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ABSTRACT

Galaxy clusters are large virialized structures exist at the intersection of filaments

of matter that make up the cosmic web. Due to their hierarchical growth history,

they are excellent probes of the cosmology that governs our universe. Here, we aim to

use clusters to better constrain cosmological parameters by systematically studying

the uncertainties on galaxy cluster mass estimation for use in a halo mass function

analysis. We find that the caustic technique is capable on average of recovering

unbiased cluster masses to within 30% for well sampled systems. We also quantify

potential statistical and systematic biases due to observational challenges. To address

statistical biases in the caustic technique, we developed a new stacking algorithm to

measure the average cluster mass for a single stack of projected cluster phase-spaces.

By varying the number of galaxies and number of clusters we stack, we find that

the single limited value is the total number of galaxies in the stack opening up the

possibility for self-calibrated mass estimates of low mass or poorly sampled clusters in

large surveys. We then utilize the SDSS-C4 catalog of galaxy clusters to place some

of the tightest galaxy cluster based constraints on the matter density and power

spectrum normalization for matter in our universe.

xix



CHAPTER I

Introduction

1.1 Galaxy Clusters and Cosmology

Galaxy clusters represent the metropolitan centers in our universe. These large,

virialized structures form through a combination of gravitational collapse and hier-

archical merging at the intersection of filaments of matter that make up the cosmic

web. Clusters therefore act as tracers of peaks in the large-scale matter density. The

cosmology that governs the universe determines the distribution of matter within it,

and therefore clusters offer a means to understand parameters which govern structure

growth, matter density, and cosmic expansion. Clusters have been used to study cos-

mology since Zwicky first discovered dark matter in the Coma cluster Zwicky (1933).

Hoessel et al. (1980) used Brightest Cluster Galaxies (BCGs) as standard candles and

derived, albeit with low significance, that cosmic expansion is accelerating consistent

with our current picture of cosmology. More recently, galaxy clusters have been used

primarily in one of two ways to probe cosmology. The first way is through the halo

mass function and cluster counts (Press & Schechter, 1974; Reiprich & Böhringer,

2002; Tinker et al., 2008; Vikhlinin et al., 2009; Rozo et al., 2010). The second, spa-

tial clustering (both angular and 3D) of clusters, has also been used to understand the

matter distribution of the universe (Bahcall & West, 1992; Mo et al., 1996; Colberg

et al., 2000; Wang et al., 2008). Here, I focus on the former as it pertains to the
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contents of this thesis.

The halo mass function builds upon the theory of spherical gravitational collapse

of linearly evolved matter perturbations. Shown as a differential function of cluster

mass, the functional form is

dn

d lnM
=
ρ̄m
M

∣∣∣∣d lnσ−1

d lnM

∣∣∣∣ f(σ), (1.1)

where ρ̄m is the co-moving mean matter density, σ is the square root of the variance of

linearly-evolved, CDM fluctuations, filtered on mass scale M, and f(σ) is a function

of the filtered perturbation spectrum. Despite the strong predictive power of analytic

models based on spherical or elliptical collapse (Press & Schechter, 1974; Sheth &

Tormen, 1999), they do not manage to account for all the complexity of halo formation

and are therefore limited in their use in precision cosmology constraints. Instead,

modern studies empirically fit for f(σ) in N-body simulations which have resulted in

much more precise calibrations of the halo mass function (Jenkins et al., 2001; Evrard

et al., 2002; Tinker et al., 2008). Tinker et al. (2008) found that while their fit to the

mass function in a suite of simulations is not universal (with respect to cosmology

and redshift) in addition to an overall shape dependence with redshift, their models

were still accurate to within 5%.

One of the fundamental challenges when matching a halo mass function to observa-

tions is that we do not directly observe cluster mass. Because clusters are dominated

in mass by dark matter, we must instead rely on observable properties that arise from,

or correlate strongly with, the total mass in order to utilize the halo mass function

to constrain cosmological parameters. It is immediately obvious that we must have

at our disposal not only the means to accurately estimate cluster mass, we must also

clearly understand the uncertainties and potential systematic affects in our estimates.

As I discuss below, cluster mass estimation plays a major role in both understand-
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ing properties and evolution of clusters as well as making them viable cosmological

tracers. In fact, there are observable proxies of mass in almost every waveband. In

the X-ray, Borgani et al. (2001); Reiprich & Böhringer (2002) found a lower value

for σ8 than was previously accepted, and Vikhlinin et al. (2009) used x-ray clusters

in several redshift bins to place constraints on ΩΛ in addition to ΩM and σ8. In

the optical, Rines et al. (2007) used dynamical mass estimates of 72 clusters within

the SDSS DR4 footprint to constrain ΩM and σ8. Also in the optical, Rozo et al.

(2010) calibrated a mass-richness scaling relation to constrain the same two parame-

ters. Both authors folded in the latest WMAP results into their analysis to achieve

even stronger constraints.

Accurately estimating cluster masses is now the limiting factor when using the

halo mass function to constrain cosmology, as large surveys now in progress contain

more than enough numbers to limit statistical uncertainties. Many large modern

surveys rely on scaling relations between the total mass of the cluster and direct

observables such as richness or velocity dispersion in the optical, SZ signal in the sub-

millimeter, and X-ray luminosity/gas mass. Scaling relations between an observable

and mass exist because of complex astrophysics and cluster assembly history. The

exact parametrization of the relationship must then be calibrated via a more physi-

cal mass estimation technique such weak lensing, hydrostatic mass, or virial/caustic

techniques (see below). However, these techniques themselves can impart biases re-

sulting in incorrect scaling relation normalizations. For instance, comparison between

weak lensing and hydrostatic mass estimates can exhibit differences anywhere between

0 − 30% (von der Linden et al., 2014; Planck Collaboration et al., 2015; Hoekstra

et al., 2015). Only the most extreme of these closes the gap between cosmological

constraints reported by the first SZ cluster count analysis (Planck Collaboration et al.,

2014b) and the Planck CMB anisotropy results (Planck Collaboration et al., 2014a).

This highlights the need for a stronger understanding of the systematics involved
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in all mass estimation techniques in order to reach the precision cosmology modern

experiments seek to achieve.

1.2 Summary of Galaxy Cluster Mass Estimation

While galaxy clusters are composed mostly of dark matter, observers rely heavily

on the baryonic, light-interacting components to identify and understand the nature

of these objects. In fact, clusters are the only objects for which current technology

enables three physically independent mass estimation techniques. The first, hydro-

static equilibrium through gas measurements, are measured in the x-ray through

Bremsstrahlung radiation given off by hot 108K gas heated by the release of potential

energy in addition to astrophysical interactions. The second, weak lensing, requires

high resolution observations of large numbers of background galaxies to uncover the

shear profile through statistical analysis. This technique also requires a detailed un-

derstanding of the background redshift distribution and, often times, accurate photo-

metric redshift estimates. The third, cluster dynamics, utilizes the motions of galaxies

within the cluster. Redshift measurements enable the use of virial and Jeans anal-

yses in addition to escape velocity and other phase-space methods to recover the

gravitational potential. All these techniques are directly related to the gravitational

potential or its derivative and can be physically modeled to obtain accurate mass es-

timates. These physical mass estimation techniques usually make strong assumptions

about the state of the cluster such as its radial density profile, equilibrium condition,

or dynamic state.

In order to evaluate the total cluster mass through X-ray observations, one must

assume that the gas is in hydrostatic equilibrium with the cluster gravitational po-

tential. Under the assumption of spherical symmetry for an ideal gas, we can write
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the pressure and potential gradients as,

dP

dr
=
d(kBTρ/µmp

dr
,
dΦ

dr
=
GM(r)

r2
(1.2)

where M(r) is the total mass within a radius r, ρ is the total mass density, ρ is the

mass density of particles, mp is the proton mass, and µ is the mean molecular weight

of the gas. The equation of hydrostatic mass is then

M(r) =
−kBT (r)r

µmpG

[
d ln ρ

d ln r
+
d lnT

d ln r

]
. (1.3)

Given that both the density profile and temperature profile are observable in X-ray

data, the total mass profile can be solved for. Of course, the gas can be in hydrostatic

equilibrium, but also maintain pressure support through non-thermal turbulence,

magnetic fields, or bulk motion. Failure to account for these effects can lead to

biased mass estimates in addition to other uncertainties (Evrard et al., 1996; Rasia

et al., 2006). Mahdavi et al. (2013) compared clusters observed in both X-ray with

XMM-Newton and the Chandra space observatory with weak lensing measurements

and find that non-cool core clusters are lower than weak lensing estimates by 15-

20% at radii near r500 which could be due to the systematics listed above. X-ray

gas is highly collisional which results in fast relaxation relative to other dynamical

timescales. X-ray clusters also exhibit less triaxiality in their mass distributions

within their central regions (Gavazzi, 2005). This is an advantage over dynamical

and weak lensing methods which must account for velocity anisotropy as well as

line-of-sight effects from cluster shape and large scale structure. There are several

important difficulties when using hydrostatic mass estimates from X-ray observations.

First, the X-ray flux is difficult to observe outside the very central region of the cluster

(r > r500). Observationally, X-ray detection must be performed in space as the earth’s

atmosphere absorbs this high-energy light. This limits the number and duration of
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observations that can be performed simply due to observing time competition and

priority. In an era where thousands of clusters are being studied via other techniques,

X-ray comparison lags behind.

Weak lensing has grown in popularity with the advent of high resolution imaging

platforms on the Hubble Space Telescope as well as adaptive optics systems on ground

based observatories. The technique works by relating the two components of the shear

and the convergence to the derivative of the lensing potential

κ = 0.5∇2
θΨ, (1.4)

γ1 = 0.5(∂2
1Ψ∂2

2Φ), (1.5)

γ2 = ∂2
12Ψ. (1.6)

A spherically symmetric mass distribution will induce a shear tangentially to the

radial vector. The lensing signal is measured in terms of the azimuthally averaged

surface mass density contrast and is related to the projected tangential shear of source

galaxies as well as the critical mass density. As a mass estimator, weak lensing is at-

tractive because it is the only observable related to the potential that doesn’t depend

on baryonic astrophysics within the cluster. As mentioned above, X-ray estimates

must assume the gas is in hydrostatic equilibrium, but must also contend with heat-

ing effects from AGN and various non-thermal effects. Dynamical mass estimators

must rely on the assumption that the galaxies and dark matter density profiles and

velocities trace the gravitational potential in similar ways. Weak lensing is not with-

out its own challenges. The shear and convergence from the lensing observations are

measured under the thin lens approximation. This assumes that the scale of the lens

is much smaller than the distance the photons travel from the background source to

the lens and the lens to the observer. As a cluster is often not in isolation, large

scale structure often will influence the final lensing observables. Becker & Kravtsov
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(2011) investigated how correlated and uncorrelated large scale structure around a

cluster can effect mass estimates. They found that correlated structure contributes

20-30% to the scatter in weak lensing observations. They show that the scatter in

low mass halos is dominated by uncorrelated large scale structure, and large halos

have scatter dominated by correlated large scale structure and triaxiality. Becker &

Kravtsov (2011) also found a small but non-negligible bias of 5-10%. This bias can be

attributed to several factors including incorrect density fitting function, substructure

in cluster outskirts, and applying the assumption of a spherically symmetric density

model to a triaxial system. Averaging can help mitigate the last of these potential

biases (Corless & King, 2007). Hoekstra et al. (2011) found that uncorrelated large

scale structure along the line of sight does not bias weak lensing estimates, but does

add an additional 15-30% which depends on cluster mass. Weak lensing estimates are

also limited by the mass-sheet degeneracy where the surface mass density can only be

determined up to a degeneracy transformation that depends on an arbitrary constant;

however, if the redshift distribution of background galaxies is known, the degeneracy

can be broken (Seitz & Schneider, 1997; Bradač et al., 2004). Another area weak lens-

ing struggles is in estimating masses for low-mass clusters. This is becoming less of

a problem as ground-based telescope resolution continues to improve, but measuring

the statistical shear pattern for low mass systems requires a large number of highly

resolved background galaxies.

Using galaxy dynamics is one of the most widely used and classic ways to constrain

cluster mass distributions. One of the ways to do so is by solving the Jeans equations

relating the gravitational potential to various intrinsic velocity moments. The most

used Jeans equation for a spherical system is

−dΦ

dr
=

1

ρ

d(ρ〈v2
r〉)

dr
+ 2β

〈v2
r〉
r
, (1.7)

7



where β(r) is the velocity anisotropy parameter,

β(r) = 1− 〈v
2
t 〉(r)
〈v2
r〉(r)

(1.8)

The gravitational acceleration dΦ/dr = GMtot(r)/r
2 can help us rewrite the Jeans

equation as

Mtot(r) =
〈v2
r〉r
G

[
d ln ρ

d ln r
+
d ln〈v2

r〉
d ln r

+ 2β

]
. (1.9)

Unfortunately, the projected velocity dispersion depends on 〈v2
r〉 and β(r). Because

there is no unique solution for Mtot(r), an independent estimate is necessary to break

the mass-anisotropy degeneracy. Another traditional dynamical mass estimator is the

virial mass (Carlberg et al., 1996). The virial mass is defined as

Mv =
3

G
σ2rv (1.10)

where rv is the 3-dimensional virial radius and σ is the line-of-sight velocity dispersion.

The virial mass is a simple prescription for estimating total cluster mass, but requires

the cluster to be in virial equilibrium. This also neglects a surface pressure term that

can bias the mass estimates. The advantage of using dynamics is the ease of data

collection. Galaxy redshifts are already measured in large numbers in modern surveys,

and many telescopes host a spectrograph with sufficient resolution to obtain redshift

estimates suitable for cluster dynamical studies. Unbiased velocity dispersions can be

measured with as little as 25 galaxies (White et al., 2010; Saro et al., 2013) making it

feasible to measure enough redshifts for a good mass estimate in one pass with a multi-

slit or fiber-fed spectrograph. The challenges faced in dynamical mass estimation

mainly come from the effects of cluster shape and projection. Estimating a projected

velocity dispersion first requires separating the member galaxies from the foreground

and background populations along the line-of-sight. Most studies have traditionally
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used some type of velocity clipping to identify the member population (Fadda et al.,

1996), while more sophisticated methods like the C4 algorithm address this challenge

by using color-color and redshift information (Miller et al., 2005). Regardless, many

clusters have been shown to exhibit prolate shapes (Saro et al., 2013) that, when

observed down either the major or minor axis, can influence the projected velocity

dispersion and therefore the mass estimate. Currently, there is no way to account for

this effect, and it remains a limiting systematic to the Jeans and virial mass estimates.

Ideally, we would like to have a technique that allows for mass estimates of large

numbers of clusters individually but has low scatter, is relatively insensitive to triax-

iality, and avoids baryonic astrophysical biases. The only physical mass estimation

technique currently capable of individually measuring masses for large number of clus-

ter across a large mass range is dynamics. Dynamical techniques are well studied and

methods for interloper rejection already exist to decrease the effects of l.o.s systemat-

ics. While the virial theorem and Jeans analysis have been around a very long time,

potential improvements upon these techniques are limited given the assumptions they

make. Recently, a new brand of dynamical mass estimators use radius-velocity phase-

spaces to estimate mass (Diaferio, 1999; Wojtak &  Lokas, 2010; Mamon et al., 2013).

While in their infancy, leveraging phase-space information may prove to reduce the

uncertainties on individual mass estimates and relax some of the assumptions made

in the methods highlighted above.

1.3 The Caustic Mass Estimation Technique

1.3.1 Inferring Mass from the Escape Velocity Measurement

One dynamical phase-space technique that shows promise with the advent of

large, well sampled optical surveys of clusters is the caustic technique (Diaferio &

Geller, 1997; Diaferio, 1999). The term “caustic” refers to the velocity edge visible in
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radius-velocity phase-space that defines the escape velocity profile of the cluster. The

characteristic trumpet shape associated with these features is due to spherical infall

(Kaiser, 1987) and is identifiable to well outside the virialized region where cluster

mass is typically estimated. The technique relies on the physical trait that under

Newtonian dynamics, the escape velocity is related to the gravitational potential of

the system,

v2
esc(r) = −2Φ(r). (1.11)

Galaxies that have not escaped and whose dynamics are dominated by the gravita-

tional potential of the galaxy cluster will exist in a well defined region of r− v phase-

space, where r is the physical or projected cluster-centric distance/radius and v is

the 3-dimensional or projected 1-dimensional velocity respective to the bulk cluster

motion. Given these characteristics, the edge of this region defined by an iso-density

contour that contains the bound member galaxies of the cluster, defines vesc(r).

Once the escape velocity is identified, the most straightforward way to estimate

the density profile is through the Poisson equation,

∇2Φ(r) = 4πGρ(r). (1.12)

Because we directly measure Φ(r) through the caustic surface, we must differentiate

it multiple times to recover the density profile; however, the estimated escape velocity

profile can be noisy, and differentiating a noisy function will result in unphysical mass

profiles (cumulative mass < r cannot decrease). One way of dealing with this would

be to fit a smooth, constantly decreasing function to the escape velocity profile, but

another is to utilize the partial mass equation,

dm = 4πr2ρ(r)dr. (1.13)
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By multiplying the right hand side of the Equation 1.13 by v2
esc(r)/− 2Φ(r), which is

unity by the argument in Equation 1.11, multiplying each side by the gravitational

constant and integrating,

GM(< R) =

R∫
0

−2Gπv2
esc(r)

ρ(r)r2

Φ(r)
dr, (1.14)

where R is the radius within which the cumulative mass is estimated. Of the terms in

Equation 1.14, ρ(r) and Φ(r) cannot be directly measured. In the caustic technique,

we measure the escape velocity vesc with full 3D phase space information in simula-

tions or the line-of-sight escape velocity 〈v2
los,esc〉(r) in real and mock observations of

galaxy clusters. The line-of-sight measurement is related to the full escape velocity by

v2
esc(r) = g(β(r))〈v2

los,esc〉(r) where g(β(r)) is derived in Diaferio (1999) and is defined

as,

g(β(r)) =
3− 2β(r)

1− β(r)
, (1.15)

and β(r) is the velocity anisotropy parameter,

β(r) = 1−
σ2
θ + σ2

φ

σ2
r

. (1.16)

For isotropic systems, β = 0.0 and g(β) = 3.0 which is commonly used to convert

from 3D velocities when only observing one velocity component. Replacing v2
esc(r)

with the line-of-sight measurement and the anisotropy correction g(β(r), we lump the

non-measurable terms into a filling factor F(r). Equation 1.14 can now be written

as,

GM(< R) =

R∫
0

Fβ(r)v2
esc(r)dr, (1.17)

where R is the radius within which the cumulative mass is estimated, and the filling
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factor,

Fβ(r) = −2Gr2g(β(r))
ρ(r)

Φ(r)
(1.18)

The value of Fβ(r) must therefore be approximated and cannot be directly measured

in observations. Diaferio (1999) first noticed that the average value of Fβ(r) outside

the cluster core is approximately constant and estimated a value of Fβ = 0.5 looking

at dark matter subhalo populations in simulations. Later, Serra et al. (2011) found

a value of Fβ = 0.7 by randomly sampling dark matter particles from simulations.

Svensmark et al. (2015) stack similar mass systems in simulations and find a value

in-between the two previous values of Fβ = 0.59−0.63. This discrepancy begs further

study which I address in Chapters II, III, IV, and V of this thesis.

1.3.2 Theory of Density-Potential Pairs

Consider a mass distribution described by a spherical profile such that the mass

density ρ and the potential Φ radial profiles are related by the Poisson equation and

Φ(r) = −4πG
[1

r

r∫
0

ρ(r′)r′2dr′ +

∞∫
r

ρ(r′)r′dr′
]
. (1.19)

Equation 1.19 allows one to analytically calculate the potential profile Φ for spherical

density models in a static universe and for isolated systems.

There exist analytic formulae which have been shown to fit the density profiles of

halos in N-body simulations. Here we present the following three: the NFW profile,

the Gamma profile (Dehnen, 1993), and the Einasto profile (Einasto, 1969; Retana-

Montenegro et al., 2012). Using equation 1.19, we have:
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ρ(r) =
ρ0

(r/r0)(1 + r/r0)2
(1.20a)

Φ(r) = −4πGρ0(r0)2 ln(1 + r/r0)

r/r0

(1.20b)

ρ(r) =
(3− n)M

4π

r0

rn
(r + r0)4−n (1.21a)

Φ(r) =
GM

r0

−1

2− n

[
1−

( r

r + r0

)2−n]
, n 6= 2 (1.21b)

=
GM

r0

ln
r

r + r0

, n = 2

ρ(r) = ρ0exp
[
−
( r

r0

)1/n]
(1.22a)

Φ(r) =
−GM

r

[
1−

Γ
(
3n, r

r0

(1/n)
)

Γ(3n)
+
r

r0

Γ
(
2n, r

r0

(1/n)
)

Γ(3n)

]
(1.22b)

where ρ0 or M is the normalization, r0 is the scale radius, and n is the index. Equations

1.20, 1.21 and 1.22 are examples of density - potential pairs which share the same

values for the shape parameters in the radial profiles of both the density and the

potential. In other words, given a fit to the spherical density profile, one can infer

the shape of the gravitational potential through these equations.

In Figure 1.1 we show an example halo with M200 = 6.3× 1014M� and r200 = 1.34

Mpc from the Millennium Simulation (Springel et al., 2005). The upper panel shows

the spherically averaged density profile and the three model fits from Equations 1.20a,

1.21a, and 1.22a. The models are fit over the range 0.0 ≤ r/r200 ≤ 1. While the

models are nearly identical within r200, they differ significantly in the outskirts.

The lower panel shows the radius/velocity phase space of the particles within this
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halo. We use the radial components of the velocities of each particle and include the

Hubble flow in the velocities. Notice that the particle edge contains a fair amount of

localized structure due to infall. This cluster is dynamically active. The lines in the

lower panel of Figure 1.1 show the predicted escape velocity edge for the three models

using the Poisson equation and the fits to the density profiles and using Equations

1.20b, 1.21b and 1.22b. We consider each of the three models separately and infer

model parameters by minimizing the χ2 difference to the density profiles. All three

models encompass the particles in the phase space.

1.3.3 Measuring the Caustic Profile in Observations

Before we can identify the projected vlos,esc(r) surface, we must remove potential

interloper galaxies from the phase-space. There are a host of methods to identify and

remove interloper galaxies from the projected field-of-view around a galaxy cluster.

These include color-based (Miller et al., 2005), σ-clipping, gapper (Fadda et al., 1996),

and phase-space selection methods (Serra & Diaferio, 2013). In the work presented in

this thesis, we use the shifting-gapper technique where velocity gaps are identified as

a function of projected distance from cluster center. In the shifting-gapper technique,

galaxies are sorted into bins as a function of radius while keeping the number in each

bin constant at Nbin = 25. When odd multiples of 25 are used, the last radial bin

may have less than 25 galaxies. In each bin, the galaxies are sorted by their peculiar

velocity and an “f-pseudosigma” (Beers et al., 1990) is calculated and used as the

velocity gap to remove perceived interlopers. This parameter is approximately the

velocity dispersion of the galaxies in each radial bin when the distribution is close to

normal, and is calculated as the difference between the upper and lower quartiles in

velocity normalized by a constant. The process of removing interlopers is iterative.

For each bin, the velocity difference between the sorted galaxies is calculated and

if a gap exists equal-to or greater-than the f-pseudosigma between two galaxies, all
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Figure 1.1: Upper: The spherically averaged density profile of a halo from the Mil-
lennium Simulation. The three lines are fits to the density profile over the
range 0 ≤ r200 ≤ 1 using Equations 1.20a,1.21a,and 1.22a. Lower: The
radius-velocity phase-space of the particles. These are the radial compo-
nents of the particle velocities and include the Hubble flow. The lines are
the predicted escape velocity profile from the Poisson equation and fits
to the density profiles (Equations 1.20b, 1.21b, and 1.22b).
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galaxies above (for positive velocities) or below (for negative velocities) the gap are

removed from the sample. This process is repeated for each bin and we stop if

convergence is reached, less than 5 galaxies remain in a bin, or if f-pseudosigma

< 500 km/s. The final galaxy sample can then be used to estimate the projected

phase-space density.

In observed data, we identify the projected vlos,esc(r) surface by applying standard

kernel density estimation techniques to the dynamical tracers in the r − v phase-

space. We must keep in mind that the observed tracers have inherent observational

uncertainties in both the radial and velocity directions. For low-redshift SDSS-like

observations, the spectroscopic precision is ∼ 50km s−1 or 0.5h−1Mpc in normalized

coordinates and astrometric precision of 0.05h−1Mpc. Therefore, our kernel must be

non-symmetric to account for the factor of ten difference in the two dimensions of

the phase-space. Geller et al. (1999) showed that such axis weighting does not have

a large effect on the mass profile determination. We use a fixed multi-dimensional

gaussian kernel with a width (hr,v) in the r and v directions that adapt to the sampling

according to (Silverman 1998)

K(xr, xv) =
1

2πhrhv
e
−x

2
r+x

2
v

2h2r,v (1.23)

hr,v =

(
4

3N

)1/5

σr,v (1.24)

where N is the number of dynamical tracers in the total phase-space and σr,v is the

dispersion in the radial and velocity dimensions. Equation 1.23 minimizes the mean

integrated squared error of the density estimate, which is the sum of the square of

the statistical bias and the variance, also known as the statistical risk (Stien, 1981;

Miller et al., 2002)). While Diaferio (1999) adopt an adaptive kernel technique, we

will show in Chapters II and III that a standard fixed kernel recovers the cluster mass

estimates with low scatter and bias.
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Diaferio (1999) assert that any realistic models of galaxy clusters exhibit escape

velocity profiles that at no point exceed d ln vesc
d ln r

= ζ where ζ = 1/4. If an iso-density

contour breaks this limit along its surface, the vesc(r) value is replaced with a new

value that yields d ln vesc
d ln r

= ζ. Serra et al. (2011) invoke a looser constraint of ζ = 2

rather than ζ = 1/4. This allows the algorithm to remove very drastic changes in

vlos,esc, but does not overly restrict the iso-density contour values.

Once the iso-density contours are determined we must choose which surface cor-

responds to the escape velocity. We follow the standard procedure of assuming that

the data are for time-averaged, self-gravitating, isolated clusters in a steady state.

