
Low-overhead Online Code Transformations

by

Michael A. Laurenzano

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2016

Doctoral Committee:

Assistant Professor Jason Mars, Co-Chair
Assistant Professor Lingjia Tang, Co-Chair
Professor Scott Mahlke
Associate Professor Kevin P. Pipe



c© Michael A. Laurenzano 2016

All Rights Reserved



For Alexander, Mia and Laura.

ii



ACKNOWLEDGEMENTS

I am fortunate enough to have unparalleled mentors and teachers, now and in the

past. I thank my dissertation committee – Scott Mahlke, Jason Mars, Kevin Pipe and

Lingjia Tang – for their insights and guidance in constructing this dissertation. My

advisors, Jason and Lingjia, have taught me how to think about intellectual endeavors,

research, and execution. Thank you both for always asking tough questions and giving

me the opportunity to succeed. All of the members of the Clarity Lab, you have helped

me grow as a scientist and learn how to teach. Laura Carrington, thank you for the

many opportunities you’ve given me and for always taking my ideas seriously. Allan

Snavely, you were a mentor and a friend. Thank you for recognizing my potential

and having the foresight to drag me back into the research world in 2007. The world

has been a little bit darker since you left it. To all of my other teachers, especially

Mike Rongitsch, Lukasz Pruski, Lynne Small and Jane Friedman. Your mentorship

and passion for the technical influences me to this day.

I am also fortunate enough to have the greatest family in the world. Steve and

Mariana Laurenzano, my parents – thank you for putting up with everything, working

tirelessly to make sure I started life on second base, and giving me the tools to get to

home plate. My siblings – Angela, Matthew and Stephen. Thank you for toughening

me up and for a lifetime of friendship. And most of all, thank you to Laura, Mia, and

Alexander. You put up with me during the late nights, the good times and the bad

times, and everything else along the way. Life would be empty without you. Thanks

for making it all worthwhile.

iii



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.1 Datacenter Server Utilization . . . . . . . . . . . . . 4
1.1.2 Approximate Computing . . . . . . . . . . . . . . . 6
1.1.3 Code Reuse Attacks . . . . . . . . . . . . . . . . . . 8

1.2 Goals of Online Code Transformation . . . . . . . . . . . . . 10
1.3 Design Overview . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 Protean Code . . . . . . . . . . . . . . . . . . . . . 12
1.3.2 Increasing Server Utilization in Datacenters . . . . . 13
1.3.3 Input Responsiveness in Approximate Computing . 14
1.3.4 Resisting Code Reuse Attacks . . . . . . . . . . . . 14

1.4 Summary of Contributions . . . . . . . . . . . . . . . . . . . 15

II. Background and Related Work . . . . . . . . . . . . . . . . . . . 18

2.1 Online Code Transformations . . . . . . . . . . . . . . . . . . 18
2.2 Managing Shared Resources for Co-location . . . . . . . . . . 20

2.2.1 Predicting Safe Co-locations . . . . . . . . . . . . . 20
2.2.2 Dynamically Enabling Co-locations . . . . . . . . . 20
2.2.3 ISA Support For Temporal Locality Hints . . . . . . 21

2.3 Approximate Computing . . . . . . . . . . . . . . . . . . . . 22
2.3.1 Approximation in Software . . . . . . . . . . . . . . 22
2.3.2 Approximation in Hardware . . . . . . . . . . . . . 23

iv



2.4 Code Reuse Attacks and Defenses . . . . . . . . . . . . . . . 24
2.4.1 Return-oriented Programming . . . . . . . . . . . . 25
2.4.2 ASLR and Its Limitations . . . . . . . . . . . . . . 26
2.4.3 Other Defense Mechanisms . . . . . . . . . . . . . . 27

III. Protean Code: Low-overhead Online Code Transformations 29

3.1 Protean Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.1 Design Principles . . . . . . . . . . . . . . . . . . . 31
3.1.2 Protean Code Compiler . . . . . . . . . . . . . . . . 33
3.1.3 Protean Code Runtime . . . . . . . . . . . . . . . . 35

3.2 Performance Investigation . . . . . . . . . . . . . . . . . . . . 38
3.2.1 Virtualization Mechanism . . . . . . . . . . . . . . . 38
3.2.2 Dynamic Compilation Overhead . . . . . . . . . . . 40

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

IV. Online Code Transformations to Improve Utilization in Dat-
acenters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 Protean Code for Cache Contention in Datacenters . . . . . . 43
4.1.1 Code Variant Search Space . . . . . . . . . . . . . . 43
4.1.2 Variant Search Space Reduction . . . . . . . . . . . 45
4.1.3 Traversing the Variant Search Space . . . . . . . . . 47
4.1.4 Online Evaluation of Variants . . . . . . . . . . . . 48
4.1.5 Monitoring Co-runner QoS . . . . . . . . . . . . . . 50

4.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.1 PC3D Variant Search Heuristics . . . . . . . . . . . 52
4.2.2 Utilization Improvements from PC3D . . . . . . . . 53
4.2.3 Webservice with Fluctuating Load . . . . . . . . . . 59
4.2.4 Impact of PC3D at Scale . . . . . . . . . . . . . . . 62

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

V. Input Responsive Approximate Computing . . . . . . . . . . . 66

5.1 The Case for Input Driven Dynamism . . . . . . . . . . . . . 67
5.1.1 Input Matters for Output Quality . . . . . . . . . . 67
5.1.2 Limitations of Existing Approaches . . . . . . . . . 70
5.1.3 The Opportunity for Dynamism . . . . . . . . . . . 71

5.2 Overview of IRA . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3 IRA Design and Implementation . . . . . . . . . . . . . . . . 72

5.3.1 Reasoning About Canary Inputs . . . . . . . . . . . 72
5.3.2 Choosing an Effective Approximation . . . . . . . . 84
5.3.3 Putting it all Together . . . . . . . . . . . . . . . . 89

5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . 89

v



5.4.2 Canary Construction . . . . . . . . . . . . . . . . . 92
5.4.3 IRA Speedup and Accuracy . . . . . . . . . . . . . 95
5.4.4 Where is the Time Spent? . . . . . . . . . . . . . . 97
5.4.5 Comparison to Prior Work . . . . . . . . . . . . . . 98

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

VI. Online Code Transformations in the Operating System for
Increased Security . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.1 Why a Code Transforming OS? . . . . . . . . . . . . . . . . . 103
6.1.1 Decoupled Application and Compiler . . . . . . . . 104
6.1.2 OS-Hosted Online Code Transformation . . . . . . . 104
6.1.3 Beyond Security . . . . . . . . . . . . . . . . . . . . 105

6.2 ProtOS System Architecture . . . . . . . . . . . . . . . . . . 105
6.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . 106
6.2.2 Online Code Transformation . . . . . . . . . . . . . 107
6.2.3 Program Loading . . . . . . . . . . . . . . . . . . . 111
6.2.4 Dynamically-linked Libraries . . . . . . . . . . . . . 113

6.3 Continuous Code Re-randomization . . . . . . . . . . . . . . 114
6.3.1 Medium-grain Re-randomization . . . . . . . . . . . 116
6.3.2 Fine-grain Re-randomization . . . . . . . . . . . . . 118
6.3.3 Bytes, Bytes, Everywhere . . . . . . . . . . . . . . . 119

6.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . 119
6.4.2 ProtOS System Overhead . . . . . . . . . . . . . . . 120
6.4.3 Code Re-randomization Performance . . . . . . . . 121
6.4.4 Sources of Application Overhead . . . . . . . . . . . 124
6.4.5 Medium vs. Fine-grain Re-randomization . . . . . . 127
6.4.6 Security Implications . . . . . . . . . . . . . . . . . 130

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

VII. Conclusions and Future Directions . . . . . . . . . . . . . . . . 134

7.1 Software Adaptation . . . . . . . . . . . . . . . . . . . . . . . 135
7.2 Hardware Design . . . . . . . . . . . . . . . . . . . . . . . . . 136

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

vi



LIST OF FIGURES

Figure

1.1 Online code transformations have a range of uses, including optimiza-
tion, security, portability, resilience and debugging. This dissertation
proposes a new low-overhead online code transformation technique
and its implications on performance and security . . . . . . . . . . . 3

1.2 One approximation approach (16x8 tiling [146]) produces outputs of
very different quality across inputs . . . . . . . . . . . . . . . . . . . 6

3.1 Overview of the protean code compiler . . . . . . . . . . . . . . . . 31
3.2 Overview of the protean code runtime . . . . . . . . . . . . . . . . . 32
3.3 Dynamic compiler overhead when making no code modifications (nor-

malized to native execution) . . . . . . . . . . . . . . . . . . . . . . 38
3.4 Dynamic compilation stress tests; compilation occurs on a separate

core from the host application . . . . . . . . . . . . . . . . . . . . . 39
3.5 Dynamic compilation stress tests on separate vs. same core . . . . . 40
4.1 The set of variants for a small code region within libquantum on

x86 64. Non-temporal hints and affected loads are shown in bold . . 44
4.2 Proportion of dynamic loads in contentious applications coming from

loads at maximum loop depth . . . . . . . . . . . . . . . . . . . . . 46
4.3 Online empirical evaluation for two variants of libquantum (applica-

tion) running with er-naive (co-runner) . . . . . . . . . . . . . . . 49
4.4 Heuristics significantly reduce the search space for PC3D. Static load

counts of the full programs are presented in parentheses above the bars 53

4.5 Utilization improvement of applications running with web-search . 54
4.6 Utilization improvement of applications running with media-streaming 54
4.7 Utilization improvement of applications running with graph-analytics 54
4.8 QoS of web-search running with various applications . . . . . . . . 55
4.9 QoS of media-streaming running with various applications . . . . . 55
4.10 QoS of graph-analytics running with various applications . . . . . 55
4.11 Utilization (top) and QoS (bottom) of PC3D vs. ReQoS, presented as

the average across all CloudSuite, SPEC and SmashBench applications 56
4.12 Dynamic behavior of libquantum running with web-search using

the PC3D runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.13 Average fraction of server cycles consumed by the PC3D runtime . . 61

vii



4.14 Server count required to run workload mixes for PC3D vs. no co-
location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.15 Normalized energy efficiency of workload mixes for PC3D vs. no
co-location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1 Histograms of the accuracy of three tiling approximations applied to
the same 800 images; some mix of missed opportunities and unac-
ceptably low accuracy are present in each approximation . . . . . . 68

5.2 A dynamic oracle approximation system using the most effective
tiling approximation method (fastest without violating TOQ) achieves
an average speedup of 61× and uses 42 different approximation options 69

5.3 Exact computation and approximation with IRA . . . . . . . . . . . 73
5.4 Canary input creation . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.5 Search for approximation using canary . . . . . . . . . . . . . . . . 85
5.6 Example search for an effective approximation . . . . . . . . . . . . 86
5.7 Comparison of canary similarity metrics . . . . . . . . . . . . . . . . 92
5.8 Speedup and number of TOQ violations for dynamically chosen ca-

naries (blue star) vs. fixed-size canaries (red circles) on MatMult; all
fixed size canaries achieve lower speedup, more TOQ violations, or
both . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.9 Speedup of IRA across three TOQs . . . . . . . . . . . . . . . . . . 94
5.10 Distribution of speedups across inputs for IRA at 90% TOQ, illus-

trating the wide range of approximations dynamically chosen across
different inputs; larger speedups occur when more aggressive approx-
imation is applied . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.11 Breakdown of time spent by IRA, showing time to create the canary
(barely visible), search for the approximation, and run the chosen
approximation on the full input . . . . . . . . . . . . . . . . . . . . 98

5.12 Comparison of IRA to calibration-based approximation with Green [15],
SAGE [147], showing that IRA achieves more than 4× speedup of each 99

6.1 ProtOS thwarts code reuse attacks by using its online code transfor-
mation capability to continuously re-randomize code as the program
runs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2 System architecture of ProtOS . . . . . . . . . . . . . . . . . . . . . 106
6.3 Overview of ProtOS runtime system. All program execution occurs

from the code cache, a shared memory region between the program
and the compiler. The dynamic compiler runs asynchronously to
update the code cache . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.4 Sample address space layout of ProtOS application . . . . . . . . . 112
6.5 Different mixes of medium- and fine-grain re-randomization offer dif-

ferent resource/security tradeoffs . . . . . . . . . . . . . . . . . . . . 115
6.6 Steps taken to enact a round of re-randomization; after one round of

re-randomization, all functions in the program has been re-randomized
in position (medium-grain) and layout (fine-grain) . . . . . . . . . . 117

viii



6.7 ProtOS programs show negligible slowdowns compared to programs
on a stock Linux system . . . . . . . . . . . . . . . . . . . . . . . . 121

6.8 Performance overhead of the medium-grain re-randomization service
in ProtOS; 300ms offers an attractive design point, in that it re-
randomizes fast enough to thwart state-of-the-art code reuse attacks [156,
162] with only 9% runtime overhead . . . . . . . . . . . . . . . . . . 122

6.9 Throughput of multiprogram workloads; throughput suffers small
degradations even when re-randomizing all 16 co-runners in a fully
subscribed system every 300ms . . . . . . . . . . . . . . . . . . . . . 123

6.10 Overhead of garbage collection . . . . . . . . . . . . . . . . . . . . . 125
6.11 Dynamically-generated code instruction count vs. application run-

time overhead; correlation between the two is p=0.89 . . . . . . . . 126
6.12 Dynamic memory behavior of mcf with and without re-randomization;

the key factor impacting performance when re-randomizing code is
frequent TLB invalidations . . . . . . . . . . . . . . . . . . . . . . . 129

6.13 Tradeoff between frequency and granularity of re-randomization . . 130
6.14 Gadgets detected within 4 functions of er-naive; memory is dumped

after each round of re-randomization and gadgets are detected offline
using ROPGadget [145] . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.15 Likelihood of individual ROP gadgets remaining in place long enough
to orchestrate an attack; at 300ms, re-randomization occurs rapidly
enough to prevent even a single ROP gadget from remaining in place
long enough to be usable in state-of-the-art ROP techniques . . . . 132

ix



ABSTRACT

Low-overhead Online Code Transformations

by

Michael A. Laurenzano

Chairs: Jason Mars and Lingjia Tang

The ability to perform online code transformations – to dynamically change the

implementation of running native programs – has been shown to be useful in domains

as diverse as optimization, security, debugging, resilience and portability. However,

conventional techniques for performing online code transformations carry significant

runtime overhead, limiting their applicability for performance-sensitive applications.

This dissertation proposes and investigates a novel low-overhead online code transfor-

mation technique that works by running the dynamic compiler asynchronously and

in parallel to the running program. As a consequence, this technique allows programs

to execute with the online code transformation capability at near-native speed, un-

locking a host of additional opportunities that can take advantage of the ability to

re-visit compilation choices as the program runs.

This dissertation builds on the low-overhead online code transformation mecha-

nism, describing three novel runtime systems that represent in best-in-class solutions

to three challenging problems facing modern computer scientists. First, I leverage

online code transformations to significantly increase the utilization of multicore dat-

x



acenter servers by dynamically managing program cache contention. Compared to

state-of-the-art prior work that mitigate contention by throttling application execu-

tion, the proposed technique achieves a 1.3-1.5× improvement in application per-

formance. Second, I build a technique to automatically configure and parameterize

approximate computing techniques for each program input. This technique results

in the ability to configure approximate computing to achieve an average performance

improvement of 10.2× while maintaining 90% result accuracy, which significantly im-

proves over oracle versions of prior techniques. Third, I build an operating system

designed to secure running applications from dynamic return oriented programming

attacks by efficiently, transparently and continuously re-randomizing the code of run-

ning programs. The technique is able to re-randomize program code at a frequency

of 300ms with an average overhead of 9%, a frequency fast enough to resist state-of-

the-art return oriented programming attacks based on memory disclosures and side

channels.

xi



CHAPTER I

Introduction

Compilation is the process of turning code written in a high-level language into

machine code instructions and data that can be understood by the machine. The job

of the compiler is to ensure correctness, producing machine code that faithfully imple-

ments the source code specified by the programmer. However, correctness is just the

beginning of what the modern compiler must do. There may be many machine code

implementations of source code that are correct, and today’s programmers rely heav-

ily on the compiler to produce machine code that executes efficiently on the hardware

platform. To achieve this efficiency the compiler makes a number of assumptions

about the execution environment of the program. For example, differences in the L1

cache sizes among hardware platforms may cause the compiler to optimize locality

by structuring code to use a different memory access pattern via a customized tiling

optimization [99, 177]. The assumptions a compiler must make about a program’s

runtime environment are not limited just to the features of the hardware platform,

also including the makeup and size of program inputs as well as the impact of other

running programs and services on the system.

As a result of these assumptions and the rigidity they impose on software in terms

of dealing with different runtime environments, there has been a wealth of prior work

aiming to enable online code transformations to allow the assumptions made by the

1



compiler, and the resulting machine code, to be changed as the program’s execution

environment changes [16, 17, 29, 40, 41, 59, 91, 92, 98, 107, 109, 143, 152, 164, 169, 170,

173, 184, 190]. Although the roots of online code transformation are in performance

optimization, there has since been a wide spectrum of other important use cases

that have been shown in the literature. The main classes of use cases for online code

transformations is depicted in Figure 1.1. Online code transformations have been used

to enact security measures [175], improve the resilience of software to errors [64], to

build debugging tools [87], and to facilitate software portability, enabling programs

compiled for one machine to run on another [43,53,59].

Despite these prior efforts, dynamic compilation has not been widely adopted and

put into continuous operation in performance-sensitive production and commercial

domains. This dissertation argues that the key to facilitating adoption is to realize

a mechanism for online code transformation that introduces low performance over-

head, is platform-agnostic, has the full transformative power of a static compiler, and

is capable of extrospectively examining the program’s execution environment as the

program runs. This motivates us to design a new approach to online code transfor-

mations that overcomes these challenges, and to investigate the implications of our

approach on two important use cases for online code transformations – optimization

and security.

1.1 Motivation

This section motivates the need for a deployable, low-overhead technique for online

code transformations in the context of two critical problems that exist in today’s

computer systems.

2



Optimization

SecurityResilience

Debugging Portability

Online Code 
Transformations

Figure 1.1: Online code transformations have a range of uses, including optimization,
security, portability, resilience and debugging. This dissertation proposes a new low-
overhead online code transformation technique and its implications on performance
and security

3



1.1.1 Datacenter Server Utilization

Large enterprises such as Google and Facebook build and maintain large data-

centers known as Warehouse Scale Computers (WSCs) dedicated to hosting popular

user-facing webservices along with a variety of support applications. These data-

centers are expensive and resource-intensive, with price tags now being measured in

the billions of dollars [118, 121] and energy demands that require dedicated power

plants. Maximizing the efficiency of compute resources in modern WSCs is an im-

portant challenge rooted in finding ways to consistently maximize server utilization

to minimize cost.

Many datacenters run a mix of high-priority, often latency-sensitive, applications,

such as web search and social networking, along with low-priority applications. The

strategy of co-locating multiple applications on a single server has proved critical

for maximizing utilization and minimizing cost [54, 113–115]. However, a significant

challenge that emerges from the unpredictable dynamism in WSCs and limits our

ability to co-locate is the threat of violating the quality of service (QoS) of user-

facing latency-sensitive applications. Sources of dynamism include:

1. fluctuating user demand (load) for user-facing applications,

2. highly variable co-locations between user-facing and batch applications on a

given machine, and

3. constant turnaround on each server; when an application completes, new appli-

cations are mapped to the server.

To deal with the threat of QoS violations, sophisticated software systems have

been used to mitigate the effects of dynamism, acting to maximize server utilization

while minimizing QoS violations [54, 114, 115, 170, 179, 180]. State-of-the-art runtime

systems [170,180] solve the QoS problem by introducing short naps into the execution

4



stream of the low-priority application, unilaterally reducing the pressure on all shared

resources in order to allow the high-priority application to make faster progress. Re-

QoS [170], for example, is a static compiler-enabled dynamic approach that throttles

low-priority applications to allow them to be safely co-located with high-priority co-

runners, guaranteeing the QoS of the high-priority co-runners and improving server

utilization.

Such software systems are well-suited to improving server utilization, allowing

some progress to be made on low-priority batch applications while guaranteeing QoS

in latency-sensitive applications. This style of approach works well at meeting applica-

tion QoS targets because there is some level of nap intensity that hinders low-priority

applications enough to allow high-priority applications to meet their QoS targets.

However, due to the inability to transform application code online, these approaches

are limited to using the heavy handed approach of putting the batch application to

sleep, i.e., napping, to reduce pressure on shared resources.

A capability missing in the WSC system software stack is the ability to dynami-

cally transform and re-transform executing application code, which limits the design

space when designing solutions to deal with the dynamism found in WSCs and leads

to missed optimization opportunities. An example of such an optimization is to apply

software non-temporal memory access hints to an application code to reduce its cache

allocation and protect the QoS of its user-facing latency-sensitive co-runners. Modern

ISAs, such as x86 and ARMv8 [2, 3], include prefetch instructions that hint to the

processor that a subsequent memory access should not be cached. This instruction

provides a mechanism that can cause an application to occupy more or less shared

cache, and thus can enable higher throughput co-locations while protecting the QoS

of high priority co-runners. However, it is difficult to leverage these hints effectively

without a continuously-available low-overhead a mechanism to dynamically add and

remove them in response to changing conditions on the server.

5



Approx. gamma correctionExact gamma correctionSource image

96%

77%

Figure 1.2: One approximation approach (16x8 tiling [146]) produces
outputs of very different quality across inputs

1.1.2 Approximate Computing

The emergence of applications in the domains of image and sound processing, com-

puter vision, machine learning, and data mining significantly increase the processing

demands on compute infrastructure as the usage of wearable technologies [71,117,128]

and intelligent personal assistants [9, 72, 119] rises. These emerging applications rely

heavily on regularly-structured computations on inputs such images, video, and sound,

and have loose constraints on the quality of output. The need for significant improve-

ments in processing throughput for these applications along with loose quality con-

straints make them ideal candidates for approximate computing, where small amounts

of output accuracy can be traded for large improvements in performance or energy.

The general purpose software-based approximate computing techniques typically

applied to regularly-structured computations, such as loop perforation [84, 140], al-

gorithm selection [8,55], and numerical approximation [81], have been important and

successful vehicles for realizing approximation in practice. These approaches can

6



be realized on commodity hardware, apply to a variety of problem types, and are

straightforward for programmers to implement. However, the performance improve-

ments achieved by prior work, 1.1× to 4× [15,84,85,116,142,146,147,159], has been

regarded as the ceiling on the performance and energy gains that are possible [35].

To breach this ceiling and realize the full potential of approximate computing,

this work reconsiders how to approximate and observes that prior work falls into two

categories.

Category #1: Calibration Intensive. Calibration computes both exact and

approximate results and compares them to measure the accuracy of the approximate

approach on some (set of) problem inputs. Calibration has been used to drive offline

approaches [84], runtime systems [147], and within systems that use a combination of

the two [15]. Because it is expensive to compute the exact solution and the accuracy of

the approximate solution(s) on every input, calibration must be used sparingly. This

approach encumbers the flexibility of approximation and ultimately the performance

gains that can be realized.

Category #2: Profile Dependent. Profile guided approaches [63, 85, 159] make

approximation decisions based on average or worst case behavior of a set of training

inputs. This class of approaches relies on training with inputs that are representative

of real-world inputs, which may be difficult to achieve in practice.

The key insight of this work is that, common to both classes of approaches, one

approximation is used to cover multiple inputs. Those that focus on worst case ac-

curacy can result in overly conservative approximation for many inputs, while those

that focus on average case accuracy may be overly aggressive and fail to deliver suf-

ficient accuracy in the worst case. As we show in this work, designing approximation

systems that discount the differences between inputs hinders both the performance

and accuracy of software-based approximation.

In this work, we present an approach to addressing this limitation that is guided by

7



two observations. Firstly, the accuracy of approximate programs can depend heavily

on program input. Consider the example presented in Figure 1.2, which shows two

images that have been processed by an identical approximate gamma correction with

results that are of wildly different quality. Typical approaches to dealing with this

difference in quality would dial down the aggressiveness of the approximation for

both images, sacrificing performance for the first to produce satisfactory accuracy for

the second. Addressing this problem requires a low-overhead mechanism that allows

approximate computing techniques to be tuned and customized dynamically and for

each specific problem input.

1.1.3 Code Reuse Attacks

Traditionally, operating systems have been designed to manage hardware and

software resources in computing systems with the implicit assumption that the system

does not have visibility into, nor control over, the code within executing processes.

From the perspective of the OS, processes are black boxes for which to provide services

such as thread management, scheduling, interrupt handling, memory management,

file systems, device drivers, I/O, networking and security, among others.

Despite the efforts of system and software developers to build secure systems

within this design paradigm, a class of execution hijack attacks called code reuse

attacks – including a sophisticated form of code reuse known as return-oriented pro-

gramming (ROP) – remain a viable method of orchestrating attacks that subvert the

intent of running programs [34, 70, 157, 162]. It was recently reported that ROP has

been used to facilitate more than 95% of the known Windows exploits over the last

two years [136] and has been used as a key component in recent high-profile attacks

on industrial targets [60].

The difficulty in preventing such attacks lies in their very nature – programs

have a rich set of functionality in their executable code to efficiently perform useful

8



computation, effectively handing attackers a rich set of code widgets that can be

subverted to achieve the attacker’s ends. Without visibility into application code

itself, and without a capability of modifying application code at runtime, modern

operating systems are limited in their ability to defend against these attacks.

Current defenses against code reuse attacks fall into one of two categories: those

that employ static Address Space Layout Randomization (ASLR), randomizing the

locations of program components as execution begins [21,77,171,174,182], and those

that enforce control-flow integrity (CFI) to stop unintended control flow changes and

mitigate specific classes of code reuse attacks [39, 49, 50, 52, 160, 183]. Both of these

categories of defenses have fundamental limitations.

• Limitations of ASLR — rudimentary types of code reuse attacks based on

static program analysis are thwarted, or at least made mode difficult by, static

ASLR. However, recent work has demonstrated that code reuse attacks can be

fully orchestrated and executed dynamically, thus bypassing even the strongest

forms of ASLR [156,162].

• Limitations of CFI — recent literature [42,52,131] has shown that enforcing

control-flow properties [4] (e.g., call-return parity) can defend against certain

classes of code reuse attacks when the method of attack is known in advance.

For instance, ROPDefender [52] maintains a shadow stack to ensure congruence

between return targets and call sites to defend against return-based ROP at-

tacks. However, ROP is general enough to be done without returns [37], and

thus this defense is easily bypassed by sophisticated attackers.

The key motivation behind this work is that there is a third category of approaches

that has not been well studied and requires rethinking the design of the modern

OS. This approach is to design an OS that continuously has visibility into, and the

capability to transform, application code as it runs — a code transforming operating

9



system. A system design that includes this visibility and transformation power over

application code allows the system to dynamically and continuously re-randomize

native code as applications execute, breaking some of the fundamental assumptions

necessary to orchestrate a broad set of code reuse attacks.

Re-randomizing code is powerful because code reuse attacks are fundamentally

bottlenecked by the ability of the attacker to gain visibility1 into the executable

bytes of the running program, and thus the time delay between the inception, con-

struction, and execution of the attack is exploited to thwart such attacks. Code

re-randomization constricts the window of time in which a program’s bytes remain

in one place, thus preventing an attacker that can gain visibility into the executable

code of the program from making use of that code in an attack.

Prior work has acknowledged the benefits of code re-randomization [162, 174].

However, as valuable as it is to apply re-randomization, it is just as challenging to

build a system to re-randomize code with low runtime overhead. This state of affairs

was summarized in a recent paper describing a state-of-the art ROP attack:

“While [re-randomizing code pages] may be one way [to render our attack in-

effective], we expect that re-randomization costs would make such a solution

impractical.” [162]

1.2 Goals of Online Code Transformation

While the advantages of a low-overhead mechanism for online code transformation

are clear, designing such a mechanism that is deployable in production environments

has proved challenging. Despite a substantial body of prior work and having been

shown to be useful in many problem domains [16, 17, 29, 40, 41, 59, 91, 92, 98, 107,

1Visibility means that the attacker has knowledge of the contents of some part of the memory.
Such visibility can be gained, for example, via unintended memory disclosure bugs [162] or side
channels [156].

10



109, 143, 152, 164, 169, 170, 173, 184, 190], dynamic compilation has not been widely

adopted, particularly in production and commercial domains. Several challenges have

prevented the realization of a deployable dynamic compilation mechanism:

• Overhead — It has been reported that companies such as Google tolerate no

more than 1% to 2% degradation in performance to support dynamic monitor-

ing approaches in production [137]. The high overhead that is common in tradi-

tional dynamic compilation frameworks has served as a barrier to adoption in these

performance-critical environments.

• Generality and Low Complexity — To avoid hardware lockin and overly com-

plex software maintenance, a deployable dynamic compilation system should im-

pose little or no burden on application developers and should require no specialized

hardware support.

• Transformation Power — Traditional dynamic optimizers raise native machine

code to an intermediate representation before applying transformations. This ap-

proach limits the power of the transformations due to loss of source level informa-

tion. Having the ability to apply transformations online that are as powerful as

static compilation significantly impacts the flexibility of the dynamic compiler.

