
 

 

 

DROPLET MICROFLUIDICS COUPLED TO MICROCHIP 
ELECTROPHORESIS FOR HIGH-THROUGHPUT ENZYME  

MODULATOR SCREENING 
 

 
 

by 

 
 

Erik D. Guetschow 

 

A dissertation submitted in partial fulfillment 
of the requirements for the degree of 

Doctor of Philosophy 
(Chemistry) 

in the University of Michigan 
2016 

 
 
 
 
 
 
 
 
 
 

 
Doctoral Committee: 
  
 Professor Robert T. Kennedy, Chair 
 Associate Professor Nikolaos Chronis 
 Professor Mark E. Meyerhoff 
 Associate Professor Brandon T. Ruotolo 
 



 

© Erik D. Guetschow  
2016



 

 ii 

To my family and friends 

 

 



 

 iii 

ACKNOWLEDGEMENTS 

 To begin, I would like to thank my research advisor, Dr. Robert Kennedy, for his 

continuous guidance without which this thesis would not be possible. Thank you for the 

many insightful discussions and opportunity to explore interesting science.  I am also 

grateful to my committee members – Dr. Nikos Chronis, Dr. Mark Meyerhoff, and Dr. 

Brandon Ruotolo, for contributing their time and energy to my success. Thank you to Dr. 

David Lombard for generously allowing me to work in his lab as I pretended to be a 

biologist. I would be remiss not to thank Dr. Jennifer Furchak, at Kalamazoo College, for 

setting me on this path all those years ago.  

Thank you to all members of the Kennedy Group – past and present – for their 

help in all aspects of this thesis. In particular, I’m grateful to Gwen Anderson for 

orienting me to lab; Neil Hershey for hilarious conversation, arguments, and coffee runs; 

Tom Slaney for teaching me to think outside the box; Kennon Deal for being a great 

friend and mentor; and, Jim Grinias for being an accomplice in many successful (and 

some failed!) experiments out of left field.  

Thank you to my friends – in Ann Arbor and elsewhere – for memories and 

laughter over the years. Thank you to Doug Roehler, Casey Thacker, and Jasem Yousuf 

for providing much needed distraction from the lab over the past five years. Thank you to 

my family for encouraging my curiosity. Finally, thank you to my partner, Lauren, for her 

endless love and support. 

  



 

 iv 

TABLE OF CONTENTS 

DEDICATION................................................................................................................... ii 

ACKNOWLEDGEMENTS ............................................................................................ iii 

LIST OF FIGURES ......................................................................................................... vi 

LIST OF APPENDICES ............................................................................................... xiv 

LIST OF ABBREVIATIONS ........................................................................................ xv 

ABSTRACT ................................................................................................................... xvii 

CHAPTER 1: INTRODUCTION .................................................................................... 1 

High-Throughput Screening ............................................................................................... 1 
Capillary and Microchip Electrophoresis for High-Throughput Screening ........................ 3 
Segmented Flow for Low Volume Sample Handling ....................................................... 10 
Sirtuin Biology .................................................................................................................. 15 
Dissertation Overview ...................................................................................................... 21 

CHAPTER 2: SUB-SECOND ELECTROPHORETIC SEPARATIONS 
FROM DROPLET SAMPLES FOR SCREENING OF ENZYME 
MODULATORS ............................................................................................................. 24 

Introduction ....................................................................................................................... 24 
Materials and Methods ...................................................................................................... 26 
Results and Discussion ..................................................................................................... 29 
Conclusion ........................................................................................................................ 42 

CHAPTER 3: IDENTIFICATION OF SIRTUIN 5 INHIBITORS BY 
ULTRAFAST MICROCHIP ELECTROPHORESIS USING NANOLITER 
VOLUME SAMPLES ..................................................................................................... 43 

Introduction ....................................................................................................................... 43 
Materials and Methods ...................................................................................................... 45 



 

 v 

Results and Discussion ..................................................................................................... 50 
Conclusion ........................................................................................................................ 64 

CHAPTER 4: TOWARD AN ALL-DROPLET MICROCHIP 
ELECTROPHORESIS SCREENING PLATFORM .................................................. 65 

Introduction ....................................................................................................................... 65 
Materials and Methods ...................................................................................................... 67 
Results and Discussion ..................................................................................................... 69 
Conclusion ........................................................................................................................ 80 

CHAPTER 5: FUTURE DIRECTIONS ....................................................................... 82 

Automated and Continuous Droplet Generation ............................................................... 82 
Protein-Protein Interaction Screening by Microchip Electrophoresis .............................. 86 
Coupling Droplet Samples to Microchip Electrochromatography ................................... 90 

APPENDICES ................................................................................................................. 93 

Appendix A ....................................................................................................................... 93 
Appendix B ....................................................................................................................... 97 
Appendix C ....................................................................................................................... 99 

REFERENCES .............................................................................................................. 103 

 

  



 

 vi 

LIST OF FIGURES 

Figure 1-1.  Schematic of capillary electrophoresis instrumentation and 
characteristics. The inlet and outlet of a fused silica capillary, 
filled with background electrolyte, are inserted into buffer vials 
connected to a high-voltage power supply. The external electric 
field generates an electric double layer due to interactions 
between the negatively charged surface and counter ions in the 
buffer (top grey box). This generates a plug-shaped 
electroosmotic flow. Analytes are separated based on 
differences in size-to-charge ratio with positive analytes 
migrating fastest and negatively charged analytes migrating 
slowest. All neutral analytes co-migrate with EOF. ..................................... 6 

Figure 1-2.  Schematic of the Caliper LabChip system for screening 
biochemical assays by microchip electrophoresis. At the top, 
shown coming in and out of the plane, is the microchip used for 
separation by a combination of electrophoresis and vacuum 
driven flow (applied at the outlet reservoir). Sample is 
introduced through a ‘sipper’ tube by interfacing to a multiwell 
plate. Labeled substrate and product peptides are separated 
based on differences in size-to-charge ratio and detected by 
fluorescence (shown bottom right).26 ........................................................... 9 

Figure 1-3.  Examples of manipulations and transformations possible with 
droplet samples. A) Asymmetric splitting of primary droplets 
into smaller secondary droplets by control channel geometry.42 
B) Merging of two sequential droplets using a pillar array. The 
first droplet becomes stuck in the pillar array until merging with 
the second droplet. At this point, alternate flow paths for oil 
phase are blocked at the droplet is released.46 C) Rapid mixing 
is achieved within droplets through integration of turns into the 
microfluidic network. At each turn the orientation of the droplet 
changes leading to advective mixing.51 D) Fluorescence-
activated droplet sorting (FADS) is achievable using external 
electrodes (shown in black and red at the top of the image). If a 
signal threshold is met, the electrode is energized causing 
droplets to deflect into the upper channel. Below the threshold, 



 

 vii 

droplets automatically go into the lower channel (inset image).54 
E) Reagent addition scheme using a hydrophilic side channel to 
reduce carryover.52 F) Serial dilution of droplets using a dilution 
chamber. Dilution droplets merge with the primary droplet (dark 
droplet centered in each frame) activating a fluidic valve and 
dispensing a tertiary droplet. Dilution of the primary droplet 
generates a serial dilution on chip.59 Figures reproduced with 
permission from individual publishers. ...................................................... 11 

Figure 1-4.  Examples of droplet desegmentation strategies for coupling to 
downstream analysis using either passive (examples in red box) 
or active strategies. A) Extraction of droplets using special 
‘comb’ channel geometry composed of thin PDMS pillars. 
Carrier oil is extracted through the pillars while the aqueous 
sample merges with the separation channel (top channel in each 
image).70 B) Schematic diagram of a device using oleophilic 
foam/film to remove carrier oil prior to droplets merging with 
the separation channel. This method was used for analysis of 
droplets by gel electrophoresis.71 C) Diagram of a glass device 
with modified surface chemistry for droplet extraction. The 
channel containing droplets is made hydrophobic through 
derivatization with octadecyltrichlorosilane while all other 
channels remain hydrophilic. Droplets are extracted across a 
thin ‘extraction bridge’ prior to analysis by MCE.79 D) Active 
droplet extraction utilizing applied electric fields for analysis of 
droplets by mass spectrometry. Droplets flow parallel to and are 
merged with an aqueous stream upon entering the external 
electric field. Carrier phase, which is non-conductive, continues 
on unaffected.77 Reproduced with permission from individual 
publishers. ................................................................................................... 14 

Figure 1-5.  Primary cellular localization and function of sirtuins. SIRT1 and 
SIRT2 are present in the nuclear and cytosolic fractions.82 
SIRT3, SIRT4, and SIRT5 are located in the mitochondria. 
SIRT6 and SIRT7 are located in the nuclear fraction. For well-
studied sirtuins, their targets and affected cellular processes are 
labeled and suppression (red lines) or activation (green arrows) 
is noted. A black line connecting a sirtuin to an acetyl group 
denotes a specific acetyl-lysine target. Reproduced with 
permission from Portland Press. ................................................................. 16 

Figure 1-6.  Protein targets regulated by SIRT5 in vivo. Through removal of 
acetyl, succinyl, glutaryl, or malonyl groups from target lysines, 
SIRT5 activates (blue ellipse) or inhibits (green ellipse) target 
proteins. This affects downstream targets (yellow boxes) by 
increasing or decreasing target levels or activity (denoted by 
upward or downward facing arrows).102 Reproduced with 
permissions from Mary Ann Liebert, Inc. .................................................. 18 



 

 viii 

Figure 1-7.  Schematic of the commercially available Fluor-de-Lys™ assay 
for measuring sirtuin activity. In step 1, a sirtuin, or histone 
deacetylase, removes a lysine modification (i.e. acetyl group) 
from a peptide substrate conjugated to an AMC fluorophore 
generating a substrate for trypsin. In step 2, trypsin cleaves the 
amide bond linking AMC to the peptide releasing the 
fluorophore and generating and fluorescence signal. Please note 
that the AMC fluorophore is mis-labeled from the original 
publication and should be 7-amino-4-methylcoumarin.110 
Reproduced with permission from Elsevier. .............................................. 20 

Figure 2-1.  Schematic of PDMS-glass hybrid microfluidic device for 
analysis of segmented flow samples. Aqueous droplets (blue 
colored) are extracted by the extraction capillary and sampled 
by EOF in the sampling channel towards the injection cross. 
During injection, the positive high-voltage power supply is 
floated to allow injection of a discrete sample plug into the 
separation channel. The positive high-voltage is applied again 
during separation and excess sample is gated to the waste 
channel. To assist extraction waste droplets (green colored) are 
generated after the extraction point to provide a slight 
backpressure for extraction. ....................................................................... 30 

Figure 2-2.  Comparison of extraction of droplet stream without (A) and 
with (B) waste channel droplets shows the effect of added 
backpressure on extraction efficiency. When waste droplets are 
present intensity of droplets before extraction (black trace) is 
nearly identical to intensity of sample after extraction (red trace) 
and transitions from high to low intensity occur rapidly 
suggesting that each droplet rapidly rinses out the previously 
extracted droplet from the glass chip. Without waste droplets, 
sample intensity is not stable over time on the MCE chip as 
sample droplets mix. Detection point for droplets before 
extraction (black star) and after extraction (red star) are marked 
on the schematic in Figure 1. ...................................................................... 33 

Figure 2-3.  Protein kinase A catalyzed phosphorylation of kemptide (A) and 
resulting electropherogram (B) for the separation of the reaction 
mixture. Product and substrate were separated in 0.5 cm using 
an applied field of 2000 V/cm and a 30 ms injection. ................................ 35 

Figure 2-4.  Electropherograms and raw peak area data demonstrating 
sample clearing and indexing for screening by MCE. (A) 
Electropherograms showing injection and separation of 
rhodamine (R), substrate (S), and product (P) and transition 
from a sample without rhodamine to a sample with rhodamine 
demonstrating complete sample clearing by two droplets. (B) 
Extracted peak areas for rhodamine (black trace), substrate (red 
trace), and product (blue trace) for analysis of 12 samples – two 



 

 ix 

controls and ten test compounds. Changes in rhodamine peak 
height were used to determine start and end points for each 
compound to calculate reaction yield. ........................................................ 38 

Figure 2-5.  Screening 140 small molecules against protein kinase A reveals 
25 hit compounds based on the inhibitor threshold (red line). All 
reaction yields are normalized to the average negative control 
yield (blue line). With the exception of compound 25, which is 
plotted at 2.5 µM, compounds 1-60 were tested at 12.5 µM and 
compounds 61-140 were tested at 5 µM. ................................................... 40 

Figure 2-6.  Dose-response curves for H-89 (black trace) and ellagic acid 
(red trace) generated from protein kinase A screening data. The 
measured IC50 values agree with literature values of 150 nM134 
and 3 µM135 for H-89 and ellagic acid, respectively. ................................. 41 

Figure 3-1.  SIRT5 and SIRT5H158Y have similar activity against SDHA-
derived peptide and PDC holoenzyme. (a) Electropherograms 
demonstrating that SIRT5 desuccinylates target peptide forming 
a product with shorter migration time and that SIRT5H158Y has 
reduced enzymatic activity. (b) Succinylation of porcine heart 
PDC is reduced following incubation with SIRT5 but not 
SIRT5H158Y. Upper blot: total lysine succinylation; PDHA1 
band highlighted in red. Middle and lower blots: PDHA1 and 
SIRT5, respectively. ................................................................................... 52 

Figure 3-2.  Schematic of microfluidic device for analysis of droplet samples 
by MCE showing positioning of droplet samples orthogonally to 
the 1 mm fused silica extraction capillary. ................................................. 53 

Figure 3-3.  Separation throughput was increased 4-fold for SIRT5 assay 
through improvement of separation and injection conditions. (a) 
Electropherograms for initial separation conditions based on 
previous work and improved conditions capable of baseline 
separation in as little as 250 ms. (b) Optimum injection width is 
15 ms based substrate (black) and product (red) peak variance. ................ 55 

Figure 3-4.  Representative electropherograms from injections made at the 
beginning (a) and end (b) of SIRT5 screening. The compound 
number is labeled above injections, which are denoted by an 
arrow. Individual peaks corresponding to rhodamine (R), 
product (P), and substrate (S) are labeled. .................................................. 56 

Figure 3-5.  A) SIRT5 catalyzes the removal of succinyl moieties from 
lysine side chains in the presence of NAD+ causing a +2 change 
in peptide charge. B) Michaelis-Menton kinetics data for SIRT5 
with excess NAD+. Km is 1.6 ± 0.4 µM, Kcat is 0.092 ± 0.008 s-1, 
and Kcat/Km is 5.8 x 104 M-1s-1. C) Reaction progress for 1 µM 
substrate and 10 nM SIRT5 demonstrating reaction linearity up 
to ~50 minutes. D) SIRT5 reaction can be quenched by addition 



 

 x 

of 1.5 volumes of 10 mM sodium tetraborate, pH 10. Ice sample 
was quenched after 30 minutes and stored at -80 °C, RT sample 
was quenched after 30 minutes and stored at room temperature, 
and 1 hr sample was allowed to react for 1 hr before quenching. 
(n = 3 for all samples)................................................................................. 58 

Figure 3-6.  A) Data from SIRT5 assay validation screen using 80 
compounds from the Epigenetics Screening Library. Inhibition 
threshold is denoted by red line. B) Dose-response curves for 
compounds reducing SIRT5 activity by 50 percent. .................................. 59 

Figure 3-7.  Screen of Prestwick Collection Library against SIRT5. A). 
Normalized SIRT5 activity with each of the 1280 compounds. 
Each point represents the average enzyme activity with a test 
compound and the red line denotes the inhibition threshold. B) 
Top plot: Electropherograms corresponding to the 160 
compounds in the grey region of Panel A. Bottom plot: 
Enlarged view of red highlight region (338-342 s) showing 
separation of rhodamine (R), product peptide (P), and substrate 
peptide (S) for three compounds. #1117 is an inhibitor. 
Injections are denoted with an arrow and 6-8 injections are 
made from each sample droplet. ................................................................. 60 

Figure 3-8.  Confirmation of SIRT5 inhibitors during initial screening and 
demonstration of analysis reproducibility. All compounds 
identified as reducing SIRT5 activity by 70 percent were 
formatted into two sample droplets each and re-analyzed by 
MCE. In all cases, the data from re-testing (red bars) matches 
well with initial screening (black bars) data demonstrating 
reproducibility of analysis and confirming SIRT5 inhibitors for 
follow up studies. Compounds labeled with an asterisks (*) 
were identified as false-positives by dose-response analysis (i.e. 
dose-dependent inhibition was not observed). ........................................... 61 

Figure 3-9.  Dose-response analysis for compounds reducing SIRT5 activity 
by 70 percent. Ten compounds were identified during screening 
and 8 were confirmed as inhibitors with IC50 values denoted on 
each plot. .................................................................................................... 62 

Figure 4-1.  Overview of all-droplet high-throughput screening with 
microchip electrophoresis for detection. Droplets containing test 
compounds are generated by sipping from an MWP. Reagents 
(e.g. substrate and enzyme) are directly injected into droplets 
using a PDMS microfluidic device and collected for incubation. 
Completed reactions are analyzed by MCE and inhibitors are 
identified based on amount of substrate and product present in 
each sample. ............................................................................................... 70 

Figure 4-2.  Schematic of PDMS droplet reagent addition device. Sample 
droplets containing test compounds are pumped onto the chip 



 

 xi 

through a fluorinated capillary while reagents are injected via 
hydrophilic capillaries. Serpentine mixing regions on the device 
rapidly distribute reagent throughout the droplet. Droplets are 
collected via another fluorinated capillary for incubation or 
analysis. ...................................................................................................... 72 

Figure 4-3.  Image of zero dead volume Teflon union used to connect Teflon 
tubing containing sample droplets (left side of image) to the 
fluorinated transfer capillary. Droplets seamlessly transfer from 
Teflon-Teflon and from Teflon-capillary with minimal 
carryover. .................................................................................................... 73 

Figure 4-4.  Effect of oil phase surfactant concentration on reagent addition 
and carryover. A) At high surfactant concentration (1 %), 
reagent droplets do not completely merge with passing droplets 
leading to formation of reagent only droplets. B) At low 
surfactant concentrations, reagent droplets readily merger with 
passing droplets. However, carryover increases, slightly, as 
surfactant concentration approaches 0 %. .................................................. 74 

Figure 4-5.  Reagent addition throughput increases linearly with droplet flow 
rate up to 3 µL/min (the fastest flow rate tested). At each flow 
rate, reagent flow rate was adjusted to achieve 10 percent 
addition into the parent droplet. Normalized droplet intensity, a 
measure of reagent addition reliability, is consistent across the 
flow rates tested. ......................................................................................... 75 

Figure 4-6.  Plot of reagent addition carryover in the first and second blank 
sample at each step of reagent addition. Most carryover is 
contributed by addition of reagents with reagents containing 
glycerol and Tween leading to higher carryover. At all steps, 
carryover is less than 1 percent in the second blank sample 
suggesting that two droplet per sample should be sufficient to 
avoid carryover during analysis. The droplet train consisted of 
alternating sets of a signal droplet followed by four blank 
droplets (e.g. S-W-W-W-W). In all cases, the last two blank 
droplets had no carryover. .......................................................................... 77 

Figure 4-7.  Demonstration of coupling reagent addition sample preparation 
to microchip electrophoresis for analysis. (A) Selected raw 
electropherograms from the analysis of alternating sample sets 
(two droplets each) demonstrating that carryover is present in 
the first droplet but is not present in the second sample droplet. 
Arrows denote MCE injections and the rhodamine (R) and 
peptide (P) peaks are labeled in each separation. (B) Plot of 
normalized peak area ratio (rhodamine:peptide) from samples 
containing either rhodamine or water. The shaded regions 
denote ± 1 standard deviation for the average peak area ratio of 
each sample type. ....................................................................................... 80 



