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Chapter 1  
Introduction 

 

Technological innovation in the past decade has dramatically increased the amount and 

variety of genomic data available to geneticists. While it took over a decade to sequence the 

first human genome, a new sample today can be sequenced in a few hours according the 

product manuals for “next-generation” sequencing (NGS) technologies. Additionally, array-

based genotyping methods can assay millions variants in a matter of minutes. With faster data 

generation, we also see lower unit costs. The long awaited $1000 genome is finally within 

reach. These advances have enabled large-scale genomic studies that would have been 

impossible just a few years ago. 

While high-throughput technologies have increased the number of samples that can be 

analyzed, they have also increased the opportunities for errors to occur. Even if per-experiment 

errors are relatively rare, the large number of experiments performed means it is likely errors 

will occur. Imperfect methods and protocols may result in systematic biases or errors in the 

generated data. If ignored, these errors may result in inaccurate genotypes which could lead to 

false associations between genotypes and a trait of interest or reduced power to detect such 

associations. For this reason, proper quality assessment is an important part of any data 

processing pipeline. If possible, test for errors should be easy to execute and interpret in an 

automated way as early in the experimental pipeline as possible. 
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One potential source of inaccurate genomic data is sample contamination. We define 

contamination as the accidental mixture of DNA or RNA from two or more individuals from the 

same species. Contamination between different species is also possible1,2, but we will focus on 

the more challenging problem of contamination among human samples. Throughout the course 

of a study, physical samples may be handled and manipulated in the laboratory and it is 

possible for two DNA or RNA samples to become mixed. Anytime samples are pipetted (e.g. 

during collection, storage, or extraction) there is an opportunity for contamination. Improper 

shipment of samples in well plates from a repository to a processing center may also result in 

contamination. Additionally, some protocols require forms of PCR amplification and if multiple, 

barcoded samples are processed together, there is a risk of amplification errors that may result 

in a portion of the DNA being paired with the wrong barcode. One final example involves 

improper data merging. Some protocols sequence samples across many batches and then 

combine the data before processing. Even if all sequenced samples were uncontaminated, 

incorrect data merging may result in a data file that appears to be contaminated. 

There is a need for methods to detect sample contamination for both array-based and 

sequencing-based data. For array-based genotypes, samples are often filtered or excluded 

based on the number of missing genotypes. It is possible that the cause of missing genotypes is 

contamination.  However there are other possible causes as well and no attempt has been 

made to test or quantify contamination specifically for array-based genotypes. For sequencing 

data, there are methods that look at cross-species contamination by filtering out sequence 

during alignment3, and there is a Bayesian method that additionally requires you to know the 

true genotypes (presumably from an array-based method)4. Because contamination increases 
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the diversity of alleles observed at a particular variant site, contaminated samples will generally 

have more heterozygous genotypes than expected for uncontaminated samples. Filtering 

individuals with a large number of heterozygous SNPs is a useful quality filter but it does not 

help quantify contamination and it also requires prior running of a genotype caller on the 

sample, an additional time-consuming step which could mean delays on the order of months 

before contamination is detected, allowing a contamination-prone process to continue. 

In this thesis, I propose a comprehensive set of tools for dealing with contamination in 

modern genetic data. In chapter 2, I will look at detecting and quantifying contamination in 

both array-based genotyping data and NGS data. In chapter 3, I focus specifically on NGS data 

and propose a novel genotype calling algorithm that can produce accurate genotypes even 

when samples are contaminated. In chapter 4, I extend the methods for contamination 

detection to RNA sequencing (RNA-Seq) data. Finally in chapter 5, I reflect on the usefulness of 

these methods and describe possible future extensions.  
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Chapter 2  
Detecting and estimating contamination of human DNA samples in 

sequencing and array-based genotype data 
 

AbstractA 

DNA sample contamination is a serious problem in DNA sequencing studies, and may 

result in systematic genotype misclassification and false positive associations.  While methods 

exist to detect and filter out cross-species contamination, few methods to detect within-species 

sample contamination are available.  In this paper, we describe methods to identify within-

species DNA sample contamination based on (1) a combination of sequencing reads and array-

based genotype data; (2) sequence reads alone; and (3) array-based genotype data alone.  

Analysis of sequencing reads allows contamination detection after sequence data is generated 

but prior to variant calling; analysis of array-based genotype data allows contamination 

detection prior to generation of costly sequence data.  Through a combination of analysis of in-

silico and experimentally contaminated samples, we show that our methods can reliably detect 

and estimate levels of contamination as low as 1%.  We evaluate the impact of DNA 

contamination on genotype accuracy, and propose effective strategies to screen for and 

prevent DNA contamination in sequencing studies. 

                                                      
A This work has been published: Jun, G., Flickinger, M., Hetrick, K.N., Romm, J.M., Doheny, K.F., Abecasis, G.R., 
Boehnke, M., Kang, H.M. (2012). Detecting and estimating contamination of human DNA samples in sequencing 
and array-based genotype data. Am J Hum Genet 91, 839–848. 
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Introduction 

Advances in array-based genotyping and next-generation sequencing have resulted in 

higher throughput, lower costs, and reduced error rates.  These technologies enable 

increasingly comprehensive genetic studies for a wide range of human diseases and traits.  

While constantly improving, genotyping and sequencing technologies are not perfect, and 

careful attention must be paid to ensure high data quality.  Sensitive and efficient methods to 

screen data for potential artifacts are critical. 

One potential source of error is DNA sample contamination.  Because samples are often 

processed in batches and genotyping and sequencing protocols require multiple steps of 

sample handling and manipulation in the lab, it is not surprising that DNA from more than one 

individual may end up in the same well or prepared library.  In this paper, we focus on within-

species contamination in which DNA from more than one individual is present, either from 

another individual in the same study or from an unknown individual.  Note that cross-species 

contamination can often be detected and filtered out during the alignment of sequence reads1. 

Within species contamination is harder to detect, and can result in greatly reduced genotype 

quality for sequencing studies; the problem is most severe for low pass sequencing studies 

(where each allele is typically supported by only a few reads), but can affect even deep 

sequencing studies. 

In a recent type 2 diabetes sequencing study, we identified a subset of individuals with 

unusually large numbers of heterozygous genotypes and high ratios of heterozygous genotypes 

to non-reference allele homozygous genotypes (HET/HOM ratio) (Figure 2-1AB).  We 
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hypothesized that some DNA samples might be contaminated, resulting in poor genotype 

estimates and inflated heterozygosity and, therefore, set about to develop methods to identify 

such contamination and estimate its extent. 

 

Here, we describe methods to detect DNA sample contamination based on sequencing 

and/or array-based genotype data.  We demonstrate that when sequencing is carried out on 

DNA samples for which array-based genotypes are available, it is possible to estimate the level 

of sample contamination, and to identify the source of the contamination (see Web 

Resources)2.  We further demonstrate that even with low-pass sequencing data alone, we can 

detect and estimate the degree of contamination.  Finally, and perhaps most important, we 

demonstrate that it is possible to detect even modest levels of DNA sample contamination from 

array-based genotype data alone, allowing DNA samples to be pre-screened for possible 

Figure 2-1 - SNP genotype calling and estimation of 
contamination from 299 European sequenced samples:  

chromosome 20 - A. Numbers of heterozygous genotypes.  B. 
Ratio of the numbers of non-reference homozygous genotypes to 
heterozygous genotypes (HET/HOM ratio).  C. Estimated level of 
DNA sample contamination estimated from sequence data only. 
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contamination prior to sequencing.  Software based on our methods is already in use by major 

sequencing projects, including the 1000 Genomes Project, and is publicly available (see Web 

Resources). 

Materials and Methods 

In this section, we first describe a series of methods to evaluate DNA sample 

contamination and then outline a series of experiments carried out to evaluate our ability to 

identify contaminated samples.  We present three likelihood-based methods that detect DNA 

sample contamination using (a) sequence data and array-based genotype data, (b) sequence 

data alone, and (c) array-based genotype data alone.  We also present a regression-based 

method that uses array-based genotype data alone.  For each of these methods, we assume 

that if DNA from a “contaminating sample” represents a fraction 𝛼 of the observed data, then 

the same fraction 𝛼 of sequence reads and genotype array intensity will be contributed by the 

contaminating sample.  Initially, we also assume the presence of no more than one 

contaminating DNA sample (but see Discussion). 

Detecting sample contamination using sequence data and array-based genotype data jointly 

We first consider the simplest situation where a set of genotypes for each sequenced 

sample is known and we wish to investigate whether sequencing reads all originate from the 

targeted sample with no evidence for contaminating reads from a different sample.  For each 

site  , let 𝑔𝑖 be the true genotype, 𝑏𝑖𝑗 (1 ≤ 𝑗 ≤ 𝑅𝑖) be the base call for the 𝑗th overlapping base 

(among 𝑅𝑖 total reads overlapping site i and passing mapping and base quality thresholds), and 

𝑒𝑖𝑗 be a latent indicator variable that takes value 0 when 𝑏𝑖𝑗 is called correctly and 1 otherwise.  
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Assuming that sequencing errors are equally likely to result in any of the three alternate bases, 

the conditional probabilities of observing a specific overlapping base given the true genotype 

and error status 𝑃(𝑏𝑖𝑗|𝑔𝑖, 𝑒𝑖𝑗 ) can be calculated easily (Table 2-1).  The conditional likelihood of 

a single overlapping base can then be written as the two-sample mixture model  

𝑃(𝑏𝑖𝑗|𝑔𝑖
1, 𝑔𝑖

2, 𝑒𝑖𝑗; 𝛼) = (1 − 𝛼)𝑃(𝑏𝑖𝑗|𝑔𝑖
1, 𝑒𝑖𝑗) + 𝛼𝑃(𝑏𝑖𝑗|𝑔𝑖

2, 𝑒𝑖𝑗) 

where 𝑔𝑖
1 and 𝑔𝑖

2 are the genotypes of the targeted and contaminating DNA samples at site 𝑖 

and 𝛼 is the sample contamination level.  Note that, in this section, we assume array based 

genotypes are error-free and therefore 𝑔𝑖
1 is known.  In later sections, our methods that use 

either sequence or array-based data alone remove this restriction. 

True Genotype gi 
Base Calling  

Error Event eij 
Pr(bij = A) Pr(bij = B) Pr(bij = E)  

gi = AA 
eij = 0 1 0 0 

eij = 1 0 1/3 2/3 

gi = AB 
eij = 0 1/2 ½ 0 

eij = 1 1/6 1/6 2/3 

gi = BB 
eij = 0 0 1 0 

eij = 1 1/3 0 2/3 

Table 2-1 Conditional probability 𝑃(𝑏𝑖𝑗  | 𝑒𝑖𝑗, 𝑔𝑖) of read 𝑏𝑖𝑗 given true genotype 𝑔𝑖 and read 

error 𝑒𝑖𝑗. ( AA: A allele homozygote, AB: heterozygote, BB: B allele homozygote, E: alleles other 

than A or B) 

In the absence of knowledge of the identity of the contaminating individual, we 

formulate the likelihood  

ℒ(𝛼) = ∏ ∑ ∑ ∑ {∏ ∑ 𝑃(𝑏𝑖𝑗|𝑔𝑖
1, 𝑔𝑖

2, 𝑒𝑖𝑗, 𝜀𝑖; 𝛼)𝑃(𝑒𝑖𝑗)𝑒𝑖𝑗

𝑅𝑖
𝑗=1 } 𝑃(𝑔𝑖

2)𝑔𝑖
2 𝑃(𝑔𝑖

1|𝜀𝑖; 𝐺𝑖)𝑔𝑖
1 𝑃(𝜀𝑖)𝜀𝑖

𝑀
𝑖=1   

(Eqn 1) 
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Here, 𝑀 is the number of genotyped sites for the targeted individual, 𝐺𝑖 is the array-based 

genotype for the targeted individual at site 𝑖, and 𝜀𝑖 is a binary indicator of genotyping error 

events.  In Equation 1, we calculate genotype probabilities 𝑃(𝑔𝑖
2) from population allele 

frequency estimates assuming Hardy-Weinberg equilibrium, and error probabilities 

𝑃(𝑒𝑖𝑗 = 1) = 10−𝑄𝑖𝑗/10 and 𝑃(𝑒𝑖𝑗 = 0) = 1 − 10−𝑄𝑖𝑗/10, where 𝑄𝑖𝑗 is the phred-scale base 

quality score.  For simplicity, we assume 𝑃(𝑔𝑖
1 = 𝐺𝑖|𝜀 = 0; 𝐺𝑖) = 1 

and 𝑃(𝑔𝑖
1 = (𝐺 ≠ 𝐺𝑖)|𝜀 = 1; 𝐺𝑖) = 0.5. We estimate the contamination fraction 𝛼 by 

maximizing the likelihood in Equation 1, first using a grid search on the interval [0, 1], and then 

applying Brent’s algorithm3.     

To identify the contaminating individual among the 𝑁 study individuals with array-based 

genotype data, we consider the likelihood function 

ℒ(𝛼, 𝑘) = ∏ ∑ ∑ ∑ ∑ {∏ ∑ 𝑃(𝑏𝑖𝑗|𝑔𝑖
1, 𝑔𝑖

𝑘 , 𝑒𝑖𝑗, 𝜀𝑖
1, 𝜀𝑖

𝑘; 𝛼)𝑃(𝑒𝑖𝑗)

𝑒𝑖𝑗

𝑅𝑖

𝑗=1

}

𝑔𝑖
𝑘

𝑃(𝑔𝑖
1|𝜀𝑖

1; 𝐺𝑖)𝑃(𝑔𝑖
𝑘|𝜀𝑖

𝑘; 𝐺𝑖)

𝑔𝑖
1

𝑃(𝜀𝑖
1)𝑃(𝜀𝑖

𝑘)
𝜀𝑖

𝑘𝜀𝑖
1

𝑀

𝑖=1

 

for individuals 2 ≤ 𝑘 ≤ 𝑁.  Using maximum likelihood across 𝛼 and 𝑘, we estimate the most 

likely contaminating individual 𝑘 and contamination level 𝛼.  By comparing the maximum 

likelihoods (over 𝛼) for the most likely and next most likely contaminating samples, including 

the generic individual represented by population allele frequencies (as in Equation 1), we 

obtain a measure of support for the inferred contaminating individual.  
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Detecting sample contamination using sequence data alone 

Next, we consider the problem of identifying contamination when prior genotype data 

are not available. In the absence of prior genotype data, both 𝑔𝑖
1 and 𝑔𝑖

2 are unknown, and the 

likelihood for the contamination level 𝛼 becomes 

ℒ(𝛼) = ∏ ∑ ∑ {∏ ∑ ((1 − 𝛼)𝑃(𝑏𝑖𝑗|𝑔𝑖
1, 𝑒𝑖𝑗) +  𝛼𝑃(𝑏𝑖𝑗|𝑔𝑖

2, 𝑒𝑖𝑗)) 𝑃(𝑒𝑖𝑗)𝑒𝑖𝑗

𝑅𝑖
𝑗=1 } 𝑃(𝑔𝑖

2)𝑃(𝑔𝑖
1)𝑔𝑖

2𝑔𝑖
1

𝑀
𝑖=1       (Eqn 2)  

Equation 2 can be maximized using an initial grid search followed by Brent’s algorithm.  In 

contrast to Equation 1 in which array-based genotype data are available, Equation 2 is 

symmetric with respect to the targeted and contaminating individuals.  In this situation, with 

sequence data alone and without previously known genotypes, our method cannot detect 

sample swaps.  Further, since 𝐿(𝛼) = 𝐿(1 − 𝛼), here we restrict attention to 0 ≤ 𝛼 ≤ ½. 

