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Abstract

Scattering amplitudes provide a handle for testing and constraining quantum

field theories. In this thesis, I explore two directions within the topic: 1) using

amplitudes to probe how the number of degrees of freedom evolves as the energy

scale changes along renormalization group flows, and 2) extending a new modern

approach to computing amplitudes that reveals the intriguing underlying math-

ematical structure. In the first part, I generalize a method that encodes the flow

of degrees of freedom into certain scattering amplitudes from four dimensions to

arbitrary dimensions and uncover new structures that become relevant in eight

dimensions. I also demonstrate that scattering of other massless modes cannot

interfere with the 4d method. In the second part, I explore a reformulation of

tree-level amplitudes in 4d N = 4 super Yang-Mills (SYM) theory in terms of

a contour integral over the space of k × n matrices and show how to extend

several aspects beyond N = 4 SYM theory. A key new result is an algorithm I

developed to resolve an important sign ambiguity in calculating residues of the

contour integral.

x



Chapter 1

Introduction

1.1 Overview

Particle physics constantly pushes the limits of experimental and theoretical understanding.

The unceasing development of higher energy and higher precision experiments has driven the

pursuit of more advanced descriptions of the physics. This in turn has led to new insights

and revealed unexpected connections between physics and mathematics, especially through

the study of quantum field theories (QFTs). Examples of such insights will become apparent

as the main contribution of this thesis is to collect and synthesize new theoretical results in

the subject of scattering amplitudes.

Scattering occurs when an initial quantum state |i〉 of incident particles interact and

transition into an outgoing final state 〈f |. It can be pictured intuitively as in Figure 1.1.

The probability amplitude of the interaction, i.e., the scattering amplitude, mathematically

represents that transition:

A = 〈f |i〉. (1.1)

Amplitudes provide an essential link between theory and experiment, allowing proposed

QFT descriptions of fundamental physics to be tested and constrained. In scattering ex-

periments, one measures the probability of a given final state occurring given the known

initial state. The probability measurements are then translated to scattering cross sections

σ. These are compared to theoretical predictions derived from amplitudes as an integral over

moduli squared amplitudes:

σ ∼
∫
|A|2. (1.2)
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A... ...|i〉 〈f |

Figure 1.1: A schematic diagram of a generic scattering amplitude A. Particles in the initial
state |i〉 are incoming from the left and the outgoing particles form the final state 〈f | on the
right.

New physics beyond the Standard Model will likely be hidden in tiny signals among

Standard Model backgrounds, so in order to unravel the new phenomena, it is crucial to

have a solid theoretical understanding of the known amplitudes and efficient techniques for

computing them.

The traditional method for computing an amplitude is to encode the possible interactions

pictorially in Feynman diagrams and then sum over all diagrams that can contribute to the

process. The Feynman approach can be very useful for computations in weakly coupled

theories with simple interactions where one can in principle expand perturbatively in the

small coupling constant (the parameter that encodes the strength of interaction) and solve

the problem order-by-order in the expansion.

The Feynman approach emphasizes the properties of locality and unitarity, which are

thought to be fundamental to any QFT that describes our universe. By exploiting these

properties, one can discover strong constraints on scattering amplitudes and the dynamical

evolution of QFTs. For example, unitarity implies the optical theorem, which relates the

imaginary part of a scattering amplitude to a sum over scattering cross sections. Similar

analytic features can (and will in Part I of this thesis) be exploited to construct essential

conditions for important intrinsic quantities of unitary QFTs.

While Feynman diagrams can provide useful results, in many theories the calculations

quickly become intractable due to the inordinate number of diagrams that must be evalu-

ated and the myriad of cancellations that tend to occur. The issue stems from the focus on

locality and unitarity at the cost of serious unphysical redundancies in intermediate steps.

For example, scalar theories can be modified by field redefinitions that are invisible from the

point of view of amplitudes, but can significantly change the values of individual Feynman

diagrams. Theories with higher spin have increasingly complex gauge redundancies that are

respected only by the sum over Feynman diagrams, but not necessarily by each diagram

alone. Complicated symmetry transformations often exhibit similar behavior. All of these

actions shuffle information around between different diagrams in just such a way as to leave

the total amplitude invariant. This begs the question: could there be a different way to

2



compute amplitudes such that symmetry and gauge invariance are manifest from the start?