 

 xii 

Figure 5-1.  Schematic of the HyperCyt platform for high-throughput flow 
cytometry. A sample probe is translated around an MWP using 
a computer controlled positioner while air segmented droplets 
are generated using a peristaltic pump to generate flow.166 
Reproduced with permissions from Nature Publishing Group. ................. 84 

Figure 5-2.  Schematic of electromagnetic fluid pump for segmented flow 
using magnetic ionic liquids (MIL) as the carrier fluid. Several 
coils of wire would be placed in a series along the Teflon tubing 
(i.e. electromagnets) and energized sequentially to generate a 
traveling magnetic wave. This magnetic wave would drive the 
MIL and droplets through the tubing. ........................................................ 85 

Figure 5-3.  Affinity probe capillary electrophoresis for monitoring protein-
protein interactions. One protein (affinity probe) is labeled with 
a fluorescent tag while the other protein is unlabeled. Two peaks 
are observed in the electropherogram corresponding to the 
labeled protein and the protein complex (labeled protein bound 
to unlabeled target).22 Reproduced with permissions from 
American Chemical Society. ...................................................................... 87 

Figure 5-4.  Protein-protein interaction monitoring using affinity probe 
microchip electrophoresis. A) Unbound Hsp70 (blue trace) can 
be separated from the protein complex (red trace) using a 14 
second separation. Competition between labeled and unlabeled 
Hsp70 for Bag3 binding leads to both peaks in the 
electropherogram (black trace). B) Binding assay plot for 0.5 
µM Hsp70 with Bag3. Binding constant is 140 nM. .................................. 88 

Figure 5-5.  Microfluidic device for capillary electrochromatography (CEC) 
or gel electrophoresis (CGE) from droplet samples. A larger 
bore channel to accommodate entangled polymer beds or 
stationary phase replaces the narrow bore electrophoresis 
channel. The injection cross, with physical weir, and detection 
point with UV frit are shown in enlarged regions. ..................................... 92 

Figure A-1.  Images of rough (A) and smooth (B) etching of glass slides. In 
the rough etched image, the channel is much wider due to 
anisotropic etching and the walls are not smooth. After 
annealing, isotropic etching occurs and channels have smooth 
surfaces. .......................................................................................................94 

Figure A-2.  Overview of fabrication process for deep feature etching with 
high fidelity. Chrome coated substrates are annealed at 310 °C 
for 3 hr prior to spin coating 500 nm of AZ1505 resist. After 
soft baking, photomask pattern is transferred by UV exposure. 
Photoresist is developed and exposed chrome is etched to reveal 
glass substrate for HF etching. ....................................................................96 



 

 xiii 

Figure C-1.  Reduction in channel depth from 6 µm (A) to 3 µm (B) results 
in 2-fold improvement to separation efficiency as measured by 
theoretical plates. For both devices, applied electric field was 
1,100 V/cm, LIF detection occurred at 11.1 cm, and background 
electrolyte was 10 mM sodium tetraborate, pH 10 with 0.9 mM 
hydroxyproply-β-cylcodextran. .................................................................100 

Figure C-2.  Reduction in channel length from 12 cm (A) to 4 cm (B) while 
maintaining the same applied voltage results in short separation 
times with similar separation efficiency. Electric field was 1,100 
V/cm for A and 2,800 V/cm for B with the same background 
electrolyte as in Figure B-1. ......................................................................101 



 

 xiv 

LIST OF APPENDICES 

Appendix A. Fabrication Strategies for Deep Etching of Glass Substrates .......................93 

Appendix B. Inhibitor Structure and Potency from SIRT5 Screening ..............................97 

Appendix C. Effect of Channel Geometry on Separation Speed and Efficiency ..............99 

  



 

 xv 

LIST OF ABBREVIATIONS 

APCE Affinity Probe Capillary Electrophoresis 

5-FAM 5-carboxyfluorescein 

AMC 7-amino-4-methylcoumarin 

Bag3 Bcl2-Associated Athanogene 

BGE Background Electrolyte 

CE Capillary Electrophoresis 

CEC Capillary Electrochromatography 

CGE Capillary Gel Electrophoresis 

CPS1 Carbamoyl-phosphate Synthase 1 

DMSO Dimethyl Sulfoxide 

EOF Electroosmotic Flow 

ESI Electrospray Ionization 

FRET Fluorescence Resonance Energy Transfer 

GAPDH Glyceraldehyde-3-phosphate Dehydrogenase 

HMDS Hexamethyldisilazane 

HMGCS2 3-hydroxy-3-methylglutaryl CoA Synthase 2 

HPLC High Pressure Liquid Chromatography 

Hsp70 Heat Shock Protein 70 



 

 xvi 

HTS High-Throughput Screening 

i.d. Inner Diameter 

IC50 Half Maximal Inhibitory Concentration 

Kd Dissociation Constant 

KO Knockout (in regard to cell lines/mouse models) 

LIF Laser-Induced Fluorescence 

MALDI Matrix-Assisted Laser Desorption Ionization 

MCE Microchip Electrophoresis 

MS Mass Spectrometry 

MWP Multi-well Plate 

NAD+ Nicotinamide Adenine Dinucleotide 

o.d. Outer Diameter 

PDC Pyruvate Dehydrogenase Complex 

PDMS Polydimethylsiloxane 

PFD Perfluorodecalin 

PFO Perfluorooctanol 

PKA Protein Kinase A 

PPI Protein-Protein Interaction 

SDH Succinate Dehydrogenase 

SIRT Sirtuin 

SOD1    Superoxide Dismutase 1 

  



 

 xvii 

ABSTRACT 

High-throughput screening (HTS) represents a powerful tool for drug discovery 

by allowing 104 to 105 assays to be completed within a single day. Typically, assays are 

performed in multiwell plates (MWPs) utilizing fluorogenic substrates for detection. 

These substrates increase development time and can introduce artifactual results. 

Therefore, alternate screening strategies based around natural substrates are necessary. 

 We developed a screening platform that couples nanoliter volume samples to 

microchip electrophoresis for analysis using a novel polydimethylsiloxane (PDMS)-and-

glass microfluidic device. The system was demonstrated by screening a small library 

against protein kinase A (PKA), which regulates metabolism within the cell. It was 

chosen for its well-characterized kinetic parameters and commercially available peptide 

substrates. Sample throughput of 0.16 Hz was achieved allowing at least 6 replicate MCE 

injections from each sample in a high quality assay (Z’-factor = 0.8). 

 To demonstrate the ability to screen larger libraries, we developed a novel assay 

for sirtuin 5 (SIRT5) using a naturally derived peptide substrate. SIRT5 impacts 

metabolism and has reported oncogenic functions making inhibitor identification of 

clinical importance. Compared to the PKA assay previously developed, assay throughput 

was increased 3-fold and 1406 samples were analyzed within 46 minutes (0.5 Hz). Using 

a 250 ms separation, each assay sample could be analyzed 8 times by MCE generating 
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over 11,000 electropherograms. Several previously unreported inhibitors of SIRT5 were 

identified and verified by dose-response analysis.  

 Finally, work toward miniaturization of high-throughput assays was demonstrated 

by performing sample preparation and analysis completely within nanoliter volume 

droplets. A simple to use and easy to fabricate PDMS microfluidic device was developed 

to allow addition of assay reagents to nanoliter volume samples. Reagent use, relative to 

assays performed in 384 well plates, could be reduced 1,000-fold and sample-to-sample 

carryover was less than 5 percent under typical experimental conditions. Analysis of 

samples prepared in droplet format was demonstrated with droplets containing a 

fluorescent dye and addition of a fluorescent peptide. These samples could be analyzed 

by MCE at 0.33 samples per second but increased throughput should be possible by using 

higher flow rates.  
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CHAPTER 1:  INTRODUCTION 

High-Throughput Screening 

High-throughput screening (HTS) has emerged in recent years as a powerful tool 

in drug discovery and other areas of biology and chemistry, such as catalyst discovery 

and protein engineering.1, 2 High-throughput workflows are able to assay 104 to 105 

compounds against a selected target within a single day. To achieve this level of 

throughput, most HTS utilizes multi-well plate (MWP)-based assays with robotic plate 

manipulation and liquid handling to massively parallelize sample preparation.1-5 With the 

increasing size of compound libraries available, MWP density has increased from 96 to 

1536 wells per plate in an effort to reduce assay time and sample consumption. Many 

technologies exist for high-throughput sample preparation ranging from bulk liquid 

dispensing (i.e. Thermo Fisher MultiDrop Combi) to compound library dispensing at 

nanoliter volumes (i.e. Caliper Life Science SciClone pin tool). These technologies allow 

even large compound libraries to be prepared in a timely manner. 

Drug discovery has largely focused on five target families: G protein coupled 

receptors, kinases, proteases, nuclear receptors, and ion channels.6 However, these 

families miss a large number of pharmacological targets within cells, such as other 

enzyme classes. Enzymes, which include kinases and proteases, efficiently catalyze 

chemical reactions to regulate cellular functions, such as metabolism, cell death, and 
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protein degradation. Indeed, many diseases and disorders have been linked to over- or 

under-expression of specific enzymes demonstrating their importance as pharmacological 

targets for disease intervention. Emphasizing this point, 50 percent of drugs on the 

market as of 2006 targeted enzymes (i.e. proteases and kinases).7 

To achieve the throughput necessary for drug discovery, most assays utilize 

fluorescence detection methods. These tend to be robust, useful in homogenous assays 

found in HTS, and compatible with the small sample volumes associated with high-

density well plates. To measure the effect of test compounds, a loss or gain of signal must 

be correlated to enzyme activity.  For example, to detect β-galactosidase activity 

fluorescein-di-β-D-galactopyranoside (FDG), which consists of a fluorescein molecule 

conjugated to two galactopyranosyl moieties, is commonly used.8 In the absence of β-

galactosidase the substrates is non-fluorescent; however, removal of the galactopyranosyl 

moieties by the enzyme results in a fluorescent signal that correlates the β-galactosidase 

activity. Alternatively, coupled enzyme cascades, such as the commonly used Amplex 

Red system, can be used if fluorogenic substrates are unavailable. These assays 

stoichiometrically couple product formation in an assay of interest to a formation of a 

fluorescent product through a series of secondary enzymes. In many cases, this requires 

the development of novel fluorogenic substrates or optimization of coupled enzyme 

reactions for each assay9 increasing assay development time and cost. Additionally, use 

of artificial substrates has the potential to generate false positive results due to possible 

non-physiological behaviors of the engineered substrates. To address these and other 

limitations, work has been done to develop HTS assays based on alternative detection 
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modes, such as liquid chromatography (LC), mass spectrometry (MS), surface plasmon 

resonance (SPR), and impedance, that avoid fluorogenic substrates.9-16 

Several limitations exist for applying these alternative detection strategies to high-

throughput screening. In the case of the optical assays, multi-analyte detection is difficult 

and most assays require multiple steps to generate a signal. For LC-MS assays, label-free 

analysis allows one to use natural peptides without needing to engineer a fluorophore; 

however, the throughput remains low due to slow LC separations.  

Capillary and Microchip Electrophoresis for High-Throughput Screening 

Although LC-MS methods tend to have low throughput unsuited to large-scale 

screening, other separations-based HTS methods, with potentially higher throughput, are 

possible. Capillary electrophoresis (CE), another separation technique, allows for rapid 

separation of analytes not possible by most LC-MS methods. This combined with the 

benefits of LC-MS methods, such as multi-analyte detection and spatial separation of 

interfering species, makes CE an attractive option for HTS. If fluorophores are required 

for detection, they can be placed remotely from the active peptide residue to reduce the 

likelihood of false positive results caused by non-specific interactions. Furthermore, 

peptide engineering to quench the fluorophore prior to enzymatic activity is not necessary 

because substrate and product can be separated prior to detection. To understand the 

potential of CE-based HTS, it will beneficial to discuss several fundamental aspects of 

CE and previous attempts at HTS by CE. 

First established in 1981,17 CE is typically performed fused-silica capillaries or on 

glass microfluidic devices, in which case it is called microchip electrophoresis (MCE),18, 

19 with the inlet and outlet connected to a voltage source (Figure 1-1). This development 
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addressed several limitations associated with existing electrophoretic methods (i.e. gel 

electrophoresis), such as slow separation speed and excessive joule heating. CE and MCE 

address these limitations by performing separations within narrow bore channels or tubes 

(i.e. 5-200 µm inner diameter) that afford better heat dissipation. Improved heat 

dissipation, in turn, allows application of higher voltages to achieve faster separations and 

improved performance.  

In electrophoresis, analytes migrate through an electrically conductive buffer, 

called the background electrolyte (BGE), under the influence of an applied electric field. 

The speed and direction of migration, which ultimately affects analyte separation, is 

based on a combination of the electroosmotic mobility (µEOF) contributed by the buffer 

and the electrophoretic mobility (µEP) of the analyte.  

Electroosmotic mobility is due to the formation of an electric double layer at the 

surface of the fused silica due to interactions between the negatively charged surface 

silanols and positive counter ions within the BGE (Figure 1-1, top). When an electric 

field (E) is applied, these ions move along the wall dragging the bulk solution and 

creating a net flow toward the cathode. This flow, called electroosmotic flow (EOF), 

moves with a velocity (νEOF) determined by the following equation: 

𝑣𝑣𝐸𝐸𝐸𝐸𝐸𝐸 =  µ𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  
𝜀𝜀𝜀𝜀
𝜂𝜂
𝐸𝐸     Eq. 1-1 

where ε is the permittivity of the BGE, ζ is the zeta-potential at the capillary wall, and 

η is the solution viscosity. This equation suggests that EOF is characteristic of the buffer 

composition and increases with applied electric field. The electrophoretic mobility is an 

intrinsic property of each analyte as is described as: 
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µ =
𝑞𝑞

6𝜋𝜋𝜋𝜋𝜋𝜋
     Eq. 1-2 

where q is the analyte charge and r is the Stoke’s radius of the analyte. Finally, the net 

migration velocity of each analyte (ν) will depend on contributions from both terms: 

𝜈𝜈 = (µ𝐸𝐸𝐸𝐸𝐸𝐸 + µ𝐸𝐸𝐸𝐸)𝐸𝐸     Eq. 1-3 

Therefore, analytes can be separated from one another based on their charge-to-size ratio. 

Under normal separation conditions (i.e. negatively charged surface and high pH buffers), 

EOF is directed toward the cathode (outlet), and cations migrate fastest, followed by all 

neutral compounds, and finally anions.  

 Compared to LC separations, which use pressure driven flow, EOF has a plug-

shaped profile resulting in less band broadening during the separation. Additionally, 

assuming Joule heating, injection width, and analyte adsorption are mitigated, diffusion is 

the only source of band broadening. Under these conditions, theory suggests that 

increasing separation voltage (V) allows for shorter migration times (Eq. 1-4) and higher 

efficiency (Eq. 1-5),20 where tmig is migration time, L is capillary or channel length, N is 

number of theoretical plates, and D is the analyte diffusion constant.  

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑜𝑜𝑛𝑛 =
𝐿𝐿

(µ𝐸𝐸𝐸𝐸𝐸𝐸 + µ𝐸𝐸𝐸𝐸)𝑉𝑉
     Eq. 1-4 

𝑁𝑁 =
(µ𝐸𝐸𝐸𝐸𝐸𝐸 + µ𝐸𝐸𝐸𝐸)𝑉𝑉

2𝐷𝐷
     Eq. 1-5 

As demonstrated by these equations, the separation length can be reduced to 

achieve faster separations without sacrificing efficiency by maintaining the same applied 

voltage (i.e. increasing the electric field). This is especially important for screening 

applications, in which high-throughput is essential, as it demonstrates fast and high 

quality separations are possible. 
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Figure 1-1. Schematic of capillary electrophoresis instrumentation and characteristics. 
The inlet and outlet of a fused silica capillary, filled with background electrolyte, are 
inserted into buffer vials connected to a high-voltage power supply. The external electric 
field generates an electric double layer due to interactions between the negatively charged 
surface and counter ions in the buffer (top grey box). This generates a plug-shaped 
electroosmotic flow. Analytes are separated based on differences in size-to-charge ratio 
with positive analytes migrating fastest and negatively charged analytes migrating 
slowest. All neutral analytes co-migrate with EOF. 

 Detection in CE or MCE is typically achieved through laser induced fluorescence 

(LIF), UV absorbance spectroscopy, electrochemical detection, or mass spectrometry. 
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LIF is the most common detection method due to high sensitivity and simplicity.21 Due to 

path length independence, the narrow bore of capillaries or microchannels does not limit 

detection efficiency and picomolar detection limits are possible. The primary 

disadvantage of LIF detection for high-throughput screening is the lack of natively 

fluorescent substrates and potential interactions caused by the fluorophore. 

 Because CE separates based on differences in size or charge, it is well suited to 

biochemical assay screening. The majority of enzymes induce changes on their substrate 

through removal of post-translation modifications, such as acetyl, succinyl, and 

phosphate groups, or cleavage of peptide bonds in the case of proteases. These changes in 

size and charge can be exploited to quickly separate substrate and product peptides. For 

example, SIRT1 targets the removal acetyl modifications from lysine residues. Under 

basic conditions typical of CE, the deactylated product peptide will have a higher net 

positive charge than the substrate due to exposure of the amine functional group on the 

lysine side change. This positive charge results in faster migration times for product 

peptides compared to substrate. This same idea can be exploited for monitoring protein-

protein interactions through affinity probe capillary electrophoresis (APCE). In APCE, 

one protein is fluorescently labeled while the other remains unlabeled. The migration 

time of the labeled protein will shift depending on whether it is bound to the target 

protein or unbound; in turn, this can be used to quantify the degree of interaction. An 

example was the use of CE to identify small molecule inhibitors of the interaction 

between Heat Shock Protein 70 (Hsp70) and Bcl2-associated athanogene 3 (Bag3). Over 

3000 compounds were tested, using a separation based on a combination of 

electrophoresis and pressure driven flow.22 



 

 8 

 One potential challenge of using CE or MCE with LIF detection for high-

throughput screening is the effect of test compounds on migration time or analyte 

detection. In the case of migration time, test compounds could affect the electric double 

layer leading to enhanced or suppressed EOF and shifting migration times. However, 

most screening is done with compound concentrations below 20 µM and therefore should 

not have a significant impact on EOF. It is also possible that test compounds could 

fluoresce and lead to false positive results. However, deconvolution of signal from test 

compounds and substrates is possible due to the spatial separation achieved during CE or 

MCE. In conventional MWP assays, it would be impossible to screen natively fluorescent 

test compounds, as their signal would add to signal from the fluorogenic probe. 

 Although rapid separations are possible by electrophoresis, the bottleneck for 

high-throughput analysis remains sample introduction. Conventional CE or MCE systems 

use auto-samplers or manual sample dispensing to sequentially analyze samples leading 

to low sample throughput and large sample requirements. One group developed several 

small, labeled peptides based on the SIRT1 substrate, p53, for screening and 

demonstrated SIRT1 activity with several known modulators.23, 24 In another example, a 

commercial CE system was used to identify protein-protein interaction inhibitors from a 

library of 3,000 compounds at a rate of 220 compounds per day.22 In both examples, 

sample throughput was not significantly improved over typical LC-MS assays. 

A commercial microfluidics system – the LabChip system – overcomes this 

limitation through the use of a ‘sipper’ sample loading method. In this design samples are 

arrayed in a MWP, and a short length of tubing connected the microchip is dipped into a 

sample well allowing sample to be pulled into the separation channel by applied vacuum 
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(Figure 1-2). Through interfacing to a MWP, samples can be prepared using existing 

high-throughput workflows and continuous operation is possible. The system was 

demonstrated in an assay for SIRT1 in which a fluorescently labeled peptide could be 

separated within 50 seconds.25 However, this method does not achieve the potential of 

MCE-based screening because of band broadening induced by vacuum driven flow in the 

separation channel and throughput of only 0.02 samples per second. 