Detecting sample contamination using array-based genotype data alone 

We next turn to the problem of detecting DNA sample contamination using array-based 

genotype data alone, an analysis which can be carried out to identify contaminated samples 

prior to sequencing.  We assume the availability of relative intensity information, as produced 

for example by the Illumina Infinium assay.  The Infinium assay measures the relative intensities 

of fluorescently labeled probes associated with arbitrarily labeled alleles A and B.  After 

normalizing intensities, the Illumina software reports (1) the genotype as AA, AB, BB, assigning 

a missing genotype to individuals with intensities outside the expected clusters; and (2) the 

estimated abundance of the B allele, called the B allele frequency (BAF).  We expect BAF close 

to 0, ½, or 1 for genotypes AA, AB, and BB, respectively.  We describe two types of 

contamination detection and estimation methods in this setting:  two likelihood-based mixture-
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model methods based on the intensity values, and a regression-based method using BAF as 

input. 

Detecting sample contamination using array data alone:  mixture models for intensity data 

We implement our mixture model on the genotype intensity data in two ways.  One 

implementation estimates model parameters by examining signal intensity distributions for 

each marker across all samples; a second implementation estimates signal intensity 

distributions by examining all markers for a single sample.  Both implementations use genotype 

intensity values normalized by the GenomeStudio software as input, to reduce technical 

differences across samples and markers. 

In the multi-sample implementation, for each marker 𝑖, we model the normalized A and 

B allele intensity data 𝒙𝒊 = (𝑥,𝐴 𝑥𝐵) for an uncontaminated DNA sample as a bivariate Gaussian 

distribution:  

 𝑝𝑖(𝐱𝒊|𝑔𝒊)~𝒩(𝝁𝒊
𝒈𝒊 , 𝚺𝒊

𝒈𝒊),    𝑔𝒊 = {𝐴𝐴, 𝐴𝐵, 𝐵𝐵}, 1 ≤ 𝑖 ≤ 𝑀 

Here, 𝑔𝒊 is again the true genotype at marker 𝑖, 𝝁𝒊
𝒈𝒊  is the intensity mean vector for marker 𝑖 

given 𝑔𝑖, and 𝚺𝒊
𝒈𝒊  is the covariance matrix of the A and B allele intensities.  We estimate 𝝁𝒊

𝒈𝒊  

and 𝚺𝒊
𝒈𝒊  using observed signal intensities and called genotypes at marker i across all genotyped 

individuals.  To reduce the impact of genotype misclassification, we exclude samples with call 

rate < 99% and markers with minor allele frequency < 1%.  Assuming the observed DNA sample 

is a mixture of two unrelated DNA samples, we can model the intensity values as a bivariate 

Gaussian mixture: 
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𝑝𝑖(𝐱𝒊|𝑔𝑖
1, 𝑔𝑖

2; 𝛼)~𝒩 (𝛼𝝁𝒊

𝑔𝑖
1

+ 𝛼𝝁𝒊

𝑔𝑖
2

, 𝛼2𝚺𝒊

𝑔𝑖
1

+ (𝟏 − 𝛼)2𝚺𝒊

𝑔𝑖
2

)     1 ≤ 𝑖 ≤ 𝑀 

where 𝑔𝑖
1 and 𝑔𝑖

2 are the genotypes of the two samples at marker 𝑖.  Given data on 𝑀 

independent markers, we formulate the likelihood of a sample using the intensity distribution 

estimated across multiple samples as 

ℒ(𝛼) = ∏ ∑ ∑ 𝑝𝑖(𝐱𝒊|𝑔𝑖
1, 𝑔𝑖

2)𝑃(𝑔𝑖
1)𝑃(𝑔𝑖

2)𝑔𝑖
2𝑔𝑖

1
𝑀
𝑖=1  (Equation 3) 

Genotype probabilities 𝑃(𝑔𝑖
𝑘) in Equation 3 can be calculated assuming Hardy-Weinberg 

equilibrium using allele frequencies estimated from the called genotypes or from external data.  

As before, we estimate 𝛼 by maximum likelihood using a grid search on the interval [0, ½] 

followed by Brent’s algorithm.  With genotype array data alone, we cannot detect sample 

swaps.   

The single-sample implementation is analogous to the multi-sample implementation.  In 

the multi-sample implementation, the bivariate Gaussian parameters for 𝑝𝑖 at each marker are 

estimated across all 𝑁 samples, while in the single-sample implementation, parameters for 𝑝𝑘 

are estimated across all 𝑀 markers called in the individual.  The corresponding likelihood of 

single-sample implementation follows 

ℒ(𝛼) = ∏ ∑ ∑ 𝑝𝑘(𝒙𝒊|𝑔𝑖
1, 𝑔𝑖

2)𝑃(𝑔𝑖
1)𝑃(𝑔𝑖

2)

𝑔𝑖
2𝑔𝑖

1

𝑀

𝑖=1
 

where 𝑝𝑘(𝒙|𝑔𝑖
1, 𝑔𝑖

2) is mixture of bivariate Gaussians whose parameters are estimated across 

all markers for individual 𝑘.  
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The multi-sample implementation is appropriate when many samples have been 

genotyped and can be used to estimate the distribution of signal intensities for each marker.  

The single-sample implementation can be used when data are available on only one or a few 

samples.  

Detecting sample contamination using array data alone:  regression-based method 

Our second genotype-array-based method detects contamination by identifying 

systematic shifts between the expected and observed BAF in sites called as homozygous.  

Consider an individual with genotype AA whose DNA sample is contaminated.  As the 

population frequency of the B allele increases, the sample is increasingly likely to be 

contaminated with the B allele (Figure 2-2).  In the case of no contamination, we expect BAF 

values close to 0, ½, and 1 for genotypes AA, AB, and BB, respectively.  In the presence of 

contamination, we expect for AA and BB homozygotes that 

𝐸[𝐵𝐴𝐹 | 𝑔 = 𝐴𝐴; 𝛼, 𝑝𝐵] = 𝛼𝑝𝐵 

𝐸[𝐵𝐴𝐹 | 𝑔 = 𝐵𝐵; 𝛼, 𝑝𝐴] = 1 − 𝛼𝑝𝐴 

where 𝑝𝐴 and 𝑝𝐵 are the population frequencies of A and B and 𝛼 is again the contamination 

level.  To estimate contamination, we fit the linear regression model 

𝐵𝐴𝐹 = 𝛾 + 𝛼𝑝 + 𝜏𝐼(𝑔 = 𝐴𝐴) +  𝜀  (Equation 4) 

where 𝛾 is the intercept, 

𝑝 = {
𝑝𝐵, if  𝑔 = 𝐴𝐴

−𝑝𝐴, if  𝑔 = 𝐵𝐵
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𝜏 is the difference in expected BAF between AA and BB genotypes, and 𝜀 is a normally 

distributed error term.  This regression framework allows us to estimate the contamination 

level α and to test for contamination by evaluating the null hypothesis that the slope 𝛼 = 0 

against the one-sided alternative 𝛼 > 0.  

 

Figure 2-2 - B allele frequency (BAF) versus population minor allele frequency (MAF) (A) 

uncontaminated (=0) and (B) contaminated (=10%) samples.  Normalized intensity plots for 

(C) uncontaminated (=0) and (D) contaminated (=10%) samples. 

Instead of using the A or B allele frequency as covariate in the regression, we instead 

use the population minor allele frequency (MAF).  This avoids the need to convert Illumina A/B 

allele calls to actual A/G/C/T alleles.  Letting 𝑓 be the MAF 



16 
 

Pr(𝐵 is minor allele|𝑔 = 𝐴𝐴; 𝑓)

=
Pr(𝐵 is minor allele, 𝑔 = 𝐴𝐴; 𝑓)

Pr(𝐵 is minor allele, 𝑔 = 𝐴𝐴; 𝑓) + Pr(𝐴 is minor allele, 𝑔 = 𝐴𝐴; 𝑓)
 

                                                            =
(1 − 𝑓)2

(1 − 𝑓)2 + 𝑓2
 

so that 

𝐸[𝐵𝐴𝐹 | 𝑔 = 𝐴𝐴; 𝛼, 𝑓] = 𝛼
𝑓(1 − 𝑓)

(1 − 𝑓)2 + 𝑓2
 

Although the relationship between MAF 𝑓 and contamination level 𝛼 is not linear, we found 

that using a regression model of the form  

𝐵𝐴𝐹 = 𝛾 + 𝛼𝑓 + 𝜏𝐼(𝑔 = 𝐴𝐴) +  𝜀 

produces nearly identical results to using the model in Equation 4 which requires knowledge of 

population allele labels and replaces 𝑓 with 𝑝 (data not shown).  Thus, it is possible to detect 

contamination using only AB genotypes and without decoding the correspondence between 

labels A and B and the underlying A, C, G and T alleles.  This ability to avoid decoding the A and 

B allele labels is important for early steps of data analysis and quality control which, in this way, 

can proceed without worrying about vagaries of specific genome builds and other informatics 

challenges that must be tackled before later rounds of analyses. 

Assumptions 

For ease of computation and notation, our models make several assumptions.  The 

likelihood methods compute likelihoods over multiple markers and/or aligned base positions, 

as simple products of single marker and/or single base call likelihoods.  As written, the resulting 
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likelihoods are strictly correct when sequencing errors are independent at each aligned base 

and markers are in linkage equilibrium; when these assumptions are violated, the likelihoods 

are approximate4.  In practice, violation of these assumptions can be reduced by:  (a) trimming 

overlapping ends of reads generated from the same template before analysis; (b) ensuring that 

variant sites considered in analysis are adequately spaced (so that it is unlikely that multiple 

base calls originating from a single DNA template are used in analysis); and (c) further trimming 

marker lists so they include only markers that are in linkage equilibrium.  In the next section, we 

discuss empirical assessments of our method using real data demonstrating that our methods 

are highly accurate in real data settings. 

Experimental data  

We assessed our contamination estimation and testing methods using in-silico 

contaminated samples and intentionally contaminated real samples.   

To evaluate our sequence-based methods, we constructed in-silico contaminated 

sequence data by randomly mixing aligned sequence reads from 21 CEU individuals sequenced 

at ~4x coverage on an Illumina platform as part of the 1000 Genomes Project.  We retained 

reads from the targeted sample with probability 1 − 𝛼 and from the contaminating sample with 

probability 𝛼 ranging from 0.1% to 50%.  To avoid artifacts from intrinsic contamination of the 

original sequence data, we chose as targeted samples those with estimated contamination 𝛼̂ < 

0.1%.  Because samples had slightly different mean genome coverage and coverage varied 

across each genome, the nine levels of intended contamination 𝛼 actually varied slightly across 

the samples.  For all mixture-model-based methods, we estimated 𝛼 using both joint and 

sequence-only methods.  In both cases, we calculated likelihoods based on sites with MAF > 5% 
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(across 87 CEU samples) assayed on the Illumina HumanOmni2.5 array, using sequence reads 

above phred-scale mapping and base quality thresholds of 13.  We based analyses on the entire 

genome (~1.2M SNPs), chromosome 20 alone (~30K SNPs), or thinned sets of 1,000 to 100,000 

evenly spaced SNPs.  We also estimated 𝛼 using our sequence-only methods based on allele 

frequency estimates from 89 British (GBR), 93 Finnish (FIN), 381 European (CEU, GBR, FIN, TSI, 

IBS), or 246 African (YRI, LWK, ASW) samples to evaluate the impact of errors in estimated SNP 

allele frequencies. 

To evaluate our genotype-array-only methods, we experimentally constructed 

contaminated DNA samples by combining pairs of HapMap CEU individuals and pairs of 

HapMap YRI individuals.  We targeted six contamination levels, ranging from 𝛼 = 0 to 10%.  For 

each contamination level, we targeted three pairs of CEU individuals and three pairs of YRI 

individuals.  We genotyped the 36 resulting samples with the Metabochip, an Illumina genotype 

array that assays ~200,000 SNPs of interest for studies of cardio-metabolic traits5.  We used 

normalized array intensity values, BAF, and genotypes produced by the Illumina’s 

GenomeStudio software run with default options.     

Finally, to evaluate empirically our sequence-based methods, we examined potential 

contamination in 299 actual DNA samples sequenced genome-wide by a large sequencing 

center at ~4x average coverage in a study of type 2 diabetes.  150 samples were sequenced 

before a change in the sample handling process in August 2010; the remaining 149 samples 

were sequenced after the change.  227 of the 299 samples also were genotyped with the 

Illumina HumanOmni2.5 array.  After quality control of the array data, call rates for each 

sample and each SNP were > 98%.  We applied our sequence-based mixture methods to these 
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data across all SNPs with estimated MAF > 5%.  For these samples, we called genotypes from 

the sequence data using glfMultiples6 followed by refinement using BEAGLE7.  From these 

sequence-based genotype data, we calculated the ratio of heterozygous genotypes to 

homozygous non-reference genotypes (HET/HOM ratio) and genotype discordances with the 

HumanOmni2.5 data. All procedures above were approved by the institutional review boards of 

the University of Michigan. 

Results 

Detecting sample contamination using sequence data  

We estimated 𝛼 for the 189 samples constructed with in-silico contamination (0.1% ≤

𝛼 ≤ 50%) based on random pairings of 1000 Genomes Project CEU samples (see Materials and 

Methods).  The estimated contamination level 𝛼̂ conformed well to the intended contamination 

level 𝛼, with Pearson correlation coefficient r = .9996 for the joint method and r = .9840 for the 

sequence-only method (Figure 3).  Both methods tended to overestimate contamination, 

especially when 𝛼 < 1%. Generally, absolute error |𝑎̂ − 𝑎| increased with 𝛼 and relative error 

|𝑎̂ − 𝑎|/𝛼 decreased with 𝛼.  For example, the absolute error was 0.038% ± 0.024% for the 

joint method and 0.037% ± 0.021% for the sequence-only method when 𝛼 ≈ 0.1%, but 

increased  0.41% ± 0.30% and 0.56% ± 0.55% when 𝛼 ≈ 10% (Figure 2-3).  In contrast, the 

relative error of the estimated contamination was .380 ± .257 (mean ± SD) for the joint method 

and .390 ± .241 for the sequence-only method when 𝛼 ≈ 0.1%, but it was reduced to .044 

± .035 and .056 ± .055 when 𝛼 ≈ 10%.  Finally, for the sequence-only method, because 𝑎̂ is 

bounded at 50%, we observed a downward bias for 𝛼 near 50%.   
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Figure 2-3 Estimated contamination levels for in-silico contaminated samples using (A) joint 
sequence and array-based method, (B) sequence-only method, and (C) between these two 

methods. 

