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ABSTRACT 

A new method of predicting ductile fracture initiation is presented based on comparison 

of the energy dissipation rates of the bulk continuum system to the fractured medium. A 

fracture criterion is posited for plastic materials with no pre-existing cracks as a critical 

state being reached when the energy release rate of the bulk system is balanced by the 

energy release rate associated with the fractured medium. The energy dissipation of the 

continuum system includes that of plastic work while that of the fractured system 

includes the surface energy of the crack formation, plastic work, and frictional losses (if 

any) at the instant of crack initiation. Two fracture modes are considered which are 

commonly addressed in fracture mechanics: Mode I crack opening perpendicular to the 

fracture plane and Mode II shear rupture tangential to the fracture plane. The theory 

introduces a length scale and a new material constant which we call toughness stress. The 

toughness stress is defined as the surface energy release rate divided by the micro-

structural characteristic length of the material. A study of the use of the criterion for a 

plastic material with power-law hardening is examined and compared with published 

experimental data for aluminum. 

Furthermore, a series of uniaxial tests and cylindrical indenter experiments on AH32 

steel, a mild steel, were conducted to investigate fracture initiation states and the 

scale/mesh size effect. Strains at fracture are obtained using digital image correlation 

(DIC) analysis, and the corresponding states of stress are obtained via the constitutive 

relationships and the stress-strain relationships using the measured strains. The strain 

fields are calculated to the point of fracture initiation where we define the fracture 

initiation as the condition when the first visible crack appears in the digital image of the 

test specimen. 
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The toughness stress of AH32 steel for the two fracture modes are calculated using the 

current experimental results. It is shown that the surface energy release rates for both the 

aluminum alloy and the AH32 steel calculated from the new theory for ductile fracture 

compare well with the surface energy release rates used in traditional fracture mechanics.
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CHAPTER 1 

Introduction 

1.1 Motivation for the Research 

Mechanical failure is of particular interest to humankind for designing and constructing 

large expensive transportation structures such as ships, offshore structures, airplanes and 

automobiles. These structures may become damaged due to collision with a similar 

structure or due to an impact with icebergs, floating or flying debris, etc. 

Material failure, which may be categorized as 'brittle fracture' or 'ductile fracture', is a 

mechanical failure mode among several possible modes, which include buckling, fatigue, 

creep, and plastic collapse. Brittle fracture can be catastrophic as it happens very rapidly 

due to lack of plastic deformation
1
 whereas extensive plastic deformation takes place in a 

ductile fracture
2
 process. Due to its catastrophic nature, brittle fracture has been a subject 

of interest for many years and it has been more extensively studied and better understood 

than ductile fracture. However, ductile fracture began receiving more attention from 

researchers with the development and growth of the naval, aerospace and automobile 

industries, whose usage of high strength metals has become common. 

The safety of such structures depends in large part on the system’s ability to withstand 

extreme loading events such as collision, accidental impact from other objects, and in 

some cases, explosions. In other words, these mobile structures require safe operational 

                                                 
1
 It is worth noting that notch-brittleness might occur after considerable plastic deformation. 

Hence, by 'brittle fracture' the author means fracture occurring during or immediately after elastic 

loading; that is, there is no or very little plastic deformation. 
2
 By ductile fracture, we mean the occurrence of fracture in materials which undergo large 

deformations before the fracture is complete. 
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requirements during their life span, not only because they are expensive but also because 

their failure may cause loss of human life. The duty of designers and engineers is to 

provide maximum safety with minimum weight and cost while satisfying design 

requirements. Therefore, prediction of material failure initiation is crucial for a safe 

design. 

The objective of the research presented here is to develop, through combined 

experimental and analytical studies, a thorough understanding of the evolution of the 

non-linear stress and strain states leading to ductile fracture. Moreover, this study is to 

provide key parameters for predicting fracture of ductile materials in general, and thus 

assist in the guidance of criteria development for materials other than those specifically 

addressed. The goals are to obtain and compare analytical and experimental results, and 

to define an appropriate criterion for the onset of ductile fracture at the continuum scale. 

1.2 Historical Background 

Although human interest in fracture started a very long time ago, most of the effort to 

understand and explain the mechanisms behind it has been advanced over the past several 

decades. This sub-section provides an overview of only the most influential studies and 

developments; a comprehensive historical development of fracture mechanics is 

discussed by Erdogan (2000) and Cotterel (2002). 

Griffith (1921) developed a fracture criterion for a (brittle) material with a pre-existing 

elliptical crack by using an energy balance approach. In the derivation of his fracture 

criterion, Griffith considered only the elastic strain energy of the system and validated his 

formulation by conducting experiments with glass, which is a brittle material. However, 

the application of the criterion did not provide satisfying results for ductile materials. 

Later, it was shown by Orowan (1945, 1949) and Irwin (1948) that Griffith’s fracture 

criterion can be applicable only to brittle fracture; i.e., it cannot be directly applied to 

ductile fracture where the fracture mechanism is different and plastic deformation plays 

an essential role. 
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Orowan (1949) derived an expression – similar to Griffith’s expression – for fracture of 

brittle materials by approaching the problem at the micro-scale, and he suggested a 

fracture criterion for brittle fracture of ductile materials by making a small but important 

modification (i.e., adding the plastic work contribution) to Griffith’s formula. 

In a related effort, Irwin (1957) showed that the stress distribution near the crack tip can 

be determined by a so-called 'crack-extension-force' and he generalized Griffith’s 

formulation for arbitrary crack geometries and loading conditions. This was 

accomplished by developing the 'stress intensity factor' concept in addition to the 'crack-

extension-force' concept. 

A criterion for brittle fracture usually requires the current state of stress, whereas ductile 

fracture depends on the history of the state of stress and strain. Moreover, the underlying 

mechanisms of ductile fracture are very complex. The fracture process can be divided 

into three stages: i) void nucleation, ii) void growth, iii) void coalescence
3
. The 

simulation of the deformation and eventual fracture of structural materials are 

fundamentally important and have received considerable attention. The modeling efforts 

are often based on the pioneering works of McClintock (1968), Rice & Tracey (1969), 

Needleman (1972) and Gurson (1977) for modelling of void growth and coalescence. 

Roughly half a century ago, McClintock (1968) developed an expression for void growth 

and coalescence of long cylindrical holes (i.e., using the plane-strain assumption) of 

elliptical cross section in an infinite plastic medium under an equiaxial stress state. He 

assumed that most of the strain occurs while the holes are still small and neglected their 

interactions. He developed the criterion by combining and modifying the solution of the 

growth of circular holes in a plastic medium and the Berg (1962) solution of change in 

size and shape of elliptical holes in a viscous medium. Moreover, he used his solution for 

void growth and coalescence to develop a ductile fracture criterion of pre-existing holes 

in a plastic material. Note that, as he pointed out, his criterion overpredicts the fracture 

strain. 

                                                 
3
 Garrison & Moody (1987) provided a detailed summary of experimental observations and 

mathematical models on each stage of the ductile fracture process in their review paper. In 

addition, the paper includes research studies and results of stress states and strain distributions of 

tensile tests on smooth and notched specimens. Finally, the authors conclude the paper with a 

thorough discussion on fracture toughness and crack-tip-opening displacement predictions. 
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Rice & Tracey (1969) explored the contribution of the volume change and the shape 

change parts in the growth of an isolated spherical void (i.e., they neglected the 

interactions of neighboring voids) in a non-hardening infinite rigid-plastic medium under 

uniform far-field stress and strain. The solution was obtained by establishing a variational 

principle and applying it through the Rayleigh-Ritz method. Moreover, as a complement 

to McClintock’s (1968) analysis, they also applied the established variational principle to 

McClintock’s study of cylindrical voids (for a non-hardening material). 

Needleman (1972) studied void growth and coalescence of doubly-periodic square arrays 

of circular cylindrical voids in an elastic-plastic medium under uniaxial deformation. His 

numerical solution was obtained by a variational principle for the plane-strain condition. 

He extrapolated his solution to predict the strain at void coalescence. 

Gurson (1977) developed a general yield criterion and flow rule for porous ductile 

materials
4
 by using a unit cube model having random void shapes and orientations. The 

matrix material is assumed to be homogeneous, incompressible, rigid-plastic and 

sufficiently large to statistically represent the properties of the aggregate. Moreover, he 

applied his general formulation to two different void geometries (a long circular cylinder 

and a sphere) by simplifying his model as a single void that is located in the center of the 

cell and geometrically similar to the outer cell wall. A few years later, Tvergaard (1981) 

introduced three parameters into the (original) Gurson model to account for realistic 

values. 

However, original and the modified Gurson models are based on the void growth 

mechanics of axisymmetric stress states and predict zero void growth rate under zero 

mean stress, except when voids are nucleated (Nahshon & Hutchinson, 2008). Nahshon 

& Hutchinson (2008) introduced a new term into the void growth rate (see/compare 

Equation (9) and Equation (10) of the cited reference) that accounts for the shear-

dominated stress states. As they pointed out, this modification leaves the growth rate 

unaltered for the axisymmetric stress states. 

                                                 
4
 “… a porous material (aggregate of voids and ductile matrix) rather than a polycrystalline 

aggregate.” (Gurson, 1977). In other words, his analyses focused on microscopic scale rather 

than macroscopic scale. 
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Macro-scale studies have been conducted as well in addition to micro-scale studies 

discussed above. At the macro-scale, the most popular approach for the initiation of 

ductile fracture of metals is to establish the limiting effective strain to material failure 

based on the stress state. The state of stress may be expressed in terms of the mean stress 

and the second deviatoric stress invariant (e.g., stress triaxiality) for two dimensional 

state of stress conditions and the third deviatoric stress invariant (e.g., Lode parameter) as 

well for three dimensional state of stress conditions. Such proposals for characterizing 

ductile failure have been studied extensively. 

Over a decade ago, Bao & Wierzbicki (2004) developed a fracture locus for 2024-T351 

aluminum alloy by introducing three empirical relations for three different regions: void 

sheeting (i.e., shear fracture), internal necking (i.e., opening mode fracture), and the 

combination of void sheeting and internal necking
5
. The most important result was that 

the fracture locus has a slope discontinuity, which they define as the point of transition of 

the fracture mechanisms. A decade later, Papasidero et al. (2015) performed experiments 

on 2024-T351 aluminum alloy tubular specimens to revisit the results of Bao & 

Wierzbicki (2004) and investigate the effects of non-proportional loading on fracture 

strain. Although they have qualitatively similar results as Bao & Wieazbicki (2004) for 

high stress triaxialities, Papasidero et al. (2015) obtained different qualitative results in 

the low stress triaxiality region. Possible reasons for this are discussed in the 'Discussion 

section' of Papasidero et al. (2015). As they pointed out, this may be due to differences in 

the microstructures of the Al 2024-T351 specimens used. However, the author believes 

that the differences in the numerical modeling (element type, for example) may 

contribute as well. 

Recently, Li & Karr (2009) predicted the onset of ductile fracture in tension from the 

stability point of view. Small dynamic perturbations were introduced near static 

equilibrium to assess the static stability. An idealized three-piece-model, addressed by 

Hart (1967), was used to represent the 'homogenous' and 'imperfect' parts of the material. 

The onset of fracture was interpreted as the result of a supercritical pitchfork bifurcation 

of homogeneous deformation. They also developed an analytical expression that accounts 

                                                 
5
 Figure 3 of Besson (2010) shows the difference between internal necking and void sheeting. 
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for the length scale in fracture strain (see ''Equation 22'' of the cited reference). Moreover, 

they explored the effect of an 'imperfection parameter' on the evolution of strains of 

'homogenous' and 'imperfect' parts (see Figure 8 of the cited reference) and the effect of 

length scale on the evolution of total strain (see Figure 9 of the cited reference). 

Most of the past studies have been focused on void growth and coalescence; that is, 

numerous researchers have focused on establishing a criterion for crack propagation (i.e., 

extension of pre-existing cracks). Moreover, there is presently no generally-accepted 

criterion for ductile fracture. Therefore, the objective of the current study is the 

development of a closed-form theoretical solution and the presentation of experimental 

results on the initiation of ductile fracture at the continuum scale. Ductile fracture at the 

atomistic level is discussed elsewhere (see e.g., Baskes & Ortiz, 2015). 

1.3 Outline of the Dissertation 

This dissertation consists of six chapters. An overview of the most influential fracture 

criteria is presented in the second chapter, while a new fracture criterion on the initiation 

of ductile fracture is presented in the third chapter. The fourth chapter provides the 

process, analyses, and the results of the experiments on a mild steel. Finally, the 

experimental and the theoretical results are compared in the fifth chapter, and conclusions 

and suggested future work are presented in the sixth chapter. 
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CHAPTER 2 

Review of Current Fracture Criteria 

2.1 Griffith’s Method 

Griffith’s (1921) study was the first published work that considered the energy balance 

approach to define a fracture criterion. He called this approach the 'extended theorem of 

minimum energy'. He stated that: 

“The total decrease in potential energy due to formation of a crack is equal to the 

increase in strain energy less the increase in surface energy
6
.” 

Griffith believed that the difference between the theoretical and practical strength of a 

material was due to existing small cracks in the material. He then developed a fracture 

criterion (for brittle materials) by minimizing the 'change in potential energy', which 

represents an unstable equilibrium
7
; i.e., the condition for a crack to propagate. He 

considered a large flat plate (under biaxial stress state) with a pre-existing small crack 

(the crack length should be small compared to the plate dimension but large compared to 

'radius of molecular action') for plane-stress and plane-strain conditions. His derivation 

was obtained by using the linear elasticity relationships and assuming that the plate is 

homogenous, isotropic and has a uniform thickness. 

                                                 
6
 The surface energy which occurs during the formation of new surfaces. 

7
 The second derivative of Δ𝑈 with respect to 𝑐 equals ''−

2𝜋𝜎2

𝐸∗
'' (see Equation (2-5)). As the 

second derivative of ''change in potential energy, Δ𝑈'' is negative, it represents an unstable 

equilibrium. 
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The increase in elastic strain energy of a plate per unit thickness due to an existing 

elliptical crack of length
8
 2𝑐 is

9
 

 𝑈𝑒 = −
𝜋𝜎2𝑐2

𝐸∗
 (2-1) 

where 𝐸∗ = 𝐸 for plane-stress and 𝐸∗ = 𝐸/(1 − 𝜈2) for plane-strain conditions. 𝜎 is the 

applied in-plane stress, 𝑐 is half the crack length, 𝜐 is Poisson’s ratio, and 𝐸 is the 

modulus of elasticity. The negative sign represents the decrease of elastic strain energy 

(due to formation of the crack); that is, the crack releases elastic strain energy. 

The surface energy of the crack per unit thickness is 

 𝑈𝑠 = 4𝑐𝛼 (2-2) 

where 𝛼 is the specific surface energy. 

The total change in potential energy per unit thickness (due to formation of the crack) is 

then 

 Δ𝑈 = 𝑈𝑠 + 𝑈𝑒 (2-3) 

According to Griffith’s 'extended theorem of minimum energy', if an infinitesimal 

increase in crack length produces no change in the total potential energy of the system 

under constant applied load, then the existing crack will propagate (Dieter, 1986). This is 

due to the system seeking the minimum potential energy state. 

Using this notion, the necessary condition for crack propagation can be expressed 

mathematically in the form: 

 
𝑑

𝑑𝑐
(Δ𝑈) =

𝑑

𝑑𝑐
(𝑈𝑠 + 𝑈𝑒) = 0 (2-4) 

                                                 
8
 An internal crack of length 2𝑐 is equivalent to a surface crack of depth 𝑐 (Orowan, 1945) and 

edge crack of length 𝑐 (Dieter, 1986). 
9
 The expressions given in the original paper (Griffith, 1921) were erroneous due to 

miscalculation of the elastic strain energy. The expression above (i.e., Equation (2-1)) is the 

correct formulation of the elastic strain energy, however. 
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and 

 Δ𝑈 = 4𝑐𝛼 −
𝜋𝜎2𝑐2

𝐸∗
 (2-5) 

Hence, substitution yields 

 
𝑑

𝑑𝑐
(4𝑐𝛼 −

𝜋𝜎2𝑐2

𝐸∗
) = 0 (2-6) 

Simplifying this yields the expression for the critical applied in-plane stress at fracture 

 𝜎𝑓 = √
2𝛼𝐸∗ 

𝜋𝑐
 (2-7) 

where again 𝐸∗ = 𝐸 for plane-stress and 𝐸∗ = 𝐸/(1 − 𝜈2) for plane-strain conditions. 

As can be seen from the expressions above, and as Griffith (1921) stated, 𝜎𝑓√𝑐 is a 

constant for a specific material; that is, it is a material constant. Here 𝜎𝑓 is the critical 

applied in-plane stress (required for 'fracture' for a given crack length) and 𝑐 is the crack 

half-length. 

As a validation, Griffith performed (plane-stress) experiments with glass. As the loading 

and annealing of large glass flat plates were difficult, he decided to use thin round tubes 

and spherical bulbs for his experiments (Griffith, 1921). His experiments with various 

sizes of cracks were in fairly good agreement with his expression for the plane-stress 

condition. 

However, glass is a brittle material and the plastic strain energy, which has an important 

role in ductile facture, was not included in Griffith’s (1921) formulation. Later, it was 

shown by Orowan (1945; 1949) and Irwin (1948) that Griffith’s (1921) fracture criterion 

is applicable only to brittle fracture; i.e., it cannot be directly applied to ductile fracture as 
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the fracture mechanism
10

 of ductile fracture is different than that of the brittle fracture. It 

turns out that plastic deformation plays an essential role, and furthermore, strain 

hardening is an additional important factor. However, Griffith’s idea and approach made 

a considerable contribution to the field, in general, and also has had a major influence on 

the progress of modeling ductile fracture. 

2.2 Orowan’s Contribution 

Orowan derived an expression – similar to Griffith’s (1921) expression – for fracture of 

brittle materials by approaching the problem at the micro-scale and he suggested a 

fracture criterion for brittle fracture of ductile materials by making a small modification 

to Griffith’s formula. 

2.2.1 Fracture Criterion for Brittle Materials 

By equating the elastic strain energy per unit volume between two neighboring atomic 

planes of distance 𝑎0 to the specific surface energy 𝛼, Orowan (1949) obtained 

 𝑎0
𝜎𝑚𝑠
2

2𝐸
= 𝛼 (2-8) 

Rearranging Equation (2-8) yields 

 𝜎𝑚𝑠 = √
2𝛼𝐸

𝑎0
 (2-9) 

where 𝜎𝑚𝑠 is the order of magnitude of maximum theoretical molecular strength and 𝐸 is 

the modulus of elasticity. 

                                                 
10

 In brittle fracture, the crack propagates suddenly following the initiation of facture. In the case 

of ductile fracture, however, the specimen undergoes a considerable amount of extension – this 

amount varies depending on the geometrical shape, ductility of the material, and the loading 

condition – between the initiation and completion of fracture, and this involves large plastic 

deformations (Orowan, 1945). 
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The maximum tensile stress of a plate containing a flat elliptical hole of length 2𝑐, which 

occurs at the corners, is (Griffith, 1921) 

 𝜎𝑚𝑎𝑥 = 2𝜎√
𝑐

𝜌
 (2-10) 

where 𝑐 is the crack half-length, 𝜌 is the radius of curvature at the corners of the elliptical 

crack, and 𝜎 is the applied in-plane stress. 

Orowan (1949) assumed that the radius of curvature of the sharpest crack cannot be less 

than the order of the atomic distance magnitude 𝑎0. Then, the maximum tensile stress at 

the sharpest crack is 

  𝜎𝑚𝑎𝑥 = 2𝜎√
𝑐

𝑎0
 (2-11) 

As the brittle fracture starts at the point of maximum stress, Orowan (1949) obtained an 

expression for the critical applied in-plane stress for a given crack length (for fracture of 

a brittle material) by equating the microscopic stress at the sharpest crack (i.e., 𝜎𝑚𝑎𝑥) to 

the value of maximum molecular cohesion (i.e., 𝜎𝑚𝑠). Hence, 𝜎𝑚𝑠 = 𝜎𝑚𝑎𝑥 and he 

obtained 

 𝜎𝑓 = √
𝛼𝐸

2𝑐
 (2-12) 

Note that this expression differs from Griffith’s (1921) expression (for the plane-stress 

condition) only by a factor of √𝜋/4. 

2.2.2 Fracture Criterion for Ductile Materials 

Orowan (1945) observed a considerable amount of plastic deformation in X-ray photos of 

low carbon steel 0.5 mm beneath the surface (see Fig 11b of Orowan, 1945). Hence, he 

(Orowan, 1949) proposed that plastic work should be added to the surface energy term in 

Griffith’s (1921) expression (for brittle fracture of ductile materials), which yields 
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 𝜎𝑓 = √
(2𝛼 + 𝑝)𝐸∗ 

𝜋𝑐
 (2-13) 

where again 𝐸∗ = 𝐸 for plane-stress and 𝐸∗ = 𝐸/(1 − 𝜈2) for plane-strain conditions. 

Also, 𝑝 is the amount of plastic work per unit area, 𝑐 is half the crack length, and 𝜎𝑓 is 

the critical applied in-plane stress (required for 'fracture' for a given crack length)
11

. 

As the magnitude of the plastic work would be much larger than the specific surface 

energy, the specific surface energy can be neglected (Orowan, 1949). Hence, the order of 

critical applied in-plane stress for a given crack length (for brittle fracture of a ductile 

material) is 

 𝜎𝑓 ≈ √
𝑝𝐸∗ 

𝜋𝑐
 (2-14) 

2.3 Irwin’s Contribution 

Irwin (1957) generalized Griffith’s formulation for arbitrary crack geometries and 

loading conditions by developing the 'crack-extension-force' and the 'stress intensity 

factor' concepts. 

Irwin (1957) obtained the stress distribution near the crack tip in a large plate containing 

a straight crack (a single crack or a collinear series of such cracks) along the x-axis. The 

crack length is assumed to be small compared to the plate dimensions. Moreover, the 

plastic zone around the crack tip is assumed small
12

 compared to the crack length such 

that linear elasticity solutions can be applied near the crack tip. The formulation was 

derived for the opening mode (i.e., Mode I) fracture of an arbitrary shape of crack and 

                                                 
11

 Note that in the notation and formulation in Chapter 3, the corresponding values are 2𝛼 = Γ ×
𝐴 and 𝑝 = 𝑙3. 𝑑𝑊

∗ or 𝑝 = 𝑙2. 𝑑𝑊
∗, depending on which direction is the thickness direction. 

Note that 𝑑𝑊∗ is the plastic work per unit volume of the fractured element. 
12

 “… a region of large plastic deformations may exist close to the crack but does not extend 

away from the crack by more than a small fraction of the crack length” (Irwin, 1957). 
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loading condition with the aid of the linear elastic solutions obtained by Westergaard 

(1939) 

 𝜎𝑥𝑥 = (
𝒢𝐼𝐸

∗

𝜋
)
1/2 1

√2𝑟
cos (

𝜃

2
) [1 − sin (

𝜃

2
) sin (

3𝜃

2
)] (2-15) 

 𝜎𝑦𝑦 = (
𝒢𝐼𝐸

∗

𝜋
)
1/2 1

√2𝑟
cos (

𝜃

2
) [1 + sin (

𝜃

2
) sin (

3𝜃

2
)] (2-16) 

where 𝜎𝑥𝑥 and 𝜎𝑦𝑦 are the components of the stress tensor. Moreover, 𝒢 is independent of 

𝑟 and 𝜃 and it is called 'fixed-grip strain energy release rate' (loss/release of strain energy 

due to unit crack extension
13

) and can also be interpreted as the 'crack-extension-force' 

(Irwin, 1957). 𝑟 is the radial distance from the crack tip and the upper range of 𝑟 is 

limited to distances small compared to crack dimensions. 𝜃 is the angle measured from 

the x-axis in the counter-clockwise direction and the Roman subscript 𝐼 (of 𝒢) refers to 

the opening mode (i.e., Mode I).  𝐸∗ = 𝐸 for plane-stress and 𝐸∗ = 𝐸/(1 − 𝜈2) for 

plane-strain conditions. 

As can be seen from the expressions above (see Equation (2-15) and Equation (2-16)), 

Irwin (1957) showed that stress distribution near the crack tip can be determined by the 

'crack-extension-force'. 

These expressions (i.e., Equation (2-15) and Equation (2-16)) can be generalized to all 

three fracture modes, that is, the opening mode (called 'Mode I'), the shear/sliding-mode 

(called 'Mode II'), and the tearing-mode (called 'Mode III') in the following form 

 𝜎𝑖𝑗 =
𝐾

√2𝑟
𝑓𝑖𝑗(𝜃) (2-17) 

                                                 
13

 “The strain-energy loss rate associated with the extension of the fracture accompanied only by 

plastic strains local to the crack surfaces” (Irwin, 1957). 
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Here, 𝑓𝑖𝑗(𝜃) is associated with the fracture mode and it is independent of the crack 

geometry and the loading conditions. 𝐾 is called the 'stress intensity factor'
14

 and it varies 

with the crack geometry and the loading conditions. The stress intensity factor can be 

expressed as
15

 

 𝐾 = √
𝒢𝐸∗

𝜋
 (2-18) 

The necessary condition for crack propagation is satisfied when the crack-extension-force 

reaches a critical value, called the critical-crack-extension-force, 𝒢𝑐. The critical crack-

extension-force for a particular fracture mode is a material constant and the 

corresponding critical stress intensity factor is called the 'fracture toughness'. 

Theoretical calculations of the stress intensity factors of the opening mode (𝐾𝐼) for 

different crack geometries and loading conditions can be found on p. 563–565 of Irwin 

(1960). In addition, the experimental measurement procedure of the crack-extension-

force for the opening mode (𝒢𝐼) by strain-gauge is explained on p. 364 of Irwin (1957), 

while that based on the change of the spring constant is explained on p. 565–567 of Irwin 

(1960). 

2.4 Rice’s Contribution 

Just over a decade after the development of the stress intensity factor and the crack-

extension force (i.e., the strain energy release rate) concepts by Irwin (1957), a new 

method on the calculation of the crack-extension-force 𝒢 was developed by Rice 

                                                 
14

 The notation/formulation here is adapted from the original references, that is, Irwin (1957, 

1960). However, it is worth noting that recent references may use the following 

notation/formulation: 

𝜎𝑖𝑗 =
𝐾

√2𝜋𝑟
𝑓𝑖𝑗(𝜃) where 𝐾 = √𝒢𝐸∗. 

15
 Note that this expression is the generalization of Griffith’s (1921) expression for various crack 

geometries and loading conditions. For instance, the stress intensity factor (of the opening mode) 

for Griffith’s (1921) specific case is 𝐾𝐼 = 𝜎√𝑐 (Irwin, 1960). 
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(1968)
16

. This method consists of evaluating a path-independent line integral called the 𝐽 

integral (Rice, 1968): 

 𝐽 = ∮ (𝑊𝑑𝑦 − 𝑡𝑖
𝜕𝑢𝑖
𝜕𝑥

𝑑𝑠)
𝑆

 (2-19) 

where 𝑊 is the strain-energy density (i.e., strain energy per unit volume), 𝑡𝑖 is the 

traction vector, and 𝑢𝑖 is the displacement vector. The integral is evaluated along the 

closed curve 𝑆 surrounding the crack tip in the counterclockwise direction. 

The criteria presented in this Chapter cannot be directly applied to ductile fracture, which 

consists of large plastic deformations. As mentioned, there is currently no generally-

accepted criterion for ductile fracture. Therefore, a criterion which relates the formation 

of macro-scale ductile fracture to a critical state is presented in the following chapter. 

                                                 
16

 “Another way of calculating 𝒢 is by way of the path-independent integral, a new concept 

developed by Rice” (Hahn et al., 1972). 
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CHAPTER 3 

New Ductile Fracture Criterion: Karr-Akçay Energy 

Balance 

A general criterion for ductile fracture
17

 has been sought for several decades. The 

common, widely used approach is establishing the effective failure strain (i.e., the 

material failure occurs when a critical level of effective strain is reached), which depends 

on the state of stress
18

. However, there is presently no generally-accepted criterion for 

ductile fracture. This is an extremely important issue as crashworthiness assessment, 

energy absorption capacity and damage survivability depend on the accurate prediction of 

fracture initiation, which limits the structure’s performance. 

A criterion which relates the formation of macro-scale ductile fracture to a critical state, 

in which the rate of mechanical work done on the continuum system reaches the energy 

release rate of the fractured system, is presented in the following (Karr & Akçay, 2016).  

3.1 Continuum Model for Ductile Fracture 

When a material is exposed to external forces
19

, the external work done is exchanged 

with the internal energy of the system assuming that the system is in equilibrium and 

quasi-static conditions apply (i.e., the kinetic energy of the whole system is neglected). In 

                                                 
17

 See Footnote 2. 
18

 As mentioned previously, note that the state of stress may be expressed in terms of the mean 

stress and the second deviatoric stress invariant (e.g., stress triaxiality) for two dimensional state 

of stress conditions and the third deviatoric stress invariant (e.g., Lode parameter) as well for 

three dimensional state of stress conditions. 
19

 External forces may be categorized as surface tractions and body forces. 
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addition, temperature changes
20

 are neglected and the plastic work dissipates through 

heat. 

We presume that the effective surface energy density is a macroscopic constant for a 

particular fracture mode and that there are no pre-existing cracks at the macroscale. 

Moreover, we presume that the stress and strain fields are stable such that any 

localization of the deformation (shear bands, for example) is included. Hence, the 

application of the proposed fracture criteria may be appropriate for pre-localization 

and/or post-localization. 

As discussed by Griffith (1921), work must be done on a continuous medium in order to 

overcome cohesive forces on either side of a fracture. The range of the molecular forces 

is small, and although the molecular force-displacement relations may not be known at 

this level, it is presumed that the net work of the debonding mechanism equals the surface 

energy of the material. Later, this concept was extended by Orowan (1945, 1949) and 

Irwin (1948) to include additional plastic work. 

In the following, we consider the continuum manifestation of micro-scale and molecular 

scale debonding mechanisms as the release of surface energy when a cracks forms on a 

local plane. We use the modified or effective surface energy in association with the 

fracture energy release and presume that the effective surface energy density is a 

macroscopic constant quantity for a particular fracture mode of a material. 

As the system maintains the minimum energy state, the rate of energy change of the 

intact system is initially less than the fractured state. In other words, the system, seeking a 

minimum energy state, will fracture if the rate of energy change for the system in the 

fracture mode becomes less than the un-fractured continuum system. Therefore, the 

critical state is reached when the energy release rate of the bulk system is balanced by the 

energy release rate of the fractured medium. 

                                                 
20

 Note that Mirza et al. (1996) observed rapid temperature rise in the material at high rates of 

loading (i.e., above ~10
2
 s

-1
) in their numerical simulations of experiments (on pure iron and 

aluminum alloy) in which the material constitutive relation takes thermal softening into account 

(see ''Discussion'' part of the cited reference for more details). However, here it is presumed that 

quasi-static conditions apply, that is, small rates of loading. 