 

 

Figure 1-2. Schematic of the Caliper LabChip system for screening biochemical assays 
by microchip electrophoresis. At the top, shown coming in and out of the plane, is the 
microchip used for separation by a combination of electrophoresis and vacuum driven 
flow (applied at the outlet reservoir). Sample is introduced through a ‘sipper’ tube by 
interfacing to a multiwell plate. Labeled substrate and product peptides are separated 
based on differences in size-to-charge ratio and detected by fluorescence (shown bottom 
right).26  
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Segmented Flow for Low Volume Sample Handling 

To improve throughput, samples could be introduced to microchips as segmented 

flow droplets. In such a method, aqueous samples (picoliter to microliter in volume) are 

encapsulated in an immiscible carrier phase, such as perfluorinated oil or air, allowing 

them to be easily manipulated without carryover.27 In the clinical laboratory, this method 

has been used since the late 1950s to automate sample analysis for clinical tests, such as 

urea and blood glucose.28, 29 Oil carrier phases have gained in popularity as they are much 

less compressible than air and analyte partitioning is minimized.30 Droplet formation can 

be achieved in several ways. For generating a large number of droplets from a single 

sample, flow focusing and tee-junctions can be used.31-34 To generate a few droplets of 

many samples, aspiration is used.35-38 Once formatted, a number of manipulations, akin to 

conventional bench-top chemistry, can be performed within droplets such as splitting,39-42 

fusion,43-47 mixing,48-52 sorting,53-56 reagent addition,38, 50, 52, 57, 58 and dilution59, 60 (Figure 

1-3). 

Droplet samples have the potential to drastically reduce sample consumption 

during HTS, which is doubly important because reagent cost and procurement are often a 

bottle neck during assay development and screening.61 By combining the above droplet 

transformations, such as reagent addition and rapid mixing, screening reactions can be 

prepared at the picoliter or nanoliter scale instead of the microliter scale. Starting with 

droplets generated from existing compound libraries, enzyme and substrate could be 

dispensed directly into droplets, and results could be read directly by fluorescence. Using 

this method, one group reported a 1000-fold reduction in assay time and a 1-million-fold 

reduction in cost compared to a conventional assay.53  
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Figure 1-3. Examples of manipulations and transformations possible with droplet 
samples. A) Asymmetric splitting of primary droplets into smaller secondary droplets by 
control channel geometry.42 B) Merging of two sequential droplets using a pillar array. 
The first droplet becomes stuck in the pillar array until merging with the second droplet. 
At this point, alternate flow paths for oil phase are blocked at the droplet is released.46 C) 
Rapid mixing is achieved within droplets through integration of turns into the 
microfluidic network. At each turn the orientation of the droplet changes leading to 
advective mixing.51 D) Fluorescence-activated droplet sorting (FADS) is achievable 
using external electrodes (shown in black and red at the top of the image). If a signal 
threshold is met, the electrode is energized causing droplets to deflect into the upper 
channel. Below the threshold, droplets automatically go into the lower channel (inset 
image).54 E) Reagent addition scheme using a hydrophilic side channel to reduce 
carryover.52 F) Serial dilution of droplets using a dilution chamber. Dilution droplets 
merge with the primary droplet (dark droplet centered in each frame) activating a fluidic 
valve and dispensing a tertiary droplet. Dilution of the primary droplet generates a serial 
dilution on chip.59 Figures reproduced with permission from individual publishers. 

Droplet strategies have been used in many novel applications related to high-

throughput analysis. In one of the first applications of droplet microfluidics, enzyme 

kinetics for ribonuclease A were measured with better than 1 ms resolution through on-

chip dilution and rapid mixing within droplets.60 Building on this work, screening of 



 

 12 

protein crystallization conditions using less than 4 nL of solution per sample was 

reported.62 In a demonstration of HTS, high-resolution dose-response curves (10,000 

points per compound) for a library containing 704 compounds against protein tyrosine 

phosphatase 1B were analyzed in 4.2 hours (~450 Hz).63 Using more complex 

microfluidic platforms, drug cytotoxicity screening against encapsulated cells64, directed 

evolution of enzyme mutants53, generation of combinatorial reaction mixtures65, and 

bacterial susceptibility to antibiotics66 have been reported demonstrating that multiple 

steps and transformations of droplet samples are possible. 

The low sample requirements for CE and MCE (typically less than a few hundred 

picoliters) and the ability to manipulate droplets in a high-throughput manner make them 

a natural solution to sample introduction bottlenecks. Several groups have developed 

methods for coupling droplet-based samples to electrophoretic analysis. Due the fact that 

most carrier phases are non-conductive, droplet streams must be desegmented (i.e. the 

aqueous samples and carrier phase separated) prior to analysis by electrophoresis. This is 

typically achieved through either passive, which functions without intervention, or active 

methods that require external forces to achieve phase segregation. 

Passive droplet extraction is appealing because it requires no external input 

leading to simpler design and operation. These methods typically rely upon special 

channel geometries67-70 or differences in surface chemistry.71-76 Using a 

polydimethylsiloxane (PDMS) microfluidic device, one group developed a ‘comb’ 

structure that allowed selective removal of carrier phase from the droplet stream but 

prevent aqueous samples from passing due to high back pressure within the ‘comb’ 

(Figure 1-4A).70 They used this method to couple an LC separation to CE to achieve 2D 
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separations. The same group used an oleophilic film to wick away carrier phase prior to 

analysis of droplet contents by capillary gel electrophoresis71 or deposition for matrix 

assisted laser desorption ionization (MALDI)-MS (Figure 1-4B).73 Another group 

reported the use of octadecyltrichlorosilane chemistry to pattern selected channels 

hydrophobic, within a glass microfluidic device, to achieve selective extraction of the 

aqueous samples. This method was used to analyze droplet samples from a microdialysis 

in vivo chemical monitoring and enzyme assay samples (Figure 1-4C).75 

Active droplet extraction, while slightly more complex, affords opportunities to 

improve extraction robustness and selectivity.77, 78 Using an applied electric field, 

aqueous droplets were merged with a parallel aqueous stream while the oil carrier phase 

continued toward a waste outlet. This was applied to couple droplet samples to 

electrospray ionization (ESI)-MS by extracting samples into an MS friendly buffer 

immediately prior to spray (Figure 1-4D).77 

When coupled to electrophoretic analysis, the droplet sample is either wholly 

injected for analysis70, 71, 76 or a portion is injected. In the former method, the oil phase is 

typically removed immediately prior to injection of the droplet onto the electrophoresis 

channel. While this method is the simplest to implement, poor separation efficiency is 

common because droplet volume is typically much larger than an ideal MCE injection 

volume. Separation time is directly proportional to droplet spacing and high efficiency 

separations will require the use of very small droplets. To improve separation efficiency, 

injection of a portion of each droplet sample could be done. In one design, the extracted 

sample passes the separation channel inlet resulting in the injection of a small sample 

plug.72, 74 Therefore, injection volume is closely related to the sample flow rate and 
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droplet size. As with the previous method, separation time is directly proportional to 

droplet spacing. In another design, droplets were extracted before being sampled by EOF 

toward a voltage-gated injector. In effect, this is a dynamic sample reservoir allowing any 

combination of injection and separation parameters.75, 79 Indeed, this approach yielded the 

highest efficiency separations (223,000 plates) from droplet samples. None of these 

methods, however, were demonstrated to be compatible with HTS, which requires 

analysis of many distinct samples with minimal carryover. 

 

 

Figure 1-4. Examples of droplet desegmentation strategies for coupling to downstream 
analysis using either passive (examples in red box) or active strategies. A) Extraction of 
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droplets using special ‘comb’ channel geometry composed of thin PDMS pillars. Carrier 
oil is extracted through the pillars while the aqueous sample merges with the separation 
channel (top channel in each image).70 B) Schematic diagram of a device using oleophilic 
foam/film to remove carrier oil prior to droplets merging with the separation channel. 
This method was used for analysis of droplets by gel electrophoresis.71 C) Diagram of a 
glass device with modified surface chemistry for droplet extraction. The channel 
containing droplets is made hydrophobic through derivatization with 
octadecyltrichlorosilane while all other channels remain hydrophilic. Droplets are 
extracted across a thin ‘extraction bridge’ prior to analysis by MCE.79 D) Active droplet 
extraction utilizing applied electric fields for analysis of droplets by mass spectrometry. 
Droplets flow parallel to and are merged with an aqueous stream upon entering the 
external electric field. Carrier phase, which is non-conductive, continues on unaffected.77 
Reproduced with permission from individual publishers. 

One group has previously reported droplet-based sample introduction for high-

throughput screening by MCE. In their study, droplet samples were introduced into a 

glass microfluidic device through a hydrophobic patterned channel where they were 

extracted and analyzed by MCE. They demonstrated analysis of GTPase activity using a 

15 second separation (0.07 Hz) and throughput could be improved by simultaneous 

analysis of three samples within parallel electrophoresis channels.72 While a significant 

improvement on other methods and the first true demonstration of HTS by MCE, the low 

throughput and carryover (7 percent) associated with this implementation limit the 

methods potential. Additionally, the authors characterized enzyme activity but did not 

demonstrate screening a chemical library. 

Sirtuin Biology 

Sirtuins (SIRTs) represent an evolutionarily conserved class of nicotinamide 

adenine dinucleotide (NAD+)–dependent deacylases.80-83 SIRT mediated deacylation 

reactions consume NAD+ to generate a deacylated product, 2’-O-acetyl-ADP-ribose and 

nicotinamide. The sirtuin family is comprised of seven members located throughout the 

cell in areas such as the nucleus (SIRT1, SIRT2, SIRT6, and SIRT7), the cytoplasm 
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(SIRT1, and SIRT2), and the mitochondria (SIRT3, SIRT4, and SIRT5) (Figure 1-5).84 

Through modulation of lysine modifications on target proteins, sirtuins regulate many 

cellular functions, such as transcription, metabolism, and life span.85-87 Initially identified 

as NAD+-dependent deacetylases, only SIRT1 to SIRT3 have robust deacetylase activity 

while the deacetylase activity of SIRT4 to SIRT7 is reported as very weak or 

undetectable.84, 88, 89 However, recent research has revealed a number of novel lysine 

post-translational modifications – such as acyl,90, 91 succinyl,88, 92 glutaryl,93 malonyl,94, 95 

and crotonyl groups96, 97 – providing alternate targets for sirtuin activity.  

 

 

Figure 1-5. Primary cellular localization and function of sirtuins. SIRT1 and SIRT2 are 
present in the nuclear and cytosolic fractions.82 SIRT3, SIRT4, and SIRT5 are located in 
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the mitochondria. SIRT6 and SIRT7 are located in the nuclear fraction. For well-studied 
sirtuins, their targets and affected cellular processes are labeled and suppression (red 
lines) or activation (green arrows) is noted. A black line connecting a sirtuin to an acetyl 
group denotes a specific acetyl-lysine target. Reproduced with permission from Portland 
Press. 

One of the family members, SIRT5, readily catalyzes deacylation of negatively 

charged lysine modifications, such as malonyl, succinyl, and glutaryl moieties.88, 92-94, 98, 

99 Using x-ray crystallography, it was determined that the hydrophobic residues found in 

the substrate pocket of other sirtuins had been replaced by positively charged residues, 

such as arginine. This change may account for the unusual substrate preference of 

SIRT5.88 Although no striking biological phenotype has been reported for SIRT5 KO 

mice,100, 101 extensive hypersuccinylation and hypermalonylation is observed in SIRT5 

KO cell lines suggesting that SIRT5 may be the primary regulator of negatively charged 

lysine modifications within the cell.94, 98, 99 

Through removal of lysine modifications, SIRT5 regulates several metabolic 

enzymes (Figure 1-6).102 Carbamoyl phosphate synthase 1 (CPS1), which catalyzes the 

first step of the urea cycle, has increased activity when desuccinylated or deacetylated.100, 

103 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), which is the rate-limiting 

enzyme in ketone body synthesis, is hypersuccinylated in the absence of SIRT5, and 

shows increased activity when desuccinylated by SIRT5.99 Through succinylation of 

pyruvate dehydrogenase complex (PDC) and succinate dehydrogenase (SDH), SIRT5 

suppresses cellular respiration.98 And, demalonylation of glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) and aldolase B, SIRT5 regulates glycolosis and 

gluconeogenesis.95 
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Figure 1-6. Protein targets regulated by SIRT5 in vivo. Through removal of acetyl, 
succinyl, glutaryl, or malonyl groups from target lysines, SIRT5 activates (blue ellipse) 
or inhibits (green ellipse) target proteins. This affects downstream targets (yellow boxes) 
by increasing or decreasing target levels or activity (denoted by upward or downward 
facing arrows).102 Reproduced with permissions from Mary Ann Liebert, Inc. 

Due to regulation of metabolic pathways important to cancer progression, SIRT5 

may have an oncogenic role in specific cancers. SIRT5 activates superoxide dismutase 

(SOD1) in vivo, which plays a role in managing reactive oxygen species (ROS) within 

the cell.104 SOD1 overexpression or upregulation in lung105 and breast cancer,106 

respectively, may have a role in tumorogenesis. Because SIRT5 activates SOD1, these 

results suggest SIRT5 may be involved in tumor growth. In addition to these direct 

effects, SIRT5 is over-expressed in non-small cell lung cancer (NSCLC) and SIRT5 KD 

suppressed tumor formation in NSCLC.107 
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These diverse functions demonstrate the need for pharmacological modulators of 

SIRT5 activity. Identification of SIRT5 modulators has been limited by a lack of known 

in vivo targets; however, recent identification of the above SIRT5 targets has increased 

efforts in this area. Adding to the complexity is the structural similarity between sirtuins. 

Many modulators are non-specific by targeting the conserved NAD+ binding pocket. To 

date, suramin has been most investigated as a SIRT5 inhibitor. Even though suramin 

possesses low micromolar potency against SIRT5,89 its activity against SIRT1 and SIRT2 

limits its efficacy in vivo. Several groups have reported synthetic peptide inhibitors with 

micromolar potency against SIRT5.108, 109 In light of the limited number SIRT5 

modulators identified to date, discovery of potent and specific modulators is necessary 

for basic biological and clinical applications.  

Within the field of sirtuin biology, much of the drug discovery has been focused 

on SIRT1 using optical detection methods, such as the commercially available Fluor-de-

Lys™ assay based around a two-step reaction (Figure 1-7).110-115 This assay utilizes a 

peptide-based substrate coupled to a 7-amino-4-methylcoumarin (AMC) tag via an amide 

bond adjacent to the terminal lysine. In the first step, SIRT1 catalyzed deacylation 

generates a substrate for trypsin. In the second step, trypsin releases the AMC tag through 

cleavage of the amide bond resulting in an increase in fluorescent signal equivalent to the 

sirtuin activity. These tend to be poor trypsin substrates and require high trypsin 

concentrations for efficient cleavage. In high-throughput settings, dispensing high 

viscosity solutions (i.e. concentrated trypsin solutions) can lead to large errors in sample 

preparation. However, the high assay sensitivity and availability of substrates for SIRT1, 

SIRT2, SIRT3, and SIRT5 make these assays desirable for many researchers. 
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Figure 1-7. Schematic of the commercially available Fluor-de-Lys™ assay for measuring 
sirtuin activity. In step 1, a sirtuin, or histone deacetylase, removes a lysine modification 
(i.e. acetyl group) from a peptide substrate conjugated to an AMC fluorophore generating 
a substrate for trypsin. In step 2, trypsin cleaves the amide bond linking AMC to the 
peptide releasing the fluorophore and generating and fluorescence signal.110 Reproduced 
with permission from Elsevier. 

In a well-known study, this assay was used to identify a number of potent SIRT1 

activators based around resveratrol, a polyphenol. These compounds increased SIRT1 

deacetylase activity 8-fold in vitro and improved yeast lifespan by 70 percent.112 

Although corroborated by in vivo studies in invertebrates, the SIRT1 activation could not 

be reproduced when using other peptide substrates.111, 116, 117 Further investigations 
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revealed that SIRT1 activation was caused by interactions between the bulky AMC tag 

and resveratrol that enhanced SIRT1 binding affinity. 

To avoid this ambiguity in screens for SIRT5 modulators, alternative SIRT5 

screening assays have been developed. Among the optical detection assays, monitoring 

nicotinamide depletion through coupled enzyme reactions is possible and is compatible 

with any peptide or protein substrate.111, 116-118 Using proteolytic cleavage by trypsin, 

assays based on fluorescence resonance energy transfer (FRET)119 or internally quenched 

substrates have been developed.120 However, these peptides require significant 

modification from natural substrate sequences, which could lead to artificial results 

during screening. Outside of optical assays, several assays utilizing LC-MS for analysis 

have been developed around natural peptides.88, 109, 121 

 

Dissertation Overview 

The research in this dissertation aims to continue development of electrophoresis-

based high-throughput screening to develop a novel droplet-MCE platform for routine 

HTS. It addresses the limitations of previous platforms by achieving low sample 

carryover, high efficiency separations, and moderate sample throughput into a reliable 

analysis platform. 

In Chapter 2, a novel PDMS-glass hybrid microfluidic device for analysis of 

droplet samples by MCE is developed. The design couples aspects of two previous group 

efforts into a design capable of robust droplet extraction with minimal carryover. To 

demonstrate the platforms utility for HTS, an electrophoretic mobility shift assay for 

protein kinase A (PKA) was developed around the known substrate Kemptide. A library 
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containing 140 test compounds was screened in 16 minutes using a 1 second MCE 

separation. This effort demonstrated a 2-fold improvement in sample throughput over 

previous MCE screening methods. 

In Chapter 3, electrophoresis-based HTS as developed in Chapter 2 was applied to 

a novel biological target – SIRT5. Due to its implication in metabolic pathways and 

potential impact on cancer biology, identification of SIRT5 inhibitors is vitally important. 

However, existing assays generally rely on fluorescence assays known to product false 

positive results. Therefore, we designed a novel SIRT5 substrate based on succinate 

dehydrogenase that allowed ultrafast MCE analysis. The assay robustness was 

demonstrated using a meso-scale screen against a library containing 1280 test compounds 

and 128 controls. The screen was completed within 46 minutes (0.5 samples per second) 

and generated over 11,000 electropherograms (8 MCE injections per sample) with an 

excellent assay Z-factor of 0.8. Several novel SIRT5 inhibitors were identified and 

potency was determined using dose-response analysis. This work demonstrated a 3-fold 

improvement in sample throughput over the design in Chapter 2. By optimizing 

separation conditions, separation time was reduced to 250 ms, while efficiency was 

increased 2-fold. Compared to previous CE-based sirtuin screens, throughput was 

improved 25-fold. 

Chapter 4 demonstrates the true potential of droplet-based samples for high-

throughput screening performing reaction and analysis within droplet samples. In 

previous methods, over 99 percent of sample volume was wasted, which leads to 

significant extra costs and time. A microfluidic reagent addition device was developed 

based on work done by previous members of our group and previously reported designs. 
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This design achieved a simple, easy to manufacture device cable of adding sub-nanoliter 

reagent volumes to nanoliter volume droplets. Carryover was less than 5 percent from 

sample to sample and the device was able to add reagents to over 9,000 droplets 

continuously. Reagents could be added to droplets at up to 10 Hz reliably allowing for 

rapid sample preparation. The utility for HTS was demonstrated with a screen of 1280 

compounds against SIRT5, which used 1,000-fold less reagent than the screen reported in 

Chapter 3. 

Chapter 5 discusses several future directions for droplet-MCE high-throughput 

analysis to more broadly apply this platform. These range from coupling droplet samples 

to alternative separation modes, such as gel electrophoresis and microchip 

electrochromatography, to development of a continuous droplet generation method. 

