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ABSTRACT 

 This thesis focuses on the application of ultrafast lasers in nanomaterial synthesis. Two 

techniques are investigated: Ultrafast Pulsed Laser Deposition (UFPLD) of semiconductor 

nanoparticle thin films and ultrafast laser scanning for the photoexfoliation of graphite to 

synthesize graphene.  The importance of the work is its demonstration that the process of making 

nanoparticles with ultrafast lasers is extremely versatile and can be applied to practically any 

material and substrate.  Moreover, the process is scalable to large areas:  by scanning the laser 

with appropriate optics it is possible to coat square meters of materials (e.g., battery electrodes) 

quickly and inexpensively with nanoparticles.  With UFPLD we have shown there is a 

nanoparticle size dependence on the laser fluence and the optical emission spectrum of the plume 

can be used to determine a fluence that favors smaller nanoparticles, in the range of 10-20 nm 

diameter and 3-5 nm in height.  We have also demonstrated there are two structural types of 

particles:  amorphous and crystalline, as verified with XRD and Raman spectroscopy.  When 

deposited as a coating, the nanoparticles can behave as a quasi-continuous thin film with very 

promising carrier mobilities, 5-52 cm2/Vs, substantially higher than for other spray-coated thin 

film technologies and orders of magnitude larger than those of colloidal quantum dot (QD) films.   

 Scanning an ultrafast laser over the surface of graphite was shown to produce both 

filamentary structures and sheets which are semi-transparent to the secondary-electron beam in 

SEM.  These sheets resemble layers of graphene produced by exfoliation.  An ultrafast laser 

“printing” configuration was also identified by coating a thin, transparent substrate with graphite 



  xv

particles and irradiating the back of the film for a forward transfer of material onto a receiving 

substrate. A promising application of laser-irradiated graphene coatings was investigated, namely 

to improve the charge acceptance of lead-acid battery electrodes.  We demonstrated 

improvements of 63 % in the cycle lifetime and 23 % in the electrode charging conductance.   
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CHAPTER 1 

Introduction 

 With the advent of the ultrafast laser, new ways of materials processing have been 

discovered.  This thesis will focus on the application of ultrafast lasers in nanomaterial synthesis.   

Two techniques are investigated: Ultrafast Pulsed Laser Deposition (UFPLD) of semiconductor 

nanoparticle thin films and ultrafast laser scanning for the photoexfoliation of graphite to 

synthesize graphene. 

1.1 Ultrafast Optics    

The field of Ultrafast Optics centers around pulsed laser technology with pulse durations 

on the order of picoseconds and below [1].  Ultra short pulses have several characteristics that 

make them useful for a plethora of applications such as fast time resolution, high spatial 

resolution, high bandwidth, and the potential for high intensities.  Some common applications 

include:  

 Ultrafast spectroscopy – time-resolved spectroscopy benefits from the high 

temporal resolution provided by femtosecond laser pulses to probe characteristics 

and material processes that happen on short times scales (fs to ps).  Examples are 

pump-probe experiments to study electronic and vibrational dynamics in solids 

[2-5]  
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 Laboratory extreme physics – lasers with 1013 W/cm2 and above, directed onto 

solid targets, allow the study of physics at extreme conditions, such as probing 

nonlinear quantum electrodynamics on a table top [6]; intensities in excess of 1022 

W/cm2 have been achieved [7]   

 Biomedical applications – ultrafast lasers have become important in 

ophthalmological applications on account of their reduced collateral tissue 

damage during surgical procedures, such as LASIK [8, 9] 

 Materials processing – ultrafast lasers are widely used for micromachining, 

exhibiting superior performance, due again to causing less damage to surrounding 

material [10]; ultrafast lasers have also been demonstrated to produce 

nanomaterials, such as laser induced periodic structures (LIPS) [11, 12] and 

nanoparticles [13-21] 

While a continuous, single-mode laser has a very narrow optical frequency, ultrashort 

pulses require a broad optical bandwidth, thus exhibiting multiple longitudinal modes.  Forcing a 

large number of modes, hence a large bandwidth, to oscillate with a fixed phase relationship is 

the foundation of mode-locking.  Once mode-locked (either actively or passively), the periodicity 

of the pulses, also known as the repetition rate, is given by T = 1/Δf, where Δf is the bandwidth.  

The pulse duration is given by Δt = 1/(NΔf), where N is the number of modes, meaning the pulse 

duration is equal to the inverse of the total laser bandwidth [1]. 

Typically, mode-locked oscillators generate ultrafast pulse energies on the order of nJ, 

corresponding to peak powers on the order of kW and intensities on the order of 1012 W/cm2 

(assuming a 100 fs pulse at 100 MHz repetition rate focused near the diffraction limit) [22].  

Amplification is required to achieve higher intensities, which is limited by the damage threshold 
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of the internal optics of the laser.  The enabling step for extremely high power ultrafast lasers to 

achieve intensities beyond 1013 W/cm2 is Chirped Pulse Amplification (CPA) developed by 

Gérard Mourou and co-workers in the 1980’s [23].  CPA is broken down into three steps [22, 

24], as seen in figure 1.1: 

1. An initial seed pulse (from a fiber oscillator) is sent through a dispersive system 

(a pair of gratings), resulting in a highly chirped, stretched pulse.  This stretching 

preserves the bandwidth while reducing the peak power by the stretching factor. 

2. The stretched pulse then goes through a series of amplifiers to increase its power.  

Since the pulse is stretched and the peak power is reduced, nonlinear effects 

(such as self focusing) and optical damage, are significantly reduced.  Without 

pulse stretching, the amplified pulse would damage the internal optics of the laser 

thus reducing the amount of amplification possible.   

3. The amplified, stretched pulse goes through a second dispersive system that is 

opposite to the initial dispersive system resulting in the pulse being compressed 

to the bandwidth limit ensuring maximum peak power.   
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1.2 Ultrafast Pulsed Laser Deposition (UFPLD) of Semiconductor Nanoparticles 

 Pulsed Laser Deposition (PLD) conceptually is amongst the simplest thin-film deposition 

techniques.  It consists of a target holder and a substrate holder housed in a vacuum chamber 

with a high powered pulsed laser as the external energy source to vaporize the target material and 

deposit thin films [25].  Excimer lasers are the primary laser source for PLD, with a pulse 

duration on the order of a nanosecond and a pulse energy on the order of a joule.  Deposition can 

be done under vacuum or with a gas atmosphere of choice [26].  The basis of UFPLD is to 

replace the nanosecond excimer laser with a much shorter pulse (ultrafast) laser.  In contrast to 

an excimer laser, which vaporizes or “ablates” material from a deep (~ micron) region below the 

irradiated target surface, UFPLD has been demonstrated to produce nanoparticles under vacuum 

FIGURE 1.1: Schematic of CPA [24] 
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conditions [13-17, 20, 21, 27-30].  One of the aims of this dissertation is to use UFPLD for 

synthesizing semiconductor nanoparticle thin films of silicon and germanium.   

1.2.1 Project Motivation 

 The fundamental motivation is to investigate the properties of semiconductor 

nanoparticle thin films produced by UFPLD.  The goal is developing an electronically tunable 

quantum dot-based thin film material that has superior electronic mobility to current colloidal 

quantum dot thin films, which are on the order of 10-5-10-3 cm2/Vs [31].  

1.2.2 Semiconductor Nanoparticle Properties 

 Nanoparticles are a relatively new form of matter with interesting optoelectronic 

properties different than those of bulk material.  What is interesting about nanoparticles is their 

density of states distribution.  When the particle is small enough, approaching the exciton Bohr 

radius, the electron wavefunction becomes confined in three dimensions and the density of states 

in that case becomes a delta functions, meaning there are only discreet energy levels, akin to 

those in an atom.   For germanium and silicon, the Bohr exciton radii are 24.3 nm and 5 nm, 

respectively [32, 33].  The comparison of the density of states for various dimensionalities is 

shown in Figure 1.2 [34]. 
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 For semiconductors with dimensions on the order of the Bohr exciton radius and smaller, 

the energy states begin to be size-dependent, and the bandgap itself gets larger as expressed in 

equation 1.1 [35] below: 

௚ܧ                                 
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Where Eg is the bulk bandgap, R is the particle size, me and mh are the electron and hole effective 

masses.  This quantum confinement effect has been confirmed experimentally through 

photoluminescence, where silicon nanocrystals with diameters between 2.5 and 8nm were 

measured [36]. The smaller the nanoparticle, the larger the energy level spacing which gives 

better absorption at the shorter wavelengths.  An interesting application of such nanoparticles 

would be for photovoltaic use.     Having this enhanced absorption in the shorter wavelengths 

(UV/blue) has been shown to increase the photo-response of polycrystalline silicon solar cells. 

D
en
sit
y 
of 
St
at
es  Energy 

FIGURE 1.2. Density of states for 3D, 2D, 1D, and 0D structures [34] 
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This can be achieved by using an ultra-thin layer of silicon nanoparticles.  Large photovoltaic 

enhancements of up to 60% have been seen in the UV/blue range [37].  

  Bulk semiconductors such as silicon or germanium have a limited range of absorption 

determined by their band gap. To maximize the absorption of solar radiation it is necessary to 

tailor the band gap to the solar spectrum.  This is obviously not possible for a single-layer 

crystalline solar cell.  Figure 1.3 shows the spectral response for various semiconductors [38] (on 

the left) and a diagram of a band gap (on the right), if the energy of the incident photon is less 

than the band gap, no absorption would occur and no electron/hole pair is created [39].  If the 

energy of the incident photon is higher than the band gap, the excited electron relaxes to the 

conduction band edge and the excess energy is lost as heat.  This is the basis of the Shockley-

Queisser limit on the maximum efficiency of a single-cell photovoltaic material (about ~30% for 

Silicon with a band gap of 1.1 eV) 

 

 

 Since there is a relationship between the confinement size of a semiconductor system and 

its band gap, having a distribution of various sizes also yields a range of band gaps.  Being able 

FIGURE 1.3. Spectral response for commonly used semiconductors [38] (left); and a diagram of the 
photovoltaic effect [39] (right) 
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to control the distribution of particle sizes allows for fine-tuning of the absorption and thus the 

possibility of optimization over larger spectral ranges.  For example, building a photovoltaic 

device using thin films of semiconductor nanoparticles could enhance the sensitivity to the entire 

solar spectrum, possibly increasing solar cell efficiency.  

1.2.3 UFPLD Nanoparticle Formation Mechanisms 

 While the formation mechanism for nanoparticles is not well understood for UFPLD, At 

least two possibilities exist for nanoparticle generation in femtosecond ablation: direct cluster 

ejection from the target or collisional sticking and aggregation within the ablation plume [20]; a 

third possibility has been considered,  which is condensation from a hot dense plasma [20, 40].  

Since nanoparticles can form in vacuum with a femtosecond laser [13-16], the formation 

mechanism is quite different compared to condensation due to a background gas, as seen with 

nanosecond PLD [20].   Small clusters are attributed to collision-induced condensation within 

dense regions of the ablation plume.  This is unlikely to be the formation mechanism of larger 

droplets due to the unrealistically high number of collisions required.  The large droplets are a 

result of target stress confinement, when the pulse duration is shorter than the time needed for 

mechanical equilibrium of the target causing cavitation and disruption of a liquid surface region 

or mechanical spallation of the solid regions [40].  Evidence for nanoparticle condensation is 

seen time resolved optical emission spectroscopy of the ablation plume, showing an initial 

atomic emission dominated spectrum, changing into a blackbody dominated plume after a few μs 

indicating a plume dominated by nanoclusters [15, 20].  Figure 1.4 shows the time-resolved 

emission spectrum for silicon [15]. 
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 A fluence dependence on the type of deposited matter has been seen by Perrière [20]: 

fluences higher than 15 J/cm2 favors larger droplet formation (with reduced nanoparticle 

generation), which is likely from target stress confinement [40], leading to the following 

relationship for laser fluence [20]: 

௔௧௢௠௜௖ܨ ൎ ௡௔௡௢௖௟௨௦௧௘௥ܨ ൏  ௗ௥௢௣௟௘௧ܨ

One of the mechanisms of nanoparticle and droplet condensation is from the adiabatic expansion 

of the ablation plume, with the initial region confined due to self-generating magnetic fields 

confining the plume immediately above the surface.  The confining magnetic fields become 

weaker as distance from the surface increases until the outward pointing radial pressure exceeds 

the magnetic field confinement pressure and begins to quickly expand [30].  This is analogous to 

a rapidly expanding jet leaving a nozzle where clusters of gas and metal vapors also form [20, 

41, 42], as seen in figure 1.5. 

FIGURE 1.4. Time-resolved emission spectrum of the silicon ablation plume, initially showing 
atomic emission, evolving into a blackbody spectrum of hot nanoparticles [15] 
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Appropriate flow conditions for cluster formation can be expressed by a scaling factor, Γ*, given 

by the empirical equation 1.2 [41], 

∗߁                                                             ൌ
௞൤ቀ ೏

౪౗౤ഀ
ቁ
బ.ఴఱ

௉೚൨

்మ.మవ
                                                         1.2 

where k is a material dependent constant, Po and T0 are the initial gas pressure and temperature, d 

is the jet throat diameter (or laser spot size), and α is the jet expansion half angle as seen in figure 

1.5 above.  Clusters begin to form when Γ* exceeds 300 [42].  Previous work [20] has shown that 

larger expansion angles, α, which correspond to smaller laser spot size and higher fluence 

correlates with droplet formation while smaller angles correspond to nanoparticle-favored 

growth.  A comparison is shown in figure 1.6 

FIGURE 1.5. Schematic of a supersonic jet (top) and laser plume expansion (bottom) [20] 
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1.3 Ultrafast Photoexfoliation of Graphite 

 In addition to nanoparticle laser deposition, ultrafast lasers also have a potential for 

materials processing at the nanoscale.  In the second part of this thesis, we scanned an ultrafast 

laser over a film of graphite particles that had been chemically intercalated with sulfate ions to 

form a new surface of graphitic aggregates. This method, developed here for the first time, is 

shown to lead to graphene-like carbon sheets.       

1.3.1 Project Motivation 

 The project motivation is to synthesize a film of graphene nanosheets with ultrafast laser 

irradiation to be used in energy storage applications, especially for high capacitance 

supercapacitors.  Supercapacitors are a very attractive energy storage device; they have very high 

charge and discharge at rates, long cycle life (far higher than battery cells), and high energy 

FIGURE 1.6. A comparison of the adiabatic expansion of the ablation plume at larger spot sizes 
(top) and smaller spot sizes (bottom) [20] 
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efficiency [43].  One of the main limitations of supercapacitors is their limited energy density 

(typically 5-10 Wh/kg), which is lower than that of lead-acid (20-35 Wh/kg), nickel metal 

hydride (40-100 Wh/kg), and lithium-ion cells (120-170 Wh/kg) [44].  The use of graphene-

based electrodes has become quintessential with pushing the boundary of energy density in 

supercapacitors [44-57]. 

1.3.2 Graphene Properties 

 Graphene is a material of high current interest due to its very interesting physical 

characteristics.  One is the very high carrier mobility, observed to be in excess of 15,000 cm2/Vs, 

leading to very low values of the electrical resistivity of 10-6 Ω-cm, which is about 35% lower 

than copper at room temperature, and high in-plane thermal conductivities of 5,300 W/mK [58-

60]. Another interesting property is the very high specific surface area of 2,600 m2/g, even 

exceeding those of activated carbon and carbon fiber cloth: 1,200 and 1,630 m2/g, respectively 

[58, 61]. 