 

18 

 

For ductile materials, fracture is usually associated with large strains in which the plastic 

strains are much greater than the elastic strains; hence, elastic deformation can be 

ignored, 𝜀𝑖𝑗
𝑒 ≈ 0. The total work increment per unit volume, 𝑑𝑊, then consists of only 

plastic strain increments and can be expressed as
21

 

 𝑑𝑊 = 𝜎𝑖𝑗𝑑𝜀𝑖𝑗 = 𝜎𝑖𝑗(𝑑𝜀𝑖𝑗
𝑒 + 𝑑𝜀𝑖𝑗

𝑝) ≈ 𝜎𝑖𝑗𝑑𝜀𝑖𝑗
𝑝

 (3-1) 

where 𝑑𝜀𝑖𝑗
𝑒 , 𝑑𝜀𝑖𝑗

𝑝
, and 𝑑𝜀𝑖𝑗 are the components of the elastic strain increment tensor, the 

plastic strain increment tensor, and the total strain increment tensor, respectively. Also, 

𝜎𝑖𝑗 are the components of the true stress tensor. Note that the superscript for the plastic 

deformation is dropped in the following, and again the total strain is assumed to be 

composed of only plastic strains. 

Now, consider a continuous medium with current dimensions 𝑙𝐼 x 𝑙𝐼𝐼 x 𝑙𝐼𝐼𝐼 (in the 

directions of 𝑥𝐼, 𝑥𝐼𝐼, and 𝑥𝐼𝐼𝐼 respectively) subjected to a uniform state of stress before 

fracture. Assume 𝑥𝐼 is in the direction of maximum principal stress/strain and 𝑥𝐼𝐼𝐼 is in 

the direction of minimum principal stress/strain. Hence, the total work increment per unit 

volume can be written in terms of principal stresses and the strains as 

 𝑑𝑊 = 𝜎𝐼𝑑𝜀𝐼 + 𝜎𝐼𝐼𝑑𝜀𝐼𝐼 + 𝜎𝐼𝐼𝐼𝑑𝜀𝐼𝐼𝐼 (3-2) 

where 𝜎𝐼 ≥ 𝜎𝐼𝐼 ≥ 𝜎𝐼𝐼𝐼. 

Multiplying both sides of the equation by the current volume yields the total/plastic work 

increment of the volume element, 𝑑𝔚, before fracture 

 𝑑𝔚 = 𝑙𝐼𝑙𝐼𝐼𝑙𝐼𝐼𝐼(𝜎𝐼𝑑𝜀𝐼 + 𝜎𝐼𝐼𝑑𝜀𝐼𝐼 + 𝜎𝐼𝐼𝐼𝑑𝜀𝐼𝐼𝐼) (3-3) 

Using the flow rule for the material, the strain increments 𝑑𝜀𝐼𝐼 and 𝑑𝜀𝐼𝐼𝐼 can be written in 

terms of 𝑑𝜀𝐼 for a given stress state. 

                                                 
21

 𝑑𝑊 = 𝜎𝑖𝑗𝑑𝜀𝑖𝑗 +
1

2
𝑑𝜎𝑖𝑗𝑑𝜀𝑖𝑗 = 𝜎𝑖𝑗𝑑𝜀𝑖𝑗 (1 +

1

2

𝑑𝜎𝑖𝑗

𝜎𝑖𝑗
) ≅ 𝜎𝑖𝑗𝑑𝜀𝑖𝑗. In other words, the increment in 

stress is assumed to be very small compared to the current stress itself; therefore, the second term 

is neglected.   
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Figure 3-1 Representation of volume element and fracture plane 

The energy release rate of the fractured medium can be associated with the total/plastic 

work increment of the fractured volume element, 𝑑𝔚∗, the effective surface energy 

release rate per unit surface area, Γ, and the frictional energy losses per unit area, ℱ, if 

any
22

. 

The flat fracture plane depicted in Figure 3-1 has area, 𝐴, 

 𝐴 =
𝑙𝐼𝐼𝑙𝐼𝐼𝐼

sin(𝜃𝑓)
 (3-4) 

where 𝜃𝑓 is the angle from the longitudinal, 𝑥𝐼, direction to the plane of fracture. 

                                                 
22

 It’s worth noting that this representation is very similar to Irwin’s following statement for 

ductile fracture. Note that we added a term for frictional losses, which depends on the mode of 

fracture under consideration. 

“The term equivalent to 4𝛼𝑐 may be approximately represented by two terms, one proportional 

to area of fracture, and one proportional to volume of metal affected by plastic flow” Irwin 

(1948). 

Note that 4𝛼𝑐 represents the surface energy term; see Section 2.1 and/or Equation (2-2). 
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The fracture plane disrupts the continuity of the element with the release of debonding 

energy of the fracture. Denoting the effective surface energy release rate (per increment) 

per unit surface area of the fracture as 𝛤, the surface energy release of the fracture 

medium is 𝛤x𝐴. Moreover, other considerations are the change of stress state of the 

fractured element from 𝜎𝑖𝑗 to say 𝜎𝑖𝑗
∗ , and the frictional energy losses per unit area, ℱ, 

due to contact and sliding of the fracture surfaces. 

The total/plastic work increment per unit volume associated with the fractured element 

may be expressed as 

 𝑑𝑊∗ = 𝜎𝐼
∗𝑑𝜀𝐼

∗ + 𝜎𝐼𝐼
∗𝑑𝜀𝐼𝐼

∗ + 𝜎𝐼𝐼𝐼
∗ 𝑑𝜀𝐼𝐼𝐼

∗  (3-5) 

Note that the development of the frictional losses, if any, depends on the mode of fracture 

under consideration. 

3.2 Mode I (Opening Mode) Ductile Fracture 

Consider the application of the proposed fracture criterion to crack formation with the 

plane of fracture having a normal in the direction of the maximum principal strain. 

Referring to Figure 3-1, the angle of inclination to the 𝑥𝐼 axis is 𝜋/2. Therefore, the 

initiation of the crack results in no tangential motion of the crack surfaces, and no 

frictional forces develop at the crack surface interface. 

Applying the fracture criterion by equating the energy release of the un-fractured and 

fractured systems, we obtain: 

 𝑙𝐼𝑙𝐼𝐼𝑙𝐼𝐼𝐼𝑑𝑊 = (𝛤𝐼x𝐴)𝑑𝜀𝐼 + 𝑙𝐼𝑙𝐼𝐼𝑙𝐼𝐼𝐼𝑑𝑊
∗ (3-6) 

where 𝑑𝑊∗ is the increment in plastic work per unit volume associated with the fractured 

element. 

Note that the rate of change of plastic work is assumed constant over a small continuum 

interval 𝑑𝜀𝐼. This increment interval for the (discontinuous) fracture mode with the 

overall strain increment remains 𝑑𝜀𝐼; however, the increment in strain is concentrated in 

the fracture zone. 
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We then consider that the effective surface energy release to be concentrated in this very 

small zone is similar to what Griffith (1921) referred as the 'radius of molecular action'. 

However, this zone must be generalized to include plastic work consistent with the 

effective surface energy release. In this sense, 𝛤 is interpreted as the rate of change of 

surface energy; that is, the change in surface energy per macro-scale strain increment, 

𝑑𝜀𝐼, per unit area. Hence, it is assumed that the plastic work component 𝜎𝐼
∗𝑑𝜀𝐼

∗ of the 

fractured volume vanishes as 𝑑𝜀𝐼
∗ drops suddenly zero as the increment in strain is 

concentrated in the fracture zone (and 𝜎𝐼
∗ suddenly decreases to zero at the completion of 

fracture). 

Equation (3-6) defines a necessary condition for the onset of ductile fracture; that is, the 

fractured energy state is higher than the homogeneous, continuous state until Equation 

(3-6) is satisfied. The fractured energy state is presumably the lower state thereafter. We 

also presume that the surrounding material has not reached this critical state yet. Hence, it 

is at this point that fracture is imminent within the element of consideration. 

Nevertheless, once the fracture actually develops within the element, one would then of 

course examine the consequence of its formation and growth and its effects on the 

neighboring elements. Here however, we are only establishing a condition for the onset 

of crack formation in an un-cracked plastic medium. 

Substituting Equation (3-4) into Equation (3-6), dividing by the incremental strain 𝑑𝜀𝐼 

and simplifying it yields 

 𝑙𝐼 (
𝑑𝑊

𝑑𝜀𝐼
−
𝑑𝑊∗

𝑑𝜀𝐼
) = 𝛤𝐼 (3-7) 

The natural strain component in the 𝑥𝐼 direction is defined as 

 𝑑𝜀𝐼 = 𝑑𝑙𝐼/𝑙𝐼 (3-8) 

Hence, the current length of the element 𝑙𝐼 will be proportional to the original unstressed, 

unstrained element length 𝑙𝐼,0 

 𝑙𝐼 = 𝑒𝜀𝐼𝑙𝐼,0 (3-9) 
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Substituting Equation (3-9) into Equation (3-7) yields 

 𝑒𝜀𝐼𝑙𝐼,0 (
𝑑𝑊

𝑑𝜀𝐼
−
𝑑𝑊∗

𝑑𝜀𝐼
) = 𝛤𝐼 (3-10) 

Note that the work done on the volume element is dependent on the length of the 

element; that is, doubling the length of the element doubles the plastic work of the 

element yet we presume only one fracture plane. We consider 𝛤𝐼 as a constant for a 

particular material, but there is evidently a characteristic length associated with 𝑙𝐼,0 such 

that a limited portion of the material near the crack itself provides work to the formation 

of the fracture. 

Equation (3-10) is then rewritten in the following form for the critical state 

 𝑒𝜀𝐼 (
𝑑𝑊

𝑑𝜀𝐼
−
𝑑𝑊∗

𝑑𝜀𝐼
) = 𝐶𝐼 (3-11) 

where 

 𝐶𝐼 = Γ𝐼/𝑙𝐼,0 (3-12) 

The constant 𝐶𝐼 is the specific surface energy density (surface energy per unit area per 

unit length) for the material, having same dimensions as stress. 

The characteristic length 𝑙𝐼,0 can be associated with averaged spacing of micro-structural 

inclusions and void defects as presented in Xia & Shih (1995)
23

. Xia & Shih also 

discussed the use of such a physical length scale and applied it in simulating crack 

growth resistance under small scale yielding using 2D computational cells. This model 

was developed further by Gao et al. (1998) using 3D computational cell elements having 

representative volume elements of size compatible with the micro-structural length 

                                                 
23

 “It must be emphasized that the cell size D should not be regarded as a length that can be 

adjusted for computational convenience, and neither should it be changed to accommodate 

different crack sizes and/or geometries. Rather, D is related to the microstructural dimension 

relevant to the fracture mechanism, i.e., it has a microstructural basis. 

... 

… the length D should be interpreted as the mean spacing between the voids nucleated from large 

inclusions. Microvoids nucleated from small inclusions assist the process of hole link-up with the 

crack tip and can be taken into account in the coalescence phase” (p. 236 of Xia & Shih, 1995). 
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 in simulating ductile crack growth. Afterward, Gullerud et al. (2000) explored the 

computational issues of computational cell methodology and discussed the guidelines and 

algorithms that lead an efficient analysis. 

Both the effective surface energy (𝛤) and the characteristic length (𝑙𝐼,0) are thus material 

specific. As an example, as presented in Section 3.4.1.1, we find a characteristic length 

for Al 2024 on the order of 10 µm. This is consistent with the micro-structural length 

scale dominant in aluminum alloys as discussed by Hahn & Rosenfield (1975). 

Furthermore, we presume the fracture renders a complete loss of the axial component of 

work, 𝜎𝐼
∗𝑑𝜀𝐼

∗ = 0, as mentioned. 

 𝑒𝜀𝐼 (
𝜎𝐼𝑑𝜀𝐼 + 𝜎𝐼𝐼𝑑𝜀𝐼𝐼 + 𝜎𝐼𝐼𝐼𝑑𝜀𝐼𝐼𝐼

𝑑𝜀𝐼
−
0 + 𝜎𝐼𝐼

∗𝑑𝜀𝐼𝐼
∗ + 𝜎𝐼𝐼𝐼

∗ 𝑑𝜀𝐼𝐼𝐼
∗

𝑑𝜀𝐼
) = 𝐶𝐼 (3-13) 

However, the other principal stresses and strains are maintained consistent with the 

boundary conditions; therefore, we have 𝜎𝐼𝐼𝑑𝜀𝐼𝐼 = 𝜎𝐼𝐼
∗𝑑𝜀𝐼𝐼

∗  and 𝜎𝐼𝐼𝐼𝑑𝜀𝐼𝐼𝐼 = 𝜎𝐼𝐼𝐼
∗ 𝑑𝜀𝐼𝐼𝐼

∗ . This 

mode of fracture is then predicted by the critical state 

 𝑒𝜀𝐼𝜎𝐼 = 𝐶𝐼 (3-14) 

The stress-strain relations must be established for the material, in addition to value for 𝐶𝐼, 

in order to predict the occurrence of fracture. 

Finally, note that the Equation (3-14) is not limited to uniaxial stress conditions. Rather 

the relationship between 𝜎𝐼 and 𝜀𝐼 will depend upon the complete state of stress and the 

stress history. This is addressed further in Section 3.4, where example applications are 

presented. 

                                                 
24

 “The layer height, denoted D, introduces a characteristic length scale over which damage 

occurs and is associated with the mean spacing of the larger, void initiating inclusions” (p. 762 

of Gao et al., 1998). 
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3.3 Mode II (Shear/Sliding Mode) Ductile Fracture 

The underlying micromechanical mechanisms leading to shear-dominated ductile fracture 

differ substantially from those which are dominant in high stress triaxiality states 

(Nahshon & Hutchinson, 2008). This distinction is also made in linear elastic fracture 

mechanics where the modes for crack opening, sliding, and tearing are distinguished. In 

this section we presume a mode of ductile fracture initiation associated with a shearing 

mode. Note that mixed-mode fracture, in which one should also consider the change in 

energy dissipation from the component of the tensile stress acting normal to the potential 

crack, is not addressed here. 

Returning to attention to Figure 3-1, we presume the crack formation occurs as tangential 

sliding along the fracture plane. Also, we now presume a surface energy density constant 

𝐶𝐼𝐼 for the material which generally differs from the opening mode (Mode I) constant. 

Presently, the precise relationship among ductile fracture modes and energy release rates 

warrants further attention. 

In the following, we assume there is no directional dependency of the surface energy; 

hence, anisotropy of the material is neglected. 

3.3.1 Mode II Shear Fracture without Sliding Friction 

We examine the initiation of fracture referring to Figure 3-1 with normal to the fracture 

plane oriented in the 𝑥𝐼 − 𝑥𝐼𝐼𝐼 plane. We first change the coordinate system to 𝑥1, 𝑥2 and 

𝑥3 directions where 𝑥1 is oriented in the 𝑥𝐼 − 𝑥𝐼𝐼𝐼 plane in the direction tangent to the 

fracture plane. Note that 𝑥2 direction is overlapped with the 𝑥𝐼𝐼 direction. 

The plastic work in the bulk, intact system is given by 

 𝑑𝑊 = 𝜏𝑑𝛾 + 𝜎11𝑑𝜀11 + 𝜎22𝑑𝜀22 + 𝜎33𝑑𝜀33 (3-15) 

Note that in Equation (3-15) the stress and the strain components are written in the new 

defined coordinate system rather than the principal directions and we let the shear strain 

𝛾 = 𝛾31 and the shear stress 𝜏 = 𝜏31. Then, for the fractured system 𝑑𝛾∗ = 0. Hence, 
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 𝑑𝑊∗ = 𝜎11
∗ 𝑑𝜀11

∗ + 𝜎22
∗ 𝑑𝜀22

∗ + 𝜎33
∗ 𝑑𝜀33

∗  (3-16) 

Applying the fracture criterion by equating the energy release rates of the un-fractured 

and the fractured systems, 

 𝑙𝐼𝑙𝐼𝐼𝑙𝐼𝐼𝐼𝑑𝑊 = (𝛤𝐼𝐼x𝐴)𝑑𝛾 + 𝑙𝐼𝑙𝐼𝐼𝑙𝐼𝐼𝐼𝑑𝑊
∗ (3-17) 

Substitution of 𝐴 (see Equation (3-4)) and further simplification yields 

 𝑙𝐼 (
𝑑𝑊

𝑑𝛾
−
𝑑𝑊∗

𝑑𝛾
) =

𝛤𝐼𝐼
sin 𝜃𝑓

 (3-18) 

Substituting Equation (3-15) and Equation (3-16) into Equation (3-18) and applying the 

same procedure as in the previous section, the necessary condition for the onset of shear 

fracture with no frictional losses on the fracture plane is obtained 

 𝑒𝜀𝐼𝜏 =
𝐶𝐼𝐼
sin 𝜃𝑓

 (3-19) 

Hence, 𝐶𝐼𝐼 is the specific surface energy density for the shear-mode and is defined as 

 𝐶𝐼𝐼 =
𝛤𝐼𝐼
𝑙𝐼,0

 (3-20) 

As discussed in the previous sub-section, we presume the normal stresses for that 

orientation are unchanged from the un-cracked to the fractured medium. Moreover, this 

formulation (i.e., Equation (3-19)) is valid only up to the instant of fracture, after which 

the formation of the fracture would affect the surrounding media. 

The shear stress (in the 𝑥𝐼 − 𝑥𝐼𝐼𝐼 plane) in terms of principal stresses is 

 𝜏 = (
𝜎𝐼 − 𝜎𝐼𝐼𝐼

2
) sin 2𝜃 (3-21) 

Substituting Equation (3-21) into Equation (3-19) yields the shear mode failure condition 

without sliding friction: 
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 𝑒𝜀𝐼 (
𝜎𝐼 − 𝜎𝐼𝐼𝐼

2
) sin 2𝜃𝑓 sin 𝜃𝑓 = 𝐶𝐼𝐼 (3-22) 

In the examples, it is convenient to let 𝜎𝐼𝐼𝐼 = 𝛽𝑊𝑆𝜎𝐼. Then, the state for the shear fracture 

without sliding friction can be expressed as 

 𝜎𝐼𝑒
𝜀𝐼(1 − 𝛽𝑊𝑆) sin 2𝜃𝑓 sin 𝜃𝑓 = 2𝐶𝐼𝐼 (3-23) 

The minimum, critical strain occurs when the product of sin 2𝜃𝑓 sin 𝜃𝑓reaches a 

maximum which occurs at a fracture angle of 

 𝜃𝑓 = cos−1 (
1

√3
) ≅ 54.70 (3-24) 

3.3.2 Mode II Shear Fracture with Sliding Friction 

If there is compressive normal stress 𝜎𝑁 acting on the interfaces of the fracture surfaces, 

then frictional energy loss per unit area, ℱ, due to contact and sliding must also be 

included. The tangential force is then given by the product of the coefficient of friction 

and the normal force, 𝜇𝜎𝑁. The specific frictional dissipation rate is then 

 ℱ = 𝜇𝜎𝑁𝑙𝐼,0 (3-25) 

The resulting critical state is then 

 𝑒𝜀𝐼𝜏 =
𝐶𝐼𝐼 + 𝜇𝜎𝑁
sin 𝜃𝑓

 (3-26) 

The compressive normal stress acting on the shear plane in terms of principal stresses is 

 𝜎𝑁 =
|𝜎𝐼 + 𝜎𝐼𝐼𝐼|

2
+
𝜎𝐼 − 𝜎𝐼𝐼𝐼

2
cos 2𝜃 (3-27) 

Note that 𝜎𝐼𝐼𝐼 < −2𝜎𝐼 for shear fracture with sliding friction to occur; hence, 𝜎𝐼 + 𝜎𝐼𝐼𝐼 <

0. Then, Equation (3-27) can be written as 
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 𝑒𝜀𝐼(𝜎𝐼 − 𝜎𝐼𝐼𝐼) sin 2𝜃𝑓 sin 𝜃𝑓 + 𝜇[(𝜎𝐼 + 𝜎𝐼𝐼𝐼) + (𝜎𝐼𝐼𝐼 − 𝜎𝐼) cos 2𝜃𝑓] = 2𝐶𝐼𝐼 (3-28) 

Let 𝜃𝑛 denote the angle for the fracture plane such that the normal compressive stress 

vanishes. Then, the friction term on the left hand-side disappears when 𝜃𝑓 ≥ 𝜃𝑛. 

In the examples, it is convenient to let 𝜎𝐼 = 𝛽𝑆𝜎𝐼𝐼𝐼. Then, the state for the shear fracture 

with sliding friction can be expressed as 

𝜎𝐼𝐼𝐼{𝑒
𝜀𝐼(𝛽𝑆 − 1) sin 2𝜃𝑓 sin 𝜃𝑓 + 𝜇[(𝛽𝑆 + 1) + (1 − 𝛽𝑆) cos 2𝜃𝑓]} = 2𝐶𝐼𝐼 (3-29) 

Finally, the corresponding (fracture) angle for minimum, critical strain can be obtained 

by differentiating Equation (3-28) or Equation (3-29) 

𝑒𝜀𝐼 sin 2𝜃𝑓 sin 𝜃𝑓 𝑑𝜀𝐼

+ [2 cos 2𝜃𝑓 sin 𝜃𝑓 𝑒
𝜀𝐼 + sin 2𝜃𝑓 cos 𝜃𝑓 𝑒

𝜀𝐼 + 2𝜇 sin 2𝜃𝑓]𝑑𝜃𝑓 = 0 
(3-30) 

This can be written as 

 
𝑑𝜀𝐼
𝑑𝜃𝑓

=
2 cos 2𝜃𝑓 sin 𝜃𝑓 𝑒

𝜀𝐼 + sin 2𝜃𝑓 cos 𝜃𝑓 𝑒
𝜀𝐼 + 2𝜇 sin 2𝜃𝑓

𝑒𝜀𝐼 sin 2𝜃𝑓 sin 𝜃𝑓
 (3-31) 

The strain takes its minimum value when 𝑑𝜀𝐼/𝑑𝜃𝑓 = 0 (local minimum). This gives 

 2 cos 2𝜃𝑓 sin 𝜃𝑓 𝑒
𝜀𝐼 + sin 2𝜃𝑓 cos 𝜃𝑓 𝑒

𝜀𝐼 + 2𝜇 sin 2𝜃𝑓 = 0 (3-32) 

Further simplification yields 

 [𝑒𝜀𝐼(3 cos2 𝜃𝑓 − 1) + 2𝜇 cos 𝜃𝑓] sin 𝜃𝑓 = 0 (3-33) 

Therefore, the relation between the critical strain and the fracture angle is 

 𝑒𝜀𝐼 =
2𝜇 cos 𝜃𝑓

1 − 3 cos2 𝜃𝑓
 (3-34) 

The fracture angle is thus 
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 𝜃𝑓 = cos−1 (
−𝜇 ∓ √𝜇2 + 3(𝑒𝜀𝐼)2

3𝑒𝜀𝐼
) (3-35) 

Note that Equation (3-35) reduces to Equation (3-24) for no friction (i.e., 𝜇 = 0) or when 

𝜃𝑓 ≥ 𝜃𝑛. 

3.4 Example Applications 

The direction of the plastic strain vectors is defined through a flow rule by assuming the 

existence of a plastic potential function, to which the incremental strain vectors are 

orthogonal (Desai & Siriwardane, 1984). Then, the plastic strain increments are given by 

the flow/normality rule: 

 𝑑𝜀𝑖𝑗
𝑝 = λ

𝜕𝑓

𝜕𝜎𝑖𝑗
 (3-36) 

where 𝑓 is the plastic potential function and λ is a non-negative scalar factor and may 

vary throughout the loading history. 

Employing 𝐽2 incremental plasticity with the Von-Mises yield function 𝑓 = 𝐽2 − 𝑘
2 = 0, 

the strain increments can be written in terms of the principal stress components, for 

example, 

 𝜀𝐼
𝑝 =

2

3
𝜆 [𝜎𝐼 −

1

2
(𝜎𝐼𝐼 + 𝜎𝐼𝐼𝐼)] (3-37) 

A power-law hardening relationship is applied in the following 

 𝜎𝑒𝑓𝑓 = Ω(𝜀𝑒𝑓𝑓
𝑝 )

𝑛
 (3-38) 

where Ω is the strength coefficient, 𝑛 is the hardening exponent, and the 𝜀𝑒𝑓𝑓
𝑝

 is the 

effective plastic strain. 

The Von-Mises effective stress for the plane-stress condition is defined as 
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 𝜎𝑒𝑓𝑓 = √
1

2
[(𝜎𝐼 − 𝜎𝐼𝐼)2 + (𝜎𝐼𝐼 − 𝜎𝐼𝐼𝐼)2 + (𝜎𝐼𝐼𝐼 − 𝜎𝐼)2] (3-39) 

The effective strain increment is defined as 

 𝑑𝜀𝑒𝑓𝑓
𝑝 = √

2

3
(𝑑𝜀𝑖𝑗

𝑝)
𝐷
(𝑑𝜀𝑖𝑗

𝑝)
𝐷

 (3-40) 

where (𝑑𝜀𝑖𝑗
𝑝)

𝐷
 is the deviatoric part of the plastic strain increment tensor

25
. Note that the 

deviatoric part of the plastic strain increment tensor is equal to the plastic strain 

increment tensor due to incompressibility; i.e., 𝑑𝜀𝑖𝑖
𝑝 = 0 (Hill, 2009). Hence, 

 𝑑𝜀𝑒𝑓𝑓
𝑝 = √

2

3
𝑑𝜀𝑖𝑗

𝑝𝑑𝜀𝑖𝑗
𝑝

 (3-41) 

where 𝑑𝜀𝑖𝑗
𝑝

 are the components of the plastic strain increment tensor. This expression can 

be integrated when the principal axes of strain increments do not rotate relative to the 

element and when the loading is proportional (p. 31 of Hill, 2009). The integration yields 

(in terms of principal strains) 

 𝜀𝑒𝑓𝑓
𝑝 = √

2

3
[(𝜀𝐼

𝑝)
2
+ (𝜀𝐼𝐼

𝑝)
2
+ (𝜀𝐼𝐼𝐼

𝑝 )
2
] (3-42) 

As the plastic strains are much greater than the elastic strain, the elastic part of the total 

strain can be neglected; that is, 

 𝜀𝑖𝑗 ≈ 𝜀𝑖𝑗
𝑝

 (3-43) 

Also, the effective strain can be expressed in terms of the maximum principal strain for 

proportional loading: 

                                                 
25

 Note that: 𝑑𝜀𝑖𝑗
𝑝
= (𝑑𝜀𝑖𝑗

𝑝
)
𝐷
+
1

3
𝑑𝜀𝑖𝑖

𝑝
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 𝜀𝑒𝑓𝑓 = 𝜁𝐼𝜀𝐼 (3-44) 

Finally, stress triaxiality is defined as 

 𝜂 =
𝜎𝑚
𝜎𝑒𝑓𝑓

 (3-45) 

where 𝜎𝑒𝑓𝑓 is the Von-Mises effective stress (see Equation (3-39)) and  𝜎𝑚 is the mean 

stress: 

 𝜎𝑚 =
𝜎𝐼 + 𝜎𝐼𝐼 + 𝜎𝐼𝐼𝐼

3
 (3-46) 

In the following examples, we use the hybrid experimental-numerical data published by 

Wierzbicki and his research group (Bao & Wierzbicki, 2004; Wierzbicki et al., 2005; Bai 

& Wierzbicki, 2010). 

3.4.1 Mode I (Opening Mode) Fracture Example 

For a given stress state, it is convenient to express the effective stress in terms of the 

maximum principal stress: 

 𝜎𝑒𝑓𝑓 = 𝜉𝐼𝜎𝐼 (3-47) 

Substituting Equation (3-38), Equation (3-44), and Equation (3-47) into Equation (3-14) 

with using Equation (3-43) yields 

 
Ω

𝜉𝐼
𝜀𝑒𝑓𝑓
𝑛 𝑒𝜀𝑒𝑓𝑓/𝜁𝐼 = 𝐶𝐼 (3-48) 

The solution to Equation (3-48) is then 

 𝜀𝑒𝑓𝑓
𝑓

= 𝜁𝐼𝑛 ∙ W(
1

𝑛𝜁𝐼
(
𝜉𝐼𝐶𝐼
Ω
)
1/𝑛

) (3-49) 

where W represents the Lambert W function. 
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3.4.1.1 Axisymmetric Stress, Opening Mode Fracture of Al 2024-T351 

For the axisymmetric case, one can obtain the following using Equation (3-39), Equation 

(3-45), Equation (3-46), and Equation (3-47) 

 𝜉𝐼 =
3

2 + 3𝜂
 (3-50) 

and from Equation (3-37), Equation (3-42), Equation (3-43), Equation (3-44) 

 𝜁𝐼 = 1 (3-51) 

Substituting Equation (3-50) and Equation (3-51) into Equation (3-49) yields 

 𝜀𝑒𝑓𝑓
𝑓

= 𝑛 ∙ W(
1

𝑛
(

3𝐶𝐼
Ω(3𝜂 + 2)

)
1/𝑛

) (3-52) 

Results obtained using Equation (3-52) are shown in Figure 3-2 along with the three data 

points published by Bai & Wierzbicki (2010). 

Bao & Wierzbicki (2004) performed a series of experiments (tensile tests, shear tests, 

combined tensile and shear tests, conventional upsetting tests, and new compression 

tests) with 2024-T351 aluminum alloy to explore the effect of stress triaxiality on fracture 

strain. They used finite element analyses to determine the state of stress and strain at 

fracture locations. Their approach was to model the test specimen and the loading 

conditions based on the corresponding physical experiment and calculate, via finite 

element analysis, the strain at the critical point in the specimen at the time of fracture 

found in the physical experiment. The data of all test results re-processed by Bai & 

Wierzbicki (2010), and the results and the corresponding test specimens are provided in 

Table 1 and Figure 21 of the cited reference, respectively. 

Equation (3-14) involves the current strain and the current stress state. However, current 

strain cannot generally be determined from the current stress using the plastic material’s 

constitutive relationships because the strain is history dependent. If we assume 

monotonically increasing, proportional loading however the strain levels can be 

determined from the stress state. Thus, although there is no one-to-one comparison of the 
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results of Bai & Wierzbicki (2010) with our analysis results, we can be consistent in our 

approach for comparison purposes by using a proportional stress state based on the 

reported average stress triaxiality. 

 

Figure 3-2 Effective strain to fracture versus stress triaxiality for axisymmetric loading and opening mode 

fracture of Al 2024-T351 cylinders. Hybrid experimental-numerical data of  Al 2024-T351 were published 

by Bai & Wierzbicki (2010). 

In their studies of Al 2024-T351, Bai & Wierzbicki (2010) found the specific values for 

the strength coefficient Ω = 740 MPa, and for the hardening exponent 𝑛 = 0.15. Using a 

best-fit for their data from round bars in tension, we calculate a toughness stress of 

𝐶𝐼 = 1081 MPa. Hahn et al. (1972) provided energy release rates
26

 of aluminum-base 

alloys (ductile fracture) in the range of 7-16 KJ/m
2
. Taking a mid-range value of 11 

KJ/m
2
 and applying Equation (3-12) with the calculated value of 1081 MPa for 𝐶𝐼, we 

find a characteristic length of 10 µm. This is the same order of magnitude of average 

spacing of large dimples
27

, center-to-center spacing of inclusions, and the critical crack-

                                                 
26

 See Table 3 of Hahn et al. (1972) for details. 

“𝒢 is the energy per unit area given up by the system during an incremental extension of the 

crack … It is common practice to measure 𝒢𝑐, which is the minimum value of 𝒢 at which crack 

extension is observed experimentally” (p. 381 of Hahn et al., 1972). 
27

 “ … spacing of cracked particles (dimple spacing) …” (p. 658 of Hahn & Rosenfield, 1975). 
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tip opening displacement (CTOD) provided in Table I of Hahn & Rosenfield (1975) for 

various aluminum alloys. 

