strain showed rare lineage tracing of full 

corpus glands after four weeks that persisted for at least 1.5 years. Single Troy-positive 
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cells were shown to form gastric organoids in vitro. In a damage model where 

proliferating cells were killed by 5-fluoruracil (5-FU), Troy-positive cells showed 

accelerated expansion and the number of lineage tracing events increased 6-fold35. 

Tff2-CreERT2 BAC transgenic was found to mark progenitors for a subset of 

gastric cell types in the corpus53. Tff2-CreERT2 did not however mark a stem cell as 

lineage tracing was not observed in all cell types and the marks were not long-lived. 

Tff2-CreERT2 expressing cells in the corpus marked progenitors of chief and parietal 

cells, but not surface mucous or enteroendocrine cells53.   

Mist1 is a transcription factor expressed in differentiated chief cells21. In a Mist1-

CreERT2 mouse model challenged with a spasmolytic polypeptide-expressing 

metaplasia (SPEM)-inducing drug, lineage tracing showed that the emerging TFF2-

positive SPEM lineage traced from the Mist1-CreERT2 cells. Mist1-positive cells have 

the capacity to act as progenitors to reacquire proliferative ability and give rise to SPEM 

cells54, but not all cell types of the epithelium, indicating that Mist1 is not a stem cell 

marker. 

 

Pathways regulating gastric epithelial proliferation 

Various signaling pathways have been shown to be key regulators of epithelial 

proliferation and/or differentiation in the stomach. Below are short summaries of some 

of the most well characterized signaling pathways and their role in the stomach. 

Hedgehog signaling was identified as a contributor to gastric physiology after 

observation that Hedgehog ligand (sonic hedgehog (Shh)) null mouse mutants 

expressed metaplastic changes in the stomach55. The specific role Shh plays in gastric 
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maturation was difficult to identify due to Shh-null mouse death within 24 hours of 

birth55. In the normal adult mouse stomach, Shh expression is high in the forestomach 

and corpus and lower in the antrum, with the greatest expression in parietal cells56,57. In 

adult tissue, analysis is limited due to the lack of stomach-specific promoters for Cre 

recombinase. To test Shh function in specific cell types, Xiao et al. used the H/K-

ATPase driven constitutive Cre to delete Shh in parietal cells58. These mice develop 

hypergastrinemia and an expanded surface mucous cell region58. These studies 

suggest that Hedgehog signaling is important for maintenance of proper gastric 

physiology, but a specific regulatory role for gastric stem cells remains unknown. 

There is little known about the role of Wnt signaling in normal gastric 

homeostasis. Wnt is a key factor in maintenance of in vitro gastric organoid cultures and 

Lgr5, a marker of antral stem cells, is a Wnt target gene, suggesting that Wnt signaling 

is important for stem cell maintenance29. Deletion of the Wnt negative regulators APC or 

GSK3 in the stomach led to rapid loss of parietal cells and fundic gland polyp 

formation59. Deletion of APC from antral stem cells using Lgr5-EGFP-CreERT2 resulted 

in gastric adenoma formation29.  These studies suggested that Wnt signaling is key to 

maintaining normal gastric homeostasis and further analysis will be necessary to detail 

Wnt function in the stomach. 

Various receptors and ligands of BMP signaling are expressed in both epithelial 

and mesenchymal cells of the stomach, including BMP2 in epithelial cells and BMP4 in 

non-epithelial myofibroblast-like cells60.  Loss of BMP signaling in early development 

impacts overall stomach patterning, with an expansion of the foregut region61. 

Expression of the BMP antagonist noggin in parietal cells in the adult mouse resulted in 
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a loss of parietal cells, the development of transitional cells that express both mucus 

neck and zymogenic lineages, and activation of proliferation20. These profound 

abnormalities in maturation and differentiation indicate that BMP signaling plays a 

crucial role in the regulation of normal gastric homeostasis.  

TGFα is produced by the gastric mucosa and inhibits acid secretion, stimulates 

cell migration and proliferation after injury, and regulates gastric mucus levels62. TGFα 

has been implicated in the pathogenesis of Menetrier’s disease, a disorder of the 

stomach characterized by corpus gland hyperplasia63.  

Gastrin is a key hormonal inducer of acid secretion in the stomach. Gastrin also 

serves as a growth factor by stimulating epithelial proliferation and a thickening of the 

gastric mucosa64. It has been suggested that the growth-promoting effect of gastrin in 

the corpus may be due to direct interaction of gastrin with progenitor cells, but this 

remains debatable51,65. 

 

1.2: THE NOTCH SIGNALING PATHWAY 

Notch signaling is an evolutionarily conserved pathway that plays a critical role in 

multiple developmental programs at various stages. Notch signaling links the fate of 

neighboring cells, with physical interaction of membrane-bound Notch receptors with a 

ligand expressed in an adjoining cell (Fig 1-5). The outcome of Notch signaling is 

dependent on the cellular context, and can include proliferation, terminal differentiation, 

and lineage commitment. Examples of the variety of outcomes offered in various 

mammalian tissues have been summarized in Table 1-2. The Notch signaling pathway  
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Figure 1-5. Schematic of the Notch signaling pathway. Upon binding of a Notch 
ligand with a Notch receptor, the negative regulatory region of the Notch receptor 
undergoes a conformational change and exposes a cleavage site. ADAM10 cleaves the 
Notch extracellular domain from the Notch intracellular domain (NICD). A γ-secretase 
complex cleaves the NICD from the transmembrane domain to release it for 
translocation to the nucleus. Binding of NICD to the DNA-binding protein RBPJ releases 
co-repressors (CoR) and allows for association with co-activators (CoA, mastermind-like 
(MAML), p300) to lead to Notch target gene transcription.  



 21 

Table 1-2. Role of the Notch signaling pathway in various organs/tissues. 

Organ/Tissue Processes Regulated 

Brain 
Balance of gliogenesis and neurogenesis, stem cell 
maintenance, apicobasal polarity66,67 

Breast Alveolar development, maintenance of luminal cell 
fate, regulation of basal cell proliferation68 

Craniofacial structures Palate morphogenesis, tooth development69–73 

Ear Defines sensory epithelium, hair and supporting cell 
fate decision74–76 

Esophagus Regulates epithelial homeostasis77 
Eye Fiber cell differentiation in lens development78–80 

Heart 
Cardiac patterning, cardiomyocyte differentiation, valve 
development, ventricular trabeculation, outflow tract 
development81 

Hematopoietic system 
Balances B-cell versus T-cell development, 
maintenance of stem cells, maintenance of myeloid 
homeostasis 82 

Intestine Controls proliferation and differentiation, stem cell 
maintenance2,6,83 

Kidney Cell fate of podocytes and proximal tubules84 

Limbs Apical ectodermal ridge formation and digit 
morphogenesis69,85–88 

Liver Ductal plate formation, intrahepatic bile duct 
morphogenesis71,89–91 

Lungs Lateral inhibition between tracheal cells92 

Muscle Promotes transition of satellite cells to myogenic 
precursor cells and myoblasts93 

Neural crest 

Controls patterning of neural crest precursors, 
regulates transition of Schwann cell precursor to 
Schwann cell, controls Schwann cell proliferation and 
inhibits myelination, melanocyte stem cell 
maintenance94–96 

Pancreas 

Directs endocrine cell differentiation, maintain 
endocrine precursor cells, inhibits terminal acinar cell 
differentiation, controls epithelial branching and bud 
size97 

Pituitary Regulates pituitary growth/proliferation, melanotrope 
specification and gonadotrope differentiation98–100 

Placenta 
Controls fetal angiogenesis, maternal circulatory 
system development, spongiotrophoblast 
development101 

Prostate Epithelial differentiation and growth102–104 
Sex organs and germ Maintenance of Leydig progenitor cells, regulation of 
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cells spermatogenesis, controls oocyte growth105–108 

Skin 
Regulates cell adhesion, controls proliferation, controls 
hair follicle or feather papillae differentiation and 
homeostasis109,110 

Spine Somite segmentation111,112 

Spleen 
Regulates generation of T lineage-restricted 
progenitors and marginal zone B-cell development, 
controls homeostasis of dendritic cells113 

Stomach 
Regulation of epithelial proliferation in corpus and 
antrum, determine cell fate choice in antrum, regulates 
stem cells in the antrum, regulates cell fission10,11,114 

Thymus Thymic morphogenesis, differentiation of gamma delta 
lineage T-cells69 

Thyroid 
Regulates the number of thyrocyte and C-cell 
progenitors and regulates differentiation and endocrine 
function of thyrocytes and C-cells115 

Vasculature 

Regulates arteriovenous specification and 
differentiation in endothelial cells and smooth muscle 
cells, regulates blood vessel sprouting and 
branching116 
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is important in the regulation of adult stem cells in the gut, skin, muscle, hematopoietic 

system, and lungs117. The Notch pathway must be able to produce spatially and 

temporally appropriate responses, as Notch malfunction has been linked to diseases 

with altered cellular proliferation, such as cancer.   

 

Notch receptors and ligands 

In canonical Notch signaling, transmembrane Notch receptors interact extracellularly 

with transmembrane Notch ligands on an adjacent cell. This initiates proteolytic 

cleavage of the Notch receptor to release the Notch receptor intracellular domain 

(NICD). There are four Notch receptors (NOTCH1-4) that are multidomain proteins with 

structures that have been conserved from invertebrates to humans118. There are five 

Notch ligands, three from the Delta-like family (DLL1, DLL3, DLL4) and two from the 

Jagged family of Serrate homologs (JAG1, JAG2)119. This allows for a significant 

number of unique receptor-ligand combinations, but there is little evidence for distinct 

responses from particular combinations. Instead, tissue and cell specific expression of 

receptors and ligands appears to account for the varying responses to Notch signaling. 