1.3.3 Ultrafast Laser Irradiated Graphite Formation Mechanisms 

First, we discuss the scientific basis of the laser-induced exfoliation process. We discuss 

the process using a simple analysis of the interaction between two neighboring graphene sheets 

in the graphite structure which is widely acknowledged to be governed by the balance between 

van der Waals-like attractive forces and repulsive molecular orbital interactions.  

 
FIGURE 1.7. Graphite interplanar stacking arrangements [62]  
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Palser [62] has modeled the interlayer interactions using the following potential of equation 1.3:    

                                                ܸሺݎሻ ൌ ஼

௥ల
ቂ1 െ ∑ ሺఈ௥ሻ೙

௡!
݁െݎߙ଺

௡ୀ଴ ቃ                                                 (1.3)     

Where the adjustable parameters C (11.0 meV Å6) and α (2.7 Å-1) are determined by requiring 

that the model return the correct experimentally determined interplanar cohesive energy for 

graphite ABA stacking of 42.6 meV per atom and the equilibrium interplanar spacing of 

0.335nm [62], as seen in figure 1.8. Note here that the interlayer cohesive energy is vastly 

weaker than the in-plane cohesive energy which is several eV per atom (set by the strength of the 

covalent sp2 bond).  This disparity between in-plane and out-of-plane bonding is what makes this 

exfoliation process possible.   The interaction of the femtosecond laser pulse with the graphite 

nanoflakes, then, supplies the necessary energy to overcome the interlayer cohesion, without 

disrupting the in-plane bonding, consequently producing graphene nanoplatelets.  

 

 

It is important to point out here that the laser fluence must be adjusted to an optimum level above 

the threshold for separating the interlayer bond, yet well below the fluence required to affect the 

in-plane bond.   

FIGURE 1.8. Interplanar interaction energy for different graphene plane stacking as a function of 
interplanar spacing; the solid and dashed lines refer to ABA (graphite) and AAA (simple hexagonal) 
stacking types [62] 
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 It has been proposed and calculated, using time-dependent density functional theory for 

the electrons and molecular dynamics for the ions, that an ultrafast laser may be able to directly 

photoexfoliate one graphene layer at a time, with pulses being on the order of 45 fs, longer 

pulses would ablate multi-layered graphene [63].  In previous work [64], it has been observed by 

ultrafast electron crystallography that when graphite is excited by an ultrafast laser pulse, excited 

carriers (which reach equilibrium in less than a picosecond) transfers their heat to strongly 

coupled optical phonons.  Initially the crystal undergoes a contraction, followed by large 

expansion.  The as the fluence increases, the contraction velocity increases causing a larger 

expansion, leading to ablation of entire graphene layers at a sufficiently high fluence.   

 One approach to make this process more energetically favorable, perhaps allowing 

photoexfoliation at longer pulse durations, is to oxidize graphite into graphite oxide to increase 

the interplanar distance [65], followed by a means of exfoliation, followed by a chemical 

reduction of the graphite oxide sheets into graphene. Exfoliation can be done with heat or 

mechanical means (such as ultrasonification) [58, 66].  Recent work has shown that lasers, both 

continuous and femtosecond, are able to exfoliate and reduce graphene oxide (photoexfoliation 

and photoreduction) in a single step [63, 67-70]. Here we investigate the photoexfoliation 

process both in intercalated samples, as well as direct photoexfoliation of pristine (non-

intercalated) nanoparticles.  

1.4 Supercapacitors 

 The energy that can be stored in a supercapacitor is given by equation 1.4: 

ܧ                                                                     ൌ ଵ

ଶ
 ଶ                                                            1.4ܸܥ
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Stored energy, E, is proportional to the capacitance, C, and the square of the voltage, V.  Ideally, 

the best way to get the most energy out of a capacitor is to increase the voltage, but some 

applications, especially those requiring large energy densities, limit the amount of voltage that 

can be used. For example, electric cars have battery packs typically on the order of 350 V, due to 

safety reasons [71]. In practice, the voltage is really limited by the dielectric breakdown potential 

of the materials used to make the supercapacitor. The next strategy would be to increase the 

capacitance of the system, which is given by equation 1.5: 

ܥ	                                                                    ൌ ఌೝఌ೚஺

஽
                                                               1.5                  

 Capacitance, C, is proportional to the permittivity of free space, εo, relative permittivity, εr, and 

electrode area, A, while being inversely proportional to electrode separation, D.  The strategy to 

increase capacitance is to increase the surface area of the electrodes, which is a fundamental 

design parameter in modern electrochemical supercapacitors [43].  A supercapacitor consists of 

two electrodes (positive and negative) with a separator sandwiched between.  The separator is 

electrically insulating but allows ion transport to allow the electrodes to be as close as possible 

while preventing short circuits. The electrodes are submerged into an electrolyte solution, either 

with aqueous or organic solvents with a dissociated ionic species.  Charge is stored by the 

dissociated ionic species adsorbing onto the surface of the electrode when under bias, which is 

known as electric double-layer capacitance [43] as seen in figure 1.9 below.   
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 In an asymmetrical supercapacitor, one electrode capacitance contribution is from 

double-layer capacitance while the other electrode utilizes pseudocapacitance [43], which 

involves fast and reversible redox reactions as seen in figure 1.10.     

 

 

 

FIGURE 1.10. Schematic of a charged PbO2/Carbon asymmetrical supercapacitor 

FIGURE 1.9. Schematic of electric double layer capacitance [43] 
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On the positive plate, the same half reaction that lead-acid batteries are based on takes place: 

ܾܱܲଶ ൅ ାܪ4 ൅ ܵ ସܱ
ଶି ൅ 2݁ି ⇌ ܾܲܵ ସܱ ൅  ଶܱܪ2

On the negative plate, instead of having a lead counter electrode that reacts with the sulfate in the 

electrolyte, a high surface area carbon is used for double-layer capacitance.  Here the negative 

electrode acts to adsorb and desorb H+ ions in the electrolyte:  

଺ܥ݊
௫ିሺܪାሻ௫ ⇌ ଺ܥ݊

ሺ௫ିଶሻିሺܪାሻ௫ିଶ ൅ ାܪ2 ൅ 2݁ି 

Prototypes based on asymmetric PbO2/Activated Carbon systems have shown equivalent series 

resistance (ESR) as low as 0.12 Ω cm2 and an RC time constant of 0.36 seconds [72]. These 

values are comparable to those of activated carbon based symmetrical supercapacitors, implying 

very high charge and discharge rates.  The advantage that the asymmetrical system has is 

superior energy density.  Mathematical modeling of asymmetric PbO2/Activated Carbon 

supercapacitors has predicted an energy density of 24 Wh/kg [73], approaching that of a 

conventional lead acid cell, which is typically 30-40 Wh/kg [74].  

 FIGURE 1.11. Schematic of an ultrabattery, combining a PbA battery cell with a PbO2/Carbon 
asymmetrical supercapacitor [75] 
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Figure 1.11 above is an example of the ultrabattery, which is a hybrid between an asymmetrical 

supercapacitor and a lead acid battery cell where the negative plate consists of one carbon 

electrode and one lead electrode connected in parallel with a lead oxide positive counter 

electrode [75].  This cell is designed to use its supercapacitor aspects to better handle high pulsed 

currents while retain its battery aspect for larger energy density.  Ultrabatteries have 

demonstrated 170k km of successful operation on a Honda Insight hybrid electric vehicle (HEV) 

exhibiting better cycling performance than a nickel metal hydride (NimH) battery pack [76]. 

1.5 Thesis Organization 

 This thesis project is an overview of material synthesis and processing using an ultrafast 

laser.  The materials studied are germanium, silicon, and graphite.  There are two facets to this 

project, one is the study of material that is removed off of a laser target during ablation, UFPLD, 

and the second is the effects of ultrafast laser irradiation on a material.  The thesis is divided into 

six chapters, including this introduction. The second chapter is a description of the experimental 

apparatus as well as characterization techniques used. The third chapter characterizes germanium 

and silicon nanoparticles and nanoparticle thin films produced by UFPLD.  The fourth chapter is 

an investigation of ultrafast laser irradiation of graphite with the first section studying ejected 

graphitic nanostructures from a laser target using UFPLD as well as effects (such as 

photoexfoliation) from the ultrafast laser when scanned over a film of graphite particles, 

Ultrafast Laser Irradiated Graphite (ULIG).  Chapter 5 focuses on a practical application of 

ULIG by using it as an electrode coating to improve the charging performance of lead acid 
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battery cells.  Chapter 6 is the final chapter, summarizing the conclusions and suggesting future 

work that would pertain to this topic.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  20

1.6 References 

1. Weiner, A., Introduction and Review, in Ultrafast Optics. 2009, John Wiley & Sons: 
New Jersey, USA. p. 1-31. 

2. Stoica, V., Y.-M. Sheu, D. Reis, and R. Clarke, Wideband Detection of Transient Solid-
State Dynamics Using Ultrafast Fiber Lasers and Asynchronous Optical Sampling. 
Optics Express, 2008. 16(4). 

3. Elzinga, P., F. Lytle, Y. Jian, and G. Laurendeau, Pump/Probe Spectroscopy by 
Asynchronous Optical Sampling. Applied Spectroscopy, 1987. 41(1): p. 2-4. 

4. Perrin, B., Investigation of Short-Time Heat Transfer Effects by an Optical Pump–Probe 
Method, in Microscale and Nanoscale Heat Transfer. 2007, Springer: Berlin. 

5. Nakajima, M., K. Mizoguchi, K. Morita, K. Itoh, H. Harima, and S. Nakashima, 
Comparison of  coherent and incoherent LO phonons in isotopic 70 Ge/ 74 Ge 
Superlattices. Journal of Luminescence, 2000. 87(89): p. 942-944. 

6. Mourou, G.r.A., C.P.J. Barry, and M.D. Perry, Ultrahigh-Intensity Lasers: Physics of the 
Extreme on a Tabletop. Physics Today, 1998. 51(1): p. 22. 

7. Yanovsky, V., V. Chvykov, G. Kalinchenko, P. Rousseau, T. Planchon, T. Matsuoka, A. 
Maksimchuk, J. Nees, G. Cheriaux, G. Mourou, and K. Krushelnick, Ultra-high intensity 
- 300-TW laser at 0.1 Hz repetition rate. Optical Express 2008. 16(3): p. 2109-2114. 

8. Montes-Mico, R., A. Rodriguez-Galietero, and J.L. Alio, Femtosecond laser versus 
mechanical keratome LASIK for myopia. Ophthalmology, 2007. 114(1): p. 62-8. 

9. Vogel, A., T. Günther, M. Asiyo-Vogel, and R. Birngruber, Factors determining the 
refractive effects of intrastromal photorefractive keratectomy with the picosecond laser. 
Journal of Cataract & Refractive Surgery, 1997. 23(9): p. 1301-1310. 

10. Cerami, L., E. Mazur, S. Nolte, and C. Schaffer, Femtosecond Laser Micromachining, in 
Ultrafast Nonlinear Optics, R. Thomson and C. Leburn, Editors. 2013, Springer 
International Publishing. 



  21

11. Li, Y., V.A. Stoica, L. Endicott, G. Wang, H. Sun, K.P. Pipe, C. Uher, and R. Clarke, 
Femtosecond laser-induced nanostructure formation in Sb2Te3. Applied Physics Letters, 
2011. 99(12): p. 121903. 

12. Huang, M., F. Zhao, Y. Cheng, N. Xu, and Z. Xu, Mechanisms of ultrafast laser-induced 
deep-subwavelength gratings on graphite and diamond. Physical Review B, 2009. 
79(12). 

13. Oraiqat, I., J. Kennedy, J. Mathis, and R. Clarke, Femtosecond laser deposition of 
semiconductor quantum dot films. 2012: p. 402-417. 

14. Amoruso, S., G. Ausanio, R. Bruzzese, L. Gragnaniello, L. Lanotte, M. Vitiello, and X. 
Wang, Characterization of laser ablation of solid targets with near-infrared laser pulses 
of 100fs and 1ps duration. Applied Surface Science, 2006. 252(13): p. 4863-4870. 

15. Amoruso, S., R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. 
Iannotti, and L. Lanotte, Generation of silicon nanoparticles via femtosecond laser 
ablation in vacuum. Applied Physics Letters, 2004. 84(22): p. 4502. 

16. Ausanio, G., S. Amoruso, A.C. Barone, R. Bruzzese, V. Iannotti, L. Lanotte, and M. 
Vitiello, Production of nanoparticles of different materials by means of ultrashort laser 
pulses. Applied Surface Science, 2006. 252(13): p. 4678-4684. 

17. Rode, A.V., B. Luther-Davies, and E.G. Gamaly, Ultrafast ablation with high-pulse-rate 
lasers. Part II: Experiments on laser deposition of amorphous carbon films. Journal of 
Applied Physics, 1999. 85(8): p. 4222. 

18. Liu, B., Z. Hu, and Y. Che, Ultrafast lasers produce nanoparticles. Laser Focus World, 
2007. 43(9): p. 74-+. 

19. Gamaly, E.G., N.R. Madsen, D. Golberg, and A.V. Rode, Expansion-limited aggregation 
of nanoclusters in a single-pulse laser-produced plume. Physical Review B, 2009. 
80(18). 

20. Perrière, J., C. Boulmer-Leborgne, R. Benzerga, and S. Tricot, Nanoparticle formation by 
femtosecond laser ablation. Journal of Physics D: Applied Physics, 2007. 40(22): p. 
7069-7076. 



  22

21. Eliezer, S., N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. 
Horovitz, M. Fraenkel, S. Maman, and Y. Lereah, Synthesis of nanoparticles with 
femtosecond laser pulses. Physical Review B, 2004. 69(14). 

22. Weiner, A., Manipulation of Ultrashort Pulses, in Ultrafast Optics. 2009, John Wiley & 
Sons: New Jersey, USA. p. 362-420. 

23. Maine, P., D. Strickland, P. Bado, M. Pessot, and G. Mourou, Generation of Ultrahigh 
Peak Power Pulses by Chirped Pulse Amplification IEEE Journal of Quantum 
Electronics, 1988. 24(2): p. 398-403. 

24. Perry, M., Multilayer Dielectric Gratings: Increasing the Power of Light. Science & 
Technology Review, Lawrence Livermore National Lab, 1995. 

25. Cheung, J., History and Fundamentals of Pulsed Laser Deposition, in Pulsed Laser 
Deposition of Thin Films, D. Chrisey and G. Hubler, Editors. 1994, John Wiley & Sons: 
United States. p. 1-19. 

26. Green, S., A. Pique, K. Harshavardhan, and J. Bernstein, Equipment, in Pulsed Laser 
Deposition of Thin Films, D. Chrisey and G. Hubler, Editors. 1994, John Wiley & Sons: 
USA. p. 23-54. 

27. Senadheera, S., B. Tan, and K. Venkatakrishnan, Critical Time to Nucleation: Graphite 
and Silicon Nanoparticle Generation by Laser Ablation. Journal of Nanotechnology, 
2009. 2009: p. 1-6. 

28. Moore, A.R., Electron and hole drift mobility in amorphous silicon. Applied Physics 
Letters, 1977. 31(11): p. 762. 

29. Zhang, Z., Characteristics of Ultrafast Laser Produced Plamsa and its Application in 
Thin Film Deposition, in Electrical Engineering. 2003, University of Michigan. 

30. Rompay, P.A.V., Mass Separation for Ions in Ultrafast Ablation Plumes. 2003, 
University of Michigan. 

31. Konstantatos, G. and E.H. Sargent, Nanostructured materials for photon detection. Nat 
Nanotechnol, 2010. 5(6): p. 391-400. 



  23

32. Maeda, Y., N. Tsukamoto, Y. Yazawa, Y. Kanemitsu, and Y. Masumoto, Visible 
photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices. Applied 
Physics Letters, 1991. 59(24): p. 3168. 