We evaluated the impact of estimated population allele frequencies on accuracy of 

contamination estimates (Appendix Figure 2-S1).  Compared to the original sequence-only 

estimates of 𝑎̂ that used CEU allele frequencies, using allele frequencies from the GBR samples 

resulted in reduced estimates of 𝑎̂  (mean ratio ± SD for 𝑎̂𝐺𝐵𝑅/𝑎̂𝐶𝐸𝑈 = .884 ± .083).  Allele 

frequencies from the more distantly related FIN samples resulted in further reduced 

contamination estimates (mean ratio ± SD  for for 𝑎̂𝐹𝐼𝑁/𝑎̂𝐶𝐸𝑈 = .804 ± .135).  Allele frequencies 

from the broader European (EUR) continental population (CEU, GBR, FIN, IBS, and TSI) 

performed better (mean ratio ± SD for 𝑎̂𝐸𝑈𝑅/𝑎̂𝐶𝐸𝑈 = .926 ± .054), while allele frequencies from 

the very different African (AFR) samples  (YRI, LWK, and ASW) resulted in severe reduction in 

contamination estimates (mean ratio ± SD for 𝑎̂𝐴𝐹𝑅/𝑎̂𝐶𝐸𝑈= .160 ± .121).  

Next, we evaluated the impact of the number of sites analyzed on contamination 

estimates using thinned sets of 1,000, 10,000, or 100,000 evenly spaced markers, and using 

only chromosome 20 sites.  These smaller numbers of sites resulted in less accurate estimates 
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of contamination, particularly at lower levels of contamination (Appendix Figure 2-S2).  For 

example, when 𝑎 = 1%, the mean relative errors |𝑎̂ − 𝑎|/𝛼 for the joint method 

were .414, .135, .103, and .099 for 1,000, 10,000, 100,000, and all 1.2M sites, and .112 when 

using the 30,471 chromosome 20 sites.  Since computation times scale linearly with the number 

of sites analyzed, an (initial) analysis based on 10,000 sites or on all chromosome 20 sites 

requires 120- to 40-times less computing effort than an analysis of 1.2M sites.  

We also compared our joint method to ContEst2 (April 2012 version), which uses 

genotype and sequence data together to estimate contamination levels in a likelihood 

framework.  We obtained very similar results for their method and ours when 𝑎 > 1%; when 𝑎  

< 1%, ContEst tended to overestimate contamination levels to a larger degree than ours 

(Appendix Figure 2-S3). 

Estimation and testing of sample contamination from genotype array data only 

Next, we applied our genotype array-only methods to our deliberately constructed 

contaminated samples genotyped with the Metabochip.  Applying the single-sample and multi-

sample mixture model methods produced contamination level estimates that matched our 

constructs, except for two YRI samples with 3% intended contamination (Figure 2-4).  Estimates 

from the regression-based method also showed very strong concordance except for these same 

two samples.  We observe that the two mixture-model methods tend to over-estimate α, while 

the regression-based method tends to underestimate 𝑎. 



22 
 

 

Using the mixture-model methods, 0 of the 6 uncontaminated CEU samples were 

identified as contaminated, while 3 of 6 uncontaminated YRI samples were identified as slightly 

(0 < 𝑎̂ < 1%) contaminated.  We suspect this misclassification is due at least in part to not 

having had Metabochip cluster data for African samples and therefore having used our 

available Finnish samples for defining the clusters used in genotype calling.  The mixture-model 

methods correctly identified 22 of 24 intentionally contaminated samples, the exceptions being 

the two YRI samples with 3% intended contamination.   

Using the regression-based method, we tested the hypothesis of no contamination 

across 24 contaminated and 12 uncontaminated samples at significance level .05/36=.0013; the 

Figure 2-4 Estimated versus intended contamination levels from the experimentally 
contaminated array intensity data, using (A) regression-based method, (B) multi-sample 

mixture model method, and (C) single-sample mixture model method. 
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results correctly identified the contamination state of 34 of the 36 experimental samples except 

for the two YRI samples with intended 𝑎 = 3%.  Given our consistent results across our three 

different methods, we suspect this pair of YRI samples was not successfully contaminated 

during the experimental process.  

We evaluated a modified version of our regression-based method by including data on 

heterozygous sites in addition to homozygous sites or by binning SNPs by MAF; these modified 

approaches performed less well on both simulated and experimental data.  The additional noise 

in the BAF at heterozygous sites made the estimation of contamination less accurate.   

Attempts to smooth out the uneven MAF distribution of SNPs on a genotype array by binning 

and averaging over BAF simply reduced power and failed to improve estimation.  We also 

evaluated the regression method restricting analysis to various MAF bins and observed that the 

method performed best when SNPs across the entire MAF spectrum were included (data not 

shown). 

Type 2 diabetes study  

As described in the Introduction, in a recent sequencing study, early in the study we 

identified a subset of individuals with unusually large numbers of heterozygous genotypes and 

high HET/HOM ratios compared to other sequenced individuals Figure 2-1AB).   We applied our 

sequence-based and sequence-only methods to these samples.  Since HumanOmni2.5 genotype 

data were available on only 227 of these 299 individuals, we display results for the sequence-

only method (Figure 2-1C); contamination level estimates for the sequence and array data 

jointly were very similar, particularly for individuals with higher contamination levels (Figure 

2-5).  Consistent with our impression based on genotype calls and HET/HOM ratio, our methods 
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identified a cluster of contaminated samples among the 150 samples sequenced before August 

2010, with 45, 24, and 16 of these 150 samples estimated to have contamination levels of 𝛼̂ ≥

1%, ≥ 2%, and ≥ 5%, respectively ( 

Table 2-2).    

 

Comparison of results (Figure 2-1, 

Table 2-2, Appendix Figure 2-S3) suggests that our contamination estimates were more 

sensitive than heterozygosity and HET/HOM ratio for detecting contaminated samples, 

particularly at lower levels of contamination.  For example, the average HET/HOM ratios among 

the ten samples with 2% ≤  𝛼̂ <  5% and the 254 samples with  𝛼̂ ≤ 1% were nearly 

Figure 2-5 Comparison of estimated contamination levels 
using sequence data with and without array genotype 

data for type 2 diabetes sequencing study. 
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identical:  1.92 and 1.91.  Investigation by the sequencing center suggested that contaminating 

samples were often in adjacent lanes to the targeted samples during library construction.  

Following modification of the library construction process in August 2010, none of the 149 

samples sequenced later that year had estimated contamination level 𝛼̂ ≥ 0.5%,  (Figure 2-1C). 

 

 

Array 
Genotypes? 

Measure 
𝛼̂ (sequence only) 

<1% 1-2% 2-5% ≥5% 

Yes Number of  samples 208 13 1 5 

(n=227)  − Before August 2010 81 13 1 5 

 − After August 2010 127 0 0 0 

RR discordance1 .0021 .0030 .0071 .0492 

RA discordance2 .0154 .0157 .0172 .0300 

AA discordance3 .0085 .0143 .0377 .176 

HET/HOM ratio4 1.92 1.84 2.16 2.66 

No Number of  samples 46 8 7 11 

(n=72)  − Before August 2010 24 8 7 11 

  − After August 2010 22 0 0 0 

 HET/HOM ratio4 1.87 1.88 1.88 2.64 

1. RR discordance:  Genotype discordance when array-based genotype is homozygous 
reference 
2. RA discordance:  Genotype discordance when array-based genotype is heterozygous 
3. AA discordance:  Genotype discordance when array-based genotype in homozygous non-
reference 
4. HET/HOM ratio:  Ratio of number of heterozygous genotypes to homozygous non-
reference genotypes 

 
Table 2-2 Summary of estimated contamination levels 𝛼̂, ratio of the numbers of heterozygous 
to non-reference allele homozygous  genotypes, and genotype discordance with array data for 
299 samples (227 with HumanOmni2.5 genotype array data) from type 2 diabetes study using 

sequence data only. 

To assess the impact of DNA sample contamination on genotyping accuracy, we 

compared genotypes called from the diabetes sequence data to the HumanOmni2.5 genotypes.  
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As expected, discordance between the sequence-based genotypes and the highly accurate 

array genotypes increased with increasing estimated contamination.  For homozygotes, average 

genotype discordance rates doubled in samples with 1% ≤  𝛼̂ ≤  5% compared to those with 

𝛼̂ ≤ 1%, and increased by a factor of ~20 for 𝛼̂ ≥ 5% ( 

Table 2-2, Figure 2-6).  The impact of contamination was less strong for heterozygous sites, but 

genotype discordance rates were still nearly doubled when 𝛼̂ ≥ 5% compared to those in 

samples with 𝛼̂ ≤ 1%.  The stronger effect of contamination on homozygous genotypes occurs 

because even modest numbers of contaminating sequence reads may result in calling a 

homozygote as a heterozygote.  

 

Discussion 

In this paper, we describe several methods to identify within-species DNA sample 

contamination based on the analysis of sequence read data and/or array-based genotype data.  

We first describe a mixture-model method that uses both sequence reads and array-based 

Figure 2-6 Genotype discordance between sequence-based and array-based genotypes as a 
function of estimated contamination level 𝛼̂ in the type 2 diabetes sequencing study; 

contamination level estimates based on the combined sequence and genotype array data. 
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genotypes, and then show that this method can be extended naturally to identify contaminated 

samples when only sequence reads are available.  Both these sequence-based methods are 

highly sensitive, allowing detection of DNA sample contamination of 1% or less even with low-

coverage (4x) sequence data.  As expected, the combination of sequence reads and array-based 

genotypes results in greater sensitivity than sequence data alone, but the difference is modest 

(Figure 2-3).  Both our sequence-based mixture-model methods are more sensitive than 

traditional checks that test for an excess of heterozygous genotypes or an unusually high ratio 

of heterozygous to non-reference homozygous genotypes (HET/HOM ratio) – both of which can 

only detect contamination rates of >5-10% (Appendix Figure 2-S3).  A further advantage of our 

sequence-based methods is that they operate directly on the sequence reads (or BAM files), 

and so can be applied prior to variant calling.  In sequencing studies, the availability of array-

based genotypes for all samples allows identification of contaminating DNA samples and 

resolution of sample swaps.   

As with other analyses of short read sequence data, the sequence-based mixture-model 

methods are computationally intensive.  Given low-coverage (4x) whole-genome sequence data 

and focusing on sites with MAF > 5% from the Illumina 2.5M genotype array, our sequence-

based analyses required ~1.6 hours compute time per DNA sample on a single 2.8GHz 

processor.  Increasing sequence coverage results in an approximate linear increase in compute 

time.  To reduce computational burden, or if sequence read data come in large batches, we 

often do initial DNA contamination checking using a subset of the genome.  For example, 

analysis limited to chromosome 20 requires only ~2% the compute time, thus permitting rapid 

real-time early quality control and timely feedback to the sequence production group; for 
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contamination levels >1% and when the targeting and contaminating samples are unrelated, 

chromosome 20 analysis is also nearly as sensitive as analysis of the entire genome (Appendix 

Figure 2-S2). 

While our analysis of sequence-based methods focused on low-coverage whole-genome 

sequences, we have found that our sequence-based methods robustly identify contamination in 

other types of sequencing data.  For example, our methods have been successfully applied to 

targeted whole exome sequence data in the 1000 Genomes Project in addition to the low-

coverage sequence data.  We also found that our sequence-based methods robustly detect 

contamination in RNA-seq data with or without external genotypes.  In these data sets, focusing 

on exonic or on-target sites provided more accurate estimates of contamination levels than 

using all sites (data not shown).   

The models on which we base these methods (of course) do not capture all features of 

the sequencing experiment.  One such feature is reference bias, in which more reference-

sequence bases are observed than expected at a variant site, potentially resulting in an upward 

bias in estimated contamination levels.  Poorly aligned bases, inaccurate base quality scores, 

and asymmetric calling errors between bases may have the same effect.  Currently, both our 

sequence-based methods assume that the population from which the contaminating sample is 

drawn is known, and we observed reduced sensitivity with incorrect population allele 

frequencies.  When the population of the contaminating DNA sample is unknown, our method 

could be extended to iterate over alternative population allele frequencies to identify the most 

likely source population for a contaminant and to more precisely estimate the level of 
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contamination. Our implementation uses a simple error model. Preliminary evaluations of more 

sophisticated genotype error models made little difference to our results. 

In several sequencing studies, including the type 2 diabetes study described above, we 

have observed that our methods estimate a large fraction of samples to be contaminated at 

very low but non-zero levels, and likelihood ratio tests of 𝛼 = 0 against the alternative 𝛼 > 0 

result in apparent “contamination detection” for most samples.  In contrast, when we 

simulated uncontaminated DNA samples consistent with all our model assumptions, we found 

𝛼̂ > 0 for only 33% of samples as opposed to 50% expected by a 1:1 mixture between χ0
2 and 

χ1
2  distributions8.  Furthermore, although both our likelihood-based methods naturally lead to 

confidence intervals for the level of estimated contamination, we generally find these intervals 

to be too narrow and do not recommend their use.  These contrasting findings likely reflect the 

impact of not modeling some of the sequencing experiment features described above. Careful 

examination of the impact of uncertainty in population allele frequency, of variation in read 

depth by genotype, of the fraction of duplicate reads, and of runs of homozygosity, could help 

to identify important features that are missing from the model.  We are working to include 

some of these features in our models, methods, and software. 

Identifying contaminated samples using array data alone provides the opportunity to 

avoid sequencing contaminated samples.  Both of our genotype-array-only methods – whether 

mixture model or regression based -- result in enhanced sensitivity compared to previous 

strategies that identify likely contaminated samples as those with low genotype call rates.  Low 

genotype call rates can identify heavily contaminated DNA samples as well as those that fail for 

other technical reasons.  However, in our experimentally contaminated samples genotyped 
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with the Metabochip, even at 5% contamination, all four samples had genotype call rates > 

99.5%, and even at 10% contamination, call rates were still between 96.8% and 97.9%.  Our 

mixture- and regression-based methods allowed accurate detection of contamination levels as 

low as 1%.   