 

Structure of Notch receptors and ligands 

The Notch receptor is composed of an extracellular domain (NECD) and 

intracellular domain (NICD) tethered by a transmembrane domain that can be cleaved 

to release NICD (Fig 1-6). NECD consists of 29 to 36 EGF homology repeats, which 

vary for different Notch receptors. These EGF repeats mediate interaction with ligands 

and can be modified post translationally to alter Notch function118.  NECD is followed by   
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Figure 1-6. Schematic of the Notch receptor structure. The extracellular region of 
the Notch receptor (NECD) is composed of 29 to 36 epidermal growth factor (EGF) 
repeats and the negative regulatory region (NRR), which is composed of three cysteine-
rich Lin-12-Notch repeats (LIN) and a heterodimerization domain (HD). The Notch 
receptor intracellular domain (NICD) is composed of the RBPJk associated module 
(RAM), two nuclear localization sequences (NLS) flanking seven anykrin repeats (ANK), 
the transcriptional activator domain (TAD) and a C-terminal proline, glutamic acid, 
serine, threonine-rich (PEST) domain. Inhibitory antibodies can block Notch signaling by 
targeting the NRR of specific receptors.   
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the negative regulatory region (NRR), which prevents access to the S2 cleavage site in 

the absence of Notch ligands. The NRR is composed of three Lin-12-Notch repeats 

(LIN) and a hydrophobic region for receptor heterodimerization (HD)120,121. Following the 

transmembrane domain, NICD is composed of the RBPJk association module (RAM), 

two nuclear localization sequences (NLS) flanking a seven ankyrin repeats (ANK) 

domain, a transcriptional activation domain (TAD) and a C-terminal proline/glutamic 

acid/serine/threonine-rich (PEST) motif121. RAM and ANK are essential to allow NICD to 

target RBPJ in the nucleus, and PEST is a target for NICD degradation121,122. The Notch 

ligands are transmembrane proteins that have an extracellular domain with EGF-like 

repeats and a N-terminal Delta/Serrate/lag-2 (DSL) domain, which is required for 

interaction with Notch receptors122.  

 

Notch receptor processing 

Release of NICD requires multiple cleavage events of the Notch receptors. The 

first cleavage event, S1, is a Furin-dependent cleavage that occurs in NECD during 

trafficking through the Golgi complex123. The NRR plays a crucial role in preventing 

subsequent S2 cleavage from occurring in the absence of ligand binding by 

conformational blocking of the cleavage site. Many studies have shown NRR to be the 

“activation switch” of the receptor through the discovery that receptors that lack the 

EGF-like repeats are functionally inert124–126 and deletion or point mutation of the LIN 

module lead to gain-of-function phenotypes127. Binding of a Notch ligand to a Notch 

receptor induces a conformational change that relaxes and unfolds the NRR, exposing 

the S2 cleavage site128. S2 cleavage event is performed by an ADAM metalloprotease, 
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with multiple ADAM family members being implicated in Notch receptor cleavage 

events129–133. However, more recent in vivo data has definitively shown that ADAM10 is 

responsible for S2 cleavage133. ADAM10 cleavage generates the activated intermediate 

termed the Notch Extracellular Truncation (NEXT)129,134. NECD is trans-endocytosed 

into the signal-sending cell and can be recycled back to the plasma membrane or sorted 

into late endosomes135. The tethered NEXT is then the site for S3 cleavage, which is 

completed by the γ-secretase complex that contains Presenilin136. After S3 cleavage the 

NICD is released from the membrane and is free to translocate to the nucleus. 

 

Notch intracellular domain 

Upon ligand binding and proteolytic processing of the Notch receptor, NICD is 

able to translocate directly to the nucleus. In the nucleus NICD forms a transcriptional 

complex with the DNA binding protein RBPJκ through the RAM domain, Mastermind 

(MAML), and various transcriptional co-activators to activate expression of Notch target 

genes120,121. In the absence of NICD, RBPJκ forms a complex with co-repressors and 

histone deacetylases to prevent activation of Notch target genes120,121. NICD in the 

nucleus is stabilized through phosphorylation by kinases such as glycogen synthase 

kinase 3β (GSK3β) and cyclin-dependent kinase 8 (CDK8)137–139.  NICD is targeted for 

proteasomal degradation by the E3 ubiquitin ligase SEL10140,141. The Notch signaling 

pathway lacks amplification steps, with each NICD being consumed during signaling. 

 

Notch target genes 
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Notch signaling in different cell types reveals considerable variety in the 

immediate downstream Notch response. The best characterized Notch target genes 

belong to the hairy and enhancer of split-related (HESR) family that code for basic helix-

loop-helix (bHLH) transcription factors. HESR genes play an important role in promoting 

cell fates by repressing genes such as atonal homolog 1 (Atoh1), acheate-scute like 1 

(Ascl1) and Neurogenin families of bHLH transcriptional activators142,143. C-myc, 

CyclinD, CDK5, and CDC25 have been shown to be Notch target genes in cells where 

Notch promotes proliferation144–147.  

 

Notch in adult stem cell homeostasis 

 Notch signaling has been well characterized as a key mediator of stem cell 

homeostasis across numerous tissues. Below are short summaries of the role of Notch 

signaling in maintenance of skin, muscle, hematopoietic, and lung stem cells. 

 The skin epidermis is a rapidly renewing epithelium that serves as a barrier from 

environmental factors and to prevent dehydration. The skin epidermis is comprised of 

four layers: basal, spinous, granular, and cornified, with basal cells capable of self-

renewal and production of new cells to differentiate and move outwards148. RBPJ is 

expressed throughout all four layers, but the Notch receptors NOTCH1, NOTCH2, and 

NOTCH3 are only present in the spinous layer149. A mouse genetic model of Notch 

inhibition through Rbpj deletion resulted in an absence of spinous cells due to a lack of 

cell exit from the niche and differentiation from the basal layer150. Interestingly, the loss 

of Notch signaling triggered hyperproliferation via cytokine production and led to a 

tumor-promoting environment, leading some to believe that Notch has a “tumor 
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suppressor” phenotype in the skin151. The Notch signaling pathway does not play a role 

in maintenance of quiescent stem cells in the skin118.  

 Adult muscle growth and repair is dependent on the specialized subset of muscle 

cells, the satellite cells152. Satellite cells are thought to be a mix of stem cells and more 

committed progenitor cells. Normally in a quiescent state, satellite cells can be activated 

upon damage to the muscle fibers to fuse and make myofibers that regenerate the 

tissue148. Various Notch components are expressed in satellite cells, such as DLL1, 

JAG1, NOTCH1, NOTCH2, NOTCH3 and Notch target genes such as Hes1 and 

Hey1153,154. Constitutive expression of Notch1 or the overexpression of DLL1 in cultured 

myogenic cells inhibited myogenic differentiation155–157. Conversely, inhibition of the 

Notch signaling pathway through overexpression of the negative regulator Numb or 

administration of γ-secretase inhibitors promotes myoblast differentiation and stimulates 

formation of larger myotubes155,156,158. These data indicate that Notch plays a key role in 

promoting proliferation of satellite cells while inhibiting terminal differentiation. 

 Hematopoietic stem cells in bone marrow give rise to myeloid and lymphoid 

precursors that differentiate to form red and white blood cells (T cells, B cells), 

megakaryocytes, and other cell types148. Notch signaling is crucial for the generation of 

adult hematopoietic stem cells, with NOTCH1 and JAG1 required for development of 

differentiated cells159,160. The role for adult stem cell homeostasis is unclear. The 

overexpression of Notch components results in the increased renewal of hematopoietic 

progenitors161. However, knock out of Notch components such as NOTCH1 and JAG1 

have no effect on hematopoietic stem cell homeostasis162. It is known that Notch is 

essential for the maturation of the T cell lineage. Loss of Notch signaling by genetic 
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deletion of NOTCH1 or RBPJ results in a loss of T cells and an increase in B cells, 

showing Notch promotion of a binary cell fate decision between these two cell 

types162,163. Notch is important for lineage commitment and terminal differentiation, but 

its role in maintenance of hematopoietic stem cells remains unclear. 

 The mammalian respiratory system consists of branched tubular structures that 

enable functional gas exchange. The lung epithelium contains undifferentiated basal 

cells, the stem cells of the lung epithelium, that give rise to differentiated ciliated and 

secretory cells164. There is very little turnover of the lung epithelium in steady-state; self-

renewal only occurs after damage to the tissue164. At steady-state, NOTCH1, DLL1, 

JAG1, and JAG2 are expressed in the basal cells and, upon damage, expression is 

increased along with expression of Notch target genes165. The expression of NICD in 

the lungs promoted differentiation of the secretory Clara cells, but not neuroendocrine 

cells, indicating Notch promotion of the secretory cell fate165. This indicates that Notch is 

involved in directing cell fate choices in certain differentiated cell types of the lung 

epithelium. 

 

Notch in disease 

 The Notch signaling pathway plays a key role in stem cell maintenance in 

numerous tissues throughout mammals. However, mutations in various Notch 

components do occur and can lead to a number of diseases in humans. Table 1-3 

summarizes disorders associated with mutations of Notch pathway components. 
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Table 1-3. Known Notch mutations associated with human 
diseases118,122,166,167 

Disease Symptoms Notch Genes Associated 

Alagile Syndrome 

Developmental 
abnormalities in heart, 
liver, eye, and 
skeleton 

JAG1, NOTCH2  

Cerebral autosomal 
dominant arteriopathy with 
subcortical infarcts and 
leukoencephalophathy 
(CADASIL) Syndrome 

Autosomal vascular 
disorders linked to 
ischemic strokes, 
dementia, and 
premature death 

NOTCH3 

T cell acute lymphoblastic 
leukemia (T-ALL) 

Anemia and 
enlargement of lymph 
nodes in liver or 
spleen 

NOTCH1 

Spondylocostal dysostosis 
Vertebral 
segmentation defects, 
rib anomalies 

DLL4 

Hajdu-Cheney Syndrome 
Bone resorption 
leading to 
osteoporosis 

NOTCH2 
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1.3: REGULATION OF GASTROINTESTINAL STEM CELLS BY NOTCH 

 

Notch intestinal function 

The small intestine is similar to the gastric antrum, with LGR5-positive stem cells at the 

base of intestinal crypts giving rise to all differentiated cell types of the intestinal 

epithelium. Notch signaling affects both stem and differentiated cell types. DLL1 and 

DLL4 are the key Notch ligands and NOTCH1 and NOTCH2 are the key Notch 

receptors for intestinal cell regulation4,5,8. Notch promotes intestinal stem cell 

proliferation and directs progenitor cells to the absorptive cell fate by inhibiting secretory 

cell differentiation. Loss of Notch signaling in the intestine through pharmacological 

inhibition of γ-secretase, or genetic knock-out of RBPJκ or NOTCH1/NOTCH2 resulted 

in loss of epithelial proliferation and secretory cell hyperplasia2,3,6,8,168,169. Conversely, 

genetic activation of the Notch signaling pathway by overexpression of NICD was 

reported to increase epithelial proliferation and inhibit secretory cell differentiation83.  