• Continuous Extropsection — In a highly dynamic environment where multiple

applications co-run, specializing code to runtime conditions should be done both

introspectively, based on a host program’s behavior, and extrospectively, based on

external applications that are co-located on the same machine. To accomplish this,

a runtime code transformation system must be aware of changing conditions for

both itself and its neighbors, applying or undoing transformations accordingly.

11



1.3 Design Overview

1.3.1 Protean Code

This dissertation describes the design of protean code, a general-purpose, near-free

approach to monitoring, regenerating and replacing the code of running applications

with semantically equivalent, specialized code versions that reflect the demands of

the execution environment. Protean code is a co-designed compiler and runtime

system built on top of LLVM [100]. At compile time, the program is prepared by a

compiler pass that virtualizes a selected subset of the edges in its control flow and call

graphs, providing hooks through which the runtime system may redirect execution.

This novel mechanism allows the runtime system, including the dynamic compiler,

to operate asynchronously while the application continuously runs. The compiler

also embeds a copy of the program’s intermediate representation (IR) into the data

region, to be utilized by the runtime compiler for rapidly performing rich analysis

and transformations on the program. The protean code runtime monitors all running

programs on the system, generating and dispatching specialized program variants that

are tailored to the particular conditions detected on the system at any given point in

time. Protean code addresses the goals described in 1.2 in the following ways:

1. Low Overhead — Diverting program control flow through selectively vir-

tualized points introduces near-zero (<1%) overhead and provides a seamless

mechanism through which the runtime compiler introduces new code variants

as they become ready.

2. General and Flexible — To enact optimizations, protean code requires no

support from the programmer or any specialized hardware. The design of pro-

tean code optimizations is in the purview of compiler writers, and protean code

can be deployed for large applications on commodity hardware.

12



3. Transformation Power — Protean code embeds the IR into the program at

compile time, which in turn is used by the runtime compiler as the starting

point for analysis and optimization. Using the IR gives the runtime compiler

the flexibility of a static compiler in terms of the analysis and optimization

options that are available.

4. Continuous Extrospection — The protean code runtime uses program counter

samples along with inter- and intra-core hardware performance monitors to

detect changes to both host and external applications co-located on a single

machine. This approach allows the runtime to react to highly dynamic envi-

ronments by revisiting compilation choices introspectively as program phases

change or extrospectively as the environment changes.

1.3.2 Increasing Server Utilization in Datacenters

With the protean code mechanism in place, we design Protean Code for Cache

Contention in Datacenters (PC3D), an approach that generates and deploys code

transformations to change how applications consume shared cache resources. To tune

cache occupancy based on dynamically changing system conditions, PC3D monitors

changes in the behavior of the host program and its external co-running applications

via a lightweight co-phase2 analysis scheme. PC3D reacts to co-phase changes by us-

ing the online code transformation capability to generate, dispatch and evaluate code

variants to discover how to mix cache pressure reduction transformations with nap-

ping in order to both meet the QoS of high-priority applications while maximizing the

performance of low-priority applications. The search through the set of transforma-

tions is accomplished via a carefully designed greedy search algorithm that searches

available code transformations to increase and decrease cache occupancy while en-

2A co-phase is defined as the combination of the currently running phases among a program and
its co-runners.

13



forcing QoS targets.

1.3.3 Input Responsiveness in Approximate Computing

This work introduces Input Responsive Approximation (IRA), an approximation

approach that leverages these insights to dynamically and automatically configure

the approximation options for each problem input, including selecting which code

regions to approximate and how to tune the approximations within those regions.

IRA achieves this by creating a canary input — a much smaller representation of the

full input — at the outset of the problem. The canary input is used to dynamically

predict the accuracy and speedup characteristics of the full input for a number of

approximation options, then to dynamically choose the fastest option that achieves

the desired level of accuracy.

1.3.4 Resisting Code Reuse Attacks

On top of the protean code mechanism, we design ProtOS, an operating system

architecture that overcomes the challenge of re-randomizing application with low-

overhead to give the system a secure, efficient, transparent and robust mechanism for

transforming running native applications. We build the dynamic compiler into the

OS itself, which functions as a transparent service that operates on running programs.

This design confers the security advantages of an OS service, in that critical structures

in the dynamic compiler are as safe as other operating system services. Using the

ProtOS system architecture, we carefully design a novel service for continuous code

re-randomization that constantly re-positions and reorganizes the code of running

programs throughout execution. While a conventional system architecture leaves code

locations fixed throughout execution, the code re-randomization service in ProtOS

continuously iterates over the code in the program to generate re-randomized variants

of program code. Having an online code transformation capability allows ProtOS to

14



choose (and re-choose) from a range of code transformation techniques and select

how to manage the security vs. overhead tradeoffs offered by each. Our prototype

implementation supports mixes of two re-randomization strategies – medium-grain

re-randomization that relocates functions without changing their structure, and fine-

grain re-randomization that additionally randomizes the order of basic blocks within

functions.

1.4 Summary of Contributions

This dissertation introduces a novel low-overhead online code transformation tech-

nique and leverages the online code transformation technique to design best-in-class

solutions to two important problems in modern computer systems. A summary of

the specific contributions are as follows:

• Low-overhead Online Code Transformations — We describe protean code,

a fully functional co-designed compiler and runtime system for enacting general

purpose online code transformations. We evaluate protean code on a real system

for the SPEC [80] benchmarks, showing that is has an average overhead of less

than 1% when the dynamic compiler runs on a separate core from the application

(Chapter III).

• Datacenter Server Utilization — We describe Protean Code for Cache Con-

tention in Datacenters (PC3D), a dynamic approach to mitigating cache pressure

in software via online compiler transformations. This approach includes a run-

time search algorithm that allows for the rapid discovery of an effective set of code

transformations for cache pressure reduction, as well as how elements of the search

generalize to other classes of online compiler transformations. We evaluate PC3D

on a real system for a set of CloudSuite [66] webservice workloads, SPEC [80] and

PARSEC [23] benchmarks, and SmashBench [115] microbenchmarks. We also per-

form an analysis of how deploying PC3D can impact energy and server provisioning

15



requirements within full-scale datacenters. Our results show that PC3D improves

datacenter utilization by up to 2.9x and an average of 1.5x over the state-of-the-art

software contention mitigation technique across a range of workloads, while meeting

98% QoS targets for high-priority latency-sensitive applications (Chapter IV).

• Input Sensitivity in Approximate Computing – we perform a thorough

study to demonstrate the extent to which approximation accuracy can depend on

problem input, showing also that approaches used in prior work to conservatively

target worst-case behavior sacrifice the full performance potential of approximation

(Chapter V).

• Input Responsive Approximation – we introduce Input Responsive Approxi-

mation (IRA), a framework for automatically configuring approximation for every

input supplied to a problem. IRA determines where to approximate, automati-

cally selecting which code regions are most amenable to approximation for each

input, as well as configuring the approximation within those regions to the fastest

configuration that meets a specified accuracy bound (Chapter V).

• Code Transforming Operating System — We investigate the advantages of

a system architecture that changes the abstraction between operating systems and

compiler technologies by including a code transformation capability in the oper-

ating system. Based on this investigation we introduce ProtOS, the first system

architecture to host a service that provides a full-featured code transformation

capability (Chapter VI).

• Resisting Code Reuse Attacks — We describe the design and implementa-

tion of a novel service built using the ProtOS system architecture that implements

continuous code re-randomization, a transparent, low-overhead technique for un-

dermining code reuse attacks. We perform a thorough investigation of the resource

overhead and security features of our system on a spectrum of applications, in-

cluding CPU and memory intensive applications that stress the performance as-

16



pects of our design. Our investigation demonstrates that program code can be

re-randomized at a frequency of 300ms while imposing an average of 9% overhead

across a wide range of applications, providing protection against state-of-the-art

code reuse attacks that have been shown in recent literature with low enough over-

head to be deployed in production systems (Chapter VI).

17



CHAPTER II

Background and Related Work

In this Chapter, we give background and survey the related literature to the

topics covered in this dissertation. These include prior efforts in building online code

transformation mechanisms, as well as techniques that have been used to enable co-

location to improve datacenter server utilization and protect programs from code

reuse attacks.

2.1 Online Code Transformations

The study of online code transformations is an important problem in the com-

piler research and development communities because this class of techniques has been

shown to be useful in a number of problem domains [16, 17, 29, 40, 41, 59, 91, 92, 98,

107, 109, 143, 152, 164, 169, 170, 173, 184, 190]. However, there are several limitations

that prevent the wide adoption of online code transformation techniques in produc-

tion environments. These limitations include high runtime overhead, dependence on

programmer support or specialized hardware, limitations on the available transfor-

mations, or inability to react to dynamic execution environments.

Many online code transformation techniques are based on full virtualization, where

program execution is tightly controlled by the dynamic compilation infrastructure. In

this model, the dynamic compiler acts as a shepherd to the program, taking control of

18



its execution frequently (usually at branches or other selectively-chosen control-flow

operations) to dynamically compile its upcoming execution paths [16, 30, 40]. The

main limitation of this class of techniques is that they impose high overhead. Due

to the frequency of the dynamic compiler’s intervention in the program’s execution,

the program spends a significant amount of time waiting for the dynamic compiler to

produce and optimize code, and thus they have significant runtime overheads. Despite

the effort put into minimizing this performance impact [16, 110], the state-of-the-art

system from among this class of techniques still carries overheads of 10-30% [30],

depending on the characteristics of target programs.

Others have proposed dynamic compilation techniques that uses hardware as-

sistance to minimize overhead [109]. While these have produced interesting opti-

mizations, they cannot generalize to most of the commodity hardware in use today.

Others have proposed dynamic compilation techniques that apply rules or heuris-

tics written by the programmer to determine how to generate code and undertake

optimizations [12, 47, 61, 73, 111, 173], however these techniques require significant

programmer support on a program-by-program basis.

A characteristic of most approaches to dynamic compilation systems is that they

are designed to operate on a program’s machine code, hoisting the machine code into

an intermediate representation before applying transformations and optimizations.

This approach leads to a loss of information needed to perform the full range of

program transformations available to a static compiler as it operates on the program,

such as variable types and other semantic information, limiting the flexibility of the

dynamic compiler [44].

This dissertation describes an approach that overcomes these limitations by (1)

keeping the program’s intermediate representation along with the machine code used

to implement the program, giving it the analysis and transformation capabilities of

a static compiler, and (2) decoupling the execution of the dynamic compiler and the

19



program to allow the program to continuously execute at near-native speeds. This

approach is described in detail in Chapter III.

2.2 Managing Shared Resources for Co-location

Prior work has pointed out that one of the keys to achieving high utilization in

datacenter servers is to enable co-location, a technique by which multiple applications

simultaneously run alongside one another on the same server to increase the utilization

of that server [115, 190]. However, the challenge in running applications together on

the same server is that they may contend for shared server resources such as disk,

network, memory and caches, resulting in unsatisfactory performance in one or both

of the applications. The primary challenge for enabling co-locations in the datacenter

is guaranteeing the Quality of Service (QoS) of user-facing, often latency-sensitive,

applications while they are co-running with other applications.

2.2.1 Predicting Safe Co-locations

In response to this challenge, there have been several approaches proposed in

the literature [54, 114, 179, 187] to predict when co-locations are safe - that is, to

predict which co-locations will eliminate or minimize application quality of service

(QoS) violations and act on those predictions when scheduling jobs to machines.

Unfortunately, these predictably safe co-locations may not always be available and it

is difficult to encapsulate dynamic conditions into such predictions.

2.2.2 Dynamically Enabling Co-locations

To address this limitation, techniques have been proposed to make co-locations

safe by dynamically throttling down the execution of low-priority applications by

continuously introducing ‘naps’ of varying lengths and granularities into application

execution [170, 180]. This approach has the effect of alleviating the pressure an ap-

20



plication places on shared server resources, which allows high-priority applications

to consume a larger share of resources to meet their QoS targets. However, as we

show in this work, applying naps is an overly blunt instrument and results in lower

throughput than necessary to enforce QoS.

Another technique, cache partitioning, has been used to explicitly control cache

resource allocations, mitigating cache interference among co-running applications to

ensure co-location safety. Hardware-based partitioning [48,94,135,151] allows for fine-

grain control on the assignment of partitions, however it requires customized hardware

and therefore has not been deployed in production systems. Software-based cache

partitioning has been enacted with page coloring [107, 163, 168, 185], which controls

the parts of cache an application can access via its page assignment in the operating

system. Unfortunately, dynamically changing an application’s cache allocation incurs

significant performance penalties due to the overhead of page migration [185]. In

addition, page coloring cannot be used in the presence of large pages [107,168].

2.2.3 ISA Support For Temporal Locality Hints

The importance of quantifying and managing cache contention has been shown

by prior work [17, 91, 98, 107, 143, 152, 164, 169, 170, 190]. Temporal locality hints for

memory accesses can be exploited to alleviate the pressure an application puts on

the shared memory subsystem. Support for these hints is available across a broad

range of instruction set architectures [67], including the modern high-performance

platforms that appear in datacenter servers such as x86 [3] and ARMv8 [2].

Temporal locality hints can be employed in software to suggest how data should

be cached. On the x86 instruction set architecture (ISA) family, the prefetchnta

instruction hints to the microarchitecture that data should be prefetched in a way that

minimizes cache pollution. The motivating premise behind supporting these hints is

that there are cases where software can identify and take advantage of the fact that

21



a memory access lacks temporal locality – that is, it is likely to be evicted from

cache before being used again. By hinting to the microarchitecture that a memory

access lacks temporal locality, it may avoid evicting other, more useful data from the

cache. In this dissertation, we leverage online code transformations to strategically

insert temporal locality hints to dynamically change the cache pressure an application

places on its co-runners.

2.3 Approximate Computing

There are many approaches for trading result accuracy for decreased execution time or

energy, based on some combination of programmers [31], runtime systems [15,83,165],

programming languages [8,148], middleware [5,69], compilers [147], and hardware [6,

62,62,75,108,126,149,181].

2.3.1 Approximation in Software

Some approaches to software-based approximation use formal analysis to pro-

vide worst-case guarantees [32, 33, 123, 153], while others use calibration offline [8,

84, 122, 124] or at runtime [5, 146, 147] to guide approximation. Others have pro-

posed software [76,142] and hardware [96] systems to catch highly inaccurate approx-

imations early in their execution. SAGE [147] uses a dynamic calibration interval

coupled with steepest ascent decisions based on the result accuracy. Another body

of related research analyzes the accuracy or robustness of programs in the event

of faults [104, 106, 161] or uncertain input data [28, 150], which has been used to

locate code regions to approximate or bound the accuracy of approximate computa-

tion [32,33,36,124].

Approximation has been performed by decreasing the number of iterations or

tasks executed [84, 116, 159] or by replacing exact operations with less accurate ver-

sions [122,153]. One such replacement strategy is to relax synchronization in parallel

22



architectures [138, 147, 172]. Misailovic et al. [122] replace loops with parallel loops.

ApproxHadoop [69] is an influential recent work that leverages statistical techniques

to provide accuracy guarantees when applying approximation to MapReduce applica-

tions. Branch and data herding [153] eliminate warp divergence in GPGPUs, selecting

the most common branch or memory access for the entire warp. Compilers and frame-

works have been used to facilitate selecting between multiple programmer-supplied

implementations [8, 55, 165, 189]. Loop perforation was used by Hoffmann et al. [84]

and can incorporate extrapolation to correct bias in the result [140], similar to the

work on task skipping by Rinard [139]. Discarding tasks is a similar method to loop

perforation, but items in a queue are discarded rather than iterations in a loop [141].

2.3.2 Approximation in Hardware

In hardware, Yeh et al. [181] design an FPU with dynamic precision that uses

resource sharing, trivialization, and memoization. Approximation was applied to non-

volatile memory by Sampson et al. [149] and to volatile memory by Liu et al. [108].

EnerJ [148] is a language extension with a type system for approximate variables.

Operations on these variables are carried out on the approximate logic and storage

of specialized hardware. The language was applied to Truffle [62], a generalized

architecture designed to support approximation at the instruction level. Running code

to neural processing units (NPUs) was explored by Esmaeilzadeh et al. [63] and more

recently by others [75, 126]. NPUs have also been designed using limited-precision

analog components [6]. Online quality management using specialized hardware has

been proposed by Khudia et al. [96].

Each of these solutions requires custom hardware to achieve improvement. IRA,

on the other hand, is software-based and fully realizable on commodity hardware.

23



2.4 Code Reuse Attacks and Defenses

Early program subversion attacks were based on injecting malicious code into

program memory then executing the injected code, resulting in widespread adoption

of the W ⊕ X paradigm1 in modern systems. W ⊕ X dictates that memory can either

be writable or executable, but never both, and thus is also called Data Execution

Prevention (DEP). So important is the W ⊕ X mechanism that many modern CPU

implementations have begun support W ⊕ X via per-page execute disable permission

bits [7,10,90]. The ubiquity of this paradigm has proven prohibitive to code injection

attacks, spurring a shift in the focus of attackers to reusing executable code that

already exists in the address space of the program. These code reuse attacks are

challenging to defend against. After all, programs must be able to execute code to

perform useful tasks. However, this useful code can be subversively reused by an

attacker to achieve their own ends, and in principle the code that proves to be useful

to attackers are limited only by their creativity.

A code reuse attack is enacted by first revealing the contents of execute-enabled

memory to discover where a useful code sequence resides, followed by some method of

redirecting execution to that location. This is often achieved by writing the address of

that code sequence onto the stack to cause the program to return to it. Combined with

the wide variety of powerful system interaction capabilities available in libc (e.g.,

changing memory protections or modifying file state) and the fact that nearly every

Unix program links against it, these attacks came to be known as return-to-libc

attacks. However, this classical model of return-to-libc attacks is somewhat lim-

ited, as it depends on the just the right sequence of instructions being present in the

program.

1We use the nomenclature R, W and X to refer to memory read, write and execute permissions,
respectively.

24



2.4.1 Return-oriented Programming

Shacham [157] extended the return-to-libc attack, demonstrating the feasibility of

chaining together short sequences of bytes ending in return instructions – gadgets –

from disparate locations in memory to execute arbitrary functionality on behalf of the

attacker. Because control is passed from gadget to gadget using return instructions,

this technique was dubbed a return-oriented programming (ROP) attack. The basic

sequence of steps in executing a ROP attack is as follows:

1. Locate Gadgets — the attacker first gains visibility into the contents of ex-

ecutable program memory to discover where useful gadgets reside. This can

be done via static analysis, side channels, or other information leaks such as

memory disclosure bugs. Memory disclosure bugs that reveal the contents of

memory are commonplace in production applications, such as in the OpenSSL

Heartbleed vulnerability that affected as many as 55% of popular HTTPS web-

sites [58]. Gadgets need not be sequential or even near one another, as control

can be passed from gadget to gadget via the return instructions at the end of

each gadget.

2. Construct and Deliver Payload — gadgets are chained together as primitive

building blocks that produce some higher-order functionality that is of use to

the attacker (e.g., setting up arguments and making a system call). Once the

gadget chain is constructed, a payload containing the gadget addresses is placed

onto the stack.

3. Hijack Execution — the execution of the gadget sequence can be triggered

by hijacking the flow of execution (e.g., by overwriting a function pointer) to

the first gadget. Once the first gadget is executed, control returns to the second

gadget, which executes then returns to the third gadget, and so forth, until the

functionality desired by the attacker has been executed in full.

25



ROP is the state-of-the-art technique in subverting program execution, and has

produced a wide body of academic literature dealing with ever more sophisticated

attack and defense techniques in recent years [25,27,34,37,42,51,52,68,70,82,89,131,

154,156,157,166,167,174,178,182,183]. Moreover, it was recently reported that ROP

was used in 95%+ of the known Windows exploits over the last two years [136] and

in attacks on a number of sensitive industrial firms [60].

ROP was originally conceived by Shacham [157], where he argues that any program

linking against libc likely contains a rich enough set of ROP gadgets to achieve

arbitrary functionality. Others have extended ROP and developed automated tools

for identifying and constructing useful gadgets chains for ROP exploits [25, 56, 89,

154]. Checkoway et al. [38] demonstrate an attack on a widely used voting machine.

Checkoway et al. [37] and Bletsch et al. [27] generalize ROP to circumvent stack-based

defense mechanisms by constructing gadgets without the use of return instructions.

Recently, in response to the popularization of various forms of Address Space Layout

Randomization (ASLR), Snow et al. [162] demonstrate an exploit technique based on

memory disclosures to map a program’s randomized address space at runtime. Seibert

et al. [156] present side-channel methods that an attacker can use to learn about

code locations. Others have shown ROP attacks to exploit vulnerabilities in popular

applications, including Adobe Flash, Mozilla Firefox and Internet Explorer [132,167].

2.4.2 ASLR and Its Limitations

One of the key components of a modern code reuse attack is in obtaining visibility

into the executable bytes in program memory. With access to the program binary file,

gaining this visibility into the program’s code is trivial because the binary file con-

tains a layout and description of where in memory those bytes will eventually reside.

Similarly, code from dynamically-linked libraries loaded at fixed or predictable loca-

tions in memory are easily predicted and usable by attackers. This has resulted in the

26



widespread adoption of coarse-grain Address Space Layout Randomization (ASLR), a

countermeasure that randomizes the base address of segments such as executable and

library code, stack, and heap at each program invocation so that their exact positions

are not known in advance [21,77,82,88,97,130,174,182].

However, randomizing segment positions has been shown to be a weak defense

because the locations of large swathes of bytes become visible when the location of

anything in the segment is leaked. For example, a leaked function address effectively

gives away all of the function’s bytes because the function’s structure is known in

advance. Further extensions to ASLR randomize the locations of functions in the

segment, known as medium-grain ASLR. Still others, dubbed fine-grain ASLR, ran-

domize the locations of basic blocks within functions [174], the locations of instruc-

tions in blocks [82], or the contents of instructions themselves [130]. These techniques

raise the bar and make attacks more difficult, however recent work has shown that

even with the strongest forms of ASLR that statically change the content [130] and

locations [82] of instructions, repeatedly exploitable vulnerabilities can be used by

attackers to construct a map of memory on-the-fly, eventually allowing the attacker

to find a sufficient number of gadgets to construct a ROP attack [156,162].

2.4.3 Other Defense Mechanisms

Code reuse, and ROP in particular, are commonly used in real-world exploits [60,

136], and are an active area of literature. In response to the proliferation of these

attacks, several other classes of defenses have emerged.

Control-Flow Integrity (CFI). CFI, first introduced in 2005 [4], thwarts at-

tacks by preventing deviations from a program’s intended control flow. CFI imple-

mentations in compilers and binary instrumentation strengthen control flow stati-

cally [105,129] or dynamically [39,52,129,175]. Others use sophisticated software and

hardware mechanisms to strengthen protection and reduce overhead for CFI [26, 42,

27



131,178,182,183]. Recently, Arther et al. proposed removing indirect branches from

the ISA to enforce CFI [11]. However, CFI enforcement mechanisms are difficult to

generalize beyond limited classes of attacks, are difficult to integrate into production

systems [125,182] or introduce significant runtime overhead [39,52]. Moreover, recent

attacks have compromised state-of-the-art CFI mechanisms [34,70].

kBouncer [131] and ROPecker [42] are two recently proposed, highly effective

runtime defense mechanisms against ROP. These works leverage hardware registers

to capture anomalous behaviors that often lead to the invocation of sensitive system

calls. However, the defense capabilities of these approaches can suffer from insufficient

storage for monitoring long history and it rely heavily on the assumption that ROP

gadgets behave in certain patterns.

Continuous Re-randomization. Others have recognized value of runtime re-

randomization in thwarting code reuse attacks, while also recognizing that it is chal-

lenging to design re-randomization with low overhead [162, 174]. Guiffrida et al.

re-randomize microkernel code and data to protect against kernel exploits [68], re-

randomizing every 1 second with 40-50% overhead. Re-randomization in ProtOS

focuses on efficiently re-randomizing native application code. Such techniques for

protecting the OS are valuable and complementary to our work, protecting kernel

structures while we protect userspace applications.

28



CHAPTER III

Protean Code: Low-overhead Online Code

Transformations

This chapter introduces protean code, a novel approach for enacting arbitrary com-

piler transformations at runtime for native programs running on commodity hardware

with negligible (<1%) overhead. The fundamental insight behind the underlying

mechanism of protean code is that, instead of maintaining full control throughout the

program’s execution as with traditional dynamic compilers, protean code allows the

original binary to execute continuously while the dynamic compilation mechanism

works asynchronously and in parallel to the running application. In this approach,

the dynamic compiler diverts control flow of the application only at a set of virtualized

points, allowing rapid and seamless rerouting to the newly transformed code variants

produced by the dynamic compiler. In addition, the protean code compiler embeds

the compiler’s intermediate representation (IR) with high-level semantic information

into the program, empowering the dynamic compiler to perform rich analysis and

transformations online with little overhead.

29



3.1 Protean Code

Protean code is a novel online code transformation system designed to address

the challenges that prevent the wide adoption of traditional dynamic compilation

techniques in production environments; it is low-overhead, requires no customized

hardware, has the transformative capabilities of a full-fledged compiler, and can make

compilation decisions based on the behavior of all running applications. Protean

code consists of a co-designed compiler and runtime system, termed the protean code

compiler (pcc) and the protean code runtime.

Presented in Figure 3.1, pcc readies the host program for runtime compilation by

making two classes of changes to the program. First, it virtualizes a subset of the

edges in the program’s control flow and call graphs. These virtualized edges then serve

as points in the program’s control flow at which the runtime system may redirect exe-

cution. Second, the compiler embeds several metadata structures, including an Edge

Virtualization Table (EVT) and intermediate representation of the program, within

the program’s data region, which are used to aid the runtime system in dynamically

introducing new code variants into the running program.

Shown in Figure 3.2, the protean code runtime is responsible for monitoring a host

program and its external execution environment in order to dynamically generate

and dispatch code variants when needed. The runtime system first initializes by

attaching to the program, discovering the program metadata and setting up a shared

code cache from which the program can execute new code variants. To generate and

dispatch a code variant, the runtime compiler, an LLVM-based compiler backend,

leverages the IR. The new code variant is then inserted into the code cache and

dispatched into the running host program by the EVT manager. During host program

execution, the lightweight monitoring component of the runtime detects changes in

both the host program phases and the external environment, including co-running

30



func1

func2

func3

func4

func5

protean application

&func2

&func3

&func4

&func5

func2

func3

func4

func5

func1

IR + metadata

EVT

protean 
code 

compiler

application

Figure 3.1: Overview of the protean code compiler

applications, using samples of program counters and hardware performance monitors.

In response to phase and environment changes, a decision engine determines when

and how to generate new code variants and selects the appropriate variant for the

current execution phase.

3.1.1 Design Principles

The primary goal of protean code is to provide a dynamic code transformation so-

lution that is deployable in production environments and is powerful enough to enable

techniques such as the PC3D runtime described in Chapter IV and the continuous

code re-randomization technique described in Chapter VI. There are three principles

used in the design of protean code to realize this goal:

1. Maintaining absolute control of the program throughout execution, as in tradi-

tional dynamic compilers such as Dynamo [16] and DynamoRIO [30], leads to

high overhead. Protean code instead allows the original binary to continuously

31



&func5 v4 runtime
compilerEVT manager

monitoring +
phase analysis decision engine

protean application

IR + metadata

EVT

&func5 
&func5 v4

protean code runtime

func4 v1

func5 v3

func5 v4

func5 v2

code cache

Figure 3.2: Overview of the protean code runtime

32



execute and diverts the program control flow at a set of virtualized points, in-

troducing negligible overhead. The runtime compiler is invoked asynchronously

at controllable granularity, which also limits the overhead.

2. Many traditional dynamic compilers hoist the native machine code into an inter-

mediate format at runtime to perform analysis and transformation [16, 59,109,

112,155], leading to overhead and the loss of rich semantic information present

in IR from the static compiler [44]. Protean code embeds the IR into the pro-

gram binaries, allowing the dynamic compiler to perform powerful analysis and

transformations online with little overhead.

3. Protean code requires no support from the programmer or any specialized hard-

ware, allowing it to be seamlessly deployed for large applications on commodity

hardware. It leverages hardware performance monitors for lightweight monitor-

ing, phase analysis and transformation selection, further minimizing overhead.

A useful property of the application binaries produced by pcc is that they can

be run without the runtime system, incurring negligible extra runtime over-

head. In addition, once compiled with pcc, any protean code runtime can

be used. These are particularly useful features in modern production environ-

ments, where rapidly changing conditions may dictate applying different classes

of optimizations in the pursuit of different objectives to the same application

binary.

3.1.2 Protean Code Compiler

The Protean Code Compiler (pcc) readies the host program for runtime com-

pilation by (1) virtualizing control flow edges and (2) embedding meta-data in the

program binary.

33



3.1.2.1 Control Flow Edge Virtualization

pcc adds a compiler pass to convert a subset of the branches and calls in the

program from direct to indirect operations. By virtualizing a subset of edges, pcc

sets up those edges as points in the programs execution where its control flow path

may be easily altered by the protean code runtime to route program execution to an

alternate variant of the code.

There are some important considerations to be made when selecting which edges

to virtualize. Selecting too many edges or edges that are executed too frequently may

result in unwanted overheads because indirect branches are generally slightly slower

than direct branches (the causes of this overhead are discussed shortly). On the

other hand, selecting only edges that are rarely executed risks introducing large gaps

in execution during which new code variants are not executed. Our current approach

to selecting edges is to virtualize only function calls, and only those where the callee

function has more than one basic block. We find that this approach works well in

practice, resulting in negligible overhead while ensuring that execution is promptly

routed to the new code variants.