In contrast to the sequence-based methods, our genotype-array-only methods have 

modest computational requirements.  For example, analysis of 36 samples genotyped at 

200,000 SNPs required <100 seconds on a single 2.8GHz processor for either the mixture-model 

or regression-based methods.  Further, these genotype-array-only methods were remarkably 

sensitive for contamination detection even with modest numbers of SNPs.  For example, using 

our experimentally contaminated samples and defining contamination detection as 𝛼̂ ≥ 1%, 

power to detect contamination using the regression method based on 1000 random subsets of 

50, 100, 500, and 1000 homozygous SNPs was 37.3%, 59.6%, 99.0%, and 100%, respectively 

(Appendix Table 2-S1).  A confidence interval for the estimated contamination level can also be 

obtained from a simple linear regression model, ignoring uncertainty in key parameters such as 

the site-specific allele frequencies.  We found that, unlike the likelihood-based methods, the 

regression-based method provides reliable p-value and confidence interval with even a modest 

number of SNPs.  Of course, neither genotype-array-based method eliminates the possibility of 

introducing contamination during subsequent library preparation or sample sequencing. 

Our genotype-array-based mixture-model methods rely on good estimates of the means 

and variances of the genotype intensity clusters.  Estimation can be carried out across multiple 

samples (for each marker) or using a single sample (and pooling estimates across markers).  The 

single-sample method has the obvious advantage that it can be applied to one or a few 
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samples, permitting analysis to be carried out for small studies or on-the-fly as each sample is 

processed; a further advantage is that the method can analyze rare genotypes for which 

intensity distributions may be poorly estimated in methods that examine intensity distributions 

one site at a time, even across many individuals.  The single-sample method also has 

disadvantages.  The distribution of intensities across all SNPs for a given sample generally has 

larger variance than that for a given SNP across many samples9; for contamination detection, 

this larger variance leads to somewhat less sensitive contamination detection when small 

numbers of markers are available.  Regularizing parameters that share information across sites 

could increase the performance of the intensity-based mixture models for array data.  

Compared to the mixture-model method, the regression method has the advantage of 

providing a better calibrated hypothesis test for contamination.  In practice, running multiple 

methods on the array data will increase the confidence in analysis results. 

All our contamination detection methods assume the targeted DNA sample is 

contaminated by DNA from one other unrelated individual.  Given a fixed total contamination 

level 𝛼, contamination from two or more individuals increases the likelihood that multiple 

alleles will be observed at a marker and typically results in inflated estimates of 𝛼.  For 

example, when we simulated contaminating reads originating from two, three, and four 

contaminating samples, we observed 1-9%, 4-11%, 8-14% relative increases in the estimated 

contamination levels compared to actual contamination (Appendix Table 2-S2).  The joint 

sequence and array-based method, which relies mostly on genotype concordance rather than 

increased heterozygosity, showed only a small loss of precision with multiple contaminating 

samples.  In contrast, if a DNA sample is contaminated with DNA from a relative of the targeted 
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individual, the genetic similarity between the targeted and contaminating sample will result in 

an underestimate of 𝛼.  Simulation results suggest that given contamination at level 𝛼 from an 

individual sharing a fraction f of genes with the targeted sample results in an estimated 

contamination level of (1 − 𝑓)𝛼, for example, 𝛼/2 for sibling or parent-offspring pairs (data not 

shown).  

There are additional applications not yet covered by our method.  We have 

implemented and evaluated our genotype-array-only methods for Illumina genotyping platform 

only.  In principle, our methods can also support Affymetrix intensity data, as used in tools such 

as Birdseed10 or PennCNV11 which work with both Affymetrix and Illumina platforms.  For the 

sequence-based mixture models, an interesting application would be detection of 

heterogeneous cell populations within tumors.  Our experience suggests that even small 

contamination levels can be detected using only a small number of informative sites, so that 

this might well be practical.  

We have described an efficient set of methods to detect DNA sample contamination 

that should be useful for investigators planning or carrying out large-scale sequencing studies.  

For studies based on DNA samples with prior GWAS or other large-scale genotype data, we 

recommend using the genotype array-only methods to detect contaminated samples prior to 

sequencing.  These methods are useful even for small genotyping arrays with only 1000s of 

SNPs.  Based on results for the genotype-array analysis, an investigator may decide to obtain 

new DNA samples when there is evidence of contamination, or to eliminate those individuals 

from the study.  Whether or not the genotype-array-based contamination pre-screening is 

carried out, we recommend using the sequence-based methods to screen DNA samples for 
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contamination.  Based on the results of this sequence-based contamination analysis, the 

investigator might choose to eliminate from downstream analyses substantially contaminated 

samples, or to resample and resequence those individuals; for example, the 1000 Genomes 

Project chose to eliminate all DNA samples with estimated contamination 𝛼̂ > 2%12. 

Application of these DNA contamination detection methods provides a sensitive method 

to identify contaminated samples and to maximize sequence data quality.  In addition, it may 

prove helpful to develop analysis methods that explicitly incorporate detection and estimation 

of DNA sample contamination into variant calling and/or downstream analysis.   
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http://genome.sph.umich.edu/wiki/Verifying_Sample_Identities_-_Implementation 

 Contamination detection software package  

http://genome.sph.umich.edu/wiki/ContaminationDetection  
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Chapter 2 Appendix 

 

 
 
Figure 2-S1. Impact of Population Allele Frequency on Estimated Contamination Levels.  

Ratio between estimated contamination levels using different population allele frequencies 

with the sequence-only method.  
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Figure 2-S2. Estimated Contamination Levels Across Different Number of Markers.  

Comparison between each pair of intended contamination level, estimated contamination 

levels 𝛼̂ using joint sequence and array-based method and 𝛼̂ using sequence-only method 

across different number of markers. 
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Figure 2-S3. Comparison of Our Methods with ContEst Software 

Comparison of estimated contamination levels between joint sequence and array-based 

method and ContEst on the in-silico simulated data for chromosome 20. (A) intended 

contaminations versus ContEst estimates (B) Our joint sequence and array-based method 

versus ContEst estimates (C) ratio between the two estimates. 
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Figure 2-S4. Excess Heterozygosity in relation to Estimated Contamination 

Comparison of HET/HOM ratio to estimated contamination level 𝛼̂ in the type 2 diabetes 

sequencing study based on analysis of (A) sequence and genotype array data (n=227) and (B) 

sequence data only (n=299).  
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Table 2-S1. Power and Type 1 Error of Genotype-Array Only Regression Method 

# Homozygous 
SNPs 

α=0 α=0.5% α=1% α=2% α=3% α=5% α=10% 

50 0.053 0.160 0.373 0.739 0.861 0.943 0.970 

100 0.060 0.228 0.596 0.946 0.994 1.000 1.000 

500 0.071 0.620 0.990 1.000 1.000 1.000 1.000 

1000 0.076 0.853 1.000 1.000 1.000 1.000 1.000 

For our experimentally contaminated sample, we selected different subset of homozygous SNPs 

and ran our regression method on those subsets. We then repeated this 1,000 times for each 

sample. The true level of contamination is shown at the top of the table. This values in the table 

show the proportion of tests which rejected the hypothesis of α=0 at the 0.05 level. 

 
 
Table 2-S2. Impact of multiple contaminating samples on estimated contamination 
 

Intended Contamination 
(Fixed Total) 

Sequence-only Sequence+Array 

𝛼̂𝟐/𝛼̂𝟏 𝛼̂3/𝛼̂𝟏 𝛼̂4/𝛼̂𝟏 𝛼̂𝟐/𝛼̂𝟏 𝛼̂3/𝛼̂𝟏 𝛼̂4/𝛼̂𝟏 

α=1% 1.01 1.04 1.14 1.03 1.03 1.07 

α=2% 1.02 1.04 1.10 1.03 1.02 1.04 

α=5% 1.03 1.05 1.08 1.01 1.01 1.01 

α=10% 1.06 1.08 1.11 1.00 0.99 0.99 

α=20% 1.09 1.11 1.13 0.97 0.95 0.95 

The intended contamination was equally distributed across 2, 3, and 4 CEU samples. 𝛼̂𝑘 

represents estimated contamination obtained from k contaminating samples, and the fold-

enrichment of estimated contamination is average across 100 different runs. The results 

suggest that the sequence-only estimate of contamination tend to increase with multiple 

contaminating samples. In joint sequence and array-based method, multiple contaminating 

samples leads to slight overestimation of contamination when the contamination is small 

(α≤5%), and to underestimation when the contamination large (α≥10%). 
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Chapter 3  
Correcting for Sample Contamination in Genotype Calling of DNA 

Sequence Data 
 

AbstractB 

DNA sample contamination is a frequent problem in DNA sequencing studies, and may 

result in genotyping errors and reduced power for association testing. We recently described 

methods to identify within-species DNA sample contamination based on sequencing read data, 

showed that our methods can reliably detect and estimate contamination levels as low as 1%, 

and suggested strategies to identify and remove contaminated samples from sequencing 

studies. Here we propose methods to model contamination during genotype calling as an 

alternative to removal of contaminated samples from further analyses. We compare our 

contamination-adjusted calls to calls that ignore contamination and to calls based on 

uncontaminated data. We demonstrate that, for moderate contamination levels (5%-20%), 

contamination-adjusted calls eliminate 48-77% of the genotyping errors. For lower levels of 

contamination, our contamination correction methods produce genotypes nearly as accurate as 

those based on uncontaminated data. Our contamination correction methods are useful 

generally, but are particularly helpful for sample contamination levels from 2 to 20%. 

                                                      
B This work has been published: Flickinger, M., Jun, G., Abecasis, G. R., Boehnke, M., Kang, H. M. (2015). Correcting 
for sample contamination in genotype calling of DNA sequence data. Am J Hum Genet 97, 284-290. 



41 
 

Introduction 

 Advances in next-generation sequencing have resulted in higher sequencing throughput 

and lower sequencing costs, enabling a wide range of large-scale genomic studies. While the 

quality of sequence data is generally improving, methods and protocols are imperfect and 

errors inevitably occur. One such error is DNA sample contamination, in which DNA from two or 

more individuals is accidentally mixed. 

DNA sample contamination is a common occurrence in large-scale sequencing studies 

and can arise at many steps of the experiment: during sample collection; any time a sample is 

placed into or taken out of storage; during shipping, particularly if plates are not properly 

sealed or kept frozen; and during the many steps of preparing DNA sequencing libraries. For 

example, if barcoded samples are amplified in pools, template switching may occur if 

amplification conditions result in templates that are only partially extended at the end of each 

round, resulting in DNA from one sample paired with the barcode of another. Even if samples 

are sequenced without contamination on a particular run, a sample may be included in multiple 

runs and merged afterwards. If samples are improperly labeled or there are errors in the 

processing pipeline, reads from multiple samples may be combined in error.  

Screening for sample contamination is becoming a standard quality control step for DNA 

sequencing projects, and the patterns of contamination identified vary greatly. In the 1000 

Genomes Project, DNA samples were screened for contamination1 using our method2. Out of 

1166 sequenced samples, 39 had an estimated contamination level >3% and were dropped 

from analysis. In a psychiatric genetics study, we detected 64 DNA samples each with estimated 
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contamination >25%. These samples were traced back to two 96-well plates in which 

contamination likely occurred during shipping. In a type 2 diabetes exome sequencing study, 

~20% of a set of DNA samples had estimated contamination rates from 10-15%. Here, the 

apparent cause was a change in the library preparation protocol to allow processing of two 

samples at a time. Even in the most challenging contamination scenarios we have encountered, 

a subset of DNA samples show no evidence of contamination, so that most studies include a 

mixture of contaminated and uncontaminated DNA samples. 

If left uncorrected, contamination results in systematic genotype misclassification with a 

bias in favor of heterozygotes. This bias arises since when a mixture of two DNA samples is 

sequenced, the presence of the contaminating sample DNA makes it more likely that reads 

supporting different alleles at the same site will be present. The impact of contamination 

typically increases with the contamination level and decreases with sequencing depth. 

Here we propose likelihood-based methods that improve genotyping accuracy by 

explicitly modeling DNA sample contamination during genotype calling. We apply these 

methods to in-silico contaminated samples based on low-pass and high-depth sequence data 

from the 1000 Genomes Project and to actual contaminated samples from a type 2 diabetes 

exome sequencing project. We demonstrate that over a wide range of contamination levels and 

sequencing depths, modeling contamination can dramatically increase concordance between 

genotype calls and the true underlying genotypes, resulting in larger effective sample sizes for 

downstream genetic association studies than is possible by either ignoring contamination or 

dropping contaminated samples from the analysis. 
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Materials and Methods 

Outline 

First, we introduce notation and assumptions, and review our methods to detect DNA 

sample contamination2. Second, we describe our model for calling genotypes from sequence 

read data and propose a generalization of that model to account for DNA sample 

contamination. Third, we extend our model and method to provide even better results when 

the source of contamination is known and the corresponding sample is also sequenced. Finally, 

we describe a series of experiments and datasets used to evaluate the performance of our 

proposed methods. 

Detecting and estimating DNA sample contamination  

Consider the case where one DNA sample is contaminated by another2. Let 𝑔𝑖
(1)

 and 

𝑔𝑖
(2)

 be the genotypes for the intended and contaminating samples at variant site 𝑖 (1 ≤ 𝑖 ≤ 𝑀). 

Let 𝑏𝑖𝑗 be the observed base at position 𝑖 for read 𝑗 (1 ≤ 𝑗 ≤ 𝑅𝑖) and 𝑒𝑖𝑗 be a latent variable 

indicating whether a base calling error occurred (𝑒𝑖𝑗 = 1) or did not (𝑒𝑖𝑗 = 0). Finally, let 𝛼 be 

the proportion of reads from the contaminating sample and  be the proportion of samples 

that are contaminated. We assume that sites are independent, that reads at each site are 

independent, and that sequencing errors are equally likely to result in any of the three incorrect 

bases. 

To model the probability of observing a particular base, we employ the mixture model 

                        𝑃(𝑏𝑖𝑗|𝑔𝑖
(1)

,  𝑔𝑖
(2)

; 𝛼) = (1 − 𝛼)𝑃(𝑏𝑖𝑗|𝑔𝑖
(1)

) + 𝛼𝑃(𝑏𝑖𝑗|𝑔𝑖
(2)

)                       (1) 
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where 

𝑃(𝑏𝑖𝑗|𝑔𝑖) = 𝑃(𝑏𝑖𝑗|𝑔𝑖,  𝑒𝑖𝑗 = 1) 𝑃(𝑒𝑖𝑗 = 1) + 𝑃(𝑏𝑖𝑗|𝑔𝑖,  𝑒𝑖𝑗 = 0) 𝑃( 𝑒𝑖𝑗 = 0) 

We present the read probabilities allowing for error 𝑃(𝑏𝑖𝑗|𝑔𝑖,  𝑒𝑖𝑗) in Table 3-1. We estimate 

the probability of a read error as 𝑃(𝑒𝑖𝑗 = 1) = 10−𝑄𝑖𝑗/10  and 𝑃(𝑒𝑖𝑗 = 0) = 1 − 𝑃(𝑒𝑖𝑗 = 1), 

where  𝑄𝑖𝑗  is the phred-scaled base quality score for the sequence data3. To estimate the 

genotype probability (𝑔𝑖), we use allele frequencies from the population from which the 

sample was drawn and assume Hardy-Weinberg equilibrium. Allele frequencies can be 

estimated from a closely related reference population (for example, HapMap or 1000 

Genomes), from array-based genotypes from the same population, or even from the proportion 

of reads that carry each allele across all sequenced samples. 