The secretory cell fate inhibition by Notch occurs through negative regulation of 

the transcription factor atonal homolog 1 (Atoh1). Genetic mouse models have shown 

that constitutive Atoh1 expression promotes secretory cell differentiation, and Atoh1 

gene deletion leads to the loss of the secretory cell lineage (goblet, endocrine, and 

Paneth cells)170,171.  

Notch inhibition by γ-secretase inhibitors causes a downregulation of the 

intestinal stem cell marker olfactomedin 4 (Olfm4) in the intestine and transcription 

studies identified Olfm4 as a direct Notch target gene3. Olfm4 has been shown to be a 

specific intestinal stem cell marker172. The observation that Notch signaling directly 
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targets Olfm4 expression demonstrates that Notch signaling is in the intestinal stem 

cell3.  

 

Notch gastric function 

Compared to intestinal stem cells, the role of Notch in maintenance of gastric 

stem and epithelial cell homeostasis has not been well characterized. Kim et al. first 

outlined the role of Notch signaling in both the developing and adult stomach with 

findings described below10. Utilizing in situ hybridization, they showed multiple Notch 

ligands and receptors were expressed throughout the mouse embryonic epithelium, 

including Notch1, Jag2, and Dll3, as well as the Notch target gene Hes1. After 

administration of a γ-secretase inhibitor to block Notch signaling in adult mice, they 

observed a marked reduction of epithelial proliferation in both the corpus and antrum, 

which was accompanied by a significant increase in both mucous and enteroendocrine 

cells in the antrum. To investigate the consequence of Notch over-activation, a genetic 

mouse model was used that constitutively expressed NICD in parietal cells. These 

Notch-activated parietal cells dedifferentiated and had stem-like characteristics, giving 

give rise to glands containing all cell types of the corpus epithelium. Over time, the 

Notch-activated corpus formed hyperproliferative adenomas with focal activation of the 

Wnt pathway. However, in this study, when NICD was constitutively expressed in LGR5 

cells in the antrum, proliferation was not affected and adenomas did not develop. From 

these findings Kim concluded that Notch signaling is present in both the developing and 

the adult stomach and is required for maintaining gastric epithelial homeostasis10.  



 33 

 Demitrack et al. established an important role for Notch signaling to regulate 

LGR5 antral stem cells11. Using pharmacological Notch inhibition through a γ-secretase 

inhibitor, proliferation of LGR5-positive stem cells was decreased. Using the same 

genetic model of Notch activation as the Kim study to drive NICD expression in Lgr5-

positive cells, they observed increased antral epithelial and stem cell proliferation, 

contrary to the previous study. The NICD constitutive Notch activation model exhibited 

an increase in gland fission events and a rapid generation of monoclonal glands, 

indicating an increase in the number of stem cells per gland. Importantly, chronic Notch 

activation induced undifferentiated, hyper-proliferative polyps, suggesting that Notch 

hyper-activation in gastric stem cells may contribute to gastric tumorigenesis11.  

Analysis of differentiation in the Demitrack study showed that Notch inhibition 

increased all differentiated cell types of the antrum, including surface and deep mucous 

cells and enteroendocrine cells. Conversely, genetic Notch activation led to a decrease 

in all differentiated cell types11.  

 These studies have highlighted the importance of Notch signaling in maintaining 

gastric epithelial homeostasis and the potential for Notch signaling to contribute to 

gastric cancer development. However, key questions remain in how Notch achieves this 

regulation. 1) What is the mechanism through which Notch regulates gastric epithelial 

homeostasis and 2) which pathway components are involved? These are the questions 

investigated in this thesis. 

 

Expression of Notch receptors and ligands in gut 
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The roles of individual Notch receptors and ligands are starting to be 

characterized. The adult intestine expresses Notch1, Notch2, and Notch3 receptors and 

Dll1, Dll4, Jag1, and Jag2 ligands173,174. Notch1, Jag1, and Jag2 were expressed in the 

lower third of all crypts, in the proliferative region, while Notch2 was expressed in rare 

cells in select crypts173. Notch1 was also abundantly expressed in the lamina propria, 

and both Notch1 and Notch2 showed expression in the underlying muscle layers173. 

Notch3 was expressed primarily in the vasculature 174. To determine which cells 

express the Notch receptors, a set of knock-in mice was developed in which the Cre-

estrogen receptor binding domain fusion was knocked-in to the first exon of each of the 

four Notch receptors (Notch1-4) and crossed to a floxed ROSA reporter strain4. Notch3 

and Notch4 were not expressed in the intestinal epithelium, but Notch1 and Notch2 

gave rise to long-lived labeled intestinal clones suggesting that these two receptors are 

expressed in intestinal stem cells4. The Notch1-Cre construct induced far greater 

numbers of lineage stripes compared to the Notch2-Cre expressing stem cells4. 

Less is known about Notch receptor and ligand expression in the stomach. 

Northern blot analysis show gene expression of Notch1, Notch2, Notch3, Jag1, Jag2, 

and Dll1 in both the forestomach and corpus region of the rat stomach173. Analysis of 

the fetal mouse stomach showed expression of Notch1, Jag2, and Dll3 by in situ 

hybridization in the epithelium at embryonic day 1710. My studies aimed to fill this gap by 

investigating the localization and function of the Notch receptors in the stomach. 

 

Notch receptors and ligands in intestinal epithelial homeostasis 
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There have been various reports as to the role of the Notch receptors in 

maintaining intestinal epithelial homeostasis. Early studies indicated that NOTCH1 and 

NOTCH2 function redundantly, and only simultaneous loss of both receptors resulted in 

reduced epithelial proliferation and conversion of crypt progenitors into post-mitotic 

goblet cells, mimicking what is seen through γ-secretase inhibition6. The development of 

specific inhibitor antibodies, detailed below, against NOTCH1 or NOTCH2 expanded 

this finding to show that NOTCH1 plays a more dominant role in epithelial 

homeostasis9,175. Inhibition of NOTCH1 alone was sufficient to induce goblet cell 

metaplasia; however, the effect was mild compared to inhibition of both NOTCH1 and 

NOTCH2. In contrast, inhibition of NOTCH2 alone did not induce any proliferative or 

goblet cell phenotype. This indicates that NOTCH1 and NOTCH2 function redundantly 

in intestinal cell differentiation, although inhibition of NOTCH1 is sufficient to reveal a 

partial phenotype9,175. Similar results were observed with a genetic model of Notch1 

and/or Notch2 deletion. In addition impaired crypt regeneration after radiation was 

observed in both Notch1-deleted and Notch2-deleted intestines, suggesting a need for 

higher Notch activity post-injury8. Also, gene expression profiling of isolated LGR5 

intestinal stem cells demonstrated Notch1 expression176. Combined, these findings 

suggest that NOTCH1 is the primary receptor regulating intestinal stem cell 

homeostasis, and that both NOTCH1 and NOTCH2 regulate epithelial cell proliferation 

and differentiation in the adult intestine. 

Investigation of the Notch ligands in the small intestine used genetic mouse 

models to delete Dll1, Dll4, and/or Jag15. Deletion of Jag1 or Dll4 did not alter intestinal 

epithelial homeostasis, but deletion of Dll1 did result in increased numbers of goblet 
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cells without effect on progenitor proliferation 5. However, deletion of both Dll1 and Dll4 

led to loss of epithelial proliferation and conversion of progenitors into goblet cells, 

mimicking global Notch inhibition phenotype. This indicates that DLL1 and DLL4 are 

required for the maintenance of intestinal progenitors and stem cells5. Paneth cells 

express DLL4 and a subset of transit-amplifying cells have been shown to express 

DLL1176,177. Thus, DLL1 and DLL4 are the key Notch ligands in the intestinal 

stem/progenitor cells for epithelial and stem cell homeostasis. 

 

Inhibition of Notch receptors by specific antibodies 

The four Notch receptors are expressed in various mammalian tissues to direct 

cell fate decisions and growth. Although γ-secretase inhibitors have progressed as 

potential therapeutics for Notch-related pathologies, they fail to distinguish between 

individual Notch receptors and have targets other than the Notch-signaling pathway. In 

order to elucidate independent functions of discrete Notch receptors, Wu et al. 

developed inhibitory antibodies directed against the NRR of either NOTCH1 or 

NOTCH2175. Utilizing phage display to generate antibodies targeting the NRR 

sequence, they showed that the antibodies potently inhibit NOTCH1 or NOTCH2 of 

either the human or mouse orthologue. Both antibodies inhibited signaling induced 

through different Notch ligands, including JAG1, JAG2, DLL1, and DLL4, indicating that 

inhibition occurs irrespective of the ligand. Examination of T cells and splenic marginal 

zone B (MZB) cell development proved functionality of specific receptor inhibition, 

because these processes depend specifically on Notch1 or Notch2, respectively. 

Treating mice with anti-Notch1 antibody specifically decreased T cells, while anti-
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Notch2 decreased MZB cells, demonstrating the paralogue-specific inhibition175. One 

main goal of the development of these antibodies was to circumvent the intestinal 

toxicity associated with γ-secretase inhibitors. Accordingly, administration of the Notch1-

inhibitory antibody produced a partial goblet cell hyperplasia without fatal intestinal 

toxicity seen with γ-secretase inhibitors, representing a breakthrough over existing pan-

Notch inhibitors for cancer therapeutics175. I utilized these antibodies to study receptor 

function in the gastric epithelium. 