Edge Virtualization Overheads. Protean code contains virtualized control flow

edges to allow the runtime to redirect execution as those edges are executed. There

are three sources of possible overhead that arise from edge virtualization. First, it

may lead to increased cache/memory activity. Because the EVT may be updated at

any point by the runtime, it is treated as volatile and its entries must be loaded from

memory at each use. Third, the edge virtualization table resides in memory, which

may impact program load time and memory memory footprint. Third, on certain

platforms indirect branch and call instructions use more space than direct branches

and calls. For example, direct and indirect calls with a 32-bit operand on x86 64

are 5 and 6 bytes long respectively. This may put slightly higher pressure on I-cache

and decode resources in the CPU. We evaluate the overhead of edge virtualization

34



in Section 3.2, where we observe that the overhead of edge virtualization is small in

practice (< 1% on average).

3.1.2.2 Program Metadata

Two types of program metadata are used by the protean code runtime to rapidly

generate and dispatch correct, alternate code variants at runtime.

Edge Virtualization Table (EVT). A structure called the EVT contains the

source and target addresses of the edges virtualized by pcc. The EVT is the central

mechanism by which execution of the program is redirected by the runtime. To change

execution, the runtime simply rewrites target addresses in the EVT to point to the

new code variant.

Intermediate Representation (IR). pcc serializes, compresses and places the

compiler’s intermediate representation (IR) of the program into its data region, which

the runtime decompresses then deserializes, leveraging it to perform analysis and

transformations. Having direct access to the IR yields two significant advantages.

First, it allows the runtime to avoid disassembling the binary, which can be diffi-

cult or impossible without access to fine-grain information about the executing code

paths [102, 127]. Second, the alternative of hoisting the binary to IR, as is done

in prior work, loses important semantic information and limits the flexibility of the

compiler [44]. As an example of the utility of the IR, in this work PC3D gleans

loop structure and nesting depth from the IR and uses that information to guide

compilation decisions.

3.1.3 Protean Code Runtime

The protean code runtime is a set of mechanisms that work together to generate

and dispatch code variants as the host program executes.

35



3.1.3.1 Runtime Initialization

Operating on an executable prepared by pcc, the runtime process begins by at-

taching to the program. It first discovers the locations of the structures inserted by

pcc at compile-time, including the EVT and the IR. It then initializes a code cache,

used to store the code variants generated by the dynamic compiler. Finally, because

the EVT and code cache are structures that are shared between the program and the

runtime and may be frequently accessed, the runtime sets up a shared memory region

via an anonymous mmap to encompass both structures.

3.1.3.2 Code Generation and Dispatch

The runtime generates and dispatches code variants into the program asynchronously.

When a new variant of a code region is requested, the dynamic compiler leverages

the IR of the code region to generate the new variant. Once a new code variant has

been generated, it is placed into the code cache. The EVT manager then modifies the

EVT so that the target of the corresponding virtualized edge is the head of the newly

minted variant in the code cache. The EVT update is a single atomic memory write

operation on most modern platforms, and thus requires no synchronization between

the host program and the runtime to work correctly.

Throughout these actions of the runtime process, execution of the program pro-

ceeds as normal until control flows through the virtualized edge, at which point control

reaches the new code variant.

3.1.3.3 Monitoring, Phase Analysis and Decisions

The runtime supports both introspection, monitoring changes in the host program,

and extrospection, monitoring changes in the execution environment. Based on this

monitoring, the runtime makes decisions and adapts to changing system conditions

such as application input/load fluctuation, starting or stopping of co-running appli-

36



cations, and phase changes among both the host programs and external programs.

Introspection. For host programs, the runtime identifies hot code regions by

sampling the program counter periodically through the ptrace interface. The runtime

then associates the program counter samples with high-level code structures such as

functions, allowing the runtime to keep track of which code regions are currently hot,

as well as how hot regions change over time.

To identify phase changes, the runtime also leverages hardware performance mon-

itors to track the progress of the program. Phases are defined in terms of the hot

code identified by program counter samples described above as well as by the progress

rate of the running applications using metrics such as instructions per cycle (IPC) or

branches retired per cycle (BPC). Since hardware performance monitors are ubiqui-

tous on modern platforms and can be sampled with negligible overhead, this approach

allows the runtime to conduct phase identification in a manner that is both lightweight

and general across hardware platforms.

Extrospection. Similarly, for other external programs, the runtime can optionally

track program progress and identifies phase changes via hardware performance mon-

itors. Microarchitectural status and performance, using metrics such as cache misses

or bandwidth usage, are also tracked through the performance monitor interface.

Additionally, the runtime can be configured to use application-level metrics reported

through application-specific reporting interfaces, such as queries per second or 99th

percentile tail query latency for a web search application.

Dynamic Transformation Decisions. The decision engine determines (1) when

to invoke the dynamic compiler, (2) what transformations to apply, and (3) which

variant to dispatch into the running program. The policies guiding the decision

engine depend on objective of the runtime system (e.g., the optimization and security

applications shown later use their own decision engines). Note that these policies can

be designed to carefully control how often compilation occurs to limit the overhead

37



bz
ip

2

gc
c

m
cf

m
ilc

na
m

d

go
bm

k

de
al

II

so
pl

ex

po
vr

ay

hm
m

er

sj
en

g

lib
qu

an
tu

m

h2
64

re
f

lb
m

om
ne

tp
p

as
ta

r

sp
hi

nx
3

xa
la

nc
bm

k

M
ea

n

S
lo

w
do

w
n 

vs
. N

at
iv

e

0.6

0.8

1

1.2

1.4

1.6

protean code DynamoRIO

Figure 3.3: Dynamic compiler overhead when making no code modifications (normal-
ized to native execution)

introduced by running the dynamic compiler alongside the application.

3.2 Performance Investigation

We now perform an investigation of the runtime overhead of the protean code

mechanism. The protean code static compiler and runtime compiler are implemented

on top of LLVM version 3.3. When compiling protean code or non-protean code

benchmarks, compilation is done with -O2. All experiments are performed on a quad

core 2.6GHz AMD Phenom II X4 server. We use the SPEC CPU2006 benchmark

suite [80]; as LLVM does not natively support Fortran, our prototype implementation

does not handle Fortran and so we focus our evaluation exclusively on the C and C++

benchmarks in SPEC CPU2006.

3.2.1 Virtualization Mechanism

First we investigate the baseline cost of virtualizing execution with protean code

and compare this cost with that of virtualizing execution with DynamoRIO [30].

DynamoRIO is a state of the art binary translation-based dynamic compiler, chosen

38



bz
ip

2

gc
c

m
cf

m
ilc

na
m

d

go
bm

k

de
al

II

so
pl

ex

po
vr

ay

hm
m

er

sj
en

g

lib
qu

an
tu

m

h2
64

re
f

lb
m

om
ne

tp
p

as
ta

r

sp
hi

nx
3

xa
la

nc
bm

k

M
ea

n

S
lo

w
do

w
n 

vs
. N

at
iv

e

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Edge virt.
5000ms interval
500ms interval

50ms interval
5ms interval

Figure 3.4: Dynamic compilation stress tests; compilation occurs on a separate core
from the host application

as a baseline because it is a mature software project that is actively maintained and

is well known for its low overhead relative to other dynamic compilers [65, 188].

Figure 3.3 shows the overhead for SPEC applications compiled as protean code

relative to the non-protean code version of the benchmark. The base performance

overhead of protean code mechanism is shown to be negligible, less than 1% on aver-

age. DynamoRIO, on the other hand, introduces an average of 18% overhead when

performing no code modification. The primary distinction between binary translation

and protean code is that protean code performs compilation asynchronously, out of

the application’s control flow path. Running protean code is low overhead because

the application is allowed to continually execute, even when code is being compiled

and dispatched. Binary translation incurs higher overhead because it requires all ex-

ecution to occur from the code cache or interpreter, and thus control is continually

diverted from the application back to the binary translation system.

39



●●●●

5 10 20 50 100 200 500 1000 5000

1.0

1.1

1.2

1.3

1.4

Code Generation Interval (ms)

S
lo

w
do

w
n 

vs
. N

at
iv

e
●

Same Core
Separate Core

Figure 3.5: Dynamic compilation stress tests on separate vs. same core

3.2.2 Dynamic Compilation Overhead

The protean code runtime runs in its own process and performs compilation asyn-

chronously with respect to the running host application, employing a dynamic com-

piler to introduce new code variants into the running host program. We next present

a set of dynamic compilation stress tests to demonstrate the impact of the level of

activity of the dynamic compiler. In these experiments, the host program is run with

a protean runtime configured to periodically recompile randomly selected functions

throughout the life of the running application.

Figure 3.4 shows the results of these experiments for the SPEC benchmarks for a

range of different time intervals between recompilations, where the runtime process

(including the dynamic compiler) uses a dedicated physical core. The results show

that this causes the dynamic compiler to generate very little overhead to the host

program, even when performing recompilation every 5ms. We note that the LLVM

compiler backend uses an average of around 5ms to compile a function, so the 5ms

trigger interval results in the dynamic compiler being active almost continuously.

Figure 3.5 presents, for the SPEC benchmarks, the average performance overhead of

40



performing the same dynamic compilation stress tests, with the runtime on the same

core as the host or on a separate core from the host.

While executing the runtime on a separate core introduces minimal overhead no

matter how frequently code generation is performed, the overheads of performing the

compilation on the same core as the host program can be significant in extreme cases

where compilation is nearly continuous. In an era of multicore and manycore proces-

sors, and particularly in production environments, the common case is for cores to

be heavily underutilized. For example, Google reports typical server utilization levels

of 10-50% [19]. Nevertheless, in such instances where no separate core is available

for the runtime, this overhead can be controlled by limiting the frequency of recom-

pilation. As shown in Figure 3.5, the overhead of recompilation on the same core

becomes negligible at 800ms.

3.3 Summary

This chapter presents protean code, a novel approach to dynamic compilation

designed to be deployable for performance optimization in production environments.

Protean code is nearly free of performance overhead (<1% on average), operates

without any special hardware or programmer support, and has the flexibility of a

robust static compiler. This combination of features gives protean code the ability

to remain in place continuously to establish an online code transformation capability.

Upcoming chapters will show how this capability can be leveraged to build runtime

systems to improve the efficiency and security of modern systems.

41



CHAPTER IV

Online Code Transformations to Improve

Utilization in Datacenters

Rampant dynamism due to load fluctuations, co-runner changes, and varying lev-

els of interference poses a threat to application quality of service (QoS) and has limited

our ability to allow co-locations in modern warehouse scale computers (WSCs). In-

struction set features such as the non-temporal memory access hints found in modern

ISAs (both ARM and x86) may be useful in mitigating these effects. However, despite

the challenge of this dynamism and the availability of an instruction set mechanism

that might help address the problem, a key capability missing in the system software

stack in modern WSCs is the ability to dynamically transform (and re-transform) the

executing application code to apply these instruction set features when necessary.

Leveraging protean code, this chapter describes Protean Code for Cache Con-

tention in Datacenters (PC3D). PC3D dynamically transforms running applications

to strategically insert non-temporal access hints, allowing low-priority batch appli-

cations to execute at high efficiency when running alongside high-priority latency-

sensitive applications. Our results show that PC3D achieves utilization improvements

of up to 2.8x (1.5x on average) higher than state-of-the-art contention mitigation run-

time techniques at a QoS target of 98%.

42



4.1 Protean Code for Cache Contention in Datacenters

Protean Code for Cache Contention in Datacenters (PC3D) is a protean code

runtime that dynamically applies compiler transformations to insert non-temporal

memory access hints, tuning the pressure a host application exerts on shared caches

when the QoS of an external application is threatened. PC3D is implemented entirely

as a runtime system that operates on an application prepared by the protean code

compiler, requiring no changes to the basic protean code compiler setup described in

Section 3.1.

The goal of PC3D is to find and dispatch variants of the host program code

that contain a mix of non-temporal cache hints that allows the host’s co-runners

to meet their QoS targets while maximizing the throughput of the host. To ensure

co-runner QoS, PC3D searches through a spectrum of program variants that have

varying levels of cache contentiousness. The effectiveness of interference reduction of

each variant is empirically quantified online by the protean code runtime. The best-

performing program variant is then dispatched and runs until a new program phase

or external application sensitivity phase is detected. In cases where relying solely on

non-temporal cache hints is unable to ensure QoS of the external applications, naps

are mixed with cache pressure reduction as a fallback.

4.1.1 Code Variant Search Space

PC3D generates and dispatches program variants that contain a selection of non-

temporal cache hints. We refer to each such program variant as a bit vector M =

〈M1,M2, ...,MN〉, where N is the number of loads in the host program’s code and

Mi ∈ {0, 1} represents the absence or presence of a non-temporal cache hint associated

with the ith load. The set of program variants of this form is the set of all possible bit

vectors of length N , which has a cardinality of 2N . Figure 4.1 shows the four variants

43



prefetchnta (%r14)        // m1 
mov    %r13,%rsi 
shl    $0x4,%rsi 
mov    (%r14),%r8 
prefetchnta (%r8,%rsi,1)  // m2 
mov    (%r8,%rsi,1),%rax

(a) <m1, m2> = <1, 1>

prefetchnta (%r14)        // m1 
mov    %r13,%rsi 
shl    $0x4,%rsi 
mov    (%r14),%r8 
                          // m2 
mov    (%r8,%rsi,1),%rax

(b) <m1, m2> = <1, 0>

                          // m1 
mov    %r13,%rsi 
shl    $0x4,%rsi 
mov    (%r14),%r8 
prefetchnta (%r8,%rsi,1)  // m2 
mov    (%r8,%rsi,1),%rax

(c) <m1, m2> = <0, 1>

                          // m1 
mov    %r13,%rsi 
shl    $0x4,%rsi 
mov    (%r14),%r8 
                          // m2 
mov    (%r8,%rsi,1),%rax

(d) <m1, m2> = <0, 0>

Figure 4.1: The set of variants for a small code region within libquantum on
x86 64. Non-temporal hints and affected loads are shown in bold

44



Algorithm 1: Greedy search for a code variant best that uses the right mix of
cache contention reduction and napping to maximize application performance

output: best
/* enact/evaluate 0 to obtain the nap intensity (nap0) applied to the variant to
meet co-runner QoS and the performance (R0) of the variant at that nap
intensity */
(nap0, R0)← V ariantEval(0, 0, 1)
(nap1, R1)← V ariantEval(1, 0, 1)
napUB ← nap0, napLB ← nap1

m← 1, best← 1, Rbest ← R1

i← 1
while i ≤ n and napLB < napUB do

m← 〈m1, ..., !mi, ...,mn〉 // flip ith bit in m
(napmRm)← V ariantEval(m,napLB, napUB)
if Rbest < Rm then

Rbest ← Rm, best← m, napUB ← napm
else

m← 〈m1, ..., !mi, ...,mn〉 // reject change
end
i+ +

end

return best

for a small code region (N = 2) within libquantum, where each of the four variants

contains a different mix of non-temporal cache hints. PC3D searches these variants

using a greedy search algorithm whose complexity is O(N), described in detail in

Section 4.1.3. However, even with a search complexity that is linear in the number of

load instructions, the number of variants may still be large. To navigate this space

efficiently, PC3D employs several heuristics.

4.1.2 Variant Search Space Reduction

PC3D focuses on the loads most likely to have a significant impact on application

behavior. The heuristics employed to this end are as follows:

• Exclude Uncovered Code — Leveraging the PC samples collected for host pro-

gram phase analysis, we expect code regions that never appear in those samples

45



bl
oc

ki
e

bs
t

er
−

na
iv

e

sl
ed

ge

bz
ip

2

m
ilc

so
pl

ex

lib
qu

an
tu

m

lb
m

sp
hi

nx
3

M
ea

n

%
 D

yn
am

ic
 L

oa
ds

0

20

40

60

80

100
Max. Depth Not Max. Depth

Figure 4.2: Proportion of dynamic loads in contentious applications coming from
loads at maximum loop depth

to have a minimal impact on cache pressure and application performance. There-

fore, the loads from regions not appearing in the PC samples are pruned from the

search space prior to the search. This reduces the number of loads that must be

considered by an average of 12×.

• Prioritize Hotter Code — Furthermore, we expect code regions appearing more

frequently in the PC samples to have a higher impact. Therefore PC3D prioritizes

loads from hotter code regions in the search.

• Only Innermost Loops — For a range of contentious applications as shown in

Figure 4.2, we have observed that an average of more than 80% of the dynamic loads

come from the maximum-depth loop(s) within each of the program’s functions.

Leveraging the program’s IR, PC3D recognizes loops and their nesting depths,

then prunes from the search space loads that are not at the maximum depth.

The number of static loads remaining after applying these heuristics is on average

a factor of 44× smaller than the total number of static loads in the program (see

Section 4.2.1).

These heuristics focus the optimization decisions made by PC3D on the most

46



important regions of code, a strategy we expect will also prove to be useful among

other protean runtimes. After PC3D applies these heuristics, its search is limited to

variants that are of the form m = 〈m1,m2, ...,mn〉, where mi ∈ {0, 1}. m is a bit

vector of the n loads from innermost loops among active code regions in the program

phase, ordered roughly by how much impact they are expected to have on execution.

For convenience, we refer to the variant where every load lacks a non-temporal hint

as m = 0 and its converse, the variant where every load has a non-temporal hint, as

m = 1.

4.1.3 Traversing the Variant Search Space

The variant search is guided by Algorithm 1. The search begins by evaluating

variants 0 and 1, which are the variants that exert the most and least amount of

cache pressure, respectively, out of all the variants in the search space. Because these

variants are at the extremes of cache pressure, they are also at the extremes of the

nap intensity required to meet co-runner QoS targets, and therefore may be viewed as

lower and upper bounds, respectively, for the nap intensity that would theoretically

be required to satisfy co-runner QoS for any program variant. As we discuss shortly,

these bounds are used to limit the range of nap intensities that are evaluated for each

variant, improving how quickly PC3D can converge on the right code variant.

Using 1 as a starting point, the algorithm steps through loads in the order of

decreasing importance. For each load, the algorithm revokes the load’s non-temporal

hint, then calls V ariantEval (Algorithm 2) to enact the resulting code variant and

evaluate whether that revocation improves the application’s performance given the

particular level of cache pressure produced by that variant along with the level of nap

intensity required to allow the application’s co-runners to meet their QoS targets.

If the incremental change is found to have improved application performance, the

change is kept and the algorithm repeats these steps on the next load. Otherwise,

47



Algorithm 2: V ariantEval, evaluation of a single program variant in PC3D

input : m, napLB, napUB
output: napm, BPSm
napcur ← (napLB + napUB)/2
BPS ← 0
generate and dispatch variant m
while napLB < napUB do

set nap intensity (napcur)
if QoS of co-runners is satisfied then

napUB ← napcur
BPS ← BranchesPerSecond m

else
napLB ← napcur

end
napcur ← (napLB + napUB)/2

end
return (napcur, BPS)

the change is rejected and the algorithm repeats these steps on the next load.

Note that each variant accepted as the best produces more cache pressure than the

previous best version. Similar to the logic that was used to establish program-wide

lower and upper bounds on the nap intensity range, upon accepting a variant as the

best the upper bound on nap intensity is lowered to the nap intensity of the newly

accepted variant.

4.1.4 Online Evaluation of Variants

PC3D searches for program variants that improve application performance while

meeting co-runner QoS. Guiding the search are empirical evaluations of a sequence of

program variants, which are dispatched then evaluated against the current running

set of co-runners. Each variant produces a particular level of cache contentiousness,

and may need to run with a particular nap intensity to allow its co-runners to hit

their QoS targets.

This concept is demonstrated in Figure 4.3, which presents the performance of

48



0 20 40 60 80 100

N
or

m
l. 

P
er

fo
rm

an
ce

   
   

   
   

  

0%

20%

40%

60%

80%

100%

(a) Original program variant 0

Nap Intensity

0 20 40 60 80 100

N
or

m
l. 

P
er

fo
rm

an
ce

   
   

   
   

  

0%

20%

40%

60%

80%

100%

(b) Fully non−temporal program variant 1

Application BPS
Co−runner IPS
QoS target (95%)
Co−runner QoS met

Figure 4.3: Online empirical evaluation for two variants of libquantum (application)
running with er-naive (co-runner)

49



two variants of libquantum (host application) running with er-naive (external high-

priority co-runner) as a function of the nap intensity applied to libquantum. Per-

formance of libquantum is reported as branches per second (BPS) normalized to

its BPS while running alone, while performance of er-naive is reported as instruc-

tions per second (IPS) normalized to its IPS running alone. We use BPS for host

applications since, unlike branch counts, their static instruction counts change with

the insertion/removal of non-temporal hints. As Figure 4.3 shows, each of these two

variants exerts a different level of cache pressure on er-naive, and thus given a hypo-

thetical QoS target of 95% for er-naive, a different level of nap intensity is required

to allow er-naive to hit its QoS target. In this example, the libquantum variant

in 4.3(a) requires a nap intensity of 99% to allow er-naive to meet its QoS target,

while the variant in 4.3(b) requires a nap intensity of just 23%. At those respective

nap intensities, the performance of variant (b) is far better than that of (a).

When evaluating a variant dynamically to discover the minimum nap intensity

needed to meet co-runner QoS, PC3D need not evaluate the entire spectrum of nap

intensities. The performance of both the application and its co-runners are monotonic

as a function of nap intensity, so PC3D organizes the variant evaluation as a binary

search over the range of nap intensities, shown in Algorithm 2. To reduce the search

even further, PC3D performs the binary search only within the range of nap intensities

between the lower and upper bounds established by evaluating other variants.

4.1.5 Monitoring Co-runner QoS

PC3D continuously monitors application co-runners to measure their quality of

service (QoS). In this work, we use co-runner instructions per second (IPS) relative

to the IPS running without the host application as a proxy for QoS. To measure

co-runner IPS without the host, PC3D uses a flux approach similar to the mechanism

described in [180], in which the host is put to sleep for a short period of time (40ms

50



in our work) and performance measurements are taken while the co-runners execute

without interference from the host. We deploy one such measurement every 4 seconds,

allowing the flux technique to be deployed with very little (1%) overhead.

51



4.2 Evaluation

Methodology The protean code static compiler and runtime compiler are imple-

mented on top of LLVM version 3.3. When compiling protean code or non-protean

code benchmarks, compilation is done with -O2. All experiments are performed on

a quad core 2.6GHz AMD Phenom II X4 server. Applications used throughout the

evaluation are drawn from CloudSuite [66], the SPEC CPU2006 benchmark suite [80],

the PARSEC benchmark suite [23] and SmashBench [115].

4.2.1 PC3D Variant Search Heuristics

PC3D searches a set of program variants to arrive at a variant that improves the

host application performance in the presence of some set of external applications.

One of the keys to making this approach effective is to locate good code variants

quickly. To accomplish this, PC3D employs several heuristics, described in detail

in Section 4.1.2, to reduce the number of load instructions considered in the search.

Figure 4.4 evaluates how effective these heuristics are across a set of contentious

applications. Each cluster shows the number of loads that must be considered by the

search as each successive heuristic is applied, normalized to the total number of loads

in the application. Where there are multiple phases in a program, Figure 4.4 presents

the average number of loads across all phases. Absolute counts of the number of loads

that appear in each program are also included as numbers at the top of the plot.

As described in Section 4.1.2, PC3D first discards loads from uncovered code –

code regions that appear to the runtime system to have never executed during the

current phase. On average, discarding loads from uncovered code results in a reduc-

tion of the search space by a factor of 12×. Second, PC3D extracts loop structure

from the IR and discards each load that is not at the maximum loop depth within

each function.

Overall, these heuristics are effective, reducing the number of static loads exam-

52



bl
oc

ki
e

bs
t

er
−

na
iv

e

sl
ed

ge

bz
ip

2

m
ilc

so
pl

ex

lib
qu

an
tu

m

lb
m

sp
hi

nx
3

%
 o

f S
ta

tic
 L

oa
ds

0%

20%

40%

60%

80%

100%

Full Program Active Regions Max Depth

(64) (70) (25) (35) (2582) (3632) (15666) (636) (257) (4963)

Figure 4.4: Heuristics significantly reduce the search space for PC3D. Static load
counts of the full programs are presented in parentheses above the bars

ined in the search by an average factor of 44× while covering more than 80% of the

dynamic loads. It is notable that the reduction in number of loads is largest for pro-

grams with high load counts, such as soplex (15666 loads reduced to 57) and sphinx3

(4963 loads reduced to 116), showing that the heuristics help keep the variant search

manageable even for programs that have large code bases.

4.2.2 Utilization Improvements from PC3D

In this section we evaluate PC3D, showing its impact on server utilization and

application QoS when running batch applications with latency-sensitive webservice

applications, including web-search, media-streaming and graph-analytics from

53



0%
20%
40%
60%
80%

100%

bl
oc

ki
e

bs
t

er
−

na
iv

e

sl
ed

ge

bz
ip

2

m
ilc

so
pl

ex

lib
qu

an
tu

m

lb
m

sp
hi

nx
3

U
til

iz
at

io
n

90% QoS tgt 95% QoS tgt 98% QoS tgt

Figure 4.5: Utilization improvement of applications running with web-search

0%
20%
40%
60%
80%

100%

bl
oc

ki
e

bs
t

er
−

na
iv

e

sl
ed

ge

bz
ip

2

m
ilc

so
pl

ex

lib
qu

an
tu

m

lb
m

sp
hi

nx
3

U
til

iz
at

io
n

90% QoS tgt 95% QoS tgt 98% QoS tgt

Figure 4.6: Utilization improvement of applications running with media-streaming

0%
20%
40%
60%
80%

100%

bl
oc

ki
e

bs
t

er
−

na
iv

e

sl
ed

ge

bz
ip

2

m
ilc

so
pl

ex

lib
qu

an
tu

m

lb
m

sp
hi

nx
3

U
til

iz
at

io
n

90% QoS tgt 95% QoS tgt 98% QoS tgt

Figure 4.7: Utilization improvement of applications running with graph-analytics

54



0%

20%

40%

60%

80%

100%

bl
oc

ki
e

bs
t

er
−

na
iv

e

sl
ed

ge

bz
ip

2

m
ilc

so
pl

ex

lib
qu

an
tu

m

lb
m

sp
hi

nx
3

Q
ua

lit
y 

of
 S

er
vi

ce

90% QoS tgt 95% QoS tgt 98% QoS tgt

Figure 4.8: QoS of web-search running with various applications

0%

20%

40%

60%

80%

100%

bl
oc

ki
e

bs
t

er
−

na
iv

e

sl
ed

ge

bz
ip

2

m
ilc

so
pl

ex

lib
qu

an
tu

m

lb
m

sp
hi

nx
3

Q
ua

lit
y 

of
 S

er
vi

ce

90% QoS tgt 95% QoS tgt 98% QoS tgt

Figure 4.9: QoS of media-streaming running with various applications

0%

20%

40%

60%

80%

100%

bl
oc

ki
e

bs
t

er
−

na
iv

e

sl
ed

ge

bz
ip

2

m
ilc

so
pl

ex

lib
qu

an
tu

m

lb
m

sp
hi

nx
3

Q
ua

lit
y 

of
 S

er
vi

ce

90% QoS tgt 95% QoS tgt 98% QoS tgt

Figure 4.10: QoS of graph-analytics running with various applications

55



bl
oc

ki
e

bs
t

er
−

na
iv

e

sl
ed

ge

bz
ip

2

m
ilc

so
pl

ex

lib
qu

an
tu

m

lb
m

sp
hi

nx
3

M
ea

n

(a) Utilization (90% QoS tgt)
P

C
3D

 Im
pr

ov
em

en
t o

ve
r 

R
eQ

oS

0x

0.5x

1x

1.5x

2x
2.31x

bl
oc

ki
e

bs
t

er
−

na
iv

e

sl
ed

ge

bz
ip

2

m
ilc

so
pl

ex

lib
qu

an
tu

m

lb
m

sp
hi

nx
3

M
ea

n

(d) Avg. Co−runner QoS (90% QoS tgt)

Q
ua

lit
y 

of
 S

er
vi

ce

0%

20%

40%

60%

80%

100%

PC3D QoS
ReQoS QoS

QoS tgt

bl
oc

ki
e

bs
t

er
−

na
iv

e

sl
ed

ge

bz
ip

2

m
ilc

so
pl

ex

lib
qu

an
tu

m

lb
m

sp
hi

nx
3

M
ea

n
(b) Utilization (95% QoS tgt)

P
C

3D
 Im

pr
ov

em
en

t o
ve

r 
R

eQ
oS

0x

0.5x

1x

1.5x

2x
2.57x

bl
oc

ki
e

bs
t

er
−

na
iv

e

sl
ed

ge

bz
ip

2

m
ilc

so
pl

ex

lib
qu

an
tu

m

lb
m

sp
hi

nx
3

M
ea

n

(e) Avg. Co−runner QoS (95% QoS tgt)

Q
ua

lit
y 

of
 S

er
vi

ce

0%

20%

40%

60%

80%

100%

PC3D QoS
ReQoS QoS

QoS tgt

bl
oc

ki
e

bs
t

er
−

na
iv

e

sl
ed

ge

bz
ip

2

m
ilc

so
pl

ex

lib
qu

an
tu

m

lb
m

sp
hi

nx
3

M
ea

n

(c) Utilization (98% QoS tgt)

P
C

3D
 Im

pr
ov

em
en

t o
ve

r 
R

eQ
oS

0x

0.5x

1x

1.5x

2x
2.84x 2.09x

bl
oc

ki
e

bs
t

er
−

na
iv

e

sl
ed

ge

bz
ip

2

m
ilc

so
pl

ex

lib
qu

an
tu

m

lb
m

sp
hi

nx
3

M
ea

n

(f) Avg. Co−runner QoS (98% QoS tgt)

Q
ua

lit
y 

of
 S

er
vi

ce

0%

20%

40%

60%

80%

100%

PC3D QoS
ReQoS QoS

QoS tgt

Figure 4.11: Utilization (top) and QoS (bottom) of PC3D vs. ReQoS, presented as
the average across all CloudSuite, SPEC and SmashBench applications

56



Table 4.1: Applications used in datacenter experiments

Host (batch) applications
External (latency-
sensitive) apps
web-search,

CloudSuite - media-streaming,
graph-analytics

SPEC
bzip2, milc, soplex, libquantum, mcf,

CPU2006
libquantum, lbm, sphinx3 milc, omnetpp,

xalancbmk

SmashBench bst, blockie, er-naive, sledge bst, er-naive
PARSEC - streamcluster

CloudSuite. The set of latency-sensitive and batch applications we evaluate are pre-

sented in Table 4.1. For these experiments, QoS is presented as the instructions

per second (IPS) an application achieves normalized to its IPS running alone on the

server. Using IPS in this fashion as a proxy for QoS is consistent with practices in

industry [186], where simple performance monitors are collected regularly and ubiq-

uitously via mechanisms such as the Google Wide Profiler (GWP) [137] and used for

making QoS estimates. Likewise, we present application utilization as the branches

per second (BPS) measured by PC3D as a fraction of the BPS the non-protean ver-

sion of the application achieves while running alone on the server. BPS is a useful

metric in this case because PC3D introduces control-invariant code transformations

that may include executing extra non-temporal access hint instructions in key code

regions.