 

Taking expectations over the unknown genotypes and assuming all reads and loci are 

independent, we write the likelihood for contamination level 𝛼 in a sample as  

𝐿(𝛼) = 𝑃(𝐵|𝛼) = ∏ ∑ ∑ {𝑃(𝑔𝑖
(1)

)𝑃(𝑔𝑖
(2)

) ∏ [(1 − 𝛼)𝑃(𝑏𝑖𝑗|𝑔𝑖
(1)

) + 𝛼𝑃(𝑏𝑖𝑗|𝑔𝑖
(2)

)]

𝑅𝑖

𝑗=1

}

𝑔
𝑖
(2)

𝑔
𝑖
(1)

𝑀

𝑖=1

 

For each sample, we first maximize 𝐿(𝛼) using a grid search in the interval 0.0 ≤  ≤ 0.5 and 

then apply Brent’s4 algorithm to obtain the maximum likelihood estimate of α. By using 

information across a large number of variants 𝑀, we determine if the observed reads are better 

explained by a single sample or a combination of two samples with mixing proportion 𝛼. Even if 

not all markers are independent, there is little impact on the estimation of 𝛼. 
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True 
genotype 

Base Read 
Error 

Indicator 𝑷(𝒃𝒊𝒋 = A) 𝑷(𝒃𝒊𝒋 = B) 𝑷(𝒃𝒊𝒋 = E) 

g=AA e=0 1 0 0 
 e=1 0 1/3 2/3 

g=AB e=0 1/2 1/2 0 
 e=1 1/6 1/6 2/3 

g=BB e=0 0 1 0 
 e=1 1/3 0 2/3 

Table 3-1 Conditional probability 𝑷(𝒃𝒊𝒋 | 𝒆𝒊𝒋, 𝒈𝒊) of read 𝒃𝒊𝒋 given true genotype 𝒈𝒊 and read 

error 𝒆𝒊𝒋 Assumes a biallellic site with alleles A and B; E represents any base other than A or B. 

𝑒𝑖𝑗 = 0 corresponds to a sequencing error; or 1 corresponds to a correct base call. 

Genotype likelihoods for contaminated sequence data: source unknown  

Having estimated the contamination level 𝛼 for sample k, we explicitly model 

contamination during genotype calling using the estimated sample-specific contamination rate 

𝛼̂𝑘. Treating the genotypes of the intended and contaminating genotypes as the unknowns, we 

calculate the likelihood for the combination of genotypes using the probability (1) as  

𝐿(𝑔𝑖
(1)

, 𝑔𝑖
(2)

|𝐵𝑖; 𝛼̂𝑘) = 𝑃(𝐵𝑖|𝑔𝑖
(1)

, 𝑔𝑖
(2)

; 𝛼̂𝑘) = ∏ [(1 − 𝛼̂𝑘)𝑃(𝑏𝑖𝑗|𝑔𝑖
(1)

) +  𝛼̂𝑘𝑃(𝑏𝑖𝑗|𝑔𝑖
(2)

)]

𝑅𝑖

𝑗=1

 

where 𝐵𝑖 = {𝑏𝑖𝑗| 𝑗 = 1 … 𝑅𝑖} is the set of bases overlapping position 𝑖 in the sequence reads 

that cover the variant site. Usually, we do not know the genotype of the contaminating sample, 

and so we sum over this unknown variable to obtain the genotype likelihood  

𝐿(𝑔𝑖
(1)

|𝐵𝑖; 𝛼̂𝑘) = 𝑃(𝐵𝑖|𝑔𝑖
(1)

; 𝛼̂𝑘) = ∑ [𝑃(𝑔𝑖
(2)

)𝑃(𝐵𝑖|𝑔𝑖
(1)

, 𝑔𝑖
(2)

; 𝛼̂𝑘)]
𝑔

𝑖
(2) . 

In contrast to the analysis in which we identified contaminated samples and estimated 

contamination level 𝛼 for each sample 𝑘 using a list of known variant sites and allele 

frequencies, during genotype calling we examine every site. This step requires allele 
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frequencies at each site, which we estimate using the EM algorithm5 to maximize the above 

likelihood. Thus, we estimate the allele frequency as: 

𝑓𝑖̂ = arg max𝑓𝑖
∏ [∑ 𝑃(𝑔𝑖𝑘|𝑓𝑖)𝑃(𝐵𝑖𝑘|𝑔𝑖𝑘;  𝛼̂𝑘)

𝑔𝑖𝑘

]

𝑛

𝑘=1

 

where 𝑔𝑖𝑘 is the true genotype for individual 𝑘 (1 ≤ 𝑘 ≤ 𝑛) at site 𝑖. Given the allele frequency 

estimate 𝑓𝑖, we estimate the genotype probabilities assuming Hardy-Weinberg equilibrium.  

Finally, to call a genotype for an individual at locus 𝑖, we select the value of 𝑔𝑖
(1)

 with the 

highest likelihood. We calculate the corresponding genotype dosage (𝐷𝑖  ranging from 0 to 2) for 

bi-allelic sites by taking a weighted average of the number of alternative alleles for each of the 

possible genotypes 𝑔𝑖
(1)

  

𝐷𝑖 =
𝑃(𝑔𝑖

(1)
= AR | 𝐵𝑖; 𝛼̂, 𝑓𝑖̂) + 2 ∙ 𝑃(𝑔𝑖

(1)
= AA | 𝐵𝑖; 𝛼̂, 𝑓𝑖̂)

𝑃(𝑔𝑖
(1)

= RR | 𝐵𝑖; 𝛼̂, 𝑓𝑖̂) + 𝑃(𝑔𝑖
(1)

= AR | 𝐵𝑖; 𝛼̂, 𝑓𝑖̂) + 𝑃(𝑔𝑖
(1)

= AA | 𝐵𝑖; 𝛼̂, 𝑓𝑖̂)
                    (2) 

where 𝑅 and 𝐴 are the reference and alternate alleles and 

𝑃(𝑔𝑖
(1)

| 𝐵𝑖; 𝛼̂, 𝑓𝑖̂) ∝ 𝑃(𝐵𝑖|𝑔𝑖
(1)

; 𝛼̂) 𝑃(𝑔𝑖
(1)

; 𝑓𝑖̂).  

Genotype likelihoods for contaminated sequence data: source known 

If the identity of the contaminating sample is known, as in the type 2 diabetes example 

described in the Introduction, we can use that information to improve genotype calls. In that 

case, we examine all available data from the paired DNA samples and call their genotypes 

simultaneously by considering all potential 3 x 3 = 9 genotype pairs (𝑔𝑖
(1)

, 𝑔𝑖
(2)

). Let 𝐵𝑖
(1)

=

{𝑏𝑖𝑗
(1)

| 𝑗 = 1 … 𝑅𝑖
(1)

}  and 𝐵𝑖
(2)

= {𝑏𝑖𝑗
(2)

| 𝑗 = 1 … 𝑅𝑖
(2)

} be the observed bases for reads labeled 
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as originating from samples 1 and 2, respectively, and let 𝛼̂(1) and 𝛼̂(2) be the estimated 

contamination levels for those two samples. We then write the joint likelihood for the paired 

samples as  

𝐿(𝑔𝑖
(1)

, 𝑔𝑖
(2)

|𝐵𝑖
(1)

𝐵𝑖
(2)

; 𝛼̂(1), 𝛼̂(2))

= ∏ [(1 − 𝛼̂(1))𝑃(𝑏𝑖𝑗
(1)

|𝑔𝑖
(1)

) +  𝛼̂(1)𝑃(𝑏𝑖𝑗
(1)

|𝑔𝑖
(2)

)]

𝑅𝑖
(1)

𝑗=1

× ∏ [𝛼̂(2)𝑃(𝑏𝑖𝑗
(2)

|𝑔𝑖
(1)

) + (1 − 𝛼̂(2))𝑃(𝑏𝑖𝑗
(2)

|𝑔𝑖
(2)

)]

𝑅𝑖
(2)

𝑗=1

 

This likelihood can also be calculated for different possible contaminating samples and 

compared to find the most likely source contamination (assuming both samples were 

sequenced).  

When inconvenient to work with the joint likelihood (such as when calculating per-

individual dosages), we calculate per-sample genotype likelihoods by marginalizing over the 

partner genotype.  

𝐿(𝑔𝑖
(1)

|𝐵𝑖
(1)

𝐵𝑖
(2)

; 𝛼̂(1), 𝛼̂(2)) = ∑ [𝑃(𝑔𝑖
(2)

)𝑃(𝐵𝑖
(1)

𝐵𝑖
(2)

|𝑔𝑖
(1)

, 𝑔𝑖
(2)

; 𝛼̂(1), 𝛼̂(2))]

𝑔
𝑖
(2)

 

We also calculate these individual likelihoods prior to genotype refinement for low-pass 

sequence data (see below). 
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LD refinement for low-pass sequence data  

Genotype refinement using linkage disequilibrium (LD) on low-pass sequence data 

leverages information about surrounding markers to help infer haplotypes and improve 

genotype accuracy6,7. After adjustment for contamination, we use Beagle6 on our genotype 

likelihoods for low-pass (4-6x) whole genome data to refine and improve genotype calls. Such 

an adjustment is less important for exome sequence data because of insufficient flanking 

markers to infer haplotypes accurately. 

Experimental data  

To construct in-silico contaminated samples to test our methods, we chose 198 

European 1000 Genomes Phase 1 samples1 with (a) low-pass (4-6x) genome sequence data, (b) 

high-depth (50-150x) whole exome sequence data, (c) Illumina HumanOmni2.5 and 

HumanExome chip data, and (d) estimated contamination levels  𝛼̂ < 0.5% for chip and 

sequence data. We chose two samples at a time (without replacement) and combined 

sequence reads to achieve synthetic contamination levels 𝛼 from 2% to 30%. We paired 

samples with similar depths so as to approximately preserve total read counts and varied the 

proportion of contaminated samples  in each simulation from 0 to 100%.  

We also analyzed 1,503 samples from a type 2 diabetes exome sequencing project 

(average sequencing depth ~100x), 1,009 of which (67%) were estimated to have 

contamination level 𝛼̂ > 5%. In this study, we learned after sequencing was completed that 

changes to sequencing library preparation protocols that were designed to improve efficiency 

and reduce cost resulted in contamination due to template switching during PCR amplification 
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of pairs of barcoded samples. In this case, we could reconstruct the identity of the 

contaminating sample by checking experimental records to identify samples that were 

amplified together.  

Evaluation  

For both examples, we compared sequence-based best-guess genotypes and genotype 

dosages to available array-based genotypes to estimate genotype concordance and squared 

Pearson’s correlation 𝑟2 between true genotypes and estimated genotype dosages. The 

genotypes for the in-silico contaminated low-pass samples were LD-refined, and then compared 

to all 41,847 Illumina HumanOmni2.5 genotype array chromosome 20 SNPs. Genotypes for in-

silico contaminated high-depth samples were compared to all 33,884 SNPs from the Illumina 

HumanExome array that were polymorphic within the 198 1000 Genomes Project samples. 

Genotypes for the type 2 diabetes example were compared to all 3,881 SNPs from the 

Affymetrix 6.0 array that overlapped the targeted sequence regions and were variable within 

the sequenced samples. 

Results 

In-silico contaminated data: contaminating sample unknown  

When we did not model contamination, increasing DNA contamination levels (α) 

resulted in decreasing concordance between sequence and array genotypes. For low-pass 

whole genome sequence data, as α increased from 2% to 30%, total genotype concordance 

decreased from 98.1% to 83.8%, compared to an average concordance of 98.9% for 

uncontaminated samples (Figure 3-1A; Appendix Table 3-S1). For high-depth exome sequence 
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data, total concordance decreased from 99.6% to 92.9% over the same contamination range 

compared to 99.8% for uncontaminated samples (Figure 3-1B; Appendix Table 3-S1). Similarly, 

𝑟2 values for genotype dosages decreased from >0.96 to <0.75 as α increased from 2% to 30% 

(Figure 3-1CD). Genotyping errors resulted in an increase in heterozygous calls roughly equal to 

α for the high-depth data and α/2 for the low-pass data (Appendix Figure 3-S1). The impact of 

contamination was greater for common variants than for rare ones (Appendix Table 3-S1), 

corresponding to the greater probability of a contamination resulting in a false heterozygote. 

 

Figure 3-1 Effects of contamination adjustment on constructed 
contaminated DNA samples: genotype concordance and 𝒓𝟐. Each 
point represents overall genotype concordance or dosage  𝑟2 for 

contaminated samples when the proportion of contaminated samples 
π=50% 
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Applying our method to these contaminated samples markedly increased genotype 

concordance and genotype dosage 𝑟2. Estimated sample contamination levels 𝛼̂𝑘 closely 

matched intended 𝛼 values (Appendix Table 3-S2). By accurately modeling contamination, we 

reduced the difference in genotype concordance rates between the contaminated and 

uncontaminated samples by up to 60-80% for the high-depth exomes and up to 50-80% for the 

LD-refined low-pass genomes (Figure 3-1AB) for contamination levels 5%-20%. We observed a 

similar pattern for 𝑟2 (Figure 3-1CD). For the low-pass data, these improvements were seen 

only after LD-refinement (Appendix Figure 3-S2).   

Joint calling uncontaminated samples with contaminated samples had little effect on 

the genontypes for the uncontaminated samples. For low-pass data, when the proportion of 

contaminated samples 𝜋=50% and contamination levels 𝛼 ≤ 30%, the largest observed 

reduction in genotype concordance for uncontaminated samples was 0.4%; average reductions 

were ~0.2%. Results changed only slightly as we varied the proportion of contaminated samples 

from 𝜋=5% to 90% (Figure 3-2). For high-depth data, the effect using our contamination-aware 

likelihoods when calling genotypes for uncontaminated samples was negligible for all 𝜋 and 𝛼 

(Appendix Table 3-S3). 
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In-silico contaminated data: contaminating sample known 

When the source of the contaminating DNA sample was known and sequence data for 

both samples was available, modeling this information explicitly further improved concordance 

with array genotypes. For low-pass data, adding the pair information reduced the difference in 

concordance by an additional ~25% as 𝛼 increased from 2% to 20% (Figure 3-1A). However, at 

α=30%, concordance was actually slightly lower. This reduction in concordance appears only 

after LD-adjustment on the data; it may be the result of a loss of information from marginalizing 

our pairwise genotype likelihoods as required for analysis with Beagle. Improvements to 𝑟2 

Figure 3-2 Effects of increasing proportion of contaminated 
samples 𝜋 on genotype concordance for various levels of 

contamination 𝛼 
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ranged from 0.1% to 1.3% for α=2% to 20%. For high-depth data, we did not see a meaningful 

difference in concordance or 𝑟2 when using the known pair information (Figure 3-1B). 