Rather than imposing unitarity and locality on individual pieces, perhaps one can instead

construct building blocks of the amplitude that each obey the symmetries and combine them

such that locality and unitarity emerge in the sum. This objective has spurred the develop-

ment of new computational techniques and revised geometric interpretations of amplitudes

in specific QFTs. Aspects of these modern methods are the subject of Part II.

This thesis is divided into two parts, which together provide progress toward two goals of

the amplitudes program: using scattering amplitudes to understand fundamental properties,

structures, and symmetries of QFTs; and developing efficient methods for computing them.

In Part I, the former goal is central. The primary objective is to use analyticity properties

of scattering amplitudes to study how degrees of freedom evolve as the energy scale changes

in a QFT. Part II primarily deals with the latter goal. The main focus is to clarify and

extend the development of a matrix-integral approach to computing amplitudes while filling

in some gaps in the logic. A secondary focus is to provide a crisp geometric interpretation

of the results. The remainder of this introduction will be organized to parallel the bipartite

structure of the main text. For each part, essential background will be presented first,

followed by an overview of my contributions to the field.

1.2 Background for Part I

1.2.1 RG Flows and CFTs

The dynamics of quantum field theories will generally vary depending on the relevant scales

in the problem. Intuitively, at energies much smaller than a particle’s mass M , there will

be insufficient energy to create the particle. It can only be exchanged internally in Feynman

diagrams, so its effect can be encoded in an effective low energy description in which lower

mass particles will have extra interaction terms with small coefficients determined essen-

tially by the ratio of the momenta to the mass M . Scattering amplitudes can be computed

perturbatively as long as the couplings remain small. As the momentum rises however, the

perturbative expansion in the effective theory will break down because the ratios become

larger. To obtain sensible results at and above energies of the order of M , one needs to

return to the full theory with both the light and heavy particles.1

This intuitive example demonstrates a theory evolving under changes in energy. More

1A classic example from particle physics is Fermi’s interaction for beta decay. At the energy scales
relevant to nuclear decay, Fermi’s interaction treats the neutron, proton, electron, and antineutrino as directly
coupled. At higher energies, however, one must account for the full electroweak theory and incorporate the
exchange of a W -boson.
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generally, the dependence of parameters on energy is a fundamental feature of QFTs and

leads to the subject of renormalization group (RG) flows. Energy dependence of the coupling

constants gi is encoded in the beta functions

βi(µ) =
dgi

d log µ
, (1.3)

where µ represents the energy scale. Typically, if the beta function for some coupling is

positive, then the theory becomes strongly coupled at high energies and perturbation theory

breaks down. Quantum electrodynamics (QED) has this feature; calculations performed

assuming a small coupling are invalid at very high scales. Conversely a negative beta function

indicates that the coupling weakens with energy. For example, quantum chromodynamics

(QCD) is strongly coupled at low energy and asymptotically approaches a free theory at

high energy.

A QFT with generic values of the couplings can be thought of as a point along some RG

flow. Fundamentally, the beta functions governing the flow are differential equations, so it is

not surprising that in many theories certain configurations of the couplings can define fixed

points at which the beta functions vanish. The flow parameter is energy, so fixed points

represent theories with no energy dependence. Since RG flows describe the evolution of

theories under changes in energy, fixed points of the beta functions correspond to endpoints

of RG flows. Thus many RG flows can be understood as interpolating between ultraviolet

(UV) and infrared (IR) fixed points, as shown schematically in Figure 1.2

UV 

IR 

Energy 

Flow 

Figure 1.2: Illustration of an RG flow interpolating between an ultraviolet fixed point at
high energy and an infrared fixed point at low energy.