33. Cullis, A.G., L.T. Canham, and P.D.J. Calcott, The structural and luminescence 
properties of porous silicon. Journal of Applied Physics, 1997. 82(3): p. 909. 

34. Semiconductor Physics: Density of States. Available from: 
http://britneyspears.ac/physics/dos/dos.htm. 

35. Brus, L., Electronic Wave Functions in Semiconductor  Clusters: Experiment and Theory 
Journal of Physical Chemistry 1986. 90: p. 2555-2560. 

36. Ledoux, G., J. Gong, F. Huisken, O. Guillois, and C. Reynaud, Photoluminescence of 
size-separated silicon nanocrystals: Confirmation of quantum confinement. Applied 
Physics Letters, 2002. 80(25): p. 4834. 

37. Stupca, M., M. Alsalhi, T. Al Saud, A. Almuhanna, and M.H. Nayfeh, Enhancement of 
polycrystalline silicon solar cells using ultrathin films of silicon nanoparticle. Applied 
Physics Letters, 2007. 91(6): p. 063107. 

38. Solar Cell Spectral Response Measurement Errors Related to Spectral Band Width and 
Chopped Light Waveform. NREL/CP-530-22969 1997; Available from: 
http://www.nrel.gov/docs/legosti/fy97/22969.pdf. 

39. Hudelson, S., P. Bermel, and T. Heidel. Energy 101: Solar. Available from: 
http://www.mitenergyclub.org/assets/2008/11/6/Solar101‐Oct2008.pdf. 

40. Zhigilei, L.V., Dynamics of the plume formation and parameters of the ejected clusters in 
short-pulse laser ablation. Applied Physics A: Materials Science & Processing, 2003. 
76(3): p. 339-350. 

41. Hagena, O.F., Cluster ion sources (invited). Review of Scientific Instruments, 1992. 
63(4): p. 2374. 

42. Ditmire, T., T. Donnelly, A.M. Rubenchik, R.W. Falcone, and M.D. Perry, Interaction of 
intense laser pulses with atomic clusters. Physical Review A, 1996. 53(5). 



  24

43. Pandolfo, T., V. Ruiz, S. Sivakkumar, and J. Nerkar, General Properties of 
Electrochemical Capacitors, in Supercapacitors Materials, Systems, and Applications, F. 
Béguin and E. Frąckowiak, Editors. 2013, Wiley-VCH. p. 69-110. 

44. Liu, C., Z. Yu, D. Neff, A. Zhamu, and B.Z. Jang, Graphene-based supercapacitor with 
an ultrahigh energy density. Nano Lett, 2010. 10(12): p. 4863-8. 

45. Brownson, D.A. and C.E. Banks, Fabricating graphene supercapacitors: highlighting the 
impact of surfactants and moieties. Chem Commun (Camb), 2012. 48(10): p. 1425-7. 

46. Kim, T., G. Jung, S. Yoo, K.S. Suh, and R.S. Ruoff, Activated Graphene-Based Carbons 
as Supercapacitor Electrodes with Macro- and Mesopores. Acs Nano, 2013. 7(8): p. 
6899-6905. 

47. Kim, T.Y., H.W. Lee, M. Stoller, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff, and K.S. 
Suh, High-Performance Supercapacitors Based on Poly(ionic liquid)-Modified Graphene 
Electrodes. Acs Nano, 2011. 5(1): p. 436-442. 

48. Ku, K., B. Kim, H. Chung, and W. Kim, Characterization of graphene-based 
supercapacitors fabricated on Al foils using Au or Pd thin films as interlayers. Synthetic 
Metals, 2010. 160(23-24): p. 2613-2617. 

49. Vivekchand, S.R.C., C.S. Rout, K.S. Subrahmanyam, A. Govindaraj, and C.N.R. Rao, 
Graphene-based electrochemical supercapacitors. Journal of Chemical Sciences, 2008. 
120(1): p. 9-13. 

50. Wang, K., L.W. Li, and X.Z. Wu, Synthesis of Graphene and Electrochemical 
Performance. International Journal of Electrochemical Science, 2013. 8(5): p. 6763-6766. 

51. Wang, Y., Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, and Y. Chen, Supercapacitor 
Devices Based on Graphene Materials. Journal of Physical Chemistry C, 2009. 113(30): 
p. 13103-13107. 

52. Yan, J., Z. Fan, T. Wei, W. Qian, M. Zhang, and F. Wei, Fast and reversible surface 
redox reaction of graphene–MnO2 composites as supercapacitor electrodes. Carbon, 
2010. 48(13): p. 3825-3833. 



  25

53. Yoo, J.J., K. Balakrishnan, J. Huang, V. Meunier, B.G. Sumpter, A. Srivastava, M. 
Conway, A.L. Reddy, J. Yu, R. Vajtai, and P.M. Ajayan, Ultrathin planar graphene 
supercapacitors. Nano Lett, 2011. 11(4): p. 1423-7. 

54. Zhang, F., T.F. Zhang, X. Yang, L. Zhang, K. Leng, Y. Huang, and Y.S. Chen, A high-
performance supercapacitor-battery hybrid energy storage device based on graphene-
enhanced electrode materials with ultrahigh energy density. Energy & Environmental 
Science, 2013. 6(5): p. 1623-1632. 

55. Zhang, L.L., R. Zhou, and X.S. Zhao, Graphene-based materials as supercapacitor 
electrodes. Journal of Materials Chemistry, 2010. 20(29): p. 5983. 

56. Zhang, Y., H. Li, L. Pan, T. Lu, and Z. Sun, Capacitive behavior of graphene–ZnO 
composite film for supercapacitors. Journal of Electroanalytical Chemistry, 2009. 634(1): 
p. 68-71. 

57. Zhu, Y., S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai, P.J. Ferreira, A. Pirkle, R.M. 
Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, and R.S. Ruoff, Carbon-based 
supercapacitors produced by activation of graphene. Science, 2011. 332(6037): p. 1537-
41. 

58. Rao, C., U. Maitra, and H. Matte, Synthesis, Characterization, and Selected Properties of 
Graphene, in Graphene Synthesis, Properties, and Phenomena, C. Rao and A. Sood, 
Editors. 2013, Wiley-VCH. 

59. Maryland, U.o. Electrons Can Travel Over 100 Times Faster In Graphene Than In 
Silicon, Physicists Show. 2008; Available from: 
http://www.sciencedaily.com/releases/2008/03/080324094514.htm. 

60. Novoselov, K.S., A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, 
S.V. Dubonos, and A.A. Firsov, Two-dimensional gas of massless Dirac fermions in 
graphene. Nature, 2005. 438(7065): p. 197-200. 

61. Pandolfo, A.G. and A.F. Hollenkamp, Carbon properties and their role in 
supercapacitors. Journal of Power Sources, 2006. 157(1): p. 11-27. 

62. Palser, A.H.R., Interlayer interactions in graphite and carbon nanotubes. Physical 
Chemistry Chemical Physics, 1999. 1: p. 4459-4464. 



  26

63. Miyamoto, Y., H. Zhang, and D. Tománek, Photoexfoliation of Graphene from Graphite: 
An Ab Initio Study. Physical Review Letters, 2010. 104(20). 

64. Carbone, F., P. Baum, P. Rudolf, and A. Zewail, Structural Preablation Dynamics of 
Graphite Observed by Ultrafast Electron Crystallography. Physical Review Letters, 
2008. 100(3). 

65. Hummer, W.S. and R.E. Offema, Preparation of Graphitic Oxide Journal of the 
American Chemical Society, 1958. 80(6): p. 1339. 

66. Stankovich, S., D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, 
S.T. Nguyen, and R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical 
reduction of exfoliated graphite oxide. Carbon, 2007. 45(7): p. 1558-1565. 

67. El-Kady, M.F., V. Strong, S. Dubin, and R.B. Kaner, Laser Scribing of High-
Performance and Flexible Graphene-Based Electrochemical Capacitors. Science, 2012. 
335(6074): p. 1326-1330. 

68. Trusovas, R., K. Ratautas, G. Račiukaitis, J. Barkauskas, I. Stankevičienė, G. Niaura, and 
R. Mažeikienė, Reduction of graphite oxide to graphene with laser irradiation. Carbon, 
2013. 52: p. 574-582. 

69. Mukherjee, R., A. Varghese, Thomas, A. Krishnamurthy, and N. Koratkar, 
Photothermally Reduced Graphene as High-Power Anodes for Lithium-Ion Batteries. 
American Chemical Society Nano 2012. 6(9): p. 7867-7878. 

70. Sokolov, D.A., K.R. Shepperd, and T.M. Orlando, Formation of Graphene Features from 
Direct Laser-Induced Reduction of Graphite Oxide. Journal of Physical Chemistry 
Letters, 2010. 1(18): p. 2633-2636. 

71. Corrigan, D. and A. Masias, Batteries for Electric and Hybrid Vehicles in Linden's 
Handbook of Batteries, T. Reddy and D. Linden, Editors. 2011, McGraw-Hill. 

72. Burke, A., R&D considerations for the performance and application of electrochemical 
capacitors. Electrochimica Acta, 2007. 53(3): p. 1083-1091. 

73. Kazaryan, S.A., S.N. Razumov, S.V. Litvinenko, G.G. Kharisov, and V.I. Kogan, 
Mathematical Model of Heterogeneous Electrochemical Capacitors and Calculation of 
Their Parameters. Journal of The Electrochemical Society, 2006. 153(9). 



  27

74. Salkind, A. and G. Zguris, Lead-Acid Batteries, in Linden's Handbook of Batteries, T. 
Reddy and D. Linden, Editors. 2011, McGraw-Hill. 

75. Cooper, A., J. Furakawa, L. Lam, and M. Kellaway, The UltraBattery—A new battery 
design for a new beginning in hybrid electric vehicle energy storage. Journal of Power 
Sources, 2009. 188(2): p. 642-649. 

76. Furukawa, J., T. Takada, D. Monma, and L.T. Lam, Further demonstration of the VRLA-
type UltraBattery under medium-HEV duty and development of the flooded-type 
UltraBattery for micro-HEV applications. Journal of Power Sources, 2010. 195(4): p. 
1241-1245. 

 



  28

 

 

CHAPTER 2 

Experimental Set Up 

2.1 Laser Source and Optics 

The laser used for all the experiments in this thesis is the Clark MXR CPA2001.  This 

laser is a solid state Ti:Sapphire ultrafast laser with a fundamental wavelength of 780 nm and a 

pulse duration of 150 fs with a beam diameter of 5mm.  The repetition rate is 1 kHz with an 800 

μJ pulse energy and an average power of 800 mW.   The resulting peak power is 5 GW. 

 All the optical elements in the various experimental arrangements using this laser are 

chosen specifically for the CPA2001 laser.  In a normal dispersion medium, the higher 

frequencies travel slower than the lower frequencies resulting in the pulse being stretched with 

an up-chirp which is known as Group Velocity Dispersion (GVD).   All lens material is fused 

silica to minimize GVD due to its low dispersion.  All mirrors are dielectric coated with 

maximum reflectance at 780nm and minimal GVD.  Two sets of optics were used to obtain two 

different spot sizes for subsequent experiments.  The first set of focusing optics consist of a beam 

expander, consisting of a -100 mm focal length negative plano-concave lens and a 550 mm 

plano-convex with a resulting magnification factor of 5.5x.  The expanded beam is focused with 

a 750 mm lens into a spot calculated to be 27 μm in diameter.  The second set of optics consists 

of a single fused silica lens with a focal length of 681 mm giving a spot size of 135 μm [1, 2].  

For higher fluence experiments, the first set of optics is used. 
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2.2 Ultrafast Pulsed Laser Deposition Apparatus 

Figure 2.1 shows the experimental set up for Ultrafast Pulsed Laser Deposition (UFPLD).  

The ultrafast laser beam first goes through a set of focusing optics to be focused down onto the 

target of choice (in this project the materials are germanium, silicon, and graphite) to ablate 

material and create the plasma plume.  The nanoparticles that are generated are collected on a 

substrate of either glass or holey carbon coated TEM grids.  Since the laser beam is incident at 

45o from the target normal, the focused laser spot forms an ellipse.  Taking in account the change 

in laser spot geometry, the peak intensity and fluence for the first set of optics (using a beam 

expander) is 6.5 x 1014 W/cm2 and 98 J/cm2, respectively.   The second set of optics, using a 

single lens for focusing, gives a peak intensity and fluence of 2.6 x 1013 W/cm2 and 3.9 J/cm2.  

The deposition process is housed a vacuum chamber operating with a background pressure of 

about 4 x 10-7 torr.  The substrate holder contains a quartz-halogen filament heater capable of 

heating the substrate up to 800° C if necessary [3].   

 

FIGURE 2.1. Schematic of the UFPLD chamber experimental set up [3] 
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 The glass substrates are either borosilicate glass or quartz of dimensions 25mm x 50mm 

in size and are about 1mm thick.  Figure 2.2 shows the plasma plume produced in this set up for 

silicon, germanium, and aluminum.  

 

2.3 Ultrafast Laser Irradiated Graphite Apparatus  

 The experimental set-up for the ultrafast irradiation consists of three main components: 

the ultrafast laser, the optics, and a two-dimensional translation stage. The optics consists of an 

attenuating neutral density filter (Thor Labs Part No. NDC-100C-4), a fused silica plano-convex 

cylindrical lens (f=100 mm, Thor Labs Part no. LJ4395), and a two-dimensional servo motor 

translation stage (Thor Labs Part no. MTS50-Z8). 

 

 

FIGURE 2.2. Images of the plasma plume, from left to right: Silicon, Germanium, and 
Aluminum.  The laser fluence in each case is 98 J/cm2 [3]. 

FIGURE 2.3. Schematic of the ultrafast irradiation set up 
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 As shown in Figure 2.3, the laser first goes through a variable neutral density filter to 

control the incident laser power.  Before the laser is allowed to pass to the cylindrical lens, a 

flipping mirror is placed to intercept the beam and send it to a power meter where measurements 

are made while adjusting the neutral density filter to a desired setting. 

2.3.1 Direct Laser Scribing 

 Once the beam is attenuated through the neutral density filter, it passes to the cylindrical 

plano-convex lens to focus a line (of approximately 5 mm in length) onto the sample, which is 

placed on the translation stage. A close up is seen in Figure 2.4.   

 

 

As the translation stage moves, the focused line scans the sample (at a rate of 0.1 mm/s.), 

allowing a larger area of coverage compared to using a convex lens, which focuses into a spot, as 

seen in Figure 2.5.     

FIGURE 2.4. Close up of the translation set up 
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2.3.2 Irradiation from Rear of the Film 

 The experimental set up in figure 2.6 allows the ultrafast laser to be focused onto the 

backside of a film that is confined by a glass substrate in order to induce a shockwave to transfer 

material onto a substrate.  This type of laser printing has been used in previous work by Yalisove 

et al. as means to deposit nanoparticles by irradiating the back of a continuous metal thin film 

[4].  This arrangement again uses a cylindrical lens to focus a line on the sample in order to 

improve throughput. Instead of a metallic thin film, a graphite coating is applied to a thin, 

transparent microscope coverslip (Corning, 0.13-16 mm thick).  Material is deposited on a 

receiving substrate (a Si wafer to be SEM friendly) that is kept at a distance 0.13-0.16 mm from 

the target with spacers (also coverslips).  The laser focus line is stationary and scanning is done 

by moving the translation stage. 

FIGURE 2.5. Diagram of the scanning profile, (a) using a cylindrical plano-convex lens, (b) 
using a standard plano- convex lens 
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2.4 Material Characterization Techniques 

 During this project, a plethora of characterization tools were necessary.  The following 

sections list and briefly explain the tools and techniques used. 