In these experiments, the latency-sensitive application runs on a single core of the

server, while the contentious batch application runs on another single core. The con-

tentious batch application is compiled with the protean code compiler, and may be

modified dynamically to be less cache contentious if PC3D detects that the latency-

sensitive application fails to meet its QoS target. The PC3D runtime consumes only

a small fraction of the cycles on the server (Figure 4.13), monitoring all running ap-

plications to detect co-phase changes, checking that the latency-sensitive application

57



meets its QoS target, and potentially introducing transformations that improve the

cache contentiousness of the batch application.

Live Webservices. Figures 4.5, 4.6 and 4.7 show the utilization gains achieved

by PC3D over a policy of disallowing co-locations on a series of benchmarks as they

run with web-search, graph-analytics, and media-streaming. Each cluster of

bars shows the results of a particular batch application running against one of the

webservices. The three bars in each cluster show the utilization gained with QoS

targets of 90%, 95% and 98%. As applications co-run with web-search, they show

an average utilization gain of 49% when a 98% QoS target is used. When less stringent

QoS targets are in place, PC3D must mitigate contention to a lesser degree, which

allows them to achieve higher utilization rates. With a 95% QoS target, the average

utilization is 67% and with a 90% QoS target the utilization gain is 81%. Similarly,

utilization improvements for graph-analytics are 67%, 75%, 82% for the three QoS

targets. media-streaming is more sensitive to contention than web-search and

graph-analytics, where we observe utilization improvements of 22%, 40% and 60%.

Overall, these results show that PC3D consistently delivers substantial utilization

gains, even in the presence of heavily contentious applications such as libquantum

and lbm.

Figures 4.8, 4.9 and 4.10 present the QoS of the co-running webservice applications

during the same set of experiments. These results show that PC3D reliably meets its

QoS targets.

Comparison to State-of-the-Art. Figure 4.11 presents the utilization achieved

by PC3D compared to ReQoS [170], an approach for reducing application contentious-

ness that employs a hybrid static/dynamic approach to introduce naps into the run-

ning application. The results shown are the average utilization improvement of PC3D

over ReQoS for a number of batch applications averaged over the entire spectrum of

CloudSuite, SPEC and SmashBench co-runners. PC3D employs a napping mecha-

58



nism similar to the mechanism used by ReQoS to throttle applications when reducing

cache contention by dynamically inserting non-temporal hints is insufficient to allow

the latency-sensitive co-runner to meet its QoS target, so in several cases ReQoS and

PC3D show similar utilization levels. In a number of cases, however, PC3D gains

far more utilization than ReQoS. For example, at a 98% QoS target, PC3D delivers

over 2x the utilization of ReQoS on sphinx3 by finding an improved code variant,

leading to far lower cache contentiousness at relatively small performance overhead to

sphinx3. On average, PC3D improves utilization by a factor of 1.25, 1.45 and 1.52x

at QoS targets of 90%, 95% and 98%, respectively. Figure 4.11 also includes the co-

runner QoS, again presented as the average over the entire spectrum of co-runners.

Both PC3D and ReQoS consistently meet the co-runner QoS targets.

4.2.3 Webservice with Fluctuating Load

To further evaluates how PC3D adapts to the dynamism in the application and

its execution environment, Figure 4.12 presents the dynamic behavior of PC3D and

ReQoS as libquantum runs with web-search. The load on web-search shifts over

the course of the run, with the load pattern shown in 4.12(a). 4.12(b) shows a trace

of the performance (branches per second) of libquantum over the same time frame.

4.12(c) shows the QoS of web-search, and 4.12(d) shows the cycles spent running

the PC3D runtime.

PC3D Dynamic Behavior. libquantum initially (t=0) begins to execute along-

side web-search. PC3D continuously monitors web-search as an external applica-

tion, and detects that libquantum jeopardizes web-search QoS, so PC3D begins to

search for alternate code variants for libquantum that allow web-search to meet

its QoS while allowing libquantum to make better progress. The performance of

libquantum during the variant search is shown in greater resolution in 4.12(e). By

t=20, PC3D has arrived at an improved variant of libquantum, and PC3D allows it

59



0 200 400 600 800

0
20
40
60
80

100
(a) web−search load

Q
ue

rie
s/

se
co

nd
 (

Q
P

S
)

Time (seconds)

0 200 400 600 800

0

1

2

3

4

(b) libquantum performance

1e
8 

x 
B

P
S PC3D ReQoS

Time (seconds)

0 20 40 60 80 100

0

1

2

3

4

(e) libquantum perf. (0−100s)

1e
8 

x 
B

P
S PC3D ReQoS

Time (seconds)

0 200 400 600 800

(c) web−search QoS

w
eb

−
se

ar
ch

 Q
oS

0%
20%
40%
60%
80%

100%

Time (seconds)

PC3D ReQoS QoS Tgt. (95%)

0 200 400 600 800

(d) Cycles used by runtime

%
 o

f S
er

ve
r 

C
yc

le
s

0%
2%
4%
6%
8%

10%
PC3D

Time (seconds)

0 20 40 60 80 100

(f) Cycles for runtime (0−100s)

%
 o

f S
er

ve
r 

C
yc

le
s

0%
2%
4%
6%
8%

10%
PC3D

Time (seconds)

Figure 4.12: Dynamic behavior of libquantum running with web-search using the
PC3D runtime

60



bl
oc

ki
e

bs
t

er
−

na
iv

e

sl
ed

ge

bz
ip

2

m
ilc

so
pl

ex

lib
qu

an
tu

m

lb
m

sp
hi

nx
3

%
 o

f S
er

ve
r 

C
yc

le
s

0%

2%

4%

6%

8%

10%

Figure 4.13: Average fraction of server cycles consumed by the PC3D runtime

to run with this variant until a co-phase change is detected at t=300.

At t=300, the demand placed on web-search shifts, at which point PC3D detects

a change in the behavior of web-search, causing it to revert libquantum back to

its original (no non-temporal hints) variant. Until t=600, the original variant of

libquantum runs at full speed because web-search is not sensitive to contention at

low load.

At t=600, the load to web-search picks up and PC3D again searches for an

improved variant that reduces cache contention. At t=620, the variant search ends

and the improved variant of libquantum runs until the end of the experiment (t=900).

Cycles Consumed by PC3D. A unique feature of protean code is that the work

of dynamic compilation of a host program may be offloaded to use otherwise spare

cycles on the host server, putting those cycles to work for the benefit of the running

applications. Figure 4.12(d) shows the fraction of server cycles used by the PC3D

runtime. Activity is minimal, kept to well below 1% of the server’s cycles for the

majority of the run. Two brief mini-spikes of up to 2% appear at t=0 (a higher-

61



Table 4.2: Workload mixes for scale-out analysis

LS web-search, graph-analytics, media-streaming
WL1 libquantum, bzip2, sphinx3, milc
WL2 soplex, bst, milc, lbm
WL3 sledge, soplex, sphinx3, libquantum

resolution view of this spike is presented in 4.12(f)) and t=600 as PC3D generates

code to search for variants that improve the performance of libquantum.

4.2.3.1 Cycles Used by the Runtime

We highlight that this low level of overhead is not specific to this pair of appli-

cations. While the demand on the runtime to generate new variants is inevitably

a function of the optimization objective, in PC3D the CPU utilization levels of the

dynamic compiler and the entire runtime are quite low. Figure 4.13 presents the

percentage of the server’s cycles used by the PC3D runtime to manage a variety of

batch applications, which is less than 1% in all cases.

ReQoS Dynamic Behavior. Figures 4.12(b) and (c) also show the impact of

ReQoS on the same run of libquantum and web-search. ReQoS adjusts the nap

intensity, reacting to load changes at t=300 and t=600. During periods of high load

it allows web-search to meet its QoS target strictly by applying naps to libquantum,

causing libquantum to make significantly slower progress than it makes when running

with PC3D.

4.2.4 Impact of PC3D at Scale

This section discusses the impact of deploying PC3D in a large-scale datacenter

cluster that houses a mix of webservice and batch applications, showing that, by

substantially improving server-level utilization, PC3D can have a large impact on the

62



# 
of

 S
er

ve
rs

0k

5k

10k

15k

20k

web−search/W
L1

graph−analytics/W
L1

media−streaming/W
L1

web−search/W
L2

graph−analytics/W
L2

media−streaming/W
L2

web−search/W
L3

graph−analytics/W
L3

media−streaming/W
L3

PC3D No Co−location

Figure 4.14: Server count required to run workload mixes for PC3D vs. no co-location

number of servers needed to house a particular workload and on the energy efficiency

of the datacenter.

Server Requirements. Figure 4.14 presents an analysis of the number of servers

required to house a variety of webservice and batch application mixes. This anal-

ysis assumes a datacenter with 10k machines and the workload mixes described in

Table 4.2, with 10k instances of a latency-sensitive webservice (LS) with 95% QoS

target along with 10k batch application instances comprised equally of one of the

mixes shown in the table (WL). Running with PC3D, the 10k machines are able to

achieve a particular level of throughput on each application. Using a policy of disal-

lowing co-locations, extra servers are needed to run the batch applications to achieve

an equivalent level of throughput as the PC3D-enabled datacenter. Figure 4.14 shows

that between 3.5k and 8k extra servers are needed on top of the original 10k servers

to achieve a level of batch throughput that matches a PC3D-enabled datacenter.

Energy Efficiency. Using a large number of extra servers also has a significant

impact on the overall energy efficiency of the datacenter. Using a similar setup to the

63



E
ne

rg
y 

E
ffi

ci
en

cy

0

0.2

0.4

0.6

0.8

1

1.2

1.4

web−search/W
L1

graph−analytics/W
L1

media−streaming/W
L1

web−search/W
L2

graph−analytics/W
L2

media−streaming/W
L2

web−search/W
L3

graph−analytics/W
L3

media−streaming/W
L3

PC3D No Co−location

Figure 4.15: Normalized energy efficiency of workload mixes for PC3D vs. no co-
location

previous experiment, we employ a linear CPU utilization model to derive the power

consumption of the servers within the datacenters, from which we compute the overall

performance per Watt of each datacenter and derive energy efficiency comparisons of

the datacenters. Figure 4.15 presents a comparison of the energy efficiency of the

PC3D-enabled datacenter normalized to the No Co-location datacenter running the

same workload at the same throughput, from which we observe that PC3D improves

energy efficiency at the datacenter level by 18-34% across a spectrum of webservice

and batch workloads.

4.3 Summary

This chapter presents the design and evaluation of Protean Code for Cache Con-

tention in Datacenters (PC3D), a runtime approach to mitigating cache contention

for live datacenter applications. PC3D uses the online code transformation capability

of protean code to dynamically inserting and removing software non-temporal cache

hints, allowing batch applications to achieve high throughput while meeting latency-

64



sensitive application QoS. On a spectrum of webservice and benchmark applications,

PC3D achieves utilization improvements of up to 2.8x (average of 1.5x) higher than

a recently published state-of-the-art contention mitigation runtime at a QoS target

of 98%.

65



CHAPTER V

Input Responsive Approximate Computing

This chapter introduces Input Responsive Approximation (IRA), an approach that

uses a canary input — a small input carefully constructed to capture the intrinsic

properties of the original input — to automatically control how approximation is ap-

plied on an input-by-input basis for approximate programs. The key insight of this

approach is the observation that prior work on choosing how to approximate arrives

at conservative decisions by discounting substantial differences between inputs when

applying software approximation techniques. The main challenges to overcoming this

limitation lie in making the choice of how to approximate both effectively (e.g., the

fastest approximation that meets a particular accuracy target) and rapidly for ev-

ery input. With IRA, each time the approximate program is run, a canary input is

constructed and used dynamically to quickly test a spectrum of approximation alter-

natives. Based on these tests, the approximation that best fits the desired accuracy

constraints is selected and applied to the full input to produce an approximate result.

We use IRA to select and parameterize mixes of four approximation techniques

from the literature for a range of 13 image processing, machine learning, and data

mining applications. Our results demonstrate that IRA significantly outperforms

prior software-only techniques, delivering an average of 10.2× speedup over exact

execution while minimizing accuracy losses.

66



5.1 The Case for Input Driven Dynamism

The ability of approximate computation to produce acceptably high-quality results

is vital to ensure that users have a positive experience and thus is one of the keys

to making approximation broadly deployable in real systems. Current techniques for

preserving result accuracy focus on the worst case, resulting in overly conservative

approximation for other cases. This section discusses the opportunity available in the

presence of a technique that dynamically monitors and controls the quality of results

for individual inputs.

5.1.1 Input Matters for Output Quality

Input is an important part of the accuracy of an approximate computation. To illus-

trate this, we detail the output quality produced by three different tiling approxima-

tions [146] of an image processing application called gamma correction [133] applied

to 800 input images. Tiling is based on the assumption that, in many application

domains such as image and video processing, elements nearby one another (e.g., pix-

els in an image) are likely to have similar values. Instead of computing each element

of the output, a tiling approximation computes a single output element and projects

that output onto the surrounding elements to form a tile. Tiling can be tuned to

trade off lower accuracy for better performance by increasing the size of the tile.

Figure 5.1 presents histograms of the output quality for 800 different images across

three tile sizes. For the purposes of illustration, we assume that the target output

quality1 (TOQ) of the approximation is 90%. As shown in the figure, for all three

tile sizes, different inputs can result in very different output qualities. For example,

across these inputs 8x8 tiling (Figure 5.1(b)) results in output qualities ranging from

1Target output quality (TOQ) is the minimum acceptable result accuracy [147], supplied by the
user of the application.

67



Output Quality
100% 95% 90% 85% 80% 75% 70%

0%
5%

10%
15%
20%
25%
30%
35%

Missed Opportunity
Fast + High Quality
TOQ = 90%
TOQ Violation

(a) 4x2 tiling approximation (5.9x speedup)

P
ro

po
rt

io
n 

of
 In

pu
ts

Output Quality
100% 95% 90% 85% 80% 75% 70%

0%
2%
4%
6%
8%

10%
12%
14%
16% Missed Opportunity

Fast + High Quality
TOQ = 90%
TOQ Violation

(b) 8x8 tiling (22x speedup)

P
ro

po
rt

io
n 

of
 In

pu
ts

Output Quality
100% 95% 90% 85% 80% 75% 70%

0%
2%
4%
6%
8%

10%
12%
14%

Missed Opportunity
Fast + High Quality
TOQ = 90%
TOQ Violation

(c) 16x16 tiling (83x speedup)

P
ro

po
rt

io
n 

of
 In

pu
ts

Figure 5.1: Histograms of the accuracy of three tiling approximations applied to the
same 800 images; some mix of missed opportunities and unacceptably low accuracy
are present in each approximation

68



100% 95% 90% 85% 80% 75% 70%

0%
10%
20%
30%
40%
50% Missed Opportunity

Fast + High Quality
TOQ = 90%
TOQ Violation

P
ro

po
rt

io
n 

of
 In

pu
ts

(a) Output quality achieved
Output Quality

0%
2%
4%
6%
8%

10%

0x 100x 200x 300x 400xP
ro

po
rt

io
n 

of
 In

pu
ts

(b) Speedup achieved (average is 61x)
Speedup

0%

5%

10%

15%

(c) Tiling method employed

P
ro

po
rt

io
n 

of
 In

pu
ts

16
x1

6

8x
16

16
x3

2

8x
32

32
x3

2

4x
16 8x
8

16
x6

4

32
x1

6

32
x6

4

64
x1

28

4x
8

4x
32

16
x1

28

32
x1

28

4x
4

8x
64 8x
4

24
 o

th
er

s

Figure 5.2: A dynamic oracle approximation system using the most effective tiling
approximation method (fastest without violating TOQ) achieves an average speedup
of 61× and uses 42 different approximation options

69



79%-99% because the assumption made by the approximation technique (that nearby

pixels are similar to one another) holds true to a different extent depending on the

composition of the input. Furthermore, we have observed that a wide range in output

quality across inputs is not unique to tiling approximation and gamma correction,

persisting across many computational problems and approximation techniques.

5.1.2 Limitations of Existing Approaches

The ubiquitous approach used in approximate computing is to choose a single approx-

imation option for some problem and apply that approximation to multiple inputs.

Existing approaches to approximation therefore suffer from a form of the problem of

aggregation, in which aggregate behavior (average or worst) is not necessarily rep-

resentative of individual behavior. In the presence of multiple differing inputs, an

approximation system that uses a single approximation across inputs either leaves

performance opportunities on the table, violates output quality restrictions, or both.

To illustrate this, we refer again to Figure 5.1, where (a), (b) and (c), are his-

tograms of the result accuracy for three increasingly aggressive approximate gamma

corrections applied to 800 input images. We assume a TOQ of 90%, and characterize

the outputs as falling into 3 classes: TOQ violating approximations (< 90% output

quality), fast + high quality approximations (90-95% output quality) and missed op-

portunities (95-100% output quality). The 4x2 tiling approximation, shown in 5.1(a),

produces minimal TOQ violations, but the speedup is limited to 5.9×. The bulk of

these output qualities can be classified as missed opportunities. A more moderate

approach, 8x8 tiling, is shown in 5.1(b). In this case, 5% of the results violate the

TOQ with a speedup of 22×. Finally, the results of an aggressive approximation are

shown in 5.1(c). This approach uses 16x16 tiling and yields 83× speedup with 30%

of the outputs violating the TOQ.

70



5.1.3 The Opportunity for Dynamism

Ideally, approximation would have the best of both worlds – no missed opportunities

and no TOQ violations. This could be achieved by dynamically choosing the most

effective approximation method for each input – the fastest approximation method

that does not violate the TOQ.

To illustrate this opportunity, Figure 5.2(a) presents a histogram of output quality

over the 800 inputs using the most effective of the available approximation methods,

chosen by a dynamic oracle. Unlike the previous example, the most effective approx-

imation is always fast and high quality, never leaving performance on the table and

never violating the target output quality. Moreover, Figure 5.2(b) shows a histogram

of the speedups achieved on the set of 800 inputs. The speedups vary significantly,

ranging from 3.5× to 410× (average 61×) due to the fact that a wide range of ap-

proximations are chosen. As shown in Figure 5.2(c), across 800 inputs, 42 unique

approximation methods are chosen, with no single approximation being used on more

than 17% of the inputs. That is, a wide range of approximation methods are used to

obtain the maximally effective approximation across the set of inputs and no single

approximation is dominant. The key to taking advantage of this opportunity is to

customize the approximation for each input on an individual basis, and to develop

that customized approximation quickly.

5.2 Overview of IRA

Given a computational problem, a menu of approximation options, and an input to

the problem, the goal of Input Responsive Approximation (IRA) is to rapidly choose

an effective approximation for that input. Our approach to achieving this goal is

shown in Figure 5.3 and does the following:

1. Canary Input – first, IRA dynamically produces a canary input, a smaller

71



representation of the input (Section 5.3.1). The creation of the canary is guided by

hypothesis testing, a statistical framework used to ensure that the resulting canary

is large enough to be representative of the full input, sharing key properties with the

full input, while being no larger than necessary.

2. Customize the Approximation – next, exact and approximate solutions are

computed using the canary to select the most effective from among the available

approximation options, including selecting the code regions to approximate and how

to approximate within those regions (Section 5.3.2). Because the canary input is

much smaller than the full input, IRA is able to rapidly forecast how numerous

approximations fare on a particular input by running the canary input with each of

those approximations. Unlike prior work, IRA predicts the accuracy and performance

of approximations on each input on demand and ex ante, allowing it to find and use

a customized, effective approximation for every input.

3. Compute Approximate Solution – last, the customized approximation

deemed effective for the canary is applied to the full input to produce an approx-

imate solution that is of acceptable accuracy (Section 5.3.3). As we show later, this

approach is extremely effective, leading to large performance improvements with min-

imal accuracy losses and outperforming oracle versions of prior techniques.

5.3 IRA Design and Implementation

This section provides a detailed description of how IRA develops a customized ap-

proximation for each problem input.

5.3.1 Reasoning About Canary Inputs

Creating a canary input that exhibits the properties of the full input has three main

challenges. First, in determining the similarity of the canary and the full input, we

72



Exact Method

Full Input

Exact Solution

(a) Computing the 
exact solution

Full Input

Approximate Solution

TOQ

Canary 
Error Bounds 

(b) Computing an approximate 
solution with IRA

Canary Creator

Approx. 
Candidates

Canary  
Input

Customized Approx. Method

Search for  
Approx. Method

Figure 5.3: Exact computation and approximation with IRA

must use a definition of similarity that reflects meaningful properties of the inputs.

Second, we must be able to choose the canary in a way that is both computationally

inexpensive and ensures that the definition of similarity is satisfied. Third, we want

to choose a canary that is much smaller than the full input, as this will be a large

determinant of the time spent employing the canary to test various approximations.

A plausible approach for creating canaries could be to sample down all inputs

at the same rate. Unfortunately, this approach produces canaries that are either

(1) larger than necessary for “well-behaved” inputs, introducing extra overhead in

the approximation search process or (2) too small to adequately represent the full

input, resulting in a search that provides a misleading model of approximation ac-

curacy characteristics. Empirically, we have found that the dynamic canary creation

mechanism in IRA significantly outperforms a fixed scale-down strategy for creating

canaries. This issue is explored in greater detail in Section 5.4.2.

This work explores four different metrics of canary similarity, designed to span a

range of definitions of what it means for inputs to be similar. These metrics range from

73



a very simple metric of ensuring that the values in the canary are close, on average,

with the values in the full input to complex metrics that ensure the similarity of local

properties within small regions of the input. We discuss these metrics in detail in

Section 5.3.1.3.

To address the second challenge, we ensure low overhead in the canary creation

process by employing statistical sampling in the analysis of each potential canary

input, thus allowing us to compute metrics on just a small subset of the canary

input when analyzing its similarity to the full input. To ensure that the definition

of similarity is satisfied in a chosen canary, we use a carefully designed algorithm

based on robust, automated hypothesis tests that minimize the likelihood of making

an incorrect decision about each canary. In particular, we take special care to design

our approach to avoid both false negatives – incorrectly finding dissimilarity – and

false positives – incorrectly finding similarity. These are also known as Type I and

Type II errors, respectively. The avoidance of false positives ensures that the canary

we select is highly likely to be similar to the full input.

Likewise, avoiding false negatives is key to ensuring that the chosen canary is

no larger than needed. If we mistakenly rejected a small canary that was actually

similar to the full input in favor of a larger canary, the canary-driven search can have

unnecessarily high overhead.

74



Full Input

Canary Input

Canary 
Error Bounds 

Apply Holm-
Bonferroni to 

bound Type I Error

Choose 
Smallest

Canary 
Candidates

Compute  
Canaries’ 
p-values

Acceptable Candidates

n

p1 p2 pk…

…

Compute Sample Size (n) 
to Bound Type II Error

23

1
4 5

α, β

Figure 5.4: Canary input creation

75



Mean Variance Local Homogeneity Autocorrelation

Description
Mean µ of input Variance σ2 of Proportion Λ of elements represented by λ Correlation ρ among pairs of

elements input elements in canary /∈ [λ− σz1−α/2, λ+ σz1−α/2] input elements (yj , yj+1)

Null Hypothesis (H0) H0 : µi = µ0 H0 : σi
2 = σ2

0 H0 : Λi ≤ 0.1 H0 : ρi = ρ0
Alt. Hypothesis (HA) HA : µi 6= µ0 HA : σi

2 6= σ2
0 HA : Λi > 0.1 HA : ρi 6= ρ0

Test Statistic (ti) ti =
µ0 − µi
σi
√
n

ti =
σi

2

σ2
0

ti =

√
n |Λi − 0.1|√
0.1(1− 0.1)

ti =
ln

(
(1+ρ0)(1−ρi)
(1−ρ0)(1+ρi)

)
2
√
n−3

p-value (pi) pi = 2P (Z > ti) pi = 2P (Fn−1,n−1 > ti) pi = 2P (Z > ti) pi = 2P (Z > ti)

Sample Size (n)
n = 2(z1−α/2k Formula yields no simple form; g(x) =

√
x(1− x)

n =
4(z1−α/2k+z1−β/k)

2

ln((1+ρ0)/(1−ρ0))2+z1−β/k)2 see Cohen [46] for details. n = 0.1−2(g(0.1)z1−α/2k + g(Λi)z1−β/k)2

Acceptability Test
Holm-Bonferroni method: sort p-values p1, p2, . . . pk to obtain sorted p-values p(1), p(2), . . . p(k). Find the minimum index m such that
p(m) >

α
k+1−m , then reject all canaries C(i) where i ≥ m.

α: the desired bound on the probability of committing any Type I errors (false negative), β: the desired bound on Type II errors (false positive)

Definitions
k: the number of canary candidates, Ci: the ith canary candidate, xi: the sample statistic x for canary Ci, x0: the sample statistic x for the full input
Z: the standard normal distribution, zy : the quantile function at y of Z, Fb,c: the F-distribution with degrees of freedom b and c

Table 5.1: Similarity metrics used to assess canary similarity to full input, along with the relevant statistical formulas

76



5.3.1.1 Canary Construction

The algorithm for creating a canary is depicted in Figure 5.4. The inputs to the

algorithm are the desired bound on the likelihood of getting a Type II error α, the

desired bound on getting a Type I error β, and the full input to the problem. The

output of the algorithm is a small canary input deemed similar to the full input.

1 Generating Canary Candidates. First, a set of candidate canaries C1, C2, . . . , Ck

are generated. One of the key determinants of the quality of the canary is its size; a

larger canary is likely to be a better reflection of the full input than a smaller canary.

However, as the purpose of the canary is to use it in a dynamic search, a larger ca-

nary will also tend to result in a more expensive search. Our approach to generating

candidates is to expose this inherent tradeoff, using candidates of many different sizes

then choosing the smallest canary from among the candidates that is similar enough

to the full input according to one of the metrics described in Section 5.3.1.3.

We generate C1, C2, . . . , Ck such that they are regular, strided subsets of the full

input. If N is the size of the full input, we currently select canary candidates that

are size N/16, N/32, N/64, N/128 and N/256. The reason we explicitly avoid selecting

canaries larger than N/16 is that canaries that are larger may take an unacceptably

long time in the dynamic search, likely counteracting the performance gains IRA aims

to achieve by approximating the problem. For one-dimensional inputs such as arrays

of scalars or arrays of structs, an input of size 1/t is produced by taking every tth

element from the input. For two-dimensional inputs such as matrices and images, an

input of size 1/t is produced by taking every 1/√tth element along both dimensions.

This approach can easily be extended to higher-dimension inputs, however this was

not necessary for any of the test applications in this work.

77



5.3.1.2 Canary Selection

The remainder of the steps in this algorithm are focused on choosing the smallest

canary from among these candidates that is similar to the full input.

2 Sample Size. We next calculate the number of samples to take from each canary

when evaluating their similarity. This calculation is designed to bound the likelihood

of getting a Type II error when comparing those properties to the full input, discussed

in further detail in Section 5.3.1.4. This sample size is denoted n.

3 Canary Statistics. We calculate the statistics needed to perform hypothesis

tests on the canaries, taking a random sample of size n from each canary Ci, then use

this to compute a test statistic for the canary ti and a p-value pi associated with that

test statistic. We discuss tests statistics and p-values in more detail in Section 5.3.1.4,

however ti is simply a statistical measurement of the similarity between the canary

and full input, while pi is the statistical significance of that measurement.