There is another reason why fixed points are especially interesting to study. When the

beta functions are zero, the theory dynamically generates a new symmetry: scale (dilatation)

invariance. Extra symmetry means extra constraints on observables, which allows stronger

results concerning properties of the theory. The dilatation symmetry is doubly significant be-
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cause scale invariance is often accompanied by additional symmetries under angle-preserving

diffeomorphisms known collectively as conformal invariance. Indeed, it has been proven in

2d that scale invariance implies conformal invariance under very general assumptions [1, 2],

and a similar theorem has been conjectured in four dimensions, e.g., see [3, 4] for arguments

in favor of the 4d conjecture.

Conformally invariant QFTs, known as conformal field theories (CFTs), are highly con-

strained due to the large amount of symmetry they obey. When RG flows end at CFTs, one

can hope to leverage some of the CFT results to gain insight into properties of the flows.

In particular, the presence of a conformal anomaly in curved spaces has been used to prove

irreversibility theorems in 2d and 4d for RG flows in a very broad class of QFTs [2, 5]. The

motivation stems from the Wilsonian intuition that as the energy decreases along RG flows,

degrees of freedom that would require more energy than the RG scale should be effectively

eliminated. The example described at the beginning of this section illustrates this intuition

as the degrees of freedom associated with the massive field are kinematically inaccessible at

low energies. Since the low energy theory has fewer degrees of freedom than the high energy

theory, there is no way to flow back to the original theory from the low energy one. In that

sense, RG flows are expected to be irreversible, as proven directly in 2d and 4d. Chapters

2 and 3 are based on the ideas presented in [5, 6], so it will be worthwhile to review the

framework now.

1.2.2 Irreversiblity of RG Flows

The original 2d theorem due to Zamolodchikov can be stated as follows [2]:

Theorem 1 (c-theorem). For any unitary, Lorentz-invariant 2d QFT with a conserved stress

tensor, there exists a positive definite real function c(g) which is

1. Monotonically decreasing along RG flows

2. Stationary at fixed points

3. Equal to the central charges of the CFTs at the fixed points

Zamolodchikov’s c-theorem is so called due to the close connection to a fundamental 2d

CFT parameter traditionally denoted c. In a generic CFT, the stress tensor Tµν is classically

traceless, but a quantum anomaly will generally spoil the tracelessness condition in curved

space. For example, the 2d trace anomaly may be familiar from its ubiquitous presence in

string theory,

〈T µµ 〉 = − c

24
R, (1.4)
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where R is the Ricci curvature of the background spacetime and c is a pure number that

is characteristic of the theory in question. Perturbatively, c is closely related to the field

content of the theory, so the intuition is to interpret the central charge as a measure of the

degrees of freedom in the CFT. This idea seems to be borne out in practice as the central

charge is intimately tied to the entanglement entropy of quantum systems, e.g., in 2d, the

entanglement entropy SEE between a line segment and the rest of the universe is [7, 8]

SEE =
c+ c̄

6
log

Σ

ε
, (1.5)

where c and c̄ are the left and right moving central charges, Σ is the size of the region, and

ε is a UV cutoff. The entropy SEE naively measures the entanglement between separated

regions, but it has since been shown to carry additional fundamental information. For

example, holographic calculations demonstrate that the Bekenstein-Hawking entropy of a

BTZ black hole is completely captured by entanglement entropy in a dual 2d CFT [9]. The

Bekenstein-Hawking entropy is usually interpreted as a thermal entropy, but a relationship

between 2d thermal and entanglement entropies was proposed in [9] and subsequently proven

in [10]. Since thermal entropy is supposed to provide a count of the number of microstates,

i.e., degrees of freedom in a system, the key takeaway is that the 2d central charge provides

a genuine measure of the degrees of freedom in a system. The c-theorem guarantees the

number always decreases along RG flows, thus realizing the Wilsonian intuition that degrees

of freedom are lost along RG flows.

A similar story is expected to be true in higher dimensions, and a version of the c-theorem

has been generalized to all dimensions for theories that obey a gauge/gravity duality [11, 12].