Additionally, preliminary work from alternate screening targets, such as protein-protein 

interactions, is reported. This method, which could rely on a peristaltic pump, would 

allow continuous generation and analysis of droplet samples by MCE, MS, or optical 

assays. 
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CHAPTER 2:  SUB-SECOND ELECTROPHORETIC SEPARATIONS FROM 
DROPLET SAMPLES FOR SCREENING OF ENZYME MODULATORS  

 
 

Reproduced with permission from (Guetschow, et al. Anal Chem 2014, 86, 10373-10379). 
Copyright 2014 American Chemical Society 

 
 

Introduction   

Modern high-throughput screening (HTS) technology allows for 104 to 105 

automated assays to be completed in one day. HTS has emerged as a powerful tool for 

many applications including drug, catalyst, and chemical probe discovery. The dominant 

form of HTS is based on assays performed in multi-well plates (MWP) with liquid 

handling and plate manipulation performed by robots and detection by optical plate 

readers. Although this approach has been successful, it has limitations. A fluorescent or 

other optical indicator must be coupled to or engineered into the biochemical reaction of 

interest. This requirement can increase development time, reagent costs, and potential for 

false signals wherein test compounds affect the indicator rather than the actual reaction. 

Further, in such schemes only one analyte is detected per reaction and interference from 

buffer components or test compounds is possible.  

Analysis of reaction mixtures by microchip electrophoresis (MCE) can avoid 

these limitations by separating substrates, products, and interfering species to eliminate 

the need of having a selective optical change upon reaction. Rapid separations are 

possible; however, reloading chips with fresh sample is a bottleneck for HTS. A 

commercial instrument overcomes these problems by “sipping” sample from wells and 
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pulling sample by vacuum into the separation channel.25 This powerful system allows 

continuous operation and a reliable interface to MWP; however, it does not reach the full 

potential of MCE because band broadening induced by flow through the separation 

channel gives reduced resolution requiring longer separation times. 

An alternative for screening many distinct samples by MCE is to deliver samples 

to the chip as droplets or segmented flow.72 In such a method, aqueous samples 

encapsulated in immiscible oil are pumped into the chip where the aqueous portion is 

extracted for injection onto the MCE channel. A significant advantage of this approach is 

that it is also compatible with the emerging trend of miniaturization by performing 

reactions at droplet scale (pL to nL volume) rather than MWP scale (1-30 µL). Droplet 

strategies have been used for several novel screens.38, 60, 62, 64, 122-124 

Although coupling droplets to MCE is an attractive prospect for HTS, most 

previous methods of interfacing have been developed for other applications (e.g., for two-

dimensional separations70, 125 or coupling to a sampling probe for chemical monitoring58, 

74, 126) and have limited proven utility for screening. Extraction of droplets has relied on 

modified surface chemistry,72, 74, 75 applied external fields,77 special channel 

geometries,67, 70 or the use of oleophilic films71, 73 to remove carrier oil. In these systems 

the extraction and injection processes are coupled so that compromises between droplet 

size, injection volume, and separation speed must be made. For example, an increase in 

droplet flowrate will reduce separation time and separation efficiency as the time between 

sample droplets decreases. Likewise, injection volume is directly correlated with droplet 

volume, which can lead to larger injections than are typical in MCE causing a reduction 

in separation efficiency. An exception was a method that allowed extraction followed by 
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electrokinetic gated injection.75 This approach to droplet-MCE interface yielded high 

efficiency (223,000 plates in 50 s separation); however, it was not shown to be 

compatible with screening, which requires analysis of many distinct samples and long-

term unattended operation of several hundred samples. Further, this method required a 

complex fabrication procedure involving surface chemistry patterning.  

Here we report a simplified approach to droplet-MCE interface. The method uses 

a minor modification of a standard MCE chip design. This method allows at least 700 

MCE injections from droplet samples and sub-second separations suitable for screening. 

We also demonstrate a method to track samples during a screen. The system was tested 

using a small scale screen of protein kinase A (PKA) modulators but in principle can be 

applied to any assays resulting in a change in analyte charge or size, such as peptide 

cleavage, dephosphorylation, and deacetylation. 

Materials and Methods 

Chemicals and Materials. All reagents were purchased from Sigma Aldrich (St. 

Louis, MO) with the following exceptions. 5-carboxyfluorescein (FAM)-labeled 

Kemptide was purchased from AnaSpec (Fremont, CA) and the catalytic subunit of 

cAMP-dependent protein kinase A was purchased from New England Biolabs (Ipswich, 

MA). The epigenetics compound library was purchased from Cayman Chemical (Ann 

Arbor, MI) and the kinase inhibitor library was obtained from the Center for Chemical 

Genomics at University of Michigan. 

PDMS Chip Fabrication. Polydimethylsiloxane (PDMS) tees were fabricated 

using a pour over method to align droplet tubing and microfluidic devices during 

operation. Briefly, a 360 µm o.d. capillary was taped in the bottom of a petri dish. A 100 
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o.d. capillary was glued into a 150 µm i.d x 360 o.d. sheath capillary such that ~3 mm of 

100 o.d. capillary was exposed. Two of these sheathed capillaries were taped on opposite 

sides of the 360 µm o.d. capillary with a 2-3 mm gap between them. PDMS was poured 

over the mold and cured at 75 °C for 15 min. After curing the mold was flipped and 

PDMS was poured on the other side and cured for an additional 20 min at 75 °C. After 

curing, all capillaries were removed and the device was cut to size using a razor blade.  

Glass Chip Fabrication. Glass chips were fabricated using photolithography and 

wet-etching by hydrofluoric acid (HF).127-129 Briefly, one slide is etched to 90 µm for the 

capillary insertion channel and to 50 µm for the sample channel. A second slide is etched 

to 90 µm for the capillary insertion channel and 5 µm for all separation channels. During 

etching of deep channels, other features were covered with HF resistant tape 

(Semiconductor Equipment Corporation, Moorpark, CA). After etching, access holes 

were drilled with a 500 µm drill bit (Kyocera Tycom, Costa Mesa, CA). Glass slides 

were washed for 20 min in piranha solution (sulfuric acid:hydrogen peroxide, 4:1) and for 

40 min in heated RCA solution (ammonium hydroxide:hydrogen peroxide:water, 1:1:5). 

Slides were rinsed with water, aligned under a microscope, and annealed at 610 °C for 8 

h. Reservoirs and access ports (IDEX Heath and Science, Oak Harbor, WA) were 

attached at the access holes and a 40 µm i.d. x 150 µm o.d. x 2.5 mm long extraction 

capillary was waxed in place in the capillary insertion channel. (See Appendix A for 

additional modifications to glass microfabrication necessary to avoid pinholes and 

anisotropic etching.)  

Microfluidic Chip Operation. All reservoirs and channels on the glass chip were 

primed with separation buffer (10 mM sodium tetraborate, pH 10, 0.9 mM 
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hydroxypropyl-β-cyclodextran) to remove air bubbles. Voltage for electrophoresis was 

applied using a CZE1000R power supply (Spellman, Hauppague, NY) and a high-voltage 

relay (Kilovac, Santa Barbara, CA) was used to control electrokinetic-gated injection.130, 

131 Detection was accomplished using an in-house confocal laser induced fluorescence 

(LIF) detector. Briefly, the 488 nm line from a solid-state laser (CrystaLaser, Reno, NV) 

was directed through a 488 ± 10 nm band pass filter and a 10X objective lens. Emission 

was filtered through a 520 ± 10 nm band pass filter and detected by a photomultiplier 

tube (R1477, Hamamatsu, Bridgewater, NJ). Current from the PMT was amplified by a 

current preamplifier (Stanford Research Systems, Sunnyvale, CA) and monitored using 

an in-house LabVIEW program (National Instruments, Austin, TX). Data analysis was 

done using Cutter 7.0,132 Excel 2011 (Microsoft, Redmond, WA), and Igor Pro 6.32 

(Wavemetrics, Inc., Lake Oswego, OR). 

Droplet Generation from MWP. Droplets, segmented by perfluorinated oil 

(100:1, perfluorodecalin (PFD): perfluorooctanol (PFO)), were generated from a 

multiwell plate using a method previously described. Droplet samples were pulled into a 

150 µm i.d. x 360 µm o.d. HPFA tube (IDEX Health and Science, Oak Harbor, WA) 

using a syringe connected to a PHD 200 syringe pump (Harvard Apparatus, Holliston 

TX) operating in refilling mode. After priming the syringe and tubing with 100:1 

PFD:PFO, droplets were generated using a computer-controlled XYZ-positioner to move 

the tubing from well to well in a defined pattern. Samples were covered with carrier oil to 

prevent sample evaporation and aspiration of air into tubing.37, 38 

Protein Kinase A Modulator Screen and Droplet Analysis. Each sample in the 

screen was prepared in 20 µL with final concentrations of 50 mM Tris, pH 7.5; 10 mM 
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MgCl2; 200 µM ATP; 15 µM FAM-Kemptide; and, 3.75 nM protein kinase A. During 

screening experiments, test compounds from the kinase inhibitor library were deposited 

using a Caliper Sciclone (PerkinElmer, Waltham, MA) into a 384-well plate (0.1 to 12.5 

µM final concentration). For the epigenetics compound library, compounds were pipetted 

manually into a 384-well plate (5 µM final concentration). Control samples contained 

dimethyl sulfoxide (DMSO) at equal volume to test compounds. Negative controls 

contained no inhibitor (mimicking no inhibition), and positive controls contained no 

enzyme (mimicking 100 percent inhibition). Reactions were incubated at room 

temperature for 30 min and quenched with 80 µL of 15 mM ethylenediaminetetraacetic 

acid (EDTA) and placed on ice. Immediately prior to droplet generation, 90 µL of each 

sample was transferred to a modified 384-well plate designed to allow samples to be 

covered by carrier oil. To extract droplets, a 50 µL syringe filled with water was attached 

to a 40 µm i.d. x 150 µm o.d. capillary and connected to the PDMS tee after the 

extraction region and the PDMS chip was primed with water. Next, tubing containing 

sample droplets was inserted until flush with the extraction capillary in the glass chip and 

connected to a 100 µL syringe on a syringe pump. Droplets were pumped into the PDMS 

chip at 360 nL/min and injections were made every 1 s. 

Results and Discussion 

Droplet extraction from segmented flow. Our strategy for high throughput 

electrophoresis is to introduce a series of samples to the microchip as segmented flow. A 

primary challenge of achieving rapid MCE analysis from segmented flow is separation of 

the oil phase from sample prior to MCE analysis. To simplify the process of droplet 

extraction, we used the native properties of glass (hydrophilic) and PDMS (hydrophobic) 
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to extract droplets through a hybrid device (Figure 2-1). An advantage of this approach is 

that we take advantage of the native surface chemistry of these materials to achieve 

extraction, this eliminating the need for surface patterning. A hybrid device has the added 

benefit of decoupling the extraction and analysis stages for better performance. Also, it 

has the practical advantage that a new extraction or analysis chip can be substituted if it 

stops working without the need to fabricate a new device. 

 

Figure 2-1. Schematic of PDMS-glass hybrid microfluidic device for analysis of 
segmented flow samples. Aqueous droplets (blue colored) are extracted by the extraction 
capillary and sampled by EOF in the sampling channel towards the injection cross. 
During injection, the positive high-voltage power supply is floated to allow injection of a 
discrete sample plug into the separation channel. The positive high-voltage is applied 
again during separation and excess sample is gated to the waste channel. To assist 
extraction waste droplets (green colored) are generated after the extraction point to 
provide a slight backpressure for extraction. 

 In this device, a length of Teflon tubing containing sample droplets is positioned 

orthogonal to the inlet of a fused silica extraction capillary that is interfaced to the glass 
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MCE chip using a tee molded from PDMS (Figure 2-1). The fused silica extraction 

capillary also acts as a conduit to the glass MCE chip. As droplets exit the Teflon tubing, 

aqueous samples are extracted into the hydrophilic fused silica extraction capillary while 

the oil phase continues towards the outlet of the hydrophobic PDMS device. The 

extracted sample droplet fills the extraction capillary and sampling channel (Figure 2-1) 

where it can be injected onto the MCE channel using an electrokinetic flow gate.130, 131 

Subsequent samples wash the extraction capillary and sampling channel out for serial 

injections.  

Although the inherent surface chemistry of the extraction capillary and PDMS tee 

will favor droplet extraction and oil phase flow past the extraction point, it is also 

necessary to use proper capillary and channel dimensions so that capillary force and back 

pressure are balanced to favor droplet but not oil flow into the extraction capillary. In 

other words, with high flow rates, wide bore extraction capillaries or narrow PDMS 

channels, oil can be forced into the extraction capillary. In the opposite case, aqueous 

samples will not be fully extracted. For the flow rates and chip dimensions used here, a 

40 µm i.d. fused silica capillary generated good extraction (i.e., the entire aqueous 

droplet) with no oil phase entering the extraction capillary. We visually observed that 

droplet extraction was more reliable by elevating pressure slightly at the outlet of the 

PDMS tee. This pressure was created by a pumping water at 150 nL/min into an inlet 

positioned downstream of the extraction point (Figure 2-1, waste droplet generator).  

The chip was also designed to minimize carryover between samples. To reduce 

carryover, dead volume from the extraction point on the PDMS device to the sampling 

point, on the glass device was minimized through the use of narrow bore capillaries and 
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short capillary lengths (3.3 nL). With this small volume, we anticipated that ~10 nL of 

sample would be needed to washout the capillary and prevent carryover. 

To evaluate the extraction efficiency and sample carryover in the extraction 

channel, we monitored fluorescence as alternating pairs of 8 nL droplets containing 

fluorescein at high (6 µM) and low (2 µM) concentration were pumped through the 

system. Droplets are detected as square-topped pulses within the Teflon tube (Figure 2-2) 

reflecting signal from fluorescence within the droplet and no signal for the oil. After 

extraction the droplets fill the extraction capillary and become continuous phase without 

pulses between droplets of the same concentration (red trace, Figure 2-2A). In the 

transition from high to low concentration, the signal decreases and then stabilizes. The 

timing of the transition suggests that the sample is 80% washed out by the first droplet 

and 98% washed out by the time the second droplet is extracted. In the transition from 

low to high concentration, the signal stabilizes more quickly. These results show that 

carryover should be minimized using 2 droplets. The exact volumes required may depend 

on the sample type being used, e.g. if surface adsorption is greater more rinses may be 

required.  

If the back pressure was not provided by the extra flow the transitions were longer 

and not as reliable as shown by the increase in carryover in the red trace in Figure 2-2B 

starting after 60 s. This result coincides with incomplete extractions and sample buildup 

at the capillary inlet. By using the waste droplet to increase pressure in the extraction 

zone, sampling buildup was greatly reduced and carryover between samples was less than 

2% (Figure 2-2A). At least 500 droplets, the most tested, could be extracted reliably with 

this approach.  
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Figure 2-2. Comparison of extraction of droplet stream without (A) and with (B) waste 
channel droplets shows the effect of added backpressure on extraction efficiency. When 
waste droplets are present intensity of droplets before extraction (black trace) is nearly 
identical to intensity of sample after extraction (red trace) and transitions from high to 
low intensity occur rapidly suggesting that each droplet rapidly rinses out the previously 
extracted droplet from the glass chip. Without waste droplets, sample intensity is not 
stable over time on the MCE chip as sample droplets mix. Detection point for droplets 
before extraction (black star) and after extraction (red star) are marked on the schematic 
in Figure 1. 

 MCE injection from droplets. After extraction, aqueous samples fill the sample 

channel, which acts as the sample reservoir in a cross-style injector in MCE.130, 131 In this 

way, the hybrid chip acts as a means to rapidly introduce new samples to a microfluidic 

device while maintaining injection geometry known to have high performance.75, 130, 131, 

133 To make an injection, sample is directed towards the injection cross by electroosmotic 
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flow (EOF) using applied electric fields. During separation, this sample stream is gated 

towards a waste reservoir on chip by a cross flow, which also provides fresh separation 

buffer to the electrophoresis channel. During injection, the gating flow is shut off by a 

high-voltage relay to allow a small plug of sample to be injected into the separation 

channel for analysis. Importantly, unlike many other designs used for droplet MCE, the 

volume and shape of the plug that is injected is controlled independently of the extraction 

process enabling higher efficiency for a given separation time. 

Using this injection method, screening reaction samples containing substrate, 

product, and rhodamine were separated with good efficiency. For example, using a 10 

mM sodium tetraborate buffer at pH 10 and an electric field of 2000 V/cm, separation 

efficiency of 16,000 plates for a 1 s separation in 0.5 cm was routinely achieved. By 

making a discrete injection from a larger sample droplet, injection volume is not 

controlled by droplet volume and multiple injections can be made from each sample 

droplet. Further, the separation time is not limited by droplet spacing, as is the case when 

an injection is made from each droplet72, 74 or whole droplet injection is used.70 We found 

that these differences were useful for HTS. Using a gated-injection scheme, coupling 

MCE to 2D separations or other sampling probes for chemical sensing by segmented 

flow should also be possible.  

 Mobility shift assay of enzymatic reactions. Phosphorylation of kemptide by 

PKA was used as a test assay for this system (Figure 2-3A). Injection of the reaction 

mixture results in two peaks in the electropherogram due to the unphosphorylated 

substrate and phosphorylated product, which migrates slower due to the addition of a 

negative charge through the phosphate group (Figure 2-3B). By injecting substrate alone, 
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only the first peak is present and both substrate and product migration times were 

verified. 

 

 

Figure 2-3. Protein kinase A catalyzed phosphorylation of kemptide (A) and resulting 
electropherogram (B) for the separation of the reaction mixture. Product and substrate 
were separated in 0.5 cm using an applied field of 2000 V/cm and a 30 ms injection. 

Due to the large number of samples generated in HTS a rapid MCE separation is 

required. The change in charge on kemptide due to phosphorylation allowed for easy 

separation of the substrate and product peak. A separation in < 1 s was achieved using a 

high electric field (2000 V/cm) and a short separation length (0.5 cm) without sacrificing 

separation resolution. This separation was fast enough to allow at least three injections 

per droplet that entered the capillary (Figure 2-4A). Indeed, the effect of droplet clearing 

can be observed in the relative peak heights for each electropherogram. The first three 

injections shown in the trace in Figure 2-4 correspond to the second droplet for a sample 

and the peak heights are stable. The next four traces correspond to a new sample that has 

been extracted. Fluctuation in peak height for rhodamine, substrate, and product is 
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observed as the droplet washes out the reservoir and reaches a stable signal, similar to the 

continuous measurements depicted in Figure 2-2A. The last three traces correspond to the 

second droplet being extracted and entering the sample reservoir. By this time, the peak 

heights have once again stabilized for all traces. Thus, these results illustrate that use of 

two droplets per sample, the first to rinse the small reservoir and the second to provide a 

stable signal, allows for analysis of discrete samples in series. In principle, the number of 

injections per droplet can be varied by using different size droplets and flow rates. 

Likewise, the amount of rinse required could be decreased by using even lower dead 

volumes. Obtaining multiple injections per droplet can be valuable in achieving reliable 

results at the expense of throughput.  

At this high of a separation speed, reproducibility was still good. For example, we 

performed over 700 injections in ~12 min with a migration time RSD of ~2%.  Reaction 

yield, calculated as P/(P+S), where P and S are the product and substrate peak area 

respectively, had an RSD of 7% (n = 8) for negative control samples spread throughput 

the sample set. For a series of injections from a single sample, the RSD was generally 

less than 5% (n=3). As observed in the substrate peak area trace in Figure 2-4B, droplet 

extraction causes a slight increase in pressure on the glass device leading to an increase in 

substrate peak area for that injection. Using reaction yield, instead of raw peak area, for 

analysis combined with averaging three injections per sample mitigates this effect. 