There could presumably be a different effective strain to failure if the actual stress/strain 

history was used over the course of loading. However, the history of the stress states for 

each experiment is not available. To get an idea of the range of variations one might 

expect, we present the results obtained using the average stress triaxiality and the stress 

triaxiality at fracture together in Figure 3-3. Even though there is an obvious difference 

(the value of 𝐶𝐼 changes from 1081 MPa to 1144 MPa), we feel that the use of average 

stress triaxiality is more appropriate because the average stress triaxiality reflects the state 

of stress history better. 

 

Figure 3-3 Effective strain to fracture versus stress triaxiality for axisymmetric loading and opening mode 

fracture of Al 2024-T351 cylinders using both the average stress triaxiality and the fracture stress 

triaxiality. Magenta solid line is obtained evaluating average stress triaxiality data, while cyan dashed line 

is obtained evaluating the stress triaxiality at fracture data. Hybrid experimental-numerical data of  Al 

2024-T351 were published by Bai & Wierzbicki (2010). 

The general approach for non-proportional loading would be to check Equation (3-14) 

throughout the loading history with the critical state being reached when Equation (3-14) 
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is first satisfied as the loading is applied. Therefore, proportional loading is not required 

for its usage. 

3.4.2 Mode II (Shear Mode) Fracture Example 

For tensile stress states (i.e., 𝜎𝐼𝐼𝐼 ≥ −2𝜎𝐼), there is no compression on the fracture plane 

and the critical fracture state is found from Equation (3-23); and it is convenient to 

express the effective stress in terms of the maximum principal stress as in Equation 

(3-47). Substituting Equation (3-38), Equation (3-44), and Equation (3-47) into Equation 

(3-23) using Equation (3-43) yields 

 
Ω

𝜉𝐼
𝜀𝑒𝑓𝑓
𝑛 𝑒𝜀𝑒𝑓𝑓/𝜁𝐼(1 − 𝛽𝑊𝑆) sin 2𝜃𝑓 sin 𝜃𝑓 = 2𝐶𝐼𝐼 (3-53) 

The solution to Equation (3-53) is then 

 𝜀𝑒𝑓𝑓
𝑓

= 𝜁𝐼𝑛 ∙ W(
1

𝑛𝜁𝐼
(

2𝜉𝐼𝐶𝐼𝐼
Ω(1 − 𝛽𝑊𝑆) sin 2𝜃𝑓 sin 𝜃𝑓

)

1/𝑛

) (3-54) 

where W represents the Lambert W function. 

On the other hand, for compressive stress states, it is convenient to express the effective 

stress in terms of the minimum principal stress (i.e., the compressive stress) 

 𝜎𝑒𝑓𝑓 = 𝜉𝐼𝐼𝐼𝜎𝐼𝐼𝐼 (3-55) 

Substituting Equation (3-38), Equation (3-44), and Equation (3-55) into Equation (3-29) 

with using Equation (3-43) yields 

Ω

𝜉𝐼𝐼𝐼
𝜀𝑒𝑓𝑓
𝑛 {𝑒𝜀𝑒𝑓𝑓/𝜁𝐼(𝛽𝑆 − 1) sin 2𝜃𝑓 sin 𝜃𝑓 + 𝜇[(𝛽𝑆 + 1) + (1 − 𝛽𝑆) cos 2𝜃𝑓]}

= 2𝐶𝐼𝐼 

(3-56) 

For no friction (i.e., 𝜇 = 0) or when 𝜃𝑓 ≥ 𝜃𝑛, Equation (3-56) simplifies to 
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Ω

𝜉𝐼𝐼𝐼
𝜀𝑒𝑓𝑓
𝑛 𝑒𝜀𝑒𝑓𝑓/𝜁𝐼(𝛽𝑆 − 1) sin 2𝜃𝑓 sin 𝜃𝑓 = 2𝐶𝐼𝐼 (3-57) 

The solution to Equation (3-57) is then 

 𝜀𝑒𝑓𝑓
𝑓

= 𝜁𝐼𝑛 ∙ W(
1

𝑛𝜁𝐼
(

2𝜉𝐼𝐼𝐼𝐶𝐼𝐼
Ω(𝛽𝑆 − 1) sin 2𝜃𝑓 sin 𝜃𝑓

)

1/𝑛

) (3-58) 

3.4.2.1 Plane Stress, Shear Mode Fracture of Al 2024-T351 

Bao & Wierzbicki (2004) also examined fracture under plane-stress conditions in their 

studies of Al 2024-T351. These data are also re-processed and the results are summarized 

in Table 1 of Bai & Wierzbicki (2010). 

The same power-law constitutive relationships with the same coefficients (i.e., the 

strength coefficient of Ω = 740 MPa and the hardening exponent of 𝑛 = 0.15) is used 

here as for the Mode I case, presented in Section 3.4.1.1. Using a best fit for the (tensile 

stress states) data from the plane-stress condition, we calculate a toughness stress of 

𝐶𝐼𝐼 = 344 MPa. Assuming a characteristic length of say 10 µm, the energy release rate 

for Mode II is approximately 3.5 KJ/m
2
. This is about one third of the Mode I energy 

release rate found in Chapter 3.4.1.1. 

Results obtained using Equation (3-54) and Equation (3-58) are shown by blue solid 

curve
28

 in Figure 3-4 along with the data points reported by Wierzbicki and his research 

group. We note that this curve is qualitatively very similar to the extended Mohr-

Coulomb criterion presented in Figure 23 of Bai & Wierzbicki (2010). Moreover, the 

effect of friction is obtained by solving Equation (3-56). Figure 3-4 also shows the effect 

of including energy dissipation due to friction forces on the critical plane using values of 

friction coefficient 𝜇 = 0.5 and 𝜇 = 1.0. Increased frictional forces tend to increase the 

effective strain to fracture as more energy is required to induce the fracture mode. 

However, again, care should be taken with the comparison (of the hybrid experimental-

                                                 
28

 Equation (3-54) is used to obtain the right part of the curve, where tensile stress is dominant. 

On the other hand, Equation (3-58) is used to obtained left part of the curve, where compressive 

stress is dominant. 
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numerical data) here as we use a constant stress ratio in determining the critical strains to 

fracture, whereas experimental results may involve non-proportional loading histories. 

 

Figure 3-4 Effective strain to fracture versus stress triaxiality for plane stress loading and shear mode 

fracture of Al 2024-T351 bars. Blue solid curve shows the result for the critical state with no friction on the 

fracture planes, while the dashed lines show results of friction occuring on the fracture planes due to 

compressive normal stresses. Hybrid experimental-numerical data of  Al 2024-T351 were published by Bai 

& Wierzbicki (2010). 

Application of Equation (3-56) requires a search for the critical angle which yields the 

minimum strain to failure. Differentiating Equation (3-56) with respect to 𝜀𝑒𝑓𝑓 (or 𝜀𝐼) and 

𝜃𝑓 and setting the result equal to zero (for a local minimum) yield Equation (3-34). One 

can substitute this relation into Equation (3-56) for a single unknown in terms of 𝜃𝑓. 

Instead, we found the most convenient approach for solving Equation (3-56) for the 

minimum strain to failure was to step the angle 𝜃𝑓 in increments and solve for 𝜀𝑒𝑓𝑓 (or 𝜀𝐼) 

using Newton-Raphson’s method. Equation (3-34) serves then as a check on our solution. 

Results for the critical fracture angle are shown in Figure 3-5 for various stress 

triaxialities. Also, shown in the figure is the curve for 𝜃𝑛, the angle for the fracture plane 

such that the normal compressive stress vanishes. 
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Figure 3-5 Critical fracture angle versus stress triaxiality for plane stress loading and shear mode fracture of 

Al 2024-T351 bars. Blue solid curve shows the result for the critical state with no friction on the fracture 

planes, while the dashed lines show results of friction occuring on the fracture planes due to compressive 

normal stresses. 

3.5 Results and Discussion 

A new method of predicting ductile fracture is presented based on comparison of the 

dissipation rates of the bulk continuum system to the fractured medium.  The dissipation 

of the continuum system includes that of plastic work while that of the fractured system 

includes the surface energy of the crack formation, plastic work and frictional losses at 

the instant of crack initiation. Two mechanisms were considered, that of mode I which 

accounts for a crack-opening displacement field and a mode II shear crack initiation. The 

shear crack was addressed with and without frictional dissipation of the crack surfaces. 
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We believe that, as noted by Hancock & Mackenzie (1976) earlier
29

, a failure criterion 

must involve the 'characteristic scale of the physical event' and the introduction of the 

characteristic length, 𝑙𝐼,0, is a point of further consideration. In this chapter we note that 

the strain field reported by Wierzbicki and his research group (Bao & Wierzbicki, 2004; 

Wierzbicki et al, 2005; Bai & Wierzbicki, 2010) were determined from finite element 

models and were not mesh size dependent. It seems appropriate for such cases to use a 

single characteristic length which reflects the length of medium which contributes to the 

fracture energy release; i.e., the micro-structural length scale as discussed in Section 3.2. 

Often times, however, finite element simulations to failure do show mesh size 

dependency of strain to failure. In these cases, choice of an appropriate description of the 

effects of the element length scale is crucial and this is discussed further in Chapter 5. 

In this study, the micro-scale deformation mechanisms for the power-law plastic material 

are accounted for only in the constitutive equations. A further refinement of this approach 

would be the application of Gurson’s model or variations of it to account for void growth 

in the parent material
30

. This also affects the stress and strain field within the parent 

material which differs from the averaged state. It seems appropriate that the approach 

provided here could then be applied to the parent material surrounding the voids. 

Another avenue of  continuing the study to more general loading would be to consider 

further the mixed mode failure of the material in an effort to better understand the effects 

of combined tensile and shear stress states. To this point, only two mechanisms have been 

considered and these two modes are considered to occur independently. 

The presented approach offers a critical condition which can be assessed as the stress or 

strain history of the systems evolves and can thus account for non-proportional loading. 

Although there is considerable agreement with published hybrid experimental-numerical 

data, there is not at this point a set of published data which can be considered directly 

                                                 
29

 “In order to predict failure initiation in non-uniform stress fields, such as those ahead of 

cracks and flaws, it is not a sufficient condition for failure initiation that a strain which is a 

function of stress-state is exceeded at a point. Failure initiation must involve a minimum amount 

of material which is characteristic of the scale of physical events involved” (Hancock & 

Mackenzie, 1976). 
30

 Void growth is considered as crack propagation at the micro-scale. However, growth and/or 

coalescence of micro voids may be considered as fracture initiation at the macro/continuum scale, 

where the proposed theory can be applied. 
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comparable to the solutions presented. This is because the published data may offer only 

an averaged stress history for the experiments or in some cases variable triaxiality is 

provided but not the actual stress histories in component form. Therefore, the digital 

image correlation (DIC) study was undertaken as reported in Chapter 4. 
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CHAPTER 4 

Experimental Investigation 

4.1 Summary of Past Experimental Studies on Fracture Strain 

Estimates 

Over half a century ago, the experimental work of Bridgman on large plastic flow and 

fracture was collected in Bridgman (1964). The book was first published in 1952 and it 

encompasses numerous experiments with ductile materials as well as brittle materials. 

Hancock & Mackenzie (1976) conducted tensile tests on un-notched and various 

circumferentially notched cylindrical specimens using three different steels (Q1, HY130, 

and an electro slag re-melted version of HY130) to investigate the effect of the state of 

stress and machining direction (of the specimen) with respect to the rolling direction (i.e., 

long transverse and short transverse direction) on failure strain. The logarithmic ratio 

between the initial and final diameters of the minimum cross section, which was 

measured by a strain-gauge extensometer, was used to calculate the failure strain. The 

corresponding state of stress was computed using the geometry of the specimen; that is, 

they used Bridgman triaxiality
31

. Note that the strain at which the average stress (load 

divided by instantaneous cross-sectional area) decreases dramatically is defined as the 

                                                 
31

 The Bridgman triaxiality is defined as (Bao & Wierzbicki, 2004) 

𝜂𝐵𝑟𝑖𝑑𝑔𝑚𝑎𝑛 =
1

3
+ ln (1 +

𝑅𝐶𝑆
2𝑅𝑁

) 

assuming that effective strain is constant across the neck. Here, 𝑅𝐶𝑆 is the radius of the minimum 

cross section and 𝑅𝑁 is the profile radius of neck/notch. 
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material failure initiation
32

. Moreover, the paper includes the study of the metallographic 

features leading to failure initiation and a detailed discussion of void nucleation, void 

growth, and void coalescence. 

Johnson & Cook (1985) performed a series of quasi-static tensile tests with un-notched 

and various circumferentially notched specimens. These experiments include (tensile) 

Hopkinson bar
33

 (over a range of temperatures) and torsion tests (over a range of strain 

rates) using three different metals (OFHC copper, Armco iron, and 4340 steel) to 

determine the effect of strain rate, temperature and pressure on fracture strain. Fracture 

strains of the Hopkinson bar tests were obtained by measuring the cross-sectional area of 

the fractured specimen. Although it was not clearly stated how the material failure 

initiation and the fracture strains of the quasi-static tensile tests were established, the 

corresponding state of stress was computed by numerical simulation with a code known 

as EPIC-2
34

. Moreover, fracture strains also were obtained by using the developed 

cumulative-damage fracture model (see Equation (3) of the cited reference). 

Mirza et al. (1996) conducted tensile tests on circumferentially notched cylindrical 

specimens using three different metals (pure iron, mild steel, and aluminum alloy 

BS1474) to explore the effect of the state of stress and the strain-rate on fracture strain. 

Fracture strain was established by measuring the minimum diameter of the fractured 

specimen from at least ten positions and the corresponding state of stress was obtained by 

finite element simulation. Note that the main issue here is that the fracture strain 

measurement may not represent the correct measure of fracture initiation as the material 

may continue to deform a considerable amount (between the initiation of fracture and 

complete fracture) depending on the level of ductility. 

                                                 
32

 “In specimens examined after the drop in average stress, there was a large central crack as 

shown in Fig.6 and a loss in load-bearing cross-section: in specimens examined before a drop in 

average stress, there were discrete holes. … The linking-up of the larger holes and the 

subsequent sudden loss in load-bearing cross-section is considered to be a distinct event in the 

failure process which we have termed failure initiation” (p. 153 of Hancock & Mackenzie, 1976). 
33

 Split-Hopkinson bar (also called 'Kolsky bar') is an apparatus that is used to obtain dynamic 

stress-strain behavior of a material. 
34

 EPIC-2 (Elastic-Plastic Impact Computations in two dimensions plus spin) was an explicit 

finite element code for obtaining solutions for axisymmetric solids. The formulation was given 

for axisymmetric triangular elements which can account for large deformations (in the radial, 

axial, and angular direction), elastic-plastic solution, and wave propagation (Johnson, 1979). 
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Over a decade ago, Bao & Wierzbicki (2004) performed a series of experiments (tensile 

tests, shear tests, combined tensile and shear tests, conventional upsetting tests, and new 

compression tests) with 2024-T351 aluminum alloy to explore the effect of stress 

triaxiality on fracture strain. They used various specimen geometries (i.e., un-notched and 

notched cylindrical specimens, pure shear specimen, and plate with a circular hole) to 

measure the ductility over a wide stress triaxiality range. The point at which the load 

decreases dramatically was designated as the fracture initiation. Both the fracture strain 

and the stress triaxiality were obtained by finite element simulation using the 

experimental results of displacement to fracture. Moreover, they developed a fracture 

locus for this specific aluminum alloy by introducing three empirical relations for three 

different regions: void sheeting (i.e., shear mode fracture), internal necking (opening 

mode fracture), and the combination of void sheeting and internal necking. 

Barsoum & Faleskog (2007a) conducted experiments under combined tension and shear 

loads on circumferentially notched tubular specimens using two different steels (a 

medium strength steel: Weldox 420, and a high strength steel: Weldox 460) to explore 

the effect of stress triaxiality and Lode parameter on the failure strain and the failure 

mechanism (i.e., internal necking and void sheeting
35

). Although it was not clearly stated 

how the material failure initiation was established, the failure strain was calculated by 

inserting the measured axial displacement and rotation into the derived mathematical 

formulation. The corresponding state of stress was obtained by finite element simulation. 

Note that measured axial displacement and rotation represents the global deformation; 

hence, they evaluated the displacement and rotation over the notched region through a 

mathematical expression (see Equation (8) of the cited reference). However, these may 

not be an accurate representation of the deformation over the notched region as the 

derived mathematical expression (for the displacement and rotation over the notched 

region) relies on assumptions. 

                                                 
35

 The micromechanics of the failure mechanisms observed in their experimental study is 

investigated and modeled (the model consists of a 3D unit-cell containing a single void) in a 

different paper; that is, in Barsoum & Faleskog (2007b). 

Moreover, note that Figure 3 of Besson (2010) shows the difference between internal necking and 

void sheeting mechanisms. 
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Recently, Haltom et al. (2013) conducted experiments on aluminum alloy (Al-6061-T6) 

tubular specimens under combined shear and tension for various proportional loading 

ratios to explore the fracture strain including grain-level strain estimates. The point at 

which the load decreases dramatically was designated as the material failure and fracture 

strain was computed by monitoring digital images of square grids (on the test specimen) 

drawn by electro-etching. The corresponding state of stress was evaluated by inserting 

the measured force and torque into the mathematical expression for stresses. Note that 

they used the 'principal stretch ratios', which were obtained through the non-linear strain-

displacement relationships, for the calculation of the logarithmic principal strains and 

effective strain rather than using the 'principal engineering strains'
36

. 

Papasidero et al. (2015) performed experiments on 2024-T351 aluminum alloy tubular 

specimens to revisit the results of Bao & Wierzbicki (2004) and investigate the effects of 

non-proportional loading on fracture strain. A wide range of stress triaxiality was 

accomplished by conducting the experiments under combined tension and torsion. The 

point at which the load decreases dramatically was designated as the fracture initiation, 

and fracture strain and the corresponding state of stress were obtained by finite element 

simulation using the experimental results of displacement to fracture and/or rotation to 

fracture as Bao & Wierzbicki (2004) did. However, they used axisymmetric elements in 

the finite element simulations, whereas Bao & Wierzbicki used shell elements or solid 

elements for modeling the low stress triaxiality experiments, and axisymmetric elements 

for modeling the high stress triaxiality experiments (i.e., round specimens). Moreover, in 

the finite element simulations of Papasidero et al. (2015), the yield surface is defined by 

the Hosford model (rather than the von-Mises model), and a linear combination of Swift 

and Voce laws was used as constitutive equations. Although they have qualitatively 

similar results as Bao & Wierzbicki (2004) for high stress triaxialities, Papasidero et al. 

(2015) obtained different qualitative results in the low stress triaxiality region. Possible 

reasons for this are discussed in the 'Discussion section' of Papasidero et al. (2015). As 

they pointed out, this may be due to differences in the microstructures of the Al 2024-

                                                 
36

 Note that 'principal stretch ratios' and 'principal strains' have the same principal directions and 

their values are related (see p. 107 of Wineman (2010)). The relationship between 'principal 

stretch ratios' and 'principal strains' can be seen in equation (A.4) of Haltom et al. (2013) as well. 
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T351 specimens used. However, the author believes that the differences in the numerical 

modeling (element type, for example) may contribute as well. 

In the following descriptions of our experimental work, fracture strain is established by 

digital image correlation (DIC) analysis via DaVis LaVision particle image velocimetry 

(PIV) software (DaVis LaVision, 2015). In addition, the corresponding state of stress is 

obtained using the power-law hardening relationship, the flow rule, and the measured 

strains. We define fracture initiation as the condition when the first visible crack appears 

in the digital picture of the test specimen. 

4.2 Experimental Setup 

All experiments were conducted at room temperature with AH32 steel, which is 

commonly used in ship hull structures, and results presented here are the initial results. 

Test specimens were machined by Northwest Tool of Jackson, MI. 

 

Figure 4-1 Etching process of a specimen: The specimen depicted is a 1in-width test coupon. 
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All specimens have been etched to create a random surface pattern for the digital image 

correlation (DIC) analysis. The etching process is depicted in Figure 4-1. Specimens were 

immersed into a 2% Nital solution for a few hours to reveal the substructure of the 

material. A mixture of methanol and nitric acid was used as a mixture of ethanol and 

nitric acid is potentially explosive. 

 

Figure 4-2 An example experimental set-up for a uniaxial test: The test specimen depicted is a shear 

specimen (without a groove). Note that the test specimen is adapted from Bao & Wierzbicki’s (2004) 

specimen design for pure shear tests. 

Some uniaxial tests
37

 (i.e., the uniaxial tests of the shear specimen and the 1in-width-

specimen with semi-circular groove) were performed using a custom designed and built 

C-clamp mechanism, which is depicted in Figure 4-2. The C-clamp is capable of 

experiencing a 7000 lbs load exert via its 7:1 lead screw. The test specimen seen in 

Figure 4-2 is a shear specimen. Note that the shear specimen is adapted from Bao & 

Wierzbicki’s (2004) design for pure shear tests. 

                                                 
37

 Note that two different set-ups have been used for uniaxial tests. 
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Figure 4-3 Another example experimental set-up for a uniaxial test using the altered indenter apparatus: 

The test specimen depicted is a 6mm-width specimen without groove. (Note that this specimen has been 

obtained by in-house machining of an 1in-width specimen). 

A LinTech Corporation custom-designed linear positioning mechanism RS150025–S5–

N3–W1–F4–M00–C000–E00–B00–L15.0 has been used to perform cylindrical indenter 

experiments and the rest of the uniaxial tests (i.e., the low and the high speed uniaxial 

tests of the 6mm-width specimen). An example set-up for these uniaxial tests and a 

cylindrical indenter experiment can be seen in Figure 4-3 and Figure 4-4, respectively. 

The test specimens seen in Figure 4-3 and Figure 4-4 are a 6mm-width specimen without 

groove
38

 and an 18mm-width specimen with 4 mm groove, respectively. 

The linear positioning mechanism is capable of exerting 11700 lbs via its 4:1 lead screw. 

Its overall length is 24 inches with 6 inches maximum travel range and it consists of the 

following assembled parts: LinTech HRC25 bearing blocks/rails, custom 

base/carriage/end stops, and rigid-rigid thrust load capacity. In addition, a 2-inch-

diameter stainless steel cylinder, from McMaster-Carr, has been used as an indenter. The 

indenter set-up also includes a carriage for the high speed video camera as depicted in 

Figure 4-5. The carriage is attached to the cylindrical indenter support system so that the 

                                                 
38

 This specimen has been obtained by in-house machining of an 1''-width specimen. 
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camera moves with the indenter and thus enables digital video to be captured at a 

constant distance from the test sample in contact with the indenter surface. This helps 

maintain the focus of the magnified image and minimizes possible strain errors caused by 

out-of-plane motion. 

The friction at the cylinder-specimen interface may affect the stress state, and the fracture 

mode and position. Figure 4-4 shows the specimen where friction is reduced by using 

teflon sheet and graphite particles at the interface. The distance from the camera lens to 

the test specimens is approximately 8 inches, equivalent to about 203 mm. 

A high speed camera operating at 6000 frame per second (fps) or 7500 fps has been used 

to record digital images of the specimen during experiments. The frame rate was chosen 

according to the imposed indenter displacement speed. The imager is a Phantom v710 (by 

Vision Research/Ametek) with full 1200 pixels by 800 pixels frame recording at 7500 

fps. The total memory in the imager (44.5 GB) is such that it can record 22,253 frames 

when recording at 1200 pixels x 800 pixels. The lens is a Nikkor with a 105 mm focal 

distance and an f-stop aperture of 2.8. 

 

Figure 4-4 Set-up for cylindrical indenter experiments: The diameter of the cylindrical indenter is 2 inches 

(equivalent to 50.8 mm) and the test specimen depicted is an 18mm-width specimen with a 4 mm groove. 
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Figure 4-5 The indenter set-up with camera carriage: The carriage is attached to the cylindrical indenter 

support system so the camera moves with the indenter and thus enables video to be captured at a constant 

distance from the test sample in contact with the indenter surface (Courtesy of Prof. Marc Perlin). 

The pixel resolution range of the experiments varied between 13.7 m and 16.5 m. This 

range was chosen to obtain digital images having pixel resolutions of approximately one 

grain size such that approximate grain-to-grain strain variations can be observed. Jia et al. 

(2013) and Zhou et al. (2016) provided average grain sizes of AH32 steels they used in 

their experimental investigation, and these published data suggests that the average grain 

size of AH32 steel ranges from ~5 m to ~25 m depending on the cooling 

process/system used. Therefore, the pixel resolution range of the experiments is on the 

order of the grain size. 

The drive mechanism is comprised of a Kollmorgen AKML53L–ANCNC–00 motor, 

shown in Figure 4-6, and a Kollmorgen AKD–P01205–NBAN–0000 controller. They can 

drive the indenter mechanism at constant speeds following the initial acceleration period. 

In addition, a Micron VT115–005–0–RM100–71 gear reducer with 5:1 or 10:1 ratio was 

installed between the motor and the linear positioning mechanism to obtain the desired 

speeds. The 10:1 ratio gear reducer and the mechanical connection between the gear 
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reducer and the linear positioning mechanism are depicted in Figure 4-7 and Figure 4-8, 

respectively. 

 

Figure 4-6 Kollmorgen AKML53L–ANCNC–00 motor with 5:1 ratio gear reducer installed. 

 

Figure 4-7 Micron VT115–005–0–RM100–71 10:1 ratio gear reducer. 
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Figure 4-8 Mechanical connection (i.e., coupling) between gear reducer and the linear positioning 

mechanism. 

Various displacement speeds have been applied to various specimen geometries for both 

uniaxial tests (0.20 inch/second and 0.40 inch/second) and cylindrical indenter 

experiments (0.60 inch/second, 1.20 inch/second, and 2.40 inch/second). 

Strain components of the deformed specimen have been obtained via DaVis LaVision 

Particle Image Velocimetry (PIV) software (DaVis LaVision, 2015). This process is 

explained in detail in Section 4.4.1. A listing of the brief program required to obtain the 

strain is presented in Figure 4-12. 

A number of researchers observed strong grain level strain heterogeneity (see e.g., Raabe 

et al., 2001; Haltom et al., 2013; Banerjee et al., 2016) in their experimental work and 

numerical analysis, meaning that the localization occurs at a scale much smaller than the 

thickness scale. Therefore, the current research will also present an investigation of the 

scale effect; however, smaller scales than the continuum scale are beyond the scope of 

the present investigation. 

Although he focused on quasi-brittle materials (e.g., concrete, rock, sea ice, etc.), Bažant 

(2000) provides a general discussion on the 'size effect' phenomenon. The paper also 

outlines the historical evolution of the ideas on the 'size effect'. In addition, de Borst 
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(2001) discusses the underlying mathematical reason and some possible solutions of the 

mesh sensitivity in numerical analysis. The manuscript also encompasses cohesive zone 

models, and stationary and propagative instabilities. 

A typical engineering/nominal stress-strain curve and the true stress-strain curve of a 

uniaxial test for AH32 steel are presented in Figure 4-9. The test was conducted using an 

MTS machine located in the Civil Engineering Department of the University of 

Michigan. The gauge length of the extensometer was 1 inch. The specimen used in the 

tensile test was an 1in-width specimen. The initial tensile yield stress and the ultimate 

tensile strength of the material are obtained as 436 MPa and 585 MPa, respectively. A 

comprehensive discussion of the true stress-strain curve and other experiments are 

presented later in this chapter. 

 

Figure 4-9 Engineering/nominal stress versus engineering/nominal strain and true stress versus true/natural 

strain: The specimen used in the tensile test was an 1in-width specimen (without groove). Applied speed 

was 0.004 inch per second with a corresponding strain rate of approximately 0.002 𝑠−1. 

Two more uniaxial tests with higher strain rates were conducted. These tests were also 

conducted using the MTS machine located in the Civil Engineering Department of the 

University of Michigan. The specimens used in the high speed tensile tests were 18mm-
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width specimens (without groove) and the fractured specimens are exhibited in Figure 

4-10. 

The true stress-strain curve of all three tests is presented together in Figure 4-11. The red 

solid line is obtained by using the data of 1in-width specimen. The applied speed was 

0.004 inch per second with a corresponding strain rate of approximately 0.002 𝑠−1. On 

the other hand, the cyan dashed line and the green dotted line are obtained by using the 

data of 18mm-width specimens. Applied speed for the cyan dashed line was 

approximately 1.5 inch/second with a corresponding strain rate of 1 𝑠−1, whereas the 

speed for the green dotted line was approximately 3.0 inch/second with a corresponding 

strain rate of 2 𝑠−1. 

 

Figure 4-10 Fractured specimens of high speed tensile tests. The specimens used in the tests were 18mm-

width specimens (without groove). The specimen on the top was subjected to strain rate of 1 𝑠−1, while the 

one on the bottom was subjected to 2 𝑠−1. 
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Figure 4-11 True stress-strain curves obtained via an MTS machine for different strain rates. The red solid 

line is obtained by using the data of an 1in-width specimen (without groove), whereas the cyan dashed line 

and the green dotted line are obtained by using the data of 18mm-width specimens (without groove). 

The primary aim of the experimental program is to provide data for researchers needing 

data for validation and verification of fracture models, and to provide the data with which 

to evaluate the constants (i.e., toughness stresses) in the analytical formulation presented 

in Chapter 3. Another aim of the experimental investigation is to explore the effects of 

the state of stress and the element size on the fracture behavior of metals, particularly 

AH32 steel. The tertiary objective is to investigate the effects of strain rate on fracture 

initiation. 

4.3 Digital Image Correlation (DIC) 

Digital image correlation (DIC) is an optical image processing technique that uses 

mathematical tools to capture the difference between two digital images, a (possibly un-

deformed) reference state image and a deformed state image, for example. The digital 

image correlation technique was developed at the University of South Carolina in the 

early 1980s (Jin et al., 2008; Pan et al., 2009). However, it is worth noting that the 
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fundamental notions were based on Particle Image Velocimetry (PIV), developed for 

fluid mechanics research. 

Although in–plane interferometric methods have better strain measurement accuracy, 

2D–DIC has the following advantages compared to in–plane interferometric methods 

(Pan et al., 2009): 

i) Experimental setup is relatively simple; that is, only one fixed CCD camera is 

sufficient 

ii) Surface pattern creation is simple or even might be unnecessary if the surface already 

has a natural texture 

iii) A white light source is sufficient; i.e., no laser source is required 

iv) Using digital images allow a wide resolution range 

The restriction to in–plane deformation measurement is the main disadvantage of 2D–

DIC compared to 3D–DIC (also called Stereo DIC) and DVC (Digital Volume 

Correlation). However, having easier experimental set up and faster recording and 

processing times (i.e., less cost) still make 2D–DIC practical and useful. This is the 

method used throughout. 

The error of 2D–DIC due to out-of-plane motion (both out-of-plane translation and out-

of-plane rotation) has been formulated and examined experimentally by Sutton et al. 

(2008). In the experiments presented here, these errors are very small compared to large 

plastic (fracture) strains and neglect of them affects the fracture strain calculation little; 

hence, they are neglected. 