However, not all RG flows have dual gravitational descriptions, so an alternative method

will be required for those cases. Zamolodchikov’s approach cannot be directly extended

beyond 2d due to obstructions whose source depends on the number of dimensions; in odd

dimensions there is no trace anomaly, which rules out an odd-dimensional version,2 while

in even dimensions there are additional contributions to Zamolodchikov’s c(g) function that

interfere with the proof.

Nevertheless, the trace of the stress tensor in even dimensions is still expected to carry

some measure of degrees of freedom. The trick will be to isolate the appropriate quantities.

The full trace anomaly takes the following general form in even dimensions [19, 20]:

〈T µµ 〉 =
∑

i

ciIi − (−1)d/2aEd, (1.6)

2Alternative measures of degrees of freedom such as the free energy have been proposed, and a related
F -theorem was proven in 3d [13, 14, 15, 16, 17, 18].
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where
√−gIi are dimension-specific Weyl invariants, ci are the corresponding central charges,

and a is the central charge associated with the d-dimensional Euler density Ed.
3 In 2d, there

are no ci, and the so-called a-anomaly is the only contribution (for historical reasons it is

customary to use c instead of a in that case). The ci cannot provide higher-dimensional

generalizations of the c-theorem as they are not generally monotonic along RG flows [21,

22, 23]. However, on the basis of 1-loop monotonicity evidence, Cardy conjectured that the

a-anomaly could ultimately provide a higher-dimensional version of the theorem [24].

Over two decades after the 2d c-theorem was proven [2] and the a-theorem conjectured

[24], the 4d version was proven in [5] using analytic properties of scattering amplitudes. A

fairly detailed sketch of the proof follows since my work in Chapter 2 is a direct extension

of this method, and Chapter 3 addresses a subtlety that was not explicitly considered in the

original papers.

Proof Sketch. Consider two CFTs related by an RG flow as in Figure 1.2. The flow from

CFTUV can be ignited two ways, both of which lead to the presence of a particle called the

dilaton:

1. Spontaneously: If the conformal symmetry is broken spontaneously, then there will

be a massless scalar Goldstone boson for the broken scale symmetry. It is the dilaton.

2. Explicitly: If the conformal symmetry is broken explicitly by the insertion of a rele-

vant operator (such as a mass term), then one can restore the symmetry by introducing

the dilaton τ as a compensator field Ω = f e−2τ with 〈Ω〉 = f . For example,

M2 →M2 e−2τ =
(
M2/f 2

)
Ω2. (1.7)

The modified theory is conformal and has a moduli space for the compensator. Now

the mass term is induced by letting Ω take its VEV f , which spontaneously breaks the

restored conformal symmetry as in the previous case. Hence the dilaton again appears

as a Goldstone boson in the low energy theory.

The goal is to use the low energy dilaton effective action Sτ to extract information about

the flow of the trace anomaly (in particular the a-anomaly). Specifically, it will be shown that

the 2→ 2 dilaton scattering amplitude is proportional to the difference in anomaly between

the 4d CFTs at the end points of the RG flow. By considering the analytic structure of the

2→ 2 amplitude, it follows that the change in anomaly must be nonnegative. Consequently,

any RG flow between two CFTs is irreversible, and the intuition is borne out that the

a-anomaly represents the effective degrees of freedom.

3The Euler density and Weyl invariants are constructed out of the metric gµν and its derivatives.
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At high energy, the action is given by that of the UV CFT, while at low energy, the IR

CFT and dilaton effective action decouple [25], so the total action is the sum:

SUV = CFTUV

SIR = CFTIR + Sτ .
(1.8)

A Ward identity 〈T µµ 〉 = 0 remains valid when conformal symmetry is spontaneously broken

[26], which implies that the total anomaly in SUV must agree with the total anomaly in

SIR. This means the actions must satisfy a consistency condition similar to ’t Hooft anomaly

matching [27]. For the CFTs, the UV anomaly aUV and IR anomaly aIR are generally unequal,

so the difference must be captured by the dilaton effective action: aτ = aUV − aIR = ∆a .