In-silico contaminated data: association information  

Ultimately we wish to use the sequence-based genotypes to test for disease or trait 

association. In association analysis, we can choose one of three strategies: (1) ignore 

contamination, (2) exclude highly contaminated samples from analysis, or (3) adjust for 

contamination. To estimate the relative efficiencies of these three strategies, we note that 

effective sample size scales linearly with n𝑟2, the product of sample size and the squared 

correlation between the true genotype and the sequence-based genotype dosages8. Since even 

contaminated samples provide information about the true underlying genotype (𝑟2>0), 

including contaminated samples could provide association information even when 

contamination is ignored. The reduction in sample size due to contamination is at least 80% 

smaller when applying our correction compared to dropping contaminated samples (Table 3-2). 

In our evaluations, we maximized effective sample size when adjusting for contamination and 

using all samples, whether contaminated or not. For example, when all samples are 

contaminated at 𝛼 = 10%, association information for the low-pass data is reduced by 10.6% if 

we ignore contamination and 4.0% if we correct for contamination (compared to 8.0% and 2.5% 

respectively for high-depth data). In this example, where all samples are contaminated, it would 

have been impractical to exclude contaminated samples from association analyses.  
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 Low-Pass 
 % of Samples Contaminated 

Method 5% 10% 25% 50% 75% 90% 100% 
    Adjusted 194 194 193 192 191 190 190 
    Ignored 193 193 190 186 182 179 177 
    Dropped 184 174 144 96 47 18 0 
 High-Depth 
 % of Samples Contaminated 

Method 5% 10% 25% 50% 75% 90% 100% 
    Adjusted 195 195 195 194 194 193 193 
    Ignored 195 194 192 189 186 184 182 
    Dropped 186 176 146 98 48 18 0 

Table 3-2 Effective sample size for association test Shown here are the effective sample size 
estimates when α=10% and total sample size is 198 under three scenarios: all samples included 

and adjusted with our method (“adjusted”), all samples included but contamination ignored 
(“ignored”), and contaminated samples (α ̂>0.01) removed from analysis (“dropped”) 

In-silico contaminated data: impact of over- or underestimating contamination  

To evaluate whether misspecified values of α could result in decreased genotype 

quality, we ran simulations in which we scaled the contamination estimate 𝛼̂ by 0.5, 0.75, 1.5, 

and 2 for samples in which the true 𝛼=5%, 10%, or 15%. Overestimating 𝛼̂ had little impact on 

total concordance and 𝑟2 while underestimating contamination more negatively affected both 

statistics (Figure S3). For the low-depth data, overestimating 𝛼̂ by 1.5x actually resulted in 

better concordance then using the “true” 𝛼̂; this effect was only observed after LD-refinement 

The difference in concordance when reducing α by half was at least 40% greater than difference 

from of doubling α for the low-pass samples; there was very little difference for the high-depth 

samples. The negative impact of inflated 𝛼̂ estimates for samples that were not contaminated 

was very modest compared to the benefits of modeling contamination for the remaining 

samples.  
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Type 2 diabetes data  

Convinced of the value of adjusting for contamination, we next applied our method to 

data from the type 2 diabetes exome sequencing project. In these data, 𝜋̂=67% of samples were 

contaminated and we knew the likely contaminating sample. When we applied our correction 

methods, concordance with array genotypes dramatically improved: the average per-sample 

concordance increased from 94.5% to 99.4% (a 9-fold reduction in discordance), further 

increasing to 99.6% (a 14-fold reduction in discordance) when we both modeled contamination 

and used knowledge of its source. Similar patterns were observed for non-reference 

concordance and  𝑟2 (Table 3-3). 

  



56 
 

 𝑎̂ 

# 
Samples Ignored Adjusted Paired 

Total Concordance 0-1% 202 0.998 0.998 0.998 
 1-5% 293 0.996 0.998 0.998 
 5-10% 218 0.958 0.997 0.998 
 10-15% 591 0.920 0.993 0.996 
 15-20% 169 0.878 0.984 0.992 
 >20% 30 0.841 0.950 0.971 
 ALL 1503 0.945 0.993 0.996 

Non-Ref 
Concordance 0-1% 

202 
0.996 0.997 0.997 

 1-5% 293 0.992 0.995 0.995 

 5-10% 218 0.908 0.993 0.994 
 10-15% 591 0.833 0.985 0.991 
 15-20% 169 0.760 0.964 0.983 
 >20% 30 0.702 0.890 0.936 
 ALL 1503 0.882 0.985 0.991 

r2 0-1% 202 0.997 0.998 0.998 
 1-5% 293 0.994 0.996 0.996 
 5-10% 218 0.929 0.995 0.996 
 10-15% 591 0.863 0.990 0.994 
 15-20% 169 0.791 0.977 0.989 
 >20% 30 0.725 0.930 0.946 
 ALL 1503 0.905 0.990 0.994 

Table 3-3 GWAS concordance for type 2 diabetes exome sequencing data (Mean per-sample 
genotype accuracy with the GWAS data when we ignore contamination, adjust without regard 

for the source of contamination, and adjust using known contamination source) 

Discussion 

We have shown that genotyping accuracy for contaminated samples can be dramatically 

improved by modeling contamination using a mixture model. For example, in the type 2 

diabetes exome sequencing example, our method reduced genotype discordance by 14-fold 

(4.2% to 0.3%) for 𝛼=5-10% contaminated samples. Consistent with our previous study, we 

observed that even low levels of contamination (e.g., 𝛼=2-5%) can result in increases in 

genotype discordance of >2-fold. Our correction method nearly eliminates the impact of low 

levels of DNA contamination (𝛼=2-5%) and reduces by >80% genotype discordance incurred by 
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moderate level of DNA contamination (𝛼=5-15%) in the type 2 diabetes exome sequencing 

examples. We expect our method to be particularly useful when a large fraction of sequenced 

samples are contaminated at small to moderate levels (𝛼=2-15%). Below we discuss the 

robustness of our approach when model assumptions are not met, and explore other scenarios 

where these or similar modeling approaches might be useful. 

We demonstrated (Appendix Figure 3-S3) that genotype calling methods that model 

contamination perform best when the contamination level 𝛼 is well estimated and that 

underestimating 𝛼 is more detrimental than overestimating it. Situations that may lead to 

deflated contamination estimates are (1) the use of misspecified allele frequency estimates 

(incorrect population as well as systematic overestimates or underestimates; data not shown), 

(2) contamination from related individuals2, or (3) limited sequencing library complexity which 

results in decreased heterozygosity. If one or more of these situations is suspected, modestly 

inflating (2-5%) the estimated contamination level 𝛼̂ when correcting for contamination may 

improve overall genotype accuracy. 

As long as contamination affects case and control samples similarly, we do not expect 

contamination adjustments to increase the rate of false positive findings in downstream 

association studies. For single-variant associations, results depend on accurate estimations of 

allele frequency differences in cases and controls. As long as contamination patterns do not 

differ drastically in the cases and controls and there are no issues of population stratification, 

we can accurately estimate allele frequencies after correction (Appendix Figure 3-S4). For rare-

variant association, contaminated samples may appear to carry high numbers of rare 

heterozygous variants when analyzed with standard protocols. Our proposed correction will 
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decrease the number of false positive heterozygotes (Appendix Figure 3-S5), so false positive 

associations will be less likely. 

While we have focused on sequencing genomic DNA, in principle our methods can be 

used for other sequencing studies as well. For example, we have used our methods to identify 

contamination in RNA-seq experiments. Using our existing method and restricting analyses to 

expressed exons in protein-coding genes, we detected that 11 of 249 RNA-seq samples were 

contaminated by >2%. Detection and estimation of contamination in these experiments may be 

made more robust by accounting for allele-specific expression (ASE), where gene transcription 

varies based on allele; we are exploring this possibility.  

We described the methods in this paper specifically in the context of biallelic SNPs. 

Extension to multiallelic SNPs is straightforward, requiring only that we sum over a larger 

number of possible genotypes. Genotyping of other variant types, such as indels and structural 

variants, is also affected by contamination. We expect that the same principles, focused on 

modeling the observed data as a mixture of two samples, can be usefully applied to these more 

complex situations. 

We observed that the LD-aware genotype refinement algorithm improves genotype 

accuracy for low-pass sequence data. However, accuracy was still substantially lower than for 

uncontaminated data when the contamination level 𝛼 was high. This may be due in part to the 

fact that our LD-aware genotype refinement algorithm is not aware of the possibility of 

contamination. With increasing interest in whole genome sequencing studies, accounting for 
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the contamination in the genotype refinement step has the potential to further improve 

genotyping and phasing accuracy. 

Our contamination modeling methods are implemented in the program cleanCall. 

Source code for this program is available online. cleanCall requires sequencing data in samtools 

[Li et al. 2009] pileup format. Extracting pileups only for variant sites allows cleanCall to read 

data quickly compared to scanning large BAM files. The total runtime for cleanCall is 

comparable to other simple likelihood-based genotype callers; modest additional time is spent 

estimating allele frequencies via the EM algorithm, but the average number of iterations at a 

given site is minimal (2-5) and does not significantly affect overall performance. 

We developed methods to correct for DNA contamination in variant calling by extending 

our likelihood-based framework to detect and estimate contamination. Our correction methods 

improve genotype calling accuracy and association power compared to ignoring contamination 

or discarding contaminated samples. Even if the contamination level is small (𝛼̂<5%), we 

observe considerable improvement in genotype accuracy using our correction methods. Our 

methods are effective both for high-depth and low-pass data, and given the ubiquity of DNA 

sample contamination, we expect that our methods to be of real benefit to a large number of 

DNA sequencing studies.  
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Chapter 3 Appendix 
 

Figure 3-S1 – Overcalling heterozygous genotypes in contaminated data 

These boxplots  show the relative excess heterozygote genotypes: the average number of 

heterozygous genotypes from sequence-based analyses of sites genotyped using arrays, divided 

by the number of heterozygous genotypes in the array data (per sample) 
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Figure 3-S2 – Effects of LD-refinement on adjusted calls for low-pass data 

We saw a modest improvement in genotype calls in the low-pass data prior to LD-refinement; 

after refinement, the effects were substantial. Each color represents the value for 𝛼 used to 

simulate in-silico contamination 
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Figure 3-S3 – Effects of incorrect estimation of the contamination level  

Effects of incorrect estimation of  on total genotype concordance and dosage 𝑟2 for 

contaminated and uncontaminated samples when 𝜋 = 0.50. The scaling factor applied to 𝛼̂ is 

listed along the x-axis. The values for “UN” are the measures where all samples are 

uncontaminated and “IG” are the values where contamination is ignored.  
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Figure 3-S4 – Allele frequency estimation with contaminated data 

This is a qq-plot comparing the distribution of allele frequency estimates (𝑓) from the array-

based genotypes against the distribution of allele frequencies calculated from the sequencing-

based genotypes for both the uncontaminated samples and contaminated samples after 

adjustment (𝛼 = 0.15). We have scaled the frequencies using a –log10 transformation to focus 

on the rarer variants. 
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Figure 3-S5 – False positive heterozygote SNPs 

Here we have plotted the distribution of the ratios of heterozygous SNPs to non-reference 

homozygous SNPs for samples with 𝛼 = 15%. We expect ratios close to 2 based on 

observations from genotype data in other studies. The high ratio for samples where 

contamination was ignored likely indicates many false positive heterozygote genotypes. 
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Table 3-S1 – Genotype accuracy for contaminated samples 

Total genotype concordance and dosage r2 for contaminated samples when 𝜋=50% of the 

samples in the call set were contaminated. 

  Low-Pass    High-Depth 
 𝛼 Ignored Adjusted Paired   𝛼 Ignored Adjusted Paired 

Total 0% 0.989  Total 0% 0.997 
Concordance 2% 0.981 0.985 0.985  Concordance 2% 0.996 0.996 0.996 

 5% 0.967 0.982 0.983   5% 0.992 0.996 0.996 
 10% 0.941 0.979 0.981   10% 0.979 0.994 0.994 
 15% 0.913 0.970 0.976   15% 0.965 0.992 0.991 
 20% 0.886 0.957 0.966   20% 0.950 0.987 0.987 
 30% 0.838 0.910 0.908   30% 0.929 0.971 0.971 

Non-Ref 0% 0.973  Non-Ref 0% 0.981 
Concordance 2% 0.955 0.963 0.965  Concordance 2% 0.971 0.975 0.975 

 5% 0.925 0.957 0.960   5% 0.945 0.971 0.971 
 10% 0.869 0.949 0.955   10% 0.868 0.959 0.959 
 15% 0.806 0.930 0.942   15% 0.791 0.944 0.944 
 20% 0.755 0.900 0.920   20% 0.719 0.913 0.913 
 30% 0.669 0.798 0.794   30% 0.638 0.817 0.817 

r2 0% 0.982  r2 0% 0.990 
 2% 0.970 0.976 0.977   2% 0.984 0.986 0.986 

 5% 0.949 0.972 0.974   5% 0.970 0.984 0.984 
 10% 0.907 0.967 0.971   10% 0.923 0.978 0.978 
 15% 0.858 0.955 0.963   15% 0.871 0.971 0.971 
 20% 0.813 0.936 0.949   20% 0.815 0.955 0.955 
 30% 0.729 0.863 0.859   30% 0.740 0.907 0.907 

Allele Freq <1% 0% 0.997  Allele Freq <1% 0% 1.000 
Concordance 2% 0.996 0.996 0.997  Concordance 2% 1.000 1.000 1.000 

 5% 0.994 0.996 0.996   5% 0.999 1.000 1.000 
 10% 0.994 0.995 0.996   10% 0.999 0.999 0.999 
 15% 0.992 0.993 0.994   15% 0.997 0.999 0.999 
 20% 0.990 0.991 0.991   20% 0.995 0.999 0.999 
 30% 0.985 0.987 0.985   30% 0.991 0.998 0.998 

Allele Freq 1-5% 0% 0.993  Allele Freq 1-5% 0% 0.998 
Concordance 2% 0.990 0.991 0.992  Concordance 2% 0.997 0.997 0.997 

 5% 0.986 0.989 0.990   5% 0.996 0.997 0.997 
 10% 0.978 0.988 0.990   10% 0.990 0.996 0.996 
 15% 0.966 0.983 0.986   15% 0.983 0.995 0.995 
 20% 0.955 0.976 0.979   20% 0.971 0.992 0.992 
 30% 0.933 0.952 0.942   30% 0.953 0.983 0.983 

Allele Freq >5% 0% 0.986  Allele Freq >5% 0% 0.992 
Concordance 2% 0.976 0.981 0.981  Concordance 2% 0.987 0.989 0.989 

 5% 0.957 0.977 0.979   5% 0.974 0.987 0.987 
 10% 0.922 0.973 0.976   10% 0.934 0.981 0.981 
 15% 0.881 0.962 0.969   15% 0.891 0.974 0.974 
 20% 0.845 0.946 0.958   20% 0.849 0.960 0.960 
 30% 0.781 0.884 0.884   30% 0.793 0.912 0.912 
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Table 3-S2 – Estimated contamination (mean and SD) for constructed contaminated samples 

 Low-Pass High-Depth 
Intended 𝜶 (%) Mean 𝛼̂ SD 𝛼̂ Mean 𝛼̂ SD 𝛼̂ 

2 1.8 0.5 2.2 0.2 
5 4.6 0.7 5.6 0.5 

10 9.4 1.0 10.7 0.7 
15 14.1 1.4 15.4 1.0 
20 18.7 1.7 19.8 1.2 
30 27.6 2.4 27.3 2.2 
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 Table 3-S3 – Genotype accuracy for uncontaminated samples  

Total genotype concordance and r2 for the uncontaminated samples when 𝜋=50% of the 

samples in the call set were contaminated. 