 

Mouse models of Notch reporters 

Multiple tools have been developed to better understand the role of Notch 

signaling and the components involved in various tissues. Below are descriptions of 

genetically engineered mice used in this study to better understand the role of Notch 

signaling in the mouse stomach. A summary of the mouse models and schematic of the 

genetic constructs are present in Table 1-4 and Fig 1-7. 

The Hadjantonakais lab created a unique Notch signaling reporter mouse model 

that utilizes a CBF1 (also known as RBPJκ) DNA binding site to provide single-cell 

resolution visualization of cells undergoing Notch signaling178. This construct placed 

CBF1 binding sites into a promoter driving a human histone H2B nuclear localization 

sequence linked to the yellow fluorescent protein Venus to generate a transgenic 

mouse strain (CBF:H2B-Venus). This strain faithfully recapitulates Notch signaling in 

embryonic and adult tissue and is the first strain in which individual cells transducing a 

Notch signal can be easily visualized178. This strain was used in Chapters 2 and 3 to 

identify cells in the adult mouse stomach that were undergoing Notch signaling. 
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Figure 1-7. Schematic of genetic constructs for mouse models of Notch signaling 
and receptor expression. Mouse models described in text and Table 1-4. 

Table 1-4. Mouse models to detect Notch signaling and receptor expression 

Mouse Model Reports Constitutive or 
Inducible Reference 

CBF:H2B-Venus Active Notch 
signaling Constitutive 178 

Notch1-CreERT2 
and 

Notch2CreERT2 

Notch1 or Notch2 
receptor expression Inducible 4 

Nip1-CreERT Active Notch1 
signaling Inducible 179 
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As mentioned previously, the Artavanis-Tsakonas lab created a set of knock-in 

mice to identify cells that express the Notch receptors4. Transgenic mice were created 

by knocking-in the Cre-estrogen receptor binding domain fusion (Cre-ER) to the first 

exon of each of the four Notch receptors. When crossed to a transgenic reporter strain 

(such as ROSA-LacZ or ROSA-Tomato) and activating the Cre-ER by tamoxifen 

treatment, the expression pattern of each of the four Notch receptors can be observed. 

Longer chase periods after Cre-ER activation can allow for identification of stem cells 

expressing Notch receptors through lineage tracing. These transgenic lines can be used 

for genetic recombination in specific Notch receptor-expressing cells by crossing the 

mice to a transgenic line with a gene of interest flanked by lox-P sites. This set of knock-

in mice identified Notch1 and Notch2 expression in stem cells of the intestine, as 

described above4, with Notch1 having a more robust number of lineage tracing events 

compared to Notch2. I used these strains in Chapters 2 and 3 to map the expression of 

the Notch1 and Notch2 receptors in the adult mouse stomach. 

The Kopan lab created a mouse model to detect active Notch signaling through 

the Notch1 receptor179. The genetic mouse model, named NIP1-CreERT, was 

engineered to replace NICD in the Notch1 receptor with an inducible Cre recombinase. 

This results in Cre activity being governed by the ligand-induced proteolysis of Notch1. 

By crossing to a reporter strain, such a ROSA-Tomato and tamoxifen activation of the 

Cre, both expression and activity of Notch1 can be visualized179. This model was used 

by the Samuelson laboratory to identify Notch1 expression and function in antral stem 

cells11. 
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Notch receptors and ligands in human gastric cancer 

There is evidence that disregulation of the Notch signaling pathway can 

contribute to gastric cancer progression. Gastric cancer is the second leading cause of 

cancer deaths worldwide and 5-year survival rates are less than 40%180.  There are two 

types of gastric cancer based on histology: intestinal and diffuse. Intestinal type is 

characterized by gland-like tubular structures formed by cohesive neoplastic cells. 

Diffuse type is characterized by a poorly differentiated tumor that infiltrates the gastric 

wall. The cells of origin have not been determined, but gastric stem cells are strong 

candidates due to their high-proliferative potential and, as a regulator of gastric stem 

cell homeostasis, the Notch pathway may play a role in cancer initiation181. 

Numerous studies have identified a correlation between human gastric cancer 

samples and Notch signaling, which are summarized in Table 1-5. One study found that 

levels of Jag1 correlated with aggressiveness of human gastric cancer and that 

overexpression of NOTCH1 NICD promoted the colony-forming ability of a human 

stomach adenocarcinoma cell line182. Another study found that NOTCH1 was rarely 

expressed in normal human gastric mucosa and was highly upregulated in premalignant 

cancer tissues, and that NOTCH2 was detected in all four tested gastric cancer cell 

lines183. NOTCH1, NOTCH3, JAG1, and JAG2 expression was found to be increased 

significantly in tumor compared to normal tissue in another study, with NOTCH3 and 

JAG2 associated with intestinal type gastric cancer184. In a different study the 

expression of NOTCH1, NOTCH2, DLL4, and HES1 was significantly higher in tumor 

tissues compared to normal, with NOTCH1 and JAG1 expression correlated to poor 

prognosis185. Together these studies, although each limited in scope, suggest that  
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  Table 1-5. Notch signaling components associated with gastric cancer 

Gene Role in gastric cancer 

DLL4 
Expression of DLL4 in human gastric 
cancer cell line promoted proliferation, 
migration, and invasion186 

NOTCH1 

Expression increased in gastric tumors 
compared to normal184 
Expression of NOTCH1-NICD 
promoted colony forming ability and 
xenograft tumor growth of stomach 
gastric cancer stem cells182,187 
NOTCH1 upregulated with intestinal-
like phenotypes of gastric lesions183 

NOTCH2 

Correlated with intestinal and diffuse 
type gastric cancer183 
Expression of NOTCH2-NICD 
promoted human gastric cancer cell 
proliferation and xenograft tumor 
growth188 

NOTCH3 

Expression increased in gastric tumors 
compared to normal, associated with 
intestinal/glandular differentiation of 
gastric carcinoma cells184 

NOTCH4 
Expression in gastric cancer cell line 
promoted growth189 

JAG1 
Expression increased in gastric tumors 
compared to normal184 

JAG2 

Expression increased in gastric tumors 
compared to normal, associated with 
intestinal/glandular differentiation of 
gastric carcinoma cells184 

DLL1 Expression associated with diffuse and 
mixed type of gastric cancer190 
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Notch components are upregulated in gastric cancer. Definitive knowledge as to the role 

of specific Notch receptors and ligands in gastric tumorigenesis is still limited.  

 

1.4: THESIS OVERVIEW 

 The Notch signaling pathway has been identified as a key regulator of gastric 

stem and progenitor cell homeostasis. Notch signaling promotes antral stem cell 

proliferation and directs cell fate choice, and constitutive Notch activation leads to 

gastric polyp formation10,11. However, the receptors or ligands involved in Notch 

regulation of gastric stem cells have not been identified.  

This thesis project aimed to describe the role of the Notch receptors in the 

regulation of gastric stem and epithelial cell dynamics. I have approached this using 

mouse models to map cells that are Notch signaling and determine where NOTCH1 and 

NOTCH2 are expressed. Functional analysis of the NOTCH1 and NOTCH2 receptors 

was investigated by pharmacologic inhibition of Notch receptors in mouse models. 

Mouse and human gastric organoids were used to uncover the role of the Notch 

receptors in epithelial cells. 

In Chapter 2, I investigated the function of Notch receptors in antral epithelial 

differentiation and stem cell maintenance with inhibitory antibodies directed against 

NOTCH1 or NOTCH2. I found that combined inhibition of NOTCH1 and NOTCH2 

mimics pan-Notch inhibition from γ-secretase inhibitor treatment. I showed reduced 

epithelial and stem cell proliferation and increased apoptosis. My studies showed that 

NOTCH1 and NOTCH2 are the primary Notch receptors regulating antral epithelial 

homeostasis. Inhibition of both NOTCH1 and NOTCH2 led to increased differentiation of 
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all gastric antral lineages. Notch inhibition also led to the unique finding that cells in the 

base and surface of the glands remodeled with Notch inhibition, increasing expression 

of secretory products from other regions of the gastrointestinal tract, including the 

corpus and intestine. Analysis of mouse and human organoids showed that Notch 

signaling through NOTCH1 and NOTCH2 is intrinsic to the epithelium and regulates 

growth of human and mouse gastric stem cells in vitro.  

 In Chapter 3, I investigated the role of Notch signaling in the maintenance of 

corpus epithelial cells using pharmacologic inhibition of the Notch signaling pathway 

and inhibitory antibodies against the NOTCH1 or NOTCH2 receptors. Similar to the 

antrum, inhibition of NOTCH1 and NOTCH2 mimics the reduction in proliferating 

epithelial cells seen with pan-Notch inhibition, indicating that these are the key receptors 

involved in corpus epithelial homeostasis. No changes to differentiated cell types were 

observed in vivo, but this may be a consequence of the longer turnover time of corpus 

epithelial cells coupled with the short timepoint of pharmacologic Notch inhibition 

required due to the lethality of global Notch inhibition. I observed a decrease in mouse 

and human corpus organoid growth with pan-Notch inhibition and NOTCH1 and/or 

NOTCH2 inhibition, indicating that Notch signaling is intrinsic to corpus epithelial cells. 

 In Chapter 4, I outline the protocol I established for mouse and human gastric 

organoid culture. I characterize growth conditions and a histological analysis of 

established organoids. I investigated the role of Notch signaling on mouse corpus and 

antral organoid growth and found that antral organoids are significantly more sensitive 

to Notch inhibition compared to corpus organoids.  
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 In Chapter 5, I have put my work in the context of the field and demonstrate how 

these findings provide important insights into the regulation of gastric stem and 

epithelial cells. I propose future directions and experiments that will further characterize 

and understand the role of Notch signaling on maintenance of gastric stem cells and 

how those findings can be used in a therapeutic context. 
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CHAPTER 2 

 

NOTCH1 AND NOTCH2 RECEPTORS REGULATE MOUSE AND HUMAN GASTRIC 

ANTRAL EPITHELIAL CELL HOMEOSTASIS 

 

 

*Note: This chapter is based on a manuscript currently under revision for Gut (gutjnl-
2015-310811) 
 

 

2.1: SUMMARY 

Objective   

We tested the ability of Notch pathway receptors Notch1 and Notch2 to regulate 

stem and epithelial cell homeostasis in mouse and human gastric antral tissue. 