4 Canary Acceptability. Using the resulting p-values p1, p2, . . . , pk, we employ the

Holm-Bonferroni method, a technique designed specifically to bound the likelihood

of getting a Type I error when performing multiple hypothesis tests [86], to partition

the candidate canaries into two groups – those that are suitable representations of

the full input because they are statistically similar enough to it, and those that are

not.

5 Select Canary. Finally, the smallest of the acceptable canaries is returned and

used by IRA to perform a dynamic search for the most effective approximation. If

no such canary is available, IRA immediately ceases approximation and begins to

execute the exact version of the program.

5.3.1.3 Input Similarity Metrics

The purpose of the canary is to drive a dynamic search to determine how the full

input to the problem should be approximated. As such, it is of critical importance

78



that the canary be similar to the full input. However, similarity can be measured in

many ways. In this work, we consider four distinct definitions of similarity.

Mean. IRA supports using the arithmetic mean of the values in the canary and

full inputs as the similarity metric. We define the mean of an input Y composed of

values y1, y2, . . . , yN as µY . For convenience, the formal definition of µY is supplied

in Equation 5.1. A canary found to be acceptable according to this metric has an

average value close to the average value of the full input.

µY =
1

N

N∑
j=1

yj (5.1)

Variance. IRA also supports using the variance of values in the input as the

similarity metric. The variance of Y is defined as σ2
Y , the definition of which is

supplied in Equation 5.2. A canary that meets this standard of closeness will contain

values that are dispersed to a degree similar to the dispersion found in the full input.

σ2
Y =

1

N

N∑
j=1

(yj − µY )2 (5.2)

Local Homogeneity. The canary is produced using a subset of the values in the full

input. Thus, in essence, a single value in the canary embodies a (potentially large)

number of values from the full input. To ensure the values in the canary are not highly

dissimilar to the values in the full input they are supposed to embody, IRA leverages

a measure of this dissimilarity. We denote this metric ΛY , defined by comparing

each value yj in the full input to λj, its representative value in the canary, and

calculating the proportion of those values that are at least z1−α/2 standard deviations

(see Table 5.1 for the definition of z) away from λ. The formal definition of ΛY is

shown in Equation 5.3.

79



ΛY =
1

N

N∑
j=1

0 if |yj − λj| ≤ σY z1−α/2

1 otherwise
(5.3)

Autocorrelation. Last, IRA support measuring similarity between a canary and

the full input by testing that their autocorrelations are similar. Autocorrelation is a

special case of correlation, and is a measure of how similar each value in the input is

to its neighbor. High coefficients of autocorrelation (those close to 1) indicate that

neighboring values share a linear relationship across the input, while low coefficients

(those close to zero) indicate no such relationship. Thus, autocorrelation detects

small-scale patterns in the input. For an input Y , the coefficient of autocorrelation

is ρY . We provide a formal definition of autocorrelation in Equations 5.4 and 5.5.

Y ′ = {y1, y2, . . . , yN−1}, Y ′′ = {y2, y3, . . . , yN} (5.4)

ρY =
1

σY ′σY ′′

N−1∑
j=1

(yj − µY ′)(yj+1 − µY ′′) (5.5)

5.3.1.4 Statistical Underpinnings

At its core, canary selection in IRA is built on the statistical foundations of hy-

pothesis testing, in which evidential basis for hypotheses can be weighed statistically,

allowing rejection of hypotheses that are not supported by the available evidence.

For our purposes, the hypotheses considered are statements such as canary Ci has

the same autocorrelation as the full input. Such a hypothesis can be rejected if a

comparison between the full and canary inputs does not provide sufficient evidence

to support the hypothesis. Thus, by rejecting the hypothesis equating the canary to

the full input we reject the canary. Alternatively, when the hypothesis test fails to

reject the null hypothesis, the canary is deemed to be acceptably similar to the full

input.

80



It is important to note that IRA may need to consider many such hypotheses

when constructing a canary, and thus is subject to the multiple testing problem [120].

The multiple testing problem describes the situation where evaluating the validity of

multiple hypotheses increases the likelihood of incorrectly evaluating at least one of

the hypotheses. For example, consider a set of hypotheses concerning the fairness of

100 coins, the validity of which are assessed by flipping each coin 10 times and calling

those coins with at least 9 heads or tails biased. Applying this test to unbiased coins, it

is unlikely that any particular coin will appear unfair, a probability of 2.1%. However,

there is a very strong likelihood (88.6%) that at least one coin will be judged to be

unfair, an incorrect determination. Similarly, the multiple testing problem applies to

our canary hypotheses. Therefore, when evaluating canaries we adjust our statistical

methods by incorporating the Bonferroni correction for Type I errors and the Holm-

Bonferroni method for Type II errors to ensure that we avoid the multiple testing

problem. These adjustments are discussed in detail shortly.

Hypothesis Testing. In a hypothesis test, we propose two hypotheses relating

to the similarity of a canary to the full input. These hypotheses are called the null

hypothesis H0 and the alternative hypothesis HA. For each canary Ci, we construct

null and alternative hypotheses and determine whether to accept or reject Ci based

on the evidence found in favor of the null hypothesis. Our discussion will focus

on hypothesis testing for the arithmetic mean of the input, however IRA supports

several other metrics that have been discussed previously and are summarized in

Table 5.1. These other metrics can be used by substituting their equations in place

of the equations described for the mean.

A hypothesis test for the mean takes the form shown in Equation 5.6, where µi is

the sample mean of canary Ci and µ0 is the sample mean of the full input.

81



H0 : µi = µ0

HA : µi 6= µ0

(5.6)

Next, the truth of H0 is evaluated by calculating and evaluating a test statistic. The

test statistic is used to produce a p-value for the test, the probability of attaining

a test statistic at least as extreme as the observed test statistic given that the null

hypothesis is true. Thus, the smaller the p-value, the lower the probability of the

observed test statistic appearing if the null hypothesis is true. Some significance

level α is chosen as a cutoff point for the hypothesis test, where p ≤ α causes the null

hypothesis to be rejected and the alternative hypothesis to be accepted. In particular,

to compute the t-statistic and p-value for the mean, we use the standard formulas

shown in Equations 5.7 and 5.8.

ti =
µ0 − µi
σi
√
n

(5.7)

pi = 2P [Z > ti] (5.8)

Standard single comparison hypothesis tests stop here, rejecting the null hypothesis

if pi ≤ α. However, we must take further steps to avoid the multiple comparisons

problem.

Controlling Type I Errors. The Holm-Bonferroni method considers multiple hy-

potheses simultaneously [86]. It outputs a set of hypotheses that are rejected, and a

set that are not, where the probability of obtaining any Type I errors is bound by

α. The method begins by sorting the p-values p1, p2, . . . , pk from lowest to highest,

resulting in a new indexing of p-values p(1), p(2), . . . p(k) corresponding to null hypothe-

ses H(1), H(2), . . . H(k). It then rejects hypotheses H(1), H(2), . . . H(m−1), where m is the

minimal index that satisfies Equation 5.9.

82



p(m) >
α

k + 1−m
(5.9)

The result of this method is a set of null hypotheses H(m), H(m+1), . . ., H(k) that

are not rejected, corresponding to a set of canaries C(m), C(m+1), . . . C(k) that are

acceptably similar to the full input.

Controlling Type II Errors. Given desired bounds α and β on the likelihood of

getting any Type I or Type II errors, respectively, the standard formula for computing

the number of samples needed to ensure the likelihood of getting a Type II error of

no more than β in a single comparison hypothesis test is shown in Equation 5.10.

n = 2(z1−α/2 + z1−β)2 (5.10)

To account for the multiple testing problem when using k canaries, we use the Bon-

ferroni correction [57], substituting α/k and β/k in place of α and β in Equation 5.10.

n = 2(z1−α/2k + z1−β/k)
2 (5.11)

This adjusted formula requires an increased sample size over the non-adjusted for-

mula. However, sampling overhead remains reasonable even for large numbers of

canary candidates (large k) because the sample size due to this adjustment grows

sub-linearly as k increases [176].

Smallest Acceptable Canary. All of the canaries that remain from the preceding

set of steps are acceptably similar to the full input. However, it is important that

we choose the acceptable canary that results in the shortest search time in IRA’s

next step. Thus, this algorithm terminates by choosing the smallest from among the

acceptable canaries.

83



5.3.2 Choosing an Effective Approximation

IRA uses the canary input to rapidly and dynamically decide how to approximate

the problem on the full input. This section describes that process.

5.3.2.1 Definition of Result Accuracy

Controlling and maintaining sufficiently accurate computation is important in ap-

proximate computing [146,147,159]. Prior work has pointed out that result accuracy

is domain, application, and context dependent [124] and includes such varied metrics

as the scaled difference between output, the peak signal to noise ratio (PSNR) or

the average absolute output accuracy. Therefore, we design IRA to be agnostic to

the specific method used to calculate result accuracy. That is, we assume only that

the application developer provides a well-defined accuracy calculation function. Our

formulation of this function Faccuracy, given two solutions Sexact and Sapprox, computes

a single accuracy metric δ ∈ [0, 1] describing the accuracy of Sapprox relative to Sexact.

Faccuracy is leveraged by IRA to compute the accuracy of a number of approximations

on the canary input, comparing them to the solution produced by the exact method

on the canary input. We assume also that the user of the application supplies a

minimum acceptable result accuracy, called the target output quality (TOQ).

5.3.2.2 Where and How to Approximate

There may be a number of code regions amenable to approximation in an applica-

tion. Consider an application with two disjoint loops that can be approximated with

loop perforation and tiling, respectively. Each such code region is an approximation

opportunity, and IRA treats each approximation opportunity as one dimension in a

multi-dimensional search space by encoding the parameters for each approximation

opportunity as a range of numerical values {1, . . . , v}. In the encoding, the value

1 has special meaning, and is used to represent the exact computation in lieu of

84



Exact Method Approx. Candidates

Customized Approx. Method

Steepest Ascent Decision

Calculate 
Accuracy

Exact Canary 
Solution + Timing

Approx. Canary 
Solutions + Timings

Canary Input TOQ

Approx. CandidatesApprox. Candidates

Figure 5.5: Search for approximation using canary

approximation.

Furthermore, many approximation techniques may be parameterized, such as the

rate at which iterations are skipped in loop perforation or the size of one side of a tile

in tiling approximation. In such cases, numbers larger than 1 encode each value that

can be taken by a parameter. Our search algorithm makes only the assumption that

larger values correspond to more aggressive approximation (i.e., that it runs faster

but has lower accuracy). By encoding the search space in this fashion, IRA has the

option to select the exact computation at each approximation opportunity, allowing it

to choose where to approximate. By selecting between the values larger than 1, IRA

determines how aggressively to take advantage of each approximation opportunity.

85



1

2

3

2

2

3

3

4

4

4

Accuracy
TOQ

Sp
ee

du
p

(1,1,1) (2,1,1)

(1,1,2)

(1,2,1)

(1,3,1)

(2,2,1)

(1,2,2)

(1,3,2)

(1,4,1)

(2,3,1)

Approx. Opportunity 1 = {1,2,3,4,5,6} 
Approx. Opportunity 2 = {1,2,3,4} 
Approx. Opportunity 3 = {1,2,3,4,5} 

Search Space Encoding

Point in search space 
(Opportunity 1,  Opportunity 2, Opportunity 3)

Step 1  
Compute (1,1,1) 
(1,1,1) is the baseline 

Step 2 
Compute (2,1,1), (1,2,1), (1,1,2) 
(1,2,1) is the steepest 

Step 3 
Compute (2,2,1), (1,3,1), (1,2,2) 
(1,3,1) is the steepest 

Step 4 
Compute (2,3,1), (1,4,1), (1,3,2) 
All violate TOQ, return (1,3,1) 

Walkthrough

Figure 5.6: Example search for an effective approximation

5.3.2.3 Search for an Effective Approximation

IRA uses a greedy approach based on steepest ascent hill climbing [144] to tune

the parameters for the available approximations, using the approach presented in

Figure 5.5. An approximation option is defined as a point in an m-dimensional space

(d1, d2, . . . , dm), where each dimension is an encoded range of numerical values as

described in the previous section. IRA first evaluates the point (1, 1, . . . 1) on the

canary, which is the exact solution to the problem on the canary. This solution

is used as a timing and accuracy baseline, against which approximate solutions are

evaluated. Beginning at (1, 1, . . . 1), IRA then iteratively evaluates the incrementally

more aggressive value for each of the tuning parameters, computing the accuracy and

speedup relative to the exact version, then selects the increment that both satisfies

the TOQ set forth by the user and yields the steepest slope in terms of accuracy vs.

speedup. If no such increment exists, the search terminates. If such an increment

exists, it is used as the starting point for the next iteration. Upon termination, the

last valid point is returned by the search and is used to approximate the full problem

86



input.

The search process runs the exact computation in addition to a number of ap-

proximation alternatives on the canary. The execution of this search typically very

fast relative to exact execution on the full input because the amount of computation

needed in regularly structured computation depends substantially on the size of the

canary, which is much smaller than the full input. We quantitatively evaluate the

time spent in the search in Section 6.4, showing that it equates to an average of 3.2%

of exact execution time on a suite of test applications.

Example. Consider Figure 5.6, which shows an example search over 3 approximation

opportunities. In step 1 we evaluate (1, 1, 1) as a baseline. In step 2, the next available

increment along each dimension is tested – (2, 1, 1), (1, 2, 1) and (1, 1, 2) in this case.

(1, 2, 1) is found to have the steepest ascent in the speedup/accuracy space, and is

used as the baseline for the next step. In step 3, (2, 2, 1), (1, 3, 1) and (1, 2, 2) are

tested, and (1, 3, 1) is found to have the steepest ascent. Finally, in step 4 (2, 3, 1)

(1, 4, 1) and (1, 3, 2) are tested. Each is found to violate the TOQ bound and the

search halts, returning (1, 3, 1) as the most effective approximation.

87



Application Description Domains Input Suite
Approximation(s)
Used

CrossCorr
Measure signal/image similarity

Pattern recognition, cryptanalysis, neurophysiology 800 IMAGE
4× extrapolate,

over sliding window 1× 2D-tile
FuzzyKmeans Cluster with fuzzy cluster membership Machine learning, data mining 4 SVM 5× perforate
Gamma Apply gamma correction to an image Image processing 800 IMAGE 1× 2D-tile
GaussianFilter Apply a Gaussian filter to an image Image processing 800 IMAGE 1× 2D-tile
Integration Numeric integration of transcendentals Scientific computing, engineering 19 EQN 1× numerical approx.
Inversek2j Kinematics for 2-joint arm Robotics 90 ANGLE 4× numerical approx.
Jmeint Triangle intersection detection 3D gaming 40 TRI 1× algorithm choice
LucasKanade Optical flow estimation Computer vision 2 PERFECT 2× perforate
Kernel Estimate a probability density function Machine learning, signal processing, econometrics 2 KDDCUP 4× perforate
Kmeans Cluster points for classification Mach. learning, data mining 4 SVM 4× perforate
MatMult Matrix-matrix multiply Machine learning, scientific computing, game theory 40 PDF 2× perforate
MeanShift Apply mean shift to an image Computer vision, image processing 4 SVM 3× perforate
ScalarProd Dot product of two vectors Mechanics, machine learning, graphics 40 PDF 2× perforate

Input Suite Description
90 ANGLE Sets of angles drawn from 90 different probability distributions
19 EQN Sets of equations containing polynomials with different max degree
800 IMAGE A database of 800 images
2 KDDCUP 1999 KDD Cup data set from the UCI Machine Learning Repository [13]
40 PDF Probability dists used: beta, binomial, cauchy, chi-squared, exponential, f, gamma, geometric, hyper, log-normal, normal, poisson, t, uniform, weibull
2 PERFECT Medium and large inputs from the PERFECT benchmarks [18]
4 SVM Support vector machines from the UCI Machine Learning Repository [13]
40 TRI Sets of triangles in the unit cube, varying distributions of triangle sizes

Table 5.2: Applications and input sets used in the evaluation

88



5.3.3 Putting it all Together

Final Approximation. The previous section described how IRA derives an approx-

imation method that is effective for the canary input. This approximation method,

which has been customized to be effective on the canary input, is then deployed on

the full input, producing an approximate result that is of acceptable quality.

Runtime Safety. In approximate computing, altering computation to trade per-

formance for accuracy, particularly when discarding computation, can have the effect

of changing control flow, producing unsafe intermediate results (e.g., a 0 that will be

used as the denominator in a division operation), or memory accesses that corrupt

state or result in access violations, resulting in runtime faults that were not antici-

pated by the application programmer. Prior work has shown that it is often possible

to recover from memory errors using checkpointing [158] or heap replication [20], and

from floating point errors using reevaluation or rollback [78], resuming computation

to successfully produce a result. We have experienced no such faults in our experi-

ments, however IRA can be augmented in the future to include mechanisms to guard

against these faults.

5.4 Evaluation

We evaluate IRA to examine its impact on performance and result accuracy for ap-

plications spanning a number of computational domains.

5.4.1 Methodology

Applications and Inputs. We evaluate 13 applications that use between 2 and

800 inputs. These applications cover a number of the important problem domains

that include image processing, data mining, machine learning and computer vision.

Applications and inputs are summarized in Table 5.2.

89



Approximation Techniques. Our experiments bring input responsiveness to four

classes of approximation techniques. The approximation techniques themselves have

limited in terms of how they can be applied to software. For example, tiling ap-

proximation requires iterative computation on image pixels thus is applied only to

CrossCorr, Gamma and GaussianFilter, while numerical approximation requires a

library call to a math function (e.g., trigonometric functions in Inversek2j). In many

cases, multiple approximations are used side by side among an application’s code

regions. A summary of which approximations are applied to which benchmarks is

summarized in Table 5.2. The approximations techniques include:

• Loop Perforation [84,140] – loop perforation discards iterations in a loop.

We use either unadjusted perforation, in which every nth iteration in a loop is

executed, or extrapolated perforation, which is similar to unadjusted perforation

but extrapolates computed results to make up for the skipped iterations. Loop

perforation can be made more aggressive by using larger values of n. We use the

loop perforation in CrossCorr, FuzzyKmeans, LucasKanade, Kernel, Kmeans,

MatMult, MeanShift and ScalarProd.

• Tiling [146] – instead of computing each element of an output, a tiling approx-

imation computes a single output element and projects it onto the surrounding

elements to form a tile. Tiling approximation is made more aggressive by using

larger tile sizes. We use the tiling approximation in CrossCorr, Gamma and

GaussianFilter.

• Algorithmic Choice [8,55] – we use IRA to choose between five different al-

gorithmic implementations of Jmeint that offer different accuracy-performance

tradeoffs in computing whether pairs of 3D triangles intersect. The most com-

plex algorithm is the exact algorithm, while the simplest algorithm uses com-

putationally cheap heuristics that work well only when triangles are far apart.

90



• Numerical Approximation [81] – we employ numerical approximation tech-

niques within Integration and Inversek2j. Integration numerically integrates a

non-integrable set of equations using the trapezoid method, which can be made

faster and less accurate by using fewer trapezoids. Inversek2j involves a motion

calculation that relies on the trigonometric functions sin(x), cos(x), sin−1(x),

cos−1(x). We approximate these trigonometric functions by using the first 1

(sin and sin−1) or 2 (cos and cos−1) terms of the function’s Taylor series in

lieu of the precise library implementation. These approximations are accurate

when x is near zero, and become less accurate farther away from zero. Thus we

can trade speed for accuracy by choosing a k such that approximation is used

only when |x| < k, making the approximation more aggressive by using larger

values of k.

Platform. All results are collected on a stock 2.4GHz Intel Xeon E5-2407v2 (Ivy

Bridge) server running Linux kernel 3.11.0. Applications are executed on the server

in serial, and task pinning is used to prevent process migration.

Error Bounds, TOQ and Accuracy. All experiments in this evaluation use

canary error bounds α = β = 0.05, thus obtaining Type I and Type II error bounds

of 0.05. TOQ values ranging from 90% to 97.5% are used in the evaluation, specified

for each experiment. IRA is agnostic to the accuracy metric, simply using the supplied

definition of accuracy (see Section 5.3.2.1) and configuring the approximation so as

to not violate the accuracy target set forth by the user. In our evaluation, we use

miss rate as the accuracy metric for Jmeint, absolute relative error for ScalarProd

and average centroid distance from the origin in Kmeans and FuzzyKmeans. For all

other applications, accuracy is defined as the average of element-wise absolute relative

error.

91



0x

5x

10x

15x

20x

25x

Cro
ss

Corr

Fuzz
yK

means

Gamma

Gauss
ianFilte

r

Integ
ra

tio
n

Inv
erse

k2
j

Jm
eint

Luca
sK

anade

Kern
el

Kmeans

MatM
ult

MeanShift

Sca
larP

ro
d

GEOMEAN

S
pe

ed
up

 v
s.

 E
xa

ct

37
x

39
x

57
x

57
x

43
x

33
x

31
x

Mean
Variance
Local Homogeneity
Autocorrelation

Figure 5.7: Comparison of canary similarity metrics

5.4.2 Canary Construction

Similarity Metrics. Figure 5.7 presents the speedup over exact computation ob-

tained by IRA when employing each of the four canary similarity metrics described

in Section 5.3.1 at a TOQ of 90%. As the figure illustrates, the largest speedups ob-

tained are for Variance and Mean, which average 10.2× and 9.9×, respectively. The

speedups obtained when using autocorrelation are modest, averaging 4.3×, while us-

ing local homogeneity causes a speedup of 2.1×.

This is a somewhat surprising result, as the simpler metrics – Mean and Vari-

ance – perform better while achieving similarly low counts of TOQ violations (TOQ

is violated on less than 1% of inputs on average for all metrics). Closer inspection

reveals that autocorrelation and local homogeneity are more difficult similarity met-

rics to satisfy, thus they often result in either (1) choosing larger canaries, leading to

longer search times, which diminishes the overall speedup or (2) finding no accept-

able canaries, and thus no approximation being used. This is particularly true for

local homogeneity, which achieves speedups near 1 for 8 of the 13 applications. This

leads us to the insight that more complicated is not always better; autocorrelation

92



●

●
●

●●●●
●

●

20% 40% 60% 80% 100%

1x

4x

16x

S
pe

ed
up

 v
s.

 E
xa

ct

% of Inputs Meeting TOQ (Higher is Better)

1

1/2

1/4
1/81/16

1/32
1/64

1/128
1/256

● Fixed−size Canaries (size vs. full input)
Dynamically Chosen Canaries

Figure 5.8: Speedup and number of TOQ violations for dynamically chosen canaries
(blue star) vs. fixed-size canaries (red circles) on MatMult; all fixed size canaries
achieve lower speedup, more TOQ violations, or both

and local homogeneity reject many canaries that are deemed acceptable according to

their mean and variance, and which turned out to be perfectly adequate in searching

for an effective approximation.

A second insight revealed by this data is that mean and variance do not signif-

icantly differ from one another in terms of the canaries selected, a fact which that

holds true on average and among the individual applications. This suggests that both

metrics produce reasonable canaries and function well across a range of problems and

domains. Because variance is a slight improvement over mean in terms of the over-

all speedup of IRA, the remainder of the experiments use variance as the similarity

metric when constructing canaries.

Dynamically-Sized Canaries. Dynamically-sized canaries are valuable because

they avoid two pitfalls that could occur when creating fixed-size canaries across all

inputs. They are no larger than necessary for “well-behaved” inputs, thus keeping the

overhead low during the approximation search process, and they are large enough to

adequately represent the full input, resulting in a search that yields approximations

that are just aggressive enough for each input.

93



S
pe

ed
up

 v
s.

 E
xa

ct

0x0x

5x

10x

15x

20x

25x    
26

x
   

31
x

   
39

x

   
57

x
   

57
x

   
57

x

   
31

x

Cro
ss

Corr 
  

Fuzz
yK

means  
 

Gamma   

Gauss
ianFilte

r  
 

Integ
ra

tio
n   

Inv
erse

k2
j   

Jm
eint   

Luca
sK

anade   

Kern
el   

Kmeans  
 

MatM
ult  

 

MeanShift 
  

Sca
larP

ro
d   

GEOMEAN   

97.5% TOQ  
95% TOQ  
90% TOQ  

Figure 5.9: Speedup of IRA across three TOQs

1x

3x

10x

30x

100x

300x

Cro
ss

Corr

Fuzz
yK

means

Gamma

Gauss
ianFilte

r

Integ
ra

tio
n

Inv
erse

k2
j

Jm
eint

Luca
sK

anade

Kern
el

Kmeans

MatM
ult

MeanShift

Sca
larP

ro
d

S
pe

ed
up

 v
s.

 E
xa

ct

Figure 5.10: Distribution of speedups across inputs for IRA at 90% TOQ, illustrating
the wide range of approximations dynamically chosen across different inputs; larger
speedups occur when more aggressive approximation is applied

94



To illustrate this, we compare the results of using different fixed-rate canaries

within IRA for approximating MatMult to using dynamically-chosen canaries at a

TOQ of 90%. The inputs to MatMult are the set of 40 inputs described in Table 5.2,

spanning a range of probability distributions that include long tail and high variance

distributions. The results are illustrated in Figure 5.8, which shows the speedup (y-

axis) and number of inputs meeting TOQ (x-axis) achieved by IRA when using a range

of fixed-size canaries (red circles and line). As the figure shows, there is a tradeoff

between speedup and input violations to be made when using fixed-size canaries:

smaller canaries produce larger speedups but large numbers of TOQ violations, while

larger canaries produce fewer TOQ violations but smaller speedups. Improving in

both dimensions is the point illustrating the speedup (8.2×) and TOQ violations (0%)

achieved when using dynamically-chosen canaries (blue star). This demonstrates the

advantage of using dynamically-chosen canaries. A small canary is used when a small

canary can serve as a suitable representation of the full input, while a large canary is

used when a small canary cannot.

5.4.3 IRA Speedup and Accuracy

Speedup. We refer next to Figure 5.9, which presents the average speedup achieved

by IRA relative to the runtime of the exact computation across three TOQ values:

97.5%, 95% and 90%. Each application is run on all inputs, and the speedups pre-

sented are the geometric mean of speedup across the inputs. Performance measure-

ments of IRA are the end-to-end runtime, including the time to produce the canary

input, search for the customized approximation and run that approximation on the

full input. As one would expect, IRA achieves speedups that scale up as the TOQ is

relaxed, ranging from an average of 3.9× at 97.5% TOQ up to 10.2× at 90% TOQ.

Dynamism. Figure 5.10 presents boxplots of the speedups achieved across inputs

for each application at TOQ=90%. The boxplots highlight the maximum (upper

95



Application
Meets TOQ

Application
Meets TOQ

(% of Inputs) (% of Inputs)
CrossCorr 790 / 800 (98.8%) FuzzyKmeans 4 / 4 (100%)
Gamma 752 / 800 (94.0%) GaussianFilter 797 / 800 (99.7%)
Integration 19 / 19 (100%) Inversek2j 90 / 90 (100%)
Jmeint 40 / 40 (100%) LucasKanade 4 / 4 (100%)
Kernel 2 / 2 (100%) Kmeans 4 / 4 (100%)
MatMult 40 / 40 (100%) MeanShift 4 / 4 (100%)
ScalarProd 40 / 40 (100%) MEAN 99.4%

Table 5.3: The proportion of inputs for which IRA hits the target output quality
(TOQ) at TOQ=90%

whisker), 75th percentile (box upper edge), median (line within box), 25th percentile

(box lower edge) and minimum (lower whisker) speedups. The large range of speedups

shown in Figure 5.10 highlights the key feature of IRA: different inputs to the same

application can be more or less difficult to approximate. IRA takes advantage of

these differences to choose the right approximation for each input and maximize the

performance that can be gained when applying approximation.

This dynamism allows IRA to realize significantly higher performance for many

cases that cannot be taken advantage of by approaches that apply one approximation

across inputs. Consider an oracle approach to choosing the single best approximation

approach across all inputs. Even with full knowledge of all inputs and how each of

the approximation options available to IRA fares on those inputs, we find that such

an oracle can achieve an average speedup of only 4.9×, as opposed to 10.2× speedup

with IRA, while delivering the same level of accuracy as IRA

Accuracy. The accuracy of the results produced by IRA is presented in Table 5.3,

showing the number of TOQ violations across inputs at TOQ=90%. On average,

IRA meets TOQ for over 99% of inputs. Furthermore, for 10 of 13 applications there

are no output quality violations, and the maximum proportion of TOQ violations is

6% for Gamma. Moreover, those cases that violate TOQ are typically not far from

TOQ. For instance, 78% of violating cases have an output quality of 88% or better

(within 2% of TOQ). From this we conclude that IRA works very well at producing

a minimal number of TOQ violations in practice, however we take care to note that

96



IRA makes no guarantees about output accuracy.

5.4.4 Where is the Time Spent?

Figure 5.11 presents a breakdown of the time spent by IRA (TOQ=90%) as a fraction

of the total runtime of the exact application run. These percentages are the average

across all inputs for each application. The bulk of the time shown in the figure is

execution time saved by approximating the application with IRA. We divide the time

spent by IRA into three parts: the time spent creating a canary input (green; barely

visible), the time spent using the canary to search for an approximation (blue), and

the time spent running the chosen approximation on the full input (red).

The time spent choosing the canary is small, which is to say that the remain-

ing bottlenecks in IRA are elsewhere. Many applications – Gamma, Integration,

Inversek2j, Jmeint, Kernel, MatMult, MeanShift and ScalarProd – spend a small

proportion of the time searching for the the approximation, while many others spend

a sizable fraction of time doing so. When a large amount of time is spent in the

search, this is caused by a combination of large canaries and high-dimensional search

spaces (that is, those that have a larger number of approximation opportunities to

explore).