  Low-Pass    High-Depth 
 𝛼 Ignored Adjusted Paired   𝛼 Ignored Adjusted Paired 

Total 0% 0.989  Total 0% 0.997 
Concordance 2% 0.988 0.988 0.988  Concordance 2% 0.997 0.997 0.997 
 5% 0.987 0.988 0.988   5% 0.997 0.997 0.997 
 10% 0.986 0.987 0.988   10% 0.997 0.997 0.997 
 15% 0.986 0.987 0.987   15% 0.997 0.997 0.997 
 20% 0.985 0.986 0.987   20% 0.997 0.997 0.997 
 30% 0.985 0.986 0.986   30% 0.997 0.997 0.997 

Non-Ref 0% 0.973  Non-Ref 0% 0.981 
Concordance 2% 0.971 0.971 0.971  Concordance 2% 0.981 0.981 0.981 
 5% 0.970 0.971 0.972   5% 0.980 0.980 0.980 
 10% 0.967 0.969 0.970   10% 0.981 0.980 0.980 
 15% 0.966 0.969 0.970   15% 0.980 0.979 0.979 
 20% 0.965 0.967 0.968   20% 0.981 0.980 0.980 
 30% 0.964 0.966 0.966   30% 0.980 0.979 0.979 

r2 0% 0.982  r2 0% 0.990 
 2% 0.980 0.981 0.981   2% 0.990 0.990 0.990 
 5% 0.979 0.981 0.981   5% 0.989 0.989 0.989 
 10% 0.978 0.980 0.980   10% 0.989 0.989 0.989 
 15% 0.977 0.980 0.980   15% 0.989 0.989 0.989 
 20% 0.977 0.979 0.979   20% 0.990 0.989 0.989 
 30% 0.976 0.978 0.978   30% 0.989 0.989 0.989 

Allele Freq <1% 0% 0.997  Allele Freq <1% 0% 1.000 
Concordance 2% 0.997 0.997 0.997  Concordance 2% 1.000 1.000 1.000 
 5% 0.997 0.997 0.997   5% 1.000 1.000 1.000 
 10% 0.996 0.997 0.997   10% 1.000 1.000 1.000 
 15% 0.997 0.997 0.997   15% 1.000 1.000 1.000 
 20% 0.997 0.997 0.997   20% 1.000 1.000 1.000 
 30% 0.997 0.997 0.997   30% 1.000 1.000 1.000 

Allele Freq 1-5% 0% 0.993  Allele Freq 1-5% 0% 0.998 
Concordance 2% 0.993 0.993 0.993  Concordance 2% 0.998 0.998 0.998 
 5% 0.993 0.993 0.993   5% 0.998 0.998 0.998 
 10% 0.992 0.993 0.993   10% 0.998 0.998 0.998 
 15% 0.992 0.993 0.993   15% 0.998 0.998 0.998 
 20% 0.992 0.992 0.992   20% 0.998 0.998 0.998 
 30% 0.991 0.992 0.992   30% 0.998 0.998 0.998 

Allele Freq >5% 0% 0.986  Allele Freq >5% 0% 0.992 
Concordance 2% 0.985 0.985 0.985  Concordance 2% 0.992 0.991 0.991 
 5% 0.984 0.985 0.985   5% 0.991 0.991 0.991 
 10% 0.982 0.984 0.984   10% 0.991 0.991 0.991 
 15% 0.982 0.984 0.984   15% 0.991 0.991 0.991 
 20% 0.981 0.983 0.983   20% 0.992 0.991 0.991 
 30% 0.981 0.982 0.982   30% 0.991 0.991 0.991 
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Chapter 4  
Detecting Contamination in RNA Sequencing Experiments 

Abstract   
Until recently, microarrays were the standard way to collect data about differences in 

gene expression between individuals. However, microarrays can only target specific regions in 

known transcripts, giving only a partial view of gene expression. The next evolution of gene 

expression data collection is RNA-Seq, which enables genome-wide studies of both known and 

novel transcripts. By converting mRNA to cDNA, we can leverage the speed and accuracy of 

DNA sequencing machines to collect lots of data without much effort. However, as with any 

genetic data, the possibility exists for a sample to become contaminated with the RNA of a 

different individual. Here we propose a likelihood based model to detect and quantify inter-

sample RNA contamination using data already generated by the sequencer without requiring an 

additional experiment. Our method produces estimates with an average error of 0.5% for 

contamination levels from 2%-10%.  

Introduction 

Just as high-throughput sequencing technologies have revolutionized the collecting of 

sequence information from genomic DNA, these technologies have created new opportunities 

to investigate gene expression. RNA-Seq is a method by which RNA is captured from a cell, 

converted to cDNA, and undergoes sequencing on a sequencing machine1. Typical high-
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throughput pipelines produce tens of millions of short reads (35-100bp) from the collection of 

cDNA fragments. Then an aligner or assembler determines the most likely genomic positions 

from which the fragments originated2. Once fragments are placed, tools are available to 

compare the relative number of observed transcripts for each gene to understand which genes 

are being expressed and at what abundance. 

While current sequencing machines are capable of quickly producing vast amounts of 

sequencing data with few read errors, there is still a need to thoroughly check the quality of the 

data prior to analysis. For example, samples sequenced at different times or with different 

library preparations often have batch effect differences4. Differences in gene transcript 

abundance may simply be due to technical artifacts from library preparation or RNA capture 

rather than true expression differences. Failure to account for these differences may result in 

false positive associations or reduced power. Proper quality control is an important step in a 

RNA-Seq processing pipeline. 

One important quality control measure for all NGS data is a screen for sample 

contamination. We previously developed methods to identify and quantify contamination in 

DNA sequencing studies in which DNA from two or more individuals are present in a single 

sample3. This method has been used to detect contamination in many large sequencing studies 

and is recommended as a standard test during DNA sequence quality control5,6. 

There are three basic types of within-species contamination that may occur in RNA-Seq 

studies: 1) intra-sample DNA-RNA contamination, 2) intra-samples RNA-RNA contamination, 

and 3) inter-sample RNA contamination. Intra-sample DNA-RNA contamination occurs when 
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not all the genomic DNA is removed from the cDNA prior to sequencing. This sort of 

contamination manifests as reads mapping to intergenic regions and thus can be identified 

during read alignment. Intra-samples RNA-RNA contamination occurs when different tissue 

types from a single individual are sequenced together. In this case, the observed reads will not 

have genotype differences between tissues, but they may potentially have expression 

differences. Unfortunately most tissues are likely a mixture of cell types which makes resolving 

the source of each RNA fragment difficult. Since differences between cell types are more subtle 

because transcripts across tissues are likely to have identical genotypes, we will not attempt to 

model this type of contamination.  In this paper we focus on the problem of inter-sample RNA 

contamination whereby the RNA from two different samples are sequenced together as one. 

While the data produced by RNA-Seq and genomic DNA sequencing are similar, there 

are two characteristics of RNA-Seq data that could require more complex modeling for accurate 

contamination estimation than DNA sequencing data. First is gene expression variability. For 

DNA contamination detection, we may reasonably assume that samples contribute sequence 

reads in proportion to the contamination level at each genomic position. For RNA-Seq, the two 

samples may be expressing genes at different levels. In the most extreme case, an intended 

sample does not express a gene but the contaminating sample does, so that all the reads for 

this gene would come from the contaminating sample and on its own may not appear 

contaminated. Second is allele specific expression (ASE). In contrast to DNA sequencing in 

which we expect either allele at a heterozygous site is equally likely observed, ASE alters that 

expectation by preferentially transcribing from the DNA strand with a particular allele. The 

deviation from balanced chromosomal expression depends on the strength of ASE for the 
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particular gene. It has been suggested that ASE may occur for ~20% of human genes7. We are 

interested what effects these phenomena may have on the estimation of contamination for 

RNA-Seq data. 

Materials and Methods 

Here we provide a statistical model to detect contamination in RNA-Seq data and 

describe the experimental datasets used for its validation. 

We begin by making a few simplifying assumptions about RNA-Seq data in order to 

model contamination. First we assume a list of known variant sites within transcripts with 

known allele frequencies. Second we assume all reads are independent and all observed bases 

at a particular site are independent. Third we assume that either allele is equally likely to be 

observed at a heterozygous site; thus this model does not explicitly model deviations as the 

result of ASE. Fourth we assume that when base read errors occur, all three other bases are 

equally likely observed. Finally, this formulation assumes gene expression is consistent across 

individuals. 

Following our previous work for DNA sequence contamination3, we model RNA sample 

contamination with a mixture model. Let 𝑔𝑖
(1)

 and 𝑔𝑖
(2)

 be the genotypes for the intended and 

contaminating samples at variant site 𝑖 (1 ≤ 𝑖 ≤ 𝑀), 𝑏𝑖𝑗 be the observed base at position 𝑖 for 

read 𝑗 (1 ≤ 𝑗 ≤ 𝑅𝑖), 𝑒𝑖𝑗 a latent variable indicating whether a base calling error occurred (𝑒𝑖𝑗 =

1) or did not (𝑒𝑖𝑗 = 0), and 𝛼 the proportion of reads from the contaminating sample. 

We model the probability of observing a particular base 𝑏𝑖𝑗 as 
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𝑃(𝑏𝑖𝑗|𝑔𝑖
(1)

,  𝑔𝑖
(2)

; 𝛼) = (1 − 𝛼)𝑃(𝑏𝑖𝑗|𝑔𝑖
(1)

) + 𝛼𝑃(𝑏𝑖𝑗|𝑔𝑖
(2)

) 

where 

𝑃(𝑏𝑖𝑗|𝑔𝑖) = 𝑃(𝑏𝑖𝑗|𝑔𝑖,  𝑒𝑖𝑗 = 1) 𝑃(𝑒𝑖𝑗 = 1) + 𝑃(𝑏𝑖𝑗|𝑔𝑖,  𝑒𝑖𝑗 = 0) 𝑃( 𝑒𝑖𝑗 = 0) 

We present the read probabilities allowing for error 𝑃(𝑏𝑖𝑗|𝑔𝑖,  𝑒𝑖𝑗) in Table 1. We estimate the 

probability of a read error as 𝑃(𝑒𝑖𝑗 = 1) = 10−𝑄𝑖𝑗/10 and 𝑃(𝑒𝑖𝑗 = 0) = 1 − 𝑃(𝑒𝑖𝑗 = 1), where  

𝑄𝑖𝑗  is the phred-scaled base quality score for the RNA sequence data8. To estimate the 

genotype probability 𝑃(𝑔𝑖), we use allele frequencies from the population from which the 

sample was drawn and assume Hardy-Weinberg equilibrium.  

Taking expectations over the unknown genotypes and assuming all reads and loci are 

independent, we write the likelihood for contamination level 𝛼 in an individual sample as  

𝐿(𝛼) = 𝑃(𝐵|𝛼) = ∏ ∑ ∑ {𝑃(𝑔𝑖
(1)

)𝑃(𝑔𝑖
(2)

) ∏ [(1 − 𝛼)𝑃(𝑏𝑖𝑗|𝑔𝑖
(1)

) + 𝛼𝑃(𝑏𝑖𝑗|𝑔𝑖
(2)

)]

𝑅𝑖

𝑗=1

}

𝑔
𝑖
(2)

𝑔
𝑖
(1)

𝑀

𝑖=1

 

For each sample, we first maximize 𝐿(𝛼) using a grid search in the interval 0.0 ≤  ≤ 0.5 and 

then apply Brent’s algorithm9 to obtain the maximum likelihood estimate of α. By using 

information across a large number of variants 𝑀, we determine if the observed reads are better 

explained by a single sample or a combination of two samples with mixing proportion 0 <  𝛼 <

1 .  

To validate this method, we constructed contaminated samples in-silico using publically 

available data from the GEUVADIS project10. We used RNA-Seq data for 452 samples drawn 

from the 1000 Genomes Project11 from 5 different populations: Utah residents with Northern 
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and Western European ancestry (CEU), Finns in Finland (FIN), British in England and Scotland 

(GBR), Tuscans in Italy (TSI), and Yoruba in Ibadan, Nigeria (YRI). The RNA for each sample was 

extracted from lymphoblastoid cell lines. These samples also had Illumina HumanOmni2.5 array 

genotypes available from the 1000 Genomes Project. We only used samples that had estimated 

levels of RNA contamination <1% (dropped 8 samples). We combined reads from pairs of 

samples within populations adjusting for differences in overall read depth to simulate 

contamination levels from 2%-30%. We then estimated contamination using (subsets of) variant 

sites from the HumanOmni2.5 genotype array. 

To evaluate performance in real-world setting, we estimated contamination using 185 

samples with RNA-Seq data from an ongoing psoriasis skin RNA-Seq project. Samples were 

sequenced on an Illumina Genome Analyzer IIx with a read length of 80bp. Alignment was 

performed with BWA12 against the NCBI build 37 human reference genome. Samples had 

genotype array data for the Illumina HumanExome chip which allowed us to verify identity. 

In all analyses, we estimated contamination using our cleanCall software13. We 

increased the default setting for DNA studies for the maximum number of reads from 20 to 500 

to better accommodate the larger read depth from RNA-Seq data. We used population allele 

frequency estimates specific to each population calculated from the HumanOmni2.5 genotype 

array data. 