Moreover, the impact of lens distortion on strain measurements has been studied by Lava 

et al. (2013). In addition to their study of the influence of lens distortion on rigid body 

translation, rigid body rotation, and uniaxial tensile test of a textile composite at low 

strain levels, Lava et al. (2013) also investigated the influence of lens distortion at large 

strain levels on a uniaxial tensile test of SS304 steel. As can clearly be seen from Figure 

13 of the cited reference, the impact of lens distortion on strain measurement loses its 

importance and becomes negligible after approximately 1.5%–2.0% of strain. In the 
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fracture experiments presented here, the strains are much larger and therefore such 

adverse effects of lens distortion are negligible. 

Finally, it is worth noting that electronic speckle photography (ESP), texture correlation, 

computer-aided speckle interferometry (CASI), and digital speckle correlation method 

(DSCM) are other names attributed to DIC in the literature (Pan et al., 2009). 

4.4 Strain and Stress Triaxiality Calculation 

4.4.1 Strain Calculation 

One way of obtaining the failure strain is measuring the diameter (or thickness) of the 

fractured specimen (see e.g., Hancock & Mackenzie, 1976; Mirza et al., 1996). Another 

method of obtaining the failure strain is using the experimental load-deformation record 

substituted into the derived mathematical formulation of strain (see e.g., Barsoum & 

Faleskog, 2007a). 

Currently, a common, widely used approach to post-process experimental results is 

extracting stress and strain fields from the corresponding finite element models, that is, 

hybrid experimental-numerical analysis (see e.g., Bao & Wierzbicki, 2004; Bai & 

Wierzbicki, 2010; Papasidero et al., 2015). In this approach, both stress and strain depend 

on the results of the finite element analyses and are not measured during tests. An 

accurate measurement of strain can be obtained by use of an electrical strain-gauge. 

However, this method cannot be used for large strain measurements (e.g., failure/fracture 

strain) as its range is generally limited to strain of 0.02 (Zhu et al., 2015). Therefore, in 

this study, a direct measure of strain has been obtained by DIC. Strains have been 

obtained by analyzing digital images that were recorded during the experiments with a 

Phantom v710 high speed camera, via DaVis LaVision (2015) software. The state of 

stress has been calculated directly (rather than through a numerical simulation) by using 

the DIC results via power-law relationship and flow rule. 

The operations that lead to extracting the engineering/nominal strains are depicted in 

Figure 4-12. The first two operations in the list import the desired digital images into 
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DaVis LaVision software. In the first operation, the time interval has been chosen as one 

second so that the velocity field obtained by the third operation is equivalent to 

determining the displacement field. In the second operation, the pixel dimensions of the 

digital images are defined and the third operation, as already noted, provides the 

displacement field. The fourth operation in the list sums the displacement field in a 

Lagrangian manner, while the fifth operation provides strain calculations. In this manner, 

the surface engineering strain components 𝑒11
𝐵𝑊, 𝑒22

𝐵𝑊, and 𝑒12
𝐵𝑊 are determined. The sixth 

operation in the list provides an opportunity to define a region the user is to examine. 

Therefore, a sub-region of interest, which is called a 'geometric mask', is introduced in 

the sixth operation such that this 'masked region' can be used to investigate a specific sub-

region of the imaged surface. Finally, in the seventh operation a constant value (which 

has been chosen as 9999) is prescribed to delineate the region outside the mask so that the 

results within the masked region can be extracted. Fluctuations in the strain field due to 

polycrystalline microstructure and the noise of the DIC measurements can be reduced by 

averaging (Papasidero et al, 2014). Therefore, average strains within the masked region 

are obtained. An average of all numbers less than 9999 provides the average strain within 

the masked region. 

 

Figure 4-12 The operation list that is used to extract engineering strains within the desired 'masked region'. 
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Strains have been calculated to the point of fracture initiation. We define the fracture 

initiation as the condition when the first visible crack appears in the digital picture of the 

test specimen. Moreover, as the continuum scale is the subject of interest, the initiation of 

fracture has been established by observing the digital images of the test specimen. 

Not all the digital images are used in the analysis. The lower-bound step intervals have 

been chosen such that the effect of noise on the strain values is relatively small. Upper-

bound intervals have been chosen such that the average correlation value between any 

two digital images is sufficiently high (e.g., higher than 0.80). In addition, obtained 

displacement fields are visually evaluated to confirm whether the results are reasonable. 

Strains have been calculated in a backward-stepping manner; that is, the last frame 

(which is the digital image of the specimen at the point of fracture initiation) has been 

taken as the first step and from there, time is reversed by using a previous image, and so 

forth (that is, the first frame is the last step). The difference between forward steps 

('forward-strain-calculation') and backward steps ('backward-strain-calculation') is only 

the sign of displacement vector. The primary reason for doing 'backward-strain-

calculation' is that it was much easier to define the crack/fracture region more precisely. 

In other words, the exact material position of the fracture region is known in the last 

frame, and can then be traced (by DaVis LaVision software) backwards in time to its 

location before loading. On the other hand, if the 'forward-strain-calculation' was used, 

the material position of the fracture in the first frame would be based on an estimate and 

it would likely not be precise. 

This procedure is repeated for various mask sizes. The minimum mask size, which is 

16x16 pixels, was chosen such that the 'masked region' is still on the continuum scale. 

The number of grains required to develop a continuum scale occurs when the grains have 

random orientations in a macroscopic manner
39

. This number for polycrystalline 

aggregates (e.g., steel, aluminum, etc.) is approximately twenty
40

 (Leis et al., 1985; 

Tegart, 1966). 

                                                 
39

 “The number of grains required to develop such continuum behavior (homogeneous grain-to-

grain compability) …” (p. 326 of Leis et al, 1985). 
40

 “… polycrystalline aggregates with >20 grains per cross section where we have essentially 

random orientations of the grains …” (p. 166 of Tegart, 1966). 
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4.4.1.1 Calculation of Forward-Plastic-Strain 

Let the backward-engineering-strain and forward-engineering-strain tensors of the last 

frame (which is the digital image of the specimen at the point of fracture initiation) be 

denoted as (𝑒𝑖𝑗
𝐵𝑊)

1
 and (𝑒𝑖𝑗

𝐹𝑊)
𝑁

, respectively. Similarly, let the backward-engineering-

strain and forward-engineering-strain tensors of the first frame (which is the digital image 

of the unstrained specimen) be denoted as (𝑒𝑖𝑗
𝐵𝑊)

𝑁
 and (𝑒𝑖𝑗

𝐹𝑊)
1
, respectively. Obviously, 

(𝑒𝑖𝑗
𝐵𝑊)

1
= 0 (as this is the first step in the backward sense), (𝑒𝑖𝑗

𝐹𝑊)
1
= 0 (as this is the 

first step in the forward sense), and (𝑒𝑖𝑗
𝐹𝑊)

𝑁
≠ −(𝑒𝑖𝑗

𝐵𝑊)
𝑁

. 

Therefore, the forward-engineering-strain components are calculated in the following 

manner: 

 (𝑒𝑖𝑗
𝐹𝑊)

1
= 0 (4-1) 

 (𝑒𝑖𝑗
𝐹𝑊)

2
=

{
 

 
1 + (𝑒𝑖𝑗

𝐵𝑊)
𝑁−1

1 + (𝑒𝑖𝑗
𝐵𝑊)

𝑁

− 1 𝑖𝑓 𝑖 = 𝑗

(𝑒𝑖𝑗
𝐵𝑊)

𝑁−1
− (𝑒𝑖𝑗

𝐵𝑊)
𝑁
 𝑖𝑓 𝑖 ≠ 𝑗

 (4-2) 

 (𝑒𝑖𝑗
𝐹𝑊)

3
=

{
 

 
1 + (𝑒𝑖𝑗

𝐵𝑊)
𝑁−2

1 + (𝑒𝑖𝑗
𝐵𝑊)

𝑁

− 1 𝑖𝑓 𝑖 = 𝑗

(𝑒𝑖𝑗
𝐵𝑊)

𝑁−2
− (𝑒𝑖𝑗

𝐵𝑊)
𝑁
 𝑖𝑓 𝑖 ≠ 𝑗

 (4-3) 

… 

 (𝑒𝑖𝑗
𝐹𝑊)

𝑁−1
=

{
 

 
1 + (𝑒𝑖𝑗

𝐵𝑊)
2

1 + (𝑒𝑖𝑗
𝐵𝑊)

𝑁

− 1 𝑖𝑓 𝑖 = 𝑗

(𝑒𝑖𝑗
𝐵𝑊)

2
− (𝑒𝑖𝑗

𝐵𝑊)
𝑁
 𝑖𝑓 𝑖 ≠ 𝑗

 (4-4) 

 (𝑒𝑖𝑗
𝐹𝑊)

𝑁
=

{
 

 
1 + (𝑒𝑖𝑗

𝐵𝑊)
1

1 + (𝑒𝑖𝑗
𝐵𝑊)

𝑁

− 1 𝑖𝑓 𝑖 = 𝑗

(𝑒𝑖𝑗
𝐵𝑊)

1
− (𝑒𝑖𝑗

𝐵𝑊)
𝑁
 𝑖𝑓 𝑖 ≠ 𝑗

 (4-5) 
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This can be generalized as 

 (𝑒𝑖𝑗
𝐹𝑊)

𝑘
=

{
 

 
1 + (𝑒𝑖𝑗

𝐵𝑊)
𝑁−𝑘+1

1 + (𝑒𝑖𝑗
𝐵𝑊)

𝑁

− 1 𝑖𝑓 𝑖 = 𝑗

(𝑒𝑖𝑗
𝐵𝑊)

𝑁−𝑘+1
− (𝑒𝑖𝑗

𝐵𝑊)
𝑁
 𝑖𝑓 𝑖 ≠ 𝑗

 (4-6) 

where 𝑘 = 1,2, … ,𝑁. 

Finally, forward-natural-strains at any step can be obtained by the following relationship 

 𝜀𝑖𝑗
𝐹𝑊 = {

ln(1 + 𝑒𝑖𝑗
𝐹𝑊)  𝑖𝑓 𝑖 = 𝑗

(𝑒𝑖𝑗
𝐹𝑊)

𝑁
 𝑖𝑓 𝑖 ≠ 𝑗

 (4-7) 

where 𝑒𝑖𝑗
𝐹𝑊 are the components of the forward-engineering strain tensor and 𝜀𝑖𝑗

𝐹𝑊 are the 

forward-natural-strain components
41

. 

4.4.1.2 Calculation of Effective (Fracture) Strain 

The effective strain increment can be obtained by substituting forward-natural-strain 

increments into the expression 

 𝑑𝜀𝑒𝑓𝑓
𝑝 = √

2

3
(𝑑𝜀𝑖𝑗

𝑝)
𝐷
(𝑑𝜀𝑖𝑗

𝑝)
𝐷

 (4-8) 

where (𝑑𝜀𝑖𝑗
𝑝)

𝐷
 is the deviatoric part of the plastic strain increment tensor

42
. Note that the 

deviatoric part of the plastic strain increment tensor is equal to the plastic strain 

increment tensor due to incompressibility; i.e., 𝑑𝜀𝑖𝑖
𝑝 = 0 (Hill, 2009). Hence, 

 𝑑𝜀𝑒𝑓𝑓
𝑝 = √

2

3
𝑑𝜀𝑖𝑗

𝑝𝑑𝜀𝑖𝑗
𝑝

 (4-9) 

                                                 
41

 Note that the natural strain increments (𝑑𝜀𝑖𝑗) are components of a tensor; hence, transformation 

rules/formulas/laws can be applied. On the other hand, natural strains (𝜀𝑖𝑗) are not components of 

a tensor (p. 152 of Malvern, 1969); hence, transformation rules/formulas/laws cannot be applied. 
42

 Note that: 𝑑𝜀𝑖𝑗
𝑝
= (𝑑𝜀𝑖𝑗

𝑝
)
𝐷
+
1

3
𝑑𝜀𝑖𝑖

𝑝
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where 𝑑𝜀𝑖𝑗
𝑝

 are the components of the plastic strain increment tensor. 

As the surface (that has been considered in DIC analysis) is free of stress, a state of 

plane-stress is established; hence, 𝜎33 = 𝜎13 = 𝜎23 = 0. Using the flow rule yields 

𝑑𝜀13
𝑝 = 𝑑𝜀23

𝑝 = 0. Therefore, the effective plastic strain increment yields the form 

 𝑑𝜀𝑒𝑓𝑓
𝑝 = √

2

3
[(𝑑𝜀11

𝑝 )
2
+ (𝑑𝜀22

𝑝 )
2
+ (𝑑𝜀33

𝑝 )
2
+ 2(𝑑𝜀12

𝑝 )
2
] (4-10) 

where 𝑑𝜀11
𝑝

, 𝑑𝜀22
𝑝

, and 𝑑𝜀33
𝑝

 are the normal strain increments and 𝑑𝜀12
𝑝

 is the shear strain 

increment. 

Plastic strain increments on the surface (or in-plane strain increments), that is, 𝑑𝜀11
𝑝

, 𝑑𝜀22
𝑝

, 

and 𝑑𝜀12
𝑝

 are computed by using the result of the DIC analysis and the engineering-

natural strain relationship given by Equation (4-7). Nevertheless, the plastic strain 

increment in the third direction (the thickness direction in our case) is obtained by using 

the incompressibility (𝑑𝜀11
𝑝 + 𝑑𝜀22

𝑝 + 𝑑𝜀33
𝑝 = 0); that is, 

 𝑑𝜀33
𝑝 = −(𝑑𝜀11

𝑝 + 𝑑𝜀22
𝑝 ) (4-11) 

As the plastic strains are much greater than the elastic strains, the elastic part of the total 

strain (and the total strain increment) can be neglected; that is, 

 𝑑𝜀𝑖𝑗 ≈ 𝑑𝜀𝑖𝑗
𝑝

 and 𝜀𝑖𝑗 ≈ 𝜀𝑖𝑗
𝑝

 (4-12) 

Hence, the total strain increment (𝑑𝜀𝑖𝑗) obtained by DIC analysis can be taken as the 

plastic strain increment (𝑑𝜀𝑖𝑗
𝑝

) in the above formulation (i.e., in Equation (4-10) and 

Equation (4-11)). 

Two different strain increment approaches are applied in the calculation of effective 

strain, the state of stress, and the stress triaxiality; i.e., each approach provides a set of 

figures for a specific mask size. In the first approach, the strain increments are from the 

un-deformed state to the current state, while the second set of figures are obtained by 

taking strain increments from the previous state to the current state. 
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1
st
 approach: 𝜀𝑒𝑓𝑓(𝑘) = 𝜀𝑒𝑓𝑓(1) + 𝑑𝜀𝑒𝑓𝑓(𝑘, 1) = 𝑑𝜀𝑒𝑓𝑓(𝑘, 1) (4-13) 

2
nd

 approach: 𝜀𝑒𝑓𝑓(𝑘) = 𝜀𝑒𝑓𝑓(𝑘 − 1) + 𝑑𝜀𝑒𝑓𝑓(𝑘, 𝑘 − 1) (4-14) 

where k is the step number; i.e., 𝑘 = 1,2, … ,𝑁. Moreover, 𝑑𝜀𝑒𝑓𝑓(𝑞, 𝑠) represents the 

effective strain increment from step s to step q. 

The only difference between the two approaches is the amount of strain increment 

considered. As the stress-strain relationships (i.e., the flow rule) are based on the linear 

incremental relationships, use of smaller strain increments (that is, the second approach) 

is believed to provide more reliable results. However, results of both approaches will be 

presented for comparison purposes. 

4.4.2 Stress Calculation 

4.4.2.1 Calculation of Stress Triaxiality 

Applying the flow rule for a plastic material (Desai & Siriwardane, 1984), the plastic 

strain increments are related to the true stress components: 

 𝑑𝜀11
𝑝 =

2

3
𝜆 [𝜎11 −

1

2
(𝜎22 + 𝜎33)] (4-15) 

 𝑑𝜀22
𝑝 =

2

3
𝜆 [𝜎22 −

1

2
(𝜎11 + 𝜎33)] (4-16) 

 𝑑𝜀12
𝑝 = 𝜆𝜎12 (4-17) 

where 𝜆 is a non-negative scalar factor and may vary throughout the loading history. 

Define 𝜓1 and 𝜓2 as the ratios of the plastic strain increments, i.e., 

 𝑑𝜀22
𝑝 = 𝜓1𝑑𝜀11

𝑝
 (4-18) 

 𝑑𝜀12
𝑝 = 𝜓2𝑑𝜀11

𝑝
 (4-19) 

By using the flow rule expressions above, these expressions can be written 
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 𝜓1 =
𝜎22 −

1
2
(𝜎11 + 𝜎33)

𝜎11 −
1
2
(𝜎22 + 𝜎33)

 (4-20) 

 
𝜓2 =

𝜎12
2
3 [𝜎11 −

1
2
(𝜎22 + 𝜎33)]

 
(4-21) 

Simplifying the equalities yields 

 𝜎11(1 + 2𝜓1) − 𝜎22(2 + 𝜓1) + 𝜎33(1 − 𝜓1) = 0 (4-22) 

 2𝜎11𝜓2 − 𝜎22𝜓2 − 𝜎33𝜓2 − 3𝜎12 = 0 (4-23) 

Again, as the surface (that has been considered in DIC analysis) is free of stress, a state of 

plane-stress is established. Therefore, in the case of the plane-stress condition (i.e., 

𝜎33 = 𝜎13 = 𝜎23 = 0), Equation (4-22) and Equation (4-23) reduce to 

 𝜎11(1 + 2𝜓1) − 𝜎22(2 + 𝜓1) = 0 (4-24) 

 2𝜎11𝜓2 − 𝜎22𝜓2 − 3𝜎12 = 0 (4-25) 

These expressions may also be written as, 

 𝜎22 =
1 + 2𝜓1
2 + 𝜓1

𝜎11 (4-26) 

 𝜎12 =
1

3
(2𝜎11𝜓2 − 𝜎22𝜓2) (4-27) 

Substituting the expression for 𝜎22 (Equation (4-26)) into the expression for 𝜎12 

(Equation (4-27)) gives 

 𝜎12 =
𝜓2

2 + 𝜓1
𝜎11 (4-28) 

The Von-Mises effective stress for the plane-stress condition is defined as 
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 𝜎𝑒𝑓𝑓 = √𝜎11
2 − 𝜎11𝜎22 + 𝜎22

2 + 3𝜎12
2  (4-29) 

Substituting expressions for 𝜎22 (Equation (4-26)) and 𝜎12 (Equation (4-27)) into 𝜎𝑒𝑓𝑓 

(Equation (4-29)) yields 

 𝜎𝑒𝑓𝑓 = √𝜎11
2 − 𝜎11 [

(1 + 2𝜓1)

(2 + 𝜓1)
𝜎11] + [

(1 + 2𝜓1)

(2 + 𝜓1)
𝜎11]

2

+ 3 [
𝜓2

(2 + 𝜓1)
𝜎11]

2

 (4-30) 

Further simplification yields 

 𝜎𝑒𝑓𝑓 = 𝜓𝑒𝑓𝑓_𝑡𝑒𝑛𝑠𝑖𝑙𝑒𝜎11 (4-31) 

where 

 𝜓𝑒𝑓𝑓_𝑡𝑒𝑛𝑠𝑖𝑙𝑒 = √
3(1 + 𝜓1 + 𝜓1

2 + 𝜓2
2)

(2 + 𝜓1)2
 (4-32) 

Note that as the components of the stress state are expressed in terms of 𝜎11 and the sign 

of 𝜓𝑒𝑓𝑓_𝑡𝑒𝑛𝑠𝑖𝑙𝑒 is chosen positive (i.e., tension in 11 direction), 11 direction should be 

chosen in the direction of positive loading to prevent possible unrealistic stress states 

(negative longitudinal stress under tension, for example). 

However, the state of stress should be expressed in terms of 𝜎12 for the shear test as the 

loading is dominated in the 12 direction. 

𝜎𝑒𝑓𝑓 = √[
(2 + 𝜓1)

𝜓2
𝜎12]

2

− [
(2 + 𝜓1)

𝜓2
𝜎12] [

(1 + 2𝜓1)

𝜓2
𝜎12] + [

(1 + 2𝜓1)

𝜓2
𝜎12]

2

+ 3𝜎12
2  (4-33) 

Further simplification yields 

 𝜎𝑒𝑓𝑓 = 𝜓𝑒𝑓𝑓_𝑠ℎ𝑒𝑎𝑟𝜎12 (4-34) 

where 
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 𝜓𝑒𝑓𝑓_𝑠ℎ𝑒𝑎𝑟 = √
3(1 + 𝜓1 + 𝜓1

2 + 𝜓2
2)

𝜓2
2  (4-35) 

In addition, the mean stress for the plane-stress condition is 

 𝜎𝑚 =
𝜎11 + 𝜎22 + 0

3
=
𝜎11 + 𝜎22

3
 (4-36) 

Inserting the expressions for 𝜎22 and 𝜎11 into the expression for the mean stress (Eq. 

(4-36)), one obtains 𝜎𝑚 in the form 

 
𝜎𝑚 =

3(1 + 𝜓1)
(2 + 𝜓1)

3
𝜎11     or     𝜎𝑚 =

3(1 + 𝜓1)
𝜓2
3

𝜎12 
(4-37) 

Finally, the stress triaxiality can then be calculated as 

 𝜂 =
𝜎𝑚
𝜎𝑒𝑓𝑓

=
1 + 𝜓1

√3(1 + 𝜓1 + 𝜓1
2 + 𝜓2

2)
 (4-38) 

4.4.2.2 Calculation of Average Stress Triaxiality 

The average stress triaxiality is obtained by dividing the area under the effective strain – 

stress triaxiality curve to effective strain at fracture; that is, 

 𝜂𝑎𝑣𝑒 =
1

𝜀𝑒𝑓𝑓
𝑓
∫ 𝜂𝑑𝜀𝑒𝑓𝑓

𝜀𝑒𝑓𝑓
𝑓

0

 (4-39) 

This integration is carried out numerically by using the trapezoidal rule. Note that as the 

stress triaxiality is not defined for the unloaded condition, calculations and figures for the 

stress triaxiality are provided after the first loading point. 

4.4.2.3 Obtaining the State of Stress 

Recall the power-law hardening relationship 

 𝜎𝑒𝑓𝑓 = Ω(𝜀𝑒𝑓𝑓
𝑝 )

𝑛
 (4-40) 
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where Ω is the strength coefficient, 𝑛 is the hardening exponent, and the 𝜀𝑒𝑓𝑓
𝑝

 is the 

effective plastic strain. The effective stress can be written in the form (see Equation 

(4-31)) 

 𝜎𝑒𝑓𝑓 = 𝜓𝑒𝑓𝑓_𝑡𝑒𝑛𝑠𝑖𝑙𝑒𝜎11 (4-41) 

𝜓𝑒𝑓𝑓_𝑡𝑒𝑛𝑠𝑖𝑙𝑒, 𝜓1, and 𝜓2 can be obtained by Equation (4-32), Equation (4-18), and 

Equation (4-19), respectively. 

Therefore, the power-law hardening relationship can be written as 

 𝜓𝑒𝑓𝑓_𝑡𝑒𝑛𝑠𝑖𝑙𝑒𝜎11 = Ω(𝜀𝑒𝑓𝑓
𝑝 )

𝑛
 (4-42) 

Rearranging it yields 

 𝜎11 =
1

𝜓𝑒𝑓𝑓_𝑡𝑒𝑛𝑠𝑖𝑙𝑒
Ω(𝜀𝑒𝑓𝑓

𝑝 )
𝑛
 (4-43) 

The other two components of the true stress tensor (i.e., 𝜎22 and 𝜎12) can be obtained 

from Equation (4-26) and Equation (4-28), respectively. 

However, the following relationship is used when the effective stress is expressed in 

terms of the shear stress (𝜎12); that is, only for the shear test 

 𝜎12 =
1

𝜓𝑒𝑓𝑓_𝑠ℎ𝑒𝑎𝑟
Ω(𝜀𝑒𝑓𝑓

𝑝 )
𝑛

 (4-44) 

Similarly, the other two components of the stress tensor (i.e., 𝜎11 and 𝜎22) can be 

obtained from Equation (4-28) and Equation (4-26), respectively. 

Note that 𝜎33 = 𝜎13 = 𝜎23 = 0 due to the plane-stress condition. 

Finally, the power-law hardening parameters are computed as Ω = 868.4 MPa and 

𝑛 = 0.128 by using the stress-strain data from the uniaxial test (see Figure 4-9). 
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4.5 Uniaxial Test Results 

Uniaxial tests have been conducted for three different specimen geometries. Two 

different strain increment approaches are applied in the calculation of effective strain, the 

state of stress, and the stress triaxiality; i.e., each approach provides a set of figures for a 

specific mask size. In the first approach, the strain increments have been determined from 

the un-deformed state to the current state, while the second set of figures have been 

obtained by taking strain increments from the previous state to the current state. For the 

strain analysis only the data of the second approach are presented unless the effective 

strain of the two approaches have different qualitative behavior, whereas data of both 

approaches are provided for the stress analysis. 

All stresses presented in this section (i.e., Uniaxial Test Results) are the true stresses and 

all strains are the natural/true strains unless otherwise stated. Moreover, the subscript 11 

corresponds to the longitudinal direction of the specimen and the subscript 22 

corresponds to the width direction. 

4.5.1 Analysis of 6mm-Width Specimen without Groove 

DIC analyses are conducted for two different test speeds for this particular specimen and 

presented in the following sequential sub-sections. 

4.5.1.1 Test 1 

This specimen was obtained by in-house machining of an 18mm-width specimen 

(without groove). The width of the specimen was reduced to capture the entire mid-

region (during imaging) with a similar pixel resolution to the other specimens. The 

isometric view and technical drawing of the specimen are depicted in Figure 4-13 and 

Figure 4-14, respectively. 
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Figure 4-13 Isometric view of the 6mm-width specimen without groove (Courtesy of James Gose and 

Haocheng Pan). This specimen was obtained by in-house machining of an 18mm-width specimen (without 

groove). 

 

Figure 4-14 Technical drawing of the 6mm-width specimen without groove (Courtesy of James Gose and 

Haocheng Pan). This specimen was obtained by in-house machining of an 18mm-width specimen (without 

groove). 
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A test speed of 0.2 inch/second was applied to the end of the test specimen with 6000 

digital images recorded per second for this experiment. The pixel resolution is 

approximately 16.5 microns per pixel. Note that the high speed camera and the 

experimental device were snychronized in this experiment. 

Frames from the video recording are presented in Figure 4-15, Figure 4-16, Figure 4-17, 

Figure 4-18, Figure 4-19, and Figure 4-20. The vertical direction and the horizontal 

direction are the width direction and the longitudinal direction of the specimen, 

respectively. The regions depicted are the exploded views and their dimensions are 

approximately 645–665 pixels by 370–390 pixels. 

 

Figure 4-15 Nital etched AH32 steel 6mm-width specimen (without groove) at Frame 0; that is, in the 

undeformed state. 
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Figure 4-16 Nital etched AH32 steel 6mm-width specimen (without groove) at Frame 4000; a 3.387 mm 

end-displacement had been applied. 

 

Figure 4-17 Nital etched AH32 steel 6mm-width specimen (without groove) at Frame 7000; a 5.927 mm 

end-displacement had been applied. 
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Figure 4-18 Nital etched AH32 steel 6mm-width specimen (without groove) at Frame 7441; a 6.300 mm 

end-displacement had been applied. 

 

Figure 4-19 Nital etched AH32 steel 6mm-width specimen (without groove) at Frame 7443; a 6.302 mm 

end-displacement had been applied. 
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Figure 4-20 Nital etched AH32 steel 6mm-width specimen (without groove) at Frame 7445; a 6.303 mm 

end-displacement had been applied. 

Diffuse necking starts around Frame 5500 and is clearly visible in Frame 7000, depicted 

in Figure 4-17. Moreover, fracture initiates around Frame 7200 (that is, following an 

approximately 6.096 mm horizontal displacement) and cracks are clearly visible in Frame 

7441 as presented in Figure 4-18. Interestingly, however, as can be seen from Frame 

4443 and Frame 7445, which are shown in Figure 4-19 and Figure 4-20, respectively, 

fracture progresses rapidly in a different region than where the first macroscopic cracks 

are seen. Moreover, Frame 7445 reveals that the fracture may be a combination of the 

opening mode and the shear mode as fracture progresses. 

The evolution of the natural strain and the effective strain within the masked region 

during the uniaxial test for different mask sizes are presented in Figure 4-21, Figure 4-22, 

Figure 4-23, Figure 4-24, and Figure 4-25. 

The shear strain is zero or nearly zero for all mask sizes until the initiation of fracture 

(i.e., Frame 7200), where the analysis was curtailed. Assuming that the material is 

incompressible, when the ratio of the transverse strain increment to the longitudinal strain 

increment is -0.50, the strain increment in the longitudinal direction and the effective 

strain increment exactly overlap if the shear strain increment is zero. This overlap can be 
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identified approximately in all mask sizes of the current analysis as the ratio of the 

transverse strain increment to the longitudinal strain increment is close to -0.50. 

Moreover, both the transverse strain (𝜀22) and the longitudinal strain (𝜀11) have relatively 

smaller slope until Frame 1000. The reason for this behavior is that the specimen is likely 

still in the elastic region and/or the elastic-plastic transition region. Considering that the 

Poisson’s ratio of mild steel is around 0.30, and having transverse to longitudinal strain 

ratios of -0.27 for 16 pixels by 16 pixels mask, -0.33 for 32 pixels by 32 pixels mask, -

0.39 for 64 pixels by 64 pixels mask, -0.35 for 128 pixels by 128 pixels mask, and -0.24 

for 192 pixels by 192 pixels mask, support this view. In fact, as can be seen in the stress-

strain curve presented in Figure 4-44, the corresponding point of Frame 1000 lies on the 

elastic-plastic transition region. Furthermore, the longitudinal strain and the effective 

strain have nearly constant slope between Frame 1000 and Frame 5000 while the slope 

begins increasing around Frame 5500, where diffuse necking starts. Finally, it is worth 

noting the progressively increasing transverse strains. For example, for the 16 pixels by 

16 pixels mask, the transverse strain at Frame 5500 is -0.099 and it reaches -0.258 at 

Frame 7200, where fracture initiates. 

 

Figure 4-21 Evolution of the natural strain within the masked region during the uniaxial test – second 

approach. Mask size is 16 pixels by 16 pixels (0.264 mm x 0.264 mm). 
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Figure 4-22 Evolution of the natural strain within the masked region during the uniaxial test – second 

approach. Mask size is 32 pixels by 32 pixels (0.528 mm x 0.528 mm). 

 

Figure 4-23 Evolution of the natural strain within the masked region during the uniaxial test – second 

approach. Mask size is 64 pixels by 64 pixels (1.056 mm x 1.056 mm). 
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Figure 4-24 Evolution of the natural strain within the masked region during the uniaxial test – second 

approach. Mask size is 128 pixels by 128 pixels (2.112 mm x 2.112 mm). 

 

Figure 4-25 Evolution of the natural strain within the masked region during the uniaxial test – second 

approach. Mask size is 192 pixels by 192 pixels (3.168 mm x 3.168 mm). 
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The evolution of the true stress (on the left) and the stress triaxiality (on the right) within 

the masked region during the uniaxial test for different mask sizes are depicted in Figure 

4-26, Figure 4-27, Figure 4-28, Figure 4-29, Figure 4-30, Figure 4-31, Figure 4-32, 

Figure 4-33, Figure 4-34, and Figure 4-35. Note that the state of stress is obtained by 

assuming that the stress in the longitudinal direction (𝜎11) remains positive during the 

entire loading (see Section 4.4.2 for details). 