Design   

Mice were treated with the pan-Notch inhibitor dibenzazepine (DBZ) or inhibitory 

antibodies targeting Notch1 and/or Notch2. Epithelial proliferation, apoptosis and 

cellular differentiation were measured by histological and molecular approaches. 

Organoids were established from mouse and human antral glands; growth and 

differentiation were measured after treatment with Notch inhibitors. 

Results  
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Notch1 and Notch2 are the predominant Notch receptors expressed in mouse 

and human antral tissue and organoid cultures. Combined inhibition of Notch1 and 

Notch2 in adult mice led to decreased epithelial cell proliferation, including reduced 

proliferation of LGR5 stem cells, and increased apoptosis, similar to the response to 

global Notch inhibition with DBZ. Less pronounced effects were observed after inhibition 

of individual receptors. Notch pathway inhibition with DBZ or combined inhibition of 

Notch1 and Notch2 led to increased differentiation of all gastric antral lineages, with 

remodeling of cells to express secretory products normally associated with other 

regions of the gastrointestinal tract, including intestine. Analysis of mouse and human 

organoids showed that Notch signaling through Notch1 and Notch2 is intrinsic to the 

epithelium and required for organoid growth. 

Conclusions  

Notch signaling is required to maintain gastric antral stem cells. Notch1 and 

Notch2 are the primary Notch receptors regulating epithelial cell homeostasis in both 

mouse and human stomach. 

 

2.2: INTRODUCTION 

 The adult gastric epithelium is constantly renewed due to a population of actively 

cycling stem cells located in the gastric glands. These stem cells generate daughter 

cells that, upon exiting the stem cell niche, differentiate in to the various epithelial cell 

lineages of the stomach. In the distal, antral stomach, active stem cells express the R-

spondin receptor LGR5, which also marks stem cells in the intestine and other 

tissues1,2. Antral LGR5 stem cells give rise to all antral lineages, including surface 
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mucous cells, endocrine cells and deep mucous cells. The signaling pathways 

regulating gastric stem cell proliferation and differentiation are currently poorly 

understood. 

Notch signaling is well described to maintain intestinal stem cells3–7 and recent 

studies suggest that gastric stem cells are similarly regulated by Notch8,9. In the 

stomach, pan-Notch inhibition led to reduced gastric stem and epithelial cell proliferation 

and increased differentiation of mucous and endocrine cell lineages. In contrast, 

activation of Notch through constitutive expression of the Notch Intracellular Domain 

(NICD) induce stem cell proliferation, gland fission and ultimately hyper-proliferative 

polyps8,9. Furthermore, increased expression of Notch signaling components has been 

associated with gastric cancer, suggesting Notch pathway involvement10,11. 

 Four Notch receptors (Notch1-4) exist in vertebrates that are single-pass 

transmembrane proteins12. Receptor signaling involves proteolytic receptor cleavage to 

release the intracellular signaling component NICD, which activates target gene 

transcription, such as those in the Hes and Hey families13. Notch1 and Notch2 are the 

primary receptors involved in intestinal stem cell homeostasis, with Notch1 having a 

predominant function5,7,14,15. Global pharmacological Notch inhibition leads to intestinal 

toxicity3, but inhibition of Notch1 alone revealed a partial Notch-inhibition phenotype 

while avoiding major toxicity7,14,15.   

 The specific Notch receptors regulating the stomach have not been described. In 

this study we examined the role of Notch receptors in epithelial and LGR5 stem cell 

homeostasis in the gastric antrum of genetic mouse models. We find that Notch1 and 

Notch2 are key regulators of stem cell proliferation, differentiation and apoptosis. 
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Furthermore our studies demonstrate that both Notch1 and Notch2 function to regulate 

growth of antral organoid cultures generated from human and mouse tissue.  

 

2.3: METHODS  
 
Mice 

Mice of both sexes aged 2-3 months were used. Lgr5-EGFP-IRES-CreERT2 

(Lgr5-GFP)2 (Jackson Labs #008875), Notch1-CreERT2SAT (N1Cre) and Notch2-

CreERT2SAT (N2Cre)16, CBF:H2B-Venus17 (Jackson Labs #020942) and ROSA26-CAG-

LSL-tdTomato-WPRE (ROSA-Tom)18 (Jackson Labs #007909)  mice were previously 

described. All mice were on a C57BL/6 background except for CBF:H2B-Venus, which 

was on a mixed background (CD1 and FVB/N). Mice were housed under specific 

pathogen-free conditions in automated watered and ventilated cages on a 12-hour 

light/dark cycle. Experimental protocols were approved by the University of Michigan 

Committee on the Use and Care of Animals. For lineage tracing Notch1- or Notch2-

expressing cells, N1Cre; ROSA-Tom and N2Cre; ROSA-Tom mice were treated with 

either 1 injection of tamoxifen (1mg/20g body weight) followed by a 3-day chase or 5 

daily injections of tamoxifen followed by a 2-week chase. 

 

Notch Pathway Inhibition 

For in vivo Notch inhibition, the gamma-secretase inhibitor dibenzazepine (DBZ, 

30µmol/kg i.p., SYNCOM, Groningen, The Netherlands) or vehicle (0.1% Tween-80, 

0.5% hydroxypropylmethylcellulose [E4M], 0.1% DMSO in water) was administered to 

Lgr5-GFP mice once per day for 5 days, with tissue collected the sixth day. Humanized 
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IgG1 neutralizing monoclonal antibodies specific for the Notch1- or Notch2-negative 

regulatory region (αN1 or αN2), or an irrelevant control IgG1 antibody interacting with 

herpes simplex virus gD protein (αGd) were described previously15. Antibodies were 

injected i.p. at 5mg/kg on days 1 and 4, with collection of stomach tissue on day 6, 14, 

or 28.  

For in vitro treatment of mouse and human organoids, the gamma-secretase 

inhibitor N-[N-(3,5-Difluorophenacetyl-L-alanyl)]-(S)-phenylglycine t-butyl ester 

(DAPT,1µM; EMD4Biosciences, Gibbstown, NJ, USA), αGd, αN1 or αN2 (10µg/mL) 

were added to culture media and renewed every other day for 5 days in established 

organoid lines.  

 

Tissue Collection and Histological Analysis 

Mice were fasted overnight with free access to water before tissue collection. For 

some experiments, mice were injected with 5-ethynyl-2’-deoxyuridine (EdU, 25 mg/kg, 

Invitrogen, Grand Island, NY, USA) 1.5 hr prior to tissue collection. Stomachs were 

processed for cryo and paraffin histology as described9. For analysis of proliferation, 

EdU incorporation was visualized with the Click-iT EdU Alexa Fluor 488 Imaging Kit 

(Life Technologies, Carlsbad, CA, USA). Tissue sections were incubated with primary 

antibodies (Supplementary Table 2-1) followed by appropriate secondary antibodies 

(1:400, Invitrogen) and mounted with ProLong Gold containing 4,6-diamidino-2-

phenylindole dihydrochloride (DAPI; Invitrogen) as described previously19. To analyze 

proliferating LGR5 stem cells, sections were immunostained for GFP (chicken) and Ki67 

as described9. Antral glands were isolated and immunostained as previously 
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described,9. Imaging by digital microscopy was done using a Leica SP5X Inverted 2-

Photon FLIM Confocal Microscope or a Nikon E-800 Microscope. 

For ultrastructural analysis, tissue was fixed and Epon embedded as described6. 

Electron micrographs were captured using a JEOL JEM 1400 plus electron microscope. 

 

Gene Expression Analysis 

RNA was isolated from antral tissue or gastric organoids as previously 

described9. RNA was isolated from human antral tissue using Trizol (Invitrogen), 

followed by DNase treatment and purification using the RNeasy Mini Kit (Qiagen). cDNA 

was prepared from 500ng total RNA and quantitative RT-PCR was performed as 

described20 using primers listed in Supplemental Table 2-2, normalized to Gapdh 

(mouse) or ACTB (human). 

 

Gastric Organoid Culture 

Mouse gastric organoid culture was carried out as previously described9,21. In 

brief, antral glands were resuspended in Matrigel (Corning, Tewksbury, MA, USA) and 

overlaid with culture media (50% L-WRN conditioned media, Advanced DMEM/F12, 

10% FBS, 1X Pen-Strep, 2 mM L-Glutamine), with the addition of Y-27632 (10µM, 

Tocris, Bristol, United Kingdom) only upon initial plating. L-WRN conditioned media 

containing Wnt3a, R-spondin3, and Noggin was generated as described21. Human 

antral tissue (surgical resection or Gift of Life) was obtained under Institutional Review 

Board approved protocols and organoids were established as described22 with 

modifications. Tissue was incubated with 10mM dithiothreitol (DTT; Invitrogen) in DPBS 
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with Pen-Strep and Gentamycin for 15 min at room temperature, followed by incubation 

in 12mM EDTA in DPBS with Pen-Strep and Gentamycin for 1 hr at 4°C on a rocking 

platform, vigorously shaken for 1 min to release glands and pelleted at 100 g for 5 min. 

Glands were resuspended in Matrigel and after 30 min at 37oC, culture media described 

above with the addition of Y-27632 and SB431542 (10 µM, Tocris Bioscience) was 

added to each well. Media was renewed every other day. Studies were performed in 3 

independent established organoid lines that had been passaged at least 3 times before 

analysis. 

 

Morphometrics 

Morphometric analysis used ImageJ software (1.46r, Wayne Rasband, NIH, 

USA). For EdU incorporation, cleaved caspase-3 cells and gastrin cells, the entire 

length of the antrum for each animal was imaged (n=4-6 animals per group) and cell 

counts were normalized to epithelial length (µm). For LGR5 stem cell proliferation, the 

number of GFP/Ki67 double-positive cells per gastric antral gland was counted in αGd 

control (n=833 glands), αN1 (n=674 glands), αN2 (n=662 glands) and αN1+αN2 (n=548 

glands) (n=5-7 mice/group).  For organoid measurements, the area of at least 300 

organoids per treatment was measured and data are presented as fold change 

compared to control (vehicle or αGd) organoids. 