 Indexing droplet data using a fluorescent dye. When analyzing a series of 

samples reformatted from a MWP to droplet streams it can be difficult to determine 

which electropherograms belong to each sample. This is especially true for the passive 

extraction/injection system used here. Thus, even though droplets are introduced to the 
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chip at a constant flow rate and injections are performed at a constant rate; we found that 

the exact number of injections per sample (formatted as 2 droplets of 8 nL each) can vary 

from 6 to 8. We attribute this primarily to slight variations in sample size, sample flow 

rate, and the timing of injection relative to the droplet extraction. The variability in 

injection number per droplet means that it is necessary to mark each droplet to register an 

electropherogram with test analyte or sample. Figure 2-4B illustrates the peak area for a 

series of electropherograms from assay samples. With the exception of a positive control, 

which has a low product peak area, determining which data corresponds to each sample is 

nearly impossible. To avoid this problem a marker compound, rhodamine 110, was added 

to every other sample to provide data indexing. During data analysis, every other sample 

(corresponding to a train of approximately 6 injections) will have a rhodamine peak in the 

electropherogram as can be observed in Figure 2-4A. Using changes in rhodamine 

intensity as a guide, the start and end point for each sample can be quickly identified 

across all electropherograms (black trace, Figure 2-4B). For example, from 20-100 

seconds 10 samples, each containing a different test compound, are analyzed, but 

substrate and product peak areas remain stable because none of the compounds inhibit 

PKA. However, utilizing the changes in rhodamine peak area, the data can be 

deconvoluted to reveal each individual sample. 

Droplet-based screen of protein kinase A modulators. To test our novel 

droplet-MCE method, we screened two small molecule libraries against PKA for 

inhibitory activity. The kinase inhibitor library contained 60 test compounds with known 

activity at various kinases and the epigenetics library contained 80 test compounds that 

are known to act at proteins involved in histone modification and not necessarily kinases. 
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A total of 168 samples were analyzed for the primary screen including positive and 

negative controls. Samples were prepared and reacted as outlined in the experimental 

section and two droplets were generated for each sample. Samples were analyzed in 

batches of 96 for a total of ~200 droplets per analysis. Analysis of each batch required 

approximately 12 min. By generating the next set of samples during analysis, near 

continuous analysis by MCE is possible achieving sample throughput of 0.16 samples/s. 

 

 

Figure 2-4. Electropherograms and raw peak area data demonstrating sample clearing 
and indexing for screening by MCE. (A) Electropherograms showing injection and 
separation of rhodamine (R), substrate (S), and product (P) and transition from a sample 
without rhodamine to a sample with rhodamine demonstrating complete sample clearing 
by two droplets. (B) Extracted peak areas for rhodamine (black trace), substrate (red 
trace), and product (blue trace) for analysis of 12 samples – two controls and ten test 
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compounds. Changes in rhodamine peak height were used to determine start and end 
points for each compound to calculate reaction yield. 

Reaction yields were calculated for each sample and normalized to the average 

positive control reaction yield (Figure 2-5). An inhibition threshold was set at 80%, 

which corresponds to three standard deviations below the normalized positive control 

yield across all experiments (n = 40). Any compounds with reaction yields below this 

threshold were identified as inhibitors of PKA with lower reaction yields denoting 

stronger inhibitors. In total, 25 test compounds (7 from the epigentics library and 18 from 

the kinase library) were identified as potential hits during the primary screen and all of 

these compounds showed a dose-dependent inhibition of protein kinase A during follow 

up screening experiments. Two false negatives were identified during the screen. One 

compound, H-89 – showed no inhibition at 12.5 µM, but was active at three lower 

concentrations. The second compound, piceattanol, was present in both compound 

libraries but was only active in the kinase library. However, a dose-dependent response 

was observed suggesting this is a true hit compound and was likely degraded in the 

epignetics compound library. Overall the assays had a high Z’-factor of 0.8 making 

identification of both strong and weak inhibitors possible. 

Follow up dose-response curves for H-89 and ellagic acid (Figure 2-6), two 

known protein kinase A inhibitors, showed good agreement with accepted IC50 values. 

For H-89, the experimental IC50 value was 89 ± 1 nM and the IC50 value for ellagic acid 

was 1.00 ± 0.01 µM. Previous results using filter based assays with [γ-32P]ATP were 135 

nM for H-89,134 and 3.5 µM for ellagic.135 
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Figure 2-5. Screening 140 small molecules against protein kinase A reveals 25 hit 
compounds based on the inhibitor threshold (red line). All reaction yields are normalized 
to the average negative control yield (blue line). With the exception of compound 25, 
which is plotted at 2.5 µM, compounds 1-60 were tested at 12.5 µM and compounds 61-
140 were tested at 5 µM. 

Comparison to Other Systems. It is interesting to consider the potential of this 

system relative to the commercial MCE screening system described in the introduction. 

Using a comparable peptide substrate and product, the Caliper instrument was able to 

analyze samples from multiwell plates using a 42 s separation in a single channel 

corresponding to 0.02 samples/s.25 In a previous report, we used a droplet extraction 

method to achieve 0.07 samples/s for 1-channel. The efficiency was much lower because 

the droplet volume and flow rate determined the injection volume. In a previous report, 

the same extraction geometry achieved an average separation efficiency of 53,500 plates 
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for a 12 s separation of three amino acid neurotransmitters.74 The droplet MCE system 

achieves about ten-fold higher rates per channel even though replicate injections are 

performed and some replicates are wasted on carryover. This increase in throughput is 

due to the higher efficiency enabled by combination of droplet introduction and 

electrokinetic injection. A further potential advantage of droplet-based sample 

introduction is a substantial reduction in reagent consumption by utilizing an all-droplet 

format, i.e. reactions performed in droplets,38, 63 which could achieve over a 1000-fold 

reduction in reagents. While these observations demonstrate a significant potential 

advantage of the droplet MCE approach, further testing and development is required 

before a droplet system could compete in terms of robustness and routine use for 

screening 104 to 105 samples and continuous operation.  

 

 

Figure 2-6. Dose-response curves for H-89 (black trace) and ellagic acid (red trace) 
generated from protein kinase A screening data. The measured IC50 values agree with 
literature values of 150 nM134 and 3 µM135 for H-89 and ellagic acid, respectively. 
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Conclusion 

 This work has demonstrated a novel droplet extraction method for coupling 

segmented flow to MCE that uses the native properties of PDMS and glass to separate the 

two phases in segmented flow. We demonstrated the utility of this sample introduction 

method combined with MCE for HTS by performing a proof-of-concept screen with PKA 

and a set 140 small molecules. Each sample consisted of two droplets and approximately 

6 injections were made per sample. This equates to an injection throughput of 1 Hz and a 

sample throughput of 0.16 Hz, which would allow for analysis of  >10,000 samples per 

day. In order to increase sample throughput without sacrificing separation resolution or 

data quality, parallel analysis would be required and could be achieved by fabricated 

multiple separation channels per device. Additionally, this platform is applicable to other 

screening assays and other droplet-MCE applications, such as coupling stages of a 2D 

separation or chemical sensing from sampling probes. 
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CHAPTER 3:  IDENTIFICATION OF SIRTUIN 5 INHIBITORS BY 
ULTRAFAST MICROCHIP ELECTROPHORESIS USING NANOLITER 

VOLUME SAMPLES 

Reproduced with permission from (Guetschow, et al. Anal Bioanal Chem 2015, DOI: 10.1007/s00216-015-9206-0). 
Copyright 2015 Springer 

 

Introduction 

 Sirtuins are an evolutionarily conserved class of nicotinamide adenine 

dinucleotide (NAD+)–dependent deacylases comprised of seven members (SIRT1-

SIRT7).80, 81 The SIRT mediated deacylase reaction consumes NAD+ generating a 

deacylated product, 2’-O-acetyl-ADP-ribose, and nicotinamide. Recent research has 

revealed novel catalytic functions for sirtuins, such as deacylation,90, 91 desuccinylation,88, 

92, 94 deglutarylation,93 demalonylation,94, 95 and decrotonylation96, 97, with SIRT5 

preferentially targeting succinyl, glutaryl, and malonyl moieties.88, 92-95, 98, 99 Through 

removal of these modifications, SIRT5 regulates the activity of many metabolic enzymes, 

such as carbamoyl phosphate synthetase 1 (CPS1),100, 103 superoxide dismutase 1 

(SOD1),104 succinate dehydrogenase (SDH),98 pyruvate dehydrogenase complex (PDC),98 

and 3-hydroxyl-3-methylglutaryl-CoA synthase 2 (HMGCS2).99 SIRT5 regulates 

glycolysis through demalonylation of glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) and aldolase B, among other targets.95 SIRT5 knockout cells show extensive 

hypersuccinylation. Although no striking biological phenotype or abnormality is 

observed for SIRT5 knockout cell lines,101 SIRT5 may play a role in cancer biology102, 136 
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as suggested by its overexpression and reported pro-proliferative role in lung cancer.104, 

107 

 Because of the diverse roles that SIRT5 plays within cells, identification of small 

molecule modulators of SIRT5 activity could have biological and clinical applications. 

Development of robust HTS assays for SIRT5 is necessary to enable rapid testing and 

identification of modulators. To date, much work has been done screening other members 

of the sirtuin family through optical assays, such as the commercially available Fluor-de-

Lys™ assay based on 7-amino-4-methylcoumarin (AMC).111-115 After catalytic removal 

of the lysine modification by a sirtuin, the AMC probe is accessible to cleavage by 

trypsin leading to an increase in fluorescent signal.110 This type of assay was used for the 

identification of Sirtuin 1 activators reported to increase lifespan in invertebrates.112 

While these assays are amenable to HTS, the close proximity of dye molecule and lysine 

residue has resulted in artifactual results during screening.111, 116, 117 To avoid these 

limitations, groups have developed alternative assays for SIRT5 screening based on 

optical detection of nicotinamide formation,118 inclusion of fluorophore-quencher pairs in 

the substrate,120 high-performance liquid chromatrography-mass spectrometry (HPLC-

MS),88, 109, 121 and fluorescence-resonance energy transfer.119 However, the number of 

compounds screened has been limited and the throughput required for large-scale 

screening has not been demonstrated. 

 Previously, electrophoresis assays have been used for screening of sirtuins,23-25, 

137-139 GTPase,72 and other enzymes.140, 141 Although these assays typically use 

fluorescent substrates, the label is often located remote from the target residue reducing 

the likelihood of false positives due to non-specific interactions. Conventional capillary 
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(CE) or microchip electrophoresis (MCE) methods use auto-samplers or manual sample 

loading leading to a maximum throughput of a few samples per minute.  

Droplet-based sample introduction for CE and MCE has recently been 

demonstrated for screening72, 142 and other assays70, 71, 74-76 as a way to improve sample 

introduction to microfluidic devices. Indeed, we previously developed a droplet-MCE 

assay for protein kinase A (PKA) capable of analyzing 8 samples per minute.142 Due to 

the small number of compounds tested in these screens, the method robustness required 

for routine high-throughput analysis has not been demonstrated. Herein we report the use 

of droplet-MCE with 3-fold improved throughput over prior studies for a screen of 1280 

compounds against SIRT5.  

Materials and Methods 

 Chemicals and Materials. Unless otherwise specified all reagents were 

purchased from Sigma Aldrich (St. Louis, MO). SDHA-derived peptide was synthesized 

by GenicBio Limited (Shanghai, China). All test compounds were from the Prestwick 

Chemical Library (Prestwick Chemical, Washington DC) and were supplied by the 

Center for Chemical Genomics at the University of Michigan or from the Epigenetics 

Screening Library (Cayman Chemical, Ann Arbor, MI). 

 Microfluidic Device Fabrication. Polydimethylsiloxane (PDMS) droplet 

extraction devices were prepared using a pour over method as previous described.142 

Glass microfluidic devices were fabricated using photolithography and wet chemical 

etching by hydrofluoric acid.127-129 Each device is fabricated from two etched pieces of 

glass that are aligned prior to bonding. One slide was etched to 80 µm for the capillary 

insertion channel and sample channel. The second slide was etched to 80 µm for capillary 
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insertion and 3 µm for separation channels. During etching of deep channels, other 

features were covered with HF resistant tape (Semiconductor Equipment Corporation, 

Moorpark, CA). After etching, fluidic access holes were made with a 0.5 mm drill bit 

(Kyocera Tycom, Costa Mesa, CA). Glass slides were washed for 20 min in piranha 

solution (sulfuric acid:hydrogen peroxide, 4:1) and for 40 min in heated RCA solution 

(ammonium hydroxide:hydrogen peroxide:water, 1:1:5). Slides were rinsed with water, 

channels were aligned under a microscope, and bonded at 610 °C for 8 h. Reservoirs 

(IDEX Health and Science, Oak Harbor, WA) were attached at the access holes using 

epoxy and a 30 µm i.d. x 150 µm o.d. x 1 mm long extraction capillary was waxed in 

place in the capillary insertion channel. 

 Droplet Generation from Multiwell Plate. Droplet formation followed the 

procedure previously published.35 Droplets segmented by perfluorodecalin (PFD) were 

generated from modified polypropylene 384-well plates (Nunc ShallowWell, Thermo 

Scientific, Waltham, MA) and collected into 150 µm i.d. x 360 µm o.d. HPFA+ tubing 

(IDEX Health and Science, Oak Harbor, WA). Well height across the entire plate was 

reduced by 1.5 mm using a CNC milling machine allowing samples to be covered by 

carrier oil to prevent evaporation and aspiration of air bubbles. For droplet formation, 

multiwell plate (MWP) and tubing were mounted onto a computer controlled XYZ-

positioner so that the tubing inlet could move freely above the wells. The tubing outlet 

was connected to a 100 µL syringe mounted in a PHD 200 syringe pump (Harvard 

Apparatus, Holliston, TX) and both were primed with PFD to remove any air bubbles.37 

With the syringe pump operating in refilling mode (1000 nL/min), the tubing inlet was 

moved from well to well in programmed pattern to generate droplets at 0.75 droplets per 
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second. Briefly, the computer was programmed to move at 2000 mm/s, which was the 

maximum rate of linear motion. For each sample droplet, the tubing would dwell in the 

aqueous phase (420 ms) and in the oil layer (150 ms). Addition oil phase would be 

aspirated as the tubing moved from well to well. The final droplet volume was 8.2 ± 0.3 

nL and each oil spacer was 10.0 ± 0.4 nL. After formation of droplets a short oil plug 

(~10 mm) is aspirated into the tube to prevent sample loss caused by flow induce when 

making connections. 

 Microchip Electrophoresis Analysis with Droplet Samples. Prior to each 

experiment, all fluidic channels were filled with separation buffer (10 mM sodium 

tetraborate, pH 10) ensuring no air bubbles remained. Positive (+2 kV) and negative (-3 

kV) high voltage (CZE1000R, Spellman, Hauppague, NY) was applied to the 

microfluidic device via platinum electrodes at the fluid reservoirs. Sample was 

electrokinetically injected130, 131 for 15 ms using a high-voltage relay (Kilovac, Santa 

Barbara, CA) controlled by an in-house LabVIEW program (National Instruments, 

Austin, TX). Detection was accomplished using a confocal laser-induced fluorescence 

detector. Briefly, a 488 nm line from a solid state laser (CrystaLaser, Reno, NV) was 

directed through a 488 ± 10 nm band pass filter and reflected by a 500 nm dichroic mirror 

into a 40X objective lens. Emitted light was collected by the same objective and passed 

through the dichroic mirror. The emitted light filtered through a 520 ± 10 nm band pass 

filter and 400 µm pinhole prior to being detected by a photomultiplier tube (R1477, 

Hamamatsu, Bridgewater, NJ). Current from the PMT was amplified (SR570 current 

preamplifier, Stanford Research Systems, Sunnyvale, CA) and monitored using in-house 

LabVIEW control software. Data were sampled at 1000 Hz using a 16-bit data 
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acquisition card (PCI-6036E, National Instruments Corp., Austin, TX). 

Electropherograms were analyzed with Cutter 7.0 132. Statistical analysis and plotting was 

done in Excel 2011 (Microsoft, Redmond, WA), and Igor Pro 6.32 (Wavemetrics, Inc., 

Lake Oswego, OR). 

 Droplet samples were introduced as outlined previously. A length of tubing 

containing sample droplets connected to a 100 µL syringe via a union and the outlet was 

inserted in to the PDMS extraction device at a 90° angle to the extraction capillary inlet. 

Downstream of the extraction region, a 40 µm i.d. x 150 µm o.d. fused silica capillary 

connected to a 100 µL syringe is inserted into the device to generate waste droplets that 

promote extraction by increasing backpressure at the extraction point. Droplets were 

pumped into the extraction device at 700 nL/min and electrokinetic injections were made 

at 4 Hz. 

 In Vitro PDC Desuccinylation Assay. Porcine heart PDC (Sigma Aldrich, St. 

Louis, MO) was purified by centrifugation at 135,000xg for 2 hours in 100 mM 

potassium phosphate, pH 7.5, 0.05% lauryl maltoside, 2.5 mM EDTA, and 30% glycerol. 

Desuccinylation reactions were carried out on 30 μg of purified porcine heart PDC in a 

final reaction volume of 60 μl in presence of 25 mM Tris-Cl, pH 8.0, 200 mM NaCl, 5 

mM KCl, 1 mM MgCl2, 0.1% PEG 8000, and 3.125 mM NAD+ at 37°C for 2 hours. 

Where indicated, 10 μg of SIRT5 or SIRT5H158Y (expressed and purified in house) was 

added. During incubation, tubes were occasionally agitated. Following desuccinylation, 

15 μl each reaction was analyzed by immunoblotting with a succinyl-lysine antibody 

(PTM Biolabs, Inc, Chicago, IL). After analysis, the membrane was stripped and re-
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probed for PDHA1 (Abcam, Cambridge, MA) and SIRT5 (Cell Signaling Technology, 

Danvers, MA). 

 Peptide-based SIRT5 Assay. Assay conditions were developed using a novel 

succinyl-lysine peptide derived from succinate dehydrogenase.98 The substrate peptide 

(GGQSLK[succ]FGKG) was labeled at the N-terminus with 5-carboxyfluorescein (5-

FAM) and yielded a desuccinylated peptide (GGQSLKFGKG) as a product. Reactions 

were performed in 10 mM Tris, pH 8 containing 1 mM dithiothreitol (DTT) with enzyme 

concentration fixed at 10 nM. Reactions were stopped by dilution with 1.5 volumes of 10 

mM sodium tetraborate, pH 10. Kinetic parameters were determined using substrate 

concentrations ranging from 0 to 50 µM at time points from 0 to 30 minutes. Kinetics 

data was fitted using the Michaelis-Menton model in GraphPad Prism 6. Assay 

conditions were validated using a small-scale screen of the Epigenetics Screening 

Library. 

 High-throughput SIRT5 Screening. All screens were performed at 10 µL final 

volume in a modified low volume MWP and were prepared using a MultiDrop Combi 

(Thermo Scientific, Waltham, MA). A Caliper Life Science Sciclone ALH300 

(PerkinElmer, Waltham, MA) was used to deposit 50 nL of 2 mM test compounds into 

MWPs containing 5 µL of 2X reaction buffer (20 mM Tris, pH 8, 2 mM DTT). To index 

samples during analysis, 1 µL of 1 µM rhodamine 110 was added to even number 

columns and 1 µL of water was added to odd number columns. Next, 1 µL of 10 µM 

peptide was added to all wells and 3 µL of 33 nM SIRT5 was added to initiate reactions. 

Final reaction conditions were 1 µM peptide, 10 nM SIRT5, and 10 µM test compound 

with 0.5% DMSO. Reactions were quenched by addition of 15 µL of 10 mM sodium 
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tetraborate, pH 10 after 30 minutes incubation at room temperature. Each plate contained 

16 negative (0.5% DMSO) and 16 positive (10 µM anacardic acid) controls for a total of 

352 samples per plate. Each sample was reformatted into a single droplet as detailed 

above. Reaction yield based on substrate and product peak area was used for data 

analysis and normalized to positive and negative controls within each row to account for 

variation in reaction yield. Hit compounds were verified by dose-response analysis from 

0.1 to 100 µM (unless otherwise noted on individual plots) and IC50 values were 

calculated from best fit curves using GraphPad Prism 6. 