The average stress triaxiality ranges between 0.34 and 0.37, and the stress triaxiality at 

fracture is higher than the theoretical stress triaxiality value of the purely uniaxial state, 

which is 1/3, for all mask sizes. However, the stress triaxiality at the initiation of the test 

is lower than the theoretical stress triaxiality value of the uniaxial test. The low stress 

triaxiality at the initiation of the test (i.e. at Frame 1000) is the result of high shear stress 

(which is ~200 MPa). This high shear may have developed for three reasons: the region 

being in the elastic-plastic transition zone, and/or the inclination of the test specimen
43

, 

and/or as a consequence of unknown local behavior. Part of the high shear stress may be 

due to the region being in the elastic-plastic transition zone (as the plasticity is shear 

dominated) as all of the investigated regions are in the elastic-plastic transition zone (see 

Figure 4-44). Some part of the high shear stress may be due to the inclination of the test 

specimen as the 1024 pixels by 256 pixels mask (this analysis is presented in the 

following pages), which represents global behavior, has a considerable amount of shear 

stress. Moreover, it is believed that some part of the (localized) high shear stress possibly 

is a consequence of unknown more local behavior. 

The shear stress is zero or nearly zero for the larger mask sizes (which represent more 

global behavior) after Frame 2000. Moreover, the true stress curve of the first and the 

second approach has nearly the same quantitative behavior until Frame 3000 for smaller 

mask sizes (16 pixels by 16 pixels mask and 32 pixels by 32 pixels mask, for example) 

and until Frame 6000 for larger mask sizes (128 pixels by 128 pixels mask and 192 pixels 

                                                 
43

 Note that the test specimen rotates approximately two degrees in the clock-wise direction 

immediately after the experiment started. 
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by 192 pixels mask, for example), meaning that the loading remains proportional
44

 both 

locally (represented by smaller mask sizes) and more globally (represented by larger 

mask sizes) at the beginning of the test. However, they start differing immediately 

thereafter. This difference between the two approaches demonstrates that the loading 

does not remain proportional after around Frame 3000 for smaller length scales and after 

around Frame 6000 for larger length scales. In other words, if the loading remained 

proportional, the first and the second approach would have similar, or the same, stress 

states. In fact, mathematically, this difference is caused by the instantaneous changes of  

𝜓1 and 𝜓2 (see Equation (4-18), Equation (4-19), Equation (4-26), and Equation (4-28)) 

in the second approach due to non-proportional loading of the strain history. This 

difference occurs as fluctuations in the cases of smaller mask sizes, while the fluctuations 

disappear as the mask sizes are increased and are overtaken by differences in magnitude 

although the qualitative behavior remains similar. It is worth noting that the sign of stress 

and stress triaxiality fluctuations first appear for the 64 pixels by 64 pixels mask and that 

the magnitude of the fluctuations increases as the mask size is decreased. Note that the 

Von-Mises stress has the same quantitative behavior both locally (smaller mask sizes) 

and more globally (larger mask sizes), as expected, as the plastic constitutive and stress-

strain relationships that are used (the hardening-law and the flow rule) are independent of 

a length scale. 

                                                 
44

 Proportional loading (or strain history) satisfies the following state of strain: 

𝑑𝜀22 = Ψ1𝑑𝜀11 and 𝑑𝜀12 = Ψ2𝑑𝜀11 

where Ψ1 and Ψ2 are constants, and remains the same during the entire loading process. 
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Figure 4-26 Evolution of the true stress (on the left) and the stress triaxiality (on the right) within the 

masked region during the uniaxial test – first approach. Mask size is 16 pixels by 16 pixels (0.264 mm x 

0.264 mm). 

 

Figure 4-27 Evolution of the true stress (on the left) and the stress triaxiality (on the right) within the 

masked region during the uniaxial test – second approach. Mask size is 16 pixels by 16 pixels (0.264 mm x 

0.264 mm). 
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Figure 4-28 Evolution of the true stress (on the left) and the stress triaxiality (on the right) within the 

masked region during the uniaxial test – first approach. Mask size is 32 pixels by 32 pixels (0.528 mm x 

0.528 mm). 

 

Figure 4-29 Evolution of the true stress (on the left) and the stress triaxiality (on the right) within the 

masked region during the uniaxial test – second approach. Mask size is 32 pixels by 32 pixels (0.528 mm x 

0.528 mm). 
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Figure 4-30 Evolution of the true stress (on the left) and the stress triaxiality (on the right) within the 

masked region during the uniaxial test – first approach. Mask size is 64 pixels by 64 pixels (1.056 mm x 

1.056 mm). 

 

Figure 4-31 Evolution of the true stress (on the left) and the stress triaxiality (on the right) within the 

masked region during the uniaxial test – second approach. Mask size is 64 pixels by 64 pixels (1.056 mm x 

1.056 mm). 
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Figure 4-32 Evolution of the true stress (on the left) and the stress triaxiality (on the right) within the 

masked region during the uniaxial test – first approach. Mask size is 128 pixels by 128 pixels (2.112 mm x 

2.112 mm). 

 

Figure 4-33 Evolution of the true stress (on the left) and the stress triaxiality (on the right) within the 

masked region during the uniaxial test – second approach. Mask size is 128 pixels by 128 pixels (2.112 mm 

x 2.112 mm). 
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Figure 4-34 Evolution of the true stress (on the left) and the stress triaxiality (on the right) within the 

masked region during the uniaxial test – first approach. Mask size is 192 pixels by 192 pixels (3.168 mm x 

3.168 mm). 

 

Figure 4-35 Evolution of the true stress (on the left) and the stress triaxiality (on the right) within the 

masked region during the uniaxial test – second approach. Mask size is 192 pixels by 192 pixels (3.168 mm 

x 3.168 mm). 

It is interesting to note the stress fluctuations in the second approach at smaller mask 

sizes, which represent more local behavior. On the other hand, stress fluctuations vanish 

as more global behavior is followed; i.e., larger mask sizes. These fluctuations may be 

due to two occurrences: noise effects and/or plastic flow localization. 
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One cause for the stress fluctuations in the second approach may be due to very small 

strain increments
45

, which might be influenced by the noise. However, the author does 

not believe that the noise plays a primary role in these fluctuations. If it were the case, the 

stress fluctuation in the second approach for larger mask sizes (128 pixels by 128 pixels 

and/or 192 pixels by 192 pixels, for example), where the strain increments are even 

smaller (compared to small mask sizes) as the strains are smaller, would be more 

pronounced. However, there is no fluctuation in the stress state (for the mask size of 128 

pixels by 128 pixels and 192 pixels by 192 pixels) as can be seen in Figure 4-33 and 

Figure 4-35. On the other hand, a counter argument is that the noise is eliminated when 

the average of a larger area (i.e., larger mask sizes) is considered. If this were the case, 

there should have been fluctuations in the smaller mask sizes of the first approach as 

well. However, there are no fluctuations in the stress state (for the mask size of 16 pixels 

by 16 pixels and 32 pixels by 32 pixels) as can be seen in Figure 4-26 and Figure 4-28. 

Therefore, the author believes that the stress fluctuations are primarily due to plastic flow 

localization
46

 at the small scales/mask sizes. Having small or no stress and stress 

triaxiality deviations at larger mask sizes (see Figure 4-33 and Figure 4-35, for example), 

which are the representations of more global behavior, support this view. The reason that 

these fluctuations do not appear in the first approach is that the first approach is based on 

the current strain state; hence, the strain increments are sufficiently large such that small, 

instantaneous changes in the loading (especially at later stages) are not captured. 

In addition to the analysis above, a very large mask size, 1024 pixels by 256 pixels 

(16.896 mm x 4.224 mm), is investigated to explore the behavior of the entire region. The 

size of the mask with respect to the specimen can be seen in Figure 4-36. The red square 

represents the 32 pixels by 32 pixels mask, whereas the blue rectangle represents the 

                                                 
45

 As the second approach is based on the increments from the previous state to the current state, 

the strain increments in this approach are much smaller compared to the first approach. 
46

 The author’s inference is inspired by the following quotation: 

“Our calculations indicate that, as long as deviations from a constant triaxiality history are not 

too great, the onset of failure, when represented in a plot of stress triaxiality vs effective strain, is 

approximately represented by a single curve. However, significant deviations from this behavior 

can occur for nonproportional histories, with plastic flow localization playing an important role 

in this regard.” (Needleman & Tvergaard, 1984) 
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1024 pixels by 256 pixels mask. The color difference within the specimen is due to the 

variation of lightning intensity and is obtained by DaVis LaVision software. 

 

Figure 4-36 Demonstration of mask sizes: The red square represents the 32 pixels by 32 pixels mask, 

whereas the blue rectangle represents the 1024 pixels by 256 pixels mask. Pixel resolution is approximately 

16.5 µm/pixel. 

The evolution of the natural strain and the effective strain within the masked region 

during the uniaxial test for 1024 pixels by 256 pixel mask is presented in Figure 4-37. 

The shear strain remains zero or nearly zero until the initiation of fracture (i.e., Frame 

7200), where the analysis was curtailed. Moreover, as the ratio of the strain increment in 

the transverse direction to the longitudinal direction is around -0.5 except for Frame 1000 

and after Frame 7000 (i.e., it ranges between -0.51 and -0.46 between Frame 1000 and 

Frame 6750) the strain in the longitudinal direction overlaps the effective strain. 

Furthermore, it is worth noting that, beginning with Frame 1000, the slope of the strain 

curves in the longitudinal direction (𝜀11) and those of the transverse direction (𝜀22) 

remains nearly constant until Frame 5500, where it starts increasing slightly due to the 

onset of diffuse necking. The reason for this different behavior until Frame 1000 is that 

the specimen may still be in the elastic region and/or the elastic-plastic transition region. 

Considering that the Poisson’s ratio of mild steel is around 0.30, and having a transverse 
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strain to longitudinal strain ratio for different mask sizes varying between -0.39 and -0.25 

(as provided in previous pages) supports this view. In fact, as can be seen in the stress-

strain curve shown in Figure 4-44, the corresponding point of Frame 1000 lies on the 

elastic-plastic transition region. 

 

Figure 4-37 Evolution of the natural strain within the masked region during the uniaxial test – second 

approach. Mask size is 1024 pixels by 256 pixels (16.896 mm x 4.224 mm). 

The evolution of the true stress (on the left) and the stress triaxiality (on the right) within 

the masked region for 1024 pixels by 256 pixels mask are shown in Figure 4-38 and 

Figure 4-39. The stress triaxiality at the initiation of the test (i.e., at Frame 1000) is higher 

than the theoretical stress triaxiality value of the uniaxial test, which is 1/3. Thereafter, it 

experiences a sudden decrease at Frame 2000 and remains nearly constant between 

Frame 2000 and Frame 6500, where it starts increasing, in the second approach. On the 

other hand, in the first approach, the stress triaxiality remains nearly constant until the 

initiation of fracture (i.e., Frame 7200). Note that the shear stress remains zero or nearly 

zero after Frame 2000. Moreover, the true stress curve of the first and the second 

approach have nearly the same quantitative behavior until Frame 6500, meaning that the 

global loading remains nearly proportional until the later stages of the test. 
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Figure 4-38 Evolution of the true stress (on the left) and the stress triaxiality (on the right) within the 

masked region during the uniaxial test – first approach. Mask size is 1024 pixels by 256 pixels (16.896 mm 

x 4.224 mm). 

 

Figure 4-39 Evolution of the true stress (on the left) and the stress triaxiality (on the right) within the 

masked region during the uniaxial test – second approach. Mask size is 1024 pixels by 256 pixels (16.896 

mm x 4.224 mm). 

The uni-directional stress-strain curve (𝜎11 curve) nearly overlaps the effective stress-

strain curve (Von-Mises stress curve) until the initiation of fracture (i.e., Frame 7200) in 

the first approach, whereas this overlap remains only until the later stages of the test (i.e., 

until Frame 6500) in the second approach due to the development of the transverse stress 
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(𝜎22). The maximum difference (with respect to uni-directional stress) in the first 

approach is 4.7% (which occurs at Frame1000), while it is 7.2% in the second approach 

(which occurs at Frame 7200). In other words, the uni-directional stress-strain curve is in 

fairly good agreement with the effective stress-strain curve in both approaches. 

Therefore, a global uni-directional stress-strain curve may be a fairly good representation 

of the global effective stress-strain curve, which is a general assumption in obtaining 

stress-strain curves of materials (through a conventional uniaxial test), when the gauge 

length is sufficiently large compared to the localization zone. Nevertheless, it is worth 

noting that global strains obtained by a conventional uniaxial test may not represent the 

actual strains in the localized zone, as presented in the following pages. 

The evolution of the longitudinal strain (𝜀11) and the transverse strain (𝜀22) for different 

mask sizes are presented in Figure 4-40 and Figure 4-41, respectively. Both the 

transverse strain and the longitudinal strain are moderately affected by the mask size and 

the effect of mask size is more pronounced especially at later stages of the experiment. 

For example, the strain difference between the smallest and the largest mask size (with 

respect to the largest mask size) at the initiation of fracture (i.e., at Frame 7200) is 22.5% 

for the transverse strain, whereas it is 26.7% for the longitudinal strain. Thus, having 

different longitudinal and transverse strains for different mask sizes demonstrates that the 

strain is not exactly uniform within the neck region at the initiation of fracture. However, 

it is worth noting that the percentages mentioned above are the maximum differences and 

that they are lower in the previous stages of the experiment. Hence, uniform longitudinal 

strain and/or uniform transverse strain assumptions may be reasonable depending on 

what stage of the uniaxial test is under consideration. 
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Figure 4-40 Evolution of the longitudinal strain within the masked region during the uniaxial test for 

different mask sizes – second approach. Pixel resolution is approximately 16.5 µm/pixel. 

 

Figure 4-41 Evolution of the transverse strain within the masked region during the uniaxial test for different 

mask sizes – second approach. Pixel resolution is approximately 16.5 µm/pixel. 
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The evolution of the effective strain for the six scales studied from the results of this 

particular experiment is presented in Figure 4-42. Effective strains for all mask sizes 

(except 1024 pixels by 256 pixels) nearly overlap until about Frame 5000 and then 

separation becomes clearer around Frame 5500, where diffuse necking starts. The most 

prominent feature of the figure as the experiment progresses is the increasing difference 

between the 1024 pixels by 256 pixels mask and the rest of the mask sizes. This 

difference (with respect to 1024 pixels by 256 pixels) at the initiation of fracture (i.e., at 

Frame 7200) reaches 109% for the 192 pixels by 192 pixels mask and 168% for the 16 

pixels by 16 pixels mask. Therefore, global strains obtained by a conventional uniaxial 

test may not represent the actual strains in the localized zone, as expected. Moreover, it is 

worth noting that as the 64 pixels by 64 pixels mask and the 32 pixels by 32 pixels mask 

nearly overlap, a false convergence behavior would be interpreted if 16 pixels by 16 

pixels mask were not analyzed. 

 

Figure 4-42 Evolution of the effective strain within the masked region during the uniaxial test for different 

mask sizes – second approach. Pixel resolution is approximately 16.5 µm/pixel. 
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The effect of mask size on failure strain is shown in Figure 4-43. As it was not a square 

mask, the result of the 1024 pixels by 256 pixels mask is not included in the figure. 

Interestingly, if the result of the 32 pixels by 32 pixels mask were excluded, the other 

four points nearly fit a linear curve. Moreover, as can be seen in the figure and as 

mentioned above, a false convergence would be interpreted if the analyses were limited 

to a minimum of 32 pixels by 32 pixels. Therefore, convergence behavior likely needs to 

be verified by multiple mask sizes. 

 

Figure 4-43 Effect of mask size on failure strain during the uniaxial test – second approach. The dashed line 

is a linear curve between two data points. Pixel resolution is approximately 16.5 µm/pixel. 

The average stress triaxiality (𝜂𝑎𝑣𝑒), the stress triaxiality at fracture (𝜂𝑓𝑟𝑎𝑐), and the 

effective strain at fracture (𝜀𝑒𝑓𝑓
𝑓

) for both approaches are summarized in Table 4-1. The 

effective strain at fracture increases as the mask size is decreased, a sign of localization. 

Moreover, while the stress triaxiality at fracture increases as the mask size is decreased 

(with the exception of 32 pixels by 32 pixels mask), the average stress triaxiality exhibits 

no particular order regarding the mask size. 
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Table 4-1 Summary of the average stress triaxiality (𝜂𝑎𝑣𝑒), the stress triaxiality at fracture (𝜂𝑓𝑟𝑎𝑐), and the 

effective strain at fracture (𝜀𝑒𝑓𝑓
𝑓

) for the uniaxial test of 6mm-width specimen without groove with a test 

speed of 0.2 inch/second. 

 Mask size [pixels] 𝜂𝑎𝑣𝑒 𝜂𝑓𝑟𝑎𝑐 𝜀𝑒𝑓𝑓
𝑓

 

First approach 

16x16 0.340 0.379 0.603 

32x32 0.372 0.391 0.577 

64x64 0.355 0.375 0.570 

128x128 0.355 0.373 0.516 

192x192 0.356 0.370 0.476 

1024x256 0.362 0.353 0.228 

Second approach 

16x16 0.364 0.513 0.615 

32x32 0.375 0.415 0.583 

64x64 0.364 0.451 0.574 

128x128 0.365 0.431 0.519 

192x192 0.363 0.430 0.479 

1024x256 0.356 0.420 0.229 

As can be seen from Table 4-1, the maximum difference between the effective strain at 

fracture for two different approaches is 2.0%, which occurs on the smallest mask size. 

Finally, the true stress-strain curves for different mask sizes are presented together in 

Figure 4-44. Note that the flow rule and the power-law hardening relationship (with 

Ω = 868.4 MPa and 𝑛 = 0.128) are used to obtain the components of the stress tensor 

(see Section 4.4.2 for details) of the DIC analysis. In addition, the stress-strain curve 

obtained via the MTS machine is superposed on the same figure for comparison 

purposes
47

. Solid lines with markers are obtained by the digital image correlation 

analysis, while dashed lines are the results of the uniaxial test with the MTS machine. 

Note that the DIC analyses are conducted to the point of fracture initiation. Therefore, the 

last marker of each color represents the fracture initiation point for different mask sizes. 

                                                 
47

 The author is aware that although a uni-directional stress-strain curve (i.e., the stress-strain 

curve obtained via an MTS machine) may be the correct representation of the effective stress-

strain curve in a global manner (when the gauge length is sufficiently large compared to the 

localization zone), it may not correctly reflect the actual strains in the localized zone as can be 

seen in Figure 4-42. A uniaxial test with a strain-gauge extensometer and a high speed camera 

recording simultaneously would provide better comparative results; however, that experiment 

was not conducted. 
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Fairly good agreement between the hardening part of the MTS uniaxial test result and the 

DIC analysis demonstrates that the power-law hardening relationship with calculated 

hardening parameters Ω = 868.4 𝑀𝑃𝑎 and 𝑛 = 0.128 fits reasonably well for this 

specific material. However, as the power-law hardening relationship is used to obtain the 

stress state in the DIC analysis, stress-strain curves of the DIC analysis cannot capture the 

softening. Finally, it is worth noting that the effective stress-strain curve is independent 

of the mask size, as expected, as the plastic constitutive and stress-strain relationships 

that are used (the hardening-law and the flow rule) are independent of a length scale. 

 

Figure 4-44 True stress-strain curve of the uniaxial test for different mask sizes – second approach. Pixel 

resolution is approximately 16.5 µm/pixel. Solid lines with markers are obtained by digital image 

correlation (DIC) analysis while dashed lines are the results from the MTS machine. 

4.5.1.2 Test 2 

This specimen has the same mid-region geometry as the one presented in the previous 

sub-section (see Figure 4-13 and Figure 4-14). The only difference is that this test 

specimen was obtained by in-house machining of a 1in-width specimen (without groove), 
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while the one presented in the previous sub-section was obtained by in-house machining 

of a 18mm-width specimen (without groove). This test specimen with the experimental 

set-up can be seen in Figure 4-3. The width of the specimen was reduced to capture the 

entire mid-region (during imaging) with a similar pixel resolution as the other specimens. 

A test speed of 0.4 inch/second was applied to the end of the test specimen with 6000 

digital images recorded per second for this experiment. The pixel resolution is 

approximately 16.3 microns per pixel. Note that the high speed camera and the 

experimental device were snychronized in this experiment. 

Fracture initiates around Frame 3350; that is, following an approximately 5.673 mm 

horizontal displacement. Note that this displacement is slightly lower than the one 

obtained for the low speed test, presented in the previous sub-section. 

DIC analyses are conducted for three different mask sizes, that is, the 16 pixel by 16 pixel 

mask (the smallest mask size), the 32 pixels by 32 pixels mask and the 128 pixels by 128 

pixels mask. Results are summarized in Table 4-2. 

Table 4-2 Summary of the average stress triaxiality (𝜂𝑎𝑣𝑒), the stress triaxiality at fracture (𝜂𝑓𝑟𝑎𝑐), and the 

effective strain at fracture (𝜀𝑒𝑓𝑓
𝑓

) for the uniaxial test of 6mm-width specimen without groove with a test 

speed of 0.4 inch/second. 

 Mask size [pixels] 𝜂𝑎𝑣𝑒 𝜂𝑓𝑟𝑎𝑐 𝜀𝑒𝑓𝑓
𝑓

 

First approach 

16x16 0.360 0.390 0.520 

32x32 0.353 0.357 0.458 

128x128 0.346 0.361 0.454 

Second approach 

16x16 0.371 0.420 0.533 

32x32 0.344 0.404 0.466 

128x128 0.354 0.424 0.458 

As can be seen from Table 4-1 and Table 4-2, the fracture strain is lower at the high 

strain rate test for both mask sizes investigated. Although more data are required to reach 

a more solid conclusive trend, one of the reasons for the smaller fracture strain is that the 

test specimen at high strain rate has a slightly lower displacement to fracture. 
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4.5.2 Analysis of 1in-Width Specimen with Semi-Circular Groove 

The isometric view and technical drawing of the test specimen are depicted in Figure 

4-45 and Figure 4-46, respectively. 

 

Figure 4-45 Isometric view of the 1in-width specimen with semi-circular groove (Courtesy of James Gose). 

 

Figure 4-46 Technical drawing of the 1in-width specimen with semi-circular groove (Courtesy of James 

Gose). 
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The load/displacement was applied rapidly by hand with 7500 digital images recorded 

per second for this experiment. The test speed may not be constant as the load was 

applied by hand. The back side of the specimen was the recorded region because the 

groove and non-groove regions on the front side were not able to be captured 

simultaneously due to depth of field constraint of the camera-lens system. The pixel 

resolution is approximately 15.3 microns per pixel. Note that the high speed camera and 

the experimental device were not snychronized in this experiment. A very small lag in the 

recording might thus be possible. 

Frames from the video recording are presented in Figure 4-47, Figure 4-48, Figure 4-49, 

Figure 4-50, Figure 4-51, Figure 4-52, and Figure 4-53. The vertical direction and the 

horizontal direction are the width direction and the longitudinal direction of the 

specimen, respectively. The regions depicted are the exploded views and their 

dimensions are approximately 895–925 pixels by 520–550 pixels. 

 

Figure 4-47 Nital etched AH32 steel 1in-width-specimen with semi-circular groove at Frame 0, that is, in 

the undeformed state. 
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Figure 4-48 Nital etched AH32 steel 1in-width-specimen with semi-circular groove at Frame 5000. 

 

Figure 4-49 Nital etched AH32 steel 1in-width-specimen with semi-circular groove at Frame 10000. 
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Figure 4-50 Nital etched AH32 steel 1in-width-specimen with semi-circular groove at Frame 13000. 

 

Figure 4-51 Nital etched AH32 steel 1in-width-specimen with semi-circular groove at Frame 13894. 
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Figure 4-52 Nital etched AH32 steel 1in-width-specimen with semi-circular groove at Frame 13895. 

 

Figure 4-53 Nital etched AH32 steel 1in-width-specimen with semi-circular groove at Frame 13896. 

Fracture initiates around Frame 13893 and the initial crack can clearly be seen at Frame 

13894, depicted in Figure 4-51. Moreover, final stages of the crack propagation are 

presented in Figure 4-52 and Figure 4-53. 
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The effect of mask size on failure strain is presented in Figure 4-54. The analytical 

relationship depicted in the figure was proposed by Li & Karr (2009). They found the 

effect of length scale on the fracture strain to be of the form
48

: 

 𝑦 = ln(𝑎/𝑥 + 𝑏) (4-45) 

where 𝑥 represents the length scale and 𝑦 represents the fracture strain. Note that the 

material parameters 𝑎 and 𝑏 were determined by a best fit of the experimental results
49

. 

As can be seen from the figure, there was no sign of convergence of the results as the 

length scales were reduced. 

 

Figure 4-54 Effect of the mask size on failure strain during the the uniaxial test of the 1in-width specimen 

with semi-circular groove with 𝑦 = ln(𝑎/𝑥 + 𝑏) curve fit – second approach. 𝑎 = 3.160 and 𝑏 = 1.062. 

Pixel resolution is approximately 15.3 µm/pixel. 

                                                 
48

 They obtained this expression by modeling the uniaxial tension test as an 'idealized three-piece-

model' (see Figure 1 of Li & Karr, 2009) and by assuming that the fracture occurs at the 

bifurcation point (see ''Equation 22'' of the cited reference). Note that the bifurcation of a uniaxial 

tension test occurs at the onset of diffuse necking. However, as the authors pointed out: 

“Eq. (22), derived from the three piece model in section 3, is also evidently applicable to 

continuum plasticity finite element models of structural elements” 
49

 See ''Equation 23'' and ''Equation 24'' of Li & Karr (2009) for the definition of parameters 𝑎 and 

𝑏. 
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The average stress triaxiality (𝜂𝑎𝑣𝑒), the stress triaxiality at fracture (𝜂𝑓𝑟𝑎𝑐), and the 

effective strain at fracture (𝜀𝑒𝑓𝑓
𝑓

) for both approaches are summarized in Table 4-3. 

Table 4-3 Summary of the average stress triaxiality (𝜂𝑎𝑣𝑒), the stress triaxiality at fracture (𝜂𝑓𝑟𝑎𝑐), and the 

effective strain at fracture (𝜀𝑒𝑓𝑓
𝑓

) for the uniaxial test of the 1in-width specimen with semi-circular groove. 

 Mask size [pixels] 𝜂𝑎𝑣𝑒 𝜂𝑓𝑟𝑎𝑐 𝜀𝑒𝑓𝑓
𝑓

 

First approach 

16x16 0.512 0.474 0.172 

32x32 0.557 0.590 0.123 

64x64 0.424 0.539 0.094 

128x128 0.477 0.547 0.085 

Second approach 

16x16 0.369 0.327 0.233 

32x32 0.521 0.622 0.145 

64x64 0.519 0.577 0.103 

128x128 0.530 0.584 0.087 

As can be seen from Table 4-3, the maximum difference between the effective strain at 

fracture for the two different approaches is 26.2%, which occurs on the smallest mask 

size. 

4.5.3 Analysis of Shear Specimen  

The isometric view and technical drawing of the shear test specimen are depicted in 

Figure 4-55 and Figure 4-56, respectively. Note that this design is adapted from Bao & 

Wierzbicki’s (2004) specimen design for pure shear tests. 
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Figure 4-55 Isometric view of the shear specimen (Courtesy of James Gose). This design is adapted from 

Bao & Wierzbicki’s (2004) specimen design for pure shear tests. 

 

Figure 4-56 Technical drawing of the shear specimen (Courtesy of James Gose). This design is adapted 

from Bao & Wierzbicki’s (2004) specimen design for pure shear tests. 

The load/displacement was applied rapidly by hand with 7500 digital images recorded 

per second for this experiment. The test speed may not be constant as the load was 
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applied by hand. The experimental set-up for the shear test can be seen in Figure 4-2. The 

pixel resolution is approximately 13.7 microns per pixel. Note that the high speed camera 

and the experimental device were not snychronized in this experiment. A very small lag 

in the recording might thus be possible. 

Frames from the video recording are presented in Figure 4-57, Figure 4-58, Figure 4-59, 

Figure 4-60, Figure 4-61, Figure 4-62, and Figure 4-63. The vertical direction and the 

horizontal direction are the width direction and the longitudinal direction of the 

specimen, respectively. The regions depicted are the exploded views and their 

dimensions are approximately 890–920 pixels by 520–550 pixels. 

 

Figure 4-57 Nital etched AH32 steel shear specimen at Frame 0, that is, in the undeformed state. 
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Figure 4-58 Nital etched AH32 steel shear specimen at Frame 4000. 

 

Figure 4-59 Nital etched AH32 steel shear specimen at Frame 7000. 
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Figure 4-60 Nital etched AH32 steel shear specimen at Frame 8000. 

 

Figure 4-61 Nital etched AH32 steel shear specimen at Frame 8500. 
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Figure 4-62 Nital etched AH32 steel shear specimen at Frame 8600. 

 

Figure 4-63 Nital etched AH32 steel shear specimen at Frame 8640. 

Fracture initiates around Frame 6000 and the initial crack can clearly be seen at Frame 

7000, depicted in Figure 4-59. Moreover, final stages of the crack propagation are 
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presented in Figure 4-61, Figure 4-62, and Figure 4-63 with Figure 4-63 showing the 

completely fractured specimen. 

The evolution of the natural strain and the effective strain within the masked region 

during the uniaxial test of the shear specimen for different mask sizes are presented in 

Figure 4-64, Figure 4-65, Figure 4-66, and Figure 4-67. 

The dominant strain component is the shear strain (𝜀12), as expected, due to the specimen 

geometry (see Figure 4-56). The shear strain is around 0.45 for the smallest two mask 

sizes (i.e., 16 pixels by 16 pixels and 32 pixels by pixels) and it decreases as the mask 

size is increased. Nevertheless, the other two strain components, that is, the longitudinal 

strain (𝜀11) and the transverse strain (𝜀22) remain small until the initiation of fracture, i.e., 

Frame 6000. Moreover, it is worth noting that these two strain components are nearly 

equal to each other but have the opposite sign, meaning that the strain in the thickness 

direction (𝜀33) remains nearly zero. Strain convergence is discussed in the following 

pages, where the evolution of the strain for different mask sizes is presented (see Figure 

4-76 and Figure 4-77). 

 

Figure 4-64 Evolution of the natural strain within the masked region during the uniaxial test of the shear 

specimen – second approach. Mask size is 16 pixels by 16 pixels (0.219 mm x 0.219 mm). 
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Figure 4-65 Evolution of the natural strain within the masked region during the uniaxial test of the shear 

specimen – second approach. Mask size is 32 pixels by 32 pixels (0.438 mm x 0.438 mm). 

 

Figure 4-66 Evolution of the natural strain within the masked region during the uniaxial test of the shear 

specimen – second approach. Mask size is 64 pixels by 64 pixels (0.877 mm x 0.877 mm). 
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Figure 4-67 Evolution of the natural strain within the masked region during the uniaxial test of the shear 

specimen – second approach. Mask size is 128 pixels by 128 pixels (1.754 mm x 1.754 mm). 