2.4.1 Optical Emission Spectroscopy  

 One of the ways to characterize what is in the ultrafast ablation plume is to measure its 

emission spectrum.  Figure 2.7 shows a schematic of how the spectrum is recorded. An imaging 

lens is used to couple an image of the plume into a fiber that is fed into a spectrometer and is 

attached to one of the viewports on the vacuum chamber where there is a clear view of the 

plume.  A shortpass filter at 760 nm is used to reject the laser signal and protect the detector in 

the spectrometer.  The spectrometer is a Control Development  model 2DCCD array 

spectrometer with a spectral range of 305-1000 nm.   

FIGURE 2.6. Diagram of the scanning set up for irradiation from the rear of the film, 
using a cylindrical plano-convex lens 
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2.4.2 Scanning Electron Microscopy 

 Scanning Electron Microscopy (SEM) is useful for studying overall sample 

morphologies.  Since the features in this thesis are on the nanometer scale, a high resolution field 

emission SEM is required.  The instrument used for all of the images in this thesis is the FEI 

Nova 200 Nanolab SEM/FIB located at the Michigan Center for Materials Characterization. The 

resolution of this instrument is ~2nm.  

 

 

FIGURE 2.7. Optical Spectroscopy set up to measure ablation plume spectrum as a 
function of focusing conditions.  
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2.4.3 Transmission Electron Microscopy 

 Transmission Electron Microscopy (TEM) is useful when extreme resolution (atomic 

scale) is required and is also important when studying nanoparticle size distributions when high 

resolution, 2-D images with good contrast at the edge of features is highly desirable.   The 

instrument used for all of the TEM images in this thesis is the JEOL 3011 High Resolution 

Electron Microscope located at the Michigan Center for Materials Characterization. 

2.4.4 Atomic Force Microscopy 

 Atomic Force Microscopy (AFM) is useful not only for high resolution lateral imaging, 

but also for extracting accurate height information from nanoscale features that is not possible 

with other microscopy techniques.   The AFM used is the Veeco Dimension, located at the 

Michigan Center for Materials Characterization.  Tapping mode with Bruker TESP-SS super 

sharp silicon tips are used for the work in this thesis. 

2.4.5 X-ray Diffraction 

 X-Ray diffraction (XRD) is used to probe the crystal structure of thin film nanoparticle 

films produced by UFPLD by studying Bragg peak positions from constructive interference in a 

crystalline solid giving insight into the internal structure of the material.  The Rigaku Ultima IV 

with the thin film attachment is used and is located at the Central Campus Electron Microscopy 

Analysis Lab.  

2.4.6 Raman Spectroscopy 

 Raman spectroscopy gives molecular vibrational information of a material from studying 

inelastic scattering from a laser excitation source.  This tool becomes is important when studying 
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material nanostructure effects on phonons.  The Renishaw inVia Raman Microscope at excitation 

wavelengths of 514 and 633 nm are used for this project. This instrument is located in the 

Department of Chemistry, University of Michigan.  

 

2.4.7 Optical Spectroscopy 

 Optical spectroscopy of thin film semiconductors can give insight towards their 

electronic structure by measuring in what wavelengths they are transparent or opaque. For 

example, optical absorption edges can give information about the optical band gap of the 

material.  For this project a broadband light source (quartz halogen lamp with a blackbody 

spectrum of 3200 K) was used to shine light though a sample, the spectrometer used to measure 

the optical transmission spectrum is the Control Development 2DCCD model with a spectral 

range of 305-1000 nm.   

2.4.8 Fourier-Transform Infrared Spectroscopy (FTIR) 

 FTIR spectroscopy is a technique used to obtain an infrared spectrum from a material.  

Dispersive spectroscopy, as mentioned in section 2.4.7, becomes difficult to do in the IR range.  

An FTIR consists of a Michelson interferometer with a motorized mirror to vary the optical path 

length to generate an interferogram that is converted into a spectrum by Fourier transformation. 

The Perkin-Elmer Spectrum GX, with a range of 4000 to 700 cm-1 is used. 

2.4.9 Hall Measurement 

  For measuring the mobility, carrier concentration, and conductivity, electronic transport 

measurements were performed on germanium nanoparticle films produced by UFPLD at various 
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temperatures.  A Hall-bar configuration was used, as illustrated in figure 2.8, prepared in the 

Lurie Nanofabrication Facility (LNF) with the help of the Kurdak Group in the Physics 

Department.  The prepared Hall bars were wired manually onto to a 16-pin dip header using 25-

μm Cu wires and In solder.  The samples were then inserted into a liquid He cryostat with a 

superconducting magnet, as seen in figure 2.9.  The cryostat functioned in heating mode, 

allowing for measurements at temperatures ranging from 4.2 K to near room temperature.  The 

superconducting magnet produces magnetic fields of  -8 to 8 Tesla.  Two Stanford SR830 lock-in 

amplifiers are used to simultaneously measure the longitudinal (Vxx) and transverse (Vxy) 

voltages, as seen in figure 2.8.  

 

 
 

FIGURE 2.8. Hall-bar configuration used for transport measurements [5]. 
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2.4.10 Asynchronous Optical Sampling (ASOPS) 

 Ultrafast Pump-Probe measurements can give insights into laser induced dynamics of a 

solid material.  Taking time resolved snap shots requires the probe pulse to be delivered at 

various time delays. ASOPS allows time resolved data without the use of a mechanical delay 

system allowing a large temporal measurement window (up to 10 ns). The method was devised 

and patented by the Clarke Group [6].   Menlo Systems GmbH produces a commercial version of 

the system used.  Figure 2.10 shows the experimental set up. 

 

FIGURE 2.9. Hall measurement apparatus [5] 
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2.5 Battery Cell Characterization 

 The commercial battery cells used for this project were small 0.85 amp-hr AGM lead 

acid battery cells supplied by Electrodes and More.  Commercially available 1.265 specific 

gravity (s.g.) sulfuric acid was used for the electrolyte.  Cell electrochemical measurements were 

performed with a commercial battery cell analyzer, the MTI Corporation 8-Channel Battery 

Analyzer (BST8-3), capable of 6-3000 mA of current with voltages up to 5 V.  

 

 

 

 

FIGURE 2.10. Schematic of the ASOPS system [7] 
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CHAPTER 3 

Ultrafast Pulsed Laser Deposition (UFPLD) of Semiconductor Films 

3.1 Overview 

 UFPLD is a deposition technique using an ultrafast laser to ablate a target of any given 

material to produce a thin film (a detailed description of the deposition set up is given in Chapter 

2).  With UFPLD, instead of having a continuous thin film, the deposited films consist of a large 

number of nanoparticles that are generated in the ultrafast laser ablation plume [1-5] and are 

collected and tightly packed on a substrate. Here we should point out that the substrate captures 

the nanoparticles that have condensed from the high-density plasma which expands and cools as 

it emanates from the ablation target.     The focus of this chapter is the characterization of Group 

IV (silicon and germanium) semiconductor nanoparticle thin films produced using UFPLD, 

treated as continuous thin films.  

 The substrates used were borosilicate and SiO2 glass 1 mm thick.   These films are grown 

at different substrate temperatures using the sample heater in the vacuum chamber.  The ultrafast 

laser wavelength is 780 nm with 800 μJ of energy per pulse at a repetition rate of 1 kHz focused 

using a fused silica lens with a focal length of 681 mm at the laser wavelength [6, 7]. Unless 

otherwise noted, the pulse laser spot intensity is calculated to be 2.62 x 1013 W/cm2 with a 

fluence of 3.94 J/cm2 using Gaussian beam optics [8].  All samples were grown in vacuum 

conditions of 2-8 x 10-7 torr.          
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3.2 Ablation Plume Spectroscopy 

 One method to gain insight into nanoparticle growth mechanisms is through 

spectroscopy.   From the spectrum, it can be determined whether the plume consists of a 

collection of heated nanoclusters or if the plume is predominately composed of ionized gas.  

Early on in the project, it was noticed that if the laser were sufficiently out of focus, the color of 

the plume would change.  To collect this spectral data, an image of the plume was coupled into a 

fiber using a lens, feeding into the array spectrometer (as discussed in Chapter 2) during ultrafast 

laser ablation.  The laser-focusing lens was moved at various distances from best focus to study 

how the plume changes spectrally as a function of focus spot size, effecting the intensity and 

fluence at the target.  Gaussian beam optics [8] is used to calculate how the focus spot size 

changes as the lens is moved from focus.  Figure 3.1 shows how intensity (W/cm2) and fluence 

(J/cm2) changes as a function of lens distance from focus.    

 

  

 Figure 3.2 shows the spectrum of the germanium ablation plume at best focus (laser focus 

spot intensity of 2.6 x 1013 W/cm2 and a fluence of 3.9 J/cm2) and the spectrum when the 

FIGURE 3.1. Intensity (left) and fluence (right) as a function of how far the focusing lens is 
positioned from best focus 
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focusing lens is 10 cm out of focus (laser focus spot intensity of 8.6 x 1011 W/cm2 and a fluence 

of 0.13 J/cm2).  At best focus, the germanium plume spectrum consists predominately of atomic 

emission peaks while the spectrum becomes continuous when the lens is out of focus.  

 

 

The emission peak locations were determined by finding the local maximum using the built-in 

peak finding algorithm in OriginPro 2015 and they agree well with the expected atomic emission 

lines of germanium.  In table 3.1, the measured peaks are listed and compared with tabulated 

data from the National Institute of Standards and Technologies (NIST) website [9].   

 

 

 

FIGURE 3.2. Spectrum of the Ge ablation plume at best focus (black line) and with the 
focusing lens placed 10cm out of focus (red line) 
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Measured Ge  
Peak Position 

(nm) 

Ionic 
Species 
NIST 

Tabulated  
Values (nm) 

NIST 
422.8 Ge(I) 422.65625 
469.4 Ge(II) 469.0023 
481.8 Ge(II) 481.46084 
516.0 Ge(II) 517.8460 
562.4 Ge(I) 562.1428 
567.6 Ge(I) 566.4844 
589.0 Ge(II) 589.33886 
601.8 Ge(II) 602.10414 
626.6 Ge(II) 626.7141 
703.4 Ge(II) 704.93694 
712.2 Ge(I) 713.0117 

 

 

 Since there is a large difference in the spectrum between being in focus and 10 cm out of 

focus, it is important to capture what is happening during this transition.  To capture this, a 

spectrum was recorded at various lens displacements from best focus.  The chosen displacements 

were 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 8, and 10 cm.  The lower range of 1cm was chosen since the 

depth of focus for the lens is 3.7 cm, so anything smaller than 1cm would essentially be at best 

focus and the upper limit of 10 cm was chosen due to the low intensity of the ablation plume.  

Figure 3.3 shows the spectrum change as a function of lens distance from best focus.  

TABLE 3.1. Measured peak positions of the germanium plume at best focus compared to 
tabulated values (as published) and corresponding ionization from NIST  
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Not all of the emission peaks disappear at the same focus distance; the first peak to disappear is 

at 481.8 nm, Ge(II), at 2.5cm.  The next peak to disappear is at 516.0 nm, Ge(II), at 3 cm 

followed by 562.4 and 567.6 nm at 3.5 cm.  The rest of the peaks disappear before the lens 

reaches 8 cm, transitioning into the continuous spectrum.  At first glance, the order of peak 

disappearance would seem to be attributed to initial relative peak intensities, except that initially 

516.0, 589.0, and 601.8 nm peak positions have a higher relative intensity than the 469.4 nm 

peak which persists past the 4.5 cm lens position.  It is interesting that in addition to the sharp 

emission lines characteristic of Ge there is a prominent continuum spectrum on which these 

sharp lines are sitting.   We identify the continuum as being from black-body radiation from the 

hot plasma.  Note that the peak wavelength of the continuum component  (see Fig. 3.3) shifts 

from about 550 nm (corresponding to a temperature of ~5000K) to >700 nm in the most out of 

FIGURE 3.3. Spectrum of the Ge ablation plume at various focus positions (listed from the 
bottom going up): best focus, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 8, and 10 cm  
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focus condition (corresponding to a plume temperature of ~4000K).  This red-shift in the Planck 

spectral distribution is consistent with the plasma expanding and cooling as it traverses from the 

laser target to the substrate.  As the plasma cools, nanoparticles condense out of the plasma and 

travel towards the substrate where they then stick to the exposed surface by van der Waals 

attraction.  The Plank spectral distribution is given by equation 1.1: 
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                                                  1.1    

where h is the Planck constant, c is the speed of light, k is the Boltzmann constant, ν is the 

frequency of light, and T is the temperature of the blackbody.  The peak position red-shifts as the 

temperature of the body decreases and blue-shifts with increasing temperature.  

 The same experiment was conducted on the silicon ablation target.  Figure 3.4 shows the 

ablation plume spectrum at best focus (laser focus spot intensity of 2.6 x 1013 W/cm2 and a 

fluence of 3.9 J/cm2) and with the lens 8 cm from focus (intensity of 1.3 x 1012 W/cm2 and a 

fluence of 0.20 J/cm2).  A list of corresponding atomic peaks from NIST is shown in table 3.2.  

Again, the lower limit of 1 cm for the first lens displacement was used since the depth of focus of 

the optics is 3.7 cm and anything smaller than 1 cm would yield unnoticeable change.  The upper 

limit was 8 cm, in contrast to the 10 cm for germanium, since the plume was not visible after that 

lens displacement.  As with germanium, the silicon ablation plume spectrum was studied as a 

function of the lens displacement from best focus, as shown in figure 3.5.  In contrast to 

germanium, the peaks reduced evenly and exhibited a new peak at 589.0 nm corresponding with 

the tabulated emission line of 589.879 nm, a Si(III) ion [9].  This peak appeared 4.5 cm out of 

focus and grew more intense at 8 cm out of focus, where the remainder of the spectrum is 

continuous. 
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Measured Si  
Peak Position 

(nm) 

Ionic 
Species 
NIST 

Tabulated  
Values (nm) 

NIST 
391.2 Si(I) 390.5523 
412.8 Si(II) 412.807 
457.2 Si(III) 457.476  
505.2 Si(II) 505.598 
518.2 Si(II) 518.190 
546.6 Si(II) 546.643  
568.6 Si(I) 568.4484  
576.8 Si(I) 576.2977 
596.6 Si(II) 595.756 
614.8 Si(I) 614.5015 
625.2 Si(I) 625.4188 
634.4 Si(II) 634.710 
650.8 Si(III) 652.436 
668.8 Si(II) 667.188 
700.4 Si(IV) 704.794 
716.0 Si(I) 716.469 
727.0 Si(I) 727.5294 
740.6 Si(I) 740.5774 

 

FIGURE 3.4. Spectrum of the Si ablation plume at best focus (black line) and with the 
focusing lens placed 8cm out of focus (red line) 

TABLE 3.2. Measured peak positions of the silicon plume at best focus compared to 
tabulated values and corresponding ionization from NIST  
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3.3 Size Distribution and Morphology 

 The particle size distributions were examined for silicon and germanium nanoparticles 

produced with UFPLD.  The nanoparticles were deposited directly on holey carbon coated 

copper TEM grids.  The deposition time for each sample was 30s for germanium and 45s for 

silicon at a chamber background pressure of 4 X 10-7 torr.  Since there was a dramatic difference 

in the spectrum of the ablation plume that depends on focus, two samples of each material were 

prepared, one at best focus and one with the focusing lens 4.5 cm out of focus.  Transmission 

electron microscopy was used to generate the micrographs and the particle sizes were measured 

individually using ImageJ and analyzed using OriginPro 2015.   