The size of the approximation search spaces varies significantly across applica-

tions, ranging from 4 in the case of Jmeint (4 versions of the algorithm constitute

the search space) to 22,500 in the case of CrossCorr where 5 approximation options

are parameterized. Our hill climbing algorithm takes O(m*n) steps, where m is the

number of approximations to parameterize and n is the number of ways to parame-

terize a single approximation. In our experimentation, we have found that searches

often end in fewer than 10 steps and typically take no more than a few dozen steps,

ultimately resulting in searches that average 3.2% of exact execution time.

The search time for choosing the approximation might be reduced by paring down

97



0%

20%

40%

60%

80%

100%

Execution Time Saved
Canary Creation

Search for Approximation
Run Approximation

Cro
ss

Corr

Fuzz
yK

means

Gamma

Gauss
ianFilte

r

Integ
ra

tio
n

Inv
erse

k2
j

Jm
eint

Luca
sK

anade

Kern
el

Kmeans

MatM
ult

MeanShift

Sca
larP

ro
d

%
 o

f E
xa

ct
 R

un
tim

e

Figure 5.11: Breakdown of time spent by IRA, showing time to create the canary
(barely visible), search for the approximation, and run the chosen approximation on
the full input

the number of approximation opportunities and parameter ranges to reduce the size of

the search space. For example, if certain approximation opportunities were revealed

through static analysis, offline profiling, or feedback from earlier runs of IRA to result

in ineffective approximations for a substantial fraction of inputs, those opportunities

could be discarded. However, because the goal in this work is to automate the process

of choosing the approximation without the aid of offline profiling or analysis, we

implement no such feedback loop.

5.4.5 Comparison to Prior Work

Green [15] and SAGE [147] are two state-of-the-art calibration systems that dynam-

ically tune approximation to control TOQ violations. Green uses profiling in concert

with calibration at fixed periods to tune how aggressively to apply approximation.

SAGE is also calibration-based, however it is entirely dynamic in nature and it contin-

ually changes the calibration period as more inputs are seen, lengthening the period

when calibration shows that the current tuning of the approximation does not violate

TOQ.

98



S
pe

ed
up

 v
s.

 E
xa

ct

0x

5x

10x

15x

20x

25x

30x

35x

Cro
ss

Corr 
  

Fuzz
yK

means  
 

Gamma   

Gauss
ianFilte

r  
 

Integ
ra

tio
n   

Inv
erse

k2
j   

Jm
eint   

Luca
sK

anade   

Kern
el   

Kmeans  
 

MatM
ult  

 

MeanShift 
  

Sca
larP

ro
d   

GEOMEAN   

   
39

x

   
57

x

Green    
SAGE
IRA

Figure 5.12: Comparison of IRA to calibration-based approximation with Green [15],
SAGE [147], showing that IRA achieves more than 4× speedup of each

We compare IRA to using oracle versions of the SAGE and Green runtime systems

to choose approximations. Our implementations of the SAGE and Green runtimes

do two things perfectly that cannot be done in practice. First, calibration on an

input yields the precise speedup and accuracy for that input on all approximations,

allowing the approximation to be tuned to exactly the most effective approximation

at each calibration point. Second, calibration intervals for each approach are set by

an oracle for each application. For Green, the best calibration interval is used out

of all possible calibration intervals, and for SAGE both the best calibration interval

and calibration adjustments are used. Thus, our experiments are upper bounds for

the speedups achievable on these applications, inputs and approximation techniques

with Green and SAGE.

We compare IRA against the oracle Green and SAGE by holding the number

of TOQ violations achieved by each approach constant and examining the speedups

achieved. The results of this comparison are shown in Figure 5.12, which shows the

speedup of the three techniques where the TOQ violations are held constant at the

TOQ violations IRA achieves at 90% TOQ. IRA improves the performance by an

99



average of 10.2× by customizing the approximation to each individual input, while

oracle Green speeds up by an average of 2.2× and oracle SAGE speeds up by a factor

of 2.3×.

There are a number of applications for which the oracle Green and SAGE pro-

vide no speedup, such as MatMult and ScalarProd. This occurs because some of

the application inputs have high variance or long tails, making them very difficult to

approximate. For these applications, Green and SAGE get locked into unnecessarily

conservative approximation approaches for a series of inputs once calibration has been

done on a difficult input. IRA, on the other hand, employs conservative approxima-

tions on these difficult inputs while applying appropriately aggressive approximation

on others. On LucasKanade, Green and SAGE achieve more speedup than IRA. This

occurs because LucasKanade can be aggressively approximated on all inputs, thus

allowing Green and SAGE to calibrate once and run those aggressive approximations

for all input, whereas IRA spends valuable time searching for an approximation on

all inputs.

5.5 Summary

This chapter described Input Responsive Approximation, an approach for automati-

cally configuring approximation of regularly structured computations for each prob-

lem input. IRA accomplishes this by producing a canary input at the problem outset,

a reduced version of the full input rigorously chosen so as to retain the properties of

the full input. This canary is used to rapidly test and choose from among the available

approximations. We use IRA to approximate 13 image processing, machine learning,

data mining, and computer vision applications. Using these applications, we showed

that IRA achieves an average speedup of 10.2× at a target output quality of 90%, far

higher than idealized versions of state-of-the-art prior work.

100



CHAPTER VI

Online Code Transformations in the Operating

System for Increased Security

This chapter describes the motivation and design of a novel operating system

architecture with an online code transformation capability for increased security. We

show that this code transforming operating system, ProtOS, can be used to design a

new class of protections that undermine code reuse attacks by employing continuous

code re-randomization. Continuous code re-randomization constantly re-positions

and reorganizes a program’s executable bytes while the program runs, thwarting an

important class of execution hijacking attacks by leaving attackers unable to exploit

assumptions as to the location and structure of code in memory.

ProtOS introduces the robust code transformation power of a dynamic compiler

into the OS, enabling a new class of security techniques. This novel design allows the

OS to continuously transform executing code with low overhead on arbitrarily com-

plex native programs. Hosting the code re-randomization technique in the operating

system has the security advantage of protecting critical structures used for runtime

code transformations.

The operation of the code re-randomization service is illustrated in Figure 6.1.

Figure 6.1(a) shows execution of a process over time using a conventional system

101



 

(a) Conventional OS that uses fixed, randomized code locations

 
 

 
 

 
 

time

{  

t0 t1 t2 t3

ELF 
binary 

file  
ex

ec
ut

ab
le

 
ad

dr
es

s 
 

sp
ac

e

Linux kernel

  
 

 

 

 

 

 

 

(b) ProtOS uses continuously re-randomized code locations

{ProtOS  
loader

Linux kernel

ProtOS 
binary 

file

ex
ec

ut
ab

le
 

ad
dr

es
s 

sp
ac

e

ProtOS 
compiler

code regions
CR1 CR2 CR3 CR4 useless 

bytes

timet0 t1 t2 t3

Figure 6.1: ProtOS thwarts code reuse attacks by using its online code transformation
capability to continuously re-randomize code as the program runs

102



architecture that leaves code locations fixed throughout execution. Figure 6.1(b)

depicts the code re-randomization service in ProtOS, which continuously iterates

over the code in the program, leveraging a robust dynamic compiler to generate re-

randomized variants of program code. Our evaluation of ProtOS shows that it can

re-randomize program code frequently enough to resist state-of-the-art code reuse

attacks based on memory disclosures and side channels with modest performance

overheads that average 9% across a wide range of applications.

6.1 Why a Code Transforming OS?

Address Space Layout Randomization (ASLR) is a technique that randomizes

the position and contents of code and data once as the application begins running.

Coarse-grain forms of ASLR are implemented in most modern operating systems, ran-

domizing the position of certain segments at load-time. The main limitation of ASLR

in the presence of sophisticated code reuse attacks is its static nature, only random-

izing code once at the beginning of execution, which results in a lack of protection

throughout an application’s lifetime. A defensive capability that offers continuing

protection during an application’s execution is needed to defend against such attacks.

The primary insight underlying the need for a code transforming OS is that con-

structing code reuse attacks takes time, ranging from hundreds of milliseconds to

minutes and even weeks [154,156,162]. Thus, if the locations of executable code can

be changed between the point in time when memory becomes visible to the attacker

and the point in time when the attacker has successfully constructed the attack based

on that knowledge of memory and begins deploying it, the attack will not succeed.

In other words, these attacks can be thwarted by a practical mechanism for dynam-

ically and continuously re-randomizing code. There are challenges in designing such

a mechanism for online code transformation – that mechanism must itself be secure,

transparent, robust and efficient. To overcome these challenges, this work proposes a

103



compiler-empowered operating system architecture than can continuously transform

running application code.

6.1.1 Decoupled Application and Compiler

Classical approaches to dynamic compilation and optimization are based on vir-

tualization, whereby the application and dynamic compiler are tightly coupled at

runtime and control passes back and forth between them to allow the compiler to

generate code and control execution. Even without performing any code transforma-

tion, the most of efficient of this class of systems introduces 20-30% overhead just to

possess the dynamic compilation capability [30]. Instead, our approach is based on

protean code. The key element in the design of protean code is that it decouples the

dynamic compiler from the application to allow the application to run at near-native

speeds (< 1% overhead) while the compiler works in parallel to generate and stitch

in code without requiring access to the original source code. We thus design a system

that spawns a dedicated lightweight dynamic compilation process as it spawns the

application process, which runs in parallel to the application and transforms its code

as they both execute.

6.1.2 OS-Hosted Online Code Transformation

The dynamic compilation process thus acts as a transparent service (that is, the

application needs no knowledge of it) that transforms application code as it runs.

This design of dynamic compilation as a transparent service is essential for keeping

the dynamic compiler from being subverted or disabled, and by building the dynamic

compilation capability into the operating system we are able carefully construct it to

protect critical structures in the dynamic compiler.

Unlike userspace dynamic compilation, a dynamic compilation process in our sys-

tem architecture is designed specifically to avoid interaction with other processes

104



and subsystems. For example, it has no input beyond the process ID and metadata

of the host program, supplied by the kernel when invoking the dynamic compiler.

It has no environment variables, ignores signals generated by other userspace pro-

cesses, performs no device I/O, and only interacts with the file system when loading

dynamically-linked libraries (see Section 6.2.4). Thus, file I/O can be avoided entirely

by static-linking programs. Avoiding these interactions as much as possible is partic-

ularly important for designing security mechanisms such as code re-randomization,

as it minimizes the attack surface of the dynamic compilation process and makes it

difficult for attackers to leverage the dynamic compilation capability in attacks.

6.1.3 Beyond Security

Beyond the security focus of this chapter, an enhanced system architecture with

an online code transformation capability opens up a new design space for other as-

pects of the OS. The OS hosts a number of services that can benefit from a dynamic

compilation capability to improve performance. For example, a task scheduler could

transform application code online to share resources more effectively [103, 169, 170]

or to dynamically invoke core-specific optimizations in heterogeneous multi-core sys-

tems as it moves tasks among cores with different capabilities [45, 74]. Similarly, a

memory manager could use page management policies in concert with online code

transformation to improve the performance or predictability of the TLB [14,93,134].

6.2 ProtOS System Architecture

This section describes the design and implementation of ProtOS, our realization

of a code transforming operating system. We describe the main elements of ProtOS

and how it extends a traditional system architecture to include a code transformation

capability. These extensions are described in the context of our prototype implemen-

tation of ProtOS on top of Linux/x86 64, though the concepts involved are generic

105



ProtOS
binary

file

ELF  
loader

dynamic 
complier

file 
system networking memory 

management

dynamic 
loader

thread 
scheduler

Linux kernel

(b) ProtOS system architecture

ELF  
loader

file 
system networking memory 

management
dynamic 
loader

thread 
scheduler

Linux kernel

(a) Conventional system architecture

dynamic compilation 
process application process

application process

ELF 
binary

file

Protos
loader

Figure 6.2: System architecture of ProtOS

and make minimal assumptions about the underlying system.

6.2.1 Overview

Figure 6.2 contrasts the design of ProtOS with a conventional system design. We

highlight the modifications to the existing system architecture in the figure, which

primarily include a light-weight dynamic compiler and an extended program loader.

The ProtOS loader is an extension to the existing ELF loader in Linux that sets up

the binary, configures a dynamic compilation process, then launches that dynamic

compilation process alongside the application. Throughout application execution,

106



compiler 
module

&

func

func

memory 
manager

code/EVT 
insertion

garbage 
collection

code cache 
layout

code 
cache

code 
cache

program 
process

dynamic 
compilation 
process

func

func

&

&

&

IR + 
metadata

shared 
code cache

func

Figure 6.3: Overview of ProtOS runtime system. All program execution occurs from
the code cache, a shared memory region between the program and the compiler. The
dynamic compiler runs asynchronously to update the code cache

the dynamic compiler spawned by ProtOS provides online code transformation as a

transparent service to the application, acting on native application binary in memory

with little overhead. We describe the compiler component and the loader in further

detail in Sections 6.2.2 and 6.2.3, respectively.

6.2.2 Online Code Transformation

The online code transformation facilities in ProtOS are based on the techniques

described in Chapter III. First, at compile time, the direct calls in the program are

virtualized (refer to Figure 3.1), a step that provides points at which the applica-

tion’s execution can be dynamically controlled. As we show later, this virtualization

step introduces negligible runtime overhead. When an application compiled this way

runs, a dynamic compilation process executes alongside to generate and stitch in

newly produced code, shown in Figure 6.3. The dynamic compilation process places

107



newly compiled code into a code cache, a region of memory shared between the host

application and the dynamic compiler. When the new code is ready for execution,

the dynamic compiler simply overwrites the target of the relevant virtualized call in-

struction. The decoupling of the application and compiler has significant performance

advantages over conventional, fully-virtualized dynamic compilation.

Another important feature of ProtOS’s dynamic compilation mechanism over con-

ventional dynamic compilation is that a conventional dynamic compiler operating in

the same process as the program is often forced either to violate the W ⊕ X paradigm

(described in detail in Section 2.4) or sacrifice performance. Consider a code page

housing newly minted code from the dynamic compiler that is also in the near-term

execution path of the program. The compiler must either sacrifice performance by

toggling W and X permissions on the page between code writes and execution, induc-

ing TLB flushes, or sacrifice security by leaving the page WX while code is written to

the page. Decoupled dynamic compilation in ProtOS, on the other hand, runs the

program and compiler in separate processes uses separate permissions for code pages

in each process – RX for the program, RW for the dynamic compiler – obviating this

tradeoff.

6.2.2.1 Edge Virtualization Table

The targets of compiler-virtualized calls are organized into a structure in the bi-

nary called an edge virtualization table (EVT) to provide a convenient mechanism for

new code to be stitched into the running program. This structure somewhat resem-

bles the global offset table (GOT) used in stock dynamically-linked ELF programs

to house the locations of shared library procedures. Unlike the GOT, however, the

EVT provides the location of every function in the host program. For the sake of

efficiency, it must be easily accessible to the host program, and thus by necessity it

provides a neatly organized list of function addresses that, if compromised, could be

108



used by attackers to gain a tremendous amount of insight into the current memory

layout of the program’s code.

Our approach to mitigating this possibility is to continuously re-randomize the

locations of each individual EVT entry as the application runs. Randomizing the

locations of all EVT entries makes the location of any particular EVT entry extremely

difficult to guess, and if one such location is divulged through an information leak it

does not improve the attacker’s prospects for finding any of the other entries.

Another difference between the EVT and the GOT is that the GOT is typically

writable in program memory (the dynamic loader, running in userspace, modifies it),

while the EVT resides in the code cache, which is RX in the program. As a result, the

EVT is not easily amenable to control flow hijacking attempts based on overwriting

its entries from the program.

6.2.2.2 Program Metadata

Another part of the compilation process in ProtOS is to enhance the binary,

placing a minimal metadata section into the program binary to facilitate the dynamic

compiler. The metadata section contains the compiler’s intermediate representation

(IR) of the program along with a map of the locations of code and data structures

such as functions, call sites and variables. These are leveraged when ProtOS initializes

the dynamic compiler process to allow it to find and modify these structures as it

recompiles the running program. The metadata is not mapped into program memory.

Furthermore, prior to allowing the program to begin the dynamic compiler performs

a priming recompilation once to produce a new, randomized code layout, thus the

code-related metadata is useful before the application executes but becomes stale

once the application has begun execution.

109



6.2.2.3 Garbage Collection

ProtOS destroys earlier versions of code that reside code cache so that they cannot

be leveraged by attackers. There are lazy and strict models of garbage collection

implemented in ProtOS. Our lazy garbage collector destroys code and EVT entries

that are no longer reachable by the application. Thus, lazy garbage collection can be

done with near-zero overhead because the program never has to be stopped while the

garbage collector runs. The down side of this approach is that it does not guarantee

strict timing bounds as to when that code will be reclaimed.

Strict garbage collection immediately collects all but the most recent version of all

code and EVT entries, thus this approach bounds the time that any particular byte

remains in the same place in executable memory. The design and implementation of

strict garbage collection is less trivial than lazy, as it must atomically update program

state when more than one version of code is reachable simultaneously. Consider a

partially executed function foo (i.e., it is stacked and control will return to it) that

needs to be garbage collected, and another copy foo’ that will replace foo. In strict

garbage collection, when foo is reclaimed the dynamic compiler must modify the

architectural state (memory and registers) referring to foo to reflect this change.

The state referencing foo includes function pointers, jump tables, global offset table

(GOT) entries, and goto labels, which must be updated to reflect the switch from foo

to foo’ when foo is garbage collected. The program is stopped during this portion

of garbage collection, as the switch from foo to foo’ must be atomic with respect to

the program’s architectural state to guarantee correct execution.

Particularly challenging in the design and implementation of strict collection is

the handling of function pointers in programs. To address this challenge, the dynamic

compiler tracks the locations of function pointers in memory using an approach similar

to the one outlined by Bigelow et al. [24] and updates them as needed during garbage

collection. Our current implementation of strict garbage collection in ProtOS sup-

110



ports the typical uses of function pointers, handling the spectrum of applications used

in our evaluation. For more atypical uses involving custom-encoded function pointers

that are difficult to track dynamically, ProtOS would have to revert to more costly

mechanisms such as runtime address translation as described in prior work [30,110].

All of the experiments and discussion in the remainder of this chapter assume the

strict model of garbage collection because the focus of this work is on providing the

most secure execution environment to undermine code reuse attacks.

6.2.3 Program Loading

ProtOS uses a custom loader, outlined in Figure 6.2, that extends the conventional

ELF loader in several ways, and is designed with interoperability between conventional

ELF binaries and ProtOS-enabled binaries in mind, seamlessly allowing the two to

coexist in the same ecosystem. The specific steps taken at load-time are as follows:

1. Read Binary File — the loader first reads the program’s binary file. If the

file contains the proper metadata, the loader treats the file as ProtOS-enabled.

Otherwise, the file is treated as a normal ELF binary by passing it along to be

loaded by the conventional ELF loader.

2. Setup Program and Compiler — the loader next initializes the program

process, setting up the process as usual, except that the program’s original text

segment is replaced by a larger code cache segment for dynamic compilation.

This code cache is also mapped into the dynamic compiler process.

3. Configure Permissions — the loader then configures permissions for the

program and its compilation process, setting the shared memory region to RX

on the program side and RW on the compiler side. The compiler process is

configured to allow it to ptrace only the specific application process paired with

111



text

RO data

data

0x400000

heap

stack RW-

0x900000

0xc00000

0xd00000

0x7fc0000
RW-

RW-

R--

R-X

0x7fff000

application

RO data

data

heap

stack RW-

0xb000000

RW-

RW-

R--

application

code 
cache

0xb00c000

text
RO data

data

heap

stackRW-

0x5000000

RW-

RW-

R--
R-X

dynamic compiler

code 
cache

0x500c000
R-X RW-

shared 
region

0x900000

0xc00000

0xd00000

0x300000

0x400000

0x700000

0xb00d000

0xb40c000

0x500f000

0x530f000

Typical address 
space layout

ProtOS address 
space layout

(a) 

(b) 

Figure 6.4: Sample address space layout of ProtOS application

112



it, allow it to pause, inspect and resume the program to perform management

tasks such as garbage collection and failure notification.

4. Priming Recompilation — next, the compiler process launches as the pro-

gram remains inert. The compiler performs a priming recompilation, random-

izing the locations of all functions and EVT entries in the program. This step

is equivalent to enacting a strong form of ASLR on the program’s code before

it begins execution. Note also that, like stock Linux, we perform segment-wise

ASLR on the stack and heap segments for every program.

5. Begin Program Execution — when the priming recompilation has finished,

the dynamic compiler allows the program to proceed with execution.

A typical address space layout resulting from the ProtOS loader is depicted in Fig-

ure 6.4. In 6.4(a), we illustrate the address space layout of a process resulting from

the stock ELF loader and in 6.4(b) we illustrate the layouts of the program and com-

piler processes after being loaded with our custom loader. The key differences are

(1) that a dedicated dynamic compilation process has been spawned to run alongside

the program and (2) that the program contains none of its original code, instead hav-

ing a code cache – a region of memory shared with the compiler process from which

execution will occur – initialized with a randomized code layout.

6.2.4 Dynamically-linked Libraries

Dynamically-linked libraries can cause new code to be introduced into the applica-

tion’s address space at any point during execution. ProtOS is designed to gracefully

handle ProtOS-enabled libraries in addition to legacy libraries.

The dynamic compilation process stubs out all procedure linkage table (PLT)

entries in the program to intercept the first call to a shared library. At dynamic load

time, ProtOS allows the application to load the shared library using the conventional

113



dynamic loader, then before allowing the program to continue execution locates the

library file and checks whether it is a legacy library or a ProtOS-enabled library by

checking for the existence of ProtOS metadata in the library. If the library is legacy,

the program is allowed to continue execution without the benefit of the library being

managed by the dynamic compiler. If the library is a ProtOS-enabled library, the

dynamic compiler performs a priming recompilation and emits randomized library

code into the program’s code cache and destroys the original library code in memory.

The randomized library code is subsequently managed by the dynamic compiler as

though it were code from the program executable.

Conventional dynamically-linked library code pages can be physically shared among

all the running processes that have loaded the library. A consequence of our ap-

proach to handling dynamically-linked libraries is that a unique copy of code from

ProtOS-enabled shared libraries is present in the address space each ProtOS-managed

program. As with conventional dynamically-linked libraries, data pages remain phys-

ically shared.

6.3 Continuous Code Re-randomization

Building on the online code transformation capability of ProtOS, we implement

a novel, practical code re-randomization service that continuously re-positions and

reorganizes program code, thwarting code reuse attacks by leaving attackers unable

to make assumptions about the locations of bytes in memory.

Two forms of re-randomization are supported – a medium-grain approach that

randomizes the location of each function, and a fine-grain approach that also ran-

domizes the order of blocks within functions. Medium-grain re-randomization makes

code reuse attacks difficult, placing a burden on the attacker to (1) discover the lo-

cation of the function, (2) construct an attack and payload, and (3) execute their

114



Medium-grain continuously re-
randomizes function placement

func1::BB2

func1::BB1

func2::BB3

func2::BB1

func2::BB2

func2::BB3

func2::BB1

func1::BB2

func1::BB1

func2::BB2

func2::BB3

func2::BB3

func2::BB1

func1::BB2

func1::BB1

func2::BB2

func2::BB1

func1::BB2

func1::BB1

func2::BB2

Fine-grain also re-randomizes 
block location within function

(b) (a) 

Figure 6.5: Different mixes of medium- and fine-grain re-
randomization offer different resource/security tradeoffs

attack, all within a very short time window. Fine-grain re-randomization places an

additional burden on the attacker because it also means they are unable to reliably

assume that the function’s structure remains fixed. Thus, even the discovery of the

function’s location may yield limited benefit to the attacker because they must also

discover the function’s current structure.

Two parameters define an overhead vs. security tradeoff in the re-randomization

service. First is the length of time between rounds of program-wide re-randomization

– shorter time between rounds provides increased protection against attacks but has

higher resource overhead. Second is how often to use the fine-grain technique – fine-

grain is more compute intensive but offers additional security over medium-grain. A

diagram illustrating how the medium- and fine-grain approaches apply to a single

function is presented in Figure 6.5.

The re-randomization service operates on the program by iteratively stepping

through its functions, incrementally generating a re-randomized version of the pro-

gram in the code cache. When the new program version is created, the compiler

pauses the program, garbage collects the old version, finally resuming execution in

the new version. These operations execute in a loop, continuously re-randomizing

program code throughout execution.

115



6.3.1 Medium-grain Re-randomization

The steps taken to enact medium-grain re-randomization are depicted in Fig-

ure 6.6. 6.6(a) shows the call graph of a sample program with three functions. 6.6(b)

shows an initial randomized memory layout of the program. The specific steps taken

during a program-wide round of re-randomization are as follows:

1. Randomize EVT — first, the dynamic compiler chooses randomized locations

for a new set of EVT entries, placing each new entry alone in a random location

in the code cache. The coming steps will generate code that contains references

to this new set of EVT entries, which are initialized to the addresses of the

currently-executing versions of all functions and will be updated to point to

new versions of each function as those new versions are generated.

2. Re-position Functions — the dynamic compiler chooses a function and se-

lects a location for it randomly from among the free portions of the code cache

that meet the size and alignment constraints of the compiler. The compiler

then emits a new version of the function and places it into the code cache. Fi-

nally, the EVT entries for that function are updated to reflect the location of

the new version of the function. Figure 6.6(c) shows the sample program af-

ter one function has been re-randomized. This function-level re-randomization

proceeds until new versions of all program code reside in the code cache. This

state is depicted for the sample program in Figure 6.6(d).

3. Pause Program Execution — it is important to note that the program runs

continuously throughout the previous steps. However, at this point the dynamic

compiler pauses program execution to perform garbage collection.

4. Garbage Collection — garbage collection is performed, clearing away the old

version of code and updating architectural state to ensure that no remnants of

116



foo

dum’ dum’

foo’

dum

main

foo

foo

main

dum dum

main

foo

main’

foo’

dum

main

main’

foo’

(a) Call graph (b) Memory layout (c) Memory layout during 
re-randomization (foo 
has been repositioned)

(d) Memory layout after 
code creation but prior 
to garbage collection

(e) Memory layout 
after garbage 
collection

Figure 6.6: Steps taken to enact a round of re-randomization; after
one round of re-randomization, all functions in the program has been
re-randomized in position (medium-grain) and layout (fine-grain)

117



the old versions remain in the program, such as a return address to a call site in

one of the old functions (see Section 6.2.2.3 for a detailed discussion of garbage

collection). Figure 6.6(e) reflects the result of garbage collection in the sample

program.

5. Resume Program Execution — the program resumes, now with fully re-

randomized code and EVT entries.

6.3.2 Fine-grain Re-randomization

The steps taken to enact fine-grain re-randomization are similar to medium-grain

re-randomization, however, instead of generating an identically-structured copy of

each function as discussed above in Step 2, the dynamic compiler generates a new

version with a re-randomized basic block order in addition to a re-randomized function

placement. ProtOS allows medium- and fine-grain re-randomization to be mixed in

arbitrary proportions by allowing the code re-randomization service to be configured

with a parameter p ∈ [ 0, 1 ]. For every re-randomization, a fine-grain approach is

used with probability p and medium-grain is used with probability 1− p.

Our implementation of fine-grain block-level reordering uses a compiler pass that

randomizes block order. Because this step invokes numerous passes in the com-

piler to perform the block re-ordering and generate optimized code, the production

of new code for fine-grain re-randomization uses significantly more CPU resources

than medium-grain re-randomization. We quantify the impact of this overhead in

Section 6.4.5.

118



6.3.3 Bytes, Bytes, Everywhere1

When initialized, the code cache is filled with trap instructions, 0xCC in our x86 64

implementation. Moreover, upon freeing a region of memory previously held by an

EVT entry or code, the dynamic compiler fills the region with trap instructions.

Thus, all unused regions of the code cache are filled with trap instructions. This not

only causes the unused areas of the code cache to be useless to attackers, but also

allows ProtOS to catch would-be attackers in the act. That is, the execution of one

these traps may result from a failed code reuse attack stemming from an attacker’s

outdated conception of what resides in program memory.

However, execution of a trap may also be the result of a buggy program. When

the execution of one of these trap instructions is detected, execution of the program

halts, which is detected by the dynamic compiler (the program PC is in an unused

region of the code cache). The dynamic compiler then alerts the operating system

to the failure of the program and the possibility of an attack, thus allowing further

measures to be taken, for example, by dumping program state to disk, alerting an

administrator, or writing a log message.

6.4 Evaluation

We now evaluate ProtOS, with particular focus on the resource overhead of the

code re-randomization service and on using gadget detection software [145] to demon-

strate the transient nature of gadgets in memory resulting from re-randomization.

6.4.1 Methodology

ProtOS is built into Linux kernel 3.13.0. The underlying hardware used in our

experiments is a 16-core Intel Xeon E5-2630v3 (Haswell) with 2-way SMT, 64GB

1Here we refer to the line from Samuel Taylor Coleridge’s Rime of the Ancient Mariner – “water,
water, everywhere, nor any a drop to drink”

119



RAM and a 2.40GHz clock rate, which uses the x86 64 ISA.