The evolution of the true stress (on the left) and the stress triaxiality (on the right) within 

the masked region during the uniaxial test of the shear specimen for different mask sizes 

are depicted in Figure 4-68, Figure 4-69, Figure 4-70, Figure 4-71, Figure 4-72, Figure 

4-73, Figure 4-74, and Figure 4-75. Note that the state of stress is obtained by assuming 

that the shear stress (𝜎12) remains positive during the entire loading (see Section 4.4.2 for 

details). 

The stress triaxiality at the initiation of the test (i.e., at Frame 1000) varies between 0.27 

and 0.07 with the largest value in the smallest mask size and the smallest value in the 

largest mask size. On the other hand, the stress triaxiality at fracture varies between -0.02 

and 0.02 for the first approach, whereas it varies between -0.06 and 0.02 for the second 

approach. In addition, the average stress triaxiality varies between -0.01 and 0.08 for the 

first approach, while it varies between -0.02 and 0.02 for the second approach. Note that 

the variations of the stress triaxiality at fracture and the average stress triaxiality exhibit 

no particular order regarding the mask size. Finally, it is worth noting that the theoretical 

stress triaxiality for the pure shear state is zero. 
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Figure 4-68 Evolution of the true stress (on the left) and the stress triaxiality (on the right) within the 

masked region during the uniaxial test of the shear specimen – first approach. Mask size is 16 pixels by 16 

pixels (0.219 mm x 0.219 mm). 

 

Figure 4-69 Evolution of the true stress (on the left) and the stress triaxiality (on the right) within the 

masked region during the uniaxial test of the shear specimen – second approach. Mask size is 16 pixels by 

16 pixels (0.219 mm x 0.219 mm). 
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Figure 4-70 Evolution of the true stress (on the left) and the stress triaxiality (on the right) within the 

masked region during the uniaxial test of the shear specimen – first approach. Mask size is 32 pixels by 32 

pixels (0.438 mm x 0.438 mm). 

 

Figure 4-71 Evolution of the true stress (on the left) and the stress triaxiality (on the right) within the 

masked region during the uniaxial test of shear specimen – second approach. Mask size is 32 pixels by 32 

pixels (0.438 mm x 0.438 mm). 
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Figure 4-72 Evolution of the true stress (on the left) and the stress triaxiality (on the right) within the 

masked region during the uniaxial test of the shear specimen – first approach. Mask size is 64 pixels by 64 

pixels (0.877 mm x 0.877 mm). 

 

Figure 4-73 Evolution of the true stress (on the left) and the stress triaxiality (on the right) within the 

masked region during the uniaxial test of the shear specimen – second approach. Mask size is 64 pixels by 

64 pixels (0.877 mm x 0.877 mm). 
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Figure 4-74 Evolution of the true stress (on the left) and the stress triaxiality (on the right) within the 

masked region during the uniaxial test of the shear specimen – first approach. Mask size is 128 pixels by 

128 pixels (1.754 mm x 1.754 mm). 

 

Figure 4-75 Evolution of the true stress (on the left) and the stress triaxiality (on the right) within the 

masked region during the uniaxial test of the shear specimen – second approach. Mask size is 128 pixels by 

128 pixels (1.754 mm x 1.754 mm). 

The evolution of the shear stress for the two different approaches shows nearly the same 

quantitative behavior and the shear stress remains very stable even for the smaller mask 

sizes. Moreover, the longitudinal stress (𝜎11) and the transverse stress (𝜎22) remain nearly 

stable as well; i.e., there are no noteworthy fluctuations. This stable behavior of the stress 
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field suggests that the loading remains nearly proportional
50

. Finally, the development of 

the longitudinal stress and the transverse stress shows that the exact pure shear condition 

was not achieved and this suggests that the geometry of the specimen may be improved 

to satisfy a pure shear stress state. 

The evolution of the shear strain for different mask sizes is presented in Figure 4-76. 

Shear strain increases as the mask size is decreased and it ranges between 0.27 and 0.46. 

Note that the discussion on the strain convergence is explained together with the 

evolution of the effective strain (depicted in Figure 4-77) as they exhibit similar behavior. 

 

Figure 4-76 Evolution of the shear strain within the masked region during the uniaxial test of the shear 

specimen for different mask sizes – second approach. Pixel resolution is approximately 13.7 µm/pixel. 

The evolution of the effective strain for the four scales studied from the results of this 

particular experiment is presented in Figure 4-77. The evolution of the strain exhibits the 

same qualitative behavior for all mask sizes investigated. Moreover, an indication of 

convergence of the result appears as the length scales were reduced. Nevertheless, this is 

not sufficient to draw a 'strain convergence' conclusion as convergence behavior likely 

needs to be verified by multiple mask sizes. 

                                                 
50

 See Footnote 44. 
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Figure 4-77 Evolution of the effective strain within the masked region during the uniaxial test of the shear 

specimen for different mask sizes – second approach. Pixel resolution is approximately 13.7 µm/pixel. 

The effect of mask size on failure strain is shown in Figure 4-78. There may be strain 

convergence as the mask size is decreased; however, this can be affected by the 

arrangement choice of the masked regions. Therefore, we investigated the effect of mask 

position on fracture strain as well. For instance, the 8 pixels by 8 pixels mask can be 

arranged in nine different ways with all the arrangements remaining within the 16 pixels 

by 16 pixels mask. As an example, two of these calculations are shown in Figure 4-78. 

Similar fluctuations can be observed for the other mask sizes as well; however, the author 

believes that these fluctuations should not be as large as the one observed for the 8 pixels 

by 8 pixels mask. The reason for the large differences observed in using various 8 pixels 

by 8 pixels masks is that this mask size is very small such that micro-structural variations 

are likely present and only four strain values are averaged to obtain the average strain 

within the mask region. This mask size is apparently at the transition of micro-scale and 

continuum scale. 
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Figure 4-78 Effect of mask size on failure strain during the uniaxial test of the shear specimen – second 

approach. The dashed line is a linear curve between two data points. Pixel resolution is approximately 13.7 

µm/pixel. 

The average stress triaxiality (𝜂𝑎𝑣𝑒), the stress triaxiality at fracture (𝜂𝑓𝑟𝑎𝑐), and the 

effective strain at fracture (𝜀𝑒𝑓𝑓
𝑓

) for both approaches are summarized in Table 4-4. The 

effective strain at fracture increases as the mask size is decreased, a sign of localization. 

However, the stress triaxiality at fracture and the average stress triaxiality exhibit no 

particular order regarding the mask size for the second approach, while they decrease as 

the mask size is increased for the first approach. Finally, as can be seen from Table 4-4, 

the maximum difference between the effective strain at fracture for two different 

approaches is 3.6%, which occurs on the smallest mask size. 
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Table 4-4 Summary of the average stress triaxiality (𝜂𝑎𝑣𝑒), the stress triaxiality at fracture (𝜂𝑓𝑟𝑎𝑐), and the 

effective strain at fracture (𝜀𝑒𝑓𝑓
𝑓

) for the uniaxial test of the shear specimen. 

 Mask size [pixels] 𝜂𝑎𝑣𝑒 𝜂𝑓𝑟𝑎𝑐 𝜀𝑒𝑓𝑓
𝑓

 

First approach 

16x16 0.076 0.018 0.529 

32x32 0.049 0.001 0.511 

64x64 0.045 0.001 0.418 

128x128 -0.013 -0.016 0.319 

Second approach 

16x16 0.024 -0.055 0.549 

32x32 0.006 -0.001 0.524 

64x64 0.019 -0.004 0.423 

128x128 -0.018 0.017 0.321 

Finally, the true stress-strain curves for different mask sizes are presented together in 

Figure 4-79. Note that the flow rule and the same power-law hardening relationship with 

the same coefficients (i.e., Ω = 868.4 MPa and 𝑛 = 0.128) are used here as for the 

uniaxial test of the 6mm-width specimen, presented in Section 4.5.1, to obtain the 

components of the stress tensor (see Section 4.4.2 for details) of the DIC analysis. 

Moreover, the stress-strain curve obtained via the MTS machine is superposed on the 

same figure for comparison purposes
51

. Solid lines with markers are obtained by the 

digital image correlation analysis, while dashed lines are the results of the uniaxial test 

with the MTS machine. Note that as the DIC analyses are conducted to the point of 

fracture initiation the last marker of each color represents the fracture initiation point for 

different mask sizes. Finally, it is worth noting that the effective stress-strain curve is 

independent of the mask size, as expected, as the plastic constitutive and stress-strain 

relationships that are used (the hardening-law and the flow rule) are independent of a 

length scale. 

                                                 
51

 As also mentioned in the analysis of the uniaxial test (see Chapter 4.5.1), the author is aware 

that although a uni-directional stress-strain curve (i.e., the stress-strain curve obtained via an MTS 

machine) may be the correct representation of the effective stress-strain curve in a global manner 

(when the gauge length is sufficiently large compared to the localization zone), it may not 

correctly reflect the actual strains in the localized zone as can be seen in Figure 4-42. Therefore, 

the stress-strain curve obtained via the MTS machine is superposed on the same figure for 

comparison purposes. 
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Figure 4-79 True stress-strain curve of the uniaxial test of the shear specimen for different mask sizes – 

second approach. Pixel resolution is approximately 13.7 µm/pixel. Solid lines with markers are obtained by 

digital image correlation (DIC) analysis while dashed lines are the results from the MTS machine. 

4.6 Cylindrical Indenter Test Results 

The friction at the cylinder/specimen interface may affect the stress state, and the fracture 

mode and position. All cylindrical indenter experiments presented here are conducted 

using teflon sheet and graphite particles at the interface to reduce friction and help 

provide a frictionless state. 

Two different specimen geometries have been used in the cylindrical indenter 

experiments with a 2-inch-diameter stainless steel circular cylinder, from McMaster-Carr, 

used as an indenter. 

Two different strain increment approaches are applied in the calculation of effective 

strain, the state of stress, and the stress triaxiality; i.e., each approach provides a set of 

figures for a specific mask size. In the first approach, the strain increments have been 
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determined from the un-deformed state to the current state, while the second set of 

figures have been obtained by taking strain increments from the previous state to the 

current state. For strain analysis only the data of the second approach are presented unless 

the effective strain of the two approaches have different qualitative behavior, whereas 

data of both approaches are provided for the stress analysis. 

All stresses presented in this section (i.e., Cylindrical Indenter Test Results) are the true 

stresses and all strains are the natural/true strains unless otherwise stated. Moreover, the 

subscript 11 corresponds to the longitudinal direction of the specimen and the subscript 

22 corresponds to the width direction. 

4.6.1 Analysis of 18mm-Width Specimen without Groove 

The isometric view and technical drawing of the test specimen are depicted in Figure 

4-80 and Figure 4-81, respectively. 

 

Figure 4-80 Isometric view of the 18mm-width specimen without groove (Courtesy of James Gose and 

Haocheng Pan). 
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Figure 4-81 Technical drawing of the 18mm-width specimen without groove (Courtesy of James Gose and 

Haocheng Pan). 

4.6.1.1 Test 0 

An indentation speed of 0.6 inch/second was applied to the center of the test specimen 

with 7500 digital images recorded per second. The pixel resolution was approximately 

13.7 microns per pixel. Note that the high speed camera and the experimental device 

were not snychronized in this experiment. A very small lag in the recording might thus be 

possible. 

Frames from the video recording are presented in Figure 4-82, Figure 4-83, Figure 4-84, 

Figure 4-85, Figure 4-86, Figure 4-87, Figure 4-88, Figure 4-89, Figure 4-90, and Figure 

4-91. The vertical direction and the horizontal direction are the longitudinal direction and 

the width direction of the specimen, respectively. The regions depicted are the exploded 

views and their dimensions are approximately 1035–1065 pixels by 610–640 pixels. Note 

that the recording consists of two videos; the first part of the video recording ends at 

Frame 22253. 
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Figure 4-82 Nital etched AH32 steel 18mm-width-specimen without groove at Frame 0; that is, in the 

undeformed state. 

 

Figure 4-83 Nital etched AH32 steel 18mm-width-specimen without groove at Frame 5000; that is, a 

10.160 mm indentation had been applied. 
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Figure 4-84 Nital etched AH32 steel 18mm-width-specimen without groove at Frame 10000; that is, a 

20.320 mm indentation had been applied. 

 

Figure 4-85 Nital etched AH32 steel 18mm-width-specimen without groove at Frame 15000; that is, a 

30.480 mm indentation had been applied. 
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Figure 4-86 Nital etched AH32 steel 18mm-width-specimen without groove at Frame 20000; that is, a 

40.640 mm indentation had been applied. 

 

Figure 4-87 Nital etched AH32 steel 18mm-width-specimen without groove at Frame 22250; that is, a 

45.212 mm indentation had been applied. 
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Figure 4-88 Nital etched AH32 steel 18mm-width-specimen without groove at Frame 24250; that is, a 

49.276 mm indentation had been applied. 

 

Figure 4-89 Nital etched AH32 steel 18mm-width-specimen without groove at Frame 24520; that is, a 

49.825 mm indentation had been applied. 
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Figure 4-90 Nital etched AH32 steel 18mm-width-specimen without groove at Frame 24526; that is, a 

49.837 mm indentation had been applied. 

 

Figure 4-91 Nital etched AH32 steel 18mm-width-specimen without groove at Frame 24527; that is, a 

49.839 mm indentation had been applied. 

Fracture initiates around Frame 14500; that is, following an approximately 29.464 mm 

indentation. In fact, the initial crack can clearly be seen at Frame 15000, depicted in 
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Figure 4-85. Moreover, final stages of the crack propagation are presented in Figure 4-89, 

Figure 4-90, and Figure 4-91. It is worth noting that shear bands are clearly visible at 

Frame 24526 (depicted in Figure 4-90) and Frame 24527 (depicted in Figure 4-91). 

The evolution of the natural strain and the effective strain within the masked region 

during cylindrical indentation for different mask sizes are presented in Figure 4-92, 

Figure 4-93, Figure 4-94, Figure 4-95, Figure 4-96, and Figure 4-97. Note that the graph 

for the first approach with a 16 pixels by 16 pixels mask is also presented (see Figure 

4-92) to show the different qualitative behavior of the effective strain between Frame 

2000 and Frame 4000. The reason for this difference is that the first approach may not 

capture the small changes in the strain field in the calculation of the effective strain due to 

larger strain increments. Nevertheless, this difference becomes smaller and disappears as 

the mask sizes are increased (Note that the difference is not visible for masks larger than 

64 pixels by 64 pixels). The comparison of the two approaches for all mask sizes is 

presented in Table 4-5, at the end of this sub-section. 

The shear strain remains zero or nearly zero for the larger mask sizes until the initiation 

of fracture (i.e., Frame 14500), where the analysis was curtailed. However, for smaller 

mask sizes (which represent more local behavior), shear strain develops at some stages of 

the experiment. For example, for the 16 pixels by 16 pixels mask, the shear strain nearly 

progressively increases from the beginning of the experiment and reaches its maximum, 

which is approximately 0.01, at Frame 9000. Then, it linearly decreases and disappears 

around Frame 12000. On the other hand, for the 32 pixels by 32 pixels mask, the shear 

strain develops around Frame 8000. Then, it linearly increases and reaches approximately 

-0.017 at Frame 13500, after which it remains nearly constant. 

Moreover, the absolute value of the transverse strain (𝜀22) remains less than 0.007 until 

the initiation of fracture for all mask sizes except the 16 pixels by 16 pixels mask. These 

small values of the transverse strain and nearly zero shear strains for larger mask sizes 

may suggest an approximately global plane-strain condition. In fact, this is also in 

agreement with the average triaxiality value of the corresponding mask sizes, which 

range between 0.51 and 0.54. Note that the plane-strain assumption in the width-direction 

reaches a theoretical stress triaxiality value of 1/√3 ≈ 0.58. 
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Figure 4-92 Evolution of the natural strain within the masked region during the cylindrical indentation – 

first approach. Mask size is 16 pixels by 16 pixels (0.219 mm x 0.219 mm). 

 

Figure 4-93 Evolution of the natural strain within the masked region during the cylindrical indentation – 

second approach. Mask size is 16 pixels by 16 pixels (0.219 mm x 0.219 mm). 
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Figure 4-94 Evolution of the natural strain within the masked region during the cylindrical indentation – 

second approach. Mask size is 32 pixels by 32 pixels (0.438 mm x 0.438 mm). 

 

Figure 4-95 Evolution of the natural strain within the masked region during the cylindrical indentation – 

second approach. Mask size is 64 pixels by 64 pixels (0.877 mm x 0.877 mm). 
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Figure 4-96 Evolution of the natural strain within the masked region during the cylindrical indentation – 

second approach. Mask size is 128 pixels by 128 pixels (1.754 mm x 1.754 mm). 

 

Figure 4-97  Evolution of the natural total strain within the masked region during the cylindrical 

indentation – second approach. Mask size is 192 pixels by 192 pixels (2.630 mm x 2.630 mm). 
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The evolution of the true stress (on the left) and the stress triaxiality (on the rigth) within 

the masked region during cylindrical indentation for different mask sizes are depicted in 

Figure 4-98, Figure 4-99, Figure 4-100, Figure 4-101, Figure 4-102, Figure 4-103, Figure 

4-104, Figure 4-105, Figure 4-106, and Figure 4-107. Note that the state of stress is 

obtained by assuming that the stress in the longitudinal direction (𝜎11) remains positive 

during the entire loading (see Section 4.4.2 for details). 

The stress triaxiality at the initiation of the test (i.e., at Frame 2000) varies between 0.35 

and 0.57 depending on the mask size. On the other hand, the stress triaxiality at fracture 

varies between 0.51 and 0.55 for the first approach, whereas it varies between 0.38 and 

0.61 for the second approach. In addition, the average stress triaxiality varies between 

0.51 and 0.55 for the first approach, while it varies between 0.50 and 0.54 for the second 

approach. Note that all these variations exhibit no particular order regarding the mask 

size. Finally, it is interesting to note the instantaneous decrease in the stress triaxiality (as 

a result of dramatic decreases in normal stresses and increase in shear stress) for the 32 

pixels by 32 pixels mask at Frame 6000 as can be seen in Figure 4-101. The author 

believes that this is caused by the onset of plastic flow (as the plasticity is shear 

dominated); that is, the region is in the elastic-plastic transition zone. In fact, the true 

stress-strain curve for different mask sizes, as presented in Figure 4-110, supports this 

view. Similar behavior being observed for the 64 pixels by 64 pixels at Frame 8000 (see 

Figure 4-103) demonstrates the expansion/accumulation of plastic flow with time. The 

reason this behavior is not observed for the 16x16 pixels mask size is that the step 

increment at the beginning of the test (which was 2000 frames) was sufficiently large 

such that the plastic flow already starts between Frame 0 and Frame 2000 (see Figure 

4-110). 

The shear stress is zero or nearly zero for the larger mask sizes (which represent more 

global behavior) until the initiation of fracture (i.e., Frame 14500), where the analysis 

was curtailed. On the other hand, it fluctuates for the smaller mask sizes (which 

represents more local behavior). For instance, it fluctuates between -237 MPa and 205 

MPa for the 16 pixels by 16 pixels mask size for the second approach. This fluctuation is 

between -142 MPa and 207 MPa for the 32 pixels by 32 pixels mask, whereas it is 

between -117 MPa and 39 MPa for the 64 pixels by 64 pixels mask. Moreover, similar 
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fluctuations are seen in the evolution of the longitudinal stress (𝜎11) and the transverse 

stress (𝜎22) for smaller mask sizes. Nevertheless, the stress state becomes more stable as 

the mask size is increased. 

 

Figure 4-98 Evolution of the true stress (on the left) and the stress triaxiality (on the right) within the 

masked region during the cylindrical indentation – first approach. Mask size is 16 pixels by 16 pixels 

(0.219 mm x 0.219 mm). 

 

Figure 4-99 Evolution of the true stress (on the left) and the stress triaxiality (on the right) within the 

masked region during the cylindrical indentation – second approach. Mask size is 16 pixels by 16 pixels 

(0.219 mm x 0.219 mm). 
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Figure 4-100 Evolution of the true stress (on the left) and the stress triaxiality (on the right) within the 

masked region during the cylindrical indentation – first approach. Mask size is 32 pixels by 32 pixels 

(0.438 mm x 0.438 mm). 

 

Figure 4-101 Evolution of the true stress (on the left) and the stress triaxiality (on the right) within the 

masked region during the cylindrical indentation – second approach. Mask size is 32 pixels by 32 pixels 

(0.438 mm x 0.438 mm). 
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Figure 4-102 Evolution of the true stress (on the left) and the stress triaxiality (on the right) within the 

masked region during the cylindrical indentation – first approach. Mask size is 64 pixels by 64 pixels 

(0.877 mm x 0.877 mm). 

 

Figure 4-103 Evolution of the true stress (on the left) and the stress triaxiality (on the right) within the 

masked region during the cylindrical indentation – second approach. Mask size is 64 pixels by 64 pixels 

(0.877 mm x 0.877 mm). 
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Figure 4-104 Evolution of the true stress (on the left) and the stress triaxiality (on the right) within the 

masked region during the cylindrical indentation – first approach. Mask size is 128 pixels by 128 pixels 

(1.754 mm x 1.754 mm). 

 

Figure 4-105 Evolution of the true stress (on the left) and the stress triaxiality (on the right) within the 

masked region during the cylindrical indentation – second approach. Mask size is 128 pixels by 128 pixels 

(1.754 mm x 1.754 mm). 
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Figure 4-106 Evolution of the true stress (on the left) and the stress triaxiality (on the right) within the 

masked region during the cylindrical indentation – first approach. Mask size is 192 pixels by 192 pixels 

(2.630 mm x 2.630 mm). 

 

Figure 4-107 Evolution of the true stress (on the left) and the stress triaxiality (on the right) within the 

masked region during the cylindrical indentation – second approach. Mask size is 192 pixels by 192 pixels 

(2.630 mm x 2.630 mm). 

There are huge stress fluctuations in the second approach at smaller mask sizes, which 

represent local behavior. Nevertheless, stress fluctuations lose their strength as more 

global behavior is followed; i.e., as the mask size is increased. Possible reasons that cause 

these fluctuations are discussed in Section 4.5.1, where the uniaxial test result of the 
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6mm-width specimen is presented. As discussed and pointed out in Section 4.5.1, the 

author believes that the stress fluctuations are primarily due to plastic flow localization
52

, 

which occurs at the small scales/mask sizes. The fact that stress deviations die out at 

larger mask sizes (see Figure 4-105 and Figure 4-107, for example), which are the 

representations of more global behavior, support this view. 

Moreover, the enormous difference between the two approaches, especially at the smaller 

scales, demonstrates that the loading does not remain proportional
53

 at the smaller scales. 

In other words, if the loading remained proportional, the first and the second approach 

would have similar, or the same, stress state. From a mathematical point of view, this 

difference is caused by the instantaneous changes of  𝜓1 and 𝜓2 (see Equation (4-18), 

Equation (4-19), Equation (4-26), and Equation (4-28)) in the second approach due to 

non-proportional loading of the strain history. In addition, the fact that the difference is 

more pronounced in the smaller mask sizes shows that non-proportional loading is mainly 

caused by plastic flow localization at small scales. In fact, having small differences 

(between the two approaches) at larger scales/mask sizes, which are representations of 

more global behavior, supports this view. 

The evolution of the effective strain for the five scales studied from the results of this 

particular experiment is presented in Figure 4-108. The most prominent feature of the 

figure from the beginning of the test is the separation of the 16 pixels by 16 pixels mask 

from the other mask sizes. Moreover, all mask sizes (except the 16 pixels by 16 pixels 

mask) have the same qualitative behavior and relatively small slopes until Frame 6000, 

where the 32 pixels by 32 pixels mask starts differing slightly. The reasons for these are 

discussed in the following pages, where the true stress-strain curves of different mask 

sizes are presented (see Figure 4-110). However, it is worth noting that these differences 

are a clear indication of strain localization and that the localization occurs at a scale much 

smaller than the thickness scale (the thickness of the specimen is 1.588 mm, which 

corresponds to approximately 116 pixels). In fact, a number of researchers observed grain 

level strain variations/heterogeneity (see e.g., Raabe et al., 2001; Haltom et al., 2013; 

Banerjee et al., 2016) in their experimental work and numerical analysis. 

                                                 
52

 See Footnote 46. 
53

 See Footnote 44. 
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Figure 4-108 Evolution of the effective strain within the masked region the during cylindrical indentation 

for different mask sizes – second approach. Pixel resolution is approximately 13.7 µm/pixel. 

The effect of mask size on failure strain during cylindrical indention can be seen in 

Figure 4-109. Li & Karr (2009) proposed an analytical relationship for the effect of 

length scale on the fracture strain (see Equation (4-45)) and the blue solid line shown in 

the figure is obtained by using this relationship. Note that 𝑥 represents the length scale, 𝑦 

represents the fracture strain and the constants 𝑎 and 𝑏 were determined by a best fit of 

the experimental results
54

. As can be seen from the figure, there was no sign of 

convergence of the results as the length scales were reduced. 

                                                 
54

 See Footnote 49. 
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Figure 4-109 Effect of the mask size on failure strain during the cylindrical indention with 𝑦 =
ln(𝑎/𝑥 + 𝑏) curve fit – second approach. 𝑎 = 2.209 and 𝑏 = 1.026. Pixel resolution is approximately 13.7 

µm/pixel. 

The average stress triaxiality (𝜂𝑎𝑣𝑒), the stress triaxiality at fracture (𝜂𝑓𝑟𝑎𝑐), and the 

effective strain at fracture (𝜀𝑒𝑓𝑓
𝑓

) for both approaches are summarized in Table 4-5. The 

effective strain at fracture increases in a non-linear manner as the mask size is decreased, 

a sign of localization, while the average stress triaxiality or stress triaxiality at fracture 

exhibits no particular order regarding the mask size. It is worth noting that the effective 

strain obtained by the 16 pixels by 16 pixels mask size is more than three times as large 

as the effective strain obtained by the 192 pixels by 192 pixels mask size. Finally, as can 

be seen from Table 4-5, the maximum difference between the effective strain at fracture 

for the two different approaches is 8.9%, which occurs on the smallest mask size. 
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Table 4-5 Summary of the average stress triaxiality (𝜂𝑎𝑣𝑒), the stress triaxiality at fracture (𝜂𝑓𝑟𝑎𝑐), and the 

effective strain at fracture (𝜀𝑒𝑓𝑓
𝑓

) for cylindrical indenter experiment of 18mm-width specimen without 

groove with an indentation speed of 0.6 inch/second. 

 Mask size [pixels] 𝜂𝑎𝑣𝑒 𝜂𝑓𝑟𝑎𝑐 𝜀𝑒𝑓𝑓
𝑓

 

First approach 

16x16 0.512 0.535 0.143 

32x32 0.517 0.536 0.077 

64x64 0.555 0.552 0.049 

128x128 0.511 0.516 0.046 

192x192 0.513 0.511 0.043 

Second approach 

16x16 0.497 0.385 0.157 

32x32 0.513 0.606 0.082 

64x64 0.540 0.527 0.050 

128x128 0.517 0.480 0.046 

192x192 0.514 0.455 0.043 

Finally, the true stress-strain curves for different mask sizes are presented together in 

Figure 4-110. Note that the flow rule and the same power-law hardening relationship with 

the same coefficients (i.e., the strength coefficient of Ω = 868.4 MPa and the hardening 

exponent of 𝑛 = 0.128) are used here as for the uniaxial tests, presented in Section 4.5, 

to obtain the components of the stress tensor (see Section 4.4.2 for details) of the DIC 

analysis. In addition, the stress-strain curve obtained via the MTS machine (represented 

by dashed lines) is superposed on the same figure for comparison purposes
55

. Solid lines 

with markers are obtained by the digital image correlation analysis and the last marker of 

each color represents the fracture initiation point for different mask sizes as the DIC 

analyses are conducted to the point of fracture initiation. Finally, it is worth noting that as 

the plastic constitutive and stress-strain relationships that are used (the hardening-law and 

the flow rule) are independent of a length scale, the effective stress-strain curve is 

independent of the mask size as well and is as expected. 
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 See Footnote 51. 
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Figure 4-110 True stress-strain curve of the cylindrical indenter test for different mask sizes – second 

approach. Pixel resolution is approximately 13.7 µm/pixel. Solid lines with markers are obtained by digital 

image correlation (DIC) analysis while dashed lines are the results from the MTS machine. 

It is interesting to note that the 'masked region' is still in the elastic-region until Frame 

6000 for the 32 pixels by 32 pixels mask and until Frame 8000 for the 192 pixels by 192 

pixels mask. This indicates that all mask sizes except the 16 pixels by 16 pixels mask 

remain in the elastic-region until Frame 6000. Nevertheless, the step increment at the 

beginning of the test (which was 2000 frames) was sufficiently large such that the plastic 

flow starts at a very small scale (i.e., 16 pixels by 16 pixels mask), whereas all other 

mask sizes are still in the elastic-region. This is the reason that effective strain as a 

function of frame number for the 16 pixels by 16 pixels mask differs from the others from 

the beginning of the test (see Figure 4-108). Note that this also causes the 16 pixels by 

pixels mask to have a different slope (in the true stress-strain curve, presented in Figure 

4-110) than the others at the initiation of the experiment. However, they follow the same 

path immediately thereafter. 
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4.6.1.2 Test 3 

This experiment was a repetition of 'Test 0'. An indentation speed of 0.6 inch/second was 

applied to the center of the test specimen with 6000 digital images recorded per second. 

The pixel resolution was approximately 14.0 µm/pixel. Note that the high speed camera 

and the experimental device were snychronized in this experiment. 

Fracture initiates around Frame 21775; that is, following an approximately 55.309 mm 

indentation. Note that this indentation amount is almost as twice large as the one for Test 

0, presented in the previous sub-section. This difference may have been caused by many 

reasons. One of them can be the difference in the space position of fracture initiation; that 

is, the fracture may have initiated on the surface of the specimen considered in the 

previous sub-section, whereas it may have initiated inside the specimen considered in this 

sub-section and the time until it reaches the surface may cause this difference. 

Nevertheless, it is worth noting that no fractography has been conducted for either of the 

specimens; therefore, it is not exactly known whether the fracture initiates on the surface 

or within. Another reason can be the state of friction at the cylinder/specimen interface; 

that is, different states of friction may have caused or contribute to this difference as well. 

DIC analyses are conducted for four different mask sizes, that is, the 16 pixel by 16 pixel 

mask (the smallest mask size), the 32 pixel by 32 pixel mask, the 64 pixels by 64 pixels 

mask, and the 128 pixels by 128 pixels mask, which roughly equals the thickness of the 

specimen (the thickness of the specimen is 1.588 mm). Results are summarized in Table 

4-6. 

As can be seen from Table 4-5 and Table 4-6, the fracture strain is much larger in the 

current experiment (i.e., Test 3) for all mask sizes investigated. This is primarily due to 

huge difference between the indentation displacements (of the two experiments) at the 

onset of fracture. The indentation displacement of the current experiment is nearly as 

twice large as the one obtained for Test 0. On the other hand, the average stress triaxiality 

and the stress triaxiality at fracture are lower in the current experiment (i.e., Test 3). 
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Table 4-6 Summary of the average stress triaxiality (𝜂𝑎𝑣𝑒), the stress triaxiality at fracture (𝜂𝑓𝑟𝑎𝑐), and the 

effective strain at fracture (𝜀𝑒𝑓𝑓
𝑓

) for cylindrical indenter experiment of 18mm-width specimen without 

groove with an indentation speed of 0.6 inch/second. This experiment was a repetition of 'Test 0', presented 

in the previous sub-section. 