 The particle size distribution for germanium exhibits a lognormal distribution that 

changes with focus.  At best focus (as shown in figure 3.6), the average diameter is 29.5 nm with 

FIGURE 3.5. Spectrum of the Si ablation plume at various focus positions (listed from the 
bottom going up): best focus, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 8 cm  
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a standard deviation of 41.2 nm and a standard error (SE) of the mean of 2.2 nm.  The large 

standard deviation is attributed to larger particles (> 100 nm) being present.  The total amount of 

particles measured was 349.   

 

 

 

With the lens 4.5 cm out of focus (as shown in figure 3.7), the average particle diameter shrinks 

by a factor of 2.3 to 12.9 nm with a standard deviation of 16.7 nm and an SE of the mean of 0.59 

nm.  The amount of particles measured was 832.  This increase in the number of particles 

resulted in the decrease of the SE of the mean.  The standard deviation is smaller due to a larger 

amount of smaller clusters with respect to larger particles (> 100 nm).  The throughput of 

nanoparticles is almost 8 times higher when the lens is 4.5 cm out of focus than at best focus.  

When comparing the number of measured particles, three TEM micrographs were used to 

measure 349 particles for the samples deposited at best focus while only one TEM micrograph 

was required to capture 832 particles.  Going back to figure 3.2, when the focusing lens was 

FIGURE 3.6. TEM micrograph (left) of germanium nanoparticles grown with UFPLD at 
best focus with corresponding particle size distribution (right), with the dash line following a 
lognormal distribution 



  50

sufficiently out of focus, the spectrum looked continuous, indicating a collection of hot bodies 

rather than a plume consisting of purely atomized species.  

 

 

 Similarly with silicon, the particle size distribution follows a lognormal distribution and 

has a larger average diameter and wider standard deviation at best focus compared to the 

focusing lens being 4.5 cm out of focus.  At best focus (as seen in figure 3.8), the average, 

standard deviation, and SE of the mean are 19.7 nm, 27.3 nm, and 1.08 nm, respectively.  At 4.5 

cm out of focus (as seen in figure 3.9), the average, standard deviation, and SE of the mean are 

9.8 nm, 13.4 nm, and 0.51 nm, respectively.   

FIGURE 3.7. TEM micrograph (left) of germanium nanoparticles grown with UFPLD with 
the focus lens 4.5 cm from best focus with corresponding particle size distribution (right) 
with the dash line following a lognormal distribution 
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 The trend is that lower fluences can be more conducive to nanoparticle growth, while at 

higher fluences, there would be less nanoparticle throughput with an increasing number of larger 

particles.  This agrees with previous work identifying fluence regimes for nanoparticle 

FIGURE 3.8. TEM micrograph (left) of silicon nanoparticles grown with UFPLD at best 
focus with corresponding particle size distribution (right) with the dash line following a 
lognormal distribution 

FIGURE 3.9. TEM micrograph (left) of silicon nanoparticles grown with UFPLD with the 
focus lens 4.5 cm from best focus with corresponding particle size distribution (right) with 
the dash line following a lognormal distribution 
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generation at smaller fluences and larger droplets at higher fluences [5]. Clearly, what we 

observe here is evidence for an optimum cooling rate such that the condensation of nanoparticles 

is maximized before the plasma plume reaches the substrate.  If the initial temperature is too 

high, then most of the plasma is still in the vapor phase when it reaches the substrate.  

 AFM measurements provide height information in addition to measurements of the 

lateral dimensions.  Figure 3.10 shows AFM images for both silicon (a) and germanium (b) 

grown at the higher intensity of 6.5 x 1014 W/cm2 and a fluence of 98 J/cm2.  At this fluence, both 

the silicon and germanium sample show larger particles with a ring-like structure compared to 

the lower intensities and fluences above.  In figure 3.10b, there is a feature that looks more like a 

droplet of molten germanium splashed onto the substrate.  These types of large, molten droplets 

may be attributed to target stress confinement at such a high fluence [5, 10].  The evidence for 

molten droplets also indicates that the initial temperature of the plasma was so high that the 

droplets that condensed from it are still in the liquid phase when they arrive at the substrate 

rather than being solid condensates. With plume temperatures inferred from the black-body 

spectrum as high as 5000K, several cm from the laser target, it is not surprising that some of the 

nanoparticles are still liquid on arrival at the substrate. 
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 Measuring the height profiles with AFM revealed another interesting observation that the 

semiconductor nanoparticles are not spherical when deposited on the substrate, but rather are 

shaped more like platelets [1], as seen in figure 3.11.  These type of oblate spheroid shapes has 

been seen in silicon and nickel in other previous work [4].  These may be attributed to particles 

that have not completely cooled and are slightly molten when reaching the substrate, akin to the 

pattern a raindrop makes when it splashes on a car windshield.   

FIGURE 3.10. AFM micrograph of silicon (a) and germanium (b) nanoparticles deposited 
on glass using UFPLD at an intensity of 6.5 x 1014 W/cm2 and a fluence of 98 J/cm2  
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 When the nanoparticles are allowed to collect on a substrate, a quasi-continuous film can 

be said to form on any given substrate.  Since this process is not epitaxial, but rather a coating 

technique, these nanoparticles can be coated on any surface.  The overall morphology of the 

resulting thin film appears to consist of a collection of nanoparticles that agglomerate into larger 

structures giving a seemingly fractal morphology.  Each sample was deposited at different 

substrate temperatures for 3 hours.  Figure 3.12 shows the morphology of germanium deposited 

on 25 x 25 x 1mm quartz substrate kept at room temperature (no heating).  Figure 3.13-14 show 

the morphology of germanium films deposited at substrate temperatures of 250o and 500o C, 

respectively.  The finer details begin to blur into the larger agglomerate structures, this may be 

attributed to a slight sintering effect as the smallest of particles are being absorbed into larger 

structures. 

FIGURE 3.11. AFM height cross-sections for (a) silicon (b) germanium (c) ring-shaped 
germanium particle demonstrating an oblate spheroid-like shape  
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FIGURE 3.12. SEM micrograph of a germanium nanoparticle thin film grown with UFPLD 
at best focus with the substrate kept room temperature  

FIGURE 3.13. SEM micrograph of a germanium nanoparticle thin film grown with UFPLD 
at best focus with a substrate temperature of 250o C 
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At the higher fluence of 98 J/cm2 (intensity of 6.5 x 1014 W/cm2), the film morphology appears 

more continuous, as seen in figure 3.15.  This may be due to having larger droplets (as seen in 

figure 3.10b) that begin to sinter at the higher substrate temperature of 450o C.   

FIGURE 3.14. SEM micrograph of a germanium nanoparticle thin film grown with UFPLD 
at best focus with a substrate temperature of 500o C 
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 A similar morphology of nanoparticles agglomerating into larger structures is seen with 

silicon nanoparticle thin films.  Figures 3.16-18 are SEM images taken of silicon nanoparticle 

films deposited at substrate temperatures of room temperature, 400o C, and 650o C at a fluence of 

3.94 J/cm2 and a laser spot intensity of 2.62 x 1013 W/cm2.  Again, as substrate temperature 

increases, smaller features appear to blend into the larger structures, which indicate sintering of 

the nanoparticles. 

FIGURE 3.15. SEM micrograph of a germanium nanoparticle thin film grown with UFPLD 
at a higher intensity of 6.5 x 1014 W/cm2 and fluence of 98 J/cm2 with a substrate 
temperature of 450o C 
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FIGURE 3.16. SEM micrograph of a silicon nanoparticle thin film grown with UFPLD at 
best focus with the substrate kept room temperature  

FIGURE 3.17. SEM micrograph of a silicon nanoparticle thin film grown with UFPLD at 
best focus with a substrate temperature of 400o C 
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3.4 Crystal Structure 

 To primary tool to measure the crystal structure of the nanoparticle thin films is x-ray 

diffraction (XRD).  Figure 3.19 shows an earlier 2Theta scan of germanium nanoparticles 

deposited on glass at various substrate temperatures at a laser focus intensity of 6.5 x 1014 W/cm2 

and a fluence of 98 J/cm2 [1].   

FIGURE 3.18. SEM micrograph of a silicon nanoparticle thin film grown with UFPLD at 
best focus with a substrate temperature of 650o C 
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 Figure 3.20 shows an XRD 2Theta scan of germanium nanoparticle thin films on glass 

and two different fluence regimes deposited at various substrate temperatures.  For the higher 

FIGURE 3.19. XRD scans of two germanium samples, one deposited at a substrate 
temperature of 350o C and the other kept at 650o C 

FIGURE 3.20. XRD scans of two sets of germanium samples, (left) deposited at a laser 
fluence of 98 J/cm2 with an intensity of 6.5 x 1014 W/cm2 and (right) deposited at 3.94 J/cm2 
and 2.62 x 1013 W/cm2 at various substrate temperatures 
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fluence samples, the substrate temperatures were room temperature, 350o C, and 500o C.  For the 

lower fluence samples, the temperatures were room temperature, 250o C, and 500o C.  The XRD 

pattern at room temperature is a combination of an amorphous signal and a crystalline signal.  

One explanation is the amorphous character seen at room temperature is from the larger droplets 

formed during ablation that is molten or close to the melting temperature.  When they hit the 

colder substrate, they are quenched into an amorphous state, as evidenced by the diffuse, 

continuous x-ray scattering background seen in Fig. 3.20.   The smaller nanoparticles that 

condense in the plume are crystalline. As the substrate is held at a higher temperature, annealing 

begins to take place and the larger droplets begin to crystallize.  When the laser spot is at the 

higher intensity of 6.5 x 1014 W/cm2 and a fluence of 98 J/cm2, this amorphous behavior is still 

seen when the substrate is held at 350o C.  At 250o C with the sample deposited at a lower 

fluence (3.94 J/cm2), this amorphous behavior is less evident in the XRD plot, indicating a higher 

concentration of crystalline nanoparticles relative to larger droplets.  Again, this points towards a 

fluence dependence on the composition of what type of particles are in the plume, lower fluence 

regimes are predominately nanoparticles and higher fluences contain larger droplets in addition 

to nanoparticles [5]. 
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 Figure 3.21 shows a similar comparison with silicon, which at the conditions presented, 

the same conclusion cannot be drawn since both films show amorphous character at all substrate 

temperatures at both fluences.  With the higher fluence case, as the substrate temperature 

increases, the Bragg peaks increase relative to the signal background due to annealing.  A higher 

substrate temperature is required compared to germanium due to the higher melting point of 

silicon, 1412o C compared to germanium’s melting point of 937o C [11]. 

3.5 Transmission Spectrum 

 The average size of germanium nanoparticles in a nanoparticle film deposited at a fluence 

of 3.94 J/cm2 and a laser intensity of 2.62 x 1013 W/cm2 has an average particle diameter of 29.5 

nm with the histogram peak being centered between 5 and 10 nm. Since the Bohr exciton radius 

of germanium is 24.3 nm [12], particles around this size should start to experience a blue shift in 

the band gap of germanium due to quantum confinement.  Even the samples with larger droplets 

that are deposited at the higher fluence of 98 J/cm2 should exhibit confinement effects due to the 

FIGURE 3.21. XRD scans of two sets of silicon samples, (left) deposited at a laser fluence 
of 98 J/cm2 with an intensity of 6.5 x 1014 W/cm2 and (right) deposited at 3.94 J/cm2 and 
2.62 x 1013 W/cm2 at various substrate temperatures 
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oblate spheroid geometry with heights on the order of the Bohr exciton radius (as shown in 

figure 3.11).   

 Figure 3.22 shows a comparison of the transmission spectrum between bulk germanium 

and a nanoparticle thin film deposited on glass at a higher fluence of 98 J/cm2 and intensity of 

6.5 x 1014 W/cm2 at substrate temperatures of 350o and 550o C.  This spectrum was obtained 

using optical spectroscopy with a continuous (incandescent) light source having a blackbody 

spectrum of 3200 K and a fiber coupled spectrometer with an InGaAs detector, (further details 

are in chapter 2).  Due to the limited spectral range of the InGaAs detector, the direct gap region 

of germanium, 0.8 eV [11], could be measured.  The germanium nanoparticle films deposited by 

UFPLD exhibit a shift of the transmission spectrum towards higher energy compared with the 

direct band edge seen with a germanium wafer.  The nanoparticle film deposited with a substrate 

temperature of 350o C shows a steeper transmission spectrum edge compared with the sample 

deposited at 500o C.  This spectral shift may be caused by the band gap increase of germanium 

nanoparticles due to quantum confinement.  Since the entire film is a dense collection of 

nanoparticles, the film as a whole would have an increase of the band gap, as observed.    
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 This measurement has also been done on a germanium nanoparticle film deposited at 

500o C at a fluence of 3.94 J/cm2 and an intensity of 2.62 x 1013 W/cm2.  The spectrum, as shown 

in figure 3.23, was acquired using an FTIR (further details outlined in chapter 2) to capture the 

indirect band gap of germanium, 0.66 eV [11], which is deeper in the infrared.  At energies less 

than 0.7 eV, there is some absorption from the thin (400 ± 50 nm) UFPLD germanium sample 

where the thicker (500 μm) bulk germanium wafer was transparent.  This indicates there are 

additional energy states within the band gap of our nanoparticle germanium films.  All spectra 

were obtained at room temperature. 

FIGURE 3.22. Transmission spectrum in the range of the germanium direct band gap 
comparing nanoparticle films deposited at 98 J/cm2 laser fluence at 350o C and 550o C with 
bulk germanium 
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3.6 Photoluminescence 

 Though the average diameter of the germanium nanoparticles in our films is smaller than 

the Bohr exciton radius, attempts at detecting photoluminescence were not successful.  One 

explanation is that the nanoparticle films consist of uncapped quantum dots which host non-

radiative recombination sites at nanoparticle surfaces (due to dangling bonds, etc.).  Previous 

work observing significant blue shifts of photoluminescence signals in germanium consisted of 

nanocrystals embedded in a SiO2 matrix [12-15]. 

3.7 Raman Spectroscopy 

 All Raman measurements were taken at room temperature and an excitation wavelength 

of 633 nm.  The UFPLD deposited nanoparticle thin films exhibit a shift towards the left (smaller 

FIGURE 3.23. Transmission spectrum in the range of the indirect band gap of germanium 
comparing nanoparticle thin film deposited at a laser fluence of 3.94 J/cm2 with a substrate 
temperature of 500o C with bulk germanium 
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Raman shifts) of the bulk peak.  Raman spectroscopy is sensitive to local atomic arrangements 

and vibrations within a crystal and a phonon confinement model can be used to characterize and 

interpret semiconductor nanostructures [16].  The model was initially proposed by Richter, 

Wang, and Ley [17] has been found to be useful to account for peak-position shift.  The change 

in Raman shift as a function of nanoparticle size is given by equation 3.2 [18]: 

                                                                   ∆ωൌ‐A ቀ௔
௅
ቁ
ఊ
                                                            (3.2) 

where ∆ω is the shift in the Raman peak (cm-1), L is the nanoparticle size (nm), and a is the 

lattice constant (nm).   The parameters A and γ are used to describe vibrational confinement in 

the nanoparticles.  In previous work [18], this equation was fitted to fixed silicon spheres and 

columns sizes to provide the parameter values shown in table 3.3.  For the case of Ge 

nanoparticles, other previous work has been done to refit equation 1 for nanoparticles grown 

using nanosecond pulsed laser ablation (PLA) in acetone [19].  The refitted parameter values are 

also shown in table 3.3.   

Geometry A (cm-1) γ 

Spheres 47.41 1.44 
Spheres (fitted for PLA Ge NPs) 47.41 1.25 
Columns 20.92 1.08 

 

 

Figure 3.24 are plots showing Raman peak shift, ∆ω, as a function of particle sizes, L of both 

silicon and germanium.  The column geometries are also investigated due to the spheroid oblate 

shapes of the UFPLD nanoparticles possibly behaving more like short columns. 