We implement the ProtOS compilation infrastructure on top of LLVM version

3.3, a widely-used production strength open source compiler [101]. All programs

are compiled to support ProtOS and are statically linked against a ProtOS-compiled

version of the musl implementation of libc [1]. We choose musl because it builds

easily with LLVM, whereas GNU libc contains a significant amount of code sup-

ported only by the GNU compiler. Our return oriented programming (ROP) gadget

detection experiments use ROPGadget version 5.3 [145] with a maximum gadget size

of 20 bytes.

The evaluation uses programs representing a spectrum of domains and com-

putational characteristics that stress the performance of ProtOS and its code re-

randomization service, including programs that are compute- and memory-intensive,

have large code bases, and large instruction working sets. In particular, we use the fol-

lowing 22 programs — bwaves, bzip2, lbm, mcf and namd from SPEC CPU2006 [80];

gmm and stemmer from SiriusSuite [79]; barnes, fft, lu cb, lu ncb, ocean cp, ocean ncp,

water nsquared and water spatial from Splash2x [22]; blockie, bst, er-naive,

naive, sledge from SmashBench [115]; blackscholes and freqmine from PAR-

SEC [23].

6.4.2 ProtOS System Overhead

We begin by evaluating what it costs to have the code transformation capability

in ProtOS. We compare the runtime of ProtOS programs to their non-ProtOS coun-

terparts compiled to ELF binaries and running on a stock Linux. The ProtOS-based

experiments involve no dynamic code transformation; the program is launched along-

side an inert dynamic compilation thread that immediately goes idle and makes no

modifications to the program. Thus, the main source of overhead is to execute indi-

rect calls through the EVT in the ProtOS-compiled programs instead of direct calls in

120



ba
rn

es

bl
ac

ks
ch

ol
es

bl
oc

ki
e

bs
t

bw
av

es

bz
ip

2

er
−

na
iv

e

fft

fr
eq

m
in

e

gm
m

lb
m

lu
_c

b

lu
_n

cb

m
cf

na
m

d

na
iv

e

oc
ea

n_
cp

oc
ea

n_
nc

p

sl
ed

ge

st
em

m
er

w
at

er
_n

sq
ua

re
d

w
at

er
_s

pa
tia

l

M
E

A
N

92%

94%

96%

98%

100%

102%

104%

106%

108%

N
or

m
al

iz
ed

 R
un

tim
e Conventional System ProtOS

Figure 6.7: ProtOS programs show negligible slowdowns compared to programs on a
stock Linux system

the conventional Linux/ELF programs. As the figure shows, the overhead of running

ProtOS-compiled programs is negligible, having a maximum performance overhead

of 1.7% and an average performance overhead of 0.3%. This shows that there is very

little performance overhead just to use the basic ProtOS system architecture with a

code transformation capability.

6.4.3 Code Re-randomization Performance

Offering continuous runtime support in thwarting code reuse attacks without in-

troducing significant runtime overheads is a challenging problem. The most closely

related techniques that attempt to provide such protection are in the area of con-

trol flow integrity, where the most comprehensive techniques have overheads of 2-

5× [39, 52]. These levels of overhead are too high for users to bear and serve as a

barrier to their adoption. A primary feature of our code re-randomization approach is

that it transparently provides a more secure execution environment while introducing

121



0x

0.2x

0.4x

0.6x

0.8x

1x

1.2x

1.4x

1.6x

1.8x

2x
N

or
m

al
iz

ed
 R

un
tim

e

ba
rn

es

bl
ac

ks
ch

ol
es

bl
oc

ki
e

bs
t

bw
av

es

bz
ip

2

er
−

na
iv

e

fft

fr
eq

m
in

e

gm
m

lb
m

lu
_c

b

lu
_n

cb

m
cf

na
m

d

na
iv

e

oc
ea

n_
cp

oc
ea

n_
nc

p

sl
ed

ge

st
em

m
er

w
at

er
_n

sq
ua

re
d

w
at

er
_s

pa
tia

l

M
E

A
N

30ms 100ms 300ms 1s 3s 10s 30s

Figure 6.8: Performance overhead of the medium-grain re-randomization service in
ProtOS; 300ms offers an attractive design point, in that it re-randomizes fast enough
to thwart state-of-the-art code reuse attacks [156,162] with only 9% runtime overhead

minimal overhead.

Re-randomization Frequency. We conduct experiments to examine the perfor-

mance impact of the re-randomization service as a function of the re-randomization

frequency. Figure 6.8 presents the results, showing the runtime of each program

at a range of different re-randomization frequencies ranging from 30ms to 30s when

exclusively using medium-grain re-randomization. The runtime results in this experi-

ment are normalized to the execution time of the stock ELF/Linux program, and are

inclusive of all sources of overhead.

The overhead of code re-randomization increases as the re-randomization becomes

more frequent. We examine the sources of overhead in more detail shortly. The

performance overhead is below 5% at all frequencies larger than 1 second. Moreover,

the performance overhead of re-randomizing once every 300ms averages 9%. As we

discuss shortly, a frequency of 300ms thwarts current state-of-the-art ROP attacks

122



Workload A bst, gmm, lu ncb, water spatial

Workload B bzip2, er-naive, stemmer, lu cb

Workload C mcf, naive, blackscholes, barnes
Workload D blockie, sledge, fft, water nsquared

Table 6.1: Multiprogram workloads

0x

0.2x

0.4x

0.6x

0.8x

1x

W
L=

A

W
L=

B

W
L=

C

W
L=

D

W
L=

A
+

B

W
L=

C
+

D

W
L=

A
+

D

W
L=

B
+

C

W
L=

   
  

A
+

B
+

C
+

D

ProtOS + Re−randomized Conventional w/o Re−rand.

(4−way) (8−way) (16−way)

W
ei

gh
te

d 
S

pe
ed

up
   

   
  

(N
or

m
al

iz
ed

) 
   

   
 

Workloads (N−way Simultaneous Co−runners)

Figure 6.9: Throughput of multiprogram workloads; throughput suffers small degra-
dations even when re-randomizing all 16 co-runners in a fully subscribed system every
300ms

by reducing them to blind guessing about where gadgets reside in memory. Finally,

we point out that ProtOS has a significant resilience to advancements in the speed

of code reuse attacks, in that it can re-randomize code once every 30ms to (over 10×

faster than necessary to thwart modern attacks) while incurring an overhead of only

31%.

Multiprogram Workloads. To investigate the impact of using re-randomization

every 300ms for all applications on a highly subscribed system, we conduct experi-

ments on re-randomizing multiprogram workloads. We use the workloads described in

Table 6.1, which are run either in isolation (1 workload implies 4 co-running applica-

tions), in pairs (8 co-running applications) or all at once (16 co-running applications).

123



Our experimental setup is to launch a set of co-running applications, running every

application in a loop for 30 minutes while collecting the average execution time of

each application. From these execution times, we compute the weighted speedup rel-

ative to the solo execution time of the applications on the stock ELF/Linux system.

We then compare the weighted speedup of ProtOS to the stock Linux system.

The results are shown in Figure 6.9. The left side of the figure shows the through-

put achieved for 4-way co-runner experiments, the middle shows 8-way, and the right

shows 16-way. The degradation due to co-running applications on the conventional

system increases as the number of co-runners increases due to the additional dynamic

compilation processes and the associated interference they cause for shared resources

such as caches and memory bandwidth. For 4-way co-running the throughput degra-

dation is as low as 5%. For the 16-way co-running case, recall that the hardware

platform has 16 CPUs, and thus for 16 co-running applications each CPU with 2-

way SMT is subscribed running an application process and a dynamic compilation

process. Nevertheless, the 16-way co-running case shows an overhead of only 19%,

demonstrating that our technique remains practical even when deployed on multipro-

gram workloads in heavily subscribed systems.

6.4.4 Sources of Application Overhead

We quantify the sources of overhead in re-randomized applications by first measur-

ing the direct overhead imposed by the dynamic compiler in pausing the application

to perform garbage collection. Figure 6.10 presents the average overhead across ap-

plications along with the average of overhead from all other sources. As the figure

shows, garbage collection overhead is negligible at longer frequencies, becoming more

significant at shorter frequencies and rising to 9% when re-randomization occurs every

30ms.

Dynamically Generated Code Quality. Visible in Figure 6.10 is an overhead of

124



P
er

fo
rm

an
ce

O
ve

rh
ea

d

0%

10%

20%

30%

40%

50%

30 10
0

30
0

10
00

30
00

10
00

0

30
00

0

Re−randomization Frequency (ms)

Garbage Collection
Other Sources

Figure 6.10: Overhead of garbage collection

3% when re-randomizing code every 30 seconds. Referring back to Figure 6.8, we ob-

serve that barnes, stemmer, water nsquared and water spatial exhibit slowdowns

of 9-20% when re-randomization occurs every 30 seconds.

Figure 6.11 shows the results of an experiment where we re-randomize applications

only once at the beginning of execution and collect the dynamic instruction counts

during the run using hardware performance monitors. The figure plots a point for

each application whose position along the x and y axes are its execution time overhead

and dynamic instruction count overheads, respectively. This figure shows that there

is an very strong correlation (the co-efficient of correlation is ρ = 0.89) between

these two factors. Further investigation reveals that in certain instances, our dynamic

compilation infrastructure generates code that is bloated relative to the code produced

by the static compiler in some key hot code locations. Thus, these programs end up

executing more instructions than their statically-compiled counterparts. While our

dynamic compilation infrastructure based on LLVM is very mature and generates

highly optimized code, this highlights the importance of continued work in developing

125



Execution Time Overhead w/ 1 Re−randomization

−10% −5% 0% 5% 10% 15% 20% 25% 30%

−10%

−5%

0%

5%

10%

15%

20%

25%

30%

E
xt

ra
 D

yn
am

ic
 In

st
ru

ct
io

ns

barnes

blackscholes
bst

freqmine

namd

ocean_cp

stemmer

water_nsquared

water_spatial

Figure 6.11: Dynamically-generated code instruction count vs. application runtime
overhead; correlation between the two is p=0.89

126



the LLVM dynamic compiler.

Side Effects. The remaining performance overheads in re-randomized applications

result from architectural and microarchitectural side effects. These side effects include

(1) the impact on instruction cache and TLB from executing re-randomized versions

of code that reside in different locations at different points in time and (2) contention

for resources like last level cache and memory that the dynamic compiler process

shares with the application.

To assess the impact of these side effects, we profile the dynamic activity of a

number of hardware performance monitors during application runs and find that TLB

misses show significant differences between 300ms re-randomized applications and

stock applications. Figure 6.12 presents dynamic traces of four hardware performance

monitors measuring important aspects of the memory subsystem collected during

native runs of mcf on stock Linux, as well as during re-randomized runs on ProtOS.

mcf is a memory-intensive application, and thus we expect it to be sensitive to data

cache interference. However, data cache effects are barely noticeable while the TLB

misses per cycle in Figure 6.12(d) are significantly higher during re-randomized runs.

Nevertheless, the performance impact of these side effects amounts to just an 8%

overhead on mcf and a 7% overhead on average across all applications.

6.4.5 Medium vs. Fine-grain Re-randomization

We now compare the resource overheads of medium-grain and fine-grain re-randomization.

Fine-grain re-randomization provides additional security benefits over medium-grain

re-randomization. It places an additional burden on the attacker because it means

they cannot make assumptions about the structure of functions, and thus the discov-

ery of part of the function may have limited benefit in locating additional ROP gadgets

because the function’s structure is not known. However, fine-grain re-randomization

requires more compute resources to generate code because it invokes a series of com-

127



piler passes that randomizes the block order and optimizes the resulting code before

emitting machine code.

CPU Utilization. We examine the CPU resource requirements of fine-grain

re-randomization through a series of experiments shown in Figure 6.13 that use 8

mixes of fine-grain and medium-grain re-randomization. A particular mix of fine-

and medium-grain re-randomization is characterized by p, the probability that fine-

grain re-randomization is applied (medium-grain is used with probability 1− p). For

each mix we re-randomize applications as frequently as possible, a frequency limited

by how quickly the CPU can perform re-randomization rounds. As the figure shows,

the more fine-grain re-randomization is used, the less frequently re-randomization

can be applied to the entire program. Our experiments show that 0% fine-grain

(100% medium-grain) re-randomization can be applied every 0.03s, while mixes that

use 1%, 10% and 100% fine-grain can be applied every 0.15s, 1.45s, and 14s, re-

spectively. A useful mix of the two is to use fine-grain re-randomization sparingly

(e.g., with probability 1-2%), imposing minimal extra resource overhead and allow-

ing re-randomization to occur with high frequency, while also burdening attackers by

breaking the assumption that function layouts remain fixed throughout an applica-

tions lifetime.

Dynamic Behavior. Figure 6.14 illustrates the activity of the re-randomizer by

showing the locations of gadgets within er-naive throughout its run. The experiment

used to generate this illustration dumps the contents of the code cache to disk after

each round of re-randomization, which is then scanned for ROP gadgets using the

ROPGadget tool [145]. This example is scoped down to include only four of the

functions in er-naive (there are well over 2000 functions in the entire program,

including those from libc). The figure shows the locations of gadgets in the address

space of er-naive. Each function contains a number of ROP gadgets, so to simplify

128



0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

(a) L2 D−cache

1e
−

01
 M

is
se

s 
pe

r 
C

yc
le

Time (fraction of execution)
0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

(b) I−cache

1e
−

04
 M

is
se

s 
pe

r 
C

yc
le

Time (fraction of execution)

Conventional w/o Re−rand.
ProtOS + Re−randomized

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.05

0.10

0.15

0.20

0.25

(c) L3 cache

1e
−

01
 M

is
se

s 
pe

r 
C

yc
le

Time (fraction of execution)
0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.02

0.04

0.06

0.08

0.10

(d) TLB

1e
−

01
 M

is
se

s 
pe

r 
C

yc
le

Time (fraction of execution)

Figure 6.12: Dynamic memory behavior of mcf with and without re-randomization;
the key factor impacting performance when re-randomizing code is frequent TLB
invalidations

129



0%

20%

40%

60%

80%

100%

F
in

e−
gr

ai
n 

P
ro

ba
bi

lit
y 

(p
) 

   
   

0.03s 0.1s 0.3s 1s 3s 10s

Maximum Re−randomization Frequency (M)

(p=0%, M= 0.03s)
(p=1%, M= 0.15s)
(p=2%, M= 0.28s)
(p=5%, M= 0.78s)

(p=10%, M= 1.45s)
(p=20%, M= 2.69s)
(p=50%, M= 7.59s)
(p=100%, M=14.13s)

Figure 6.13: Tradeoff between frequency and granularity of re-randomization

the presentation we plot a single point rather than a cluster of points to represent

the gadgets in each function.

We annotate the figure to show the positions of a subset of gadgets within main

during several stages of the run. Between the first and second annotations, medium-

grain re-randomization is performed, changing the location of the function and gad-

gets but preserving the structure of the function and relative positions of many gad-

gets. Between the second and third annotations fine-grain re-randomization changes

the function layout, thereby also changing the relative positions of many gadgets

within the function.

6.4.6 Security Implications

Re-randomization makes the locations of ROP gadgets unreliable to attackers.

This unreliability is central in undermining the ability of ROP attacks to rely on

the locations of gadgets in the construction of a code reuse attack. To measure this

unpredictability, we again dump the contents of the program’s executable memory

130



er-naive::main select gadgets
BB4 idiv [rdx+10];call  …
    mov edx,10;call rax
BB6 add [rsi+7],bh;mov  …
    mov esi,7;mov edx,1 … 
BB1 clc;xor al,al;call r9
    xor al,al;call r9
BB5 pop rdi;pop rbp;jmp …
    pop rbp; jmp rax
BB2 mov edx,1;call rax
BB3 mov edi,-1;call rax

Re-randomization Round

O
ffs

et
 in

 C
od

e 
Ca

ch
e

gadgets after medium-grain
BB4 idiv [rdx+10];call  …
    mov edx,10;call rax
BB6 add [rsi+7],bh;mov  …
    mov esi,7;mov edx,1 … 
BB1 clc;xor al,al;call r9
    xor al,al;call r9
BB5 pop rdi;pop rbp;jmp …
    pop rbp; jmp rax
BB2 mov edx,1;call rax
BB3 mov edi,-1;call rax

gadgets after fine-grain
BB4 idiv [rdx+10];call  …
    mov edx,10;call rax
BB2 mov edx,1;call rax
BB3 mov edi,-1;call rax
BB5 pop rdi;pop rbp;jmp …
    pop rbp; jmp rax
BB1 clc;xor al,al;call r9
    xor al,al;call r9
BB6 add [rsi+7],bh;mov  …
    mov esi,7;mov edx,1 … 

Figure 6.14: Gadgets detected within 4 functions of er-naive; memory is dumped
after each round of re-randomization and gadgets are detected offline using ROPGad-
get [145]

131



●

0%

20%

40%

60%

80%

100%
Li

ke
lih

oo
d 

of
 

G
ad

ge
t R

eu
sa

bi
lit

y

1e
−

06

1e
−

05

1e
−

04

1e
−

03

1e
−

02

1e
−

01

1e
+

00

1e
+

01

1e
+

02

Attack Execution Time (s)

JIT−ROP

Side Channel

0.03s
0.1s
0.3s
1s

3s
10s
30s

Figure 6.15: Likelihood of individual ROP gadgets remaining in place long enough to
orchestrate an attack; at 300ms, re-randomization occurs rapidly enough to prevent
even a single ROP gadget from remaining in place long enough to be usable in state-
of-the-art ROP techniques

region and use ROPGadget to extract the available ROP gadgets from the executable

memory region at different points in time and compute the average likelihood across

applications and gadgets that any particular gadget remains in place after different

amounts of elapsed time.

Our findings from these experiments are presented in Figure 6.15. The likelihood

of finding a ROP gadget at its current position at any particular point in time in

the future approaches zero as time elapses, regardless how (in)frequently the code is

re-randomized. This matches the intuition of how the re-randomization works; when

selecting new locations for re-randomized code, the locations are chosen at random

from within the code cache. Thus, re-randomizing code at any frequency implies that

all ROP gadgets will eventually be moved or destroyed.

Moreover, re-randomizing code every 300ms offers a very attractive design point.

It introduces a modest amount of performance overhead (9% on average), and re-

132



randomizes code frequently enough to undermine state-of-the-art ROP attacks. Con-

sider the just-in-time (JIT) code reuse attack, which requires at least 500ms to ex-

ecute and end-to-end ROP attack by repeatedly exploiting memory disclosures to

dynamically build a map of the executable code in the application [162]. When

a frequency of 300ms is used, our code re-randomization implementation will have

re-positioned every gadget while the attack is being orchestrated, making such an

attack extremely unlikely to succeed. Similarly, recently published work has demon-

strated that side channels may be used to infer the contents of executable memory

when certain programming constructs are present in the program [156]. In the fastest

form of their technique, leaking a single byte can take as little as 1.3 seconds, which

our re-randomization service can undermine easily by re-randomizing code once per

second.

6.5 Summary

This chapter motivates and describes ProtOS, a novel system architecture that

hosts an online code transformation capability as a system service. Using this on-

line code transformation service, we design and evaluate a mechanism for performing

continuous code re-randomization to undermine code reuse attacks. Our experiments

with ProtOS demonstrate the feasibility of this unique conception of code trans-

formation as a system service. We show also our re-randomization technique can

re-randomize code frequently enough to mitigate state-of-the-art code reuse attacks

with modest performance overheads that average 9% across a broad range of appli-

cations.

133



CHAPTER VII

Conclusions and Future Directions

This dissertation motivates and proposes a new approach to enabling online code

transformations, allow executing native programs to be transformed as they run.

The approach works by allowing a dynamic compiler to run asynchronously and in

parallel to the running program, thus keeping the runtime overhead of possessing an

online code transformation capability to near-zero and allowing programs to execute

with this capability at near-native speed. The capability to continuously perform

online code transformations opens up a new design space for native programs, as such

programs no longer need to have a fixed implementation throughout their execution.

I demonstrate these opportunities by describing three novel applications of on-

line code transformations, resulting in best-in-class solutions to several challenging

problems facing computer scientists today. First, I use online code transformations

to improve the utilization of multicore datacenter servers, significantly reducing the

number of servers needed to host latency-critical web services to mitigate the cost and

environmental impacts of operating datacenters. This technique strategically injects

software cache hint instructions into a running application to allow the applications

housed on the server to cooperatively use shared server resources far more effectively

than prior techniques that lack the online code transformation capability. Second,

I build a technique to automatically configure and parameterize approximate com-

134



puting techniques for each program input. This technique results in the ability to

configure approximate computing to achieve an average performance improvement

of 10.2× while maintaining 90% result accuracy, which significantly improves over

oracle versions of prior techniques. Third, I leverage online code transformation to

thwart code reuse attacks, a class of attacks that are widely used today by malicious

attackers to subvert and hijack the execution of software systems. This technique

builds an online code transformation capability into an operating system (OS), thus

allowing the OS to efficiently, transparently and continuously re-randomize code in-

side running applications, invalidating attackers’ assumptions as to the location of

code in memory that are needed to successfully execute a code reuse attack.

Beyond these opportunities, the introduction of a low-overhead online code trans-

formation technique can have wide-reaching implications, impacting the future of

hardware and software design.

7.1 Software Adaptation

The introduction of a low-overhead online code transformation technique that al-

lows software to be dynamically manipulated can be used to employ many classes

of optimizations whose efficacy depends on the application’s runtime environment,

broadly defined as the set of internal and external states in which the application

runs (e.g., other running applications, performance/power/resilience constraints, or

the application’s input). Examples of this include cache tiling, thread-level paral-

lelism, instruction scheduling, hardware and software prefetching [95], duplication,

and the application of approximate computing techniques. Similarly, online code

transformations could be used to enact short-lived profiling or instrumentation, al-

lowing quick bursts of feedback about performance or other interesting characteristics

of application behavior.

Beyond the security focus of Chapter VI, an enhanced system architecture with

135



an online code transformation capability opens up a new design space for other as-

pects of the OS. The OS hosts a number of services that can benefit from a dynamic

compilation capability to improve performance. For example, a task scheduler could

transform application code online to share resources more effectively [103, 169, 170]

or to dynamically invoke core-specific optimizations in heterogeneous multi-core sys-

tems as it moves tasks among cores with different capabilities [45, 74]. Similarly, a

memory manager could use page management policies in concert with online code

transformation to improve the performance or predictability of the TLB [14,93,134].

The low overhead approach to online code transformations could also be used to

apply additional security measures such as Control Flow Integrity protections [4] and

software diversity [175] into running application code. Such measures could be used

selectively during periods of elevated threat, or used on-demand in response to a

security-related event (e.g., a process that may be malicious begins to run).

7.2 Hardware Design

By providing a mechanism to dynamically change the running code, online code

transformations make possible a number of dynamic software compilation strategies

that have the capacity to influence the way we think about designing hardware.

The ability of software to adapt to and take advantage of architectural knobs ex-

posed by the hardware to fine-tune the behavior of the hardware means that such

knobs should be more readily exposed by hardware designers. One example of the

importance of such knobs is evidenced by the system described in Chapter IV that

takes advantage of non-temporal prefetch instructions to optimize co-running data-

center applications.

Energy efficient execution on top of existing and emerging microarchitectural fea-

tures can be leveraged more successfully using online code transformations. For ex-

ample, instructions could be dynamically scheduled (reordered), achieving schedules

136



that bring the performance of superscalar in-order cores closer to that of out-of-order

cores. Such an optimization could radically increase the performance of in-order cores

and make them a more performance-competitive design.

Moreover, the ability to transform code to avoid unreliable or failing architectural

units (e.g., a certain functional unit) may encourage the adoption of low-voltage or

otherwise unreliable designs. Similarly, heterogeneity and accelerator designs may

be facilitated by online code transformations, which can be used to generate highly

optimized and specialized code that take advantage of the unique features offered by

such designs.

The capability to easily transform code may also have implications for increasing

the adoption of increasingly thread- and data-parallel hardware. For instance, the

runtime compiler may be able to guarantee that certain dependence conditions hold in

a particular execution environment (e.g., due to the peculiarities of the input) that do

not hold generally, and may find parallelization opportunities not available to a static

compiler. Alternatively, the runtime compiler could find a number of opportunities

where such dependencies are usually true, resulting in an upsurge in parallelization

opportunities that could effectively use architectural speculation support, leading to

faster adoption of that support.

137



BIBLIOGRAPHY

138



BIBLIOGRAPHY

[1] musl libc. http://www.musl-libc.org/. [Online; accessed 10-November-
2015].

[2] ARMv8 Instruction Set Overview. http://infocenter.arm.com/help/

index.jsp?topic=/com.arm.doc.genc010197a/index.html, 2011. Online;
accessed 10-November-2015.

[3] Intel 64 and IA-32 Architectures Software Developers Manual. Volume 2:
Instruction Set Reference A-Z. http://www.intel.com/content/www/us/

en/processors/architectures-software-developer-manuals.html, 2014.
Online; accessed 10-November-2015.

[4] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Control-flow integrity. In
Computer and Communications Security (CCS), 2005.

[5] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica.
BlinkDB: Queries with bounded errors and bounded response times on very
large data. In European Conference on Computer Systems (EuroSys), 2013.

[6] R. S. Amant, A. Yazdanbakhsh, J. Park, B. Thwaites, H. Esmaeilzadeh, A. Has-
sibi, L. Ceze, and D. Burger. General-purpose code acceleration with limited-
precision analog computation. In International Symposium on Computer Ar-
chitecture (ISCA), 2014.

[7] AMD. AMD64 Architecture Programmer’s Manual: System Programming, vol-
ume 2.

[8] J. Ansel, Y. L. Wong, C. Chan, M. Olszewski, A. Edelman, and S. Amarasinghe.
Language and compiler support for auto-tuning variable-accuracy algorithms.
Code Generation and Optimization (CGO), 2011.

[9] Apple. Siri. https://www.apple.com/ios/siri/, 2014. [Online; accessed 10-
November-2015].

[10] ARM. ARM Architecture Reference Manual.

[11] W. Arthur, B. Mehne, R. Das, and T. Austin. Getting in control of your control
flow with control-data isolation. In Code Generation and Optimization (CGO),
2015.

139



[12] J. Auslander, M. Philipose, C. Chambers, S. J. Eggers, and B. N. Bershad.
Fast, effective dynamic compilation. In Programming Language Design and
Implementation (PLDI), 1996.

[13] K. Bache and M. Lichman. UCI machine learning repository. http://archive.
ics.uci.edu/ml, 2014. [Online; accessed 10-November-2015].

[14] D. F. Bacon, J.-H. Chow, D.-c. R. Ju, K. Muthukumar, and V. Sarkar. A
compiler framework for restructuring data declarations to enhance cache and
tlb effectiveness. In IBM Centre for Advanced Studies Conference (CASCON),
1994.

[15] W. Baek and T. M. Chilimbi. Green: a framework for supporting energy-
conscious programming using controlled approximation. In Programming Lan-
guage Design and Implementation (PLDI), 2010.

[16] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent dynamic
optimization system. In Programming Language Design and Implementation
(PLDI), 2000.

[17] B. Bao and C. Ding. Defensive loop tiling for shared cache. In Code Generation
and Optimization (CGO), 2013.

[18] K. Barker, T. Benson, D. Campbell, D. Ediger, R. Gioiosa, A. Hoisie, D. Ker-
byson, J. Manzano, A. Marquez, L. Song, N. Tallent, and A. Tumeo. PERFECT
(Power Efficiency Revolution For Embedded Computing Technologies) Bench-
mark Suite Manual. Pacific Northwest National Laboratory and Georgia Tech
Research Institute, 2013.

[19] L. A. Barroso, J. Clidaras, and U. Hölzle. The datacenter as a computer: an
introduction to the design of warehouse-scale machines, 2nd edition. Synthesis
Lectures on Computer Architecture, 2013.

[20] E. D. Berger and B. G. Zorn. Diehard: probabilistic memory safety for un-
safe languages. In Programming Language Design and Implementation (PLDI),
2006.

[21] S. Bhatkar, R. Sekar, and D. C. DuVarney. Efficient techniques for comprehen-
sive protection from memory error exploits. In USENIX Security Symposium
(SEC), 2005.

[22] C. Bienia, S. Kumar, and K. Li. Parsec vs. splash-2: A quantitative com-
parison of two multithreaded benchmark suites on chip-multiprocessors. In
International Symposium on Workload Characterization (IISWC), 2008.

[23] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec benchmark suite:
Characterization and architectural implications. In Parallel Architectures and
Compilation Techniques (PACT), 2008.

140



[24] D. Bigelow, T. Hobson, R. Rudd, W. Streilein, and H. Okhravi. Timely reran-
domization for mitigating memory disclosures. In Computer and Communica-
tions Security (CCS), 2015.

[25] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazieres, and D. Boneh. Hacking
blind. In Security and Privacy (SP), 2014.

[26] T. Bletsch, X. Jiang, and V. Freeh. Mitigating code-reuse attacks with control-
flow locking. In Computer Security Applications Conference (ACSAC), 2011.

[27] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. Jump-oriented programming:
a new class of code-reuse attack. In Computer and Communications Security
(CCS), 2011.

[28] J. Bornholt, T. Mytkowicz, and K. S. McKinley. Uncertain<T>: A first-order
type for uncertain data. In Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2014.

[29] B. Breech, A. Danalis, S. Shindo, and L. Pollock. Online impact analysis via dy-
namic compilation technology. In International Conference on Software Main-
tenance (ICSM), 2004.