The density-weighted average escape velocity inside radius R is:

〈v2
esc(< R)〉 =

∫ R
0
d3xρ(x)v2

esc(x)∫ R
0
d3xρ(x)

= −2

∫ R
0
d3xρ(x)Φ(x)

M(< R)
(1.25)

where we have used equation 1.11. The integral in the numerator on the right-hand

side of equation 1.25 is twice the total potential energy of the system or 2W (Binney

& Tremaine, 1987), which leads to:

〈v2
esc〉 = −4W (< R)

M(< R)
(1.26)

where W and M are the total potential energy and mass of the system within the

radius R. As described in Binney & Tremaine (1987), virialization means that the

average system kinetic energy is half of the average system potential energy (KE =

αPE and α = 0.5) within the virial radius rvir. In combination with Equation 2.1

this leads to

〈v2
esc(r < rvir)〉 − 4〈v2(r < rvir)〉 = 0 (1.27)

In Chapter III, we test this virialization condition for clusters in the Millennium

Simulation to understand at what radii this condition holds.

17



1.3.4 Applications of the Caustic Technique

The caustic technique has now been applied in a variety of surveys and simulations

to recover point mass estimates (e.g. M200) or mass profiles extending to 2− 3r200 to

great success. Observationally, Biviano & Girardi (2003) used the caustic technique

to estimate mass profiles out to 2r200 in 43 non-interacting clusters which they found

agreed closely with more traditional Jeans analysis when extrapolating outside the

virial radius. Caustic mass profiles have also been used to constrain mass-to-light

ratios in clusters (Rines et al., 2004) as well as velocity anisotropy profiles (Lemze

et al., 2009). Radially, the caustic and weak lensing techniques remain the only

two methods capable of estimating mass profiles beyond the central virialized region

where equilibrium and virial assumptions must be applied. Diaferio et al. (2005)

found close agreement between caustic and weak lensing mass profiles out to 2h−1

Mpc in 3 clusters. In most of these cases, the clusters were well sampled systems with

> 50 galaxies/cluster and sometimes several hundred galaxies in the phase space.

Most of the theoretical work behind the caustic technique has been related to

accuracy of the technique in very idealized situations. Despite the many successes

in utilizing the caustic technique on well sampled galaxy clusters in the nearby uni-

verse, very little has been done to better understand the systematic and statistical

limitations of the caustic technique with observational constraints. Initial tests per-

formed in Diaferio (1999) and follow-up work in Serra et al. (2011) sample dark

matter subhalos or particles directly to use as position-velocity tracers when testing

the technique. In this scenario, they show unbiased mass profiles to within the errors

from r200 − 3r200. The caustic technique makes the assumption that galaxy clusters

are spherically symmetric, and therefore triaxial systems and their orientation along

the observer’s line-of-sight may influence the mass estimate. Svensmark et al. (2015)

confirmed this fact and showed that the difference between caustic masses measured

along the major axis can be 70% higher than if measured along the minor axis. All
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these studies relied on well sampled clusters and sampled from their dark matter den-

sity and velocity distributions. Now, with the advent of large cosmological simulations

(Springel et al., 2005) and complex semi-analytic prescriptions for Halo Occupation

Distributions (De Lucia & Blaizot, 2007; Guo et al., 2011), there is an opportunity

to further study the caustic technique within the framework of observational limits.

1.4 Testing the Caustic Technique with Semi-Analytic Cat-

alogs

Throughout much of this thesis, we make use of the Millennium Simulation

(Springel et al., 2005) to improve upon and test for statistical and systematic bi-

ases present in the caustic technique. The cosmological volume in the simulation

provides us with a large number of systems to perform our analyses across a large

range in halo mass. In addition to numbers, several semi-analytic galaxy catalogs

(Bower et al., 2006; Bertone et al., 2007; De Lucia & Blaizot, 2007; Guo et al., 2011)

along with an all-sky light cone have been constructed for the Millennium Simula-

tion which creates the opportunity to study the caustic technique with observational

limitations.

Bower et al. (2006) suggest that in its most basic form, a theory of galaxy forma-

tion is a set of rules motivated by physical processes which transforms a halo mass

function into an observed galaxy luminosity function. In fact, most semi-analytic

techniques (which define the rule-set) judge their success primarily by comparing to

published galaxy luminosity functions. In this work, we are equally concerned with

how well those galaxies trace the underlying radial velocity phase-space, which we

use to measure the escape velocity of halos and their gravitational potentials.

Galaxies in the semi-analytic algorithms are first identified at the location of col-

lapsed sub-structure within halos. These are nominally the sub-halos and algorithms
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like SUBFIND (Springel et al., 2001) which have been shown to work well to iden-

tify all of the sub-structure in N-body simulations (see also Knebe et al. (2011)).

Once identified, these sub-halos trace the positions and velocities of the galaxy pop-

ulation. Rules are put in place to define when and how a burst of activity (e.g.

star-formation/nuclear) occurs. These sub-halos can grow in total mass (and lumi-

nosity) by accreting gas (or a model for gas), other particles, and other sub-halos

through merging. It is the merging and other dynamical interactions which are re-

sponsible for altering the radial velocity phase-space and thus affecting our ability to

use dynamical tracers for the halo mass.

At any given redshift (or snapshot output of an N-body simulation), the sub-

halos which have survived a merger up to that point would not be good tracers of

the halo radial velocity phase-space (see also Figure 2.3). This is because at the

resolution of the Millennium Simulation, the sub-halos in simulations are easier to

destroy compared to galaxies in the real Universe, which are much more compact

and gravitationally bound. So while an interaction might destroy a sub-halo, there

is no reason to think it would destroy a galaxy. In modern semi-analytic techniques,

decisions (or a rule set) must be defined to decide what to do with a “galaxy” after

its sub-halo is no longer identified in a snapshot. The most common approach is to

identify the most-bound particle in the sub-halo before it was destroyed and follow

it as a surviving galaxy through future snapshots (i.e., to lower redshifts). These are

sometimes called “orphans” as they are semi-analytic galaxies that have lost their

dark matter halos.

The above rule does not happen in reality: the evolution of the position and

velocity of a galaxy cannot be determined from a single particle. So a technique is

applied to define statistically how long a galaxy might survive before it is ripped apart
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in a merger (i.e., the merging time due to dynamical friction):

tmerger = αfric
Vcircr

2
SH

GMSH ln
(

1 + Mhalo

mSH

) (1.28)

where Vcirc is the circular velocity for a mass in a gravitational potential defined by

an isothermal sphere at radius rSH of the sub-halo and the masses of the halo and

the sub-halo are Mhalo and MSH respectively (Binney & Tremaine, 1987), and αfric is

a coefcient to be needed to reproduce observed luminosity functions at the luminous

end (Guo et al., 2011). In this rule-set, a clock is started when a galaxy’s sub-halo is

destroyed. The surviving galaxy is merged with its nearest galaxy or sub-halo after

this time-scale has expired. When the final merging happens, the galaxy is destroyed

and its stars, gas, and dark matter are distributed in various ways (i.e., it is a rule-set

in the semi-analytic algorithm). However, this statistical rule-set only defines when

a dark matter orphaned galaxy is destroyed, not how. For instance, the particle

which represents the galaxy is no longer actually merging or changing its orbit due to

dynamical interactions outside the normal particle-particle interactions. This would

require a new rule-set.

The above description is complicated and there are numerous ways in which a semi-

analytic techniques can implement dynamical events in the lifetime of a simulated

galaxy. This is why we investigate the effects on the caustic masses from different

implementations of halo dynamics in the semi-analytic galaxy catalogs.

1.5 This Work

In this work, we study, improve upon, and use the caustic technique to estimate

masses and constrain cosmology. The caustic technique is the ideal candidate for this

work for several reasons. First, the C4 cluster sample (Miller et al., 2005) contains

many clusters with sufficient sampling for the caustic technique to estimate accurate
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masses. As I show in Chapter II, the caustic mass estimator is less biased and has less

mass scatter than velocity dispersion virial scaling relations (Evrard et al., 2008). As

weak lensing and X-ray samples continue to grow, the caustic technique is a viable

way to not only estimate cluster masses, but perform other astrophysical studies

relating to galaxy cluster potential with a large number of systems currently and into

the future. In the years to come, large photometric and spectroscopic surveys such

as DESI (Levi et al., 2013) will enable caustic mass estimates of clusters to deeper

redshifts further enabling cosmological studies. Building a deeper understanding of

the limitations of the caustic technique will influence future studies, especially at

the University of Michigan where observers have access to high quality spectroscopic

instrumentation on the MDM and Magellan observatories (Bigelow & Dressler, 2003;

Martini et al., 2011; Mateo et al., 2012).

This thesis addresses the current lack of systematic study behind the caustic

technique with an eye toward observational considerations. Based on this statistical

analysis, we apply the technique to a large, low redshift cluster survey and constrain

cosmological parameters through the use of the cluster mass function. In Chapter

II, I probe the primary systematics the caustic technique faces if halos are correctly

identified. There I look into how line-of-sight, sampling, magnitude, color, and incom-

pleteness bias or scatter caustic estimates to understand how observational targeting

practices might affect our results. In Chapter III, I measure the theoretical limits for

the caustic mass estimation technique. The technique is based on the assumptions

that the caustic traces the projected escape velocity profile and that we can correctly

identify and measure the caustic profile in projection. Once individual cluster masses

are estimated, I discuss in Chapter IV a new caustic identification technique in stacked

phase-spaces that can be used to self-calibrate masses in a sample of clusters. Finally,

in Chapter V I fold all this knowledge together to estimate caustic masses for the C4

cluster sample in order to constrain cosmological parameters.
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CHAPTER II

Identifying Systematic Uncertainties in Estimated

Cluster Masses

2.1 Introduction

Upcoming galaxy cluster surveys from the millimeter to the X-ray wavelengths

have the potential to identify thousands to hundreds of thousands of groups and

clusters (Song et al., 2012; Pillepich et al., 2012). These large cluster samples will be

used to constrain the cosmological parameters which govern the growth of structure in

our Universe (Miller et al., 2001; Miller & Batuski, 2001; Rozo et al., 2009; Vikhlinin

et al., 2009; Benson et al., 2013). Regardless of the luminous tracer used to infer

the underlying dark matter distribution (e.g., normal galaxies, emission-line galaxies,

luminous red galaxies, quasi-stellar objects, galaxy clusters), our ability to constrain

the cosmological parameters depends on the accuracy and precision of the mass.

Unlike most galaxies, the masses of galaxy clusters can be directly inferred via

the observational signature of the gravitational potential (or its derivative). In fact,

clusters are the only object for which current technology enable three physically

independent mass estimation techniques: via the dynamics of the member galaxies,

via the hot gas in the intra-cluster medium, and via gravitational lensing. These three

techniques provide a vital cross-check on the mass estimation techniques, assuming
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one can quantify the statistical precision and accuracy of the cluster mass estimates

themselves.

Cosmological N-body and hydrodynamic simulations play a new and important

role in characterizing the statistical and systematic uncertainties on cluster mass esti-

mates (Nagai et al., 2007; Becker & Kravtsov, 2011). There has been excellent recent

progress on the important step of utilizing realistic mock astronomical observations

based on ideal simulations (Meneghetti et al., 2010a; Rasia et al., 2012; Saro et al.,

2013). Our primary goal is to utilize a diverse suite of semi-analytic galaxy catalogs to

study how well a realistic spectroscopic program can constrain the dynamical masses

of galaxy clusters in the low redshift Universe. We quantify our results based on the

scatter and bias of the “observed” dynamical mass when compared to the halo masses

M200, which refers to the mass within a radius of r200.

When inferring the dynamical masses of clusters, we require an accurate measure-

ment of the galaxy peculiar velocities. With their total dispersion, their dispersion

profiles, and/or their escape velocity profile, we can infer cluster masses based on the

virial theorem, the Jeans relation for a collision-less fluid, or the caustic technique.

To first order, galaxies dynamically respond to the influence of the Newtonian grav-

itational potential, regardless of their luminosities, shapes, colors, or star-formation

histories. Yet galaxies traveling within a cluster environment are likely to have had

one or more localized and short-lived gravitational interaction over its lifetime. This

“dynamical friction” alters the total cluster velocity distribution away from its sim-

ple Newtonian expectations, an effect that needs to be captured by the semi-analytic

galaxies. In this work, we use sub-halo catalogs as well as a suite of semi-analytic

mock galaxy catalogs, to explore how sensitive dynamical masses are to different

prescriptions of this dynamical friction.

Given the above context and the state of both cosmological simulations and semi-

analytic galaxy formation, the question as to whether these mock galaxies capture
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the true velocity distribution of real galaxies in clusters is still unanswered. However,

the current simulated data now contain a wide variety of options for how galaxies

are pasted into the clusters. More-so, these semi-analytic techniques create mock

galaxy clusters which very closely resemble the observed Universe in many respects

(Guo et al., 2011). While the semi-analytic galaxy catalogs are not fully simulated

Universes, they do provide us with an opportunity to assess how well our theories and

algorithms could do under realistic observational conditions (e.g., non-ideal target

selection).

In this study, we focus on how different tracers in the N-body simulations (e.g.

sub-halos or semi-analytic galaxies) allow us to observe the gravitational potential

and measure the projected escape velocity to infer the cluster mass. This technique

is analogous to applying the Jeans equation, except that the cluster observable is

the radial escape velocity as opposed to the velocity dispersion and that the escape

velocity maps directly to the gravitational potential, whereas the Jeans analysis maps

to its derivative. These differences are subtle but important. Regardless, both the

Jean’s technique and the caustic technique posit that the radius/velocity phase-space

does indeed map directly to the gravitational potential and through some simplifying

assumptions, ultimately to the gravitational mass.

Our primary goal is to present the statistical characterization (accuracy and pre-

cision) of caustic inferred halos masses, as well as study the effects of survey strategy

when planning spectroscopic follow-up. In Section 2 we discuss the caustic technique

in detail and apply this technique in Section 3 on N-body simulations using the un-

derlying particles, the sub-halos, as well as on the semi-analytic mock galaxy catalogs.

Using the galaxy catalogs, we incorporate realistic targeting scenarios and show the

effects on the measured bias and scatter.
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2.2 Methods and Data

2.2.1 Inferring Halo Mass from Gravitational Potential

Under Newtonian dynamics, the escape velocity is related to the gravitational

potential of the system,

v2
esc(r) = −2Φ(r). (2.1)

If the dynamics of the system are controlled by the gravitational potential, tracers

which have not escaped the potential well should exist in a well-defined region of

r − v phase space, where r is the physical or projected radius from the center of

the cluster and v is the peculiar 3-dimensional velocity or projected 1-dimensional

velocity respectively relative to the bulk cluster motion. The edge of this region in

r−v space within which bound tracers are allowed to exist defines the escape velocity,

vesc(r).

In Figure 1, we show an example halo from the Millennium Simulation where we

identify the actual gravitational potential of the dark matter GΣi
m
|x−xi| (red lines)

and the iso-density contour which traces the escape velocity profile of the halo (blue

lines). In the left panel, the velocities and radii are 3-dimensional and in spherical

coordinates while in the right panel they are projected along one line-of-sight. The

surface that defines the density edge in the r−v phase space is an iso-density contour

that follows vesc(r) and therefore Φ(r).

In observed data, we identify the projected vesc(r) surface by applying standard

kernel density estimation techniques to the dynamical tracers in the r−v phase-space.

The observed tracers have inherent observational uncertainties in both the radial and

velocity directions. In this work, we focus on low-redshift SDSS-like observations with

spectroscopic precision of ∼ 50km s−1 or 0.5h−1Mpc in normalized coordinates and

astrometric precision of 0.05h−1Mpc. Therefore, our kernel must be non-symmetric

to account for the factor of ten difference in the two dimensions of the phase-space.
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Figure 2.1: Top: The gravitational potential (red band) is shown to envelope the edge
of the particle (black points) and galaxy (orange circles) data when pro-
jected in the 3D radius-redshift space. The edge of the phase-space density
can be defined by choosing the correct iso-density contour (blue). Bot-
tom: The same halo projected on the sky, which blurs the surface from
both the positions and anisotropies in the velocity components. Galax-
ies that are projected into the space, but live outside the virial radius in
3-dimensions are highlighted with red x’s.
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Geller et al. (1999) showed that such axis weighting does not have a large effect on

the mass profile determination, something that we confirm in this work. We use a

fixed multi-dimensional gaussian kernel with a width in the r and v directions that

independently adapt to the sampling according to (Silverman 1998)

K(r, v) =

(
4

3N

)1/5

σr,v (2.2)

where N is the number of dynamical tracers in the total phase-space and σr,v is the

dispersion in the radial and velocity dimensions. Equation 2.2 minimizes the mean

integrated squared error of the density estimate, which is the sum of the square of

the statistical bias and the variance, also known as the statistical risk (Stien, 1981;

Miller et al., 2002). While Diaferio (1999) adopt an adaptive kernel technique, we

will show that a standard fixed kernel recovers the cluster mass estimates with low

scatter and bias.

Diaferio (1999) assert that any realistic models of galaxy clusters exhibit escape

velocity profiles that at no point exceed d ln vesc
d ln r

= ζ where ζ = 1/4. If an iso-density

contour breaks this limit along its surface, the vesc(r) value is replaced with a new

value that yields d ln vesc
d ln r

= ζ. Here, we follow the prescription used in Serra et al.

(2011) which invoke a looser constraint of ζ = 2 rather than ζ = 1/4. This allows

the algorithm to remove very drastic changes in vesc, but does not overly restrict the

iso-density contour values.

Once the iso-density contours are determined we must choose which surface cor-

responds to the escape velocity. However, here we follow the standard procedure of

assuming that the data are for time-averaged, self-gravitating, isolated clusters in a

steady state. As described in Binney & Tremaine (1987), virialization means that

the average system kinetic energy is half of the average system potential energy (KE

= αPE and α = 0.5) within the virial radius rvir. In combination with Equation 2.1
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this leads to

〈v2
esc(r < rvir)〉 − 4〈v2(r < rvir)〉 = 0 (2.3)

Equation 2.3 is defined for three dimensional measurements of the velocities. In

Chapter III we test this virialization condition in the Millennium Simulation and find

it to hold when the system average energies are calculated near the virial radius.

In real data we only observe the projected line-of-sight component of both the

velocity dispersion and the escape velocity. There could exist some level of anisotropy

in the velocity vectors: for example the radial and non-radial components of the

velocity are not equal: 〈vθ〉 = 〈vφ〉 6= 〈vr〉. This is parameterized by the anisotropy

parameter β(r) = 1− 〈v
2
θ〉(r)
〈v2r〉(r)

. By assuming that the escape velocity profile we measure

in projection v2
esc,los(r⊥) = vesc,θ(r⊥), where r⊥ is where the 3-dimensional radius r

equals the projected radius rp, Diaferio (1999) show that

〈v2
esc,los〉(r⊥) =

(1− β(r⊥))

(3− 2β(r⊥))
〈v2
esc(r⊥)〉 ≈ g(β(r))〈v2

esc(r)〉 (2.4)

and as in Diaferio (1999), we define the projection correction term:

g(β(r)) =
3− 2β(r)

1− β(r)
. (2.5)

Recalling that equation 2.3 is for the three-dimensional velocities, it can be re-

written in terms of the observed projected quantities (i.e., the projected radii rp and

the line-of-sight velocities of the galaxies):

〈〈v2
los,esc〉(rp < rpvir)〉 − 4〈v2

los(r
p < rpvir)〉 = 0 (2.6)

We calculate the velocity dispersion
√
〈v2
los〉 (hereafter labeled σv) using a ro-

bust median-weighted technique on galaxies within the projected radius that has

δρ
ρcrit

= 200 (i.e., r200), which is 〈v2〉r200 . Interlopers are removed via a shifting-gapper

29



technique described in §2.2.4.

We then choose the iso-density contour that satisfies equation 2.6. There is some

uncertainty in the determination of this surface, which we quantify in §2.3.2. We

note that we always use the same tracers when calculating the dispersions and the

phase-space density

Ideally, we could use the escape velocity profile, which we assume to be the po-

tential profile through equation 2.1, to estimate a mass by using the Poisson equation

∇2Φ(x) = 4πGρ(x) or some variation to arrive at the mass profile. However, this

ideal scenario involves the challenge of taking derivatives of a noisy estimate of Φ(r).

Instead, Diaferio & Geller (1997) introduce an alternative estimation through the

partial mass differential equation dm = 4πρ(r)r2dr. Invoking equation 2.1, we may

rewrite this differential as:

dm = −2πv2
esc(r)

ρ(r)r2

Φ(r)
dr (2.7)

and integrate to arrive at:

GM(< R) =

R∫
0

−2Gπv2
esc(r)

ρ(r)r2

Φ(r)
dr (2.8)

After identifying the iso-density contour that describes the projected 〈vesc,los〉(r),

we now have an estimate for Φ(r) by using equation 2.1 and g(β(r)) and our equation

now becomes:

GM(< R) =

R∫
0

−2Gπg(β(r))〈v2
los,esc〉(r)

ρ(r)r2

Φ(r)
dr (2.9)

GM(< R) =

R∫
0

Fβ(r)〈v2
los,esc〉(r)dr (2.10)

30



where

Fβ(r) = −2Gπg(β(r))
ρ(r)r2

Φ(r)
(2.11)

Diaferio (1999) claim that Fβ(r) is roughly constant as a function of radius from 1-

3r200 as calibrated against simulations. For instance, Diaferio (1999) find 〈Fβ(r)〉 =

0.5 and Serra et al. (2011) find 〈Fβ(r)〉 = 0.7. We use a constant value calibrated

against the Millennium Simulations to be Fβ = 0.65 and discuss the implications of

both the assumption of a constant as well as its calibration in Section 2.4. For a

variation of the caustic technique that does not require this calibration, see Chapter

III.

2.2.2 Inferring Halo Masses from the Virial Relation

Evrard et al. (2008) show that the velocity dispersion of a dark matter halo obeys

a very tight virial relationship when compared with the critical dark matter mass

M200 of the form:

M200 = 1015h(z)−1

(
σDM(M200, z)

σDM,15

)α
(2.12)

where σDM is the 1D velocity dispersion of the dark matter, or more precisely the 3D

velocity dispersion divided by the
√

3. For the Millennium Simulation, we use the

normalization σDM,15 = 1093.0 km/s and slope α = 2.94. Evrard et al. (2008) find

these to be consistent between different cosmological simulations.

The scatter in σ1D,DM at fixed M200 from the N-body simulations for equation

2.12 is ∼ 5%. With slope α, this inherent scatter implies a mass scatter from the

virial relation to be ∼ 15%. However, this amount of scatter only applies when the

3D velocity dispersion is known, which is never the case in the observed Universe.

Saro et al. (2013) show that the real scatter in mass as measured from the line-of-sight

velocity dispersion is closer to ∼ 40% when 100 red-sequence galaxies are used. This

huge increase in scatter stems mostly from the projection of the galaxies and their
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velocities along the line-of-sight.

Saro et al. (2013) use the De Lucia & Blaizot (2007) semi-analytic galaxy catalogs

but they do not use the Evrard et al. (2008) calibration. Instead, they re-calibrate

the slope and amplitude of equation 2.12 using the 3-dimensional information of the

galaxies as opposed to the particles. Saro et al. (2013) also calibrate their measured

scatter in velocity and mass against a specific set of 100 red-sequence galaxies within

the 3D virial radius of each halo. In the former case, the slope and amplitude will

differ from the dark matter if the galaxies are dynamically biased with respect to the

dark matter. In the latter case, relationships for the scatter (e.g., as a function of the

number of observed galaxies) become meaningless for larger samples (and it is quite

common to have clusters with more than 100 observed galaxies in their r − v phase

space).

In this work, we use the virial-mass relationship from Evrard et al. (2008). This

is an important distinction, because the different semi-analytic galaxy catalogs can

each have inherent dynamical biases between the dark matter and the galaxies that

we would otherwise not detect. Similarly, the scatter in the measured line-of-sight

velocity dispersions is determined against the particle velocity dispersions. This is

also important, in that the observed line-of-sight scatter in the velocity dispersions

and masses can be compared between the different semi-analytic galaxy catalogs.

2.2.3 The Halos and the Semi-analytic Galaxy Catalogs

We select 100 halos from the Millennium Simulation to perform this study. While

the halos are not chosen on the basis of any specific physical characteristics, our

sample aims for fairly even mass sampling over ∼ 1014 − 1015M�. The average mass

〈M〉 = 2.34 × 1014M� and the average critical radius 〈r200〉 = 0.95Mpc. We then

use four semi-analytic catalogs (Guo et al., 2011; De Lucia & Blaizot, 2007; Bertone

et al., 2007; Bower et al., 2006) created using the Millennium Simulation along with
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the identified subhalos within each halo to test the caustic technique in section 2.3.

Bower et al. (2006) suggest that in its most basic form, a theory of galaxy forma-

tion is a set of rules motivated by physical processes which transforms a halo mass

function into an observed galaxy luminosity function. In fact, most semi-analytic

techniques (which define the rule-set) judge their success primarily by comparing to

published galaxy luminosity functions. In this work, we are equally concerned with

how well those galaxies trace the underlying radial velocity phase-space, which we

use to measure the escape velocity of halos and their gravitational potentials.

Galaxies in the semi-analytic algorithms are first identified at the location of col-

lapsed sub-structure within halos. These are nominally the sub-halos and algorithms

like SUBFIND (Springel et al., 2001) which have been shown to work well to identify

all of the sub-structure in N-body simulations (see also Knebe et al., 2011). Once

identified, these sub-halos trace the positions and velocities of the galaxy popula-

tion. Rules are put in place to define when and how a burst of activity (e.g. star-

formation/nuclear) occurs. These sub-halos can grow in total mass (and luminosity)

by accreting gas (or a model for gas), other particles, and other sub-halos through

merging. It is the merging and other dynamical interactions which are responsible for

altering the radial velocity phase-space and thus affecting our ability to use dynamical

tracers for the halo mass.

At any given redshift (or snapshot output of an N-body simulation), the sub-

halos which have survived a merger up to that point would not be good tracers of

the halo radial velocity phase-space (see also Figure 2.3). This is because at the

resolution of the Millennium Simulation, the sub-halos in simulations are easier to

destroy compared to galaxies in the real Universe, which are much more compact

and gravitationally bound. So while an interaction might destroy a sub-halo, there

is no reason to think it would destroy a galaxy. In modern semi-analytic techniques,

decisions (or a rule set) must be defined to decide what to do with a “galaxy” after
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its sub-halo is no longer identified in a snapshot. The most common approach is to

identify the most-bound particle in the sub-halo before it was destroyed and follow

it as a surviving galaxy through future snapshots (i.e., to lower redshifts). These are

sometimes called “orphans” as they are semi-analytic galaxies that have lost their

dark matter halos.