Results and Discussion 

 Development of a SIRT5 Screening Substrate. Several research groups have 

developed assays for SIRT5, since it was first reported to remove novel protein post-

translational modifications, such as succinyl, malonyl, and glutaryl moieties.88, 92, 94 

Based around fluorogenic substrates,111, 112, 114 these assays are amenable to HTS; but, the 

engineered assay substrates may not always mimic natural substrates well due to their 

short length and the presence of a bulky fluorescent probe near target residues. To avoid 

these limitations, assays based on high-pressure liquid chromatography (HPLC),88 mass 

spectrometry (MS),121 or fluorescence resonance energy transfer (FRET)119 have been 

developed that use short peptides based on natural SIRT5 substrates.  

 In developing our electrophoresis assay, we wanted our peptide substrate to have 

the fluorescent tag remote from the succinyl lysine to reduce potential for false positive 

results, have a total charge suitable for rapid electrophoretic separation of substrate and 

product, and be based on a known SIRT5 target to mimic in vivo substrates. Known 

SIRT5 targets, such as CPS1,99, 100, 103 PDC,98 SDH,98 and HMGCS2,99 as well as 
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hypersuccinylated proteins, such as hydroxyacyl-Coenzyme A dehydrogenase (HADH),98 

acetyl-Coenzyme A acetyltransferase (ACAT),98 and malate dehydrogenase (MDH)99 

were identified as templates for substrate development. We selected a peptide based on 

SDHA K179 due to the favorable peptide charge (-2 for substrate, 0 for product) under 

basic pH used for analysis; although in principle another target could be used for 

substrates if desired. The length was sufficient to provide distance (five amino acids) 

between the 5-FAM tag and the target lysine while providing several amino acids on 

either side of K179 for substrate recognition as demonstrated by other groups.88, 109, 143 

Additionally, total peptide charge was only slightly negative and allowed for short 

migration times and good separation from the product peptide formed after SIRT5 

desuccinylation. 

 Separation of the substrate and product peptides was achieved in 250 ms due to 

favorable charge-to-size ratio, high electric field, and short separation distance (see 

below). Injection of SIRT5 reaction mixture resulted in two peaks in the 

electropherogram associated with the succinylated substrate and desuccinylated product 

peptides (Figure 3-1A). Removal of the succinyl moiety caused a +2 change in peptide 

charge resulting in a faster migration time.  

 To evaluate the quality of our SDHA-derive peptide substrate, we compared the 

activity of SIRT5 and SIRT5H158Y – catalytically inactive SIRT5 – with the peptide 

substrate and full PDC. For the peptide substrate, robust activity, as quantified by product 

peak area, was observed for SIRT5 with only slight activity observed for SIRT5H158Y 

(Figure 3-1A). Likewise incubation of PDC with SIRT5, but not SIRT5H158Y, resulted in 

decreased succinylation of PDHA1 – the catalytic subunit of PDC (Figure 3-1B). 
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Therefore, in terms of SIRT5 activity, our SDHA-derived peptide substrate behaved 

similarly to full PDC. 

 

 

Figure 3-1. SIRT5 and SIRT5H158Y have similar activity against SDHA-derived peptide 
and PDC holoenzyme. (a) Electropherograms demonstrating that SIRT5 desuccinylates 
target peptide forming a product with shorter migration time and that SIRT5H158Y has 
reduced enzymatic activity. (b) Succinylation of porcine heart PDC is reduced following 
incubation with SIRT5 but not SIRT5H158Y. Upper blot: total lysine succinylation; 
PDHA1 band highlighted in red. Middle and lower blots: PDHA1 and SIRT5, 
respectively. 

 Improvements to Sample Throughput for Microchip Electrophoresis. 

Analysis of droplet samples by MCE was done using a hybrid PDMS-glass microfluidic 

device modified from that described previously (Figure 3-2).142 In this system, samples 

stored in a length of Teflon tubing are flowed past the inlet of a fused silica extraction 

capillary inserted into the glass MCE device. As the droplets exit the Teflon tubing, they 

are wicked into the extraction capillary. Once on the microfluidic device they were pulled 

by EOF toward the voltage-gated injector for MCE analysis. A combination dead volume 
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in the extraction capillary and separation speed limited the system throughput. In this 

work, we examined improving the throughput to enable larger scale screens. 

 

 

Figure 3-2. Schematic of microfluidic device for analysis of droplet samples by MCE 
showing positioning of droplet samples orthogonally to the 1 mm fused silica extraction 
capillary.  

 In the original system, the extraction capillary had a 3.1 nL volume (2.5 mm 

length x 40 µm i.d.). To effectively clear this dead volume, 16 nL of sample (2 droplets 

of 8 nL each) was required. The time required to perform this rinse limited assay 

throughput to 0.16 samples per second. For these experiments, the device was redesigned 

to accommodate a 1 nL extraction capillary (1 mm length x 30 µm i.d.). We found that 
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with this volume a single 8 nL droplet provided a sufficient rinse of the extraction 

capillary allowing throughput to be increased 2-fold relative to the previous 

implementation.  

 Although reduced dead volume increased sample throughput, separation speed 

remained a bottleneck. In previous work, separation distance was 5 mm and electric field 

was 2000 V/cm. Using these conditions, rhodamine, substrate, and product for SIRT5 

assays were resolved within 1 s (Figure 3-3A). Resolution could be maintained at shorter 

times by reducing detection length and increasing the field (Figure 3-3A). The fastest 

separation achieved was 250 ms at 3500 V/cm and 2 mm separation distance.  

 At the high field and short separation length, over injection led to poor resolution. 

To determine the best injection time, peak variance for substrate and product peptide was 

measured for injection widths of 10 ms to 35 ms (Figure 3-3B). A minimum peak 

variance was observed at 15 ms injection width for both substrate and product peptides 

and was used for all future separations. Under these conditions, the average separation 

efficiency for three analytes was 7,000 ± 1,000 plates. When corrected for analyte 

migration time, the separation generated 41,000 ± 8,000 theoretical plates/s. These 

conditions allowed 4 injections/s so that 8 injections were obtained per droplet and 

sample throughput was 0.5 Hz. This result is a 3-fold increase in sample throughput 

compared to the previous design.142  
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Figure 3-3. Separation throughput was increased 4-fold for SIRT5 assay through 
improvement of separation and injection conditions. (a) Electropherograms for initial 
separation conditions based on previous work and improved conditions capable of 
baseline separation in as little as 250 ms. (b) Optimum injection width is 15 ms based 
substrate (black) and product (red) peak variance. 

 The high rate of injections allowed monitoring of when carryover was eliminated 

(typically 3 injections) and collection of at least 3 replicate assays per droplet. Carryover 

was determined by monitoring the presence or absence of a rhodamine signal (rhodamine 

was present in every other droplet) and stability of peak height for substrate and product 

peaks in the electropherogram.    

 An important consideration is whether the electropherograms are stable over 

many injections. Migration time RSD for rhodamine, substrate, and product were 1.3%, 

0.7%, and 0.6%, respectively (n = 1400). Additionally, peak areas were stable over many 

injections. For samples containing rhodamine, peak area RSD was less than 5% for 

replicate injections of the same sample (n = 3) and average rhodamine peak area RSD 

was 6% over 88 samples (n = 264 injections). This corresponds to one batch of samples 

(e.g. 88 samples with rhodamine and 88 without). Slight changes in peak magnitude were 
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observed from batch to batch, but this did not affect data quality because peak area ratios 

were used for analysis (Figure 3-4). Substrate and product peak area fluctuated from 

sample to sample due to slight variation in enzyme efficiency; however, peak area RSD 

was less than 5% for replicate injections of the same sample (n = 3). 

 

 

Figure 3-4. Representative electropherograms from injections made at the beginning (a) 
and end (b) of SIRT5 screening. The compound number is labeled above injections, 
which are denoted by an arrow. Individual peaks corresponding to rhodamine (R), 
product (P), and substrate (S) are labeled. 

 SIRT5 Inhibitor Screening. The assay for SIRT5 monitored the depletion of 

substrate peptide (5-FAM-GGQSLK[succ]FGKG) and formation of product peptide (5-
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FAM-GGQSLKFGKG) simultaneously (Figure 3-5A). Reaction yield was normalized to 

positive and negative controls within each row of the well plate and plotted as normalized 

SIRT5 activity for each sample. Monitoring two analytes and normalizing to row controls 

mitigated the effect of variation in sample preparation, injection, or separation efficiency 

over the course of screening. Samples were indexed by addition of rhodamine 110 to 

even number samples and monitoring changes in rhodamine peak area to identify samples 

as previously demonstrated.142 Prior to screening, substrate concentration for screening 

was determined from kinetics data. Based on Michaelis-Menton kinetics, the Km (1.6 ± 

0.4 µM) and Kcat/Km (5.8 x 104 M-1s-1) values were determined (Figure 3-5B). These 

match well with reported values for SIRT5 substrate peptides of similar length based on 

Histone H3 (Km = 5.8 ± 2.7 and Kcat/Km = 4.3 x 103 M-1s-1)88 and CPS1 (Km = 3.8 ± 0.6 

and Kcat/Km = 1.4 x 104 M-1s-1).109 Reaction progress was linear up to 50 minutes, the 

longest point tested (Figure 3-5C). Addition of 1.5 volumes of 10 mM sodium 

tetraborate, pH 10 completely inactivates SIRT5 (Figure 3-5D). To satisfy screening 

assay requirements2, 144 substrate concentration was fixed at 1 µM, below the Km, and 

reactions were quenched after 30 minutes. 
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Figure 3-5. A) SIRT5 catalyzes the removal of succinyl moieties from lysine side chains 
in the presence of NAD+ causing a +2 change in peptide charge. B) Michaelis-Menton 
kinetics data for SIRT5 with excess NAD+. Km is 1.6 ± 0.4 µM, Kcat is 0.092 ± 0.008 s-1, 
and Kcat/Km is 5.8 x 104 M-1s-1. C) Reaction progress for 1 µM substrate and 10 nM 
SIRT5 demonstrating reaction linearity up to ~50 minutes. D) SIRT5 reaction can be 
quenched by addition of 1.5 volumes of 10 mM sodium tetraborate, pH 10. Ice sample 
was quenched after 30 minutes and stored at -80 °C, RT sample was quenched after 30 
minutes and stored at room temperature, and 1 hr sample was allowed to react for 1 hr 
before quenching. (n = 3 for all samples). 

 To validate reaction conditions for high throughput screening, SIRT5 activity was 

screened against a library of 80 compounds from an epigenetics focus library known to 

inhibit other members of the sirtuin family (Figure 3-6A). Each test compound was 

screened at 10 µM. Seven compounds were identified as SIRT5 inhibitors, based on a 50 

percent inhibition of SIRT5 activity. These hits were verified with dose-response curves 

and IC50 values ranged from 60 nM to 8 µM (Figure 3-6B). Of the compounds, suramin 

has previously been reported as a SIRT5 inhibitor in NAD+-nicotinamide exchange 

assays (IC50 = 22 µM)89 and fluorogenic assays (IC50 = 47 µM).145 AGK-2 has been 

reported as a SIRT5 inhibitor with an IC50 value above 100 µM.108 The difference in IC50 

values may be due to these assays focusing on SIRT5 deacetylase activity, which is much 
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lower than SIRT5 desuccinylase activity, or differences in assay conditions. The potent 

inhibitor anacardic acid was chosen as a positive control for future screens based on the 

results of pilot screening. 

 

 

Figure 3-6. A) Data from SIRT5 assay validation screen using 80 compounds from the 
Epigenetics Screening Library. Inhibition threshold is denoted by red line. B) Dose-
response curves for compounds reducing SIRT5 activity by 50 percent. 

 These validated conditions were used to screen the Prestwick Chemical Library, 

which contains 1280 approved drug compounds, against SIRT5 (Figure 3-7A). Reactions 

were prepared in 384-well plates using high-throughput sample preparation 

instrumentation for incorporation into existing HTS workflows. Each of the 1408 samples 
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(1280 compounds, 64 positive controls, and 64 negative controls) were reformatted into a 

single droplet with an average volume of 8.2 ± 0.3 nL (n = 352) at 0.75 Hz (although 

faster reformatting is possible146). Analysis was done in batches of 176 samples, 

corresponding to one-half of a plate, with a sample throughput of 0.5 Hz. Total analysis 

time was 46 minutes and generated over 11,000 electropherograms at 8 injections per 

sample (Figure 3-7B). The assay Z’-factor, when corrected for row effects caused by 

sample preparation, was 0.8. 

 

 

Figure 3-7. Screen of Prestwick Collection Library against SIRT5. A). Normalized 
SIRT5 activity with each of the 1280 compounds. Each point represents the average 
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enzyme activity with a test compound and the red line denotes the inhibition threshold. 
B) Top plot: Electropherograms corresponding to the 160 compounds in the grey region 
of Panel A. Bottom plot: Enlarged view of red highlight region (338-342 s) showing 
separation of rhodamine (R), product peptide (P), and substrate peptide (S) for three 
compounds. #1117 is an inhibitor. Injections are denoted with an arrow and 6-8 injections 
are made from each sample droplet. 

Among the compounds, 10 reduced SIRT5 activity by 70 percent and were 

selected for further study. At the time of initial screening, all reactions containing SIRT5 

inhibitors were re-formatted as duplicate droplets and analyzed by MCE to confirm 

results (Figure 3-8). These compounds were evaluated for dose-dependent SIRT5 

inhibition and 8 were confirmed as SIRT5 inhibitors. The remaining two compounds did 

not exhibit dose-dependent inhibition of SIRT5 and were identified as false positives 

caused by sample preparation.  

 

 

Figure 3-8. Confirmation of SIRT5 inhibitors during initial screening and demonstration 
of analysis reproducibility. All compounds identified as reducing SIRT5 activity by 70 
percent were formatted into two sample droplets each and re-analyzed by MCE. In all 
cases, the data from re-testing (red bars) matches well with initial screening (black bars) 
data demonstrating reproducibility of analysis and confirming SIRT5 inhibitors for 
follow up studies. Compounds labeled with an asterisks (*) were identified as false-
positives by dose-response analysis (i.e. dose-dependent inhibition was not observed). 
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All dose-response curves had good fit (R2 >0.90) except antimycin A, which had 

an IC50 value near the maximum tested dose (Figure 3-9). (See Appendix B for dose-

response fit values and structures of confirmed inhibitors.) The calculated IC50 values are 

in the low micromolar range matching the most potent reported SIRT5 inhibitors.108, 109, 

147 None of the compounds have previously been reported as SIRT5 inhibitors; however, 

SIRT5 was reported as a potential target of probucol based on molecular targeting and 

docking studies.148 

 

 

Figure 3-9. Dose-response analysis for compounds reducing SIRT5 activity by 70 
percent. Ten compounds were identified during screening and 8 were confirmed as 
inhibitors with IC50 values denoted on each plot. 
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 Future Improvements to sample throughput and robustness. If run 

continuously, the current system could analyze over 14,000 samples in 8 hours; however, 

even higher throughput may be possible with further improvement. For example, the 

current separation speed was limited by peak resolution between rhodamine and product 

peptide, while the resolution between product and substrate is 2.5. If rhodamine – used 

for sample indexing – was replaced by a more positively charged analyte with faster 

migration velocity, then separation time could be further reduced without loss of baseline 

resolution. For example, reducing separation time to 125 ms (half of the current 

separation time) could increase sample throughput to 1 Hz (>28,000 samples in 8 hours). 

Additional throughput could be achieved by testing multiple compounds 

simultaneously.149 While additional assays would be needed to de-convolute any 

inhibitors or synergistic inhibition effects, throughput would increase linearly with the 

number of compounds per reaction. 

 Although we have demonstrated an assay for SIRT5 capable of screening a meso-

scale compound library, several factors limit using droplet samples for routine analysis. 

Several steps during sample analysis require making zero dead volume connections with 

small flexible tubing, which can be difficult and is labor intensive. During droplet 

formation, the number of droplets that can be formed reproducibly is limited by back 

pressure from droplet samples within the collection tubing. This limits read length to 

several hundred samples requiring batch analysis for large libraries. Although generating 

droplets in parallel is possible, it increases complexity and requires additional low dead 

volume connections.146 If droplets could be generated and analyzed continuously, then 
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analysis limits imposed by low dead volume connections and droplet read length could be 

mitigated. 

Conclusion 

 In this work, we have described a SIRT5 screening assay based on ultrafast 

electrophoresis using nanoliter volume samples suitable for meso-scale library screening. 

A novel SIRT5 substrate derived from SDHA was developed to achieve rapid separation 

of substrate and product, while avoiding several limitations associated with commercially 

available fluorogenic substrates. Using this assay, 1408 samples (1280 compounds, 128 

controls) were screened against SIRT5 and 8 previously unknown SIRT5 inhibitors were 

identified. Analysis was completed within 46 minutes (0.5 Hz) and over 11,000 MCE 

injections were made demonstrating method speed, robustness, and reliability. Under 

these conditions, throughput was increased 3-fold relative to previous MCE-based 

screening and 25-fold compared to previous sirtuin screens by MCE or CE.  
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CHAPTER 4:  TOWARD AN ALL-DROPLET MICROCHIP 
ELECTROPHORESIS SCREENING PLATFORM 

Introduction 

Over the past few decades, high-throughput screening (HTS) has become a vital 

tool for drug discovery within the pharmaceutical industry.1, 2 As it has gained popularity, 

the scale of HTS has increased to encompass libraries containing hundreds of thousands 

of compounds. To mitigate the rising cost of screening such large libraries,61, 150 plate 

densities have increased and assay volumes have decreased. Although assay volume can 

be as low as several microliters, a typical assay of 106 compounds requires several liters 

of each reagent. These volume requirements are prohibitive when screening rare, difficult 

to express, or expensive enzymes. Further increasing the plate density (i.e. 6144-well 

plates) requires sub-microliter sample volumes; however, customized liquid dispensing 

methods are necessary and sample evaporation is common.151, 152 Therefore, alternate 

strategies for miniaturizing HTS assays are necessary. 

Droplet microfluidics has emerged as a powerful tool for handling and 

manipulating low volume samples and provides an interesting solution for decreasing 

sample volume in high-throughput screening.53, 60, 62-64 In droplet microfluidics, aqueous 

samples, typically picoliter to nanoliter in volume, are encapsulated within an immiscible 

phase and manipulated within microfluidic devices.27 Because carrier fluid, typically air 



 

 66 

or fluorinated oil, surrounds sample droplets, evaporation is significantly reduced. A 

range of droplet transformations are possible, such as mixing,48-52 reagent addition,27, 38, 

50, 52, 57, 58 dilution,59, 60 splitting,39-42 and sorting,35, 53, 54, 56 to achieve complete analysis 

within a miniaturized format. In one example, the authors deposited nanoliter volume 

droplets in a 2D array on a flat surface and covered them with an oil layer.153 In this 

manner, they could add reagents and sample from nanoliter volume droplets without 

sample evaporation.154, 155 Using these methods sample consumption could be reduced by 

more than 1,000-fold relative to conventional assays.53  

Accurate reagent dispensing is necessary to reduce sample-to-sample variability 

and to achieve high-quality screening results. Several reagent addition systems for droplet 

microfluidics have been developed based on active and passive methods. Active methods, 

such as electrocoalescence156-159 or the thermocapillary effect,160 provide robust operation 

and are able to selectively add reagents to some droplets but not others. However, they 

require external input to control reagent addition and have more complicated operation. 

Passive devices, on the other hand, afford simpler operation but are unable to add 

reagents on only certain droplets (e.g. cell sorting applications) and performance is 

dependent on reagent composition (e.g. organic content and surfactants).38, 52, 57, 58 One 

group reported the use of PDMS reagent addition devices with hydrophilic reagent 

channels to achieve robust operation for blood coagulation assays, but droplets were 

entirely manipulated within the device and carryover was not detailed.52 Another group 

built upon this design, using PVDF and HFPA+ tubing, and demonstrated low carryover 

reagent addition to droplets from in vivo sample probes and screening assays.38, 58 
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Although robust operation was reported, a single reagent inlet and complicated 

fabrication procedure limit widespread use. 