[30] D. Bruening, T. Garnett, and S. Amarasinghe. An infrastructure for adaptive
dynamic optimization. In Code Generation and Optimization (CGO), 2003.

[31] S. Byna, J. Meng, A. Raghunathan, S. Chakradhar, and S. Cadambi. Best-
effort semantic document search on GPUs. In Workshop on General-Purpose
Computation on Graphics Processing Units (GPGPU), 2010.

[32] M. Carbin, D. Kim, S. Misailovic, and M. C. Rinard. Proving acceptability
properties of relaxed nondeterministic approximate programs. In Programming
Language Design and Implementation (PLDI), 2012.

[33] M. Carbin, S. Misailovic, and M. C. Rinard. Verifying quantitative reliability for
programs that execute on unreliable hardware. In Object Oriented Programming
Systems Languages and Applications (OOPSLA), 2013.

[34] N. Carlini and D. Wagner. ROP is still dangerous: Breaking modern defenses.
In USENIX Security Symposium (SEC), 2014.

[35] L. Ceze and J. Larus. Report on ISAT/DARPA workshop on accuracy trade-offs
across the system stack for performance and energy (aka approximate comput-
ing). In DARPA Innovative Space Based Radar Antenna Technology (ISAT)
Workshop, 2014.

[36] S. Chaudhuri, S. Gulwani, R. Lublinerman, and S. Navidpour. Proving pro-
grams robust. In Foundations of Software Engineering (FSE), 2011.

141



[37] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and
M. Winandy. Return-oriented programming without returns. In Computer
and Communications Security (CCS), 2010.

[38] S. Checkoway, A. J. Feldman, B. Kantor, J. A. Halderman, E. W. Felten, and
H. Shacham. Can DREs provide long-lasting security? The case of return-
oriented programming and the AVC advantage. In Electronic Voting Technology
Workshop (EVT), 2009.

[39] P. Chen, H. Xiao, X. Shen, X. Yin, B. Mao, and L. Xie. DROP: Detecting
return-oriented programming malicious code. In International Conference on
Information Systems Security (ICISS). 2009.

[40] W.-K. Chen, S. Lerner, R. Chaiken, and D. M. Gillies. Mojo: A dynamic op-
timization system. In Feedback-Directed and Dynamic Optimization (FDDO),
2000.

[41] W. Cheng, Q. Zhao, B. Yu, and S. Hiroshige. Tainttrace: Efficient flow trac-
ing with dynamic binary rewriting. In IEEE Symposium on Computers and
Communications (ISCC), 2006.

[42] Y. Cheng, Z. Zhou, M. Yu, X. Ding, and R. H. Deng. ROPecker: A generic
and practical approach for defending against ROP attacks. In Network and
Distributed System Security (NDSS), 2014.

[43] A. Chernoff, M. Herdeg, R. Hookway, C. Reeve, N. Rubin, T. Tye, S. B. Ya-
davalli, and J. Yates. Fx! 32: A profile-directed binary translator. IEEE Micro,
1998.

[44] V. Chipounov and G. Candea. Enabling sophisticated analyses of x86 binaries
with revgen. In Dependable Systems and Networks (DSN), 2011.

[45] N. Chitlur, G. Srinivasa, S. Hahn, P. Gupta, D. Reddy, D. Koufaty, P. Brett,
A. Prabhakaran, L. Zhao, N. Ijih, S. Subhaschandra, S. Grover, X. Jiang, and
R. Iyer. QuickIA: Exploring heterogeneous architectures on real prototypes. In
High Performance Computer Architecture (HPCA), 2012.

[46] J. Cohen. Statistical power analysis for the behavioral sciences. Lawrence Erl-
baum, 1988.

[47] C. Consel and F. Noël. A general approach for run-time specialization and its
application to c. In Principles of Programming Languages (POPL), 1996.

[48] H. Cook, M. Moreto, S. Bird, K. Dao, D. A. Patterson, and K. Asanovic.
A hardware evaluation of cache partitioning to improve utilization and energy-
efficiency while preserving responsiveness. In International Symposium on Com-
puter Architecture (ISCA), 2013.

142



[49] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R. Sadeghi, S. Brun-
thaler, and M. Franz. Readactor: Practical code randomization resilient to
memory disclosure. In Security and Privacy (SP), 2015.

[50] L. Davi, C. Liebchen, A.-R. Sadeghi, K. Z. Snow, and F. Monrose. Isomeron:
Code randomization resilient to (just-in-time) return-oriented programming.
Network and Distributed Systems Security (NDSS), 2015.

[51] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose. Stitching the gadgets:
On the ineffectiveness of coarse-grained control-flow integrity protection. In
USENIX Security Symposium (SEC), 2014.

[52] L. Davi, A.-R. Sadeghi, and M. Winandy. ROPdefender: A detection tool to
defend against return-oriented programming attacks. In Computer and Com-
munications Security (CCS), 2011.

[53] J. C. Dehnert, B. K. Grant, J. P. Banning, R. Johnson, T. Kistler, A. Klaiber,
and J. Mattson. The transmeta code morphing software: using speculation,
recovery, and adaptive retranslation to address real-life challenges. In Code
Generation and Optimization (CGO).

[54] C. Delimitrou and C. Kozyrakis. Paragon: Qos-aware scheduling for hetero-
geneous datacenters. In Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2013.

[55] Y. Ding, J. Ansel, K. Veeramachaneni, X. Shen, U.-M. O’Reilly, and S. Ama-
rasinghe. Autotuning algorithmic choice for input sensitivity. In Programming
Language Design and Implementation (PLDI), 2015.

[56] T. Dullien, T. Kornau, and R.-P. Weinmann. A framework for automated
architecture-independent gadget search. In Workshop on Offensive Technolo-
gies (WOOT), 2010.

[57] O. J. Dunn. Multiple comparisons among means. Journal of the American
Statistical Association, 1961.

[58] Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman, M. Bailey, F. Li,
N. Weaver, J. Amann, J. Beekman, M. Payer, and V. Paxson. The matter
of heartbleed. In Internet Measurement Conference (IMC), 2014.

[59] K. Ebcioğlu and E. R. Altman. Daisy: Dynamic compilation for 100% archi-
tectural compatibility. In International Symposium on Computer Architecture
(ISCA), 1997.

[60] E. Eng and D. Caselden. Operation clandestine wolf – Adobe flash zero-day
in APT3 phishing campaign. https://www.fireeye.com/blog/threat-

research/2015/06/operation-clandestine-wolf-adobe-flash-zero-

day.html, 2015. [Online; accessed 10-November-2015].

143



[61] D. R. Engler. Vcode: a retargetable, extensible, very fast dynamic code gener-
ation system. In Programming Language Design and Implementation (PLDI),
1996.

[62] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Architecture support
for disciplined approximate programming. In Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), 2012.

[63] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Neural acceleration
for general-purpose approximate programs. In International Symposium on
Microarchitecture (MICRO), 2012.

[64] B. Fang, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi. Evaluating the er-
ror resilience of parallel programs. In Dependable Systems and Networks (DSN),
2014.

[65] P. Feiner, A. D. Brown, and A. Goel. Comprehensive kernel instrumentation
via dynamic binary translation. In Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), 2012.

[66] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic,
C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi. Clearing the clouds:
a study of emerging scale-out workloads on modern hardware. In Architectural
Support for Programming Languages and Operating Systems (ASPLOS), 2012.

[67] R. Fu, J. Lu, A. Zhai, and W.-C. Hsu. A study of the performance poten-
tial for dynamic instruction hints selection. In Asia-Pacific Computer Systems
Architecture Conference (ACSAC). 2006.

[68] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum. Enhanced operating system
security through efficient and fine-grained address space randomization. In
USENIX Security Symposium (SEC), 2012.

[69] I. Goiri, R. Bianchini, S. NagaraKatte, and T. Nguyen. Approxhadoop: Bring-
ing approximations to mapreduce frameworks. In Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2015.

[70] E. Göktaş, E. Athanasopoulos, M. Polychronakis, H. Bos, and G. Portokalidis.
Size does matter: Why using gadget-chain length to prevent code-reuse attacks
is hard. In USENIX Security Symposium (SEC), 2014.

[71] Google. Glass. https://www.google.com/glass, 2014. [Online; accessed 10-
November-2015].

[72] Google. Google Now. http://www.google.com/landing/now/, 2014. [Online;
accessed 10-November-2015].

144



[73] B. Grant, M. Philipose, M. Mock, C. Chambers, and S. J. Eggers. An evaluation
of staged run-time optimizations in dyc. In Programming Language Design and
Implementation (PLDI), 1999.

[74] P. Greenhalgh. big.LITTLE processing with ARM Cortex-A15 & Cortex-A7.
ARM White paper, 2011.

[75] B. Grigorian, N. Farahpour, and G. Reinman. Brainiac: Bringing reliable accu-
racy into neurally-implemented approximate computing. In High Performance
Computer Architecture (HPCA), 2015.

[76] B. Grigorian and G. Reinman. Dynamically adaptive and reliable approximate
computing using light-weight error analysis. In NASA/ESA Conference on
Adaptive Hardware and Systems (AHS), 2014.

[77] A. Gupta, S. Kerr, M. S. Kirkpatrick, and E. Bertino. Marlin: Making it harder
to fish for gadgets. In Computer and Communications Security (CCS), 2012.

[78] J. R. Hauser. Handling floating-point exceptions in numeric programs. Trans-
actions on Programming Languages and Systems (TOPLAS), 1996.

[79] J. Hauswald, M. A. Laurenzano, Y. Zhang, C. Li, A. Rovinski, A. Khurana,
R. G. Dreslinski, T. Mudge, V. Petrucci, L. Tang, and J. Mars. Sirius: An
open end-to-end voice and vision personal assistant and its implications for
future warehouse scale computers. In Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2015.

[80] J. L. Henning. Spec cpu2006 benchmark descriptions. ACM SIGARCH Com-
puter Architecture News, 2006.

[81] F. B. Hildebrand. Introduction to numerical analysis. Courier Corporation,
1987.

[82] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W. Davidson. ILR: Where’d
my gadgets go? In Security and Privacy (SP), 2012.

[83] H. Hoffmann, J. Eastep, M. Santambrogio, J. Miller, and A. Agarwal. Appli-
cation heartbeats for software performance and health. MIT CSAIL Technical
Report, 2009.

[84] H. Hoffmann, S. Misailovic, S. Sidiroglou, A. Agarwal, and M. Rinard. Us-
ing code perforation to improve performance, reduce energy consumption, and
respond to failures. MIT CSAIL Technical Report, 2009.

[85] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal, and M. Ri-
nard. Dynamic knobs for responsive power-aware computing. In Architectural
Support for Programming Languages and Operating Systems (ASPLOS), 2011.

145



[86] S. Holm. A simple sequentially rejective multiple test procedure. Scandinavian
Journal of Statistics, 1979.

[87] U. Hölzle, C. Chambers, and D. Ungar. Debugging optimized code with dy-
namic deoptimization. In Programming Language Design and Implementation
(PLDI), 1992.

[88] A. Homescu, S. Brunthaler, P. Larsen, and M. Franz. Librando: transparent
code randomization for just-in-time compilers. In Computer and Communica-
tions Security (CCS), 2013.

[89] R. Hund, T. Holz, and F. C. Freiling. Return-oriented rootkits: Bypassing
kernel code integrity protection mechanisms. In USENIX Security Symposium
(SEC), 2009.

[90] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual.

[91] Y. Jiang, K. Tian, and X. Shen. Combining locality analysis with online proac-
tive job co-scheduling in chip multiprocessors. In High Performance Embedded
Architectures and Compilers (HiPEAC). 2010.

[92] A. Jimborean, P. Clauss, J.-F. Dollinger, V. Loechner, and J. M. M. Caamano.
Dynamic and speculative polyhedral parallelization using compiler-generated
skeletons. International Journal of Parallel Programming, 2014.

[93] M. Kandemir, I. Kadayif, and G. Chen. Compiler-directed code restructuring
for reducing data tlb energy. In International conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), 2004.

[94] H. Kasture and D. Sanchez. Ubik: efficient cache sharing with strict qos for
latency-critical workloads. In Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2014.

[95] M. Khan, M. A. Laurenzano, J. Mars, E. Hagersten, and D. Black-Schaffer.
Arep: Adaptive resource efficient prefetching for maximizing multicore perfor-
mance. In Parallel Architecture and Compilation Techniques (PACT), 2015.

[96] D. S. Khudia, B. Zamirai, M. Samadi, and S. Mahlke. Rumba: an online quality
management system for approximate computing. In International Symposium
on Computer Architecture (ISCA), 2015.

[97] C. Kil, J. Jim, C. Bookholt, J. Xu, and P. Ning. Address space layout permu-
tation (ASLP): Towards fine-grained randomization of commodity software. In
Computer Security Applications Conference (ACSAC), 2006.

[98] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn. Using os observations
to improve performance in multicore systems. IEEE Micro, 2008.

146



[99] M. D. Lam, E. E. Rothberg, and M. E. Wolf. The cache performance and
optimizations of blocked algorithms. Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 1991.

[100] C. Lattner and V. Adve. Llvm: A compilation framework for lifelong program
analysis & transformation. In Code Generation and Optimization (CGO), 2004.

[101] C. Lattner and V. Adve. Llvm: A compilation framework for lifelong program
analysis & transformation. In Code Generation and Optimization (CGO), 2004.

[102] M. A. Laurenzano, M. M. Tikir, L. Carrington, and A. Snavely. Pebil: Efficient
static binary instrumentation for linux. In Performance Analysis of Systems
and Software (ISPASS), 2010.

[103] M. A. Laurenzano, Y. Zhang, L. Tang, and J. Mars. Protean code: Achiev-
ing near-free online code transformations for warehouse scale computers. In
International Symposium on Microarchitecture (MICRO), 2014.

[104] L. Leem, H. Cho, J. Bau, Q. A. Jacobson, and S. Mitra. ERSA: Error resilient
system architecture for probabilistic applications. In Design, Automation and
Test in Europe (DATE), 2010.

[105] J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram. Defeating return-oriented
rootkits with return-less kernels. In European Conference on Computer Systems
(EuroSys), 2010.

[106] M.-L. Li, P. Ramachandran, S. K. Sahoo, S. V. Adve, V. S. Adve, and Y. Zhou.
SWAT: an error resilient system. In Workshop on Silicon Errors in Logic -
System Effects (SELSE), 2008.

[107] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan. Gaining
insights into multicore cache partitioning: Bridging the gap between simulation
and real systems. In High Performance Computer Architecture (HPCA), 2008.

[108] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn. Flikker: Saving
DRAM refresh-power through data partitioning. In Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2011.

[109] J. Lu, H. Chen, R. Fu, W.-C. Hsu, B. Othmer, P.-C. Yew, and D.-Y. Chen.
The performance of runtime data cache prefetching in a dynamic optimization
system. In International Symposium on Microarchitecture (MICRO), 2003.

[110] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood. Pin: building customized program analysis
tools with dynamic instrumentation. In Programming Language Design and
Implementation (PLDI), 2005.

147



[111] R. Marlet, C. Consel, and P. Boinot. Efficient incremental run-time specializa-
tion for free. In Programming Language Design and Implementation (PLDI),
1999.

[112] J. Mars and M. L. Soffa. Mats: Multicore adaptive trace selection. In Workshop
on Software Tools for MultiCore Systems (STMCS), 2008.

[113] J. Mars and M. L. Soffa. Synthesizing contention. In Workshop on Binary
Instrumentation and Applications (WBIA), 2009.

[114] J. Mars and L. Tang. Whare-map: heterogeneity in homogeneous warehouse-
scale computers. In International Symposium on Computer Architecture
(ISCA), 2013.

[115] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa. Bubble-up: Increasing
utilization in modern warehouse scale computers via sensible co-locations. In
International Symposium on Microarchitecture (MICRO), 2011.

[116] J. Meng, S. Chakradhar, and A. Raghunathan. Best-effort parallel execution
framework for recognition and mining applications. In International Symposium
on Parallel and Distributed Processing (IPDPS), 2009.

[117] Meta. Meta Pro. https://www.spaceglasses.com/, 2014. [Online; accessed
10-November-2015].

[118] Metz, Cade. Facebook Catapults $1.5 Billion Datacenter int Iowa. http:

//www.wired.com/2013/04/facebook-iowa-data-center/. Online; accessed
10-November-2015.

[119] Microsoft. Meet Cortana. http://www.windowsphone.com/en-us/how-to/

wp8/cortana/meet-cortana, 2014. [Online; accessed 10-November-2015].

[120] R. G. Miller. Simultaneous Statistical Inference. Springer, 1981.

[121] Miller, Rich. The Billion Dollar Datacenter. http://www.

datacenterknowledge.com/archives/2013/04/29/the-billion-dollar-

data-centers/, 2013. Online; accessed 10-November-2015.

[122] S. Misailovic, D. Kim, and M. Rinard. Parallelizing sequential programs
with statistical accuracy tests. Transactions on Embedded Computing Systems
(TECS), 2013.

[123] S. Misailovic, D. M. Roy, and M. C. Rinard. Probabilistically accurate program
transformations. In Static Analysis Symposium (SAS). 2011.

[124] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard. Quality of service
profiling. In International Conference on Software Engineering (ICSE), 2010.

[125] V. Mohan, P. Larsen, S. Brunthaler, K. Hamlen, and M. Franz. Opaque control-
flow integrity. In Network and Distributed System Security (NDSS), 2015.

148



[126] T. Moreau, M. Wyse, J. Nelson, A. Sampson, H. Esmaeilzadeh, L. Ceze, and
M. Oskin. Snnap: Approximate computing on programmable socs via neural
acceleration. In High Performance Computer Architecture (HPCA), 2015.

[127] S. Nanda, W. Li, L.-C. Lam, and T.-c. Chiueh. Bird: Binary interpretation
using runtime disassembly. In Code Generation and Optimization (CGO), 2006.

[128] C. H. Nguyen. Samsung poised to release ‘Gear Glass’ wearable late in
2014. http://www.androidcentral.com/samsung-poised-release-gear-

glass-wearable-late-2014, 2014. [Online; accessed 10-November-2015].

[129] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda. G-free: defeat-
ing return-oriented programming through gadget-less binaries. In Computer
Security Applications Conference (ACSAC), 2010.

[130] V. Pappas, M. Polychronakis, and A. D. Keromytis. Smashing the gadgets:
Hindering return-oriented programming using in-place code randomization. In
Security and Privacy (SP), 2012.

[131] V. Pappas, M. Polychronakis, and A. D. Keromytis. Transparent ROP ex-
ploit mitigation using indirect branch tracing. In USENIX Security Symposium
(SEC), 2013.

[132] Pelletier, Alexandre. Advanced exploitation of internet explorer heap over-
flow (Pwn2Own 2012 exploit). http://www.vupen.com/blog/20120710.

Advanced_Exploitation_of_Internet_Explorer_HeapOv_CVE-2012-1876.

php. [Online; accessed 10-November-2015].

[133] C. Poynton. Digital video and HD: Algorithms and Interfaces. Elsevier, 2012.

[134] I. Puaut and D. Hardy. Predictable paging in real-time systems: A compiler
approach. In Euromicro Conference on Real-Time Systems (ECTRS), 2007.

[135] M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning: A low-
overhead, high-performance, runtime mechanism to partition shared caches.
In International Symposium on Microarchitecture (MICRO), 2006.

[136] T. Rain, M. Miller, and D. Weston. Exploitation trends: From potential risk
to actual risk. In RSA Conference, 2015.

[137] G. Ren, E. Tune, T. Moseley, Y. Shi, S. Rus, and R. Hundt. Google-wide
profiling: A continuous profiling infrastructure for data centers. IEEE Micro,
2010.

[138] L. Renganarayana, V. Srinivasan, R. Nair, and D. Prener. Programming with
relaxed synchronization. In Workshop on Relaxing Synchronization for Multi-
core and Manycore Scalability (RACES), 2012.

149



[139] M. Rinard. Probabilistic accuracy bounds for fault-tolerant computations that
discard tasks. In International Conference on Supercomputing (ICS), 2006.

[140] M. Rinard. Probabilistic accuracy bounds for perforated programs. In Work-
shop on Partial Evaluation and Program Manipulation (PEPM), 2011.

[141] M. Rinard, H. Hoffmann, S. Misailovic, and S. Sidiroglou. Patterns and statisti-
cal analysis for understanding reduced resource computing. In Object Oriented
Programming Systems Languages and Applications (OOPSLA), 2010.

[142] M. Ringenburg, A. Sampson, I. Ackerman, L. Ceze, and D. Grossman. Monitor-
ing and debugging the quality of results in approximate programs. In Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS),
2015.

[143] S. Rus, R. Ashok, and D. X. Li. Automated locality optimization based on
the reuse distance of string operations. In Code Generation and Optimization
(CGO), 2011.

[144] S. Russell and P. Norvig. Artificial intelligence: A modern approach. Prentice
Hall Press, 1995.

[145] J. Salwan. Ropgadget tool. http://shell-storm.org/project/ROPgadget/,
2012. [Online; accessed 10-November-2015].

[146] M. Samadi, D. A. Jamshidi, J. Lee, and S. Mahlke. Paraprox: Pattern-based
approximation for data parallel applications. In Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), 2014.

[147] M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and S. Mahlke. SAGE: Self-
tuning approximation for graphics engines. In International Symposium on
Microarchitecture (MICRO), 2013.

[148] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and D. Gross-
man. Enerj: Approximate data types for safe and general low-power computa-
tion. In Programming Language Design and Implementation (PLDI), 2011.

[149] A. Sampson, J. Nelson, K. Strauss, and L. Ceze. Approximate storage in solid-
state memories. In International Symposium on Microarchitecture (MICRO),
2013.

[150] A. Sampson, P. Panchekha, T. Mytkowicz, K. S. McKinley, D. Grossman, and
L. Ceze. Expressing and verifying probabilistic assertions. In Programming
Language Design and Implementation (PLDI), 2014.

[151] D. Sanchez and C. Kozyrakis. Vantage: scalable and efficient fine-grain cache
partitioning. In International Symposium on Computer Architecture (ISCA),
2011.

150



[152] A. Sandberg, D. Eklöv, and E. Hagersten. Reducing cache pollution through
detection and elimination of non-temporal memory accesses. In International
Conference for High Performance Computing, Networking, Storage and Analy-
sis (SC), 2010.

[153] J. Sartori and R. Kumar. Branch and data herding: Reducing control and
memory divergence for error-tolerant GPU applications. In IEEE Transactions
on Multimedia. 2013.

[154] E. J. Schwartz, T. Avgerinos, and D. Brumley. Q: Exploit hardening made
easy. In USENIX Security Symposium (SEC), 2011.

[155] K. Scott, N. Kumar, S. Velusamy, B. Childers, J. W. Davidson, and M. L.
Soffa. Retargetable and reconfigurable software dynamic translation. In Code
Generation and Optimization (CGO), 2003.

[156] J. Seibert, H. Okkhravi, and E. Söderström. Information leaks without memory
disclosures: Remote side channel attacks on diversified code. In Computer and
Communications Security (CCS), 2014.

[157] H. Shacham. The geometry of innocent flesh on the bone: Return-into-libc
without function calls (on the x86). In Computer and Communications Security
(CCS), 2007.

[158] S. Sidiroglou, O. Laadan, C. Perez, N. Viennot, J. Nieh, and A. D. Keromytis.
Assure: automatic software self-healing using rescue points. Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS), 2009.

[159] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard. Managing
performance vs. accuracy trade-offs with loop perforation. In Foundations of
Software Engineering (FSE), 2011.

[160] S. Sinnadurai, Q. Zhao, and W. fai Wong. Transparent runtime
shadow stack: Protection against malicious return address modifica-
tions. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.

120.5702&rep=rep1&type=pdf, 2008. [Online; accessed 10-November-2015].

[161] J. Sloan, D. Kesler, R. Kumar, and A. Rahimi. A numerical optimization-
based methodology for application robustification: Transforming applications
for error tolerance. In Dependable Systems and Networks (DSN), 2010.

[162] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A.-R.
Sadeghi. Just-in-time code reuse: On the effectiveness of fine-grained address
space layout randomization. In Security and Privacy (SP), 2013.

[163] L. Soares, D. Tam, and M. Stumm. Reducing the harmful effects of last-level
cache polluters with an os-level, software-only pollute buffer. In International
Symposium on Microarchitecture (MICRO), 2008.

151



[164] S. W. Son, M. Kandemir, M. Karakoy, and D. Chakrabarti. A compiler-directed
data prefetching scheme for chip multiprocessors. In Principles and Practice of
Parallel Programming (PPoPP), 2009.

[165] J. Sorber, A. Kostadinov, M. Garber, M. Brennan, M. D. Corner, and E. D.
Berger. Eon: A language and runtime system for perpetual systems. In Con-
ference on Embedded Networked Sensor Systems (Sensys), 2007.

[166] B. Stancill, K. Z. Snow, N. Otterness, F. Monrose, L. Davi, and A.-R. Sadeghi.
Check my profile: Leveraging static analysis for fast and accurate detection of
ROP gadgets. In Research in Attacks, Intrusions, and Defenses (RAID). 2013.

[167] L. Szekeres, M. Payer, T. Wei, and D. Song. Sok: Eternal war in memory. In
Security and Privacy (SP), 2013.

[168] D. Tam, R. Azimi, L. Soares, and M. Stumm. Managing shared l2 caches
on multicore systems in software. In Workshop on the Interaction between
Operating Systems and Computer Architecture (WIOSCA), 2007.

[169] L. Tang, J. Mars, and M. L. Soffa. Compiling for niceness: Mitigating con-
tention for qos in warehouse scale computers. In Code Generation and Opti-
mization (CGO), 2012.

[170] L. Tang, J. Mars, W. Wang, T. Dey, and M. L. Soffa. Reqos: Reactive stat-
ic/dynamic compilation for qos in warehouse scale computers. In Architectural
Support for Programming Languages and Operating Systems (ASPLOS), 2013.

[171] P. Team. PaX address space layout randomization (ASLR), 2003.

[172] D. Ungar, D. Kimelman, and S. Adams. Inconsistency robustness for scala-
bility in interactive concurrent-update in-memory molap cubes. Inconsistency
Robustness (IR), 2011.

[173] M. J. Voss and R. Eigemann. High-level adaptive program optimization with
adapt. In Principles and Practices of Parallel Programming (PPoPP), 2001.

[174] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Binary stirring: Self-
randomizing instruction addresses of legacy x86 binary code. In Computer
and Communications Security (CCS), 2012.

[175] D. Williams, W. Hu, J. W. Davidson, J. D. Hiser, J. C. Knight, and A. Nguyen-
Tuong. Security through diversity: Leveraging virtual machine technology.
IEEE Security and Privacy Magazine, 2009.

[176] J. S. Witte, R. C. Elston, and L. R. Cardon. On the relative sample size required
for multiple comparisons. Statistics in medicine, 2000.

[177] M. E. Wolf and M. S. Lam. A data locality optimizing algorithm. In Program-
ming Language Design and Implementation (PLDI), 1991.

152



[178] Y. Xia, Y. Liu, H. Chen, and B. Zang. CFIMon: Detecting violation of control
flow integrity using performance counters. In Dependable Systems and Networks
(DSN), 2012.

[179] Y. Xu, Z. Musgrave, B. Noble, and M. Bailey. Bobtail: avoiding long tails in
the cloud. In Networked Systems Design and Implementation (NSDI), 2013.

[180] H. Yang, A. Breslow, J. Mars, and L. Tang. Bubble-flux: Precise online qos
management for increased utilization in warehouse scale computers. In Inter-
national Symposium on Computer Architecture (ISCA), 2013.

[181] T. Y. Yeh, P. Faloutsos, M. Ercegovac, S. J. Patel, and G. Reinman. The art of
deception: Adaptive precision reduction for area efficient physics acceleration.
In International Symposium on Microarchitecture (MICRO), 2007.

[182] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song,
and W. Zou. Practical control flow integrity and randomization for binary
executables. In Security and Privacy (SP), 2013.

[183] M. Zhang and R. Sekar. Control flow integrity for COTS binaries. In USENIX
Security Symposium (SEC), 2013.

[184] W. Zhang, B. Calder, and D. M. Tullsen. An event-driven multithreaded dy-
namic optimization framework. In Parallel Architectures and Compilation Tech-
niques (PACT), 2005.

[185] X. Zhang, S. Dwarkadas, and K. Shen. Towards practical page coloring-based
multicore cache management. In European conference on Computer Systems
(EuroSys), 2009.

[186] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale, and J. Wilkes. Cpi2:
Cpu performance isolation for shared compute clusters. In European Conference
on Computer Systems (EuroSys), 2013.

[187] Y. Zhang, M. A. Laurenzano, J. Mars, and L. Tang. Smite: Precise qos pre-
diction on real system smt processors to improve utilization in warehouse scale
computers. In International Symposium on Microarchitecture (MICRO), 2014.

[188] Q. Zhao, D. Bruening, and S. Amarasinghe. Umbra: Efficient and scalable
memory shadowing. In Code Generation and Optimization (CGO), 2010.

[189] Z. A. Zhu, S. Misailovic, J. A. Kelner, and M. Rinard. Randomized accuracy-
aware program transformations for efficient approximate computations. In
Principles of Programming Languages (POPL), 2012.

[190] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing shared resource
contention in multicore processors via scheduling. In Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2010.

153