The above rule does not happen in reality: the evolution of the position and

velocity of a galaxy cannot be determined from a single particle. So a technique is

applied to define statistically how long a galaxy might survive before it is ripped apart

in a merger (i.e., the merging time due to dynamical friction):

tmerger = αfric
Vcircr

2
SH

GMSH ln
(

1 + Mhalo

mSH

) (2.13)

where Vcirc is the circular velocity for a mass in a gravitational potential defined by

an isothermal sphere at radius rSH of the sub-halo and the masses of the halo and

the sub-halo are Mhalo and MSH respectively (Binney & Tremaine, 1987), and αfric

is a coefficient needed to reproduce observed luminosity functions at the luminous

end (Guo et al., 2011). In this rule-set, a clock is started when a galaxy’s sub-halo is

destroyed. The surviving galaxy is merged with its nearest galaxy or sub-halo after

this time-scale has expired. When the final merging happens, the galaxy is destroyed

and its stars, gas, and dark matter are distributed in various ways (i.e., it is a rule-set

in the semi-analytic algorithm). However, this statistical rule-set only defines when

a dark matter orphaned galaxy is destroyed, not how. For instance, the particle

which represents the galaxy is no longer actually merging or changing its orbit due to

dynamical interactions outside the normal particle-particle interactions. This would

require a new rule-set.

The above description is complicated and there are numerous ways in which a semi-

analytic techniques can implement dynamical events in the lifetime of a simulated
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Figure 2.2: Log scatter (Left) and log bias (Right) in velocity dispersion as a func-
tion of Ngal with interloper removal via a bounded + gapper technique
(solid-red), bounded (dashed-green), and bounded + 3σ (dotted-blue).
The gapper technique both minimizes the bias and scatter of the 3 meth-
ods tested in this work for Ngal > 50.

galaxy. This is why we will investigate the effects on the caustic masses from different

implementations of halo dynamics in the semi-analytic galaxy catalogs.

In this analysis we start with all of the semi-analytic galaxies within a 60h−1Mpc-

length 3-dimensional box around each halo center. We then sub-select the N bright-

est galaxies (where N = 100, 50, 25, etc) within a projected radius in these vol-

umes to create the halo radius/velocity phase-space diagrams along one or more

lines-of-sight. These volumes place limits on the projected phase-space velocities

that are ±3000km/s relative to the halo velocity centroids. Since the typical escape

velocities are ∼ 1500km/s, these volumes are large enough to incorporate realistic

projection effects (see Figure 2.1). With projection, interlopers (non-member fore-

ground/background galaxies) can play a large role in affect both the measured phase-

space density as well as the line-of-sight velocity dispersion. Therefore, an effort must

be made to systematically remove the interlopers from each line-of-sight projection.
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36



2.2.4 Interloper Identification and Removal

Many methods have been devised to identify and remove interloper galaxies from

a sample around a halo. These include color-based (Miller et al., 2005), σ-clipping,

gapper (Fadda et al., 1996), and phase-space selection methods (Serra & Diaferio,

2013). In this study, we do not try and optimize any particular method, but rather

choose one in existence that returns a minimal bias for velocity dispersion and mass

at large sampling. We limit ourselves by testing only a few basic interloper removal

techniques, and compare their relative biases and resulting scatter.

In Figure 2.2 we compare three common techniques to measure velocity disper-

sions against the underlying dark matter. The first technique is to apply a simple

upper/lower bound in velocity space (±3500 km/s). The second is to iteratively re-

move outliers via sigma clipping (3.5σ). The third is called a shifting-gapper, where

we work in the full phase-space and identify velocity gaps as a function of radius as

indicators of interloping sub-structure. This shifting-gapper technique is similar to

what is applied in Wing & Blanton (2011). Galaxies are sorted into bins as a func-

tion of radius while keeping the number in each bin constant at Nbin = 25. When

odd multiples of 25 are used, the last radial bin may have less than 25 galaxies. In

each bin, the galaxies are sorted by their peculiar velocity and a “f-pseudosigma”

(Beers et al., 1990) is calculated and used as the velocity gap to remove perceived

interlopers. The calculation of f-pseudosigma is an iterative process that we stop if

less than 5 galaxies remain in a bin or if f-pseudosigma < 500 km/s. In all cases, the

final interloper-cleaned velocity dispersion is calculated using a robust bi-weighted

estimator, which we confirm is always less biased than a simple standard deviation

(Beers et al., 1990).

When applying only a simple velocity boundary, the dispersions are biased high

and the scatter is large (for Ngal > 25). However, both the sigma clipping and the

shifting-gapper techniques do better and equally well in recovering unbiased veloc-
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ity dispersions (see also Saro et al., 2013). The shifting-gapper does a better job

at reducing the scatter at all values of Ngal. This is because the technique utilizes

the 2-dimensional phase-space data as opposed to the one-dimensional velocity dis-

tributions. As such, the shifting-gapper can identify sub-structure in the phase-space

which sigma clipping cannot. Clusters with poor sampling Ngal < 25, have dispersions

that are biased low. Throughout the rest of this work we apply the shifting-gapper

technique to measure velocity dispersions.

2.3 Results

We measure the caustic mass Mc inside r200 and compare directly to the spherical

halo mass M200. In Figure 2.3 we show how Mc inferred from the Ngal brightest

galaxies inside r200 scales with M200. In each panel, we highlight the Mc inferred

masses using the Guo semi-analytic galaxies (dots). The error bars are detailed in

§2.3.1 & 2.3.2. We note that in this figure, Mc for each of the 100 halos is measured

along a single 60h−1Mpc line-of-sight, thus representing a realistic observing scenario.

We measure the percent scatter in lnMc at fixed lnM200 as well as the bias deter-

mined from the error weighted mean difference between lnMc and lnM200. In order

to compare to the virial masses, we also quantify the log scatter and bias of the pro-

jected line-of-sight velocity dispersion and the virial mass (equation 2.12). At small

Ngal = 25, the caustic masses are biased low by ∼ 15% on average, and the log-normal

scatter about the fit to the data is ∼ 50%. At Ngal > 50, the bias disappears and the

scatter reduces to ∼ 30% at Ngal = 150. We show a summary of the caustic mass bias

and scatter in Figures 2.5 and 2.7. These data are presented in Tables 2.1-2.5. At

fixed Ngal, the biases of the different semi-analytics agree to within their errors and

so unless otherwise noted, we focus the rest of our analyses on the Guo et al. (2011)

galaxies.
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2.3.1 The Observed Phase Space Density

Typical observations of galaxy clusters can detect or easily measure the spectro-

scopic redshifts of a handful to several hundred galaxies within the virial radius of a

system. Fundamental to the caustic technique is the projection of observed galaxies

into a radial and velocity phase space, within which we identify a critical iso-density

transition or caustic. In §2.2, we describe how we use a multi-dimensional gaussian

kernel to estimate the underlying phase space density based on an observed tracer

population. Density estimates always carry some degree of uncertainty due to limited

sampling. We therefore expect that small or sparsely observed clusters will exhibit a

large amount of uncertainty in the density estimation process. We quantify this un-

certainty and it’s effect on the caustic mass estimate by using the jack-knife technique

to re-sample the phase-space.

For each jack-knife re-sampling j of a cluster with Ngal, we re-calculate the velocity

dispersion (σvj ) and re-calibrate the escape velocity iso-density contour according to

equation 2.6 to infer a jack-knife caustic mass (Mc,j) according to equation 2.10. We

show the distribution of ln(Mc,j/M200) for four randomly chosen halos in Figure 2.4

(upper Left). For each halo, we then calculate the standard deviations of these caustic

masses over the j jack-knife re-samplings. We plot a histogram (red) of these standard

deviations (for all 100 halos) in the lower panels of Figure 2.4 for two different values

of Ngal (15 and 100). The means of the red histograms in the lower panels of Figure

2.4 define the average caustic-surface induced scatter as a function of Ngal.

For Ngal = 100, the distribution of the averages of the mass uncertainties is sharply

peaked around a few percent. Therefore, the surface uncertainty plays a negligible

role in the total caustic mass uncertainty at Ngal = 100. By Ngal = 15, the mean of

the distribution shifts to 20% and the distribution becomes less sharply peaked. As a

result of the lower density of sampling, the surface we estimate becomes less robust.
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Figure 2.4: Upper Left: The distribution of the caustic mass compared to the true
mass for four randomly chosen halos from jack-knife re-sampling of 100
galaxies along a single line-of-sight to each halo. While any given caus-
tic mass is biased (high or low), the distributions are typically sharply
peaked with small variance. This indicates that any single iso-density
surface is well-defined Upper Right: The distributions of the caustic
mass compared to the true mass over 100 lines-of-sight for four other
halos. These distributions are significantly wider with larger variance
compared to those in the upper left panel. Lower Panels: Histograms
of the standard deviations of the distributions in the upper panels for all
100 halos; Left: Ngal = 15 and Right: Ngal = 100. Line-of-sight variations
(blue) dominate over caustic surface uncertainties (red).
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2.3.2 Line-of-Sight Projections

Observationally, we only have one line-of-sight (hereafter abbreviated as “l.o.s”)

to a cluster in our universe. If clusters are not spherically symmetric in either physical

or velocity space, the mass we measure will be dependent on our l.o.s to the cluster.

This dependence introduces a l.o.s scatter into our observations which contributes to

the scatter in mass relationships. In simulations, we are not bounded to one l.o.s and

can make mass measurements along many l.o.s to a single cluster.

We show the distribution of ln(Mc,los/M200) for four randomly chosen halos in

Figure 2.4 (upper Right) for 100 “l.o.s”. Recall that the histograms in the upper left

panel of 2.4 are the 100 jack-knife re-samplings of a single line-of-sight. These l.o.s.

distributions are much broader than the surface distributions. We again take the

standard deviation (
√
〈M2

c,los〉los) as an estimate of the l.o.s scatter for each of our

100 halos. The distribution of these scatters is shown in the lower panels of Figure

2.4 in the blue histograms. The means of the blue histograms in the lower panels of

Figure 2.4 define the average line-of-sight induced scatter as a function of Ngal. When

Ngal = 100, we can see that our clusters all exhibit l.o.s scatter between 20-40% with

a mean of ∼ 30%. By Ngal = 15, the l.o.s scatter can be anywhere from 40-90% for a

given cluster with a mean of ∼ 65%.

The mean of the l.o.s caustic mass scatter distributions are shown as a function

of Ngal in the top panel of Figure 2.5 (dashed lines). Additionally, we show the mean

l.o.s scatter in virial mass calculated with equation 2.12 and the mean l.o.s scatter in

velocity dispersion. The l.o.s scatters decrease as we increase the Ngal. The scatter in

l.o.s caustic mass approaches a minimum value of ∼ 30% for large Ngal and the virial

mass reaches ∼ 45%. The scatter in l.o.s velocity dispersion decreases to a minimum

of ∼ 15% at Ngal = 150 which agrees closely with Saro et al. (2013) who find a similar

value using all galaxies for a large sample of halos in the De Lucia & Blaizot (2007)

semi-analytic catalog.
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We also calculate the observed mass scatter in the caustic and virial masses directly

by measuring it from Figure 2.3, which represents the scatter we would expect from

a single realization of a line-of-sight to each halo. In this case, we take 100 different

realizations to determine the expectation value of the scatter, which we plot as a

function of Ngal in the top panel of Figure 2.5 (solid lines). This scatter is larger than

we predict from the statistical distributions determined from Figure 2.4 and shown

as the dotted-lines in 2.5. We identify the unaccounted component as originating

from an intrinsic scatter in the caustic and virial masses. For instance, Evrard et al.

(2008) calculate the intrinsic scatter in the 3D particle velocity dispersion at fixed

halo mass to be ∼ 5%. From Equation 2.12, this translates to a 15% intrinsic virial

mass uncertainty. In Chapter III we calculate the intrinsic scatter for the caustic

masses in 3D to be ∼ 10%, also using the particles.

This intrinsic (i.e., 3D) uncertainty is a systematic error which should be inde-

pendent of the systematic uncertainty as a result of projection effects in each l.o.s.

To confirm this fact, we perform a Spearman correlation test on Mc,los/〈Mc,los〉 vs.

Mc,3D/M200, where Mc,los are all l.o.s mass measurements of a cluster, and Mc,3D

is the caustic mass measured from the 3-dimensional positions and velocities of the

galaxies. We look at 100 l.o.s and find an average correlation coefficient of 0.02± 0.1

for the caustic mass and 0.03± 0.1 for the virial masses. This confirms that the two

(l.o.s. and 3D) systematic uncertainties are uncorrelated. In the bottom panel of

Figure 2.5 we add the intrinsic scatter in quadrature to our statistical representations

of the line-of-sight scatter (dotted lines in Figure 2.5-top). We then fully recover the

observed total scatter to high precision and these are the values we present in Tables

2.1-2.5.

Equation 2.12 implies a relationship of ∼ 3 between the log scatter in virial mass

and log scatter in velocity dispersion; however, the relationship between scatter in

caustic mass and scatter in velocity dispersion is not immediately obvious as the
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two don’t have an exact analytic relationship. We do know that the escape velocity

surface is calibrated by the velocity dispersion and the caustic mass is calculated by

integrating the 〈v2
esc〉(r). A naive assumption is that the scatter in velocity dispersion

dominates over all other systematic scatters in the caustic technique. If so, we should

find that the log scatter in caustic mass is very nearly twice that of the log scatter in

velocity dispersion.

In Figure 2.6 we show that the virial mass obeys the predicted log mass-velocity

dispersion scatter relation (blue line) as expected. We also show that the sensitivity

of the scatter in caustic mass is well predicted by twice the scatter in velocity disper-

sion (red line); however the absolute value is slightly higher due to other systematic

sources of uncertainty. This implies that other forms of systematic uncertainty in the

technique are indeed small, and that the line-of-sight scatter in velocity dispersion

dominates the uncertainty in caustic mass, albeit to a lesser degree than it does in

the virial mass.

In addition to the mass scatter for a given Ngal, we also show how the average

mass bias depends on Ngal. As before with the total scatter, we measure the average

bias for the 100 halos as 〈ln(Mc/M200)〉 after choosing only one l.o.s to each. We

repeat this measurement for 100 different l.o.s and report the average sample bias.

The bias in caustic mass is shown in Figure 2.7 (Middle) for all 4 semi-analytics and

the subhalos. At small Ngal the caustic mass can be biased very low compared with

M200. However, above Ngal = 50, the log bias is unbiased and all the semi-analytics

agree to within the 1σ-errors. A similar trend is seen with the virial mass (Left),

but when compared with the caustic mass, the virial mass exhibits a larger bias for

small Ngal. The virial mass bias, and to a lesser degree the caustic mass bias, are

dependent on the velocity dispersion bias which is shown as a function of Ngal in 2.7

(Right). We find that the four different semi-analytics generally agree to within the

errors on the means (from the 100 l.o.s.). The Bower et al. (2006) galaxies are always
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lower than the others, but not significantly. The sub-halos are biased high in velocity

dispersion by 15% with high sampling which translates to a caustic mass bias of 30%.

We discuss these trends in Section 2.4.1

2.3.3 Target Selection

Up to now, we have assumed that we have spectroscopic follow-up that is complete

for the N brightest galaxies within the projected r200 of each halo. Here, we drop that

constraint and allow more realistic targeting algorithms. We include selection based

on galaxy magnitude, membership within the red-sequence, and projected distance

from the cluster center.

In Figure 2.8 we keep Ngal and color constant (i.e., only the red sequence) and show

the bias (Top) and scatter (Bottom) as we decrease the fraction of original brightest

(in absolute magnitude) galaxies. Starting from the sorted 50 brightest galaxies, we

have different options for how we replace galaxies. For instance, we could replace

them randomly, or from the brightest to the dimmest, or from the dimmest to the

brightest, etc. In Figure 2.8 we show two different replacement techniques starting

from the dimmest (solid lines) or brightest galaxies (dashed lines). We always keep

the 5 brightest galaxies in each case, and we replace galaxies with those starting from

the 51st brightest within r200. We find that the bias does not depend on in how

the replacement is done. As shown in Figure 2.8, the virial mass is more affected

by target selection based on galaxy luminosity than the caustic mass. To minimize

brightness-induced mass biases, the Guo et al. (2011) semi-analytics indicate that

one should always strive to target the brightest galaxies. There is no change in the

average scatter as dimmer galaxies are added to the sample.

In Figure 2.9, we keep Ngal constant and show the bias (Top) and scatter (Bottom)

as a function of red galaxy fraction. We start with the N = 50 brightest red-sequence

galaxies, and replace the dimmest fraction of those galaxies with the brightest blue
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Figure 2.8: Top: The velocity segregation bias as a function of the fraction of the
brightest galaxies within a projected r200 used in the caustic mass. The
x-axis indicates the fraction of the 50 brightest galaxies. We keep the
total number of galaxies fixed by replacing bright galaxies those dimmer
than the 50th brightest. We replace galaxies by starting from the dimmest
(solid lines) or by starting from the brightest (dashed-see text) but always
keep the 5 brightest galaxies. The errors are the uncertainties on the mean
bias. Bottom: The log sample scatter for the brighter sample (solid lines
above), however the scatter for the dimmer sample is nearly identical in
all cases.
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Figure 2.9: Top: The bias in caustic mass (red diamonds), virial mass (blue circles)
and velocity dispersion (green squares) when the brightest “x” percent
of red galaxies are used out of a total of 50 (solid lines) and a random
“x” percent of red galaxies are used out of a total of 50 (dashed lines).
The remaining percent added to keep Ngal constant are the brightest
blue galaxies (solid lines) and a random selection of blue galaxies (dashed
lines). We detect a bias from velocity segregation based on color. Bot-
tom: The log sample scatter for the brighter sample (solid lines above),
however the scatter for the random sample is nearly identical in all cases.
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non-red-sequence galaxies within the projected r200. We also conduct the test by

replacing the galaxies randomly, with no noticeable difference in the results.

Color plays a bigger role in selection-induced biases and scatter when compared to

brightness and again, the virial masses are more affected than the caustic masses. The

velocity dispersion can be biased as much as 10% higher than the baseline bias when

only 25% of the sample are bright red sequence galaxies and the rest are bright bright

blue galaxies. Consequently, we see the average bias for both caustic mass and virial

mass change from a slight negative bias for purely red-sequence galaxies of -5%, to a

positive bias of ∼ 25% and ∼ 35% respectively when we use a small fraction of the

original red sequence sample. This is the color-dependent velocity segregation effect

noticed in real data (Carlberg et al., 1997b; Goto, 2005) and it is due to the inclusion

of blue galaxies with higher infall velocities. Decreasing the fraction of bright red

galaxies to bright blue galaxies can also increase the expected scatter in mass by as

much as 15% in caustic mass and 20% in virial mass as compared with the sample of

all red sequence galaxies. This is due to the higher velocities of the typically infalling

blue galaxy population that can depend more on l.o.s to a cluster. It is very important

to target the bright red galaxies in order to avoid this color-selection induced bias.

In Figure 2.10 (Top), we show the bias (Top:Upper) and scatter (Top:Lower) as

a function of the core fraction. We start with the N = 50 brightest galaxies, and

replace the dimmest galaxies whose projected locations are within 200kpc of the center

with galaxies whose projected radii are greater than 700kpc from the center. This

simulates survey data that under-samples the core due to fiber collisions or slit overlap

in the dense inner regions of clusters and cannot extract spectra for all observable

galaxies. On the other hand, it is often the case where nearby massive clusters are not

well-sampled out to the virial radius and beyond. In Figure 2.10 (Bottom) we show

the bias (Bottom:Upper) and scatter (Bottom:Lower) as a function of the outskirt

“wing” fraction. Starting with the N = 50 brightest galaxies, we replace the dimmest
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Figure 2.10: Top: The bias (Top:Upper) and scatter (Top:Lower) in caustic mass
(red diamonds), virial mass (blue circles) and velocity dispersion (green
squares) when the dimmest galaxies within the innermost projected
200kpc are replaced with galaxies with projected radii outside 700kpc
from the center to simulate an under-sampled core. Bottom: Same as
top, only now the dimmest galaxies outside a projected radius of 700kpc
are replaced with galaxies within the inner-most projected 200kpc to
simulate an under-sampled outskirts or “wings” region.
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galaxies whose projected radii are greater than 700kpc with galaxies that are within

200kpc from the center.

In the first case, the more we under-sample the core relative to the outskirts,

the more biased our estimates become of mass and velocity dispersion. This is true

regardless of whether we use the virial relation or the caustic technique. No matter

how much we under-sample the core, the caustic inferred masses are less biased than

the virial estimates. This is due to the fact that the caustic technique does not depend

as heavily on uncertainty in velocity dispersion (see Figure 2.6), and under-sampling

the projected core of a cluster will lower the measured velocity dispersion. We see no

effect on the mass scatter when under-sampling the core.

When we under-sample the outskirts or “wings” relative to the core, we see dra-

matically different responses from the caustic and virial mass estimators. Under-

sampling the outskirts has the effect of raising the measured velocity dispersion. This

is because the galaxies with large l.o.s velocity are preferentially projected near the

cluster core while under-sampling the outskirts removes galaxies with preferentially

smaller l.o.s velocities. This raises the virial mass estimate as it is directly propor-

tional to velocity dispersion. However, the caustic inferred masses exhibit the opposite

trend since we are reducing the phase-space density in the outer regions by removing

these galaxies. The mass scatter is unaffected by under-sampling the outskirts. To

minimize radial-selection induced biases, it is important to evenly sample the phase

space.

2.4 Discussion

With the availability of large and complete spectroscopic surveys like the Sloan

Digital Sky Survey (Stoughton et al., 2002, SDSS) and GAMA (GAlaxy Mass and

Assembly GAMA Driver et al., 2011), highly multiplexed multi-object optical spec-

troscopy on 8m class telescopes (IMACS Dressler et al., 2011), VIMOS (Le Fèvre
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et al., 2003), DEIMOS (Davis et al., 2003)), and the latest generation of multi-object

near-infrared spectrographs (MMIRS McLeod et al., 2004), Flamingos 2 (Eikenberry

et al., 2006), MOSFIRE (McLean et al., 2008), we can measure large numbers of

galaxy velocities in clusters from z ∼ 0 to z ∼ 1.5. And just as we can use three

different observables to infer the masses of clusters (see Section 2.1), we can use the

galaxy velocities in three different ways to infer dynamical mass (e.g., via virial scal-

ing, the Jean’s equation, and the escape velocity). The questions then are how well

do these different dynamical techniques work under realistic observing conditions and

how do they compare. Here, we compare the virial relation via the velocity dispersion

(Evrard et al., 2008) and the escape velocity mass inferred from the caustic technique

(Diaferio & Geller, 1997).

2.4.1 Robustness of the Caustic Technique to the Galaxy Models

We examine four different semi-analytic mock galaxy catalogs, as well as the sub-

halos and the particles in the Millennium Simulation. The measured scatter and bias

in the inferred dynamical masses are quantified in Tables 2.1-2.5. The level of scatter

and bias varies by only a few percent between most of the different semi-analytic

tracers. The exception is for the Bower et al. (2006) galaxies, which sometimes differ

by slightly more than the 1σ errors on the bias estimates. In one sense, this robustness

is not surprising, since the majority of galaxies in the semi-analytics are attached to

sub-halos, which are the same for each of the mock galaxy catalogs. However, there

are a variety of rules which are applied to the “orphan” population (see Section 2.2.3).

For the satellite population, these orphan galaxies are quite common at low stellar

masses, while the exact fraction depends on the semi-analytic rule-set. In the semi-

analytic catalogs studied here, the fraction of N = 50 brightest galaxies that are

orphans ranges from 50% (Bower) to 25% (Guo).

Consider some of the differences in the orphan population between the Bower et al.
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(2006) semi-analytics compared to De Lucia & Blaizot (2007), Bertone et al. (2007),

and Guo et al. (2011): The Bower sample uses a merger tree that differed in how

friend-of-friend groups were defined, how spuriously linked halos were handled, how

independent halos were identified, and how descendants of halos were tracked through

time; the Bower sample includes the sub-halo orbital energy and angular momentum

when calculating the merging timescale of the orphans; the Guo et al. (2011) semi-

analytics go one step further by modeling the orbital decay of the orphans before they

are destroyed.

These algorithmic differences manifest as variations in the spatial distribution of

the satellites within the halos. The De Lucia semi-analytic galaxies have much flatter

density profiles within the virial radius when compared to the Bower et al. (2006)

galaxies (Budzynski et al., 2012). Since the r−v phase-space is different between the

semi-analytics, one might expect that the caustic technique (which is based on the

phase-space density) would also differ significantly. However, this is not the case and

even when the orphan fraction and radial densities differ by factors of two or more,

the caustic masses vary by < 10%. We interpret this lack of difference between the

different semi-analytic techniques as a measure of the robustness of the technique to

large systematic variations in the r − v velocity distribution function.

The one exception to this robustness is for the sub-halo population where we

detect large biases in the velocity dispersion compared to the dark matter. Since the

caustic mass is calibrated using the velocity dispersion, this bias carries through into

a bias in both the virial mass and the caustic mass. We attribute this to how poorly

the sub-halos trace the r− v phase-space within halos in simulations with resolution

similar to the Millennium Simulation (see also Budzynski et al., 2012).

One could ask whether the semi-analytic techniques have converged in their rep-

resentation of the r − v phase-space inside clusters, as represented by the fraction

of orphan galaxies. Faltenbacher & Diemand (2006) have shown that at higher res-
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olutions, galaxies are no longer orphaned from sub-halos. Instead, a new “crisis” of

sub-halo over-abundance presents itself. Faltenbacher & Diemand (2006) also show

that this crisis is averted through rule-sets analogous to the ones used at lower res-

olution. In other words, instead of following the most-bound particle of a destroyed

sub-halo, one attaches semi-analytic galaxies only to those sub-halos that previously

achieved some minimal mass threshold before entering the cluster. The velocity dis-

persion of these semi-analytic galaxies is unbiased with respect to the dark matter,

which is what we already find here.

2.4.2 The Scatter and Bias of Dynamical Cluster Mass Estimates

While none of these semi-analytic prescriptions is how nature places galaxies into

halos, we have established that the virial relation and the caustic technique are robust

to variations in their rule-sets. This baseline allows for a comparison of the absolute

levels of the inferred mass biases and scatters between the virial and the caustic

techniques.

For a fixed number of tracers projected to lie within R200 of the clusters, the

scatter in the caustic mass lnMc at fixed lnM200 is about 1/3 smaller than Mvirial.