TABLE 3.3. Fitted parameters for equation 3.1 from literature [18,19]  
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 Figure 3.25 shows the measured Raman spectrum for UFPLD germanium nanoparticle 

thin films with respect to a bulk Ge reference, centered at 300.8 cm-1 corresponding to the LTO 

phonon at Γ25’ position at 300 K [11].  A polycrystalline germanium thin film grown on quartz 

via sputtering is included as another reference point.  The broad peaks at the left are due to the 

amorphous component of germanium and reduce as substrate temperature increases for 

subsequent samples, confirming XRD analysis for evidence of nanoparticle crystallization from 

annealing.  Figure 3.26 is a zoomed-in view focused around the main peak to highlight peak 

shifts.  The peak shift was the strongest for samples deposited on substrates at room temperature, 

250o, and 400o C.  At the higher substrate temperature of 500o C, the peak is closer to the bulk, 

approaching the sputtered film peak position.  The reason is diminished phonon confinement, 

which is strong evidence for sintering of the nanoparticles at higher substrate temperatures, 

forming a more continuous thin film.   

FIGURE 3.24. Plots of Raman peak shifts (Δω) vs. nanoparticle size with different 
geometries for (left) silicon and (right) germanium, using fitting parameters from past work 
[18,19] 



  68

 

 

Table 3.4 lists the Raman peak shift compared to particle size predictions using equation 3.1 with 

the various fitting parameters outlined in table 3.3 with the measured size distribution from 

TEM.  Though the mean TEM particle diameter is much larger than what is predicted, the size 

distribution peak (centered between 5 and 10 nm) is more meaningful since more nanoparticles 

are in that size range where the mean is skewed by the much larger particles which have a much 

smaller population size.  The closest predicted value is 4.8 nm for the spherical geometry with 

parameters fitted for PLA germanium in acetone, which is within the same order of magnitude 

and is close to the peak range of 5 – 10 nm.  The furthest value is for the column geometry 

indicating that the particles have more of a spherical character.  Table 3.4 lists the values in 

detail.   

FIGURE 3.25. Raman spectra of various germanium samples including: bulk; sputtered 
germanium; UFPLD nanoparticle films are deposited at substrate temperatures of room 
temperature, 250o C, and 500o C; and a UFPLD film deposited at the higher fluence of 98 
J/cm2 and a substrate temperature of 450o C 
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Sample             
(Ge) 

Δω 
(cm-1) 

Spheres 
(nm) 

Spheres- 
Ge NP 
(nm) 

Columns 
(nm) 

TEM 
Mean 
(nm) 

TEM 
Histogram 
Peak (nm) 

UFPLD - Rm. Temp. -3.28 3.6 4.8 3.1 29.5 5-10 
UFPLD - 250° C -3.28 3.6 4.8 3.1 29.5 5-10 
UFPLD - 450° C  -3.28 3.6 4.8 3.1 29.5 5-10 

 

 

 Figure 3.27 shows the measured Raman spectrum for UFPLD silicon nanoparticle thin 

films with respect to a bulk Si reference, centered at 516.9 cm-1 corresponding to the LTO 

phonon at the Γ25’ position at 300 K [11].  The broad peaks to the left of the main peak remain 

for all substrate temperatures measured, indicating the film remains mostly amorphous, which is 

verified by the XRD data in figure 3.21.  Table 3.5 lists the predicted values compared to the 

TABLE 3.4. Calculated Ge sphere and column diameters from measured Raman peak shifts 
compared with the nanoparticle diameter mean and the histogram bin range with the largest 
frequency as measured by TEM  

FIGURE 3.26. Zoom in of the main peaks at 300 cm-1  
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Raman peak shifts, the predictions are within an order of magnitude of the size distribution peak 

of silicon with the parameters for column geometries being further off, indicating that the 

particles are closer to being spherical. 

 

 

Sample                  
(Si) 

Δω 
(cm-1) 

Spheres Columns TEM 
Mean 
(nm) 

TEM 
Histogram 
Peak (nm) 

UFPLD - Rm. Temp. -3.16 3.6 3.1 19.7 5-10 
UFPLD - 400° C -3.69 3.2 2.7 19.7 5-10 
UFPLD - 650° C -4.74 2.7 2.1 19.7 5-10 

 

 

 

 

TABLE 3.5. Calculated Si sphere and column diameters from measured Raman peak shifts 
compared with the nanoparticle diameter mean and the histogram bin range with the largest 
frequency as measured by TEM  

FIGURE 3.27. Raman spectra of various silicon samples including: bulk; UFPLD nanoparticle 
films deposited at substrate temperatures of room temperature, 400o C, and 650o C 
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3.8 Asynchronous Optical Sampling (ASOPS) of Ge Nanoparticle Thin Films 

 Pump-probe measurements using ultrafast lasers are used to study laser-induced transient 

dynamics in solids.  ASOPS is used to measure a larger timescale range compared to pump-

probe systems using mechanical delay stages [20, 21].  With the current set up, the measurement 

ranges from picoseconds to nanoseconds, thus dynamics from both time scales are captured in a 

single measurement.   Dual Er-doped fiber lasers are used with a pulse duration of 80 fs, pulse 

energy of 1.5 nJ, and a fundamental wavelength of 1560 nm.  What is being measured is the 

reflectivity change as a function of time after the sample is perturbed by the pump laser.  This 

can give insight into various transient effects taking place in the material, such as carrier 

generation and phonon effects [21, 22].  The sample set includes several UFPLD germanium 

nanoparticle thin films grown at various substrate temperatures and at two different fluences with 

a bulk Ge wafer and a polycrystalline Ge thin film grown on quartz using sputtering (substrate 

heated to 500o C) as a reference signal.  The two main fluencies used for nanoparticle deposition 

are 3.94 and 98 J/cm2 and substrate temperature ranges from room temperature to 500o C.  

 The following figures show the reflectivity change as a function of time with emphasis on 

various time scales of interest.  Figure 3.28 shows a bulk Ge sample used as a reference to 

compare relaxation times.  Figure 3.29 shows a thin film of sputtered polycrystalline Ge for a 

thin film reference.  There are oscillating features, which are captured in figure 3.29(c) that show 

a coarse period of 1.63 x 10-10 s and a fine period of 1.78 x 10-11 s.  Since these time oscillations 

carry on into the nanosecond time scale, they may be attributed to lattice vibration (phonons) 

reflections.  Taking the speed of sound in germanium to be 5.36 x 1012 nm/s [11], the coarse 

structure time period corresponds to 682 nm of total distance traveled or 341 nm features which 

may be from the thickness of the thin film (the film is labeled as being 500 nm thick, but may not 
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have had uniform thickness).  The vibrations travel through the thin film and are reflected back 

normal to the substrate.  In the literature [23], these fine oscillations have been attributed to 

phonon modes. Converting the fine time period into a frequency leads to a frequency 5.6 x 10-10 

Hz, which is smaller than LO phonon modes by two orders of magnitude (9.16 and 8.94 THz) 

[23]. Therefore we believe a more reasonable interpretation of these oscillations is in terms of 

transit time across the width of the nanostructure. In this interpretation, the fine structure time 

period corresponds to 95 nm traveled, or 47.5 nm feature, possibly being a grain boundary.   

 

 

FIGURE 3.28. Reflectivity change as a function of time for bulk Ge, (a) shows the entire 
pump/probe scan and (b) is zoomed into the relaxation time scale 
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 Figure 3.30 and 3.31 show UFPLD Ge nanoparticle films deposited at a fluence of 3.94 

J/cm2 at room temperature and at a substrate temperature of 250o C, respectively.  Oscillatory 

behavior is observed in both, with the more apparent oscillation at the room temperature sample. 

The signals were too noisy to pick out any fine oscillation but the time periods of the damped, 

coarse structure are measured to be 5.2 x 10-10 and 2.68 x 10-10 s, respectively.  This translates 

into a reflection from a boundary that has a size of about 1,400 nm and 720 nm, which is much 

larger than the film thicknesses, which range between 300 – 400 nm, most likely indicating 

lateral vibrational modes of loosely bound nanoparticles.  

FIGURE 3.29. Reflectivity change as a function of time for sputtered Ge, (a) shows the entire 
pump/probe scan, (b) is zoomed into the relaxation time scale, and (c) zoomed into the scale 
showing the small oscillations 
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FIGURE 3.30. Reflectivity change as a function of time for UFPLD Ge nanoparticle film 
deposited at a fluence of 3.94 J/cm2 with the substrate held at room temperature, (a) shows the 
entire pump/probe scan and (b) is zoomed into the relaxation time scale 

FIGURE 3.31. Reflectivity change as a function of time for UFPLD Ge nanoparticle film 
deposited at a fluence of 3.94 J/cm2 with the substrate temperature of 250o C, (a) shows the entire 
pump/probe scan and (b) is zoomed into the relaxation time scale 
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 Figure 3.32 shows the reflectivity change as a function of time for the UFPLD Ge film 

deposited with a fluence of 3.94 J/cm2 and a substrate temperature of 500o C.  This sample is 

peculiar in a sense that there is a strong oscillation with a period of 1.27 x 10-9 s, which is the 

largest period of all of the samples measured and this oscillation does not dampen over the time 

of the measurement (which is in between pump pulses).  This oscillation corresponds to a feature 

of 3,400 nm, which again indicates nanoparticle vibrations in the lateral directions.  This is the 

same sample of the SEM micrograph of figure 3.14 that has agglomerates of over 1 micron.  At 

FIGURE 3.32. Reflectivity change as a function of time for UFPLD Ge nanoparticle film 
deposited at a fluence of 3.94 J/cm2 with the substrate temperature of 500o C, (a) shows the entire 
pump/probe scan, (b) is zoomed into the relaxation time scale, and (c) zoomed into the scale 
show the small oscillations 
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the high substrate temperature of 500o C, these agglomerates may begin to combine with other 

agglomerates from sintering (which is also evident in Raman spectroscopy) and may allow the 

lateral phonons to travel a larger distance before getting reflected.  Another explanation is the 

lateral vibrational reflections are coming from the laser spot size, which is less than 10 microns.  

Since the nanoparticles are small compared to the laser spot, they can provide an interface at the 

spot edges, similar to pixels capturing the edge of an image.  These postulates still do not address 

why these large oscillations are not strongly damped.    The fine oscillations have a period of 1 x 

10-10 s.   

 

 

 

 A mean lifetime can be extracted from each nanoparticle film by fitting the data in Figure 

3.28 to 3.33 with the simple exponential decay function (equation 3.2),  

ሻݐሺݕ                                                           ൌ ଴ݕ ൅ ݁ܣ
ି௧ ఛൗ                                                           (3.2) 

FIGURE 3.33. Reflectivity change as a function of time for UFPLD Ge nanoparticle film 
deposited at a fluence of 98 J/cm2 with the substrate temperature of 450oC, (a) shows the entire 
pump/probe scan and (b) is zoomed into the relaxation time scale 



  77

where A and y0 are constants and τ is the mean lifetime, which are shown in table 3.6 for each 

germanium sample, with a bulk Ge wafer and a polycrystalline Ge thin film on quartz as 

reference. 

Sample                   
(Ge) 

τ (s) R2 

Bulk  4.94 x 10-10 0.982 
Sputtered Thin Film 1.40 x 10-11 0.993 
UFPLD - Rm. Temp. 4.88 x 10-12 0.969 
UFPLD - 250° C 4.67 x 10-12 0.941 
UFPLD - 500° C 8.94 x 10-12 0.944 
UFPLD - 450° C (higher fluence) 3.70 x 10-12 0.987 

 

 

The reflectivity change at the shorter timescales may be related to carrier lifetimes at the surface 

of the measured sample.  By comparing to the germanium wafer (bulk), the relative differences 

between carrier lifetimes can be identified.  Relative to bulk germanium, the measured mean 

lifetime of the sputtered sample is an order of magnitude smaller and all of the nanoparticle thin 

films deposited by UFPLD are two orders of magnitude smaller than bulk.  Between the samples 

deposited at a fluence of 3.94 J/cm2, there is a trend of increasing mean lifetimes with increasing 

substrate temperatures.  The sample deposited at the higher fluence of 98 J/cm2 had an even 

shorter mean lifetime compared to samples grown at the lower fluence, though all are within the 

same order of magnitude.  This shorter lifetime compared to bulk and sputtered Ge is attributed 

to surface recombination sites.  For example, silicon photodetectors have short carrier lifetimes 

in the UV range due to the absorption depth being shallow and close to surface recombination 

sites [24].  The nanoparticle thin films appear to be mostly surface.   

 

TABLE 3.6. Fitted mean lifetimes with corresponding R2 values for each Ge sample 
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3.9 Transport 

 Transport measurements were made by the Kurdak group in the Physics Department at 

the University of Michigan.  Two germanium nanoparticle film samples prepared by UFPLD 

were measured; one deposited at a substrate temperature of 450o and the other at 550o C at a 

fluence of 98 J/cm2 and an intensity of 6.5 x 1014 W/cm2.  This experiment was done to 

determine that the UFPLD nanoparticle films could act as an electrically continuous thin film.  

Figure 3.34 shows the mobility between the two Ge nanoparticle films as a function of 

temperature.  There is a strong dependence of substrate temperature, the increase from 450o to 

550o C resulted in an increase of almost 5 times at 5.2 K and almost 3 times larger at 269 K.  A 

combination of further crystallization and sintering of the nanoparticles can explain this.  The 

majority carriers are holes, as seen in figure 3.37 with a positive 2D Hall coefficient.    This 

mobility is small compared to the bulk value for Ge of 1900 cm2/Vs for holes [11] but is 

competitive with other thin film technologies, such as amorphous silicon with a hole mobility of 

around 5 x 10-4 cm2/Vs [25], cadmium telluride thin films with a hole mobility of about 30 

cm2/Vs [26], organic semiconducting thin films with a mobility of about  9 x 10-2 cm2/Vs [27], 

and orders of magnitude higher than colloidal quantum dot thin films [24]. 
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FIGURE 3.34. Mobility of the UFPLD Ge nanoparticle thin films deposited with a fluence of 98 
J/cm2 at substrate temperatures of 450o and 550o C 

FIGURE 3.35. Carrier density of the UFPLD Ge nanoparticle thin films deposited with a fluence 
of 98 J/cm2 at substrate temperatures of 450o and 550o C 
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 Figures 3.35 and 3.36 show the carrier density and sheet resistance.  As expected, the 

carrier density increases with increasing temperature and the sheet resistance decreases with 

increasing temperature. 

FIGURE 3.36. Sheet resistance of the UFPLD Ge nanoparticle thin films deposited with a 
fluence of 98 J/cm2 at substrate temperatures of 450o and 550o C 
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FIGURE 3.37. Two dimensional Hall coefficients of the UFPLD Ge nanoparticle thin films 
deposited with a fluence of 98 J/cm2 at substrate temperatures of 450o and 550o C 
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CHAPTER 4 

Ultrafast Laser Irradiated Graphite (ULIG) 

4.1 Overview 

 This chapter covers experiments to study ultrafast laser effects on graphitic carbon 

synthesis with the motivation to synthesize graphene directly, using the ultrafast laser to exfoliate 

the weakly bonded layers of graphite.  Previous work involving laser production of graphene 

includes a chemical step to reduce to the graphite into graphite oxide, following with a laser (or 

ultrafast laser) as means for photoexfoliation and photoreduction [1-3].  It has been proposed, 

and calculated, that an ultrafast laser may be able to directly photoexfoliate one graphene layer at 

a time, with pulses being on the order of 45 fs; longer pulses would ablate multi-layered 

graphene [4].  