In this work we demonstrate a simple and robust PDMS device for passive 

reagent addition was developed using single layer SU-8 fabrication. The high sample 

throughput, simple operation, and low carryover are demonstrated in several fundamental 

experiments. Samples prepared using the reagent addition device were analyzed using 

microchip electrophoresis to demonstrate progress toward all-droplet screening assays. 

Materials and Methods 

Chemicals and Materials. Unless otherwise specified all reagents were 

purchased from Sigma Aldrich (St. Louis, MO). PDMS devices were fabricated from 

degassed RTV-615 (Momentive, Inc., Waterford, NY) using a base to curing agent ratio 

of 10:1. Fluorescent peptide (5-FAM-GGQSLK[succ]FGKG) was purchased from 

GenicBio Ltd (Shanghai, China). 

Microfluidic Device Fabrication. Reagent addition devices were fabricated in 

PDMS using standard soft lithography.42, 161 Briefly, HMDS was spun onto a 3-inch 

silicon wafer (University Wafer, Boston, MA) to promote photoresist adhesion. SU-8 

2075 photoresist (MicroChem, Corp., Newton, MA) was spun onto the wafer to achieve a 

110-µm deep layer. Wafers were baked (5 min at 65 °C and 15 min at 95 °C) prior to UV 

light exposure (Optical Associates, Inc., Malpitas, CA) through a photomask to cross-link 

features. After exposure, wafers were baked (3 min at 65 °C and 8 min at 95 °C) prior to 

developing in SU-8 photoresist developer (MicroChem, Corp., Newton, MA). After 

fabrication, droplet channels were 110 µm wide and reagent inlets were 100 µm wide. 

After casting PDMS over the molds, devices were trimmed to size and bonded to 
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unpatterned PDMS using plasma oxidation. Sealed devices were placed on a hot plate (75 

°C) for 5 minutes to enhance bonding prior to surface functionalization. After 

functionalization, reagent capillaries (40 µm i.d. x 150 µm o.d.) were inserted into 

reagent inlet channels to be flush with the droplet channel. Derivatized transfer capillaries 

(100 µm i.d. x 150 µm o.d.) were inserted as needed to facilitate sample transfer. 

Capillaries were adapted to 360 µm fittings by gluing a 1 cm length of 180 µm i.d. x 360 

µm o.d. capillary or 150 µm i.d. x 360 µm o.d. HFPA+ tubing at one end. 

Fluorophilic derivatization of PDMS and fused silica. For PDMS devices, 

channels were derivatized by filling with 1H,1H,2H,2H-perfluorooctyltrichlorosilane (4% 

v/v in anhydrous hexadecane) for 10 min.42 Devices were rinsed by sequential perfusion 

with hexadecane and hexane prior to baking at 80 °C overnight. Fused silica capillary 

was derivatized based on a previously reported method.22 Briefly, the fused silica 

capillary was flushed with 1 M sodium hydroxide (10 min) and water (10 min) at 25 

µL/min to activate surface silanols. Capillaries were purged with nitrogen (30 psi) at 90 

°C for 1 hr to remove any remaining water. The surface was derivatized by perfusion 

with 1H,1H,2H,2H-perfluorooctyltrichlorosilane (5% v/v in toluene) at 90 °C for 2 hr at 

25 µL/min. Capillaries were rinsed with toluene and methanol (30 min at 25 µL/min) 

before drying under nitrogen (30 psi) for 3 hr at 90 °C. 

Droplet Reagent Addition. Prior to experiments, reagent addition devices were 

primed with carrier fluid (200:1 perfluorodecalin:perfluorooctanol) to coat PDMS 

surfaces. At the beginning of experiments, transfer capillaries were primed for 5 min 

under experimental conditions to remove any air bubbles and ensure stable flow. Sample 

droplets were generated via tee junction (throughput experiments)32-34 or sipping from a 
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multiwell plate (carryover and electrophoresis experiments).35-38, 142, 146 Reagents could be 

added at 10 to 30 percent of parent droplet volume by controlling relative flow rates via a 

syringe pump (Chemyx Inc, Stafford, TX). Droplet signal was monitored by laser-

induced fluorescence or extracted from movies using frame-by-frame analysis in ImageJ. 

Droplet Analysis by Microchip Electrophoresis. For demonstration of coupling 

reagent addition to MCE analysis, sets of droplet samples containing either fluorescent 

dye or water were analyzed as previously described.142 All parameters were identical 

except for droplet flow rate during extraction, which was increased to 1000 nL/min to 

account for two droplets per sample. Sample droplets with average volume of 3.6 ± 0.3 

nL (n = 60) were generated from a multiwell plate to consist of alternating sets of two 

droplets containing either rhodamine or water in 0.5% DMSO (i.e. R-R-W-W, etc.). A 

fluorescent peptide (8 µM in 80 mM Tris, pH 8) was added to mimic reagent addition 

conditions during HTS. Flow rates were controlled so that 0.6 nL of reagent was added to 

each droplet. 

Results and Discussion 

To significantly reduce sample consumption for HTS and to enable screening of 

rare or hard to purify enzymes, this work proposes to perform all aspects of sample 

preparation within nanoliter volume samples. The workflow for analysis consists of three 

steps: droplet generation, reagent addition, and analysis (Figure 4-1). In most high-

throughput analysis facilities, test compounds are arrayed in 96- or 384-well plates for 

rapid dispensing. Therefore, starting droplets will be formed from compound libraries 

into a series of test compound droplets. After formation, test compound droplets will be 

pumped through a microfluidic device to inject picoliter volumes of assay reagents into 
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each droplet and allow reaction incubation. Finally, sample droplets can be analyzed by 

MCE to determine test compound efficacy. Several groups have reported methods for 

generating droplets. Therefore, this work will focus on addition of assay reagents and 

analysis by MCE. 

 

 

Figure 4-1. Overview of all-droplet high-throughput screening with microchip 
electrophoresis for detection. Droplets containing test compounds are generated by 
sipping from an MWP. Reagents (e.g. substrate and enzyme) are directly injected into 
droplets using a PDMS microfluidic device and collected for incubation. Completed 
reactions are analyzed by MCE and inhibitors are identified based on amount of substrate 
and product present in each sample. 

Reagent Addition Device Design and Operation. To perform HTS entirely 

within droplet format, reliable addition of reagents to each droplet is necessary. Several 

methods exist for adding reagents, but the simplest utilize direct injection of reagents into 
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passing droplets at tee junction. Several groups have developed these devices in various 

formats with the common attribute being the use of hydrophilic channels for reagent 

delivery.52, 57 Although these devices demonstrated reliable operation within the 

parameters necessary for HTS, they were either difficult to fabricate38, 58 or were 

demonstrated to be compatible with sample droplets formed off of the device.52, 57 

To address these limitations, we developed a single layer PDMS device for 

reagent addition using these existing devices as a design guide. The device consists of a 

tee junction in which the outlet of a fused silica capillary can be oriented flush with the 

PDMS droplet channel (Figure 4-2). The design is scalable so that several reagents can be 

added sequentially within a single device by incorporating additional reagent channels 

similar to existing PDMS reagent addition devices. Additionally, serpentine channels 

were integrated to facilitate rapid mixing of reagents. We found that using narrow bore 

reagent capillaries, typically 40 µm i.d. x 150 µm o.d., reduced sample carryover due to 

lower diffusional mixing as a result of high linear flow rate at the outlet. At smaller inner 

diameter (e.g. 20 µm i.d. x 150 µm o.d.), the increased surface area of fused silica, due to 

thicker capillary walls, caused droplet sticking and increased carryover. This effect could 

be mitigated by either derivatizing the tip of the reagent capillary or using a capillary 

with smaller outer diameter, such as 20 µm i.d. x 90 µm o.d., which would reduce the 

hydrophilic surface area of the capillary. 



 

 72 

 

Figure 4-2. Schematic of PDMS droplet reagent addition device. Sample droplets 
containing test compounds are pumped onto the chip through a fluorinated capillary 
while reagents are injected via hydrophilic capillaries. Serpentine mixing regions on the 
device rapidly distribute reagent throughout the droplet. Droplets are collected via 
another fluorinated capillary for incubation or analysis. 

One of the biggest challenges for reagent addition into preformed droplets is 

transferring sample droplets onto the device without droplet breakup. We chose to use a 

fluorinated fused silica capillary (100 µm i.d. x 165 µm o.d.) to transfer droplets onto the 

device (Figure 4-2). Due to the larger cross section, the capillary stretches the PDMS 

channel forming a tight seal to prevent leaking. Droplet samples transition from capillary 

to chip without sticking due to he similar dimensions for the capillary and channel. 

Because most fittings are designed around 360 µm tubing, the transfer capillary was 

adapted by inserting one end into a length of HFPA+ tubing (150 µm i.d. x 360 µm o.d.). 

This allowed for zero dead volume connections to droplet storage tubing using a Teflon 

connector (Figure 4-3). 
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Figure 4-3. Image of zero dead volume Teflon union used to connect Teflon tubing 
containing sample droplets (left side of image) to the fluorinated transfer capillary. 
Droplets seamlessly transfer from Teflon-Teflon and from Teflon-capillary with minimal 
carryover. 

Oil phase surfactant (e.g. perfluorooctanol) plays an important role in reagent 

addition by stabilizing droplets to reduce carryover. However, high surfactant 

concentrations will overly stabilize droplets and prevent reagents from being added. To 

determine an acceptable surfactant concentration, reagent addition stability was 

monitored for experiments using 0-1 % perfluorooctanol as a surfactant. When surfactant 

concentration was greater than 1 %, coalescence of the reagent stream into the droplet did 

not occur and reagent only droplets were formed (Figure 4-4A). When the surfactant 

concentration lowered to 0.5 %, successful reagent addition was observed for every 

droplet (Figure 4-4B). As the concentration was further reduced to 0 %, reagent addition 

was successful, but carryover was increased (Figure 4-4B). We hypothesize that at low 

surfactant concentrations, diffusional mixing between the reagent stream and passing 

droplet leads to increased carryover. Conversely, at high surfactant concentration the 
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droplet interface is stabilized and merging with reagent streams does not occur leading to 

formation of reagent only droplets. Therefore, surfactant concentration was fixed at 0.5 % 

v/v to provide low carryover and robust reagent addition. Under different conditions, for 

example high organic content, increased surfactant concentration may be necessary to 

stabilize droplets and reduce carryover. 

 

 

Figure 4-4. Effect of oil phase surfactant concentration on reagent addition and 
carryover. A) At high surfactant concentration (1 %), reagent droplets do not completely 
merge with passing droplets leading to formation of reagent only droplets. B) At low 
surfactant concentrations, reagent droplets readily merger with passing droplets. 
However, carryover increases, slightly, as surfactant concentration approaches 0 %. 

Characterization of Reagent Addition Throughput and Stability. In HTS, the 

sample throughput directly correlates to total analysis time and operating at maximum 

sustainable throughput is beneficial. For compatibility with various analysis methods, our 

reagent addition device should operate across a range of sample throughputs. To test 

speed and reproducibility of reagent addition, a dual tee device was fabricated, which 

allowed formation of and reagent addition into droplets on a single device. The size 
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droplets and rate of reagent addition was extracted from high-speed video and reagent 

flow rate was maintained so that 10 percent of the parent droplet volume was added 

regardless of the droplet flow rate. 

As expected, the rate of reagent addition increases linearly with droplet flow rate 

(Figure 4-5). At a droplet flow rate of 1 µL/min, reagent addition occurs at approximately 

1 Hz and increases linearly up to the fastest flow rate tested. However, at high flow rates, 

reagent addition become unstable and reagent was not added to every droplet. This is 

likely due to the low dwell time at the reagent capillary and imprecision in flow rate 

caused by the syringe pumps. Droplet intensity was measured to ensure a similar amount 

of reagent was added regardless of sample throughput. Based on analysis of 1 min videos 

at each flow rate, normalized droplet intensity RSD was less than 5 percent across all 

flow rates (Figure 4-5).  

 

 

Figure 4-5. Reagent addition throughput increases linearly with droplet flow rate up to 3 
µL/min (the fastest flow rate tested). At each flow rate, reagent flow rate was adjusted to 
achieve 10 percent addition into the parent droplet. Normalized droplet intensity, a 
measure of reagent addition reliability, is consistent across the flow rates tested. 
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Measurement of Carryover During Transfer and Addition. Whereas previous 

demonstrations of reagent addition utilized continuous signal changes (i.e. in vivo 

perfusate58 or continuous blood perfusion52), HTS often has discrete signal changes from 

sample to sample. Therefore, carryover must be minimized at each step of reagent 

addition to maintain a high assay quality. Device carryover was monitored a three points 

during reagent addition to quantify where carryover occurs: transfer of droplets onto the 

device, first reagent addition, and second reagent addition. To quantify carryover, sets of 

droplets containing a signal droplet (rhodamine) and four blank droplets were generated. 

At the first reagent inlet, assay buffer was added (80 mM Tris, pH 8, 8 mM DTT) and 

enzyme buffer (10 mM sodium phosphate, pH 8, 100 mM sodium chloride, 0.01% Tween 

20, 15% glycerol) was added at the second reagent inlet. If carryover is zero percent, one 

expect no signal from blank droplets and any signal in blank droplets can be considered 

carryover caused by reagent addition. 

During the transfer step, sample droplets are transferred from the collection tubing 

into a transfer capillary and then onto the PDMS device with minimal carryover (Figure 

4-6). The first blank droplet had 0.12 ± 0.04 percent carryover and subsequent blank 

droplets had 0.01 ± 0.05 percent carryover. This low carryover is made possible by the 

use of zero dead volume connections and the similar size of the transfer capillary and 

PDMS channel. More significant carryover is observed after the first reagent is added. 

However, the cumulative carryover is sequestered in the first blank droplet (2 ± 1 

percent) whereas the second blank had negligible carryover (0.03 ± 0.1 percent). After 

the second reagent addition, cumulative carryover in the first droplet had increased to 5.5 
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± 0.3 percent, but carryover remained low in the second blank droplet (0.5 ± 0.3 percent). 

These data suggest that for best results, two droplets should be used per sample. 

 

Figure 4-6. Plot of reagent addition carryover in the first and second blank sample at 
each step of reagent addition. Most carryover is contributed by addition of reagents with 
reagents containing glycerol and Tween leading to higher carryover. At all steps, 
carryover is less than 1 percent in the second blank sample suggesting that two droplet 
per sample should be sufficient to avoid carryover during analysis. The droplet train 
consisted of alternating sets of a signal droplet followed by four blank droplets (e.g. S-W-
W-W-W). In all cases, the last two blank droplets had no carryover. 

The increased carryover observed for the second reagent could be due to the 

presence of 15 % glycerol and 0.01 % Tween 20 in the reagent. Both of these buffer 

components are necessary to prevent enzyme adsorption, but increase the wettability of 

the PDMS surfaces leading to increased carryover. However, these values match well 

with reported carryover for a device fabricated from HFPA+/PVDF in which carryover in 

the first droplet was ~5 percent and was reduced to less than 1 percent in subsequent 

droplets.38 

In addition to carryover caused by reagent addition carryover could occur if 

analytes partition from the droplet into the oil phase. Once in the oil phase, the analyte 
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could then partition into adjacent droplets leading to artificial results.162 Although it is 

generally accepted that fluorinated oil phases prevent sample-to-sample contamination, 

the use of non-fluorinated oils (e.g. mineral oil) or inclusion of oil phase surfactants (e.g. 

RainDance EA-surfactant) results in formation of reverse micelles that can transport 

analyte from one droplet to another through the carrier fluid.163, 164 In most cases, this 

migration occurred over the course of several hours or when using fluorescent dyes. For 

HTS, many substrates are peptide-based and the peptide sequence can be optimized ot 

sequester analytes within droplets (i.e. many hydrophilic residues). Additionally, in 

droplet incubation times are typically much less than 1 hr for HTS and analyte migration 

should be minimal. However, further investigation is required to quantify this effect when 

using perfluorodecalin:pefluorooctanol as an oil:surfactant phase. 

Coupling Reagent Addition Samples to MCE Analysis. To demonstrate the 

utility of all-droplet sample preparation for high-throughput analysis, sample droplets 

were coupled to microchip electrophoresis for analysis. Preformed droplets contained 

either water or rhodamine and fluorescent peptide was directly injected using the reagent 

addition device. In order to mimic assay conditions, samples were collected into HFPA+ 

tubing and allowed to ‘incubate’ for 30 min before being analyzed by MCE as described 

previously.142 

Due to the on chip dead volume and carryover within the first droplet of each 

sample, peak heights for rhodamine and peptide do not stabilize until the second droplet 

as observed by MCE (Figure 4-7A). Because each sample is comprised of 2 droplets, 8 

replicate injections are made from each droplet and sample throughput is 0.33 Hz. This 

approach, which lowers throughput from the maximal possible, is necessary to ensure at 



 

 79 

least 3 replicate injections are made from the second sample droplet where carry-over is 

low.  

During HTS, raw data is converted to a reaction yield to quantitate test compound 

efficacy and quickly identify compounds that inhibit enzyme activity. To mimic this data 

transformation and demonstrate that reagent addition does not affect data quality, the 

peak area ratio between rhodamine and fluorescent peptide was used for analysis. 

Furthermore, the average peak area ratio for water and rhodamine containing droplets 

was used to normalize data. For droplets containing only water, the normalized peak area 

ratio is 0, because only a peptide peak is observed in the electropherogram. For 

rhodamine containing samples, both rhodamine and peptide peaks are observed in the 

electropherogram resulting in a normalized peak area ratio of 1. If significant carryover 

were observed for either sample type, the peak area ratio would begin to deviate 

significantly from these values and a rhodamine peak would be observed in 

electropherograms from water droplets (Figure 4-7B). 
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Figure 4-7. Demonstration of coupling reagent addition sample preparation to microchip 
electrophoresis for analysis. (A) Selected raw electropherograms from the analysis of 
alternating sample sets (two droplets each) demonstrating that carryover is present in the 
first droplet but is not present in the second sample droplet. Arrows denote MCE 
injections and the rhodamine (R) and peptide (P) peaks are labeled in each separation. (B) 
Plot of normalized peak area ratio (rhodamine:peptide) from samples containing either 
rhodamine or water. The shaded regions denote ± 1 standard deviation for the average 
peak area ratio of each sample type. 

Conclusion 

We have demonstrated the several aspects of an all-droplet high-throughput 

screening platform using microchip electrophoresis for biochemical assay screening. We 

designed a simple PDMS device to allow direct injection of reagents into preformed 

nanoliter volume droplets. Carryover during the reagent addition steps matches closely to 
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previously published results for a more complicated device. Sample throughput was 0.33 

Hz allowing at least 3 replicate MCE injections from the second droplet with negligible 

carryover during analysis. This platform should allow for routine sample preparation in 

droplet format allowing a 1,000-fold reduction in reagent consumption. Although this 

project demonstrates technological improvements toward all-droplet assays, the lack of 

widespread adoption is likely due to a number of factors. These factors range from the 

need to optimize conditions (i.e. oil phase and surfactant concentration) for each sample 

type, the inability to retest samples without repeating the assay, and the inability to 

perform continuous operation due to limitations on the number of droplets that can be 

reliably formed.  

Another limitation to widespread adoption is the challenge of forming distinct 

droplets containing test compounds of interest. This work couples droplets to existing 

MWP libraries to achieve this task; however, it is relatively low throughput and requires 

libraries be organized in well plates. An alternative strategy would be to use bead-based 

chemistry to sequester test compounds and dispense them into droplets as a 

suspension.165 The authors demonstrated dispensing beads loaded with a small molecule 

at up to 10 Hz and exposure to UV radiation disperses the molecule into the droplet. 