In other words, at fixed N, the caustic technique is a more precise estimate of the

true halo mass compared to the virial relation. The growth of the mass scatter as

Ngal decreases is the same for the two techniques. As with the virial relation and

the velocity dispersion, the dominant component of the scatter in the caustic mass is

from the line-of-sight variations in the observed velocity dispersion and phase-space

density (see also White et al. (2010); Saro et al. (2013)). Uncertainties in Mc induced

from the sampling of the phase space do not contribute unless Ngal < 25, below which

they quickly grow to be a dominant component.

In Figure 2.7 we show the strong dependence of the bias on the number of tracers

used in the mass calculation. Saro et al. (2013) suggest that this was due to dynamical
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friction, since we (as they) explicitly restrict the sub-samples to the brightest galaxies.

However at fixed N, large variations in the brightness distribution of the galaxies has

only a small affect on the observed bias. The same can be said for color selection

(see Figure 2.9). Thus while velocity segregation from sub-sampling plays a role,

it is minimal compared to the number of galaxies used in the mass determination.

This holds for both the virial masses as well as the caustic masses. Put simply, if a

targeting algorithm requires a trade-off between number and color, number wins.

Regardless of how biases are introduced into the velocity distributions (e.g., through

number, brightness, or color) the caustic mass is less affected than the virial mass.

The trends in the biases for the virial and caustics masses are similar. The exception

is when radial selection constraints are applied. We find that the velocity dispersion is

more susceptible to incompletenesses in the core sampling while the caustic technique

is more susceptible to incompletenesses in the cluster outskirts. The former trend can

be understood from a dynamically cold population of galaxies which dominates the

dispersion measurement at low sampling. The latter is also a sampling issue, where

the iso-density contour gets lost in the background for low sampling in the cluster

outskirts.

2.4.3 The Calibration Factor

Finally, we note that the implementation of the caustic technique utilizes a step

which calibrates to simulations (see Fβ in equation 2.10). This is no different than

the virial calibration (equation 2.12). Diaferio (1999) find 〈Fβ(r)〉 = 0.5 and Serra

et al. (2011) find 〈Fβ(r)〉 = 0.7, which corresponds to a systematic uncertainty of

30% in mass. This is larger than any biases we detect from sample selection.

One explanation the difference in the value for Fβ is in how Diaferio (1999) and

Serra et al. (2011) define their mock galaxy catalogs: the former used only halos (with

ten particles or more) while the latter used only particles to define galaxies. Since sub-
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halos in N-body simulations are biased tracers of the dark matter velocity dispersions,

the calibration factor and caustic masses will also be biased (see Figure 2.7 middle

and right panels). We test this hypothesis by re-calibrating Fβ using the Millennium

Simulation sub-halos alone. The high halo velocity dispersions of the sub-halos require

a lower calibration factor than from the dark matter. We find 〈Fβ(r)〉 = 0.5, identical

to what is used in Diaferio (1999), who note that their own halo velocity dispersions

are biased with respect to the dark matter in their simulations. Serra et al. (2011)

explicitly used dark matter particle positions and velocities to define their galaxies

and calibrate Fβ. The semi-analytics we use lie in between these two extremes, which

explains why we find 〈Fβ(r)〉 = 0.65.

Serra et al. (2011) notes that Fβ is not constant with radius in simulations and

that the caustic mass profiles can over-estimate the mass within ∼ 0.3r200, where

velocity anisotropies become smaller. Likewise, Geller et al. (2013) compare caustic-

derived and weak-lensing-derived mass profiles and find disagreement within 0.5r200,

as expected from the anisotropy profiles in simulations. In this work, we are not

measuring mass profiles but instead the integrated masses of the clusters out to r200.

As shown in Serra et al. (2011), unbiased halo masses require an appropriate measure

of 〈Fβ(r)〉 =
∫ r

0
Fβ(r)dx/r from Equation 2.10, which is what we do to achieve

unbiased caustic masses for the Guo et al. (2011) semi-analytic galaxies. This is

without question a tuning step which carries with it a certain level of additional

systematic uncertainty.

It is very unlikely that the radius-velocity phase-space of galaxies in the Uni-

verse is represented by the sub-halo population in N-body simulations (regardless of

resolution). Current observational constraints on the bias between the galaxy and

dark matter velocity dispersions are measured indirectly (e.g., Rines et al. (2008))

and find it to be < 5% when a multitude of independent cosmological priors are

leveraged. From the current simulation and observational work, it is not likely that
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〈Fβ(r)〉 = 0.5, which corresponds to a galaxy/dark matter velocity bias of 10% in a

ΛCDM simulation (see Table 2.5 sub-halos). If galaxies and dark matter have dis-

persions that are unbiased with respect to each other, the caustic masses (integrated

to r200) would be low by ∼20% using 〈Fβ(r)〉 = 0.5 (Geller et al., 2013; Rines et al.,

2013).

Ideally, the simulation calibration factor can be dropped entirely, and in Chapter

III we present a revised derivation of the caustic technique that relies only on the

observable parameters: the NFW density scale parameter, 〈v2
esc,los〉, and 〈β〉 and

their statistical and systematic uncertainties.

2.5 Summary

In this work, our main conclusions are as follows.

• We measure velocity dispersions, virial masses (Mvirial), and caustic masses

(Mc) for 100 halos in the Millennium Simulation with masses 1014 − 1015M�.

These halos exist at low redshift (z < 0.15) and are populated with galaxies via

four different semi-analytic prescriptions (Guo et al., 2011; De Lucia & Blaizot,

2007; Bower et al., 2006; Bertone et al., 2007).

• The resulting scatter and bias in Mc relative to the halo mass (M200) is ro-

bust and largely independent of the semi-analytic prescription used to populate

cluster-size dark matter halos with galaxies. The exception is when only subha-

los are observed which do not trace the dark matter velocity field and measured

velocity dispersions. The velocity dispersion for the subhalos can be biased high

by 10-15% resulting in a caustic mass bias of 20-30%.

• As with the Mvirial, the dominant component of the scatter in Mc is from the

line-of-sight variations in the observed velocity dispersion. However, for a fixed

number of tracers (Ngal) projected to lie within R200 of the clusters, the scatter
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in the caustic mass ln(Mc|M200) is ∼ 30% at Ngal > 50 which is ∼ 1/3 smaller

than Mvirial.

• The bias in Mc relative to M200 is strongly dependent on Ngal. While color

selection, radial completeness, and magnitude can play a role in inducing bias

depending on how a cluster is observed, their effect is much less than Ngal.

Given a choice, it is better to use a full, unrestricted sample to estimate caustic

masses rather than a color selected (such as red sequence) sample to achieve

larger numbers.

• We find a caustic mass calibration factor Fβ = 0.65. This differs from the

calibrations based on either just the dark matter particles (Fβ = 0.7) or just

the subhalos (Fβ = 0.5). While galaxy/DM velocity bias affects the caustic

mass less than the dynamical mass, it is an important component of the total

systematic uncertainty.
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CHAPTER III

The Theory of Mass Estimation Using Observed

Cluster Potentials

3.1 Introduction

Under Newtonian dynamics, the escape velocity is related to the gravitational

potential of the system,

v2
esc(r) = −2Φ(r). (3.1)

If the dynamics of the system are controlled by the gravitational potential, tracers

which cannot escape the potential exist in a well-defined region of radius/velocity

(r − v) phase space. The extrema of the velocities in this phase space define a

surface, the escape velocity profile, vesc(r), which can be observed in projected sky

coordinates. Given the observed vesc(r), this “caustic” technique allows one to infer

the mass profile of a cluster to well beyond the virial radius (Diaferio & Geller, 1997).

With the latest deployments of wide-field ground-based multi-object spectro-

graphs like VIMOS on the VLT (Le Fèvre et al., 2003); IMACS on Magellan (Dressler

et al., 2011); HECTOSpec1 on the MMT we are beginning to see large spectroscopic

follow-up datasets of galaxy clusters. As a consequence, the caustic technique has

become more widely adopted.

1http://www.cfa.harvard.edu/mmti/hectospec
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Geller et al. (2013) compare caustic to weak lensing mass profiles and find agree-

ment to within 30% around a virial radius. Lemze et al. (2009) perform a dynamical

study of the cluster A1689 and find good agreement between the caustic mass pro-

files and both the weak lensing and X-ray inferred mass profiles. Rines et al. (2013)

measure the caustic mass profiles to large radii to estimate the ultimate halo mass

in clusters, which includes all mass bound to halos in a future ΛCDM universe. An-

dreon & Hurn (2010) utilize caustic masses to help calibrate the M200-richness relation

alongside mass estimates from velocity dispersion scaling relations. New deep imaging

surveys like CLASH on the Hubble Space Telescope have been awarded a significant

amount of Very Large Telescope (VLT) time to collect spectroscopy, in part to study

the dynamical and caustic masses of clusters (Postman et al., 2012). And of course

there are a variety of planned large-scale spectroscopy programs both from the ground

(BigBoss2) and space (EUCLID3). These future efforts could enable caustic masses

to be measured for many thousands of galaxy clusters.

In Chapter II we use the Millennium Simulation (Springel et al., 2005) to show

that cluster-sized caustic masses within a projected r200 (the radius which contains

200 times the critical density) are more precise and more accurate than virial masses

measured from their projected velocity dispersions. However, the implementation of

the escape velocity technique employs a number of steps which result in masses that

are calibrated to the N-body simulation. Cluster masses based on the traditional

caustic technique vary by 30% depending on which calibration is used (Diaferio &

Geller, 1997; Diaferio, 1999; Serra et al., 2011). In this chapter, we clarify where these

calibrations are incorporated into the theory and we assess their validity and impact

on the inferred masses. We also present a variation on the original escape velocity

caustic technique which eliminates the calibration.

2http://bigboss.lbl.gov/
3http://sci.esa.int/euclid
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3.2 Tracers of the Escape Velocity Profile

An important question is whether the caustic edge defined by the particles in r−v

phase-space varies based on the dynamical tracers being considered. For instance,

while we expect that sub-halos will exhibit a different phase-space distribution than

particles based on astrophysical interactions, the edge should be equivalently defined

since the escape velocity is a limiting property. To test this, we use resolved sub-

halos defined for the Millennium simulation (Springel et al., 2005) by the SUBFIND

algorithm (Springel et al., 2001) along with the dark matter particles in the simulation.

As an example, the sub-halos for two clusters are shown as the orange circles in Figure

3.1 and the particles are shown as black dots. There are two important issues with

the sub-halos that are evident in this figure. First, the sub-halos decrease in density

towards the core while the particles increase in density. Second, the sub-halos do not

track the phase-space near ∆v = 0 within r200. Both of these effects are the result of

sub-halo destruction through gravitational interactions with the density field: galaxies

would not be destroyed so easily. However, by using only the sub-halos which have

survived mergers as a tracer of the particle phase-space, one is weighting the velocity

distribution in an unfair way with respect to both the dark matter particles as well

as any realistic galaxy populations.

Wu et al. (2013) review the current consensus on velocity bias in simulated halos.

As measured by the velocity dispersion, Wu et al. (2013) find that sub-halos typically

show 10-15% positive biases (see also Lau et al., 2010). This is a manifestation of

how the radius/velocity phase-space is sampled by the resolved sub-halos. One can

draw from the phase-space in any number of ways, any of which may show positive or

negative biases compared to the full representation of the phase-space by the particles.

In the case of sub-halos, they can easily be destroyed through interactions causing a

paucity of tracers with low velocities. The end result is a sub-halo velocity dispersion

that is biased with respect to the particles. Therefore, we must test whether the edge
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Figure 3.1: The radius-velocity phase spaces of a low mass (top- 2.4 × 1014M�) and
high mass (bottom- 1.0× 1015M�) cluster in the Millennium simulation.
The dots are particle radial positions and radial velocities. The orange
circles are sub-halo radial positions and radial velocities. The lines are the
measured escape edges for the particles (blue) or the sub-halos (orange).
Notice the increasing statistical bias in the sub-halo edges compared to
the dark matter edges towards the core where the sampling is low. The
dotted vertical bar is the location of r200.
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is prone to velocity bias by measuring the surface directly rather than identifying it

based on velocity dispersion calibration techniques (Diaferio, 1999; Serra et al., 2011).

First, we need to separate systematic velocity biases (i.e., along the vertical axis of

the phase-space diagrams) from statistical sampling biases (i.e., along the horizontal

axis). While most of our halos have thousands of particles in each radial bin of the

phase-space, there are only tens of sub-halos in any bin. This can cause a sampling

bias as a function of radius due to the small number of objects per bin. This bias

is purely statistical and is visible in Figure 3.1. We can determine the level of this

bias by sub-sampling from the particles to match the number of sub-halos. We use

100 uniformly random sub-samples of the particles per bin per cluster. We then

calculate the difference between the sub-sampled edge and the full particle edge. Not

surprisingly, we find a statistical sampling bias that gets worse as we move into the

core of the clusters and the sub-halo density relative to the particle density decreases.

We calculate the radial difference between the full and sub-sampled edges with respect

to the particle edge as determined beyond r200 = 3h−1Mpc, well beyond the radius

where sub-halo interactions are common. We then apply this statistical sampling

correction to the measured sub-halo escape edges. We note that the sampling bias

results in an escape edge that is biased low and in the opposite direction of the halo

bias reported in Lau et al. (2010), Wu et al. (2013), and what we find in Chapter II.

In Figure 3.2, we show the sampling corrected sub-halo velocity dispersion and

edge bias determined as the fractional difference from the particles. To ensure a

fair comparison to the velocity dispersion, we apply the same sampling correction

procedure as we did for the escape edges. Notice that the velocity dispersion profile

shows positive biases ∼ 15%, identical to what is presented in Chapter II. However,

the escape-edge based on the sub-halos is unbiased beyond ∼ 0.4 h−1Mpc to at least

∼ 2×r200.

The fact that the sub-halo edge is unbiased is an important result. The edge is
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a well-defined and sharp feature of the phase-spaces of halos in simulations and so

long as the sampling is high enough, the edge will be detected regardless of how the

sampling is done. Gravity insists that there can be no population of tracers which

exist above the escape edge. We note that there can be sub-halos which momentarily

live above the edge while they are escaping (see the top panel of Figure 3.1), but

these are rare and fleeting and do not systematically bias the edges for all halos over

all radii.

3.3 Caustic Theory

Consider a mass distribution described by an NFW profile such that the mass

density ρ and the potential Φ radial profiles are:

ρ(r) =
ρ0

(r/r0)(1 + r/r0)2

Φ(r) = −4πGρ0(r0)2 ln(1 + r/r0)

r/r0

(3.2)

where ρ0 is the normalization and r0 is the NFW scale radius. This is an example of

a density - potential pair which share the same values for the shape parameters ρ0

and r0 and are related via the Poisson equation, ∇2Φ(r) = 4πGρ(r). We can write

the NFW-inferred spherical mass differential as:

dm

dr
= 4πρ(r)r2

G
dm

dr
= −Φ(r)

(
(r/r0)2

(1 + r/r0)2 ln(1 + r/r0)

)
(3.3)

where the unknowns are the gravitational potential Φ(r) and the scale r0. This is a

key step in our escape velocity technique, where we have equated the parameter ρ0 in

equations 3.2. The NFW parameter ρ0 sets the absolute scale for the mass density.

The other NFW parameter r0 defines the scale radius and is observable in projected
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Figure 3.2: The fractional sub-halo velocity bias profile with respect to the parti-
cles for the velocity dispersion and the edge. In both cases, we remove
the statistical bias with results from the low sampling of the sub-halo
population. While the sub-halos have a biased velocity dispersion with
respect to the dark matter particles, the escape edge is well-constrained
by the sub-halos. The vertical line is the average r200 for the sample. The
gray band represents the ±3% scatter on how well the density-inferred
potential predicts the measured escape edge from the particles (see §1.3.2.
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data.

We use equation 3.1 to re-write equation 3.3 as:

GM(< R) =

R∫
0

F̂(r)v2
esc(r)dr (3.4)

where

F̂(r) =
(r/r0)2

(1 + r/r0)2 ln(1 + r/r0)
(3.5)

where the unknowns are the scale radius r0 and the escape velocity v2
esc(r), which is

measured from the extrema in the radius and velocity (r − v) phase-space data.

More precisely, our estimate F̂(r) should actually be:

F(r) = −2πG
ρ(r)r2

Φ(r)
(3.6)

where ρ(r) and Φ(r) are the spherically averaged density and potential profiles (see

Diaferio & Geller (1997) or Chapter II). The difference between F(r) and F̂(r) is

that the former uses an exact profile for the densities and the potentials, while the

latter assumes that only the density profile can be measured and that the potential

has the same NFW shape parameters (i.e., concentration and scale) as the density.

We discuss whether or not this NFW-shape assumption holds in Section 3.4.1.

In projected data, we measure the velocities along the line-of-sight (l.o.s.), and so

〈v2
esc,los〉(r) =

(1− β(r))

(3− 2β(r))
〈v2
esc〉(r) = (g(β(r)))−1〈v2

esc〉(r) (3.7)

where the β is the standard velocity anisotropy parameter.

In the classical implementation of the caustic technique, the average Fβ = 〈g(β(r))F(r)〉

is measured within N-body simulations, and then applied to real data (Rines et al.,

2013; Geller et al., 2013). In the literature, 0.5 < Fβ < 0.7 (Diaferio & Geller, 1997;
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Diaferio, 1999; Serra et al., 2011; Svensmark et al., 2015). Since Fβ enters into the

equation as being directly proportional to the mass, we must know it to high accuracy

if escape velocity masses are to be used in cosmological analyses.

A goal of this chapter is to drop the requirement that Fβ be calibrated from

simulations. We assume that clusters are NFW density-potential pairs and apply

equation 3.4 directly. The unknowns, r0 and 〈v2
esc,los〉 and β are constrained from ob-

served data (Lin et al., 2004; Carlberg et al., 1997a; Wojtak &  Lokas, 2010; Budzynski

et al., 2012; Diaferio & Geller, 1997; Geller et al., 2013; Rines et al., 2013; Lemze et al.,

2009; Biviano & Poggianti, 2009; Host et al., 2009).

A final calibration in standard escape-velocity technique is that of the iso-density

surface in r−v space which defines the average escape velocity, 〈v2
esc〉(r). The density-

weighted average escape velocity inside radius R is:

〈v2
esc(< R)〉 =

∫ R
0
d3xρ(x)v2

esc(x)∫ R
0
d3xρ(x)

= −2

∫ R
0
d3xρ(x)Φ(x)

M(< R)
(3.8)

where we have used equation 3.1. The integral in the numerator on the right-hand

side of equation 3.8 is twice the total potential energy of the system or 2W (Binney

& Tremaine, 1987), which leads to:

〈v2
esc〉 = −4W (< R)

M(< R)
(3.9)

where W and M are the total potential energy and mass of the system within the

radius R.

One often defines the following relation between the fraction of the total kinetic

over the potential energy to that expected from a virialized halo:

b = 1 +
2T

W
(3.10)
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where T is the total kinetic energy. If we express the total kinetic energy of the

system as T = 1/2M〈v2〉 equation 3.9 becomes:

〈v2
esc(< R)〉 = −4〈v2(< R)〉

b− 1
(3.11)

where the average quantities are measured within the same radius, R. The standard

calibration assumes that 〈b〉 = 0 in a virialized and isolated halo such that 2T = −W .

Thus 〈v2
esc〉 = 4〈v2〉, such that the escape velocity phase-space surface is calibrated

through a measurement of the velocity dispersion.

In this section, we have clarified where the calibration steps enter into the standard

caustic analysis. The calibration includes the term Fβ, which is directly proportional

to the estimate of the mass. This term comprises two parts: F(r) in Equation 3.6

and g(β(r)) in Equation 3.7. The other calibration step occurs from 〈b〉 in Equation

3.11, which decides the iso-density contour in the r − v phase-space that defines the

escape velocity. We have also presented a derivation of the caustic technique which

does not require a calibration of Fβ, but which assumes an NFW density-potential

pair and uses the observables in Equation 3.4.

3.4 Testing the Theory

We apply the caustic technique to 100 Millennium halos with masses M200 >

1×1014M�h−1 and z < 0.1 where h = H0/100 km s−1Mpc−1. In 3D we use the particle

postions and velocities. In the projected analyses we use the Guo et al. (2011) semi-

analytic galaxies within 30h−1Mpc of the halo centers projected along a random line-

of-sight. These volumes are large enough to incorporate realistic projection effects.

The limits on the projected phase-space velocities are ±3000km/s relative to the halo

velocity centroids, whereas the typical escape velocities are ∼ 1500km/s.
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Figure 3.3: A comparison of the concentration measured via the density profile with
cρ = r200/r

ρ
0 and the concentration measured via the potential profile with

cΦ = r200/r
Φ
0 . The blue line is unity and the green dashed line is the fit

to the relationship with a slope = 0.89 intercept = 0.80.
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3.4.1 The NFW shapes

In order to drop the N-body calibration of Fβ, we assume that the NFW densities

and potentials have the same parameters. This is expected if the matter distribu-

tion is concentric with the iso-potential surfaces (e.g., as in spherical symmetry; see

also the classical potential solutions for homogeneous density distributions in Chan-

drasekhar (1969) and Binney & Tremaine (1987)). However, Conway (2000) provide

exact closed-form Newtonian potential solutions to an infinite family of heterogeneous

spheroids and find that the densities are generally not constant on the iso-potential

bounding surfaces. In other words, while both the potential and density distribu-

tion could have the same general functional form like an NFW, they need not have

identical shape parameters.

We compare the NFW density/potential shapes by first fitting the NFW density

profile and determining ρ0 and r0 for each halo. The gravitational potentials are

measured exactly through summation of Gmi
ri

and then fit with an NFW using ρ0

measured from the density, but allowing the potential scale parameter r0 to be a free

parameter.

In Figure 3.3, we compare the NFW concentrations cρ,Φ = r200/r
ρ,Φ
0 , where r200 is

the radius which contains a density corresponding to 200× the critical density. We

find that the potentials have slightly higher concentrations than the densities. This

difference suggests that our systems are not density-potential pairs which are simply

related via spherical solutions to the Poisson equation. Because of this, we expect

that using equation 3.4 will return an incorrect mass estimate due to its assumption

of shape similarity in the density and potential profiles.

In Figure 3.4 we compare the 3D escape velocity masses with halo masses within

r200 (M200). In the top left panel, we use the exact densities and potentials as mea-

sured using the particles (e.g., Equation 3.6). These caustic mass estimates are nearly

unbiased with a scatter of 13%. In the top right panel of Figure 3.4 we utilize equa-
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Figure 3.4: Top Left: M200 vs the 3D caustic mass estimated inside r200 calculated
using the exact potential and density profiles (see equation 3.6). Top
Right: Caustic masses using NFW fits to the 3D density profiles (equa-
tion 3.4). The induced bias is expected from Figure 3.3. In all panels
the solid blue line is unity and the green dashed line represents the av-
erage bias of the sample with slope unity. Bottom Left: M200 vs the
line-of-sight caustic mass estimated inside a projected r200. As in the top
panel, we use the particle potential and density profiles, but now include
the particle anisotropy profiles as well. The increased scatter is due to
the line-of-sight projections which induce scatter into the velocity dis-
persions. Bottom Right: Projected caustic masses based on an NFW
density profile with a single sample concentration of 〈c〉 = 5 ± 2 and a
single sample 〈β〉 = 0.2± 0.2. These large uncertainties do not add appe-
ciably to the scatter induced by the line-of-sight projection effects. Mass
biases induced by systematic errors in β are shown by the two dotted
lines 〈β〉 = 0.0 (lower) or 〈β〉 = 0.4 (upper).
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tion 3.4, where only the density profile is used to fit the 3D NFW concentrations and

their errors. As expected from Figure 3.3 the NFW-inferred 3D caustic masses are

biased low by ∼ 10%. The scatter is 8%. The errors on this panel use a conservative

uncertainty in c = 50%. A large uncertainty in the concentration has little effect on

the scatter of the actual caustic mass estimate. This will become important when we

discuss realistic observational biases and scatters in section 3.3.

3.4.2 Virialization

It has been shown that the virial relation 2T = −W is often not met in simulated

halos (Shaw et al., 2006; Bett et al., 2007; Neto et al., 2007; Davis et al., 2011). This

does not mean that the system is not virialized, but simply that more terms from

the tensor virial equation are required, usually in a surface pressure kinetic term. So

the question then is at what radius do we begin to see a bias expected from equation

3.11 when 〈b〉 6= 0?

To test this, we measure the exact (unbiased) caustic masses using F(r) at 1, 0.9,

0.7, and 0.5 × the virial radius. We detect no appreciable bias until we reach half

a virial radius where the masses become biased low by 10%. We calculate 〈b〉 = 0.1

for particles within this radius. We then apply 〈b〉 = 0.1 during the virial calibration

stage of the caustic technique and find no mass bias. Serra et al. (2011) conduct

a similar test, but against various fractions of their membership radius RTree, as

opposed to an intrinsic cluster property like R200. They find that there is a preferred

radius of of 0.7×RTree. We come to a slightly different conclusion: that the choice of

radius does not matter, so long as the correct 〈b〉 is used. We also find that there is

no bias when caustic masses are calibrated using data within 0.7 ≤ R ≤ 1r200.
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3.4.3 Velocity Anisotropy

When the data are projected along the line-of-sight, velocity anisotropies in the

orbits of the galaxies must be taken into account (Diaferio & Geller, 1997). In the

bottom left panel of Figure 3.4, we use Fβ(r) which is the exact F(r) profile multiplied

by the exact β(r) profile. The increase in the scatter from the 3D (∼ 10%) case to

the line-of-sight (∼ 25%) case is identical to what we measure in Chapter II using the

classical caustic technique and a constant Fβ. Therefore, for any given cluster, there

is no gain in accuracy or precision in the estimated caustic masses by measuring a

β(r) profile for each cluster. The scatter is dominated by line-of-sight variations in

the projected velocity dispersion (see Chapter II).

We show our most realistic comparison of the caustic masses to M200 in the

bottom-right panel of Figure 3.4. Here we drop explicit knowledge of the concen-

trations and apply the ensemble average 〈c〉 = 5 ± 2 for every halo in F̂(r) (see

Figure 3.3). We also drop explicit knowledge of the anisotropy profile and instead

use 〈β〉 = 0.2± 0.2 which is the average β for these halos. Using these estimates, we

find that the scatter is only slightly higher than in Figure 3.4 (bottom left). Large

uncertainties in the average anisotropy and concentrations do not appreciably add

scatter to what is already there from the line-of-sight projection. The bias in Figure

3.4 bottom-right is caused by the faulty assumption that the halos have the same

NFW density and potential concentrations (see Figure 3.3).