 The first method that we studied was direct deposition using an ultrafast laser, with the 

same set up as used in chapter 3 for semiconductor nanoparticle thin films, except the target is 

replaced with a carbon target (pyrolytic graphite - Kurt Lesker part EJTPYRO501A4).  The 

substrates used for nanoparticle collection are carbon coated copper-mesh TEM grids.  All 

UFPLD experiments were carried out with the optics at best focus while keeping the substrates 

unheated  (room temperature).  

 The next method we investigated for graphene production was directly laser scribing a 

film of graphite particles.  The graphite used was a product called Aerodag G, which is used as a 
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spray-on graphite lubricant.  The solvent is isopropanol and contains a thermoplastic binder. This 

technique involves an initial step of expanding the interplanar distance of graphite by using a 

chemical intercalating agent.  The reasoning behind using particles is to speed up intercalation, 

since the distance ions must diffuse into the sample would be minimized.  The differentiating 

factor compared to current methods of producing graphene is that the graphite is not completely 

oxidized into graphite oxide beforehand, as with using Hummer’s method [5], with the laser 

being used to photoreduce and photexfoliate.  Instead, an aqueous acid solution, with a 40:1 ratio 

of H2SO4 and 70 wt. % H2NO3, is used to intercalate the graphite for a short amount of time and 

the ultrafast laser is then used for photoexfoliation at the surface.   

 The third method we investigated used an ultrafast laser to irradiate the backside of a thin 

transparent substrate (a microscope coverslip) to transfer material onto a receiving substrate 

(silicon wafer) [6].  The laser is again focused as a line, at various fluences, on the back of the 

substrate to offer a swath of material transfer.  The film was a layer of Aerodag G, which was 

allowed to air dry.  

4.2 Ultrafast Pulsed Laser Deposition with a Graphite Target 

 Referring to figure 4.1, the only particles seen in the TEM micrograph were graphitic and 

no other particles are seen when the laser ablation is performed at a fluence of 3.94 J/cm2 and an 

intensity of 2.62 x 1013 W/cm2. This method preferentially produces amorphous carbon.  
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FIGURE 4.1. TEM micrograph of UFPLD graphite, some of the graphitic structures are 
circled in green 

FIGURE 4.2. Zoomed-in TEM micrograph of one of the UFPLD grown graphitic structures 
are circled in green showing an interplanar distance of 0.34 ± 0.04 nm 
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Judging by their dark appearance, the TEM grids appeared to be coated but nothing was visible 

in the TEM.  Since the TEM grids are coated with an amorphous carbon film, there was zero 

contrast, pointing to amorphous carbon coming from the laser ablation plume.  When the 

focusing lens was pulled 4.5 cm out of focus (giving a fluence of 0.57 J/cm2), the spectrum 

looked predominately continuous, as seen in figure 4.3.  The objects produced at these conditions 

are what appear to be annular graphitic structures.  It is possible that these objects are spherical 

and only the edges can be seen since the electron beam travels through more carbon at the edges 

of the projected circle looking down at it.  The measured interplanar spacing is 0.34 ± 0.04 nm, 

comparable to the literature value of 0.335 nm, [7] verifying the objects in figure 4.1 and 4.2 are 

graphitic carbon nanostructures.   

 

 

 

FIGURE 4.3. Ultrafast laser ablation plume spectra of the laser at best focus, a fluence of 3.94 
J/cm2 (black line) and 4.5 cm out of focus, 0.57 J/cm2 (red line). Most of the observed atomic 
emission lines correspond to carbon and are tabulated in the table below.    
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Measured C  
Peak Position 

(nm) 

Ionic 
Species 
NIST 

Tabulated  
Values (nm) 

NIST 
427.4 C(II) 426.726 
435.6 C(III) 432.556 
467.8 C(III) 466.586 
512.2 C(II) 513.294 
554.2 - - 
589.8 C(II) 589.159 
600.2 C(I) 600.113  
657.0 C(II) 657.805 
710.2 C(I) 711.318  

 

 

Note that one of the peaks, 554.2 nm, from the graphite plume cannot be accounted for, 

comparing with atomic emission lines from NIST [8].  Looking deeper at the NIST tables, there 

are other materials that can match some of the atomic emission lines in figure 4.3, such as 

tungsten, yttrium, and sulfur, except that the resultant ablation products are graphitic and no 

other nanoparticles of the various materials are found. The ablation target is guaranteed to be 

99.999% pure (by the Kurt Lesker Company).  There are two models of targets, one unbonded 

(which was purchased for this experiment) and the other bonded with indium, even if the bonded 

target was sent by mistake, there are no indium tabulated emission peaks that would closely 

correspond with the measured spectrum.   

 One hypothesis is that within the plume (the spectrum is an image of the plume at the 

target surface), nano-diamond phases are produced at or near the target surface and the 512.2 nm 

(2.421 eV) peak is photoluminescence (PL) from those diamond phases.   Previous work has 

identified this peak in both natural diamond and Chemical Vapor Deposition (CVD) grown 

artificial diamond [9, 10].  Though the PL peak is at a higher energy than the laser wavelength 

(780 nm), multiphoton excitation can occur due to the high intensity of the ultrafast laser. This 

TABLE 4.1. Measured peak positions of the carbon plume at best focus compared to tabulated 
values and corresponding emission data from NIST.  



  90

type of multiphoton excitation has been seen to excite PL in nanodiamonds with a laser 

wavelength of 1064 nm and a pulse duration of 10 ns [11]. 

  

4.3 Ultrafast Laser Irradiated Graphite (ULIG) - Direct Laser Scribing 

 The following samples were prepared by spraying Aerodag graphite spray onto glass 

microscope slides and then letting them air dry for one hour.  A solution of nitric acid (HNO3) 

added to sulfuric acid (H2SO4) with a ratio of 1:40 was used as an intercalating agent.  The 

samples were dipped into a beaker for two seconds followed by a deionized water bath; any 

exposure longer than three seconds removed the Aerodag from the microscope slide.  The 

samples were allowed to air dry for 24 hours.  The sample is placed on a translation stage with a 

fixed-focus cylindrical lens allowing for a swath of laser energy to be scanned across the sample.  

All laser scans were done at a translation speed of 0.1 mm/s with a laser repetition rate of 1 kHz.  

A single sample was used for figures 4.4 – 4.9 with different regions on the same sample 

irradiated at different fluences.   Figure 4.4 is an SEM micrograph showing a region where there 

is no laser irradiation at two image scales (magnification of x20k and x65k), providing a baseline 

for comparison. 
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Figure 4.5 is an SEM micrograph of the sample irradiated at 10 mJ/cm2.  Here blistering of the 

film is evident.  This blistering is from trapped gasses that are being heated and explosively 

emitted.  Figures 4.6 and 4.7 are SEM images of samples irradiated at fluences of 14.3 and 21.4 

FIGURE 4.4. SEM micrograph of Aerodag graphite spray with no laser treatment.    

FIGURE 4.5. SEM micrograph of Aerodag graphite spray treated with H2SO4/HNO3 and 
scanned/irradiated at a fluence of 10 mJ/cm2, showing blistering (left) and a zoomed-in view of 
the formed blister (right)  
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mJ/cm2 and show similar blistering features as the sample in figure 4.5 except with greater 

frequency. However, the blistering frequency appears to be the same for these two fluences (see 

figures 4.6 and 4.7). 

 

 

FIGURE 4.6. SEM micrograph Aerodag graphite spray treated with H2SO4/HNO3 and 
scanned/irradiated at a fluence of 14.3 mJ/cm2, showing blistering (left); a zoomed-in view of 
the formed blister (right), and inside edge of the blister (bottom right)  
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 The samples irradiated with a fluence of 42.9 and 85.7 mJ/cm2 have dramatically 

different morphologies, as seen in figures 4.8 and 4.9.  At a lower magnification, the overall 

structures are filamentary.  Once zoomed-in, there are features that appear to be semi-transparent 

sheets and bright lines, which can be attributed to graphene-like structures.  The bright line-like 

objects are thin layers of graphite (or graphene) sheets being viewed edge on, and the sheets of 

FIGURE 4.7. SEM micrograph of Aerodag graphite spray treated with H2SO4/HNO3 and 
scanned/irradiated at a fluence of 21.4 mJ/cm2, showing blistering (left); a zoomed-in view of 
the formed blister (right), and inside edge of the blister (bottom right).  
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graphite may become semi-transparent to 15 keV electrons as they get thinner, approaching a 

few layers of graphene.  

 

 

 

FIGURE 4.8. SEM micrograph of Aerodag graphite spray treated with H2SO4/HNO3 and 
scanned/irradiated at a fluence of 42.9 mJ/cm2, showing the morphology at various, increasing 
image scales (clockwise from the top left)  
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Fluences higher than those used to prepare the samples shown in figure 4.9 resulted in full 

ablation of the graphite film, removing all of the material from the substrate.  Another trend 

noticed is the better quality “graphene film” that came from using the moderate fluence of 42.9 

mJ/cm2.  This indicates there are different fluence regimes, a higher one that favors more 

filamentary structures and a lower one that produces more continuous sheet-like structures. 

FIGURE 4.9. SEM micrograph of Aerodag graphite spray treated with H2SO4/HNO3 and 
scanned/irradiated at a fluence of 85.7 mJ/cm2, showing the morphology at various, increasing 
image scales (clockwise from the top left)  
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 The Raman spectra were collected at room temperature with a 532 nm excitation laser for 

the samples represented in figure 4.8 and 4.9.  Each sample is compared to a region where there 

was no irradiation, to act as a standard for reference which is denoted by the black lines in figure 

4.10.  Three main peaks are visible, the D, G, and 2D peaks, which occur at around 1350, 1580, 

and 2700 cm-1.  The D band is known as the disorder band, which represents a ring breathing 

mode.  In order to for this mode to be active, there must be adjacent defects in the carbon ring, 

thus this peak represents disorder in the sp2 plane.  If a sample were one continuous sheet of 

graphene or graphite with little defects, this peak would be very weak to non-existent.  The 

samples irradiated as well as the control sample exhibit a strong D peak; this is because they are 

essentially made of graphite particles that are arranged in random orientations.  In the case of the 

irradiated samples, graphite was further broken down into regions with graphene sheets in 

random orientations.  The G band is an in-plane vibrational mode in the graphene sheets and is 

sensitive to the amount of graphitically bonded layers present.  The 2D band is the second order 

of the D band, resulting from a two phonon lattice process, but is not activated by defects.  The 

FIGURE 4.10. Raman spectrum comparing samples irradiated at (left) 42.9 mJ/cm2 and 
(right) 87.5 mJ/cm2 with the region experiencing no laser irradiation  
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intensity ratio between the 2D band and the G band, I2D/IG, can give an indication whether or not 

the sample is made of graphene.  In a perfect single layer, the intensity of the 2D band is about a 

factor of two larger than the G band [12].  The irradiate samples had ratios very similar to the 

control sample: I2D/IG(control) = 0.565, I2D/IG(42.9 mJ/cm2) = 0.541, and I2D/IG(85.7 mJ/cm2).  

This may be attributed to the amount of graphene is produced with respect to the rest of the 

graphite film.  The material of interest may just be on the very surface while the excitation laser 

excites the material underneath as well, overwhelming the signal. 

 

 

 Figure 4.11 shows an SEM micrograph of a commercially made graphite electrode on 

copper foil, Styrene-Butadiene Rubber (SBR) and Carboxymethyl Cellulose (CMC) binder, and 

composite graphite (the exact composition information is unavailable due to its proprietary 

nature).  The motivation in using a commercial electrode is to use a more robust system 

(compared to Aerodag G) to allow for a longer time in the intercalation solution.  The initial 

sample, seen in figure 4.11, was exposed for the same amount of time in the intercalation 

FIGURE 4.11. SEM micrograph of a commercial graphite electrode treated with H2SO4/HNO3 
and scanned/irradiated at a fluence of 50 mJ/cm2, showing evidence of LIPS with a periodicity 
of 150 ± 22 nm and a width of 140 ± 16 nm 
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solution was the same as previous measurements in this chapter.  The graphite particles in the 

SEM micrograph appear larger than those supplied with Aerodag G and as such appear not to 

break up but instead exhibit a periodic structure.  The fluence was held to 50 mJ/cm2 at 1 kHz 

and a scan speed of 0.1 mm/s.    The observed laser induced periodic structure (LIPS) is 

measured to have a periodicity of 150 ± 22 nm and a width of 140 ± 16 nm with the laser 

polarization perpendicular to the LIPS direction.  LIPS has been seen in previous work [13, 14] 

in various materials and has been seen with graphite using an 800 nm ultrafast Ti:Sapphire laser 

with 125 fs pulse duration and a repetition rate of 1 kHz (similar laser conditions to what is used 

in this thesis), giving a periodicity of 170 nm [15].   The conclusion from these measurements is 

that when using an ultrafast laser to irradiate graphite, it may be advantageous to use smaller 

particles since the particles can be exfoliated more easily (in the context of making graphene 

directly by scanning a graphite surface).   

4.4 Irradiation from Rear of Graphite-Coated Glass 

 The next strategy to grow graphene from graphite nanoparticle films is to use an ultrafast 

laser to irradiate the side of the film opposite to the side facing the receiving substrate (the set up 

is explained in chapter 2), a graphene printing technique using ultrafast laser-induced forward 

transfer [6].  Instead of using a continuous thin film and a laser focal-spot, as with previous 

work, a film of graphite particles (Aerodag G) is coated on a thin piece of optically flat glass, a 

coverslip (0.13-0.16 mm thick) is irradiated by a focused laser line using cylindrical optics.  The 

coverslip is held close to the substrate by using other coverslips as spacers.  The substrate of 

choice is polished silicon due to its smoothness and conductivity (to prevent charging effects) 

during SEM imaging.  With this technique, no chemical precursors are used.  Scanning rates are 

held constant to 0.1 mm/s, with the only variable being fluence (85.7, 57.1, and 35.7 mJ/cm2).  
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 Figure 4.12 and 4.13 show the resultant structures deposited onto the silicon substrate at 

various image scales.  The structures are similar to those from direct laser scribing (figure 4.8 

and 4.9). Sheets on the order of almost a micron in lateral dimension are transparent to the 

electron beam are the main structural component, along with filamentary features.  At the lower 

fluence of 57.1 mJ/cm2, filament structure begins to disappear, leaving behind graphene sheets, 

sheet agglomerates, and graphite nanoparticles.   

FIGURE 4.12. SEM micrograph of graphite deposited onto a silicon wafer from a coverslip 
that was coated with graphite and irradiated from behind at a fluence of 85.7 mJ/cm2 
(increasing image scale going clockwise from top left). 
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FIGURE 4.13. SEM micrograph of graphite deposited onto a silicon wafer from a coverslip 
that was coated with graphite and irradiated from behind at a fluence of 57.1 mJ/cm2 
(increasing image scale going clockwise from top left) 
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 When the sample shown in figure 4.14 was finished being prepared, visually there did not 

appear to be any material on the substrate.  However, the SEM shows there are structures that 

were deposited, but they are very sparse.  These were investigated at higher magnification and 

found to be sheets transparent to the electron beam (indicating graphene-like morphology). 