Results 

When estimating contamination with DNA data, we used sites across the entire 

genome, but for RNA-Seq we observed more accurate results when using sites in exons. While 
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it is often possible to observe reads outside exons due to non-coding or novel transcripts, we 

focus on exons to avoid the impact of alignment errors enriched in the reads mapped outside 

the exome. We estimated contamination from the constructed samples (1) using a random set 

of sites genome-wide from the HumanOmni2.5 genotype array and (2) using a set of sites 

annotated as being in a gene exon by GENCODE14 to compare estimates based on the genome 

and exome. We limited both sets of sites to roughly 100,000 so any differences were not based 

on simply using a different number of sites. We found that results using sites from all over the 

genome ignoring exonic annotation produced less accurate estimates of contamination 

compared to using sites in the exome (Figure 1). For example, when 𝛼 = 15%, the mean 

absolute difference in the estimated 𝛼̂ and intended 𝛼 was 0.9% for the exonic sites and 1.3% 

for genomic sites. The average absolute difference between the estimated and intended 𝛼 was 

less than 0.5% for the exonic sites for 2% ≤  𝛼 < 20%. For 𝛼 ≥ 20%, both sets 

underestimated 𝛼 on average, but the exonic sites were more accurate. Furthermore, the 

standard deviation from the genomic estimates was >1.6x compared to exomic estimates under 

all experimental settings. Much of the difference can be explained by the smaller number of 

reads present at the off-target sites. 
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Figure 4-1- Estimating Contamination Using Exonic vs Genomic Sites. We plot the distribution 
of (𝛼̂ − 𝛼)100 from our experimentally constructed contaminated samples. We compare 

estimates using sites exclusively from the exome to sites from across the genome. “Avg DP” is 
the average depth (# reads) per variant site.   

 

Excluding sites inside exons of genes with the highest expression variation among 

samples did not meaningfully change our contamination estimates. We believed that by 

dropping the most variably expressed genes, we could reduce some of the noise in the 

estimation and obtain more precise estimates however we did not observe a practical 

difference. To test this we used the data provided by the GEUVADIS project which estimated 

the reads per kilobase of transcript per million mapped reads (RPKM). We then calculated the 

coefficient of variation (standard deviation/mean) for the RPKM values for each site across all 

samples and removed the sites from those genes in the >90 percentile and those in the >50 

percentile. The total number of sites used for estimation was ~100,000 for all exonic sites 

compared to ~95,000 and ~80,000 for the <90 and <50 percentile sites respectively. We 

observed that estimates that avoided the most variable genes were highly concordant with the 
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original estimates (Figure 2). The Pearson correlation of estimates from all exome sites 

was >0.999 for both the <50 and <90 percentile sites. We concluded that individual expression 

differences was not interfering with our ability to estimate contamination in a meaningful way. 

 

Figure 4-2- Estimates of Contamination Ignoring Most Variable Genes We plot the distribution 
of (𝛼̂ − 𝛼)100 from our experimentally constructed contaminated samples. We compare 
estimates using all genes, excluding the >90% most variable genes, and excluding the >50% 

most variable genes. “Avg DP” is the average depth (# reads) per variant site.   

 

Figure 4-3 - Contamination Estimation Dropping Sites with Evidence for ASE. We plot the 
distribution of (𝛼̂ − 𝛼)100 from our experimentally constructed contaminated samples. We 
compare estimates using all sites, sites with no significant evidence of ASE at the p<.005 level, 
and sites with no significant evidence of ASE at the p<.05 level. . “Avg DP” is the average depth 

(# reads) per variant site.   
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To investigate the impact of allele specific expression estimates, we excluded sites that 

showed evidence of ASE in any of the samples. We used the estimates of ASE provided by the 

GEUVADIS project and collected lists of sites where at least one individual had evidence for ASE 

at either the p=.005 or p=.05 level, which left ~77,500 and ~67,000 sites per individual 

compared to ~100,000 using all exonic sites. Estimating contamination using sites with no 

evidence for ASE leads to deflation of the contamination estimate and increased variance >1.4x 

for all levels of contamination (Figure 3). The difference is primarily driven by the reduction in 

summed read depth for all included sites; when we exclude sites with significant evidence for 

ASE, we exclude sites with greater read depth. More reads result in an increased power to 

detect expression differences and can generate more significant p-values. 

When we applied our method to data from the psoriasis sequencing project, we 

identified a set of samples that had been incorrectly labeled during sequencing. We found 21 

samples with estimated levels of contamination 𝛼̂>90% when using the existing genotype array 

data (Figure 4). By comparing the read data to the original genotype data, it was possible to 

correct the labels for 19 of the 21 samples. An additional 6 samples showed contamination 

between 20% and 90%. We recommend that these samples should be dropped from analyses 

that intend to make inference at the individual level since reads cannot be easily assigned to a 

particular sample. 
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Figure 4-4 - Contamination Estimates from Psoraisis Data. Each point is the value of 𝛼̂ for a 
sample using available genotype array data, sorted along the x-axis by 𝛼̂. 

Discussion 

We have shown that modeling contamination in RNA-Seq data the same way that we do 

with DNA sequencing data can work very well if we focus on variant sites in the exome. On 

average the difference between 𝛼̂ and the true 𝛼 was less than 0.5% for contamination levels 

up to 10%. We have also shown that this method can be combined with genotype array data to 

identify mislabeled samples. 

In our analyses, we assumed the true sample population allele frequencies for each of 

the variant sites were known; however, this information may not always be available if you are 

studying a population that has not previously been characterized. Probably the best alternative 

would be to use frequency estimates calculated from genotype array data for the same or 

similar samples. Alternatively, the allele frequencies can be estimated using the proportion of 

reads that carry each allele across multiple sequenced samples. Finally, one could use allele 

frequencies from a closely related HapMap or 1000 Genomes Project population. It is important 
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that the frequencies accurately represent your samples. As with DNA data, misspecification of 

these frequencies often leads to underestimates of 𝛼3. 

Our model assumes that all sites are independent; this is not generally true for real data. 

For example, some nearby sites are correlated due to linkage disequilibrium (LD). The data for 

the experiments above used all sites in the exome from the HumanOmni2.5 genotypes array. 

We also did the experiment after pruning the sites based on LD estimates from the genotype 

array data. We pruned sites such that no pair in a 50 site-wide, 5 site-sliding window had an 𝑟2 

value greater than 0.2, leaving ~40,000 of ~100,000 sites. The correlation between the 𝛼̂ values 

for the full exome list and the LD-pruned exome list was 𝑟2 > 0.996, demonstrating the impact 

on estimation from correlated sites was modest.  

Alternative gene splicing can make it hard to align reads to a reference, especially at 

splice junctions at the ends of exons. Splicing results in different sets of exons being merged 

together into the final RNA message before translation into a protein. This means that 

sequencing reads at the beginning or ends of exons are more difficult to correctly align because 

of the uncertainty of the surrounding sequence. We tested if this may have any significant 

impact on contamination estimation by excluding variant sites located with 10 base pairs of 

splice sites. This resulted in site list with ~6,000 fewer variants. This filtering produced nearly 

identical estimates of contamination (r2>0.999) across all simulation settings. 

Ultimately we decided not to directly model expression variability or ASE because our 

estimates ignoring the phenomena were accurate and the experiments where we dropped 

potentially troublesome sites did not appear to improve the precision or reduce the variability 
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of the estimates. The power of this mixture model is that information is combined across a 

large number of sites so it is difficult for local deviations from the model expectations to 

overpower the contamination signal. Modeling ASE would most easily be done in a Bayesian 

framework where we could put a prior distribution on the probability of observing alleles at 

heterozygous sites rather than assuming it is always 0.5. However, our results suggest the 

simpler model presented here is entirely sufficient for its purpose. 

In summary, we have demonstrated the usefulness of this mixture-model-based method 

to easily and quickly detect contamination in RNA-Seq data after reads have been aligned. We 

suggest screening all RNA-Seq data to check for any potential quality problems. Samples may be 

excluded from a study depending on the level of tolerance for measurement error of the 

downstream analysis. 
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Chapter 5  
Summary 

 

There is no more important lesson that I have learned in my training as a biostatistician 

than this: real data are messy. Messiness comes in many forms: missing observations, surprising 

outliers, unusual patterns, etc. This messiness often interferes with the direct application and 

interpretations of standard statistical methods because of possible assumption violations. We 

can choose to view messy data as something that interferes with “real” statistics, or we can 

embrace the irregularities of experimental data and use that to motivate a deeper statistical 

investigation into of realities of the data. Messy data should make a statistician excited, rather 

than deterred – it simply means there are lessons to be learned. Those lessons might be that 

the way of collecting data has errors or can be improved, or that the data has properties we do 

not yet understand. 

This work on contamination was not motivated by a scientific curiosity to intentionally 

mix samples together; rather it was in response to unusual patterns in our observed data and a 

strong desire to understand the causes. Contamination was just a hypothesis we had about 

what might cause those patterns. We then thought about new ways to look at the data and 

looked for simple statistical models we might be able to use to test this hypothesis. In the end, 

we developed a new set of tools that made it possible to detect and quantify contamination for 

a wide variety of genetic data. 
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In the case of detecting contamination in genotype array data, we were able to use data 

already generated by the genotyping instrument in a novel way to test this new hypothesis. Our 

methods look at the probe intensity data which is normally just used to call genotypes. By 

combining this data with population allele frequencies in a regression model or using this data 

in multivariate normal mixture model, we can test for contamination without having to run a 

separate experiment. Our method runs quickly enough to be able to screen large numbers of 

samples efficiently and can integrate nicely into a standard quality control pipeline for genotype 

array data. 

We learned that contamination usually does not have a large impact on genotype 

concordance for genotype array data. We compared the concordance for samples in Chapter 2 

that were contaminated in-vitro at known mixture proportions against their uncontaminated 

counterparts. Even at 10% contamination, genotype calls were >.999 concordant (Figure 5-1). 

The only noticeable effect is an increase in the number of missing genotypes. Rather than make 

an incorrect genotype call, the Illumina software is much more likely to simply not make a call 

for that variant. Dropping samples with low call-rates has for a long time been a standard 

quality control filter prior. With the development of these methods to detect contamination, 

we now can offer a possible answer to why the sample had a low call rate which was not always 

clear previously. 
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Figure 5-1 - Effects of Contamination on Genotype Array Calls - The left panel shows genotype 
concordance for each of the contaminated mixtures with the uncontaminated sample. The right 

panel shows the increase in the number of missing genotypes for each contaminated mixture 
compared to the uncontaminated sample. 

Even though contamination does not have a large effect on genotype accuracy for array 

data, the shifts in intensity from contaminated data are still capable of detecting low-levels 

contamination (2-10%). Since genotype arrays are so much cheaper than DNA sequencing, 

running data on a genotype array prior to sequencing can be a cost effective way to screen 

samples prior to sequencing. We saw in Chapter 3 that low levels of contamination have a 

much greater impact on genotype concordance for sequencing data compared to array data. 

There is some uncertainty when a sample is identified as contaminated as to when the 

contamination occurred. It could have happened during preparation for genotyping or it could 

have happened at the time of collection. If samples are repeatedly tested, it can be possible to 

determine if the original sample is bad or if something went wrong during genotyping 

depending on the consistency of the contamination estimate. 

While genotype arrays were the go-to source of genetic data for association studies 

when I first started my studies of statistical genetics, we have clearly started to transition to the 
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age of sequencing. We are now able to investigate nearly every position in the genome rather 

than a few select sites. The technology driving this revolution continues to get cheaper, faster, 

and more accurate; however the problems of contamination have also made their way to this 

technology. 

One additional challenge of working with DNA sequencing data is batch effects. 

Sequencers may produce systematic differences in the read data for samples depending on 

when and where they are processed. Ideally, all samples would be sequenced at the same place 

and time with cases mixed with controls; however this is not always possible. We were 

reminded of this problem when we created contaminated samples for Chapter 3. When we 

combined the exome sequencing data and estimated contamination, we observed an odd 

bimodal distribution of estimates (Figure 5-2A). Further investigation revealed that the samples 

were sequenced at different sequencing centers. If we stratified our analysis by the sequencing 

center for each of the samples in the contaminated pair, we can see that the distribution of 

estimates is much closer to expectation (Figure 5-2B). 
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It is very useful to view the estimates of contamination in a context that is aware of the 

experimental conditions under which the samples were created. For example, most of our 

samples are processed in set of 96-well plates. If we plot our estimate of contamination in a 

way that reflect the plate and position where a sample came from, we can learn about how 

contamination may have occurred. An example of this type of plot is given in Figure 5-3. We can 

see that problems might only affect certain plates and positions rather than indicate a more 

wide spread problem. 

Figure 5-2 - Contamination Estimates from Different Sequencing Centers - (A) the distribution 
of 𝛼̂ for all exome sequencing samples contaminated at 30%. (B) the distribution of 𝛼̂ 

conditioned on the sequencing centers for each of the samples in the contaminating pair. 
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 Our test for DNA contamination can happen just after the sequence reads are aligned. 

Previously the effects of contamination typically were not seen until sample genotypes were 

called. Contaminated samples would have many more heterozygous sites than expected. 

Genotype calling can be a time consuming process and is normally delayed until a large number 

of samples are collected. Our method allows for much earlier detection of contamination, 

possibly allowing time for changes in a protocol or pipeline to correct any errors before all 

samples are sequenced. To be even more responsive, these methods could be adapted to 

collect observed bases from fastQ files prior to alignment. If you know the flanking sequencing 

Figure 5-3 – Contamination Estimates in 96-Well Plate - The color of each 
square represents the genotype-free estimate of contamination and the 

color inside the circle represents the estimate using genotype data. Sample 
swaps are indicated in yellow. 
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around variant sites, you can find relevant reads for those sites without aligning every read. 

This will save further time because alignment is also a time-consuming process. 

 While we have worked out a clear method for correcting contaminated DNA samples, 

the method of correction for RNA-Seq data is not so clear. Currently there is no standard 

analysis of RNA-Seq data similar to the way DNA sequencing is used for genotyping. Further 

work is required to understand the impact of contamination on the various RNA pipelines and 

different corrections may be appropriate for different analyses. 

 As the manufactures of sequencing machines continue to innovate and new assays are 

developed, the data we receive from sequencing machines may change. The methods 

described here have been tested and validated with current generation sequencing machines. It 

will surely be necessary to adapt these methods in the future for different instruments and 

protocols because while technology may improve, it is likely that contamination will continue to 

be a potential problem for genetics studies. 

 Up until now we have focused on contamination as an important quality control step, 

however there are natural biological phenomena where some form of “contamination” is 

expected. Two such examples are genetic chimerism and cell-free fetal DNA. In the case of 

genetic chimerism, an embryo develops with two or more distinct cell lines when multiple 

fertilized eggs merge. This means that two cells from the same individual may have distinct DNA 

sequences. Since both fertilized eggs presumably arose from the same set of parents, there 

would be a high degree of similarity between the sequences. If we estimated contamination in 

different windows across the genome, we expect to find 𝛼̂ > 0 for regions where different 
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cross-over events occurred during meiosis. Cell-free fetal DNA is the phenomenon where DNA 

from a fetus can be found in the blood of his pregnant mother. This may also look like 

contamination since the DNA sequences of two individuals would be sequenced as one. But as 

with chimerism, we expect a high degree of similarity given that the samples are genetically 

related. 

 So whether our interests in mixtures of DNA are motivated by genetic hypothesis of 

natural phenomena or a test for quality from a complicated laboratory protocol, the methods 

we have outlined here will help with the understanding and interpretation of high-throughput 

genetic data for years to come. 