 Mask size [pixels] 𝜂𝑎𝑣𝑒 𝜂𝑓𝑟𝑎𝑐 𝜀𝑒𝑓𝑓
𝑓

 

First approach 

16x16 0.391 0.423 0.616 

32x32 0.424 0.423 0.668 

64x64 0.429 0.419 0.619 

128x128 0.421 0.407 0.597 

Second approach 

16x16 0.396 0.513 0.689 

32x32 0.405 0.459 0.683 

64x64 0.407 0.452 0.623 

128x128 0.396 0.451 0.602 

 

4.6.1.3 Test 1 

An indentation speed of 1.2 inch/second was applied to the center of the test specimen 

with 7500 digital images recorded per second. The pixel resolution was approximately 

13.7 microns per pixel. Note that the high speed camera and the experimental device 

were not snychronized in this experiment. A very small lag in the recording might thus be 

possible. 

Fracture initiates around Frame 9000; that is, following an approximately 36.576 mm 

indentation. 

DIC analyses are conducted for three different mask sizes, that is, the 16 pixel by 16 pixel 

mask (the smallest mask size), the 32 pixel by 32 pixel mask, and the 128 pixels by 128 

pixels mask, which roughly equals the thickness of the specimen (the thickness of the 

specimen is 1.588 mm). Results are summarized in Table 4-7. 
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Table 4-7 Summary of the average stress triaxiality (𝜂𝑎𝑣𝑒), the stress triaxiality at fracture (𝜂𝑓𝑟𝑎𝑐), and the 

effective strain at fracture (𝜀𝑒𝑓𝑓
𝑓

) for cylindrical indenter experiment of 18mm-width specimen without 

groove with an indentation speed of 1.2 inch/second. 

 Mask size [pixels] 𝜂𝑎𝑣𝑒 𝜂𝑓𝑟𝑎𝑐 𝜀𝑒𝑓𝑓
𝑓

 

First approach 

16x16 0.320 0.501 0.079 

32x32 0.587 0.551 0.077 

128x128 0.492 0.473 0.049 

Second approach 

16x16 0.515 0.517 0.121 

32x32 0.526 0.413 0.082 

128x128 0.460 0.454 0.049 

 

4.6.1.4 Test 2 

An indentation speed of 2.4 inch/second was applied to the center of the test specimen 

with 7500 digital images recorded per second. The pixel resolution was approximately 

14.0 microns per pixel. Note that the high speed camera and the experimental device 

were not snychronized in this experiment. A very small lag in the recording might thus be 

possible. 

Fracture initiates around Frame 9031; that is, following an approximately 73.404 mm 

indentation. 

DIC analyses are conducted for three different mask sizes, that is, the 16 pixel by 16 pixel 

mask (the smallest mask size), the 32 pixel by 32 pixel mask, and the 128 pixels by 128 

pixels mask, which roughly equals the thickness of the specimen (the thickness of the 

specimen is 1.588 mm). Results are summarized in Table 4-8. 

As can be seen from Table 4-8, fracture strains are huge compared to the results of the 

other three experiments (see Table 4-5, Table 4-6, and Table 4-7). For example, fracture 

strain of the current experiment for 128 pixels by 128 pixels mask in the second approach 

is 27% more than the one obtained for Test 3 and it is more than fifteen times as large as 

the one obtained for Test 1. One of the reasons for this difference is huge indentation 

displacement of the current experiment at the onset of fracture (which is approximately 
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73.404 mm). The indentation displacement is 33% more than the one obtained for Test 3 

and as twice large as the one obtained for Test 1. 

Table 4-8 Summary of the average stress triaxiality (𝜂𝑎𝑣𝑒), the stress triaxiality at fracture (𝜂𝑓𝑟𝑎𝑐), and the 

effective strain at fracture (𝜀𝑒𝑓𝑓
𝑓

) for cylindrical indenter experiment of 18mm-width specimen without 

groove with an indentation speed of 2.4 inch/second. 

 Mask size [pixels] 𝜂𝑎𝑣𝑒 𝜂𝑓𝑟𝑎𝑐 𝜀𝑒𝑓𝑓
𝑓

 

First approach 

16x16 0.311 0.493 0.898 

32x32 0.392 0.464 0.806 

128x128 0.408 0.413 0.744 

Second approach 

16x16 0.393 0.565 1.073 

32x32 0.390 0.519 0.894 

128x128 0.403 0.502 0.763 

 

4.6.2 Analysis of 18mm-Width Specimen with 4mm Groove 

The isometric view and technical drawing of the test specimen are depicted in Figure 

4-111 and Figure 4-112, respectively. 

 

Figure 4-111 Isometric view of the 18mm-width specimen with 4mm groove (Courtesy of James Gose and 

Haocheng Pan). 
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Figure 4-112 Technical drawing of the 18mm-width specimen with 4mm groove (Courtesy of James Gose 

and Haocheng Pan). 

4.6.2.1 Test 1 

An indentation speed of 0.6 inch/second was applied to the center of the test specimen 

with 7500 digital images recorded per second. The pixel resolution was approximately 

13.7 microns per pixel. Note that the high speed camera and the experimental device 

were not snychronized in this experiment. A very small lag in the recording might thus be 

possible. 

Frames from the video recording are presented in Figure 4-113, Figure 4-114, Figure 

4-115, Figure 4-116, Figure 4-117, Figure 4-118, Figure 4-119, and Figure 4-120. The 

vertical direction and the horizontal direction are the longitudinal direction and the width 

direction of the specimen, respectively. The regions depicted are the exploded views and 

their dimensions are approximately 1165–1195 pixels by 685–715 pixels. 
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Figure 4-113 Nital etched AH32 steel 18mm-width-specimen with 4mm groove at Frame 0, that is, in the 

undeformed state. 

 

Figure 4-114 Nital etched AH32 steel 18mm-width-specimen with 4mm groove at Frame 7500, that is, a 

15.240 mm indentation had been applied. 
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Figure 4-115 Nital etched AH32 steel 18mm-width-specimen with 4mm groove at Frame 13000, that is, a 

26.416 mm indentation had been applied. 

 

Figure 4-116 Nital etched AH32 steel 18mm-width-specimen with 4mm groove at Frame 13500, that is, a 

27.432 mm indentation had been applied. 
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Figure 4-117 Nital etched AH32 steel 18mm-width-specimen with 4mm groove at Frame 13800, that is, a 

28.042 mm indentation had been applied. 

 

Figure 4-118 Nital etched AH32 steel 18mm-width-specimen with 4mm groove at Frame 13880, that is, a 

28.204 mm indentation had been applied. 
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Figure 4-119 Nital etched AH32 steel 18mm-width-specimen with 4mm groove at Frame 13883, that is, a 

28.210 mm indentation had been applied. 

 

Figure 4-120 Nital etched AH32 steel 18mm-width-specimen with 4mm groove at Frame 13884, that is, a 

28.212 mm indentation had been applied. 

Fracture initiates around Frame 13250; that is, following an approximately 26.924 mm 

indentation. In fact, the initial crack can be seen at Frame 13500, depicted in Figure 
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4-116. Moreover, the final stages of the crack propagation are presented in Figure 4-118, 

Figure 4-119, and Figure 4-120. 

The evolution of the natural strain and the effective strain within the masked region 

during cylindrical indentation for different mask sizes are presented in Figure 4-121, 

Figure 4-122, Figure 4-123, Figure 4-124, and Figure 4-125. Note that the graph for the 

first approach with a 16 pixels by 16 pixels mask is also presented (see Figure 4-121) to 

show the different qualitative behavior of the effective strain between Frame 2000 and 

Frame 4000. The reason for this difference is that the first approach is based on the 

current strain, whereas the second approach is based on the increment in strain. As the 

current strain components drop to near zero at Frame 4000, the effective strain in the first 

approach decreases to near zero as well. On the other hand, as there are increments in the 

strain components from Frame 2000 to Frame 4000 (although these increments are 

negative), effective strain increases as well. However, this qualitative difference becomes 

smaller as the mask sizes are increased. The comparison of the two approaches for all 

mask sizes is presented in Table 4-9, at the end of this sub-section. 

The shear strain remains zero or nearly zero for all mask sizes until the later stages of the 

experiment. On the other hand, shear strain starts developing around Frame 11000 for the 

16 pixels by 16 pixels mask, while it starts developing around Frame 12500 and 

decreases linearly until the initiation of fracture for the 32 pixels by 32 pixels mask. 

However, the absolute value of the shear strain always remains below 0.01. 

The discussion on the evolution of the longitudinal strain (𝜀11) and the transverse strain 

(𝜀22) is presented in the following pages, where a separate figure is presented for each 

(i.e., Figure 4-134 and Figure 4-135). 
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Figure 4-121 Evolution of the natural strain within the masked region during the cylindrical indentation – 

first approach. Mask size is 16 pixels by 16 pixels (0.219 mm x 0.219 mm). 

 

Figure 4-122 Evolution of the natural strain within the masked region during the cylindrical indentation – 

second approach. Mask size is 16 pixels by 16 pixels (0.219 mm x 0.219 mm). 
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Figure 4-123 Evolution of the natural strain within the masked region during the cylindrical indentation – 

second approach. Mask size is 32 pixels by 32 pixels (0.438 mm x 0.438 mm). 

 

Figure 4-124 Evolution of the natural strain within the masked region during the cylindrical indentation – 

second approach. Mask size is 64 pixels by 64 pixels (0.877 mm x 0.877 mm). 
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Figure 4-125 Evolution of the natural strain within the masked region during the cylindrical indentation – 

second approach. Mask size is 128 pixels by 128 pixels (1.754 mm x 1.754 mm). 

The evolution of the true stress and the stress triaxiality within the masked region during 

cylindrical indentation for different mask sizes are depicted in Figure 4-126, Figure 

4-127, Figure 4-128, Figure 4-129, Figure 4-130, Figure 4-131, Figure 4-132, and Figure 

4-133. Note that the state of stress is obtained by assuming that the stress in the 

longitudinal direction (𝜎11) remains positive during the entire loading (see Section 4.4.2 

for details). 

The stress triaxiality at the initiation of the test (i.e., at Frame 2000) varies between 0.62 

and 0.66 depending on the mask size. On the other hand, the stress triaxiality at fracture 

varies between 0.49 and 0.61 for the first approach, whereas it varies between 0.47 and 

0.56 for the second approach. In addition, interestingly, the stress triaxiality at fracture 

nearly equals the value of the average stress triaxiality. Note that all these variations 

exhibit no particular order regarding the mask size. Finally, the theoretical stress 

triaxiality for this experiment is 1/√3 ≈ 0.58 assuming a plane-strain condition in the 

width-direction. 
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The shear stress is zero or nearly zero for the larger mask sizes (which represent more 

global behavior) until the initiation of fracture (i.e., Frame 13250), where the analysis 

was curtailed. On the other hand it fluctuates for the smaller mask sizes (which represents 

more local behavior). For instance, it fluctuates between -259 MPa and 288 MPa for the 

16 pixels by 16 pixels mask size for the second approach. This fluctuation is between -

233 MPa and 153 MPa for the 32 pixels by 32 pixels mask. Moreover, similar 

fluctuations are seen in the evolution of the longitudinal stress (𝜎11) and the transverse 

stress (𝜎22) for smaller mask sizes. Nevertheless, the stress state becomes more stable as 

the mask size is increased. 

 

Figure 4-126 Evolution of the true stress (on the left) and the stress triaxiality (on the right) within the 

masked region during the cylindrical indentation – first approach. Mask size is 16 pixels by 16 pixels 

(0.219 mm x 0.219 mm). 
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Figure 4-127 Evolution of the true stress (on the left) and the stress triaxiality (on the right) within the 

masked region during the cylindrical indentation – second approach. Mask size is 16 pixels by 16 pixels 

(0.219 mm x 0.219 mm). 

 

Figure 4-128 Evolution of the true stress (on the left) and the stress triaxiality (on the right) within the 

masked region during the cylindrical indentation – first approach. Mask size is 32 pixels by 32 pixels 

(0.438 mm x 0.438 mm). 
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Figure 4-129 Evolution of the true stress (on the left) and the stress triaxiality (on the right) within the 

masked region during the cylindrical indentation – second approach. Mask size is 32 pixels by 32 pixels 

(0.438 mm x 0.438 mm). 

 

Figure 4-130 Evolution of the true stress (on the left) and the stress triaxiality (on the right) within the 

masked region during the cylindrical indentation – first approach. Mask size is 64 pixels by 64 pixels 

(0.877 mm x 0.877 mm). 
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Figure 4-131 Evolution of the true stress (on the left) and the stress triaxiality (on the right) within the 

masked region during the cylindrical indentation – second approach. Mask size is 64 pixels by 64 pixels 

(0.877 mm x 0.877 mm). 

 

Figure 4-132 Evolution of the true stress (on the left) and the stress triaxiality (on the right) within the 

masked region during the cylindrical indentation – first approach. Mask size is 128 pixels by 128 pixels 

(1.754 mm x 1.754 mm). 
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Figure 4-133 Evolution of the true stress (on the left) and the stress triaxiality (on the right) within the 

masked region during the cylindrical indentation – second approach. Mask size is 128 pixels by 128 pixels 

(1.754 mm x 1.754 mm). 

The most prominent feature of these figures is the huge stress fluctuations (especially in 

the second approach) at smaller mask sizes, which represents local behavior. Similar 

fluctuations are observed in the analysis of the cylindrical indenter experiment of the 

18mm-width specimen without groove, which is presented in Section 4.6.1. Moreover, 

possible physical and mathematical reasons that cause these fluctuations are discussed in 

the same chapter, and in the analysis of the uniaxial test of the 6mm-width specimen, 

presented in Section 4.5.1. In summary, the author believes that the stress fluctuations are 

primarily due to plastic flow localization
56

 at the small scales/mask sizes. This view is 

supported by the fact that fluctuations lose their strength as more global behavior is 

followed; i.e., at larger mask sizes (see Figure 4-133, for example). 

Moreover, as discussed in Section 4.6.1 in detail, the enormous difference between the 

two approaches, especially at the smaller scales, demonstrates that the loading does not 

remain proportional
57

 at the smaller scales and the fact that this difference is more 

pronounced at the smaller mask sizes shows that non-proportional loading is mainly 

caused by plastic flow localization at the small scales. 

                                                 
56

 See Footnote 46. 
57

 See Footnote 44. 
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The evolution of the longitudinal strain (𝜀11) and the transverse strain (𝜀22) for different 

mask sizes are presented in Figure 4-134 and Figure 4-135, respectively. The longitudinal 

strains for the 64 pixels by 64 pixels mask and the 128 pixels by 128 pixels mask nearly 

overlap during the entire loading considered here. Moreover, all mask sizes except the 32 

pixels by 32 pixels mask have nearly the same longitudinal strain value at the initiation of 

fracture (i.e., at Frame 13250). On the other hand, the transverse strain for all mask sizes 

remains nearly zero until Frame 10000, where it starts developing. As presented in the 

previous pages, the shear strain is nearly zero until the later stages of the experiment as 

well. Therefore, the plane-strain condition (in the width-direction) develops and remains 

until around Frame 10000. This behavior can be expected as the width of the specimen 

(which is 18 mm) is fairly large compared to the length of the groove (which is 4 mm). 

However, around Frame 10000, positive transverse strain develops for the 16 pixels by 

16 pixels mask, whereas negative transverse strain develops and remains negative for the 

other mask sizes. 

 

Figure 4-134 Evolution of the longitudinal strain within the masked region during the cylindrical 

indentation for different mask sizes – second approach. Pixel resolution is approximately 13.7 µm/pixel. 
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Figure 4-135 Evolution of the transverse strain within the masked region during the cylindrical indentation 

for different mask sizes – second approach. Pixel resolution is approximately 13.7 µm/pixel. 

The evolution of the effective strain for the four scales studied from the results of this 

particular experiment is presented in Figure 4-136. The most prominent feature of the 

figure from the beginning of the test is once again the separation of the 16 pixels by 16 

pixels mask from the other mask sizes. This separation is a clear indication of strain 

localization and that the localization occurs at a scale much smaller than the thickness 

scale (the thickness of the specimen is 1.588 mm, which corresponds to approximately 

116 pixels). In fact, as mentioned previously, a number of researchers observed grain 

level strain variations/heterogeneity (see e.g., Raabe et al., 2001; Haltom et al., 2013; 

Banerjee et al., 2016) in their experimental work and numerical analysis. Considering 

that the evolution of the longitudinal strain for all mask sizes does not differ much (see 

Figure 4-134) and that the development of positive transverse strain in the 16 pixels by 

16 pixels mask (see Figure 4-135), one can interpret that the localization is more 

pronounced along the thickness direction. Moreover, all mask sizes (except the 16 pixels 

by 16 pixels mask) have the same quantitative behavior and relatively small slopes until 

Frame 2000. The reason for this is discussed in the following pages, where the true 

stress-strain curves of different mask sizes are presented (see Figure 4-138). Finally and 
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interestingly, the fracture strain for the 32 pixels by 32 pixels mask is lower than the ones 

for other two larger masks (i.e., 64 pixels by 64 pixels mask and 128 pixels by 128 pixels 

mask) with its curve also remaining below them. 

 

Figure 4-136 Evolution of the effective strain within the masked region during the cylindrical indentation 

for different mask sizes – second approach. Pixel resolution is approximately 13.7 µm/pixel. 

The effect of mask size on failure strain during cylindrical indention can be seen in 

Figure 4-137. Li & Karr (2009) proposed an analytical relationship for the effect of 

length scale on the fracture strain (see Equation (4-45)) and the blue solid line shown in 

the figure is obtained by using this relationship. Again, 𝑥 represents the length scale, 𝑦 

represents the fracture strain and the constants 𝑎 and 𝑏 were determined by a best fit of 

the experimental results
58

. As can be seen from the figure, there was no sign of 

convergence of the results as the length scales were reduced. 

                                                 
58

 See Footnote 49. 
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Figure 4-137 Effect of the mask size on failure strain during the cylindrical indention with 𝑦 =
ln(𝑎/𝑥 + 𝑏) curve fit – second approach. 𝑎 = 1.246 and 𝑏 = 1.111. Pixel resolution is approximately 13.7 

µm/pixel. 

The average stress triaxiality (𝜂𝑎𝑣𝑒), the stress triaxiality at fracture (𝜂𝑓𝑟𝑎𝑐), and the 

effective strain at fracture (𝜀𝑒𝑓𝑓
𝑓

) for both approaches are summarized in Table 4-9. The 

effective strain at fracture in the second approach increases as the mask size is decreased 

(except for the 32 pixels by 32 pixels mask). Moreover, interestingly, the stress triaxiality 

at fracture nearly equals the value of the average stress triaxiality and it exhibits no 

particular order regarding the mask size. Finally, as can be seen from Table 4-9, the 

maximum difference between the effective strain at fracture for the two different 

approaches is 23.2%, which occurs on the smallest mask size. 
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Table 4-9 Summary of the average stress triaxiality (𝜂𝑎𝑣𝑒), the stress triaxiality at fracture (𝜂𝑓𝑟𝑎𝑐), and the 

effective strain at fracture (𝜀𝑒𝑓𝑓
𝑓

) for the cylindrical indenter experiment of 18mm-width specimen with 4 

mm groove with an indentation speed of 0.6 inch/second. 

 Mask size [pixels] 𝜂𝑎𝑣𝑒 𝜂𝑓𝑟𝑎𝑐 𝜀𝑒𝑓𝑓
𝑓

 

First approach 

16x16 0.599 0.612 0.142 

32x32 0.486 0.495 0.103 

64x64 0.529 0.523 0.120 

128x128 0.514 0.525 0.123 

Second approach 

16x16 0.558 0.557 0.185 

32x32 0.477 0.475 0.111 

64x64 0.526 0.527 0.127 

128x128 0.525 0.523 0.127 

Finally, the true stress-strain curves for different mask sizes are presented together in 

Figure 4-138. Note that the flow rule and the same power-law hardening relationship with 

the same coefficients (Ω = 868.4 MPa and 𝑛 = 0.128) are used here as for the 

cylindrical indenter experiment of the 18mm-width specimen without groove, presented 

in Section 4.6.1, to obtain the components of the stress tensor (see Section 4.4.2 for 

details) of the DIC analysis. Solid lines with markers are obtained by the digital image 

correlation analysis and DIC analyses are conducted to the point of fracture initiation; 

hence, once again the last marker of each color represents the fracture initiation point for 

different mask sizes. Dashed lines are the results of the uniaxial test with the MTS 

machine, which is superposed on the same figure for comparison puropses
59

. Finally, as 

pointed out in the previous analyses, the effective stress-strain curve is independent of the 

mask size as a result of using plastic constitutive and stress-strain relationships that are 

used (the hardening-law and the flow rule) are independent of a length scale. 

                                                 
59

 See Footnote 51. 
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Figure 4-138 True stress-strain curve of the cylindrical indenter test for different mask sizes – second 

approach. Pixel resolution is approximately 13.7 µm/pixel. Solid lines with markers are obtained by digital 

image correlation (DIC) analysis while dashed lines are the results from the MTS machine. 

It is again interesting to note that the 'masked region' is still in the elastic-region until 

Frame 2000 for both the 32 pixels by 32 pixels mask and the 128 pixels by 128 pixels 

mask. This indicates that all mask sizes except the 16 pixels by 16 pixels mask remain in 

the elastic-region until Frame 2000. Nevertheless, the step increment at the beginning of 

the test (which was 2000 frames) was sufficiently large such that the plastic flow starts at 

a very small scale (i.e., 16 pixels by 16 pixels mask), whereas all other mask sizes are 

still in the elastic-region. This is the reason that effective strain as a function of frame 

number for the 16 pixels by 16 pixels mask differs from the others from the beginning of 

the test (see Figure 4-136). Note that this also causes the 16 pixels by pixels mask to have 

a different slope (in the true stress-strain curve, presented in Figure 4-138) than the others 

at the initiation of the experiment. However, they follow the same path immediately 

thereafter. 
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4.6.2.2 Test 2 

An indentation speed of 1.2 inch/second was applied to the center of the test specimen 

with 6000 digital images recorded per second. The pixel resolution was approximately 

14.1 microns per pixel. Note that the high speed camera and the experimental device 

were snychronized in this experiment. 

Fracture initiates around Frame 6650; that is, following an approximately 33.782 mm 

indentation. Note that this displacement is approximately 25% larger than the one 

obtained for the low speed test, presented in the previous sub-section. 

DIC analyses are conducted for three different mask sizes, that is, the 16 pixel by 16 pixel 

mask (the smallest mask size), the 32 pixel by 32 pixel mask, and the 128 pixels by 128 

pixels mask, which roughly equals the thickness of the specimen (the thickness of the 

specimen is 1.588 mm). Results are summarized in Table 4-10. 

As can be seen from Table 4-9 and Table 4-10, the fracture strain obtained at high strain 

rate is more than two times as large as the one obtained at the lower strain rate. However, 

this is not a conclusive trend as more data are required to reach a solid conclusion. 

Table 4-10 Summary of the average stress triaxiality (𝜂𝑎𝑣𝑒), the stress triaxiality at fracture (𝜂𝑓𝑟𝑎𝑐), and the 

effective strain at fracture (𝜀𝑒𝑓𝑓
𝑓

) for cylindrical indenter experiment of 18mm-width specimen without 

groove with an indentation speed of 1.2 inch/second. 

 Mask size [pixels] 𝜂𝑎𝑣𝑒 𝜂𝑓𝑟𝑎𝑐 𝜀𝑒𝑓𝑓
𝑓

 

First approach 

16x16 0.520 0.573 0.456 

32x32 0.541 0.543 0.366 

128x128 0.538 0.544 0.318 

Second approach 

16x16 0.558 0.597 0.489 

32x32 0.543 0.543 0.367 

128x128 0.539 0.554 0.318 
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4.7 Results and Discussion 

4.7.1 Mask/Mesh Size Dependence 

Finite element studies of the mesh size dependence have been conducted previously and 

discussed widely in the literature. However, the present research is the first study, to our 

knowledge, that investigates the mesh size dependence through the direct measure of 

strain via digital image correlation (DIC) analysis. 

Although the rate-independent constitutive models may be attributed as the reason for 

mesh sensitive results or non-convergence behavior as the length scales (i.e., mesh sizes) 

were reduced (see e.g., Addessio & Johnson, 1993), in the present study, different 

convergence behaviors (including non-convergence behavior) were obtained for different 

experiments through a direct measure of strain via DIC analysis. In other words, no 

stress-strain constitutive models/relations are used in the calculation of strains; strains are 

calculated through strain-displacement relationships via digital image correlation analysis 

and the procedure is summarized below. 

The strain field is obtained using digital image correlation (DIC) analysis via DaVis 

LaVision (2015) software. The software calculates the displacement field and it sums the 

displacement field in a Lagrangian manner such that it provides the total displacement 

and engineering strain field to the current step. After obtaining the engineering strain 

field, a property called a 'geometric mask' is applied to extract the data from the region of 

interest. Strains are calculated to the point of fracture initiation in a backward-stepping 

manner. Backward-engineering-strains are converted to forward-engineering-strains and 

natural strains are calculated from the forward-engineering-strains. The details of the 

calculation are explained in Section 4.4.1. Note that all DIC strain data provided in this 

work are based on the average strain within the 'masked region'. 

Two approaches are used in determination of the effective strain. The first approach is 

based on the current strain field, while the second approach is based on the incremental 

strain. The comparison shows that the first approach underestimates the effective strain 



 

165 

 

and may not capture the instantaneous changes/fluctuations in the stress field as it is 

based on larger strain increments. 

The state of stress is obtained using flow rule and power-law hardening relationship with 

hardening parameters Ω = 868.4 MPa and 𝑛 = 0.128 and these material parameters are 

used in all analyses. 

Table 4-11 Summary of the average stress triaxiality (𝜂𝑎𝑣𝑒), the stress triaxiality at fracture (𝜂𝑓𝑟𝑎𝑐), and the 

effective strain at fracture (𝜀𝑒𝑓𝑓
𝑓

) of all uniaxial tests – second approach. 

Specimen Type 

Test 

Speed 

[inch/s] 

Pixel 

Resolution 

[µm/pixel] 

Mask 

Size 

[pixels] 
𝜂𝑎𝑣𝑒 𝜂𝑓𝑟𝑎𝑐 𝜀𝑒𝑓𝑓

𝑓
 

Corresponding 

Average 

Strain Rate 

[s
-1

] 

6mm-width 

specimen 

without 

groove* 

0.20 16.5 

16x16 0.364 0.513 0.615 0.513 

32x32 0.375 0.415 0.583 0.486 

64x64 0.364 0.451 0.574 0.478 

128x128 0.365 0.431 0.519 0.433 

192x192 0.363 0.430 0.479 0.399 

1024x256 0.356 0.420 0.229 0.191 

6mm-width 

specimen 

without 

groove** 

0.40 16.3 

16x16 0.371 0.420 0.533 0.955 

32x32 0.344 0.404 0.466 0.835 

128x128 0.354 0.424 0.458 0.820 

1in-width 

specimen with 

semi-circular 

groove*** 

Manual 15.3 

16x16 0.369 0.327 0.233 0.126 

32x32 0.521 0.622 0.145 0.078 

64x64 0.519 0.577 0.103 0.056 

128x128 0.530 0.584 0.087 0.047 

Shear 

specimen*** 
Manual 13.7 

16x16 0.024 -0.055 0.549 0.686 

32x32 0.006 -0.001 0.524 0.655 

64x64 0.019 -0.004 0.423 0.529 

128x128 -0.018 0.017 0.321 0.401 

* This specimen was obtained by in-house machining of 18mm-width-specimen without groove. 

** This specimen was obtained by in-house machining of 1in-width-specimen without groove. 

*** These experiments were conducted manually; hence, the test speed may not be constant 

during the experiment. The strain rates were calculated assuming that the speed was constant. 
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Table 4-12 Summary of the average stress triaxiality (𝜂𝑎𝑣𝑒), the stress triaxiality at fracture (𝜂𝑓𝑟𝑎𝑐), and the 

effective strain at fracture (𝜀𝑒𝑓𝑓
𝑓

) of all cylindrical indenter experiments – second approach. 

Specimen Type 

Test 

Speed 

[inch/s] 

Pixel 

Resolution 

[µm/pixel] 

Mask 

Size 

[pixels] 
𝜂𝑎𝑣𝑒 𝜂𝑓𝑟𝑎𝑐 𝜀𝑒𝑓𝑓

𝑓
 

Corresponding 

Average Strain 

Rate 

[s
-1

] 

18mm-width 

specimen 

without groove 

(Test 0) 

0.60 13.7 

16x16 0.497 0.385 0.157 0.081 

32x32 0.513 0.606 0.082 0.042 

64x64 0.540 0.527 0.050 0.026 

128x128 0.517 0.480 0.046 0.024 

192x192 0.514 0.455 0.043 0.022 

18mm-width 

specimen 

without groove 

(Test 3) 

0.60 14.0 

16x16 0.396 0.513 0.689 0.190 

32x32 0.405 0.459 0.683 0.188 

64x64 0.407 0.452 0.623 0.172 

128x128 0.396 0.451 0.602 0.166 

18mm-width 

specimen 

without groove 

(Test 1) 

1.20 13.7 

16x16 0.515 0.517 0.121 0.101 

32x32 0.526 0.413 0.082 0.068 

128x128 0.460 0.454 0.049 0.041 

18mm-width 

specimen 

without groove 

(Test 2) 

2.40 14.0 

16x16 0.393 0.565 1.073 0.891 

32x32 0.390 0.519 0.894 0.742 

128x128 0.403 0.502 0.763 0.634 

18mm-width 

specimen with 

4mm groove 

(Test 1) 

0.60 13.7 

16x16 0.558 0.557 0.185 0.105 

32x32 0.477 0.475 0.111 0.063 

64x64 0.526 0.527 0.127 0.072 

128x128 0.525 0.523 0.127 0.072 

18mm-width 

specimen with 

4mm groove 

(Test 2) 

1.20 14.1 

16x16 0.558 0.597 0.489 0.441 

32x32 0.543 0.543 0.367 0.331 

128x128 0.539 0.554 0.318 0.287 

 

The summary of the results of all uniaxial tests and cylindrical indenter experiments are 

presented in Table 4-11 and Table 4-12, respectively. The strain rates listed are the 

average strain rates for the test range whereby the strain-to-failure is divided by the time-

to-failure. Note that the strain rates at the instant of fracture are much higher. 
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It is known that the state of stress has a strong influence on the effective failure strain, a 

measure of ductility. This has been confirmed in numerous investigations including the 

current experimental study. In addition, we have obtained different mesh convergence 

behaviors for different experiments. It is believed that strain localization is the main 

cause of mesh size dependence on fracture strain. As the strain localization depends on 

the state of stress, it is expected that there will be an effect of mesh size (on fracture 

strain) for different state of stresses. In other words, mesh convergence behavior is also 

affected by the state of stress. This has been observed by other researchers, e.g., Barsoum 

& Faleskog (2007a)
60

, Hogström et al. (2009), Walters (2014), and Kõrgesaar & 

Romanoff (2014). 

As a result, care should be exercised in the consideration of establishing a strain-to-

failure envelope for a material; that is, both the state of stress and the scale effects should 

be considered. 

4.7.2 Strain Rate Dependence 

No conclusive trend is obtained with the current experimental results and more data are 

required to reach a solid conclusion regarding the fracture sensitivity to strain rate 

variation. 