Filamentary structures were non-existent. These semi-transparent sheets may be graphene, as the 

FIGURE 4.14. SEM micrograph of graphite deposited onto a silicon wafer from a coverslip 
that was coated with graphite and irradiated from behind at a fluence of 35.7 mJ/cm2 
(increasing image scale going clockwise from top left) 
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larger graphitic structures are opaque to the electron beam.  As with the direct laser scribing, 

there is an optimal fluence for the larger sheet structures.  
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CHAPTER 5 

ULIG Application in Lead Acid Battery Cells 

5.1 Overview 

 Lead acid batteries (PbA) are ubiquitous in the automotive sector and as fuel economy 

and emission standards become increasingly stringent, the technology in cars becomes more 

advanced in boosting efficiency while reducing emissions. Emerging technologies, such start-

stop and microhybrid vehicles, place a heavy demand on current battery systems based on PbA 

chemistry [1-3].   One of the difficulties of PbA batteries is dynamic charge acceptance, or how 

well the battery charges at various states of charge (SoC) [4, 5].  Charging performance is 

emphasized because the level of aggressiveness of fuel saving performance of start-stop 

technology (where the engine shuts off when the vehicle comes to a stop) is limited to how 

quickly the battery recharges.  Another feature that is used to improve fuel economy is 

regenerative braking, where the battery can experience pulses of large regenerative currents from 

braking.  The battery must be able to accept this pulse without much energy waste.  Inserting 

carbon additives into the negative electrode has shown to offer improvements in charging 

performance [6-9].  One architecture is to replace a portion of the negative plate of a PbA battery 

with a high surface area carbon in order to have an energy storage device that is a hybrid 

between a PbA battery and a lead oxide (PbO) asymmetrical supercapacitor [10, 11].   
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 The first application of the Ultrafast Irradiated Graphite (ULIG) attempted is improving 

the charge acceptance of lead acid battery (PbA) battery cells.  The cells used for testing are 

commercial lead acid batteries using an absorbent glass mat separator (AGM) with a capacity of 

0.85 Ah at C/20 rate (42.5 mA), where the C rate refers to the current that fully 

charges/discharges a cell in one hour.  The electrolyte is 1.265 s.g. sulfuric acid (commercial 

battery acid).  The negative plates were half coated with carbon, as shown in figure 5.1.  The 

carbons used were a graphite spray coating (Aerodag G) and ULIG, scanned at a rate of 0.1 

mm/s with a fluence of 70 mJ/cm2 using the same experimental set up used in chapter 4. 

 

 

There are two types of ULIG coatings denoted BULIG and CULIG.  BULIG refers to half of the 

negative plate being coated with ULIG, as seen in figure 5.1, while CULIG refers to the entire 

surface of the negative electrode facing the separator being coated.  The amount of graphite 

coated on each electrode is 15 ± 5 mg. 

 Once the cells are coated and assembled, they must go through an initial formation 

charge as outlined by the manufacturer in the following order (all steps are done with a constant 

current): charge for 18 hours at 170 mA, discharge for 3 hours at 144.5 mA; charge 2 hours at 85 

FIGURE 5.1. Schematic of the test cell (a) looking at the coating geometry on the negative 
plate and (b) a side view of the complete battery cell, consisting of the negative and positive 
plate with an AGM separator 
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mA, charge 9 hours at 170 mA, discharge for 3 hours at 212.5 mA; charge for 6 hours at 170 

mA, and charge for 6 hours at 85 mA.   

 

5.2 Lead Acid Test Cell Results 

 The following experiments are considered preliminary and offer motivation to engage in 

more thorough testing.  The SoC is determined by first measuring the amount of charge each cell 

holds by discharging the cells at a slow constant current until a cutoff voltage is reached (1.75 V) 

from full charge.  With the total charge known, the discharge current (while using the same 

current the capacity measurements were taken with) can be timed to discharge a certain amount 

of charge and the SoC is the fraction between how much charge is left (subtracting the total 

capacity by what is removed) and the total capacity; this is known as coulomb counting.  This 

method is more accurate than using open circuit voltage (Voc) since it can take a significant 

amount of time for the Voc to equilibrate.  

 Figures 5.2-6 show a V-I plot (as opposed to I-V).  These data are generated by applying 

a constant current for 20 s and measuring the voltage across the terminals (20 s is short enough to 

achieve constant voltage conditions).  This is repeated for a multitude of currents (both charge 

and discharge) to generate the V-I plot. The resistance upon charging/discharging is measured 

from the slope of the linear regression.   
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FIGURE 5.2. V-I plots of (left) BULIG PbA cell and (right) control PbA cell at 100% SoC 

FIGURE 5.3. V-I plots of (left) BULIG PbA cell and (right) control PbA cell at 80% SoC 

FIGURE 5.4. V-I plots of (left) BULIG PbA cell and (right) control PbA cell at 60% SoC 
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Typically for PbA, the resistance is lower on the discharge.  BULIG coatings have been 

demonstrated to reduce the resistance on charging, as seen in figure 5.7.  The highest resistance 

is at 100% SoC, which is to be expected since the there is little active material left on the 

electrodes.  The lowest charge resistance appears at 80% SoC.  Below 80% SoC, the resistance 

begins to increase, this is due to sulfation, where the sulfate crystals formed on the electrodes 

FIGURE 5.5. V-I plots of (left) BULIG PbA cell and (right) control PbA cell at 40% SoC 

FIGURE 5.6. V-I plots of (left) BULIG PbA cell and (right) control PbA cell at 20% SoC 
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become too big to easily undergo the reverse redox reaction back to lead and lead oxide.  Here is 

where the gap between the Control and BULIG cell widen, indicating that this improvement may 

be due to capacitive effects of the ULIG coating.   

 

 

 The next set of battery tests involve fast constant current of 50mA charge/discharge 

cycles with no rest in between, as seen in figure 5.8, until the cell reaches failure, determined by 

and end of discharge (EoD) cut off voltage (1.75V).  The cell starts at 100% SoC, this probes the 

charging efficiency of the cells.  If the battery cell had perfect charging, it will go on forever 

since the amount of charge that is discharged is replaced by charging.   

 

FIGURE 5.7. Comparison of the resistance upon charging between the BULIG and Control 
cells at various states of charge.  The resistance is consistently lower in the coated electrodes.  
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Figure 5.9 shows the result of this charge/discharge test with the ULIG coated electrode 

outperforming both the control and graphite coated cells.  The control cell went 6,377 cycles, the 

graphite coated cell went 7,606, and the ULIG coated cells lasted 10,402 cycles before failure.   

 

 

FIGURE 5.8. Test profile for fast charge/discharge, initiated by a one-minute constant current 
discharge at 50 mA, followed by a constant current charge of 50 mA, this is cycled until the 
EoD (End of Discharge) voltage reaches the cutoff of 1.75V 

FIGURE 5.9. EoD versus cycle number, the Control cell reached failure first, followed by the 
graphite coated electrode, the ULIG coated cell outperformed the other cells by a factor of 1.6 



  112

 Figures 5.10 and 5.11 show discharge plots for the following cells, again cells denoted 

with the letter “B” have half the plate negative plate coated and those with “C” have one entire 

side facing the counter electrode coated: control, BULIG, BG (Aerodag G graphite spray), 

CULIG, and CG.  All resultant specific capacities reported from the discharge plots are mAh/g.  

Figure 5.10 is a study of capacity change as a function of discharge rates, each cell is charged at 

a constant current of 85 mA until 2.45 V is reached, followed by a constant voltage charge of 2.5 

V until the charging current drops to 10 mA. Then the cell is discharged at various rates until a 

cut off voltage of 1.75 V is reached.  In this testing configuration, the graphite coatings had 

slightly larger overall capacities compared to ULIG and the control.  

 
FIGURE 5.10. Discharge plots at various rates (increasing clockwise from the top left) of 85 
mA, 425 mA, 850 mA, and 1,700 mA all charged with the same conditions 
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What figure 10 is showing is how the cell voltage changes with respect to time, with the legend 

listing out the measured cell capacities.  The longer the cell takes to reach its cut off voltage for 

any given discharge current, the more capacity it has.   

 Figure 5.11 is a study of how the constant current charge rate affects the cell capacity.  

Each cell is charged at a constant current at various rates until 2.45 V is reached followed by a 

constant current discharge rate of 85 mA, which is held constant for all battery cells.  The 

specific capacity decreases with increasing charging rate (listed in the legend), measured by the 

discharge time, at all charging rates: BULIG consistently had higher capacities at the end of the 

discharge cycle, indicating better charging performance.    
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 These series of battery tests show the ULIG coating on the negative plate improves the 

charging performance of the test cells.  The first set of results demonstrates the decrease of 

battery cell resistance upon charging with the use of ULIG.  The second test demonstrates 

superior charge efficiency and lifetime of ULIG coated cells compared to using untreated 

graphite coatings on the negative electrode and the control cell.  The measurements in figure 

5.11 show that as charge current increases, ULIG coated electrodes store more energy (23% 

more than the control at the 2C charge rate). The benefit of ULIG becomes increasingly apparent 

FIGURE 5.11. Discharge plots at a constant discharge current of 85 mA, charged at different 
constant current rates until 2.45V is reached (increasing clockwise from the top left) of 85 mA, 
425 mA, 850 mA, and 1,700 mA  
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as the charging current is increased, which addresses the main difficulty for utilizing the PbA 

chemistry for future demands. 
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CHAPTER 6 

Conclusions and Future Work 

 We summarize here the main findings of this dissertation, the first detailed study of the 

application of ultrafast lasers to produce nanoparticles that can be useful for energy harvesting 

and storage.  The importance of the work is its demonstration that the process of making 

nanoparticles with ultrafast lasers is extremely versatile and can be applied to practically any 

material, on any substrate.   Moreover, the process is scalable to large areas:  by scanning the 

laser with appropriate optics it is possible to coat square meters of materials (e.g., battery 

electrodes) quickly and inexpensively with nanoparticles.  The following summarizes the main 

results from each part of the study, finally integrating them into an application of importance to 

advanced battery technology.     

6.1 UFPLD of Semiconductor Films 

 We have shown that there is a fluence dependence on the nanoparticle size and the 

optical emission spectrum of the plume can be used predict a fluence that favors smaller 

nanoparticles. At smaller fluences, below around 0.57 J/cm2, the ablation plume begins to have a 

continuous spectrum while at higher fluences the spectrum shows more of an atomic emission 

line character.   The ablation plume with a continuous spectrum also showed a dramatic increase 

in nanoparticle throughput (almost 8x higher with Ge). The black-body spectral distribution 

reveals that the temperature of the plume is critical to whether the nanoparticles condensed from 
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the plume are liquid or solid on arrival at the substrate.  XRD data shows there may be two 

separate types of particles, one that deposits as crystalline and the other deposits as amorphous, 

in which the amorphous character starts to disappear at substrate temperatures of over 250o C 

due to annealing.  This is attributed to molten material that quenches into an amorphous state 

upon hitting a cold substrate.   This is seen at two different fluences (3.94 and 98 J/cm2) with 

both ablation plume spectrums having atomic emission lines.  This is verified with Raman 

spectroscopy, where the broad, diffuse peak on the left of the main peak disappears with 

increasing substrate temperature.  It is also noticed that sintering takes place at the higher 

substrate temperatures, in SEM micrographs, fine structure disappears into the larger 

agglomerations of nanoparticles.  This is verified by seeing reduced phonon confinement 

(reduced Raman peak shift) in Ge nanoparticles films deposited at higher substrate temperatures.  

Hall measurements verified that these types of nanoparticle films behave as a single thin film 

with carrier mobilities higher than other thin film technologies and orders of magnitude larger 

than colloidal quantum dot (QD) films.  This material has promise for QD-based opto-electronics 

based on its mobility and purity of the process (UFPLD is done in UHV conditions). 

Future work entails further characterization and new applications of UFPLD nanoparticle thin 

films: 

 Quantify crystallinity at laser fluences where the ablation plume’s spectrum is completely 

continuous with XRD 

 Quantify surface recombination velocity  

 Develop a method to encapsulate nanoparticles in flight from the target to the substrate to 

reduce non-radiative recombination sites and extract photoluminescence of the thin 
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films to quantify the effective Eg – this may effect the continuity of the thin film, 

reducing its mobility advantage  

 Investigate multiexciton generation 

 Test this material as a QD-based photodetector by depositing onto a metal substrate to 

build a Schottky diode and characterize it’s performance 

 Build a lithium ion anode by depositing silicon nanoparticles (silicon anodes have 10x 

the theoretical capacity compared to current graphite anodes) onto a metal current 

collector using UFPLD and investigate its cycle life (the main difficulty with Si anodes), 

power density, and energy density 

 If the electrode performance is good, investigate integrating the UFPLD process into the 

thin-film battery synthesis process, where this technology would be most appropriate for 

6.2 Ultrafast Laser Irradiated Graphite 

 This part of the thesis covered ultrafast laser material synthesis using a graphite 

precursor.  The first set of experiments involved irradiating a graphite target using the UFPLD 

set up to collect material onto a TEM grid.  At a high enough fluence (3.94 J/cm2), amorphous 

carbon was produced with an unidentified emission peak at 512.2 nm. When the fluence was 

reduced (0.57 J/cm2), annular graphitic nanostructures were produced, with the unknown 

emission peak still present, although at a greatly reduced intensity.   The other part of the 

experiments focused on scanning an ultrafast laser over various regions on graphite particle films 

on glass, which were shown to produce both filamentary structures and sheets which are semi-

transparent to the electron beam in SEM.  These transparent sheets resemble layers of graphene 

that have been exfoliated.  An ultrafast laser “printing” configuration was also identified by 
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coating a thin, transparent substrate with graphite particles and irradiating the back of the film for 

a forward transfer of material onto a receiving substrate.  Future work consists of: 

 Investigate and identify the source of 512.2 nm emission peak from the carbon ablation 

plume in UFPLD   

 Investigate more compatible binder recipes where the sample can survive more than a 

few seconds in the intercalating solution before laser irradiation 

 Investigate other graphitic precursors for ULIG, including using commercial expanded 

graphite to eliminate the intercalation step, reduce the process to just coating the substrate 

and irradiating. 

 Extend Raman studies using an AFM/Raman system to gain Raman information from the 

small, graphene-like structures seen in the SEM to prevent the signal from being 

overwhelmed from material below and around these structures. 

 Identify the mechanisms and conditions for graphene sheet production versus filament-

like structures. 

 Identify which nanostructure is more advantageous for energy storage. 

 Investigate the link between the mechanism that causes LIPS and photoexfoliation using 

an ultrafast laser. 

 Investigate depositing graphene by using a continuous film of graphite on the thin 

substrate for rear irradiation. 

 Repeat experiments with an ultrafast laser with a shorter pulse duration of 45 fs.  

6.3 ULIG Application for lead-acid battery cells 
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 By coating carbon on half of the negative plate of a PbA cell, we demonstrated that the 

fast charging performance could be significantly improved compared to an uncoated battery cell 

(control).   The types of carbons compared are graphite spray coating (Aerodag G) and ULIG.  

There is an increase in charging performance with ULIG over the graphite coating.    This 

improvement is from the supercapacitive effects of the ULIG coating which caused the cell to act 

as both a battery and a supercapacitor. This is significant for PbA technology with the rise of 

various automobile fuel-saving technologies that puts more stress on its battery systems.   By 

improving the charging capability of a PbA battery, it can be used in place of more expensive, 

less robust battery chemistries.   Recommended future work consist of honing in on specific 

properties of using ULIG coatings to better understand its effects on energy storage: 

 Perform a more fundamental study, characterize a supercapacitor made with ULIG using 

cyclic voltammetry, impedance spectroscopy, and charge/discharge cycling with various 

electrolytes 

 Characterize an asymmetrical supercapacitor consisting of a lead oxide positive electrode 

and a ULIG negative electrode. 

 Investigate possible physical mechanisms for why the end of discharge voltage suddenly 

falls below the cutoff voltage, as opposed to gradually, at cell failure.  In particular, it 

would be interesting to model this behavior as a structural phase transition during the 

redox reaction. 
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