 

Statistics 

GraphPad Prism software was used for statistical analysis. Quantitative data are 

presented as mean ± SEM and analyzed using Student’s t-test (comparing DBZ/DAPT 
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to vehicle) or 1-way ANOVA with Dunnett’s or Tukey’s post-hoc test (comparing αN1, 

αN2, αN1+αN2 and αGd). qRT-PCR data are expressed as mRNA fold-change vs. 

control (vehicle or αGd) with P<0.05 considered significant. *P<0.05, **P<0.01, 

***P<0.001, ****P<0.0001. 
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2.4: RESULTS 

Notch signaling in antral stem cells 

 We used the CBF:H2B-Venus reporter mouse to identify cells undergoing Notch 

signaling in the gastric antrum. This transgenic mouse expresses a nuclear fluorescent 

protein in response to Notch receptor activation17. Isolated antral glands showed 

scattered Venus-positive cells that were primarily located in the gland base (Fig 2-1A). 

Costaining showed Venus expression in differentiated cell types, including CHGA-

expressing enteroendocrine cells (Fig 2-1B) and DCLK1-expressing tuft cells (Fig 2-1C). 

Crossing the Notch reporter strain to Lgr5-GFP mice showed that some of the nuclear 

Venus-positive cells were also marked with cytoplasmic GFP, indicating Notch signaling 

in antral LGR5 stem cells (Fig 2-1D).  

 Gene expression analysis for the four Notch receptors showed that Notch1 and 

Notch2 were the primary Notch receptors expressed in full thickness antral tissue and 

isolated glands (Fig 2-1E, Supplementary Fig 2-1). To test if Notch receptors are 

present in antral stem cells, we performed a lineage tracing experiment with mice 

expressing Notch receptor-CreERT2 genes crossed to ROSA-Tom mice. We examined 

N1Cre;ROSA-Tom and N2Cre;ROSA-Tom mice 3 days and 2 weeks post-tamoxifen 

treatment. Tomato-marked epithelial cells were evident in the antral gland base of 

N1Cre:ROSA-Tom and N2Cre;ROSA-Tom mice at 3-days post induction (Fig 2-1F, 

arrows). At 2 weeks post-tamoxifen epithelial lineage stripes were detected in the 

antrum of N1Cre;ROSA-Tom mice (arrows), suggesting that Notch1 is expressed in 

antral stem cells. The lack of lineage stripes in N2Cre;ROSA-Tom mice suggests that 

this receptor is expressed in short-lived cells.  
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Figure 2-1. Notch signaling in gastric antral cells. (A-D) Antral glands isolated from 
CBF:H2B-Venus mice (green, nuclear) co-stained for (B) chromogranin A (CHGA) (red), 
(C) doublecortin like kinase 1 (DCLK1) (red), or (D) Lgr5-GFP (green, cytoplasmic) and 
DAPI (blue). Insets show higher-powered views for each channel. (E) Notch receptor 
expression was determined by qRT-PCR analysis of total RNA isolated from full-
thickness antral tissue or antral glands (mean ± SEM; n=3-5 mice). ND = Not detected. 
(F) Confocal imaging of paraffin sections from N1-Cre;Tom and N2-Cre;Tom mice co-
stained for RFP (red), E-cadherin (green) and DAPI (blue) 3 days or 2 weeks after 
tamoxifen activation of Cre recombinase. Arrows and arrowheads indicate epithelial and 
non-epithelial Tomato expression, respectively. (G) Frozen tissue sections from 
CBF:H2B-Venus mice co-stained for the endothelial marker PECAM-1 (left, red) or the 
smooth muscle cell marker α-SMA (right, red). Co-stained cells in boxed regions are 
marked (arrowheads) in higher-powered insets. Scale bar: 50µm. (ED performed A-D, 
NLC performed G)  
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In addition to epithelial cell labeling there was extensive non-epithelial Notch 

lineage marking with both N1Cre;ROSA-Tom and N2Cre;ROSA-Tom (Fig 2-1F, 

arrowheads). Histological analysis of tissue sections from the CBF:H2B-Venus reporter 

mouse demonstrated that the majority of Venus-positive stromal cells are PECAM-1-

expressing endothelial cells and α-smooth muscle actin-expressing smooth muscle cells 

(Fig 2-1G). 

 

Notch regulation of LGR5 stem cells 

 To test the function of Notch1 and Notch2 to regulate antral epithelial cell 

homeostasis we first examined proliferation after treatment with either inhibitory 

antibodies that selectively target Notch1 and Notch2 or the gamma-secretase inhibitor 

DBZ (a pan-Notch inhibitor). Analysis of EdU incorporation showed that cellular 

proliferation was reduced with combined αN1+αN2 treatment to a similar extent as DBZ 

(Fig 2-2A-H). Treatment with αN1 or αN2 alone significantly reduced the number of 

proliferating cells, but to a lesser extent than combined receptor blockade (Fig. 2-2D-H). 

Analysis at 2 and 4 weeks after αN1 or αN2 treatment demonstrated normal 

proliferation after the antibody treatment was discontinued (Fig 2-2H). However, 

morbidity of the αN1+αN2 group prevented analysis of this group at these later time 

points.  

To directly investigate LGR5 stem cells, we treated Lgr5-GFP mice with αN1 

and/or αN2 and analyzed stem cell proliferation via co-immunostaining for GFP and 

Ki67 (Fig 2-2I, arrow). Notch1 and/or Notch2 inhibition reduced LGR5 stem cell 

proliferation, with αN1+αN2 having the most substantial effect (Fig 2-2J), which was  



 77 

 
 
Figure 2-2. Notch1 and Notch2 regulate antral cell proliferation. (A,B,D-G) 
Proliferating cells were detected in (A) vehicle, (B) DBZ, (D) Gd antibody control (αGd), 
(E) αN1+αN2, (F) αN1, and (G) αN2 tissues by staining for EdU (green) with DAPI 
(red). (C, H) Morphometric quantification of EdU cells (mean ± SEM; n=5-7 mice). (I, J) 
Proliferating LGR5 stem cells were visualized in treated Lgr5-GFP mice by GFP (green) 
and Ki67 (red) co-staining (arrow) with DAPI (blue) and quantified by morphometrics 
(mean ± SEM; n=5-7 mice; 40-100 glands/mouse). *P<0.05, **P<0.01, ***P<0.001, 
****P<0.0001 vs. vehicle using Student’s t-test or vs. αGd using 1-way ANOVA. Scale 
bar: 50µm (A,B,D-G) or 25µm (I). 
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similar to our previous analysis of pan-Notch inhibition with DBZ9. The similarity of 

combined N1 and N2 receptor blockade to pan-Notch inhibition suggests that Notch1 

and Notch2 are the key receptors mediating Notch effects on stem cell proliferation.  

 We next analyzed cell death by staining for the apoptotic marker cleaved 

caspase 3. Apoptotic cells are normally rare in the antral epithelium. Notch inhibition 

with DBZ or receptor blockade was observed to increase the number of caspase-

positive cells, with apoptotic cells predominantly localized in the gland base (Fig 2-3). 

As with the proliferation findings, αN1+αN2 treatment was comparable to DBZ, with 

more modest effects observed after treatment with antibodies targeting individual 

receptors (Fig 2-3C-D). 

 

Notch regulates antral organoid growth 

 We established organoids to test whether the Notch effects are intrinsic to the 

epithelial cells. Organoids established from the CBF:H2B-Venus reporter mouse 

showed extensive Venus labeling, demonstrating active Notch signaling in organoid 

culture (Fig 2-4A). Gene expression analysis showed that, similar to what was observed 

in gastric glands, Notch1 and Notch2 were the primary Notch receptors expressed in 

antral organoids (Fig 2-4B). To investigate Notch function we treated organoids with the 

pan-Notch inhibitor DAPT and observed reduced overall growth (Fig 2-4C-E). Reduced 

growth was also observed after receptor targeting, with combined N1+N2 inhibition 

similar to pan-Notch inhibition, and individual receptor targeting showing a larger role for 

Notch1 to regulate growth (Fig 2-4F-J). These findings demonstrate that intrinsic Notch 

signaling is required for antral organoid growth.  
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Figure 2-3. Enhanced apoptosis after Notch inhibition. (A,B, E-H) Apoptosis was 
measured by co-staining for cleaved caspase-3 (CC3) (green) and E-cadherin (Ecad) 
(red) with DAPI (blue) in (A) vehicle, (B) DBZ, (E) αGd, (F) αN1+αN2, (G) αN1, and (H) 
αN2-treated mice. (C,D) Morphometric quantification of apoptotic CC3/E-cad co-stained 
cells (arrows) (mean ± SEM; n=5-7 mice). Scale bar: 20µm. 
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Figure 2-4. Notch1 and Notch2 regulate mouse antral organoid growth. (A) Cells 
undergoing Notch signaling (green) were observed in antral organoids established from 
the CBF:H2B-Venus Notch reporter mouse strain. (B) Gene expression of Notch 
receptors determined by qRT-PCR analysis of antral organoids (mean ± SEM n=3 
independent organoid lines). ND = Not detected. Morphology (C,D,F-I) and quantitative 
measure of organoid size (E,J) following 5 days of treatment with (C) vehicle, (D) DAPT, 
(F) αGd, (G) αN1+αN2, (H) αN1, or (I) αN2 (mean ± SEM; n=3 lines). Scale bar: 50µm 
(A) or 250µm (C,D,F-I). 
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Notch1 and Notch2 regulate antral epithelial cell differentiation 

We previously showed that Notch inhibition was associated with increased antral 

cell differentiation9. Thus, we analyzed the role of Notch1 and Notch2 for the major 

antral cell lineages: enteroendocrine, surface mucous and deep mucous cells. Analysis 

of enteroendocrine cells showed increased numbers of gastrin-expressing cells and 

increased abundance of Gast and Chga mRNAs with Notch inhibition (Fig 2-5). Similar 

effects were observed after treatment with DBZ (Fig 2-5A-E) and αN1+αN2, but not with 

αN1 or αN2 treatment, suggesting that these two receptors are fully redundant for this 

function (Fig 2-5F-L).  In accordance with the in vivo findings, increased Gast mRNA 

was observed in organoids after DAPT or αN1+αN2 treatment (Fig 2-5M,N). 