Using this method, a barcoded, bead-based library containing small molecules could be 

rapidly formatted into droplets to significantly increase the speed of library formation for 

droplet-based HTS. 
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CHAPTER 5:  FUTURE DIRECTIONS 

In this dissertation, the utility of ultrafast electrophoresis coupled to droplet 

samples for HTS has been described. Although these efforts have demonstrated the 

throughput necessary for HTS, batch analysis and manual connections limit widespread 

use. Therefore, automated droplet formation and continuous device operation are 

desirable. The general principle of mobility shift assays for screening could be applied to 

other pharmacological targets, such as protein-protein interactions. Lastly, nanoliter 

volume sample introduction has to potential to greatly reduce sample requirements for 

other separations based analyses, such as electrochromatography or gel electrophoresis.  

Automated and Continuous Droplet Generation 

One of the limitations for widespread adoption of droplet-based HTS is the 

difficulty with continuous operation. Due to back pressure issues, only several hundred 

droplets can be formed reliably requiring large compound libraries to be analyzed in 

small sections. In batch analysis mode, continuous operation is only possible if one set of 

droplets is analyzed while the next is being formed. Inherent to this type of analysis is the 

requirement for making repeated low dead volume connections, which can be difficult 

and time consuming. To reduce the number of necessary connections and to achieve the 
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maximum analysis throughput, droplets should be continuously generated on-line. This 

could be achieved through a pressure or magnetic driven peristaltic pump. 

Peristaltic pumps are used routinely for liquid dispensing in continuous phase 

systems. In these pumps, two to six ‘rollers’ are attached to a rotor and compress a 

flexible tubing cause liquid to flow. As the rollers rotate, the tubing is alternately 

compressed and released generating a consistent flow rate correlated to the rotor speed. 

Commercially, this has been developed as the HyperCyt autosampler (IntelliCyt Corp., 

Albuquerque, NM) used for rapid sample introduction to flow cytometers (Figure 5-1).166 

In the design, samples are arranged in a MWP and reformatted into air-segmented 

droplets for serial analysis. The sample tubing passes through a peristaltic pump allowing 

continuous operation by generating suction at the inlet and pressure at the outlet. The 

system is capable of 0.67 samples per second (2 µL samples) with less than 2 percent 

carryover. Continuous sample analysis should be possible, with very little modification, 

by coupling a HyperCyt autosampler directly to the inlet of an MCE device or mass 

spectrometer. Under these conditions, the operator would simply need to switch out 384 

well plates every 10 minutes or a robotic plate handler could be used to achieve complete 

automation. 
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Figure 5-1. Schematic of the HyperCyt platform for high-throughput flow cytometry. A 
sample probe is translated around an MWP using a computer controlled positioner while 
air segmented droplets are generated using a peristaltic pump to generate flow.166 
Reproduced with permissions from Nature Publishing Group. 

Alternatively, the carrier phase could be replaced with a magnetic ionic liquid 

(MILs).167-169 MILs are a sub-class of ionic liquids – room temperature molten salts – that 

incorporate high spin transition metals making them susceptible to external magnetic 

fields. If the oil or air carrier phase was replaced with an MIL, an external magnetic field 

could be used to generate flow within the tubing.170 For example, several ring-shaped 

electromagnets could be placed in a series along the droplet tubing. By energizing them 

in a wave pattern, a traveling magnetic wave could be generated within the droplet tubing 

creating bulk flow of the magnetic ionic liquid. Because the aqueous samples are 

dispersed in series within the ionic liquid, they would be dragged along. Assuming 

sufficient force could be generated, this electromagnetic pump could be used to generate 

samples from a well plate and push them toward the MCE device for analysis (Figure 

5-2). Preliminary work would need to be done to determine the number, placement, and 

current needed to create sufficient pumping force. However, in a similar method using a 

ferrofluid, linear flow rates as high up to 7.4 mm/s (40 mL/min) within a PVC pipe (15.4 
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mm i.d. x 21 mm o.d.) were achieved using 12 A current at 1 kHz when using a 16 

electromagnet array.170 The primary advantage over the HyperCyt method is that droplets 

would not be compressed in the pump, which may cause coalescence or break up. 

Additionally, through use of microfabrication strategies a miniaturized pump could be 

developed allowing integration with existing droplet generation workflows. 

 

 

Figure 5-2. Schematic of electromagnetic fluid pump for segmented flow using magnetic 
ionic liquids (MIL) as the carrier fluid. Several coils of wire would be placed in a series 
along the Teflon tubing (i.e. electromagnets) and energized sequentially to generate a 
traveling magnetic wave. This magnetic wave would drive the MIL and droplets through 
the tubing. 
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Protein-Protein Interaction Screening by Microchip Electrophoresis 

Although the major focus of this thesis was development of analytical methods 

for screening biochemical assays, the general principles (i.e. mobility shift between 

substrate and product) could be applied to alternative screening targets. Within the cell, 

few proteins act independently. Instead, proteins interact as part of large protein 

complexes held together by non-covalent interactions based on intermolecular forces, 

such as hydrostatic or hydrophobic interactions. Through these large interactions, 

collections of proteins can work synergistically to achieve complex cellular functions, 

such as DNA replication, transcription, or metabolism. Therefore, protein-protein 

interactions (PPIs) provide useful targets for disease intervention and drug discovery.171, 

172  

Previously in our group, PPI screening based on electrophoresis has been 

developed for Hsp70-Bag3 interactions.22 Using affinity probe capillary electrophoresis, 

a library of over 3000 molecules was screened against this non-covalent complex (Figure 

5-3). However, throughput was limited to ~220 samples per day and separation efficiency 

was poor due to additional pressure driven flow. The long separation time was due to a 

combination of long detection length and suppression of EOF caused by derivatized 

capillaries (necessary to prevent protein adsorption). To increase the utility, faster 

separations and higher throughput are necessary. 
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Figure 5-3. Affinity probe capillary electrophoresis for monitoring protein-protein 
interactions. One protein (affinity probe) is labeled with a fluorescent tag while the other 
protein is unlabeled. Two peaks are observed in the electropherogram corresponding to 
the labeled protein and the protein complex (labeled protein bound to unlabeled target).22 
Reproduced with permissions from American Chemical Society. 

By adapting the separation to microchip format, shorter separation lengths and 

high voltages could be used to significantly reduce separation time. Additionally, through 

the use of high pH buffer (i.e. 10 mM borate at pH 10) and short separation lengths, 

protein adsorption to channel surfaces could be significantly reduced. Using a glass MCE 

device with 3 cm separation length, a 15 s separation of the free Hsp70 and Hsp70-Bag3 

complex is possible (Figure 5-4A). When injected alone, Alexa Fluor 488-labeled Hsp70 

is detected at 12 s, whereas the migration time shifts to 10 s when Hsp70 complexes with 

Bag3. The addition of unlabeled Hsp70 competes for Bag3 binding resulting in 

observation of both complex and free Hps70 peaks in the electropherogram. To ensure 
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that basic separation conditions do not greatly impact complex formation, Hsp70 was 

incubated with increasing concentrations of Bag3 to determine the binding constant 

(Figure 5-4B). Under these conditions a binding constant of 140 ± 20 nM was calculated 

for Hsp70. Using flow cytometry protein interaction assays (FCPIA), the binding 

constant was reported to be 14 nM. Although the large difference could be caused by use 

of high pH buffers, a binding study with lower Hsp70 concentration is necessary to 

accurately determine the binding constant for on chip analysis. 

 

 

Figure 5-4. Protein-protein interaction monitoring using affinity probe microchip 
electrophoresis. A) Unbound Hsp70 (blue trace) can be separated from the protein 
complex (red trace) using a 14 second separation. Competition between labeled and 
unlabeled Hsp70 for Bag3 binding leads to both peaks in the electropherogram (black 
trace). B) Binding assay plot for 0.5 µM Hsp70 with Bag3. Binding constant is 140 nM. 

Reducing separation time from 6.5 min to 15 s increased throughput 26-fold 

relative to the initial CE assay. Additionally, complicated derivatization methods are not 

required, as protein adsorption was not observed in a glass MCE device when using basic 
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buffers. Preliminary droplet experiments suggest that sample introduction is not affected 

by protein-rich samples though more work is needed to determine long-term stability.  
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Coupling Droplet Samples to Microchip Electrochromatography 

Although zone electrophoresis represents a powerful separation technique for 

many applications, coupling droplet samples to separation techniques (e.g. LC) would 

reduce sample requirements for an even broader range of analytes. However, 

desegmentation of samples prior to analysis by LC, for example, and injection of 

nanoliter aliquots can be difficult. To address this, other separation modes could be 

integrated into the existing microchip system to allow routine analysis of droplet samples. 

In the existing droplet-MCE device, electroosmotic flow is used to move samples around 

the microchip without the need for valves or external pressure pumps. By maintaining 

EOF pumping and incorporating a packed chromatographic bed or entangled polymer 

solution on-chip, electrochromatography or gel electrophoresis separations could be 

possible (Figure 5-5). 

 For microchip electrochromatography (MEC), replacing the existing separation 

channel (3 µm x 36 µm) with a deeper and wider channel (50 µm x 100 µm) would allow 

for packing with 5-10 µm stationary phase. The bed could be packed through the chip 

outlet with the narrow channels for sample handling serving as a weir to constrain the 

particle bed. After packing, a UV curable frit could be formed near the channel outlet to 

prevent bed movement during analysis. Coupling droplet samples to MEC opens of a 

number of potential applications. For the analysis of in vivo neurochemical samples, our 

group has previously reported using LC-MS with benzoyl chloride sample derivatization 

or MCE with naphthalene-2,3-dicarboxaldehyde derivatization for analysis of dialysate 

samples.173 Analysis by LC-MS typically requires several microliters of sample, limiting 

temporal resolution. Analysis by CE is much faster, but is limited to analysis of amino 
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acid neurotransmitters due to detection limits. (See Appendix C for improvements to 

neurotransmitter separations by MCE by controlling separation channel parameters.)  To 

improve temporal resolution, samples could be segmented as nanoliter volume droplets 

and analyzed on chip by CEC to increase the number of analytes that could be monitored 

relative to previous CE-based separations.75, 126  

 A similar modification of the microchip could be used to analyze protein samples 

by gel electrophoresis with greatly reduced sample requirements. Using a UV-cured gel 

phase, an entangled polymer bed could be formed selectively within the separation 

channel. With the other solutions operating under free solution conditions, sample could 

be quickly directed toward the flow gated injection cross and injected onto the bed for 

separation. Our group has pioneered work in microscale western blotting using capillary 

and microchip electrophoresis.174, 175 Although each electrokinetic injection requires only 

a few hundred picoliters of sample, filling the sample reservoir typically requires at least 

5-10 µL of sample. Additionally, manually filling sample reservoirs is time consuming 

and limits sample throughput. To address these challenges, samples could be introduced 

to the microchip as a series of droplets and sequentially injected onto the gel bed for 

separation, reducing sample requirements to several nanoliters and allowing higher 

throughput. 
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Figure 5-5. Microfluidic device for capillary electrochromatography (CEC) or gel 
electrophoresis (CGE) from droplet samples. A larger bore channel to accommodate 
entangled polymer beds or stationary phase replaces the narrow bore electrophoresis 
channel. The injection cross, with physical weir, and detection point with UV frit are 
shown in enlarged regions. 
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APPENDICES 

Appendix A 

Fabrication Strategies for Deep Etching of Glass Substrates 

Fabrication of droplet analysis devices requires deep etching (>75 µm) of 

capillary insertion channels to facilitate sample transfer. In order to maintain feature 

fidelity, several substrate optimizations were required. The standard substrate used for 

glass devices consists of a 0.7-1.1 mm glass slide coated with 530 nm of low reflectivity 

chromium and 500 nm of AZ1505 photoresist. During etching both coatings are required 

to prevent wholesale etching of the substrate. Without chrome present, photoresist 

adhesion to glass is poor and delamination occurs within several minutes of etching. 

Likewise, without photoresist present to protect the chrome layer, hydrofluoric acid will 

rapidly etch away the chrome layer leaving a pitted and uneven surface on the substrate. 

When etching very deep channels using substrates with both coatings prepared by 

our glass supplier (Telic Company), some devices would come out with rough channel 

features that were highly anisotropic in etching pattern (i.e. more horizontally etched than 

vertically etched) making them unusable (Figure A-1A). This phenomenon was dubbed 

‘rough etching’ and occurred in 25 to 40 percent of devices and varied greatly from batch 

to batch. The high random occurrence and etching anisotropy suggested that chrome 

adhesion was poor leading to flaking during long etches. Cleaning and polishing glass 
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substrates prior to sputter chrome was tested, but proved unsuccessful at mitigating the 

issue. 

After much experimentation and step-by-step investigation of the substrates, 

chrome layer stress induced by sputter coating was identified as the issue. To relive the 

stress and improve etching, glass slides were coated with chrome and annealed at 310 °C 

for 3 hr prior to spinning AZ1505 photoresist. Under these conditions, etching up to 200 

µm deep features was possible without issues related to chrome layer adhesion (Figure A-

1B). Using the same substrate (prior to annealing), rough etching is observed. Although 

the effect is most noticeable when etching deep features, significantly surface roughness 

was observed even for shallow features (<10 µm). Therefore, it is recommended to 

anneal any glass slides used for deep features or in cases when high feature fidelity is 

required.  

 

 

Figure A-1. Images of rough (A) and smooth (B) etching of glass slides. In the rough 
etched image, the channel is much wider due to anisotropic etching and the walls are not 
smooth. After annealing, isotropic etching occurs and channels have smooth surfaces. 
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Because the manufacturer is unable to anneal the chrome layer prior to shipment, 

substrates should be ordered without photoresist and annealed in lab. After annealing the 

chrome layer, photoresist must be applied using the following procedure (Figure A-2). 

Hexamethyldisilazane, an adhesion promoter, is applied to the substrate using a spin 

coater at 500 RPM for 15 s. AZ1505 photoresist is dispensed to evenly cover the entire 

substrate and a 500 nm layer is formed by spinning at 4000 RPM for 45 s. After spinning, 

substrates are placed on a hot plate at 100 °C for 50 s to soft-bake the photoresist. (Note: 

It is crucial that a hot plate be used for all baking steps, as contact heat is required for 

even solvent evaporation.) If an oven will be used, optimization is necessary. After 

cooling, substrates are exposed through a photomask for ~9 s and photoresist is 

developed (AZ726 developer) for 40 s with gentle shaking. Uncovered chrome is etched 

in CR1A chrome etching for 2 min to expose glass for HF etching. Substrates should be 

rinsed in deionized water, dried under nitrogen, and placed on a hot plate at 115 °C for 1 

min to set photoresist. At this point, taping and HF etching can proceed as normal. 
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Figure A-2. Overview of fabrication process for deep feature etching with high fidelity. 
Chrome coated substrates are annealed at 310 °C for 3 hr prior to spin coating 500 nm of 
AZ1505 resist. After soft baking, photomask pattern is transferred by UV exposure. 
Photoresist is developed and exposed chrome is etched to reveal glass substrate for HF 
etching. 
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Appendix B 

Inhibitor Structure and Potency from SIRT5 Screening 

Compound Structure IC50 (µM) Curve Fit 

Fulvestrant 

 

2.6 0.9055 

Antimycin A 

 

90 0.6418 

Thyroxine 

 

2.2 0.9569 

Probucol 
 

1.6 0.9685 

Closantel 

 

2.7 0.9350 

Balsalazide 

 

3.9 0.9214 
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Methacylcine 

 

3.6 0.9281 

Anthralin 
 

0.1 0.9176 
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Appendix C 

Effect of Channel Geometry on Separation Speed and Efficiency 

 In electrophoretic separations, efficiency is a measure of separation quality and 

can be determined from the following equation: 

𝑁𝑁 =
𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚2

𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡2
 

in which tmig is analyte migration time and σtot is the total zone variance from all sources 

of band broadening. Of these, Joule heating can significantly reduce separation efficiency 

through the formation of temperature gradients caused by resistive heating of the 

separation buffer under high electric field. These temperature gradients lead to 

differences in mobility within the analytes zone causing broader peaks. To mitigate these 

effects, narrow bore capillaries are used to improve heat dissipation due to increased 

surface area-to-volume ratio. Within microchips, heat dissipation primarily occurs 

through the top and bottom of the microchannel where the substrate is thinnest and to a 

lesser extend out the sides of the channel. Historically, capillary-based separations have 

higher efficiency (>500,000 theoretical plates) due to more efficient heat dissipation 

allowing application of higher electric fields. On the other hand, microchip separations, 

have separation efficiency less than 250,000 theoretical plates. 

 To investigate the effect of channel cross section, which impacts surface area-to-

volume ratio, devices with channel depths of 6 µm and 3 µm were used to separate a set 

of derivatized amino acids. In both cases, the channels are thin and wide to provide more 

surface area on the top and bottom of the channel for heat dissipation. For a 6 µm x 42 

µm channel, the surface area-to-volume ratio is 0.37 and a 3 µm x 36 µm channel has a 

ratio of 0.72 allowing for better heat dissipation. When the same electric field is applied – 
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1,100 V/cm – the current is 40 percent lower on a 3 µm chip significantly reducing joule 

heating. This is evidenced in the electropherograms for each condition. With 6 µm 

channels, separation efficiency is 200,000 theoretical plates and plate height is 550 nm. 

Baseline resolution is not achieved between all analytes and only moderate separation is 

observed between D- and L-aspartate (Figure C-1A). In contrast, when channel height is 

reduced to 3 µm, efficiency improves to ~400,000 plates with a plate height of 275 nm. 

Baseline resolution is observed between all analytes, including chiral separation of D- and 

L-aspartate (Figure C-1B). Qualitatively, this can be observed as much sharper peaks for 

all analytes compared to deep channels. Further reduction in channel cross-section (2 µm 

x 34 µm) resulted in reduced current but separation efficiency was not improved and 

microchannels were easily clogged. 

 

 

Figure C-1. Reduction in channel depth from 6 µm (A) to 3 µm (B) results in 2-fold 
improvement to separation efficiency as measured by theoretical plates. For both devices, 
applied electric field was 1,100 V/cm, LIF detection occurred at 11.1 cm, and 
background electrolyte was 10 mM sodium tetraborate, pH 10 with 0.9 mM 
hydroxyproply-β-cylcodextran. 
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 Although separation efficiency is greatly improved, separation time remains 

relatively long (15 seconds with overlapping injections) limiting analysis throughput. CE 

theory states that separation length can be reduced, under the same applied voltage, 

without sacrificing separation efficiency and resulting in faster separations. To test this, 

devices with 3 µm deep channels were fabricated with 12 cm and 4 cm separation 

lengths. The same voltage was applied resulting in higher electric field on the 4 cm 

device (2,800 V/cm). On the shorter chip, separation time was reduced to 2 seconds using 

an overlapped injection (Figure C-2). Separation efficiency, measured in theoretical 

plates, was reduced to 130,000; however, plate height was 230 nm, which is similar to 

chips with longer channels. The reduced efficiency could be attributed to over-injection 

caused by the high electric field and software limit of 10 ms injections. With independent 

control of injection voltage, it is anticipated that separation efficiency could be further 

improved by reducing injection volume. 

 

 

Figure C-2. Reduction in channel length from 12 cm (A) to 4 cm (B) while maintaining 
the same applied voltage results in short separation times with similar separation 
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efficiency. Electric field was 1,100 V/cm for A and 2,800 V/cm for B with the same 
background electrolyte as in Figure B-1. 

 These improvements move microchip electrophoresis significantly closer to 

traditional capillary separations in terms of efficiency, when comparing relatively long 

channels. By reducing separation length, a fast and efficient separation of labeled 

neurotransmitters is possible. This opens up a number of possibilities for in vivo chemical 

monitoring by allowing multi-analyte detection without sacrificing temporal resolution. 

Several challenges remain with using these separations. Injection control software to 

allow shorter injections or lower field during injection is necessary to improve efficiency. 

Additionally, achieving high electric field on chip requires application of very high 

voltages (-12 kV and + 8 kV) and arcing is common. To improve long-term operation at 

high voltages, an improved electrode design with better insulation is necessary. 
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