Systematic errors in the observable ensemble averages for the concentrations and

the velocity anisotropies do impart mass biases. When we impose 〈β〉 = 0.0± 0.2 the

average bias changes from -10% to -18% while 〈β〉 = 0.4 ± 0.2 results in an average

mass bias of +5%. When we impose 〈c〉 = 3± 0.1 the bias changes from -8% to -13%

while 〈c〉 = 6 ± 2 results in a mass bias of -7%. These average concentration values

cover the full range of observational estimates in the literature (Carlberg et al., 1997a;

Lin et al., 2004; Wojtak &  Lokas, 2010; Budzynski et al., 2012).
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3.5 Conclusions

One goal for this work was to test the fundamental statistical and systematic

precision of the escape velocity (or caustic) technique to measure masses of cluster-

sized halos in N-body simulations. Given the 3D data, caustic masses are unbiased

with 10-15% precision (similar or better to the virial scaling relation of Evrard et al.

2008). The scatter increases to 25% as a result of line-of-sight projections.

Our second goal was to re-frame the theory in terms of observable quantities and

remove calibrations to N-body simulations. We utilized the weak assumption that

the observed density and potential profiles can be described by an NFW with the

same shape parameters, specifically the scale parameter r0. We find that this latter

assumption does not hold in the Millennium Simulation data, and the inferred cluster

masses are biased low by ∼ 10%. The virial calibration can also contribute to biases

in the caustic masses when the velocity dispersion is averaged over a radius where the

total binding energy is not represented by virial expectations. We show that large

uncertainties in the ensemble average of the velocity anisotropies and concentrations

do not contribute significantly to the intrinsic line-of-sight scatter in projected caus-

tic masses. However, large (e.g. 100%) systematic errors in the average velocity

anisotropies and concentrations can lead to additional 5-10% biases in the caustic

masses.
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CHAPTER IV

Correcting Statistical Biases in Mass Estimation

Through Stacking Techniques

4.1 Introduction

Galaxy clusters continue to play a prominent role in our desire for precision cosmo-

logical measurements. Clusters inform us about cosmology through their abundance

and spatial clustering, both of which are sensitive probes of the universe’s matter

density and the growth of structure due to gravity. Precision cosmological inference

using clusters is only possible when we measure their characteristics as a function of

mass (Vikhlinin et al., 2009; Rozo et al., 2010).

Cluster mass cannot be directly measured, but its presence is visible through the

gravitational potential, which can be quantified using the lensing of background galax-

ies (weak or strong), via the surface brightness and temperature of the intracluster

medium to infer gas mass in hydrostatic equilibrium, through the maximum escape

velocity surface traced by phase-spaces of the cluster galaxies, as well as through the

Jean’s equation (Diaferio & Geller, 1997; Meneghetti et al., 2010b; Carlberg et al.,

1997a; Hoekstra et al., 2015). There are also indirect cluster mass estimation tech-

niques, such as the X-ray gas temperature or luminosity, the SZ decrement from

the scattering of the background CMB photons, the velocity dispersion, and cluster
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richnesses (Evrard et al., 2008; Andreon & Hurn, 2010; Planck Collaboration, 2011).

There is ongoing research to understand and control statistical and systematic

uncertainties in the techniques of cluster mass inference using direct measures of

the potential. Direct measurement of cluster potentials often requires a significant

amount of data per cluster, whether it is the number of background galaxies for weak

lensing shear profiles, X-ray photons for gas mass profiles, or spectroscopic galaxies

for radius-velocity phase-space analyses. There are numerous studies which utilize

simulations of idealized data sets to characterize statistical and systematic errors in

direct potential measurements of individual clusters (Becker & Kravtsov, 2011; Gruen

et al., 2015; Rasia et al., 2006; Meneghetti et al., 2010b; Serra et al., 2011; Geller et al.,

2013; Hoekstra et al., 2015). Another way to constrain uncertainties is to compare

two different measures of the potential (e.g., Geller et al., 2013; Hoekstra et al.,

2015).

In reality, the quantity and quality of data quickly becomes prohibitively expen-

sive for large samples of clusters or for faint and small clusters (e.g., low mass and/or

distant). To counter the lack of data, stacking is often employed as a way to raise the

signal-to-noise for an ensemble of clusters. Stacking also has the benefit of homoge-

nizing the projected shapes in order to reduce the bias from spherically-fit profiles to

non-spherical systems.

However, stacking can just as easily induce new systematic biases. For example,

Biesiadzinski et al. (2012) showed how the stacked SZ signal can have significant sys-

tematic biases if the optical cluster sample selection is not correctly characterized.

Becker et al. (2007) used the pairwise velocity dispersion (a form of stacking) to

quantify the scatter in the dispersion at fixed richness for clusters in the Sloan Dig-

ital Sky Survey data and in simulations. They recognize that the resulting stacked

dispersion must be treated as non-gaussian to avoid biases in the result. Other recent

studies examine how accurately stacked ensembles can infer the potential through the
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Jean’s equation, as well as the presence of cluster shape-induced biases using both

phase-space and weak lensing observables (Svensmark et al., 2015; Dietrich et al.,

2014)

Here, we study how to conduct a stacked analysis using cluster projected phase-

spaces and the caustic technique to infer the escape velocity masses (Diaferio & Geller,

1997; Diaferio, 1999). Merging individual phase-spaces into an ensemble cluster in-

creases the signal-to-noise of the caustic feature used to estimate the mass profile.

This work extends upon Svensmark et al. (2015), who used particle data in simula-

tions to constrain the minimum and maximum caustic mass biases caused by line-of-

sight projections of the cluster phase-spaces. The Svensmark et al. (2015) result is

related to what was found by Dietrich et al. (2014), who used weak lensing stacking

and incorporated realistic cluster selection on galaxy catalogs. In both cases, cluster

shape is shown to play an important role in cluster mass estimation. What have yet

to be fully investigated are the baseline accuracy of the caustic technique on stacked

phase spaces, how to build ensemble clusters, and the effects of mass scatter in the

binning process.

The caustic technique has been applied to stacked systems in observations before.

Biviano & Girardi (2003) stacked 43 poorly sampled clusters with galaxies out to

2rvir and used both the caustic technique as well as a Jeans analysis to recover an

average mass profile and found good agreement between the two methods. Rines

et al. (2003) created an ensemble cluster based on nine clusters in the CAIRNS

survey. Unlike other studies, each of the included systems was sampled well enough

to obtain individual measurement of velocity dispersion and M200. They chose to

scale their velocities by each system’s velocity dispersion before stacking, and doing

so, found agreement to within 1σ of the theoretical expectation of M200 = 3σ2r200/G.

Our focus in this paper is to test the caustic technique’s ability to recover the

average stacked ensemble mass and the average ensemble uncertainty for different
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stacking strategies. We pay particular attention to the stacking algorithms, and we

use realistic simulated galaxy data with projection effects that mimic what is seen

in the local universe (z ∼ 0.1). We test whether the process of stacking induces an

intrinsic bias by developing a new self-stacking technique (§4.4.1). Once the algorithm

is verified, we build ensemble clusters to study how sampling rates affect the accuracy

and precision of the stacked cluster masses (§4.4.2). Finally, we use a mass-observable

relation to incorporate correlated scatter into our ensemble clusters and we measure

the resultant biases from mass mixing across the bin boundaries (§4.4.3).

4.2 Simulation and Semi-Analytic Catalog

In this study, we utilize the Guo et al. (2011) semi-analytic galaxy catalog and the

Millennium Simulation (Springel et al., 2005). Semi-analytic galaxy catalogs are built

using a set of “rules” for evolving galaxies inside identified subhalos in an N-body

simulation. Subhalos are defined and located using algorithms such as SUBFIND

(Springel et al., 2001) which have been shown to work well to identify all of the

sub-structure in N-body simulations (see also Knebe et al., 2011). The semi-analytic

model captures the history of position, velocity, size, and merger history of these

subhalos and applies its rule set to transform these properties into galaxy mass,

circular velocity, accretion rate, and other physical parameters that can, in theory, be

observed. Semi-analytic galaxy catalogs can be compared with observed luminosity

functions of galaxies to judge their success.

The Millennium Database contains four different semi-analytic catalogs. One way

the catalogs differ is in the way they treat “orphan” galaxies, or semi-analytic galaxies

whose host subhalo was destroyed in the simulation. Orphan galaxy treatment is

necessary since subhalos are too easily destroyed in N-body simulations due to limited

resolution. To combat this, once a subhalo is destroyed, the semi-analytic galaxy lives

on for a time following the most bound particle of the destroyed subhalo. Dynamical
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friction arguments are applied to determine the time the orphan galaxy exists in the

simulation. In Chapter II, we study these semi-analytic catalogs and find the cluster

velocity dispersion and mass estimates in the Guo catalog to be near the average of

the catalogs and unbiased using a set of assumptions for mass estimation.

In sections 4.4.1 and 4.4.1.1 our sample contains 20 clusters from the Guo semi-

analytic catalog at redshift = 0 for which we have 3-dimensional position and velocity

information. These clusters are located within the central 50 × 50 × 50h−1 Mpc of

the 500h−1 Mpc per side simulation box. This allows for long lines-of-sight to each

system of at least 200h−1 Mpc. Long lines-of-sight are necessary to build phase spaces

with similar projected interloper properties of clusters at low redshift.

The remaining sections utilize the Henriques all-sky light cone (Henriques et al.,

2012; Guo et al., 2011) to study stacking independent clusters. This sample consists

of 6100 clusters that span a mass range of 7.2×1013−2.1×1015h−1M�. The redshift

range is selected to be between 0.0− 0.15 to mimic shallow-wide surveys. This large

sample allows us to test for systematics over a large cluster mass range. In all our

analyses, we assume a flat ΛCDM cosmology matching the Millennium values with

ΩM = 0.25, ΩΛ = 0.75, and H = 100h km s−1 Mpc−1.

4.3 The Caustic Technique

Under Newtonian dynamics, the escape velocity of a spherically symmetric cluster

relates to its gravitational potential by

v2
esc(R) = −2Φ(R), (4.1)

where R is the 3-dimensional measured distance to the center of the cluster. If the

dynamics of the system are controlled by the gravitational potential, galaxies which

cannot escape the potential exist in a well-defined region of radius/velocity (R − v)
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phase space. The extrema of the velocities in this phase space define an edge, the

escape velocity profile vesc(R), which can also be observed directly with 3 dimensional

position and velocity information, or estimated using projected sky coordinates and

line-of-sight velocities as vesc(r). Given the observed vesc(r), the escape velocity or

“caustic” technique allows one to infer the mass profile of a cluster to well beyond the

virial radius (Diaferio & Geller, 1997). Once the escape velocity surface is identified,

the equation

GM(< r) = Fβ

r∫
0

v2
esc(r

′)dr′ (4.2)

calculates the mass within the radius r where v2
esc(r) is the observed (projected) escape

velocity profile and Fβ is a function which depends on the density, the potential,

and the projected anisotropy profile. It is usually approximated as a constant and

calibrated through simulations.

4.3.1 Calibrating the Caustic Masses

In Chapter II we quantify how well the average calibration constant, Fβ, can be

determined for individual systems. These calibrations involve choosing the correct

“surface” to prescribe as tracing the projected escape velocity and in defining a value

for Fβ. As discussed in detail in Diaferio (1999), the constant Fβ is derived as a

function of the dark matter density and potential profiles, as well as the galaxies’

velocity anisotropy profile β(r) = 1 − (v2
θ + v2

φ)/v2
r . Analytically, Fβ(r) is expressed

as:

Fβ(r) =
−2πGρ(r)r2

Φ(r)

3− 2β(r)

1− β(r)
. (4.3)

Considering that the density profiles of halos and clusters are known to follow the

functional form defined by Navarro et al. (1997), we can reduce equation 4.3 to

Fβ(r) =
c2s2

2 ln(1 + cs)(1 + cs)2

3− 2β(r)

1− β(r)
, (4.4)
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where s = r/r200 and c = r200/rs such that rs is the NFW scale radius. Diaferio (1999)

and Serra et al. (2011) approximate this function as a constant out to 2-3×r200, noting

that its value varies slowly with radius. When defined as a constant over some range

in radius, Fβ acts as a caustic mass calibrator, which depends weakly on variations

in concentration and the radially averaged velocity anisotropy β.

There is some debate in the literature about the value of Fβ, with values ranging

from 0.5 - 0.7 (Diaferio, 1999; Serra et al., 2011; Svensmark et al., 2015). As shown

in Chapter III and Diaferio (1999), large variations in concentration and β lead to

small variations in the Fβ and caustic masses, so these are not the source of the wide

range in accepted Fβ values. Instead, in Chapter II we show that the differences can

mostly be attributed to the use of different dynamical tracers (i.e., velocity bias),

which enters into the technique when the surface is determined, i.e., equation 4.2,

which is derived by requiring equation 4.1.

All caustic analyses on clusters utilize a surface calibration based on Binney &

Tremaine (1987), who show that

〈v2
esc〉 =

−4W

M
(4.5)

where M and W are the total mass and potential energy of the system respectively.

If the system is in virial equilibrium, −W = 2K, where the total kinetic energy

K = 1/2M〈v2〉, then we can identify the escape velocity profile by choosing the

iso-density contour in phase-space that satisfies the equation

〈v2
esc〉 − 4〈v2〉 = 0. (4.6)

If 〈v2〉 is calculated using biased dynamical tracers, the inferred vesc(r) will also be

biased. This can be compensated for by calibrating Fβ to recover unbiased masses.

It is not necessary that Fβ be treated as a free-parameter to calibrate unbiased
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cluster masses against simulations (Alpaslan et al., 2012; Svensmark et al., 2015).

Given a mass-concentration relation and assuming some value for the radially av-

eraged anisotropy parameter β, one can calculate Fβ from equation 4.3 or 4.4 di-

rectly. We do this and find a median value of Fβ = 0.62 ± 0.05 within r200. If

instead we assume a Gamma distribution (Dehnen, 1993) we find a median value of

Fβ = 0.63± 0.05.

Serra et al. (2011) utilize numerically evaluated potentials, which they show are

∼ 10% lower than the potentials expected from the NFW density profile via the

Poisson equation. The challenge in this approach is to carefully match the potential

in equations 4.3 or 4.4 to the escape surface. This is because equation 4.6 requires

that the density and potential profiles be Poisson pairs (Binney & Tremaine, 1987).

The ∼ 10% difference between our value of Fβ = 0.62 and the value in Serra et al.

(2011) of Fβ = 0.7 is explained through our use of a Poisson potential (with potential

relative to infinity) and Serra et al. (2011) use of a numerical potential (with potential

relative to 10Mpc), given that the average densities are the same. We have explored

other possibilities such as radial and mass dependencies of Fβ and find they account

for differences of a few percent.

Taking all of these issues into account, we conclude that the literature values of

Fβ are quite consistent (0.6 ≤ Fβ ≤ 0.65) between techniques which utilize equations

4.3 or 4.4 (e.g., Diaferio, 1999; Serra et al., 2011), and techniques which calibrate it

to individual systems using ΛCDM simulations (e.g., Svensmark et al., 2015).

In this work, we are creating stacked ensemble clusters and so we cannot calibrate

Fβ against individual clusters. We instead utilize equation 4.4. We use M200 and r200,

a concentration-mass relation from Merten et al. (2015), and we model the anisotropy

as a constant inside r200 with β = 0.30±0.15 (Lemze et al., 2012; Mamon et al., 2013).

Marginalizing over all uncertainties in c (Merten et al., 2015) and β results in a suite

of Fβ(r) profiles that can be radially averaged into the constant Fβ =
∫ r

0
Fβ(x)dx/r
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per cluster. Our value of Fβ = 0.62 is close to the value estimated in both Chapter

II and Svensmark et al. (2015), and agrees with Serra et al. (2011) when correcting

their potentials by the 10% offset discussed above.

Another challenge when using stacked ensemble clusters and the caustic technique

is in the surface calibration (e.g., equation 4.6.) As shown in Becker et al. (2007) and

as we highlight below, the velocity dispersion of a stacked phase-space is a biased

representation of the mean of the underlying velocity dispersion. Therefore in §4.3.2,

we develop a new technique to calibrate the escape-velocity surface which leverages

the high sampling of the stacked phase-spaces.

4.3.2 Estimating the Caustic Profile

The caustic technique is an estimate of the projected escape velocity profile such

that the caustic profile vesc(r) and the potential profile Φ(r) (in the definition of

Fβ) must be equal. As the name suggests, the caustic should be a sharp density

drop-off in the cluster projected phase-space; however, with a sampling of even 100

galaxies inside the virial radius it is difficult to identify this edge by eye, let alone

algorithmically.

This challenge has been overcome by identifying cluster members, measuring the

cluster velocity dispersion, and using a virialization condition to calibrate the caustic

surface based on a series of measured iso-density contours (Diaferio, 1999). This

step makes caustic mass estimates of individual clusters possible without the need to

visually identify a sharp edge in projection. The downside to the use of equation 4.6

is that we add an additional assumption to our methodology: that the cluster is in

virial equilibrium inside the radius used to make the calibration.

There is a more fundamental reason why we should not use the velocity dispersion

and an equilibrium assumption to calibrate the escape velocity profile when stacking.

In velocity space, stacking is analogous to mixing semi-randomly sampled gaussians if
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Figure 4.1: The expected log bias in velocity dispersion simulating 15 draws from
50 gaussians which themselves are randomly sampled from a log-normal
distribution with a scatter of 20%. (Top) The resulting velocity bias
compared with the median dispersion of the 50 input gaussians is ∼ 3−
5%. (Bottom) If we assume 10% of the galaxies are instead drawn from a
uniform distribution representing interlopers, the bias increases to ∼ 10%.
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each cluster’s velocity dispersion is approximately normal. On average, the resulting

stacked distribution will have a velocity dispersion that is larger than the mean of

the individual dispersions, or σstack > 〈σi〉. We show this by simulating draws from

mixed gaussian distributions and reporting the log difference between the dispersion

of the sample and the average dispersion of the input gaussian population.

In Figure 4.1, we simulate the expected bias for typical observational values of

20% scatter in σi, 15 random samples per Gaussian, and 50 Gaussians per stack in

1000 experiments. The result is an expected velocity dispersion bias of 3-5% (top fig-

ure). This does not include a potential background interloper population uniformly

distributed in velocity space that would work to increase this bias. Biviano et al.

(2006) find an interloper fraction of 18-25% when using sigma-clipping techniques on

randomly chosen dark matter particles; however, we expect our values to be lower

given our more complex shifting-gapper approach which also utilizes magnitude in-

formation in Chapter II.

We re-quantify the velocity dispersion bias when 10% of the galaxies are drawn

from a uniform background population in velocity space. We find that the bias

increases to ∼ 10%. The translation from velocity bias to mass bias in the caustic

technique is complicated and discussed further in §4.4.2.

Given the expected velocity bias in our ensemble clusters and our goal to remove

the virial condition from the technique, we wish to eliminate the use of equation 4.6

altogether. We can do this through a direct identification of the caustic surface in

highly sampled phase-spaces. Stacking allows us to overcome the lack of signal in the

cluster projected phase-spaces and identify a caustic edge, despite projection blurring

effects.

Using the radius/velocity phase-space, we identify iso-density surfaces based on

medians of velocity percentiles in the radially binned velocity distributions using a

mirrored phase-space. Interloper rejection is done in two phases. First, a shifting-
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gapper algorithm is run to eliminate obvious outliers in the phase-spaces. However,

because our phase-spaces are densely populated, we also make cuts in velocity based

on smoothed phase-space density. In each radial bin, we make a cut in absolute

velocity where the smoothed density reaches the estimated background density which

differs from stack-to-stack. This usually occurs between 2-3× the velocity dispersion

in each radial bin. Once we have removed potential interlopers, instead of using

equation 4.6 we use the analytically calculated NFW potential profiles to identify the

correct iso-density contour selected by velocity percentile. We find that the iso-density

contour matched to the median of galaxies with velocities above the 90th percentile

(within radial bins < 〈r200〉 of the ensemble) recovers the mean NFW potential profile

for each ensemble. This new surface calibration technique is independent of mass and

sampling, at least for the systems in our data set. Most importantly, this algorithm

ensures that our caustic surface matches the analytic potential, as required in equation

4.2.

In Figure 4.2, we show a stacked cluster projected phase-space from our simula-

tions. The stack is built by sampling the top 50 brightest galaxies from the most

massive 100 clusters in the sample. The red line shows the caustic edge selected using

line-of-sight velocities above the 90th percentile of observed velocities across 6 radial

bins within the 〈r200〉 of this ensemble. This is compared with the analytically calcu-

lated −2ΦNFW (r) (black line) using the average properties of the system. The blue

band encompasses the 68% distribution of the individual caustic profiles estimated for

each input cluster to the stack using the velocity dispersion to calibrate each caustic

surface. Because these massive clusters have high sampling, the individual surfaces

agree with the stacked surface within the scatter.

In §4.4, we test the ability of stacking to recover the average cluster mass in

stacked ensemble phase-spaces by adjusting the number of galaxies per cluster and

the number of clusters used in stacking. We will also study how the cluster binning
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Figure 4.2: A stacked cluster projected phase-space of the top 50 brightest galaxies
from the most massive 100 clusters in the sample. The black line is the
analytical −2ΦNFW using the average properties of the stack. The red
line is the inferred caustic surface determined by matching the iso-density
contour to the median of the radially binned line-of-sight velocities for
those above the 90th percentile of galaxy velocities over 6 radial bins inside
〈r200〉. The blue band contains 68% of the caustic surfaces estimated by
each individual cluster in the stack.
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Figure 4.3: Left: We show caustic mass bias for self-stacked ensembles as a function
of the number of random lines-of-sight to each cluster and the number of
galaxies sampled from each line-of-sight. The labeled diagonal lines are
contours of constant stacked phase-space richness Nens. Right: The caus-
tic mass scatter for self-stacked ensembles as a function of the number of
random lines-of-sight to each cluster and the number of galaxies sampled
from each line-of-sight.

procedure affects the stacked mass estimates.

4.4 Stacking Methods and Results

In sub-sections 4.4.1, 4.4.2, and 4.4.3 we investigate and quantify the overall sys-

tematic uncertainties when using stacking cluster projected phase-spaces and our

revised caustic technique to estimate average masses. In §4.4.1 we introduce a way

to stack single clusters in order to test the fundamental basis of our algorithm. We

then introduce a small amount of mass-mixing to our stacking procedure in §4.4.2 by

creating ensembles of clusters through binning directly on mass. Finally in §4.4.3, we

build cluster ensembles using a mass proxy: the projected richness estimates of each

cluster which has realistic scatter.
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4.4.1 Self-stacking

Stacking cluster phase-spaces first requires a decision on how to “bin” or stack on

cluster properties. Ideally, we first stack clusters of identical mass (and concentration)

in order to eliminate the overall mass mixing in each bin. This allows us to test for

any potential systematic biases in the technique itself. However, this task is difficult.

Ideally, one needs multiple realizations (or re-simulations) of the same cosmology in

order to achieve enough statistics without binning.

To solve this problem for our sample of clusters based in the Millennium Simula-

tion, we devise a technique that stacks cluster projected phase-spaces with mass bins

of infinitesimal width. This is achieved by stacking multiple lines-of-sight to one clus-

ter in order to build a stacked phase-space. We term this technique self-stacking. The

inferred stacked masses are then compared to a single well defined mass to identify

biases in the technique.

4.4.1.1 Self-stacking Methods

Technically, self-stacking mimics stacking different individual systems. We treat

each line-of-sight projection to a single cluster as a unique observation which, when

stacked with Nlos random projections, produces an ensemble phase-space that we use

to identify the caustic profile. The exact steps are as follows:

1. Nlos random lines-of-sight to a cluster are chosen, the galaxies are projected to

create Nlos radius-velocity projected phase-spaces.

2. Ngal galaxies are chosen randomly from the top Nbright brightest galaxies pro-

jected within the virial radius of the cluster in each phase-space. The Ngal

brightest galaxies are chosen randomly to avoid artificial structure in the pro-

jected phase-space due to using the same cluster.
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3. The stacked phase-space will contain the combined projected positions and ve-

locities of Nens = Nlos ×Ngal galaxies.

4. The caustic profile is identified and mass estimated for each stacked system.

How we choose Ngal from the top Nbright galaxies is carefully considered. There

are several ways to achieve a desired sampling. First, along each line-of-sight to a

cluster, galaxies can be rank ordered by a chosen magnitude (e.g. SDSS r-band) and

the brightest galaxies are selected only from the top of the list (Ngal = Nbright). This

method’s advantage lies in its closeness to realistic spectroscopic follow-up. Usually,

the brightest galaxies in any given field are given preference in spectroscopic surveys

for practical purposes in observation and reduction.

The problem with sampling the same bright galaxies during the self-stacking pro-

cess in simulations is the repeated measurements along different lines-of-sight. Due to

the simple projection geometry, a single galaxy’s projected distance from the cluster

center changes very slowly as the observer’s line-of-sight to the cluster shifts. If the

observer plots the cluster projected phase-space position of a single galaxy for many

different random lines-of-sight, the phase space will show strong vertical structure

bounded by a maximum in projected distance equal to the 3D distance from the

galaxy to the cluster center. When sampling many galaxies per line-of-sight, this

artificial structure can heavily influence the phase space density, and consequently,

the iso-density contour that defines the caustic profile. Ultimately, this leads to non-

physical phase-spaces.

Another method of selecting galaxies along different lines-of-sight also requires

sorting the galaxies brighter than some magnitude limit to create a list Nbright. How-

ever, instead of always taking the Ngal brightest galaxies from each line-of-sight, a

fraction of the sorted list is selected in a random fashion. For example, if we wish

to select 10 galaxies along each line-of-sight to a cluster to be stacked into the final

ensemble, we could randomly choose these galaxies from a list of the 100 brightest
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galaxies. This does not ensure complete uniqueness of galaxies in the final ensemble,

but the frequency of repeated draws will become very low as Ngal � Nbright. Choos-

ing the fractional difference between Ngal and Nbright using this method requires us to

strike a balance. If we impose that the fraction be large (Ngal ≈ Nbright), then there

will be more artificial structure due to the repeated selection of galaxies like in the

previous method. If instead we impose that the fraction be small (Ngal � Nbright),

then galaxies will be randomly selected from a very large and therefore increasingly

faint set of galaxies that may not be realistic for typical observed clusters. This

can also increase the interloper-to-member ratio of galaxies in the phase-space which

works to further blur the caustic edge in projection and increase the uncertainty in

its position.