 Similarly, analysis of the surface mucous cell marker CLCA1 showed expansion 

of this cell population after DBZ (Fig 2-6A-C) or combined αN1+αN2 treatment, but not 

after individual receptor blockade (Fig 2-6D-H). Consistent with the marker expression 

data, ultrastructural analysis showed a marked expansion of surface mucous cells 

(Supplementary Fig 2-2). Electron microscopy demonstrated increased numbers of 

granules in these cells after DBZ treatment (Fig 2-6I,J). 

Analysis of H&E stained tissues suggested increased mucous cells at the gland 

base with DBZ or inhibition of both receptors (Supplementary Fig 2-3). Accordingly, 

GSII-lectin staining showed an apparent expansion of this cell lineage after DBZ or 

αN1+αN2 treatment (Fig 2-7A,B,E-H), which was confirmed by increased trefoil factor 2 

(Tff2) mRNA abundance (Fig 2-7C,I). Surprisingly, further analysis of these cells also 

showed increased staining for the chief cell marker gastric intrinsic factor (GIF), which 

was confirmed by increased Gif mRNA (Fig 2-7D,J). High-powered confocal analysis  
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Figure 2-5. Notch1 and Notch2 regulate antral endocrine cell differentiation. (A,B, 
F-I) Gastrin immunostaining (green) of paraffin sections from mice treated with (A) 
vehicle, (B) DBZ, (F) αGd, (G) αN1+αN2, (H) αN1, and (I) αN2 with DAPI (red). (C,J) 
Gastrin cells were quantitated by morphometrics (mean ± SEM, n=4-5). Gene 
expression analysis of gastrin (Gast) and chromogranin A (Chga) in (D,E,K,L) full-
thickness tissue or (M,N) organoids (mean ± SEM; n=5-7 mice or 3 independent 
organoid lines). Scale bar: 50µm. 
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Figure 2-6. Notch1 and Notch2 regulate surface mucous cell differentiation. (A, B, 
D-G) Immunostaining for the surface mucous cell marker CLCA1 in (A) vehicle, (B) 
DBZ, (D) αGd, (E) αN1+αN2, (F) αN1, and (G) αN2-treated mice. (C,H) qRT-PCR 
analysis of Clca1 gene expression in antral tissue (mean ± SEM; n=5-7 mice). (I,J) 
Transmission electron microscope images of surface mucous cells from (I) vehicle or (J) 
DBZ-treated mice. Scale bar: 50µm (A,B,D-G) or 2µm (I,J). 
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Figure 2-7. Notch inhibition remodels cells at the antral gland base. (A,B, E-H) Co-
staining with GSII lectin (green) and an anti-gastric intrinsic factor (GIF) antibody (red) 
with DAPI (blue) on (A) vehicle, (B) DBZ, (E) αGd, (F) αN1+αN2, (G) αN1, and (H) 
αN2-treated mice. (C,D I-L) Gene expression analysis of trefoil factor 2 (Tff2) and 
gastric intrinsic factor (Gif) by qRT-PCR analysis of full-thickness tissue or organoids 
(mean ± SEM; n=4-7 mice). (M,N) Transmission electron microscope images of gland 
base cells from (M) vehicle or (N) DBZ-treated mice. Scale bar: 50µm (A,B,E-H) or 2µm 
(M,N). 
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showed GSII and GIF co-labeled cells at the gland base, primarily localized in separate 

granules (Supplementary Fig 2-4). Ultrastructural analysis showed a marked increase in 

both secretory granule number and granule size in cells at the gland base after Notch 

inhibition (Fig 2-7M,N and Supplementary Fig 2-2). Consistent with the in vivo data, 

increased Gif expression was also observed in DAPT or αN1+αN2 treated antral 

organoids (Fig 2-7K,L).  

To better understand the cellular remodeling observed in the Notch-inhibited 

antrum we examined markers associated with the gastric corpus and intestine. 

Increased immunostaining and gene expression was observed for the corpus ECL cell 

marker histidine decarboxylase (HDC; Fig 2-8A-C), however there was no change in 

expression of the corpus parietal cell marker H,K-ATPase (data not shown). We also 

observed increased expression of markers of intestinal cells, including goblet cells 

(Muc2 andTff3) and Paneth cells (Mmp7, Cryptdin, Reg3γ) in the DBZ-treated antrum 

(Fig 2-8D-J). However, similar to the corpus markers, the increase in intestinal markers 

was not associated with a general intestinalization as the DBZ-treated antrum did not 

increase expression of the intestinal markers Cdx2, Vil1, Cck or Lyz1 (data not shown) 

and continued to express gastric specific markers (Tff2 and Gif) and  

 Together these findings suggest that global Notch inhibition with DBZ or 

combined αN1+αN2 treatment results in a generalized increase in cellular 

differentiation. However, dual receptor blockade is required for the differentiation effect, 

suggesting that Notch1 and Notch2 function together during differentiation.  
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Figure 2-8. Increased expression of gastric corpus and intestinal cell markers in 
DBZ-treated antral tissue. (A-C) Immunostaining and gene expression analysis of 
histidine decarboxylase (HDC). (D-F) Immunostaining and gene expression analysis of 
Muc2. (G-J) Gene expression analysis of trefoil factor 3 (Tff3), matrix metalloproteinase-
7 (Mmp7), cryptdin, and regenerating islet-derived 3 gamma (Reg3γ) in antral RNA 
isolated from vehicle or DBZ-treated mice (mean ± SEM; n=3-6 mice).  
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Notch is necessary for growth of human gastric organoids 

 We took advantage of the design feature of the inhibitory antibodies to target 

both mouse and human Notch1 and Notch2 to test the regulation of human gastric stem 

cells in vitro in organoids derived from human gastric glands. We first determined which 

Notch receptors were expressed by qRT-PCR, showing that similar to our findings in 

mouse, Notch1 and Notch2 were the predominant receptors expressed in human antral 

tissue and organoids (Fig 2-9A,B and Supplementary Fig 2-5,2-6, Supplementary Table 

2-3). 

 We confirmed that intrinsic Notch signaling was required for growth of human 

organoids, with reduced organoid size observed after addition of DAPT to the culture 

media (Fig 2-9C-E). Treatment with αN1+αN2, αN1 or αN2 also reduced growth, with a 

pattern remarkably similar to what we observed in mouse organoids. These findings 

suggest that Notch1 and Notch2 together regulate human antral organoid growth and 

that the mouse serves as a valid model to study human gastric epithelial stem cell 

function. 

 
 
2.5: DISCUSSION 

Here we report that Notch signaling regulates gastric antral epithelial cell 

homeostasis through the Notch1 and Notch2 receptors. Inhibition of both Notch1 and 

Notch2 signaling mimics effects on proliferation and differentiation observed with global 

Notch inhibition with DBZ treatment. Notch signaling in antral LGR5 stem cells was 

shown by Notch reporter expression and lineage tracing studies. We also showed that 

Notch signaling is crucial for proliferation of gastric LGR5 stem cells, with both Notch1  
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Figure 2-9. Human antral organoid growth is regulated by Notch1 and Notch2. (A, 
B) Notch receptor mRNA abundance was measured by qRT-PCR in (A) full-thickness 
human tissue or (B) antral organoids (mean ± SEM, n=3 patients or patient-derived 
organoid lines). See Supplementary Figures 2-5 and 2-6, and Supplementary Table 2-3 
for detailed information on human tissues. Morphology (C,D,F-I) and quantitative 
measure of organoid size (E,J) following treatment with (C) vehicle, (D) DAPT, (F) αGd, 
(G) αN1+αN2, (H) αN1, or (I) αN2 (mean ± SEM, n=3 independent patient-derived 
organoid lines). Scale bar: 250µm. ND = Not detected. 
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and Notch2 functioning to promote stem cell proliferation. Our findings suggest that 

Notch1 is the primary receptor in LGR5 stem cells as we observed full lineage stripes 

with N1Cre; ROSA-Tom mice but not with N2Cre; ROSA-Tom mice. In addition αN1 

was more effective than αN2 in inhibiting organoid growth. Further studies will be 

needed to understand how Notch1 and Notch2 regulate transit amplifying progenitors 

versus stem cells.    

 Our finding that Notch signaling stimulates gastric stem and progenitor cell 

proliferation is consistent with previous reports associating Notch pathway activation 

with gastric tumorigenesis. Upregulation of Notch pathway components has been 

reported in human gastric cancer, including Notch1, Notch2, Dll4, and Hes110,11,23, with 

Notch1 being associated with diffuse type and Jagged1 being overexpressed in both 

diffuse and poorly differentiated type cancers24. Consistent with a potential role for 

Notch in promoting gastric tumorigenesis, genetic mouse models of Notch 

overexpression in the stomach induced hyperplastic polyps8,9.  

 We further demonstrate that Notch1 and Notch2 regulate epithelial cell 

differentiation. Inhibition of both Notch1 and Notch2 signaling resulted in significant 

increases in all differentiated lineages, with increases in endocrine, surface mucous and 

deep mucous cells, similar to what is seen with global Notch inhibition. Our observation 

that individual inhibition of Notch1 or Notch2 did not broadly change differentiated cell 

types suggests that these receptors generally have redundant roles in differentiation. 

Notch regulation of differentiation in the stomach differs from the action of Notch in the 

intestine, where it has been well established that pathway inhibition induces a cell fate 

switch leading to secretory cell hyperplasia3,4,6. Thus, while Notch signaling in the 
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intestine promotes enterocyte differentiation, Notch signaling in the stomach appears to 

generally repress differentiation of all lineages9. It is important to note however that in 

contrast to the intestine, the adult stomach only contains secretory cells.    