                                                 
60

 Although they did not point this out explicitly, one can clearly interpret this behavior from 

Figure 12 of the cited reference. Note that, 𝜀𝑐̅𝑓
𝑝

 (the effective plastic strain in the center of the 

notch at failure), shown by dashed lines, may represent the local strain behavior, that is, 

small/fine mesh size behavior; while 𝜀𝑛̅𝑓
𝑝

 (the average effective plastic strain over the notch at 

failure), shown by solid lines, may represent global strain behavior, that is, large/coarse mesh size 

behavior. In other words, dashed lines (in Figure 12 of the cited reference) would have been 

parallel (or overlapped) to the solid lines if mesh convergence would not have been affected by 

the stress triaxiality. 
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CHAPTER 5 

Comparison of Theory and Experimental Results 

In this Chapter, the analytical theory of the initiation of ductile fracture, proposed in 

Chapter 3, is compared to the experimental results for the mild steel presented in Chapter 

4. 

The comparison of the experimental data and the theoretical results requires a crucial 

choice of the data points and the coordinate space in which it is presented. Fracture strain 

as a function of stress triaxiality for three different mask sizes is depicted in Figure 5-1, 

Figure 5-2, and Figure 5-3. As can be seen from the figures, the experimental data are 

very scattered. This scattering suggests that the fracture locus may not be accurately 

represented in the 2D space (stress triaxiality and fracture strain space, for example). 

Instead, the full state of stress at the initiation of fracture should be considered and the 

fracture locus should be represented in the 3D space (stress triaxiality, Lode parameter
61

, 

and fracture strain space, for example). Another reason for this scattering is that a small 

change in toughness stress for Mode I fracture (𝐶𝐼) results in a huge difference in fracture 

strain. Figure 5-4 depicts the effective strain to fracture as a function of toughness stress 

for Mode I fracture for the uniaxial test of the 6mm-width specimen. As can be seen from 

the figure, increasing toughness stress from 822.6 MPa to 1196.7 MPa (i.e., 45.5% 

increase) causes a 166.7% increase in fracture strain (i.e., from 𝜀𝑓̅ = 0.15 to 𝜀𝑓̅ = 0.40). 
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 Lode parameter is defined as 

ℒ =
2𝜎𝐼𝐼 − 𝜎𝐼 − 𝜎𝐼𝐼𝐼

𝜎𝐼 − 𝜎𝐼𝐼𝐼
 

where Roman numeral subscripts represent principal stresses with 𝜎𝐼 > 𝜎𝐼𝐼 > 𝜎𝐼𝐼𝐼. Note that the 

Lode parameter is not defined for 𝜎𝐼 = 𝜎𝐼𝐼𝐼, i.e., 𝜎𝐼 = 𝜎𝐼𝐼 = 𝜎𝐼𝐼𝐼. 
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It is possible that a fracture may result from the propagation of cracks from within the 

sample volume. Unfortunately, it is not possible to distinguish this occurrence from cases 

where fracture initiates on the surface as no fractography is conducted. However, the data 

from Chapter 4 do offer an indication of the level of expected surface energy by 

application of the theory presented in Chapter 3. Therefore, all experimental data (with 

the theoretical results) will be included in the figures presented in this chapter. 

Nevertheless, the reader should be cautious of evaluating and comparing these data points 

(with the theory) as any datum point may have a non-surface fracture initiation and/or 

may be the result of brittle fracture (brittle fracture data points should not be used for 

comparison as the theory predicts ductile fracture initiation only). 

5.1 Toughness Stress Calculation 

The toughness stresses 𝐶𝐼 and 𝐶𝐼𝐼 are evaluated by using the results of the second 

approach discussed in Chapter 4, which is based on smaller increments in strain. The 

toughness stresses are obtained for three different mask sizes, that is, the 16 pixel by 16 

pixel mask (the smallest mask), the 32 pixels by 32 pixels mask, and the 128 pixels by 

128 pixels mask (the largest mask). The reason for this is discussed and explained in 

Section 5.1.4. 

The pixel resolutions of all experiments are not exactly the same; they range between 

13.7 µm and 16.5 µm. Therefore, the actual dimension of a mask size may be different 

for two different data points. For instance, the actual mask size varies between 0.219 mm 

and 0.264 mm for 16 pixels, while it varies between 1.754 mm and 2.112 mm for 128 

pixels. 

Bridgman’s (1945) experiments with pre-strained metal specimens under hydrostatic 

pressure verified that fracture is history dependent (see Figure 8 of the same reference); 

that is, the current state of stress and the strain are not the only important parameters. 

Therefore, the average stress triaxiality was used in the evaluation of 𝐶𝐼 and 𝐶𝐼𝐼 rather 

than the stress triaxiality at fracture because the average stress triaxiality reflects the state 

of stress history better when the loading does not remain proportional. However, as 
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mentioned in Chapter 3, proportional loading is not required for use of the theory 

presented there. The general approach for non-proportional loading would be to check the 

equation of the critical condition throughout the loading history with the critical state 

being reached when the equation is first satisfied as the loading is applied. 

As a practical matter, only one datum point is necessary to calculate a toughness stress. 

Therefore, the shear mode toughness stress 𝐶𝐼𝐼 is evaluated using the result of the 

uniaxial test of the shear specimen as we know this is a Mode II fracture. As the theory 

presented in Chapter 3 provides a necessary condition for fracture initiation, it can be 

implemented as the lower bound. This lower bound for the opening mode toughness 

stress 𝐶𝐼 is obtained by evaluating the low effective strain to fracture results, and it is 

shown as a cyan solid curve in Figure 5-1, Figure 5-2, and Figure 5-3. However, as 

mentioned above, the data are very scattered; hence, a second toughness stress for the 

opening mode is calculated by evaluating the higher effective strain to fracture results 

and it is shown as a green solid curve. 

5.1.1 16 Pixels by 16 Pixels Mask 

Fracture strain as a function of stress triaxiality for the 16 pixels by 16 pixels mask is 

shown in Figure 5-1. Data points used in the evaluation of a toughness stress are shown 

as crisscrosses inside the red circles. For instance, the toughness stress 𝐶𝐼 = 909 MPa 

and the corresponding cyan solid curve is obtained by considering the best fit of four data 

points that are shown as cyan crisscrosses. For the 16 pixels by 16 pixels mask, the 

toughness stress for the shear mode fracture is obtained as 𝐶𝐼𝐼 = 580 MPa. 

5.1.2 32 Pixels by 32 Pixels Mask 

Fracture strain as a function of stress triaxiality for the 32 pixels by 32 pixels mask is 

presented in Figure 5-2. Again, data points used in the evaluation of a toughness stress 

are shown as crisscrosses inside the red circles. For example, toughness stress 𝐶𝐼 = 814 

MPa and the corresponding cyan solid curve is obtained by considering the best fit of the 

four data points that are shown as cyan crisscrosses. For the 32 pixels by 32 pixels mask, 

the toughness stress for the shear mode fracture is obtained as 𝐶𝐼𝐼 = 561 MPa. 
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Figure 5-1 Effective strain to fracture versus stress triaxiality for the plane stress condition for the 16 pixels 

by 16 pixels mask. Two toughness stress results are shown for the opening mode fracture (cyan solid curve 

and green solid curve), whereas the results of only one toughness stress are presented for the shear mode 

fracture. For the shear mode fracture, the blue solid curve shows the result for the critical state with no 

friction on the fracture planes, while the dotted dashed line shows the results of friction occuring on the 

fracture planes due to compressive normal stresses. 
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Figure 5-2 Effective strain to fracture versus stress triaxiality for the plane stress condition for the 32 pixels 

by 32 pixels mask. Two toughness stress results are shown for the opening mode fracture (cyan solid curve 

and green solid curve), whereas the results of only one toughness stress are presented for the shear mode 

fracture. For the shear mode fracture, the blue solid curve shows the result for the critical state with no 

friction on the fracture planes, while the dotted dashed line shows the results of friction occuring on the 

fracture planes due to compressive normal stresses. 

5.1.3 128 Pixels by 128 Pixels Mask 

Fracture strain as a function of stress triaxiality for the 128 pixels by 128 pixels mask is 

depicted in Figure 5-3. Again, data points used in the evaluation of a toughness stress are 

shown as crisscrosses inside the red circles. For example, toughness stress 𝐶𝐼 = 1405 

MPa and the corresponding green solid curve is obtained by considering the best fit of 

three data points that are shown as green crisscrosses. For the 128 pixels by 128 pixels 

mask, the toughness stress for the shear mode fracture is obtained as 𝐶𝐼𝐼 = 439 MPa. 
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Figure 5-3 Effective strain to fracture versus stress triaxiality for the plane stress condition for the 128 

pixels by 128 pixels mask. Two toughness stress results are shown for the opening mode fracture (cyan 

solid curve and green solid curve), whereas the results of one toughness stress is presented for the shear 

mode fracture. For the shear mode fracture, the blue solid curve shows the result for the critical state with 

no friction on the fracture planes, while the dotted dashed line shows the results of friction occuring on the 

fracture planes due to compressive normal stresses. 

5.1.4 Evaluation of Toughness Stresses 

As a comparison, we calculate the toughness stress for the opening mode (𝐶𝐼) by using 

previously published results relating the conventional energy release rates. Priest et al. 

(2001) provided fracture toughness (𝐾), the crack-tip opening displacement (CTOD), and 

the J-integral values for steels used in ship construction, including AH32 steel. The J-

integral is reported as being on the order of 𝐽 = 0.3 J/mm
2
 and the crack-tip opening 

displacement (CTOD) is reported on the order of 0.4 mm (see Table 5.5 of the cited 
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reference)
62

. As the J-integral is a way of calculating crack-extension force or strain 

energy release rate (see Section 2.4), it can be used as an approximation for the surface 

energy density of a ductile fracture (denoted as Γ) introduced in Chapter 3. Moreover, 𝑙𝐼,0 

is chosen on the order of the crack-tip opening displacement (CTOD) as it generally 

provides a good estimate for the characteristic length scale
63

 (Gao et al., 1998). 

Therefore, using Equation (3-12) with Γ = 0.3 J/mm
2
 and 𝑙𝐼,0 = 0.4 mm gives a 

toughness stress of 𝐶𝐼 = 750 MPa. This is essentially the same order as the lower bounds 

of 𝐶𝐼 presented in Figure 5-1, Figure 5-2, and Figure 5-3. 

 

Figure 5-4 Effective strain to fracture versus toughness stress for Mode I fracture for the uniaxial test of the 

6mm-width specimen without groove with a test speed of 0.2 inch/second. 

                                                 
62

 We use the values denoted as 'i-values' as they represent the value at crack initiation. Moreover, 

the results of the specimen named as 'AH32N-Y7N10' are used as this is the only AH32 specimen 

where both the J-integral and crack-tip opening displacement data are reported simultaneously. 
63

 “The layer height, denoted D, introduces a characteristic length scale over which damage 

occurs and is associated with the mean spacing of the larger, void initiating inclusions ... 

… 

The crack tip opening displacement (CTOD) at the initiation of macroscopic tearing, as defined 

in ASTM E-1290, generally represents a good estimate for the cell height dimension (D)” (p. 762 

of Gao et al., 1998). 
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Figure 5-5 Effective strain to fracture versus characteristic length for the uniaxial test of the 6mm-width 

specimen without groove with a test speed of 0.2 inch/second. Pixel resolution is approximately 16.5 

µm/pixel. 

For application of the ductile fracture theory (presented in Chapter 3), we suggest the use 

of a mesh size equal to the characteristic length (𝑙𝐼,0) as the theory introduces a micro-

structural characteristic length scale and the formulation was derived based on the 

assumption of a uniform stress field within the volume element. However, here, three 

different mask sizes were analyzed for the implementation of the theory and the reasons 

are as follow. As mentioned above, the pixel resolutions of all experiments are not 

exactly the same; they range between 13.7 µm and 16.5 µm. Hence, the corresponding 

pixel sizes for the characteristic length of 𝑙𝐼,0 = 0.4 mm range between 24 pixels and 29 

pixels. In addition, the characteristic length of 𝑙𝐼,0 = 0.4 mm is an estimate (as it was 

obtained by assuming that the crack-tip opening displacement, CTOD, generally provides 

a good estimate for the characteristic length scale) and the fracture strain is extremely 

sensitive to characteristic length as can be seen from Figure 5-5. Moreover, the limit for 

the continuum scale for polycrystalline aggregates (e.g., steel, aluminum, etc.) is 



 

176 

 

approximately twenty
64

 (Leis et al., 1985; Tegart, 1966); hence, the continuum scale limit 

ranges between ~100 µm and ~500 µm as the average grain size of AH32 steel ranges 

from ~5 m to ~25 m depending on the cooling process/system used (Zhou et al., 

2016). Therefore, the characteristic length lies essentially in the range of 100 m to 500 

m and the corresponding mask size ranges from 7 pixels to 36 pixels. Hence, the 16 

pixels by 16 pixels mask and the 32 pixels by 32 pixels mask are considered appropriate 

for the application of the ductile failure criterion, presented in Chapter 3. Moreover, we 

applied the theory on the results of the 128 pixels by 128 pixels mask for comparison 

purposes. Note that the 128 pixels by 128 pixels mask roughly equals the thickness of the 

specimens (the thickness of all specimens analyzed is 1.588 mm). 

In conclusion, we believe that the toughness stress of ductile fracture 𝐶, introduced by 

Karr & Akçay (2016) and presented in Chapter 3, may be related to the conventional 

fracture toughness, generally denoted as 𝐾𝑐 (see Section 2.3 for details). For example, it 

may be stated in the following form for the opening mode fracture (i.e., Mode I fracture): 

 𝐶𝐼  ≈  
𝐾𝐼𝑐
2

𝐸𝑙𝐼,0
 (5-1) 

where 𝐸 is the modulus of elasticity and 𝑙𝐼,0 is the micro-structural characteristic length 

of the material. 
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  See Footnote 39 and Footnote 40. 
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CHAPTER 6 

Conclusions and Suggestions for Future Work 

6.1 Discussion and Conclusions 

The research presented here provides, through combined experimental and analytical 

studies, a significant contribution to understanding of the evolution of the non-linear 

stress and strain states leading to ductile fracture. In addition, this study provides key 

parameters for predicting fracture of ductile materials in general, and thus assists in the 

guidance of criteria development for materials other than those specifically addressed. 

Numerous researches have focused on establishing a criterion for crack propagation (i.e., 

extension of pre-existing cracks). Moreover, the current criteria for ductile fracture are 

based on empirical relations and there is presently no generally-accepted criterion for 

ductile fracture. In Chapter 3, we presented a closed-form theoretical solution on the 

initiation of ductile fracture at the continuum scale. This is an extremely important 

development as crashworthiness assessment, energy absorption capacity and damage 

survivability depend on the accurate prediction of fracture initiation, which limits the 

structure’s performance. 

The ductile fracture theory presented is based on comparison of the energy dissipation 

rates of the bulk continuum system to the fractured medium. The energy dissipation of 

the continuum system includes that of plastic work while that of the fractured system 

includes the surface energy of the crack formation, plastic work, and frictional losses (if 

any) at the instant of crack initiation. Two mechanisms were considered: Mode I, which 

accounts for a crack-opening displacement field and Mode II, which accounts for a shear 
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crack initiation. The shear crack was addressed with and without frictional dissipation of 

the crack surfaces. 

The theory presented in Chapter 3 introduces a length scale and a new material constant 

which we call toughness stress. The toughness stress (𝐶) is defined as the effective 

surface energy release rate (𝛤) divided by the micro-structural characteristic length of the 

material (𝑙𝐼,0). Both the effective surface energy and the characteristic length are material 

specific. The characteristic length can be associated with averaged spacing of micro-

structural inclusions as discussed in Xia & Shih (1995). 

An example study of the use of the criterion for a plastic material with power-law 

hardening is examined and compared with published hybrid experimental-numerical data 

for an aluminum alloy (see Section 3.4 for details). Although the proper application of the 

theory requires checking the critical condition equation throughout the loading history 

with the critical state being reached when the equation is first satisfied as the loading is 

applied, another method was necessitated. The average stress triaxiality was used for 

comparison of the aluminum alloy with the theory due to lack of published data of the 

stress/strain history over the course of loading. We calculated a toughness stress of 

𝐶𝐼 = 1081 MPa for the opening mode fracture and a toughness stress of 𝐶𝐼𝐼 = 344 MPa 

for the shear mode fracture. The agreement of the theory with published hybrid 

experimental-numerical data for the aluminum alloy are quite good (see Figure 3-2 and 

Figure 3-4). Moreover, using the energy release rates of aluminum-base alloys (ductile 

fracture) provided by Hahn et al. (1972), we find a characteristic length for Al 2024 on 

the order of 10 µm. This is consistent with the micro-structural length scale dominant in 

aluminum alloys as provided in Table I of Hahn & Rosenfield (1975). The theory is 

compared to the current experimental results of AH32 steel, a mild steel, as well. We 

conclude that agreement of the theory with existing experimental results overall is quite 

good and very encouraging. The AH32 results are presented in Chapter 5 and 

summarized in the following pages, after the discussion of the experimental results. 

The experimental analyses presented in Chapter 4 provides data for validation and 

verification of fracture models, and provides the data with which to evaluate the constants 

(i.e., toughness stresses) in the analytical formulation presented in Chapter 3. Moreover, 
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the effects of the state of stress and the element/mask size on the fracture behavior of a 

mild steel were explored. 

Currently, a common, widely used approach to post-process experimental results is to 

extract stress and strain fields from the corresponding finite element models, that is, 

hybrid experimental-numerical analysis (see e.g., Bao & Wierzbicki, 2004; Bai & 

Wierzbicki, 2010; Papasidero et al., 2015). In that approach, both stress and strain depend 

on the result of the finite element analyses and are not measured during experiments. In 

the current study, however, a direct measure of strain was obtained by digital image 

correlation analysis (DIC). Strains were obtained by analyzing digital images that were 

recorded during the experiments with a Phantom v710 high speed camera, via DaVis 

LaVision (2015) software. The operations that lead to extracting the engineering/nominal 

strains are shown in Figure 4-12. Strains were calculated to the point of fracture initiation 

where we define the fracture initiation as the condition when the first visible crack 

appears in the digital image of the test specimen. After obtaining the engineering strain 

field, a property called a 'geometric mask' was applied to investigate a specific sub-region 

of the imaged surface. The natural strains were calculated from the engineering strains. 

The corresponding state of stress was calculated directly (rather than through a numerical 

simulation) by using the DIC results via the constitutive relationships (i.e., the power-law 

hardening relationship) and the stress-strain relationships (i.e., the flow rule) for a plane-

stress condition. A plane-stress condition develops as the surface (that has been 

considered in the DIC analysis) is free of stress. We conclude that this method yields a 

far superior measure of stress and strain fields. 

A series of uniaxial tests and cylindrical indenter experiments with various speeds were 

conducted and presented in Chapter 4. Two different strain increment approaches were 

applied in the calculation of the effective strain, the state of stress, and the stress 

triaxiality. In the first approach, the strain increments are from the un-deformed state to 

the current state, while the values in the second approach were obtained by taking strain 

increments from the previous state to the current state. Therefore, the only difference 

between the two approaches is the amount of strain increment considered. These two 

approaches would lead to similar results for the cases of proportional loading. For the 

cases of non-proportional loading, however, the use of smaller strain increments (that is, 
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the second approach) is expected to provide more reliable results as the stress-strain 

relationships (i.e., the flow rule) are based on the linear incremental relationships. The 

comparison of the two approaches shows that the first approach may underestimate the 

effective strain and may not capture the instantaneous changes/fluctuations in the stress 

field as it is based on larger strain increments. The summary of the results of all uniaxial 

tests and cylindrical indenter experiments are presented in Table 4-11 and Table 4-12, 

respectively. It is once again clear that the direct measurement techniques are better and 

more accurate than using simulations for this purpose. 

In the uniaxial test of the 6mm-width specimen, both the transverse strain and the 

longitudinal strain are moderately affected by the mask size and the effect of mask size is 

more pronounced especially at later stages of the experiment (see Figure 4-40 and Figure 

4-41). For example, the strain difference between the smallest and the largest mask size 

(with respect to the largest mask size) at the initiation of fracture is 22.5% for the 

transverse strain, whereas it is 26.7% for the longitudinal strain. Thus, having different 

longitudinal and transverse strains for different mask sizes demonstrates that the strain is 

not exactly uniform within the neck region at the initiation of fracture. However, the 

percentages mentioned above are the maximum differences and they are lower in the 

previous stages of the experiment. Hence, uniform longitudinal strain and/or uniform 

transverse strain assumptions may be reasonable depending on what stage of the uniaxial 

test is under consideration. 

In addition, the uni-directional stress-strain curve is in fairly good agreement with the 

effective stress-strain curve in both approaches (see Figure 4-38 and Figure 4-39). Hence, 

a global uni-directional stress-strain curve may be a fairly good representation of the 

global effective stress-strain curve, which is a general assumption in obtaining stress-

strain curves of materials (through a conventional uniaxial test), when the gauge length is 

sufficiently large compared to the localization zone. Nevertheless, it is worth noting that 

there is an increasing difference (as the experiment progresses) between the 1024 pixels 

by 256 pixels mask and the rest of the mask sizes (see Figure 4-42). This difference (with 

respect to 1024 pixels by 256 pixels) at the initiation of fracture reaches 109% for the 192 

pixels by 192 pixels mask and 168% for the 16 pixels by 16 pixels mask. Therefore, 
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global strains obtained by a conventional uniaxial test may not represent the actual 

strains in the localized zone, as expected. 

Moreover, there is fairly good agreement between the hardening part of the MTS uniaxial 

test result and the DIC analyses (see Figure 4-44). This demonstrates that the power-law 

hardening relationship with calculated hardening parameters Ω = 868.4 MPa (the 

strength coefficient) and 𝑛 = 0.128 (the hardening exponent) fits reasonably well for this 

specific material (i.e., AH32 steel). 

Furthermore, huge stress fluctuations in the second approach at smaller mask sizes 

(which represent local behavior) were observed, particularly in the cylindrical indenter 

experiments. Nevertheless, stress fluctuations lose their strength as more global behavior 

is followed; i.e., as the mask size is increased. Hence, as also discussed and pointed out in 

Chapter 4, the author believes that the stress fluctuations are primarily due to plastic flow 

localization at the small scales/mask sizes. Moreover, the difference of the stress state 

between the first approach and the second approach can be inferred as the existence of 

non-proportional loading, and this difference being more pronounced at smaller mask 

sizes shows that non-proportional loading is mainly caused by plastic flow localization at 

small scales.  

Finite element studies of the mesh size dependence have been conducted previously and 

discussed widely in the literature. However, the present research is the first study, to our 

knowledge, that investigates the mesh/mask size dependence through the direct measure 

of strain via DIC analysis. Although the rate-independent constitutive models may be 

attributed as the reason for mesh sensitive results or non-convergence behavior as the 

length scales (i.e., mesh size) were reduced (see e.g., Addessio & Johnson, 1993), in the 

present study, different convergence behaviors (including non-convergence behavior) 

were obtained for different experiments. It is believed that strain localization is the main 

cause of the scale/mask dependence on fracture strain. In addition, convergence behavior 

is also affected by the state of stress (Walters, 2014) as the strain localization depends on 

the state of stress. 

On the other hand, as non-proportional loading is mainly the result of plastic flow 

localization and that the localization is the primary reason for non-convergence behavior, 
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mesh/mask convergence may be obtained under proportional loading. We obtained an 

indication of convergence for the case of the uniaxial test of the shear specimen where 

the loading was nearly proportional loading. However, more experimental data are 

required to reach a solid conclusion for the effect of loading on mesh/mask convergence. 

For the higher strain rate experiments, no conclusive trend is observed with the current 

experimental results. More experimental data are required to reach a solid conclusion and 

trend, if there is any. 

The ductile fracture theory is also compared to the current experimental results of AH32 

steel and it is presented in Chapter 5. Although we reported the state of stress and the 

strain history over the course of loading for AH32 steel (in Chapter 4), the average stress 

triaxiality was used in the calculation of toughness stresses for comparison purposes and 

sake of clarity. The toughness stress for the shear mode fracture was evaluated by using 

the result of the uniaxial test of the shear specimen as we know that it is a shear mode 

fracture. However, as the data are scattered significantly, two toughness stresses for the 

opening mode fracture were determined. As the theory presented in Chapter 3 provides a 

necessary condition for fracture initiation, it can be implemented as the lower bound. 

Hence, the lower bound toughness stress for the opening mode was calculated by 

evaluating the low effective strain to failure results. The second one was calculated by 

evaluating the higher effective strain results. 

As discussed in Chapter 5, scattering of the data suggests that the fracture locus may not 

be accurately represented in the 2D space (stress triaxiality and fracture strain space, for 

example). Instead, the full state of stress at the initiation of fracture should be considered 

and the fracture locus should be represented in the 3D space (stress triaxiality, Lode 

parameter, and fracture strain space, for example). Moreover, another reason for this 

scattering is that a small change in toughness stress for Mode I fracture (𝐶𝐼) and/or 

characteristic length results in huge differences in fracture strain as can be seen from 

Figure 5-4 and Figure 5-5. 

The use of a single characteristic length requires no scale/mesh/mask dependency of 

strain to failure. However, as pointed out in Karr & Akçay (2016) and in Chapter 3, often 

times finite element simulations to failure do show mesh size dependency of strain to 
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failure and the critical strains vary with the element size if the finite element results do 

not converge. Thus, the toughness stresses 𝐶𝐼 and 𝐶𝐼𝐼 would also vary with mesh size if 

one were to use the finite element strains to determine their values. The implication in 

this case would be the use of a mesh size equal to the characteristic length (𝑙𝐼,0) as 

discussed in Chapter 5. 

In the current study, the toughness stresses were calculated for three different mask sizes, 

which is presented in Chapter 5 (see Figure 5-1, Figure 5-2, and Figure 5-3), to examine 

their range and sensitivity to scale. Note that fracture strains presented in Chapter 5 were 

obtained through direct measure of strain via digital image correlation analyses. For the 

16 pixels by 16 pixels mask, the lower bound of toughness stress for the opening mode 

fracture is 𝐶𝐼 = 909 MPa, while the toughness stress for the shear mode fracture is 

𝐶𝐼𝐼 = 580 MPa. For the 32 pixels by 32 pixels mask, however, the lower bound of 

toughness stress for the opening mode fracture is 𝐶𝐼 = 814 MPa, while the toughness 

stress for the shear mode fracture is 𝐶𝐼𝐼 = 561 MPa. On the other hand, for the 128 pixels 

by 128 pixels mask, the lower bound of toughness stress for the opening mode fracture is 

obtained 𝐶𝐼 = 757 MPa, whereas the toughness stress for the shear mode fracture is 

obtained as 𝐶𝐼𝐼 = 439 MPa. As a comparison, we calculate the toughness stress for the 

opening mode (𝐶𝐼) by using previously published results relating the conventional energy 

release rates. The J-integral and the crack-tip opening displacement for AH32 steel were 

reported as being on the order of 𝐽 = 0.3 J/mm
2
 and 𝐶𝑇𝑂𝐷 = 0.4 mm, respectively (see 

Table 5.5 of Priest et al., 2001). As the J-integral is a method for the calculating crack-

extension force or the strain energy release rate, it can be used as an approximation for 

the surface energy density of ductile fracture (denoted as Γ). Moreover, the micro-

structural characteristic length (𝑙𝐼,0) was chosen on the order of the crack-tip opening 

displacement (CTOD) as it generally provides a good estimate for the characteristic 

length scale (Gao et al., 1998). Using Equation (3-12) with Γ = 0.3 J/mm
2
 and 𝑙𝐼,0 = 0.4 

mm gives a toughness stress of 𝐶𝐼 = 750 MPa. This is essentially the same order as the 

lower bounds of 𝐶𝐼 presented in Figure 5-1, Figure 5-2, and Figure 5-3. In conclusion, we 

believe that the toughness stress of ductile fracture 𝐶, introduced by Karr & Akçay 

(2016) and presented in Chapter 3, may be related to the conventional fracture toughness, 
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generally denoted as 𝐾𝑐 (see Chapter 2.3 for details). This relation for Mode I fracture, 

for example, can be written in the form of Equation (5-1). 

6.2 Suggestions for Future Work 

The mixed-mode fracture, in which one should consider the change in energy dissipation 

from tensile and shear stress states simultaneously, is not addressed in the ductile fracture 

theory presented in Chapter 3. A future study would be to consider further the mixed 

failure mode of the material in an effort to understand the effects of combined tensile and 

shear stress states. Moreover, the applications of the theory, presented in Section 3.4 and 

Chapter 5, consider the application of the model to only a non-porous material. As also 

mentioned by Karr & Akçay (2016), a further refinement of the theory would be the 

application of Gurson’s model or variations of it to account for void growth in the parent 

material as the growth and/or coalescence of micro-voids may be considered as fracture 

initiation at the macro/continuum scale, where the proposed theory can be applied. In 

addition, the average stress triaxiality is used in the example applications for comparison 

purposes and sake of clarity. However, as mentioned previously, the proper application of 

the theory requires checking the equation of the critical condition throughout the loading 

history with the critical state being reached when the equation is first satisfied as the 

loading is applied. This application would be another avenue of continuing the study as 

there could presumably be a different effective strain to failure if the actual stress and 

strain history was used during loading. 

The experimental analyses presented in Chapter 4 are based on 2D-DIC analyses; that is, 

only the surface strain components are obtained. The strain in the thickness direction was 

obtained using incompressibility. A further study to obtain the exact value of the strain in 

the thickness direction would be the application of 3D-DIC (also called Stereo DIC). The 

application of incompressibility can also be validated in this manner. 

As mentioned previously, the fracture initiation is defined as the condition when the first 

visible crack appears in the digital image of the test specimen. The initiation of fracture 

has been established by observing the digital images of the test specimen as the 
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continuum scale is the subject of interest. In other words, the establishment of fracture 

initiation relies on human judgment. Scale effects (the size of the initial crack, for 

example) affect the establishment of fracture initiation as well. Therefore, a standardized 

and computerized automation of this establishment would accelerate the process and may 

provide more reliable results. 

A mask/mesh convergence study was conducted through the direct measure of strain via 

DIC analysis. As mentioned in the conclusions of Section 6.1, different convergence 

behaviors were obtained for various experiments. We obtained a non-convergence 

behavior for the cases of cylindrical indenter experiments, where the loading at smaller 

scales/masks was non-proportional; whereas an indication of convergence was obtained 

for the case of the uniaxial test of the shear specimen, where the loading was nearly 

proportional. However, further experimental investigation of the effect of loading 

condition on mask/mesh convergence is a necessary point of future study. 

As mentioned previously, no conclusive trend was obtained for the higher strain rate 

experiments with the current experimental results. Hence, performing more high-speed 

experiments should be a consideration of a future study. 

Finally, as mentioned in Chapter 5, the experimental data are very scattered and this 

scattering suggests that the fracture locus may not be accurately represented in 2D space 

(stress triaxiality and fracture strain space, for example). Moreover, all experiments 

except the lowest speed cylindrical indenter experiment were performed once; that is, 

repeatability of the results was not verified. Thus, a continuing study would be the 

repetition of the experiments with the fracture locus represented in 3D space (stress 

triaxiality, Lode parameter, and fracture strain space, for example). In this manner, 

statistical data on the variability of the fracture strengths can be established. 
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