The third possible way of selecting galaxies is to assure that no galaxy appears in

more than one line-of-sight phase space in the self-stacking analysis. While realistic in

mimicking stacking unique systems, it results in individual line-of-sight (pre-stacked)

phase-spaces that are populated with nearly all faint galaxies. While no artificial

structure exists in the stacked phase-space, we do not pursue this method. We decide

to use the second method to select galaxies due to its lack of artificial sub-structure

with a fraction of 1/10.

4.4.1.2 Self-stacking Results

The results of self-stacking represent an ideal scenario where the expectation mass

equals the mass of the cluster being self-stacked. It is now possible to test whether

the act of stacking multiple phase-space projections results in any biases. As we point

out in section 4.3, the stacked systems are close to spherically symmetric, and any

observed biases are not due to cluster shape.

We test the self-stacking performance by varying either the number of lines-of-sight

Nlos stacked in phase-space or the number of bright galaxies Ngal we sample from each
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line-of-sight. For example, to achieve a similar stacked richness of Nens = 500, we

can either stack Nlos = 10 each with Ngal = 50 or Nlos = 50 each with Ngal = 10. In

Figure 4.3, we vary Ngal along the vertical direction and the Nlos in the horizontal

direction. The color map represents the degree of bias (left) and scatter (right) in

the recovered masses as compared with M200 in the simulation. Contours of constant

Nens are displayed and labeled as diagonal lines in the figure.

Of primary concern is the average degree of self-stacked mass bias relative to the

mass of each halo as a function of Nlos and Ngal. We find the measured bias depends

almost purely on Nens and asymptotically approaches the input cluster mass when

Nens is large (lower right of Figure 4.3 left). On average, the stacks are unbiased to

within 5% of the input cluster mass when Nens > 1000. This holds even when the

sampling per cluster is low (∼ 10-15 galaxies) and we expect a significant low bias

on individual systems as shown in Chapter II. We draw the conclusion that stacking

multiple-phase spaces with individually unique velocity dispersions does not bias the

mass inferred by the caustic technique.

Figure 4.3 right shows how the self-stacked mass scatter depends on Nens. When

Ngal = 100, the scatter decreases from 21− 14% as we increase the number of lines-

of-sight included in each stack. This is approximately a factor of 2 less than the

individual cluster mass scatter seen in Chapter II. We conclude that the scatter in

stacked mass primarily depends on the total stacked richness which increases along

an upper-left to lower-right diagonal in the parameter space.

The ensemble scatters are slightly higher than predicted in Chapter II which is

due to the new surface calibration algorithm. Moving to direct caustic detection over

velocity dispersion calibration of the escape velocity surface requires more heavily

sampled phase-spaces to achieve similar levels of scatter. We accept this trade-off to

remove any potential velocity dispersion biases either from velocity bias of the tracers

or through Gaussian mixing in the stacking process (see §4.3.2).
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Figure 4.4: Left: We show caustic mass bias for mass-stacked ensembles as a function
of the number of random lines-of-sight to each cluster and the number of
galaxies sampled from each line-of-sight. The labeled diagonal lines are
contours of constant stacked phase-space richness Nens. Right: The caus-
tic mass scatter for mass-stacked ensembles as a function of the number of
random lines-of-sight to each cluster and the number of galaxies sampled
from each line-of-sight.

4.4.2 Mass Stacking

In the previous section, we show that stacking projected phase-spaces from clusters

of exactly the same mass does not result in a biased measurement of mass when the

caustic edge is identified directly. However, this assumes the bins chosen to stack

within are of infinitely small width in mass which is unphysical when stacking different

clusters in simulations or observations. In an ideal scenario, we would bin clusters

on an observable that has negligible scatter with mass. This would be functionally

equivalent to binning on mass itself. Analytically, the expectation mass of each bin

would then be

〈M〉 =

∫
Mdn/dM dV/dz ψ(M)dM∫
dn/dM dV/dz ψ(M)dM

, (4.7)

where dn/dM is the halo mass function, and ψ(M) = 1 when M ∈ [Mmin
200 ,M

max
200 ]

acting as a window function for each mass bin.

We define our bins by sorting our clusters in mass, and require that each mass
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Figure 4.5: The bias between the measured stacked mass and the average cluster mass
per stacked ensemble. The different points show the bias as a function of
phase-space sampling. We compare with the result from Chapter II that
measured the average caustic mass bias for individual systems (equivalent
to 1 L.O.S) as a function of phase-space sampling. Stacking works to
remove the sampling bias which cannot be achieved by averaging.
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bin contain an equal number of clusters (Nclus). We can then vary Nclus to study the

effects of including more clusters in a stack. This is formally equivalent to varying

Nlos in the self-stacking test described in section 4.4.1. Following this procedure, the

width of our mass bins are related to our simulated cluster sample size and is not

motivated by any observational or physical reason. As a consequence of keeping Nclus

constant across all mass bins, the width of each mass bin will not be constant and

adapt to the mass function of our sample. Because we have many more low than high

mass clusters, the low mass bins will be far narrower than the high mass bins.

When stacking different clusters in a mass bin, we can select the top Ngal brightest

galaxies from each cluster that are projected within r200 and are < ±4000km/s away

from the cluster. This is similar to spectroscopic follow-up in practice where bright

galaxies are usually observed with higher priority given a magnitude limited cluster

survey. In observations, the number of bright galaxies will vary depending on both

cluster size and redshift, but in this analysis we are able to set Ngal and test how

mass scatter and bias depend on this trait.

Figure 4.4 is similar to Figure 4.3 which shows the degree of bias (left) and scatter

(right) for the mass stacking technique as compared with the average cluster mass

in each ensemble. We measure these properties as a function of both Ngal and Nclus

and find the trend follows total ensemble sampling (Nens) that is nearly identical to

the self-stacked experiment. The scatter decreases as a function of richness to < 10%

when the Nens > 2000. By Nens = 1000, we see the stacked mass estimates become

unbiased which is in agreement with the self-stacking results.

Seen another way, Figure 4.5 shows the mass bias as a function of each ensemble’s

individual cluster sampling Ngal compared with results from Chapter II. Binning

on 15, 25, 50, and 100 clusters (LOS) are shown as red diamonds, orange hexagons,

green squares, and blue triangles respectively. The black circles represent the results

from Chapter II using 100 clusters in the same Millennium simulation and measured
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the average bias for individual systems in using the Guo et al. (2011) semi-analytic

galaxy catalog. We find that stacking works to remove the bias observed in individual

systems. Even when we only sample the brightest 15 galaxies per cluster, stacking 50

or more of these phase-spaces and measuring an ensemble caustic mass recovers the

average mass to within 5% as compared with the original bias of −65%. The effects

of low sampling can be seen when fewer clusters are stacked with Ngal < 25 as the

method fails to identify the escape velocity edge.

It is important to emphasize that the reduction in statistical bias for the poorly

sampled ensemble clusters cannot be replicated by averaging alone. “Ensembles”

based on averaging individual cluster caustic masses will reduce scatter, but will fail

to remove the known sampling biases. Stacked ensembles produce the high phase-

space sampling required for accurate caustic masses and can work even when the

individual per cluster sampling is low, or when the cluster is poor, i.e, there are not

many galaxies to observe.

In §4.3.2, we mention that the stacked estimate of the velocity dispersion is ex-

pected to be biased relative to the average of the true cluster velocity dispersions in

each stack due to mixing Gaussians. We test how these velocity dispersion biases

translate to mass biases when using the stacked velocity dispersion to calibrate the

stacked caustic surface. In our example in §4.3.2, we found average velocity disper-

sion biases of 3-10% depending on the interloper fraction of the stacked ensemble.

We find this translates to an average stacked mass bias of ∼ 3% when Ngal = 15 and

Nclus = 50 to directly compare with our velocity dispersion example. If we increase

the sampling per cluster to Ngal = 50, the stacked mass bias increases slightly to

∼ 6%. This confirms our hypothesis that using a biased velocity dispersion to cal-

ibrate our stacked caustic surface will return biased stacked masses compared with

the average mass in each stack. We note that this level of uncertainty is similar to

our uncertainty in Fβ (see §4.3.1.)
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Figure 4.6: Left: The difference between the proxy-stacked and mass-stacked mass
bias as a function of Ngal and Nclus. The absolute difference is < 5%
when Nens > 1000 Right: The cdifference between proxy-stacked and
mass-stacked mass scatter as a function of Ngal per cluster and Nclus per
stack. On average, the scatter increases by 4% when binning on richness.

4.4.3 Observable Stacking

In observations of real clusters, we must bin on cluster properties that correlate

with mass. For optical surveys, examples of observables that act as mass proxies

may include velocity dispersion, richness, or total luminosity. These observables of-

ten scale with mass through power law relationships that also include a degree of

scatter. The relationship can be calibrated either in simulations or self-consistently

in real observations, however, doing so requires an understanding of the scatter and

uncertainty in the mass proxy measurement.

Scatter in mass-observable scaling relations are most commonly due to intrinsic

variability and projection line-of-sight effects like non-spherical symmetry or contami-

nation from interlopers and large scale structure. An example of intrinsic variability is

two clusters of identical mass containing different richnesses of bright galaxies within

their virial radii. This is a statistical scatter that will dominate if projection effects are

minimal and represents an upper limit to the relationship’s precision. However, scat-
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ter between mass and observables are mostly limited by line-of-sight effects. Velocity

dispersion is an excellent observable proxy of mass. In 3D, the velocity dispersion at

fixed mass exhibits a minimal scatter of 5% and is independent of cosmology (Evrard

et al., 2008). In projection, the scatter with mass can be as low as 15% for highly

sampled systems or as high as 40% for systems with only a handful of spectroscopic

members (Saro et al., 2013).

Scatter negatively affects our attempt to bin clusters based on these observable

properties with the goal of closely binning on mass. Clusters with a given mass

are randomly scattered between observable bins as a result of scatter in the mass-

observable relationship. Because the mass function falls off sharply with mass, the

up-scatter can particularly impact the high-mass bins by artificially increasing the

number of clusters in those bins (Lima & Hu, 2005). This contamination between

mass bins may affect the caustic mass estimates for each ensemble and bias the

resulting stacked mass relative to the true observable-mass relation expectation. As

described in Rozo et al. (2010), the average mass in a richness bin is modeled as

〈M〉 =

∫
Mdn/dM dV/dz 〈ψ|M〉dM∫
dn/dM dV/dz 〈ψ|M〉dM

, (4.8)

where dn/dM is the halo mass function and

〈ψ|M〉 =

∫
P (N200|M)ψ(N200)dN200. (4.9)

Here, ψ(N200) = 1 when N200 ∈ [Nmin
200 , N

max
200 ] per bin, and P (N200|M) is the proba-

bility a cluster with mass M has a richness N200. 〈ψ|M〉 then equals the probability

that a cluster of mass M is observed within the richness bin controlled by ψ.

Observable-mass relations with extremely tight scatter that limit the effects listed

above do exist as tested in high-resolution Nbody and gas dynamics simulations.

Kravtsov et al. (2006) found that the product of the gas mass and temperature ob-
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servables (YX) show a remarkably low scatter of < 10% with M500. Unfortunately,

these observables are often not available for the majority of optically identified clus-

ters. Instead, we focus on optical observables such as cluster richness which is known

to correlate tightly with mass. Rozo et al. (2009) used SDSS clusters to estimate the

scatter on their matched-filter richness estimator (λ) and found < 25% log-scatter

with M200 for clusters with N = 40. In our simulations, we utilize a simple richness

estimator for a background subtracted galaxy count within a projected aperture on

the sky equal to r200. We estimate the background counts by sampling an area of sky

5x the cluster aperture, normalize by area, and take the difference from the cluster

counts to measure N200. Using the true values of M200 in the simulation and compar-

ing with our estimated values of N200, we measure a log-scatter in P (N200|M) equal

to 20%, which is realistic when compared to Rozo et al. (2009).

We apply our estimates of N200 to our stacking framework in a similar systematic

fashion as §4.4.2. The two variables of interest are the number of galaxies we sample

from each cluster (Ngal)and the number of clusters we stack per bin (Nclus). However,

now instead of building our stacks based on cluster mass, we do so based on our

optical richness observable. In Figure 4.6 (left) we present how the sampling and

mass-scatter affect the stacked caustic mass bias for different types of sampling and

binning relative to the results in Figure 4.4. We observe that, when binning on an

observable with realistic scatter, the stacked caustic mass recovers the average mass

of the stack with the same accuracy as our perfectly binned sample to within ±3%.

This result indicates that modest scatter in the mass-observable relationship does

not impact the stacked caustic technique’s ability to recover average masses in each

observable bin. The scatter between the ensemble mass estimates and the average

mass per bin is also minimally affected. In Figure 4.6 (right), we quantify the increase

in scatter due to the increase in mass mixing in each observable bin. Across the range

of galaxy and cluster sampling per bin, we see an increase in the scatter by ∼ 5%
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when there exists scatter between the true mass and observational mass-proxy used

to bin. Overall, the mass scatter for observable stacked ensembles is 10− 15%.

In Figure 4.7, we show one-to-one plots of average cluster mass vs the stacked mass

per bin with Nclus = 50 in both panels. The left panel stacks are built by sampling

Ngal = 15 per cluster, and the right panel stacks by sampling Ngal = 50 per cluster.

Unlike averaging, it is possible for stacked estimates to fail and return erroneous

values; however, even when sampling only 15 galaxies per cluster, it happens rarely.

With a modest degree of mass-mixing due to observable-mass scatter, only a few

percent of our stacked estimates are classified as “failed stacks”. These outliers are

in the low mass end where our interloper rejection fails. Based on the low level of

bias and scatter, combined with the lack of outliers in the stacked estimates, we can

conclude that the stacking technique is robust to binning on a mass-proxy such as

richness.

4.5 Discussion and Conclusions

Measuring dynamical cluster masses when Ngal < 25 can result in statistical

(White et al., 2010) and systematic (Wu et al., 2013) biases that make it impos-

sible to self-calibrate mass-observable scaling relations through averaging. Stacking

works to eliminate any statistical biases present in individual cluster observations by

building an ensemble system with sufficient sampling to measure average properties

of the stacked system. However, using stacking methods to infer the average proper-

ties of clusters can be a messy process that depends on prior decisions of how to bin,

which observable to bin on, the cluster finder and survey used, etc.

We have used halos in an all-sky light cone built on the Millennium Simulation

(Guo et al., 2011; Henriques et al., 2012) to define a complete and pure, low redshift

(z ≤ 0.15) cluster sample. We then develop and characterize a caustic stacking

technique to infer ensemble cluster masses. We find that the surface calibration in
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Figure 4.7: A comparison of the average mass in each observable bin compared with
the respective stacked mass estimates using the caustic technique with di-
rect surface detection. Each dot is an ensemble cluster and is constructed
by binning on our richness observable. We use 50 clusters to build each
ensemble and draw Ngal = 15 per cluster (left) and Ngal = 50 per cluster
(right). The dotted line is the one-to-one line. Note that the low richness
ensembles are biased ∼ 5% low, consistent with Figure 4.6.

the caustic technique needs to be modified to avoid velocity biases. We define and test

a new calibration of the caustic surface which leverages the well-populated ensemble

phase-spaces. Our surface detection algorithm replaces the need for virial equilibrium

and also eliminates where velocity dispersion bias can enter into the analysis. We note

that since we have not tested our new surface calibration on other cosmologies, it may

have a cosmological dependence that we have not yet characterized. On the other

hand, the standard virial-based surface calibration imparts only a 6% statistical mass

bias into the ensemble masses, which is similar to the the uncertainty on the caustic

calibration term, Fβ.

We evaluate our new stacking procedure in terms of bias and scatter for three

scenarios: (1) an ideal situation where the mass of an ensemble cluster is perfectly

known and defined by a single cluster (self-stacking); (2) when the mass of the clusters

are known but the ensemble contains a distribution of cluster masses; (3) when the

mass of the clusters is inferred through a proxy with scatter and the ensemble is

defined based on this proxy. This study should be viewed as a baseline ability of
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the stacked caustic technique to recover average cluster masses. The completeness,

purity, and mis-centering of cluster finding methods may well influence the results

presented here (Miller et al., 2005; Rozo et al., 2009).

When creating the ensemble clusters, we vary the number of galaxies sampled per

cluster and the number of clusters per bin. We find that the agreement between the

stacked caustic estimate and the average true mass of the bin depends on the total

sampling in the stacked cluster projected phase-space. Once we achieve a level of

sampling of ∼ 1000 of the stacked phase-space, our estimates are unbiased to within

5%. The bias follows the iso-sampling contours very closely, implying that achieving

precise stacked estimates depends solely on phase-space sampling.

Finally, we test our stacking technique by stacking/binning clusters on an observ-

able mass proxy. We use a simple richness estimator to demonstrate the effects of

adding uncertainty to the binning process. When binning on richness, we find the

ensemble mass is still able to recover the average mass to within ∼ 5%, matching the

scenario where we assume no scatter between observable and mass. These encour-

aging results suggest that when stacking, scatter in the mass-observable relationship

does not play a large role in recovering average masses making calibration of the the

mass-observable relationship possible. Not only do the results converge to be unbi-

ased, the accuracy is independent of cluster mass regardless of binning procedure.

Our tests also reveal that stacking results in very low mass scatter relative to

the average cluster mass per bin. When we stack on both mass and our mass proxy

richness, the stacked mass scatter is . 10% when our phase-space sampling is high

(Nens > 5000). For lower sampling (Nens < 2000), we see that stacking on an ob-

servable like richness introduces ∼ 5% to the average mass scatter. We find slightly

higher values of mass scatter in our initial tests with self-stacking, but this is due to

variance in our galaxy selection methods (see §4.4.1.1).

Stacking, using our updated caustic technique, works to both remove statistical
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bias and lower scatter from ensemble mass estimates. Combined, we have a powerful

conclusion that these methods can be used to self-calibrate observable-mass scaling

relations in observations without relying on statistical bias corrections calculated in

any simulation. These simulation efforts coincide with current surveys like the Dark

Energy Survey (Flaugher et al., 2015), the Baryon Acoustic Oscillation Survey and its

extension eBOSS (extendedBOSS is part of a proposed program of post-2014 surveys

on the Sloan telescope), the South Pole Telescope survey (Chang et al., 2009), the

XMM Cluster Survey (Sahlén et al., 2009), as well as future surveys like the Large

Synoptic Survey Telescope (LSST Science Collaboration, 2009), the Dark Energy

Spectroscopic Instrument Levi et al. (2013), S4 (Albrecht et al., 2006), and eRosita

(Merloni et al., 2012). Each of these surveys is providing (or will provide) a wealth of

new photometric, spectroscopic, Sunyaev-Zeldovich (SZ), and X-ray data for clusters

over a wide range of mass and redshift. Utilizing stacking techniques such as the one

outlined in this study can work to leverage the survey observables by self-calibrating

the mass-observable relationships. Such relations are instrumental to using clusters

as probes to understand cosmology.
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CHAPTER V

The C4 Cluster Mass Function

5.1 Introduction

Due to hierarchical structure formation, the number of dark matter halos as a

function of mass and redshift can be described by the halo mass function. In theory,

the abundance of galaxy cluster sized halos depends exponentially on the rms value

of density perturbations on 8Mpc scales (σ8). In addition, the matter density (ΩM)

and the nature and evolution of dark energy (ΩΛ,w) influence the theoretical mass

function and can be constrained through observations. Following initial theoretical

characterization (Press & Schechter, 1974; Sheth & Tormen, 2002), the mass function

has been carefully calibrated in simulations with various cosmologies that closely

match their respective abundance functions (Jenkins et al., 2001; Warren et al., 2006;

Tinker et al., 2008; Angulo et al., 2012). The growth of large cosmological simulations

used to theoretically predict abundance functions has only worked to highlight the

difficulties faced observationally.

The major source of difficulty in using the theoretical predictions is that they

describe the abundance function as a function of dark matter halo mass. As this is

an unobservable property, one must use cluster observables in either a physical way

or as mass proxies to estimate the underlying halo mass. Physical mass estimators

include measuring the galaxy dynamics and assuming virial equilibrium (Carlberg
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et al., 1996), measuring the escape velocity (Diaferio, 1999; Serra et al., 2011), or

modeling the cluster projected phase-space (Wojtak &  Lokas, 2010; Mamon et al.,

2013), the temperature of the hot x-ray gas at the center of clusters and assuming

hydrostatic equilibrium, or the lensing shear from the line-of-sight mass distribution

(Becker & Kravtsov, 2011; Hoekstra et al., 2015). Mass proxies now include cluster

richness (Rozo et al., 2009; Andreon & Hurn, 2010), SZ signal (Saliwanchik et al.,

2013; Bocquet et al., 2015; Saro et al., 2015), X-ray observables (Mantz et al., 2010a),

and velocity dispersion (Evrard et al., 2008). Using both physical and mass proxies

in cosmological analyses introduce significant systematic uncertainties that are often

the dominant source of error. This error has resulted in a range of estimated val-

ues for σ8 that is larger than the expected error on any given study (Evrard et al.,

2002; Rines et al., 2007; Henry et al., 2009; Vikhlinin et al., 2009; Rozo et al., 2010).

While cosmological parameter estimates are beginning to converge, the recent per-

ceived tension between cluster inferred cosmology and cosmic microwave background

cosmology (Planck Collaboration et al., 2014b) works to highlight the importance of

understanding systematics in cluster mass estimation.

In this work, we use dynamical masses inferred from the caustic technique to mea-

sure the C4 mass abundance function in the local universe. The caustic technique

has been shown to agree well with other independent mass estimates (Diaferio et al.,

2005; Sharon et al., 2015) and can recover cluster masses to 30% in well sampled sys-

tems. The masses are measured on a cluster-by-cluster basis and potential biases are

checked against a mock cluster catalog in the Millennium Simulation. Our Bayesian

approach to the likelihood function avoids binning on mass and inherently models

uncertainties in the estimated masses and accounts for the the sample purity and

completeness (Cash, 1979; Mantz et al., 2010b; Hasselfield et al., 2013). We assume

H0 = 100h km s−1Mpc−1, and a flat cosmology with ΩΛ = 1− ΩM throughout.
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5.2 Data

5.2.1 Henriques Semi-analytic Galaxies

In order to better understand the C4 completeness function, purity, mass estimate

accuracy, and test our likelihood models, we utilize the Guo et al. (2011) semi-analytic

galaxy catalog and the Millennium Simulation (Springel et al., 2005). Semi-analytic

galaxy catalogs are built on top of identified subhalos in an N-body simulation through

a set of analytic prescriptions based on astrophysical conditions that occur both below

and above the resolution limit of the simulation. Subhalos are defined and located

using algorithms such as SUBFIND (Springel et al., 2001) which have been shown to

work well to identify all of the sub-structure in N-body simulations (see also Knebe

et al., 2011). The semi-analytic model applies its rule set to transform properties

such as subhalo mass and position into galaxy mass, circular velocity, accretion rate,

and other physical parameters that can, in theory, be observed. The Millennium

simulation was run with a flat cosmology of ΩM = 0.25, ΩΛ = 0.75, Ωb = 0.045,

σ8 = 0.9, h = 0.73, and ns = 1.0.

An all-sky light cone was built using this semi-analytic population (Henriques

et al., 2012). The C4 algorithm (see §5.2.2) is run on the original data set to produce

a cluster catalog that mimics the true C4-survey, albeit with larger sky coverage. The

resulting mock catalog contains 250 clusters with redshifts 0.03 < z < 0.12, most of

which have more than 20 galaxies in their phase-space, on one quarter of the sky.

We limit our cluster redshift range to be between 0.0 − 0.12 in one quarter of the

sky to mimic the portion of the C4-survey we use in this analysis. We also make a

cut on estimated caustic mass at 1.0× 1014M� below which the majority of clusters

have phase-space richness is less than 20 galaxies and the uncertainty in the caustic

mass estimates climbs above 60% (see Chapter II). This sample allows us to place

constraints on model parameters and test for systematics in our likelihood model.
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5.2.2 The C4 algorithm and Cluster Catalog

The SDSS-C4 cluster finding algorithm was presented in Miller et al. (2005).

The foundation of the algorithm is to use the five filters of the Sloan Digital Sky

Survey (SDSS; York et al., 2000) to identify galaxies which are clustered spatially

as well as in a four-dimensional color-space. The premise is that galaxies within

clusters evolved similarly, and thus galaxy clusters contain subsets of galaxies that

have similar spectral energy distributions (SEDs). Note that the C4 algorithm is

not a red-sequence finder and it does not require any parameterization of the color-

magnitude relation in clusters. Once identified, these color-clustered “C4 galaxies”

represent a small percentage of the total galaxy population. They are then used to

identify the locations of clusters. We apply the C4 algorithm to the latest SDSS DR12

data (Eisenstein et al., 2011; Alam et al., 2015). We use all galaxies with spectroscopic

measurements which also have clean photometry to identify the clustered galaxies.

In the original C4 algorithm, a circular-over-density algorithm (i.e., the projection

of a spherical over-density) is used to identify the clusters from the C4 galaxies.

However, this algorithm works best when clusters are spherical (or projected circles),

which is rarely the case. We have modified the C4 algorithm to use a Mean Shift

clustering algorithm as described in Vanderplas et al. (2012). Mean shift clustering is

a non-parametric method to discover clusters in a smooth density of sampled point-

wise data. It is a centroid-based algorithm, which works by updating candidates for

centroids to be the mean of the points within a given region. We also apply a new

de-blending technique to the originally identified clusters by fitting a 3-component

Gaussian mixture model to the Mean Shift clusters. We find that ∼ 30% of the

clusters identified by the Mean Shift algorithm are composed of two or three clusters,

identified in the Gaussian Mixture Model.

Once the cluster locations are identified, we post-process them using all of the

available SDSS galaxy data with spectroscopy and all clean photometry (i.e., not
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just the spectroscopic data set). In this post-processing, we identify the Brightest

Cluster Galaxies (BCG) as the brightest galaxy within 2σ of the best-linear fit to

the color-magnitude relation (i.e., the E/S0 ridgeline, using the g and r bands). We

measure the redshift of the cluster using a bi-weight robust median of all galaxy

redshifts within a projected megaparsec aperture. We estimate a velocity dispersion

with respect to the cluster redshift and also within a fixed megaparsec aperture.

We infer the physical radius at which the surface density of galaxies reaches 200×

the average mean density of galaxies as expected from the SDSS galaxy luminosity

function (Blanton et al., 2003). We then estimate cluster richnesses using all galaxies

within 2σ of the E/S0 ridgeline, within twice the velocity dispersion, and out to the

estimate of r200. These quantities serve as input to the cluster mass estimation and

abundance measurements as described below.