 Interestingly, we observed that Notch inhibition resulted in marked cellular 

remodeling. Cells at the surface exhibited an increased number of secretory granules to 

accompany the observed increases in immunostaining and gene expression of surface 

mucous cell markers. Tissue remodeling in the gland base was characterized by 

increased density and size of secretory granules and upregulation of intrinsic factor 

immunostaining. We also observed an increase in expression of selected intestinal and 

corpus cell markers, although the expression pattern did not suggest conversion of the 

antrum to these other gastrointestinal tissues. Further studies are needed to understand 

the role Notch plays in maintaining antral cell regional identity. 

Cells that co-express intrinsic factor and mucous cell markers, such as TFF2, 

have been previously described in both immature and adult stomach. In mouse, co-

expressing cells are observed throughout the immature newborn stomach, including the 

proximal corpus and distal antral regions20. Moreover, in adult human and mouse 

stomach, co-expressing cells have been observed in adult corpus as a metaplastic cell 

lineage termed spasmolytic polypeptide-expressing metaplasia (SPEM)25. SPEM is 

induced in response to loss of parietal cells and has been proposed to be a precursor to 

gastric cancer26–28. How the remodeled antral cells in the Notch-inhibited antrum relate 

to these previously described cell types will be an interesting future question.  

 The development of methods to grow epithelial organoids from primary mouse 

and human tissue is a powerful approach to study antral stem cells1,22,29,30. Either 
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complete Notch blockade with GSI, or specific receptor targeting with αN1 or αN2 

inhibitory antibodies had similar effects of reducing overall organoid growth, with Notch1 

playing a more significant role than Notch2. This finding agrees with our data showing 

active Notch1 signaling in antral LGR5 stem cells. Furthermore these studies showed 

that Notch signaling is intrinsic to the gastric epithelium, with signaling required for 

organoid growth in culture. In addition, we observed that Notch regulates organoid 

differentiation, with upregulation of zymogenic and endocrine cell marker expression 

after Notch inhibition with DAPT or combined αN1+αN2 treatment, similar to what we 

observed in vivo.  

 Our finding that Notch1 and Notch2 receptor signaling regulates human stomach 

epithelium has therapeutic implications. Notch pathway dysregulation is associated with 

the development of several cancers and thus this pathway is a prime target of 

therapeutic significance31. The use of pan-Notch inhibitors such as GSIs for Notch-

related pathologies has been of clinical relevance for years; however gastrointestinal 

toxicity severely limits their use3. Thus more specific pathway targets are being 

explored. In particular, the development of humanized inhibitory antibodies against 

either Notch1 or Notch2 might allow for dose-dependent inhibition of each receptor 

while avoiding the side effects seen with global Notch inhibition15. However, our findings 

predict that targeting Notch1 or Notch2 to treat cancer might be associated with 

disruption of gastric epithelial cell homeostasis and thus gastric cellular changes should 

be considered in patients undergoing targeted Notch inhibition.  
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Supplementary Table 2-1. Antibodies and lectins used for histological analysis 
 
Antibody Species/Clonality Source Dilution Antigen 

Retrieval* 
Chloride channel 
accessory 1 
(CLCA1) 

Rabbit/Monoclonal Abcam 
(ab180851) 

1:500 Antigen 
Unmasking 
Solution 

Chromogranin A 
(CHGA)  

Rabbit/Polyclonal Abcam 
(15160) 

1:200  

Cleaved-Caspase 
3  

Rabbit/Monoclonal Cell Signaling 
(9661) 

1:50 Tris-EDTA 

Doublecortin-like 
kinase 1 (DCLK1) 

Rabbit/Polyclonal Abcam 
(ab37994) 

1:50  

E-cadherin  Rat/Monoclonal Invitrogen  
(13-1900) 

1:1000 Tris-EDTA 

Gastrin Rabbit/Polyclonal DAKO 
(A0568) 

1:1000 Tris-EDTA 

GFP Rabbit/Polyclonal Invitrogen 
(A21311) 

1:200  

GFP Chicken/Polyclonal Abcam  
(ab13970) 

1:200 Tris-EDTA 

Griffonia 
Simplicifolia II 
(GSII) 

Lectin Molecular Probes 
(L-21415) 

1:1000 Antigen 
Unmasking 
Solution 

Intrinsic Factor 
(GIF) 
  

Rabbit/Polyclonal Dr. D Alpers, 
Washington University 

1:1000 Antigen 
Unmasking 
Solution 

Histidine 
decarboxylase 
(HDC) 

Rabbit/Polyclonal Cappel (11670) 1:1000 Tris-EDTA 

Ki67 Rabbit/Monoclonal Thermo Scientific (RM-
9106) 

1:200 Tris-EDTA 

Mucin 2 (MUC2) Rabbit/Polyclonal Santa Cruz (sc-15334) 1:200 Tris-EDTA 
Platelet 
Endothelial Cell 
Adhesion 
Molecule 1 
(PECAM-1) 

Rat IgG BD Biosciences 
(557355) 

1:1000  

RFP Rabbit/Polyclonal Rockland 
Immunochemicals 
(600-401-379) 

1:200 Trilogy 

α-smooth muscle 
actin (αSMA) 

Mouse/Monoclonal Sigma-Aldrich 
(C6198) 

1:500  

*Antigen retrieval was performed on paraffin sections only with Antigen Unmasking Solution (Vector), 
Trilogy (Cell Marque), or Tris-EDTA (10mM Trizma Base, 1mM EDTA, 0.05% Tween-20, pH 9.0). 
Staining in cryo sections did not use antigen retrieval. 
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Supplementary Table 2-2. Oligonucleotide sequences used for qRT-PCR 

*Sequences designed to amplify the human gene; all other primers amplify the mouse gene 
  

Gene Forward Primer (5’ to 3’) Reverse Primer (5’ to 3’) Product 
Size 

Gapdh TCAAGAAGGTGGTGAAGCAGG TATTATGGGGGTCTGGGATGG 350 
Notch1 AGCAAGAAGAAGCGGAGAGAGC TGTCGTCCATCAGAGCACCATC 91 
Notch2 TGTGGAAGGAATGGTGGCAGAG CTCGGGCAGCAAGAAACAAAGG 194 
Notch3 TGATCGGCTCTGTGGTGATGC GGTGCTGTGTTCTCGCTTTCG 290 
Notch4 ATTCCTCTTCATGGGAAAGACA ACTCCCATCACTACCACAAACC 91 

Gif CTTGGCCCTGACCTGTATGT TAGGTTGCTCAGGTGTCACG 191 
Tff2 TGCTTTGATCTTGGATGCTG GGAAAAGCAGCAGTTTCGAC 174 
Gast GGACCAGGGACCAATGAGG CCAAAGTCCATCCATCCGTAGG 173 
Chga AAGAAGAGGAGGAGGAAGAGG TCCATCCACTGCCTGAGAG 149 
Clca1 CCAAAGGAAAACCCCAAGCAGTG CCCGTTACTCTGTCGATTACACAC 121 
Tff3 TTGCTGGGTCCT CTGGGATA GCCGGCACCATACATTGG 67 

Muc2 AGAACGATGCCT ACACCAAG CATTGAAGTCCCCGCAGAG 132 
Reg3γ AGGTGAAGTTGCCAAGAAAGATGC ATCATGGAGGACAGGAAGGAAGC 201 

Hdc CGACTAAGAAGCCCTGTTGAC TCACGGTATTCACGGTATTCAC 109 
Mmp7 CAGACTTACCTCGGATCGTAGTGG GTTCACTCCTGCGTCCTCACC 269 

NOTCH1* GACAGCCTCAACGGGTACAA CACACGTAGCCACTGGTCAT 137 
NOTCH2* CAACCGCCAGTGTGTTCAAG GAGCCATGCTTACGCTTTCG 240 
NOTCH3* TCTTGCTGCTGGTCATTCTC TGCCTCATCCTCTTCAGTTG 485 
NOTCH4* TGAGGTGAATCCAGACAAC ATACAGTCATCCAGGTTCTC 261 

ACTB* CATCGAGCACGGCATCGTCA TAGCACAGCCTGGATAGCAAC 211 
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Supplementary Table 2-3. List of patient information for human tissues 
 
 
  

Patient Age Gender 
H7 67 M 

H29 59 M 
H36 56 M 
H41 80+ F 
H46 68 M 
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Supplementary Figure 2-1. Positive control for Notch4 qRT-PCR assay. mRNA 
abundance measured in (A) pancreatic tissue (mouse) or (B) fat tissue (human) (mean 
± SEM of technical replicates, n=1).  
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Supplementary Figure 2-2. Altered cellular morphology with Notch inhibition. 
Semi-thin sections of antral gland base and surface regions from (A,C) vehicle or (B,D) 
DBZ-treated mice stained with toluidine blue. Scale = 10µm.  
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Supplementary Figure 2-3. Antral gland histology after Notch inhibition. Paraffin 
sections stained with haematoxilin and eosin (H&E) from (A) vehicle, (B) DBZ, (C) αGd, 
(D) αN1+αN2, (E) αN1, or (F) αN2-treated mice. Scale bar: 50 µm.  
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Supplementary Figure 2-4. Notch inhibition leads to increased GSII/GIF co-
staining at the antral gland base. Confocal microscopy of paraffin tissue sections co-
stained for GSII and GIF in (A) vehicle and (B) DBZ-treated mice. Occasional co-stained 
cells were detected in vehicle treated mice at the gland base. There was a marked 
increase in co-stained cells after Notch inhibition. Separate channels for GSII (A’, B’) 
and GIF (A’’, B’’) are shown. Although the majority of granules appear to be specific for 
GSII or GIF, there were also some co-stained granules (arrowheads). Scale bar: 10µm.  
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Supplementary Figure 2-5. Notch receptor expression in human gastric tissue. 
Notch receptor mRNA abundance was measured in (A) full-thickness antral tissue 
samples and (B) established organoids. Patient samples are listed in Supplementary 2- 
3. Shown are results of qRT-PCR analysis in each patient tissue sample or organoid 
line as marked (mean ± SEM of technical replicates). ND = Not detected.  
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Supplementary Figure 2-6. Histology of human gastric tissue samples used in 
this manuscript confirms antral tissue identity. Paraffin sections from individual 
human samples were stained with haematoxilin and eosin (H&E). Scale = 50 µm.  
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