5.2.3 OSMOS Data

The SDSS uses a fiber-fed spectrograph to collect spectra to measure redshifts.

One challenge in any spectroscopic observing program of galaxy clusters is dealing

with the high spatial density of targets on the sky. In fiber-fed systems, the fibers

are limited in how closely they can be packed based on their diameter. Because of

the high spatial density of galaxies in clusters, SDSS shows completeness in clusters

that can be as low as 50-70%. In Chapter II we look at how the caustic technique

depends on radial incompleteness in simulated clusters and find the mass estimates

to be biased on the 5-10% level when serious incompleteness is present.

To rectify this known systematic in our cluster catalog, we identified some 45

clusters in the C4 catalog to follow up spectroscopically with the OSMOS (Ohio

State Multi-Object Spectrograph) instrument on the MDM 2.4m Hiltner Telescope.

Clusters were selected for the possibility of follow-up if they had large (> 5e14M�)

initial virial and caustic mass estimates, but contained less than the 50 galaxies
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Figure 5.1: A histogram showing the distribution of velocity differences calculated
for galaxies with spectra taken at MDM with the OSMOS spectrograph
(reduced using OSMOSReduce) and SDSS measurements. The width of
the distribution of ∆v is about 60 km/s which matches the uncertainties
on redshifts estimated by SDSS.

needed to achieve accurate mass estimates (see Chapter II) due to incompleteness.

The OSMOS instrument uses slit masks with room for roughly 20-40 individual slits

depending on the number and density of objects in the roughly 20’ field of view. Each

cluster in our follow-up must also have enough galaxies with unmeasured redshifts to

fix the measured incompleteness.

We reduce the multi-slit spectra and estimate redshifts with a new reduction

pipeline created by the authors which is shared as open source code under the name

OSMOSReduce. This package performs basic and advanced image and spectra re-

duction including distortion correction, object recognition, in-slit sky subtraction,
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6th order polynomial wavelength calibration fitting, and automatic as well as user

controlled redshift estimation through galaxy template cross-correlation. When pos-

sible in our observations, we re-measured redshifts for SDSS spectroscopic galaxies to

verify the accuracy of our redshift estimates. In Figure 5.1 we show that our redshift

inferred peculiar velocities agree with the SDSS redshifts/velocities within 60km/s.

This is near the quoted uncertainties of SDSS redshifts, so we are confident that our

reduction pipeline produces quality redshifts. In total we measure 110 new redshifts.

5.2.4 Mass Estimates

Under Newtonian dynamics, the escape velocity of a spherically symmetric cluster

relates to its gravitational potential by

v2
esc(r) = −2Φ(r), (5.1)

where r is the 3-dimensional measured distance to the center of the cluster. If the

dynamics of the system are controlled by the gravitational potential, galaxies which

cannot escape the potential exist in a well-defined region of radius/velocity (r − v)

phase space. The extrema of the velocities in this phase space define an edge, the

escape velocity profile vesc(r), which can be measured directly with 3 dimensional

position and velocity information, or estimated using projected sky coordinates and

line-of-sight velocities in observations. Given the measured vesc(r), the escape velocity

or “caustic” technique allows one to infer the mass profile of a cluster to well beyond

the virial radius (Diaferio & Geller, 1997). The equation

GM(< R) = Fβ

r200∫
0

v2
esc(r)dr (5.2)
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calculates the mass within the critical radius r200 where v2
esc(r) is the measured (pro-

jected) escape velocity profile and Fβ is a function which depends on the density, the

potential, and the projected anisotropy profile. It is usually approximated as a con-

stant and calibrated through simulations. We use a value of Fβ = 0.65±0.02 matching

our findings in Chapter II. Our caustic algorithm has been tested extensively with

respect to M200c where 200c is 200× the critical density of the universe. However, the

mass function is usually defined relative to the mean density. We do have the ability

to simply estimate M200 relative to the mean density from our mass profiles, but that

requires integrating to larger radii as the mean mass is always greater than the critical

mass. With well sampled systems this is not a problem, but we find through tests in

the Millennium Simulation, we can recover M200 mean more accurately and with less

scatter by estimating M200c and multiplying by the constant 1.45. The constant is an

empirical quantity that depends on the extrapolation of the cluster profile to larger

radii and is not the same for all clusters. This induces some scatter in M200 mean,

but less so than directly estimating the value from the caustic profiles. Hereafter,

references to M200 refer to the over-density relative to the mean background density.

5.2.5 C4 Systematics

In Chapter II, the bias and scatter in estimated caustic and virial mass was quan-

tified for clusters over a range of masses that did not include incompleteness, purity,

and off-centering. All these must be considered carefully when using survey data

to estimate masses and constrain cosmology. Measuring the cluster center as offset

from the Brightest Cluster Galaxy (BCG) in the simulation can cause both over and

underestimates in caustic masses, thereby inducing scatter into the estimates. In-

completeness and purity work to raise and lower the expected number of halos we

observed within a cosmological volume, and influences the best fit model to the ob-

served data. With the Henriques-C4 catalog, we have the opportunity to test these
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factors independently and see if they vary with mass.

We measure the expected caustic mass bias and scatter by sampling the clusters

in the Henriques-C4 that are within a projected virial radius and suitable redshift

range as a halo in the simulation catalog. With these matches, we can then estimate

the caustic mass bias and scatter in a straightforward manner. Like in Chapter II,

we measure the bias and scatter in ln(M̂/M200). We find that the average cluster

sample is unbiased to within 5% of the matched halo masses. When we measure the

average bias for clusters with less than 30 phase-space members, we also see unbiased

results (with much higher scatter) to within 5%. This is different than the findings

in Chapter II that expect statistical biases due to sampling of < −10% when the

number of member galaxies drops below 30. This could be due to slight amounts of

off-centering of the cluster finder, but is more likely due to uncertainties in r200 which

were not tested in Chapter II. For scatter, we measure

√
〈ln(M̂/M200)2〉 = 0.60. This

value is higher by roughly 10% from what we predict with known r200 values in the

same simulation. We discuss this more in section 5.3.2.

The C4-algorithm attempts to maximize completeness and purity of the sample

through the methods described in §5.2.2. Completeness is defined as the fraction of

true halos that we successfully find in our catalog. Completeness of the survey can be

quantified as a function of true halo mass and also redshift. This is ideal since we apply

the halo completeness function to the product of the halo mass function and partial

volume dn/dm ·dV/dz. We measure completeness by matching Henriques-C4 clusters

to simulation halos through the method described when estimating mass scatter and

bias. To do so, we measure the total fraction of halos we find in logarithmically spaced

mass bins as well as bins in redshift to find a completeness function shown in Figure

5.2. Despite the completeness rapidly falling off as a function of mass and redshift,

within our mass range of interest (1014 − 1015M�), we can model each curve with

either a single linear or broken-linear fit between 0 − 100% completeness. However,
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Figure 5.2: The measured completeness function in our Henriques-C4 sample of
galaxy clusters. We measure completeness both as a function of mass
and redshift out to z = 0.12. At large halo mass ∼ 1015M�, we see
statistical jumps in completeness that are due to low number statistics.

these curves do contain uncertainty. Due to a limited number of clusters, there will be

variation in the fraction of halos we successfully identify akin to statistical sampling

uncertainty. To test for this variation, we measure the completeness in four distinct

quadrants of the Henriques light-cone and find a variation of ±10% for relative to the

average value for all mass bins that are incomplete. We account for this uncertainty

in our model described in sections 5.3.1 and 5.3.2.

We cannot measure the purity of our sample as a function of halo mass since

purity is based instead on a cluster observable. Purity is defined as the fraction of
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clusters that we find in our catalog that are real halos and not false detections due

to challenges like projection effects or deblending of systems. When we look at how

the purity scales with caustic mass (which scales linearly with M200), we find no

dependence on the overall impure fraction with mass and a value of 80± 5%. When

we do the same thing as a function of redshift, we find almost no dependence with

the fraction holding constant for z < 0.12. We therefore adopt a constant purity of

80± 5% through the rest of the analysis.

We make cuts to the SDSS-C4 data as well as the Henriques-C4 catalog on C4

richness and estimated caustic mass. After making cuts between 1.0 × 1014 − 2.0 ×

1015M� in mass, more than 15 identified C4 members (the phase-space will contain

more than this number), and z < 0.12 as our estimated completeness function drops

very low and becomes very noisy at higher redshift, we are left with ≈ 220 systems.

To-date, the largest sample used in a caustic mass function analysis was performed

by Rines et al. (2007) who estimated virial and caustic masses for 72 clusters. Our

larger sample reduces statistical uncertainties and variation due to cosmic variance

on small volumes.

5.3 Analysis

5.3.1 Likelihood models

Here we describe the Bayesian likelihood function of cosmological and mass pa-

rameters given our cluster sample with mass and redshift information. Typically,

the predicted theoretical cluster abundance function is fit to an observed sample by

binning on estimated mass (Rines et al., 2007) or cluster observable such as rich-

ness or luminosity and self-consistently constraining scaling relations (Rozo et al.,

2010; Mantz et al., 2010b; Hasselfield et al., 2013). A binned analysis is required

if masses are calculated for ensemble clusters stacked on a cluster observable. With
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accurate individual mass estimates, we utilize the derivation presented in Cash (1979)

for unbinned data based on the application of Poisson statistics. This approach has

been used in previous studies to obtain cosmological constraints as well as calibrating

common mass-observable scaling relations (Vikhlinin et al., 2009; Mantz et al., 2010b;

Hasselfield et al., 2013). In this analysis, we have direct dynamical mass estimates

that do not originate from a scaling relation with uncertain calibration.

Each cluster in our analysis has an unknown and unobserved true mass M . Given

a cosmological model θ = (e.g. ΩM , σ8, h) and observable parameters ξ = (Fβ, CM,z,

κ̂) where CM,z is the completeness/purity function and κ̂ is the sample scatter, we

make use of the Tinker et al. (2008) mass function dn/d lnM to predict the probability

of a cluster with a given mass and redshift existing in our sample. The theoretical

mass functions are calculated using the Python code HMF which is the backend to

the online mass function calculator HMFcalc (Murray et al., 2013).

The probability density distribution of a measured caustic mass M̂ is given by the

convolution of the distribution of true masses M and the scatter, κ̂, between ln M̂

and lnM . The scatter contains both intrinsic as well as systematic uncertainties, but

we do not attempt to distinguish between them in this analysis. The convolution and

predicted number density in our model parameter subspace can be written as

n(M̂, z|θ, ξ) =
1

M̂

1√
2πκ̂

∞∫
−∞

CM,z
dn

d lnM

dV

dz

× e−
(ln M̂−lnM)2

2κ̂2 d lnM.

(5.3)

Cash (1979) states that if we bin very finely in the space of our observables (bins

indexed by µ with bin volume Vµ), we expect the total predicted counts in each bin

to be Vµn(M̂µ, zµ|θ, ξ), and the number of observed clusters in each bin either be 0 or

1. The binary nature of each bin is denoted with pµ. If we assume Poisson statistics
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in each bin, the probability of the data given the model parameters is defined as

P (M̂, z|θ, ξ) =
∏
µ

e−nµ(M̂,z|θ,ξ)nµ(M̂, z|θ, ξ)pµ

= e−N(θ,ξ)
∏
i

n(M̂i, zi|θ, ξ)

(5.4)

where i is the index over each of our clusters, and

N(θ, ξ) =

∫
n(M̂, z|θ, ξ)d ln M̂dz

=

zmax∫
zmin

dz

∞∫
−∞

d lnMCM,z
dn

d lnM

× dV

dz

lnMmax∫
lnMmin

1√
2πκ̂

× exp

(
−(ln M̂ − lnM)2

2κ̂2

)
d ln M̂.

(5.5)

which is the expected total number of clusters based on our model parameters.

The final integral over the estimated masses d ln M̂ is actually the integral of the

standard normal distribution, called the cumulative distribution Φ(x), which can be

numerically calculated using the complimentary error function

Φ

(
(lnMmin − lnM)√

2κ̂
,
(lnMmax − lnM)√

2κ̂

)
(5.6)

where

Φ(x1, x2) =
1

2
erfc(x/

√
2). (5.7)

erfc(x/
√

2) = 1 +
1√
2π

x∫
−x

e−t
2/2dt. (5.8)

Because our uncertainties on the cluster masses are heteroschedastic, we use the

average sample scatter of κ̂.
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Computationally, we sample the posterior probability distribution using an Affine-

Invarient Ensemble Sampler in the Python package emcee (Foreman-Mackey et al.,

2013). This allows us to run multiple MCMC chains simultaneously in parallel to

effectively and efficiently sample the posterior. The final log-likelihood of the data

given our model is

lnL ∝
∑
i

(
lnn(M̂i, zi|θ, ξ)

)
−N(θ, ξ) (5.9)

5.3.2 Model Parameters and Priors

Here we describe our prior assumptions about each of the parameters entering

our model. The primary goal of our analysis is to place constraints on cosmological

parameters σ8 and Ωm, however, several other parameters exhibit uncertainty and

can be modeled within our likelihood function. Throughout our analysis, we assume

a flat ΛCDM cosmology. In our likelihood analysis, the Hubble constant and power

spectrum tilt are held fixed. Clusters are especially efficient at constraining σ8 and

Ωm, and therefore, these parameters are treated with the least restrictive priors in

our model. The priors on σ8 and Ωm are flat and nonrestrictive. The bounds on these

0.4 < σ8 < 1.2 and 0.10 < ΩM < 0.9.

As described in §5.3, we assume our measured masses M̂ exhibit log-normal scatter

κ relative to the true M200 masses of our clusters. In Chapter II, we quantify the

expected average log scatter as a function of phase-space sampling Ngal which we use

here to estimate the caustic mass uncertainty. In Chapter II we tested discrete cases,

so we fit a function to interpolate scatter estimates to all values of sampling. We find

the scatter scales with phase-space sampling as

lnκ =
4.85

lnNgal

− 2.14. (5.10)
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These values of κ(Ngal) were measured in the Millennium Simulation with known halo

positions. We retest this with a cluster catalog generated by the C4 cluster finder

on the Henriques lightcone, the details of which are specified in §5.2.1. Comparing

our caustic estimates for clusters with matching halos in the simulation, we find the

scatter to be approximately 10% higher than the predictions from equation 5.10. We

therefore define the uncertainty on each individual cluster i to be κ̂i = κi + 0.10. In

our likelihood model, we place a normal prior on the average scatter of

P (κ̂) = N (0.6, 0.1) . (5.11)

Caustic masses for our clusters are measured using equation 5.2. The value of the

constant Fβ is a source debate and uncertainty in returning unbiased masses for our

cluster sample (Diaferio, 1999; Serra et al., 2011; Svensmark et al., 2015). Recently,

studies have converged on a value of Fβ ≈ 0.6− 0.65 (Svensmark et al., 2015). Here,

we calculate our masses assuming a Gaussian prior on Fβ as,

P (Fβ) = N (0.65, 0.02) (5.12)

where the uncertainty σFβ = 0.02 in Fβ is based on the results in Chapter II which is

the spread in Fβ values that return unbiased mass estimates for the four semi-analytics

in the Millennium Simulation. In addition, we can also assume an NFW functional

form for Fβ as presented in equation 3.5, using the concentration for each cluster

based on a mass-concentration relation (Merten et al., 2015) and its uncertainties,

calculating the average value of Fβ for each cluster inside r200 based on M̂ , and finally

averaging those individual estimates (see section 4.3.1). This results in an uncertainty

σFβ = 0.05. We test how both of these uncertainties affect our cosmological model

inferences in section 5.4.

As described in section 5.2.5, the completeness function we measure in the simu-
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lations carries some uncertainty when applied to a different data set. Using different

volumes in the Henriques light-cone with similar sizes to our SDSS observed volume,

we find at most a 20% variation with respect to the completeness of a given true

mass at all redshifts in our sample. To allow for variation at different redshifts, we

add four nuisance parameters (c1-c4) to our model that act as fractional multipliers

to the completeness function in four redshift bins (0 - 0.06 - 0.08 - 0.1 - 0.12). These

parameters have priors that are normal which we define as,

P (c1−4) = N (1.0, 0.1) , (5.13)

but we also restrict their values to be 0.8 < ci < 1.2. Our last parameter, the purity

of the C4 sample, we measure in the simulations to be 80± 0.05 and is treated as a

flat prior within the uncertainty in our model.

5.4 Results

5.4.1 Henriques-C4 Millennium Simulation Mass Function

In order to check the validity of our parameter choices and model setup, we first

test our likelihood function on the Henriques-C4 catalog. Given that we know the

cosmology the catalog has been generated from, we expect to recover the underlying

simulation cosmology within our errors. This check also allows us to test the con-

vergence time for our MCMC sampler. The priors we assume are specified in section

5.3.2. For this test we use the more restrictive prior on Fβ = 0.65 ± 0.02. In Fig-

ure 5.3, we plot the 2-parameter marginalized posterior for ΩM and σ8. Both the

68% and 95% contours are shown, and we see excellent agreement with the under-

lying Millennium cosmology as shown in the solid lines and their intersection that

fall well within the inner contour. This test includes the full likelihood model with

estimated caustic masses that contain scatter in addition to C4 catalog systematics
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Figure 5.3: The inner and outer contours represent the 68% and 95% confidence
regions for ΩM and σ8 when a mass scatter value of 60 ± 10% and
Fβ = 0.65± 0.02 is assumed. The histograms show the marginalized pos-
terior distributions for each parameter. The vertical and horizontal lines
show the cosmological conditions in the Millennium Simulation which our
model should recover.
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Figure 5.4: The marginalized posterior distributions for the completeness multipliers
in our model that account for the statistical uncertainty in the complete-
ness. The four parameters cover four redshift bins and are very close to
1.0 which we expect since we measure the completeness function directly
in the simulation.

like purity and completeness. Based on this result, we see that there is some freedom

in the parameters in our analysis that still allows the Millennium cosmology to fall

within our confidence regions. In section 5.4.2 we investigate how changing our prior

assumptions affects the cosmological results.

In addition to our four main parameters shown in figure 5.3, we can also inspect

the marginalized posteriors for our nuisance parameters that act as multipliers with

uncertainty on our completeness and purity functions discussed in section 5.3.2. We

show the distributions for the four completeness multipliers in figure 5.4. The dis-

tributions for each parameter are very well constrained and narrower than the input
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prior indicating the restrictive prior placed on these parameters does not play a major

role. The values are also very close to 1.0 as we expect since we know the complete-

ness function in the simulations. The posterior for the purity parameter recovers the

flat input prior (not shown).

5.4.2 SDSS-C4 Mass Function

Based on the successful recovery of the Millennium simulation cosmology running

our likelihood function on the Henriques-C4 catalog, we now run the same model

on the SDSS-C4 catalog. The priors on Fβ, scatter, completeness, and purity are

the same as described in section 5.3.2. In Figure 5.5, we present the 68% and 95%

confidence contours and posterior distributions for 4 of the parameters in our model.

The histograms show the marginalized posterior probabilities of each parameter. For

the two cosmological parameters, we find the best fit to be ΩM = 0.275, σ8 = 0.83. In

Figure 5.6, we plot the best fit cosmology with respect to our cluster number counts

as a function of estimated mass.

First, we investigate how our estimates in ΩM and σ8 compare with other studies.

In Figure 5.7, we look at how our our confidence intervals look overplotted with

Cosmic Microwave Background experiments Planck and WMAP confidence intervals.

We find agreement to within our 68% contours with both the WMAP and Planck

experiments. Our 68% constraints are barely consistent with the Planck estimates

of ΩM and σ8. Based on our results, we cannot definitively rule in favor of a lower

WMAP-like or higher Planck-like value of ΩM .

We also compare our estimates with two other cluster mass function analysis

(Vikhlinin et al., 2009; Rozo et al., 2010). Vikhlinin et al. (2009) used x-ray mass

estimates for 86 clusters split between low and high redshift bins. Rozo et al. (2010)

used the maxBCG catalog (Koester et al., 2007) and co-constrained a mass-richness

relationship from the data. Seen in Figure 5.8, we find both studies overlap with
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Figure 5.5: Constraints on our model parameters based on the SDSS-C4 mass func-
tion when a mass scatter value of 60 ± 10% and Fβ = 0.65 ± 0.02 is
assumed. The contours shown for each pair of parameters represents the
68% and 95% confidence intervals from our posterior probability distri-
bution. The histograms represent the posterior distributions for each
quantity marginalized over the other parameters.
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Figure 5.6: The SDSS-C4 mass function. The blue line is the best fit cosmology ΩM

= 0.275 and σ8 = 0.83. The posterior of Fβ and the average scatter
recovers the input prior of Fβ = 0.65 ± 0.02 and 〈κ̂〉 = 0.6 ± 0.1. The
error bars are simply illustrative of the statistical Poisson error in each
mass bin and do not represent the total scatter due to systematics.
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Figure 5.7: A comparison of cosmological constraints from our work (green), Planck
(dashed), and WMAP9 (dotted). The inner and outer contours of each
set represent the 68% and 95% contours of each experiment.

our confidence regions. Our contours are slightly narrower than Rozo et al. (2010)

but agree with their findings. The confidence regions are larger than Vikhlinin et al.

(2009), but offset slightly higher in ΩM and σ8. Interestingly, Vikhlinin et al. (2009)

notes that systematically, their errors in mass could be up to 9% low. Making that

correction results in an almost perfect agreement between the two confidence regions.

In literature, widely different values of Fβ, the normalization filling factor in front

of the caustic equation, are still in use. Originally, Diaferio (1999) estimated its value

at Fβ = 0.5 in simulations using identified subhalos as dynamical tracers. Later Serra

et al. (2011) found a much larger value of Fβ = 0.7 described the mass profiles seen

when using dark matter particles themselves as tracers of the gravitational potential.

In Chapter III we investigate this difference and find that the disparate values are
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likely due to the large differences in velocity dispersion measured when using subhalos

vs. particles in N-body simulations. In Chapter II we find that a value Fβ = 0.65,

much closer to Serra’s value best describes semi-analytic tracers in simulations. We

also found that if we did use subhalo populations from the Millennium Simulation as

dynamical tracers, using a value of Fβ = 0.5 would recover unbiased masses.

The above analysis is performed with a strict prior on Fβ reflecting the uncertainty

we estimate in chapter II. While we do not expect a large error on its value, we test

for differences in our cosmological constraints when we relax our prior constraints on

Fβ from 0.65 ± 0.02 to ±0.06 which is almost a 10% uncertainty. The results are

shown in Figure 5.9. We see the marginalized posterior for Fβ closely matches the

contours of a more restricted prior on Fβ, but expands the confidence contours to

higher values of σ8 and lower values of ΩM .

As in section 5.4.1, we show the marginalized posterior distributions for our nui-

sance parameters that act as multipliers to the completeness and purity functions

to account for statistical uncertainty in these functions with redshift in Figure 5.10.

These distributions look slightly different than those in Figure 5.4. The main reason

is that the completeness and purity function is likely not exactly the same as our mea-

sured values in the simulation at every redshift due to statistical variation. Effects

like cosmic variance also play a small role in this difference. The only bin that appears

to deviate strongly from our expected completeness function is our lowest redshift bin

(c1) which indicates we are overestimating the true completeness function in this bin.

5.5 Summary and Discussion

Cluster masses remain an ideal test of structure formation and evolution in our

universe. Through the halo mass function, clusters provide tight constraints on the

normalization of the power spectrum σ8 and the matter density ΩM . Using the halo
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mass function to constrain cosmological parameters relies on accurate and precise

estimates of cluster halo mass, which is not directly observable. While scaling relations

with cluster observables like richness, velocity dispersion, X-ray luminosity, and SZ

signal are excellent proxies of mass, they must be calibrated by a more direct mass

estimator such as weak lensing, hydrostatic masses, or dynamical techniques.

Here we use the caustic technique to estimate cluster masses. The caustic tech-

nique has been shown in many circumstances to agree with other estimates of cluster

mass (Diaferio et al., 2005; Rines et al., 2007; Sharon et al., 2015). In Chapter II,

we complete an in-depth study into the systematics of the technique due to effects

such as sampling and radial incompleteness of clusters. We perform a mass function

analysis using caustic estimated masses for over 200 clusters in the SDSS-C4 cluster

catalog. This is the largest dynamical mass function analysis to date. The goal of

this analysis is to constrain the cosmological parameters ΩM and σ8 to compare with

current state of the art mass function studies.

Using the halo mass function requires understanding the completeness and purity

for the C4 cluster catalog as a function of both mass and redshift. To do so, we

make use of the Henriques all-sky galaxy catalog built on the Millennium Simulation.

We run the C4 algorithm over the Henriques sample and make cuts on richness

and estimated mass of those clusters similar to the cuts we make in the SDSS-C4

data set. While we find that completeness is a strong function of both mass and

redshift, the completeness in mass at a given redshift may be modeled with a log-

linear relationship which allows us to push further down in mass than if the function

was more complicated.

The mass scatter plays a large role in determining the shape and normalization

of the mass function. Understanding its value is critical to pushing toward precision

estimates of cosmological parameters. We use the Henriques-C4 sample to place con-

straints on the mass scatter we expect from our sample. By comparing the estimated
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caustic masses against the true simulated halo mass for halos that are matched to

the Henriques-C4 clusters, we find our estimates for mass are unbiased using a value

for Fβ = 0.65 and exhibit a 60% average scatter that we use in the mass function

analysis.

For the likelihood model, we use a no-binning technique that is described in Cash

(1979). Within the model, we have 9 free parameters: the matter density ΩM , power

spectrum normalization σ8, caustic filling factor Fβ, average sample scatter κ̂, 4

completeness parameters to account for uncertainty at different redshifts, and one

purity parameter that accounts for its uncertainty. The cosmological parameters are

treated as free, while the rest of the parameters are restricted. We find a best fit

cosmology of ΩM = 0.275 and σ8 = 0.83.

Like other cluster studies, we find agreement with both the WMAP 9 estimates

of ΩM and σ8, but we also are consistant with the Planck experiment. Our 68%

confidence intervals overlap with the same interval in both experiments but barely

overlap with the Planck 68% confidence interval. One way to bring our cosmological

estimates more in line with Planck would be if we are currently overestimating our

completeness by ∼ 10%. Large cluster surveys out to higher redshifts and larger

volumes will help clusters place tighter constraints on ΩΛ in the future, and further

support or explain the inconsistencies seen currently.

Future work involves better understanding the systematics which limit our mass

estimates in large surveys like SDSS. Previous studies have looked at simulations in

more ideal ways to estimate bias and scatter in the caustic technique. Improvements

can be made by more carefully studying mock catalogs with real cluster finders run

over the top like the one in this work. Improvements can come in identifying more

clusters. The ability to do so is limited in the SDSS, but applications to the Dark

Energy Survey and DESI will result in a wide range of new cluster mass estimates that

are individually sampled more heavily than current surveys. Additional wavebands

137



may be used to more effectively eliminate interloper galaxies in the cluster projected

phase-space, further increasing the precision of the technique.
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CHAPTER VI

Conclusion

This work investigates the important statistical and systematic effects present

when estimating virial masses with an escape velocity method termed the caustic

technique. We systematically investigate the ideal scenario that the escape velocity

can recover unbiased masses in both, and find that using the virial calibration in 3D

does return unbiased masses with only 10− 15% scatter which is lower than the 3D

mass-estimate scatter of 15−20% presented in Evrard et al. (2008). We also test how

the bias and scatter of the estimated caustic masses depends on a host of observational

sampling choices such as color, magnitude, and radial completeness. Biases due to

cluster redshift incompleteness is a major issue when it comes to estimating any

dynamical mass, but is especially important to quantify when it comes to the caustic

technique which relies on phase-space density. One way to overcome critical under-

sampling of individual clusters that results in biased mass estimates is to stack similar

systems into an ensemble phase-space and estimate a mean mass for the stack. Similar

systems can be determined through observable mass-proxies such as richness or total

luminosity that aren’t dependent on redshift sampling/completeness. We develop

a new way of directly detecting the projected escape velocity caustic in stacks to

avoid velocity bias and recover an unbiased measurement of the mean ensemble mass.

Finally, we use the C4 Cluster Survey on low redshift clusters to constrain ΩM and
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σ8.

6.1 Observational Systematics

Until the work presented in this thesis, the only studies performed with the caustic

technique in simulations estimated escape velocity surfaces and masses by randomly

sampling particles (Serra et al., 2011; Svensmark et al., 2015) or using dark matter

subhalos (Diaferio, 1999). Neither of these sampling techniques represent the phase-

space distribution of galaxies in the real universe. This is due to astrophysical effects

that include galaxy formation and evolution and dynamical friction. There are also

simulation resolution effects that can alter the formation and break-up of subhalos

further affecting the phase-space distributions. In Chapter II, we make use of four

semi-analytic galaxy catalogs built on top of the Millennium Simulation (Guo et al.,

2011; De Lucia & Blaizot, 2007; Bertone et al., 2007; Bower et al., 2006) to test

the caustic technique against a variety of observational constraints. With 100 semi-

randomly sampled clusters spanning a mass range of 1014 − 1015 M�, we first test

three separate interloper treatments to estimate cluster velocity dispersion and find a

shifting-gapper technique utilizing both radius and velocity information works better

than either sigma-clipping or simple bounded cuts in just velocity. Interloper removal

is essential to the success of the technique as the escape velocity surface is calibrated

using the estimated velocity dispersion.

One of the main results of the work presented in Chapter II is to understand how

the bias and scatter in caustic mass vary with galaxy sampling. We downsample the

cluster phase-space first in magnitude to mimic flux limited galaxy surveys and find

that statistically, the caustic technique is an unbiased mass estimator when the phase-

space contains 50 galaxies within r200. We also apply a variety of other observational

considerations such as only observing red galaxies or only blue galaxies and test

mixing fractions of the two. More importantly, we test what happens to caustic mass
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estimates when a cluster is radially incomplete. Surveys like SDSS must contend with

fiber collisions in the dense cores of galaxy clusters, and sometimes the incompleteness

due to a limited number of fiber orientations can be < 70%. Likewise, for very large

clusters, many of the galaxies in the outskirts may not be observed in a typical redshift

survey of clusters due to observational constraints. We quantify the bias induced by

these sampling systematics in the caustic mass.

By comparing with a virial scaling relation, we find that for a fixed number of

tracers the caustic technique exhibits a lower amount of mass scatter and bias. Based

on 4 semi-analytic galaxy populations in clusters, we also find an Fβ = 0.65 provides

the most unbiased estimate on average for our systems. This is in conflict with

the original value of Fβ = 0.5 by Diaferio (1999). We attribute this disparity to

the difference in tracer populations used to estimate caustic surfaces. We use semi-

analytic populations with velocity dispersions very close to the underlying dark matter

distribution. Diaferio (1999) used subhalos which are known to produce biased (high)

velocity dispersions and in turn, require a lower Fβ to recover unbiased masses.

6.2 Theoretical Caustic Tests

Algorithmically, the foundation for the caustic technique was presented by Diaferio

(1999) and later updated by Serra et al. (2011); however, neither study properly

addresses the key theoretical underpinning of the technique itself: Does the caustic

edge in 3D radius-velocity (r − v) phase-space return unbiased masses when used in

the caustic mass equation? In Chapter III, we test the caustic framework in several

ways. First, we look into the role of cluster shape by fitting an NFW profile to

both the density profile and escape velocity for each of our 100 clusters. The NFW

parametrization contains 2 parameters: the density normalization ρ0 and the scale

radius r0. When comparing the fits between the density and escape velocity, we find

small differences that indicates the cluster potentials may be more spherical than
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the density profiles. Based on this result, we find that if an NFW fit to the escape

velocity is used to estimate mass, the mass bias is approximately −10%. We also find

that uncertainties on the cluster concentration parameter have a small effect on the

mass. On average, the NFW does a good job in fitting both the density and potential

profiles as evidenced by the ∼ 10% scatter in mass we measure with the technique in

3D.

We also test whether the caustic edge remains robust to tracers that exhibit “ve-

locity bias”. In N-body simulations, identified sub-halos within galaxy cluster sized

halos exhibit a positive velocity dispersion bias of 10-20% (Wu et al., 2013). This

bias mostly derives from the destruction of fast moving subhalos through the dense

core of the cluster leaving only the slower infalling members to contribute to the

dispersion measurement. In theory, the escape velocity surface will be immune to

such effects, but such a test has not yet been performed. We test this by compar-

ing the caustic edge using 3D radial velocities from subhalos and particles and find

that by sub-sampling the particles to match the number of subhalos in bins of 3-

dimensional radius. We find the particles and subhalos trace the same caustic surface

out to > 2r200. This is an important result as we show the caustic edge is the only

dynamically based observable that is immune to velocity bias.

While previous authors have stated that the caustic technique does not depend

on cluster virialization (Diaferio, 1999; Serra et al., 2011), this is simply not the case.

Key to the caustic techniques algorithmic implementation is a calibration term that

relates the velocity dispersion to the average escape velocity inside a radius of choice.

The framework for such a calibration is presented in Binney & Tremaine (1987).

Serra et al. (2011) argue the exact radius does not matter, and in Chapter III we

test this statement. We find that the caustic calibration method does succeed for

many radii (not just the exact radius where the virial condition 2T = −W applies),

the appropriate offset to the velocity dispersion must be applied to account for the
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inequality in the virial equation.

Observing clusters in projection adds a host of new uncertainties which must be

carefully understood. When projecting galaxies along the line-of-sight, the velocity

anisotropy of galaxy orbits must be taken into account. We test both an exact

measured β(r) for each halo and find the same scatter as seen in Chapter II when

using a constant approximation of Fβ. We also study how the projected mass scatter

and bias depend on various uncertainties in 〈β〉 and concentration. We find that both

have a small effect on the estimated masses which we quantify in Chapter III.

6.3 Caustic Masses in Ensemble Clusters

In Chapter II, we discuss how the caustic technique is susceptible to statistical

biases when the phase-space sampling drops below 50 galaxies. Many current surveys

contain clusters with a few to tens of galaxies, but those clusters lack the galaxy

numbers for dynamical techniques and may be too small for X-ray detection or weak

lensing shear measurements, but do have observables such as richness that can be

calibrated via scaling relations to mass and used for cosmological analysis. In Chapter

IV, we develop and test a new stacking algorithm based on the caustic technique using

an all-sky light cone in the Millennium Simulation (Guo et al., 2011; Henriques et al.,

2012).

We first test the technique through a method called “self-stacking” where we

build an ensemble cluster by sampling from the phase-space of a single cluster, ran-

domly projected along multiple lines-of-sight (l.o.s) to the observer. Then, we move

to stacking multiple clusters per bin and stack based on their true simulated halo

mass. Finally, we remove knowledge of the halo mass and stack multiple cluster into

ensembles based on a cluster observable. When creating an ensemble cluster, we vary

both the number of galaxies sampled from each l.o.s, as well as the number of l.o.s.

We find that when we achieve a total phase-space sampling of 1000, the ensemble
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mass estimates are unbiased to within 5%. This is encouraging and suggests that

when stacking, scatter in the mass-observable relationship does not play a large role

in estimating the average of the individual masses. This makes calibration of mass-

observable relationships possible. Stacking also shows very low mass scatter (< 10%)

when sampling of the ensemble phase-space is high.

6.4 SDSS-C4 Mass Function

In Chapter V, we measure the SDSS-C4 halo mass function. Cluster masses

remain an ideal test of structure formation and evolution in our universe. Through

the halo mass function, clusters provide tight constraints on the normalization of the

power spectrum σ8 and the matter density ΩM . In order to use the halo mass function

to constrain cosmological parameters, accurate and precise estimates of cluster halo

mass, which is not directly observable, must be made.

We use the caustic mass technique to estimate cluster masses for over 200 systems

in the SDSS-C4 cluster catalog and use them to measure the SDSS-C4 mass function.

To do so, we make use of the Henriques all-sky galaxy catalog built on the Millennium

Simulation to understand the systematics of our sample and test our likelihood anal-

ysis. We run the C4 algorithm over the Henriques sample and find that completeness

is a strong function of both mass and redshift, and that the completeness in mass at

a given redshift may be modeled with a log-linear relationship to fold through the

likelihood analysis.

The mass scatter plays a large role in determining the shape and normalization

of the mass function. Understanding its value is critical to pushing toward precision

estimates of cosmological parameters. We use the Henriques-C4 sample to place only

broad constraints on the mass scatter. By comparing the estimated caustic masses

against the true simulated halo mass for halos that are matched to the Henriques-C4

clusters, we find our estimates for mass are unbiased using a value for Fβ = 0.65 and
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exhibit a 60% average scatter that we use in the mass function analysis.

We find agreement to within our 68% confidence intervals with both WMAP and

Planck. However, the contours agree more with WMAP than Planck, and in order to

bring our estimates more in line with the latest results, we must be overestimating

our completeness by ∼ 10%. Large cluster surveys out to higher redshifts will help

clusters place tighter constraints on ΩΛ in the future, and further support or explain

the inconsistencies seen currently. We also see agreement with previous mass function

studies using richness and x-ray based mass estimates. Finally, we test our prior

assumptions and find that loosening our prior on the parameter Fβ increases our

uncertainty but does not change our maximum likelihood estimate.

6.5 Future Work

A great deal of progress has been made in the last 10 years on constraining the

cosmology that governs our universe; however, the next decade and beyond promises

to herald a new age in precision cosmology. The Sloan Digital Sky Survey has set the

bar for wide photometric and spectroscopic samples in the optical, but now surveys

across almost every available waveband in astronomy are opening up new windows of

opportunity for scientific discovery. In the optical and near-infrared, current surveys

such as the Dark Energy Survey (The Dark Energy Survey Collaboration, 2005) and

DESI (Levi et al., 2013), and future planned surveys such as with WFIRST (Green

et al., 2011) and the LSST (LSST Science Collaboration, 2009) will greatly expand

the depth of photometric and spectroscopic coverage both in our local universe and

well into the past. These results will enable precision cosmology through multiple

independent studies including lensing, large-scale structure and Baryonic Acoustic

Oscillations, dynamics within and in the outskirts of clusters, and standard candle

cosmology with TypeIa Supernovae. At longer wavelengths, the South Pole Telescope

has produced a large cluster catalog (Bleem et al., 2015) with SZ measurements that
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shows promise when combined through dynamics or weak lensing in scaling relations

(Hasselfield et al., 2013).

Galaxy clusters have a major role to play in understanding the universe at large,

but much of what remains to be learned involves careful study of the cluster envi-

ronment. Once thought to be rather simple systems, the dynamics of the baryonic

components of galaxy clusters has turned out to be far more complex. With dy-

namics, understanding and modeling the phase-spaces of clusters may prove to be

an excellent way of understanding the gravitational potential in the cluster. New

experiments tracing the escape velocity surface to the cluster outskirts can probe al-

ternative theories of gravity and possibly constrain cosmological parameters. The gas

in clusters has been shown to be extremely correlated with halo mass (Ettori et al.,

2012), but many challenges remain in understanding the various issues surrounding

heating and cooling, turbulence and magnetic fields, and substructure. The improve-

ments in hydrodynamic and magneto-hydrodynamic simulations in the coming years

will improve our understanding of the baryonic astrophysics in clusters.

As for mass estimation, all techniques from lensing to x-ray to dynamics will ben-

efit from the large spectroscopic and photometric surveys mentioned above. Deeper

spectroscopic sampling and photometry in a greater number of wavebands will help

refine algorithms aimed at identifying member galaxies thereby raising the accuracy

of velocity dispersion estimates. They will also sharpen models for photometric red-

shift estimation used by weak lensing studies to better constrain the shear profiles of

clusters. Finally, they will assist in following-up and confirming x-ray cluster detec-

tions. Combined, these methods will all assist in calibrating observable-mass scaling

relations in the optical, x-ray, and SZ.
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APPENDIX A

OSMOSreduce: Automated Multi-object

Spectrograph Data Reduction

OSMOS Imager and Spectrograph

The OSMOS (Ohio State Multi-Object Spectrograph) is a multi-object spectro-

graph and imager with a wide field of view on the 2.4m Hiltner Telescope, part of

the MDM observatory on Kitt Peak, AZ. OSMOS has a nearly 20’ FOV and can

be equipped with either the MDM4K or R4K detector systems which cover 18.5’ x

18.5’ square. Both detectors are 4k devices with 15µm pixels. The MDM4K is more

sensitive toward the blue and the R4K is more sensitive in the red. The R4K also has

a much higher rate of cosmic ray events. In imaging mode, the all-refractive design

projects a plate scale of 0.273” per pixel. There is a wide array of filters currently

available including standard UBVRI, Sloan ugriz, and DES i,z,Y.

Here, I will focus on the spectrograph mode that enabled data collection for the

purposes of this thesis. Spectroscopy can performed in two modes: Long slit with 0.9,

1.2, 1.4, 3, and 10 arcsecond wide slits available, and multi-slit with masks that are

designed by the observer before-hand and are laser-cut into electroformed spherical
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shells of NIColoy coated with Copper Oxide (CuO) black. OSMOS contains a 6-

position slit wheel that the observer is capable of loading and unloading. Three

dispersers are available in the instrument: A triple-prism with R = 100-400 with

highest resolution in the UV, the VPH grism R=1600, and a Red grism. Acquisition

software is available at the telescope to align and rotate the instrument relative to

the observer’s targets which can be a difficult task in multi-slit mode.

OSMOSReduce Reduction Pipeline

Multi-object spectroscopy data is saved into .FITS format and must be reduced by

the observer. OSMOS masks can contain upwards of 50 slits depending on the size and

placement of the slits during the mask design stage. For galaxy clusters, we managed

to observe 20-35 galaxies per mask due to the high density of our objects. Currently,

the only reduction code available for OSMOS works to correct for the detector bias

and was written by the instrument PI Paul Martini. The task of cutting out the

slits, distortion correction, source reduction, wavelength calibration, sky subtraction,

and redshift estimation is left to the observer. To standardize the reduction process,

I created a pipeline titled OSMOSReduce. I implemented this reduction pipeline in

Python + ds9 with a range of automated and user controlled tasks to go from raw

.FITS format to wavelength calibrated, 1d spectra with optional redshift estimation

through a complimentary package I developed titled Zpy. Here, I will walk through

the pipeline capabilities with sample screen shots throughout the process. Complete

documentation will eventually exist with the code as it is currently open source and

may be altered for use at different facilities.

Input requirements

When at the telescope, there are several observations one typically records to

assist in the data reduction.
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• Comps: These are taken of an arc lamp (Argon/Xenon/Helium/Neon) and are

used to wavelength calibrate the spectra. In general we had success using the

Argon and/or Xenon lamps for calibration spectra.

• Flats: To correct for detector inconsistencies, either twilight (sky flats) or illu-

minated screen flats will do.

• Science image(s): It is wise to take several science exposures to reduce detector

noise. Our observations of low redshift galaxies require 2 x 30min integrations.

These images are pre-organized into directories by the user and read into memory

using the FITS reader in the Astropy Python package (Astropy Collaboration et al.,

2013).

There are two other necessary files that must be included in the directory struc-

ture. The first is the .OMS file produced during the mask making stage before the

observing run. This file contains the physical XY chip positions, WCS on-sky coor-

dinates, and slit shape parameters. OSMOSReduce uses these attributes to identify

slits and label objects. The second is the image used during the mask design pro-

cess to specify the location of the slits. This can be a mosaic or single finder image.

Directions regarding file naming procedure and directory structure is present in the

pipeline documentation.

Reading and Labeling the Data

The very first procedures run by OSMOSReduce include reading the cluster ID

input, defining constants, and reading in the mosaic file. Then, the code will check

and see if any bias reduced files exist. Paul Martini has kindly provided some initial

reduction code written in Python called proc4k.py. I include this module in the

OSMOSreduce package. This code performs the overscan subtraction and removes the

relative gain differences for a single 4K image or a list of 4K images. OSMOSReduce
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Figure A.1: Using ds9 to identify object types in each slit of the designed mask.

looks for the reduced files, and if they do not exist in the relevant directories, the files

that are present are initially reduced with this module. Once reduced, the code reads

in the reduced fits files. The code then parses the .OMS file for relevant information on

the slits such as position in the x/y direction on the chip, RA/DEC on the sky, and slit

width and length. All of these are saved into a Pandas Dataframe (McKinney, 2011)

which will form the basis of our sample. Once we have the slit positions, the code

utilizes a module called sqlcl.py developed by SDSS to query the SDSS database for

information on the objects in the slits. The object information I query includes object

id information, position, magnitudes, and spectroscopic and photometric redshifts. If

more than 60 objects are needed (SDSS query limit per minute) or additional/different

object features are desired, the source code may be edited.

After the images have loaded in ds9, ds9 will zoom in on the first slit on your

mask and overlay its position on the mosaic image you have in the directory (see
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Figure A.1). The user then uses a terminal window to answer the question if the

slit is over a galaxy (g), reference star (r), or empty sky (s). These labels are used

to decide which slits will be reduced later. Once you hit an appropriate key, the

program will automatically move to the next object until you have run through all

slits. This process only needs to be performed once per mask. If the reduction session

is terminated before finishing, the results of this object labeling is saved to a file and

read in if OSMOSReduce is re-run.

Identifying Dispersed spectra, Correcting Distortion, Object Identifica-

tion, and Sky Subtraction

Once all slits have been labeled, the ds9 window will switch to a raw image of

an arc lamp with all the dispersed light on the chip. Like before, the program will

automatically zoom in on the first dispersed spectrum from a labeled galaxy and draw

a long rectangular box approximately over the spectrum in ds9 (See Figure A.2). The

user’s job is to click+drag to move this box so that it encloses all the light from the

slit. The user can also make the box wider to account for ’bending’ spectra with the

drag points on the corners of the green rectangle.

After choosing the area of the chip where the dispersed light resides from the slit,

the program will automatically define the upper and lower edge of the dispersed light

with a custom edge finding algorithm. The algorithm is intelligent that if parts of a

neighboring slit are included in the region specified in ds9, it can identify the correct

edges. A second-order polynomial is fit to both upper and lower edge, and the light

inside the slit is “flattened” by correcting for this curvature (see Figure A.3).

Next, the program looks to identify the galaxy or object light in the flattened

light from the slit. The happens by taking an average of the light along the long axis

of dispersion to reveal where object is in y-position along the slit. The object light

is fit with a Gaussian and the object is defined to occupy everywhere within 2σ of
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Figure A.2: Selecting the region of dispersed light for each slit on the CCD. Ds9 is
used to create the regions.

Figure A.3: Identifying the edges of the dispersed light. The curvature is due to
optical distortion. The thin blue and red lines are the edges detected by
the algorithm. The green lines are the final polynomial fit. The green
line does not match the red because the distance between the two green
lines must be equal to the size of the slit. This will offset the fit slightly.
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Figure A.4: The galaxy/object light is visible within the slit and outlined by black
dashed lines by fitting the galaxy light with a gaussian.

the mean of the fit. The rest of the slit is treated as “sky” and is averaged along the

short axis of dispersion to subtract from the object light. A 1d spectrum is created

by summing the 2d object spectra along the short axis of dispersion.

The user will then answer the question if this is a good or bad spectra. If at any

stage of this process the user does not feel this one object is not high enough quality for

further reduction, they may stop the process by labeling this a bad spectra. Reasons

may include: Inability to identify slit edges, inability to successfully flatten the slit

light, or a bad object is identified in 2d spectrum. Once the question is answered

it will move to the next object to repeat the process. Again, if after this stage is

fully complete for all objects being reduced, the user may terminate the program at

any time and the results of this stage are saved and reloaded with OSMOSReduce is

restarted.

Wavelength Calibration

In the wavelength calibration stage of the reduction pipeline, the user now has

sky-subtracted 1d spectra of each object as well as 1d spectra of the arc lamp through

each slit. Wavelength calibration for multi-slit spectrographs can be tricky because

slits are not only vertically separated, but are offset randomly in the horizontal chip

direction as well. This means that each slit needs to be calibrated independently

to find the correct pixel to wavelength mapping. Because of the large number of
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observations we have performed with the OSMOS + VPH grism combination, we

have effectively mapped the pixel to wavelength solution for every X-Y position on

the chip (see Figure A.5). Due to changes in optics and CCD position, this solution

is only approximate, but it allows for very quick processing during the next step of

wavelength calibration.

Once the mapper returns an approximate solution for the first slit, the user walks

through a two step process to exactly fit a 5th order polynomial to convert pixel values

to wavelength using the 1d arc lamp spectrum. The first step is a rough alignment of

the observed spectrum with the expected lines for each lamp. The automatic solution

will get the user very close to the answer, but a handful of sliders are available to

adjust the first 3 orders in the polynomial fit that moves the spectrum to refine the

estimate (see Figure A.6 upper). Once this step is complete, the user will close the

window and be taken to the exact fitting procedure.

In the exact fitting procedure, the user is walked line-by-line through the lines

provided in the arc lamp calibration file. I have developed a peak finder using Scipy’s

(Jones et al., 2001–) signal module, and the program automatically guesses which

peak should be matched to the current line. In Figure A.6 (lower), you can see the

current line is on the left highlighted in a thicker red color, and the matched peak

has a small orange circle over the peak. For each calibration line, the user can either

accept the current peak-line match, select a different peak by clicking near the new

peak in the GUI window, or deleting the current line from being used. Regardless

of the choice, the program automatically steps to the next line and the process is

repeated. Once enough lines are matched, the user may exit the process and a 5th

order polynomial is fit to create a mapping for that particular slit. The user then

repeats this process for all slits with galaxies/objects for all good spectra. For an

experienced user, this step usually takes about 30 seconds per object. The solutions

created here have an accuracy to within ∼ 1 Angstrom which is consistent with the
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Figure A.5: An example of the the mapping coefficients (black dots) and our fits to
those coefficients (blue mesh) for the “stretch” feature or zero-th order
of our polynomial (Upper) and the “stretch” feature or the first order
of our polynomial (Lower).
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Figure A.6: Example windows of the GUI displayed during the two stages of wave-
length calibration. In the first stage (Upper), the user uses several
sliders to obtain an approximate match between the arc lamp lines ex-
pected (vertical red lines) and the observed arc spectrum (blue). In
the second stage (Lower), the user clicks through the lines that match
each expected spectral line in a semi-automated fashion to obtain a solid
mapping solution from pixel to wavelength values for that position on
the CCD.
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result we see from redshift estimation.

Redshift Estimation

The final stage of the pipeline is to estimate redshifts for our objects. There are

several ways to perform redshift estimation, but here I have implemented a cross-

correlation technique with a template spectrum. For our galaxies, we have tested

the code against an SDSS early-type galaxy template as most of our galaxies are red

member galaxies of each cluster. The code helps the user measure an accurate redshift

completely automatically in most cases, but here I describe potential scenarios the

code is prepared to deal with.

The code first takes the template spectrum and shifts it based on a very fine grid

in redshift and a correlation coefficient is measured between the continuum subtracted

object and template spectra at each point in the grid. This is run automatically and,

when completed for an object, a GUI is shown to the user with the object spectrum

and the maximum-likelihood redshift with key absorption/emission features over-

plotted with the correlation “likelihood” presented below (see Figure A.7). The GUI

also allows the user to choose from a series of quality flags to be saved alongside the

redshift estimate. This is useful for later when deciding which redshifts to trust from

the reduction process. If the object has clear spectral features, the algorithm does

an excellent job at recovering the object’s redshift. For galaxies in the SDSS, we find

an agreement to within 0.3% of the redshifts measured by SDSS. This works out to

< 60km/s in velocity for the redshift of our systems which matches the uncertainties

listed in SDSS. When spectral features are not visible, the algorithm does much worse,

and the redshift estimate returned by the algorithm is not recommended for use.

Sometimes, the code will struggle to find the correct redshift for a given object,

and the pattern matching abilities of the human brain will be a more trustworthy

source. In this scenario, the user has the ability to right-click on the spectrum where
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Figure A.7: An example of the redshift estimation GUI displayed during the final
stage of reduction. The wavelength calibrated spectrum is plotted in
blue in the upper half of the window, with a host of user specified spec-
tral lines (redshifted based on the maximum likelihood value). The user
may select a flag on the right side of the window indicating the accu-
racy/believability of the redshift estimate.

a familiar line is located. The line the user wants to default to in these scenarios is

chosen at the beginning of the redshift estimation stage. For our purposes, the Ca

H and K lines work well for this exercise with early type galaxies. Right clicking on

the spectrum applies a “prior” of Gaussian shape centered on the redshift estimate

with a σz = 0.06. This amplifies the correlation “likelihood” in the area specified

by the user helping to pull out a particular solution. The new maximum-likelihood

redshift is presented to the user (see Figure A.8). If this still fails to match the user’s

expectations, at this point the user may physically drag the spectrum left and right

to match the expected spectral features. Unless the user is very confident in their

estimate, the object redshift estimate should be discarded at this point. After all the

objects have been reduced and redshifts have been estimated, the final results are

written out to a csv file that may be used during analysis.
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Figure A.8: An example of the redshift estimation GUI displayed during the final
stage of reduction. The user select
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