Goldstone symmetries imply that the dilaton effective action must be classically scale

invariant, but the symmetry is violated by precisely the trace anomaly (1.6). Under a scale

transformation, gµν → e2σgµν and τ → τ + σ, the action is invariant up to an anomaly-

dependent term:

δσSτ =

∫
d4x
√−g σ〈Tµµ〉 =

∫
d4x
√−g σ(cτW

2 − aτ E4), (1.9)

where W 2 is the square of the Weyl tensor.

In order to compute the relevant scattering amplitudes for the dilaton, it will be necessary

to reconstruct the full dilaton effective action up to the appropriate order in derivatives.

Starting from a simple ansatz whose variation gives (1.9) and iteratively adding terms to

cancel extra variations, one eventually arrives at the so-called Wess-Zumino action for the

dilaton:

SWZ =− aτ
∫
d4x
√−g

(
τ E4 + 4(Rµν − 1

2
gµνR)∂µτ∂ντ − 4(∂τ)2�τ + 2(∂τ)4

)

+ cτ

∫
d4x
√−g τ W 2.

(1.10)

The curvature tensors are defined for the metric gµν . The Wess-Zumino action is defined up

to scale-invariant terms, so one should add all other terms consistent with the scale symmetry

and allow arbitrary coefficients. However, in four dimensions none of those extra terms will

contribute to the relevant 2→ 2 dilaton amplitude.

The discussion so far has allowed the metric gµν to be general, but the remainder will

focus on flat space by taking gµν → ηµν , so ĝµν → e−2τηµν . Taking the flat space limit of

(1.10) and imposing the equation of motion �τ = (∂τ)2 leads to the on-shell action for the

8



dilaton:

Sτ
EOM−−−→
ηµν

2 ∆a

∫
d4x

[
(∂τ)4 +O(∂6)

]
. (1.11)

It is short work to translate this to the 4-dilaton amplitude in terms of the familiar s, t, u

Mandelstam invariants,

A4(s, t) = ∆a
4

f 4
(s2 + t2 + u2). (1.12)

The last step is to prove the positivity of ∆a by a contour integral argument. In the

forward limit t→ 0, A4(s, 0)/s3 has a simple pole at the origin of the complex s-plane with

residue 4 ∆a /f 4. Choosing a contour as in Figure 1.3 yields a dispersion relation

∆a =
f 4

4π

∫ ∞

0

ds
Im A4(s, 0)

s3
. (1.13)

By the optical theorem, ImA4 is proportional to the full scattering cross section, which is

manifestly nonnegative. This establishes the 4d a-theorem: ∆a ≥ 0.

A similar approach can also provide an alternative proof of the 2d c-theorem [6]. Subse-

quently, an extension to six dimensions was considered in [28]. In 6d, the anomaly (1.6)

enters at the level of six derivatives. An obstruction to a direct extension of the 4d proof

arises because the 6-derivative component of the 2 → 2 dilaton amplitude vanishes in the

forward limit (A4 ∼ stu → 0), which prevents the straightforward derivation of a positive

sum rule like (1.13). Nevertheless, many interesting details of the 6d story were worked out

and further evidence for a 6d a-theorem was provided [28, 29, 30, 31]. More importantly for

this thesis, it was pointed out in [28] that the forward limit of the 2 → 2 amplitude would

likely be nonvanishing in eight dimensions, which means the 6d obstruction would be absent.

This is where my work enters the scene.

1.3 New Results in Part I

1.3.1 Preview

Part I covers two directions of my work on the subject of dilaton effective actions and RG

flows. The first objective is to see how far the methods of [5] can be extended and explore

how to combine the higher-dimensional extensions into a shared framework. In Chapter 2,

we work out the dilaton effective action in arbitrary dimensions up to eight derivatives. This

9



Re s

Im s

Figure 1.3: A choice of contour avoiding the simple pole at the origin.

is sufficiently high order to extend the methods from the 4d a-theorem to eight dimensions,

where we uncover new structures that complicate the story. It is important to note that no

nontrivial CFTs are known in eight dimensions, and there can be no superconfomal theories

[32], but the intuition regarding degrees of freedom would still be expected to apply if any

are discovered in the future, and an 8d a-theorem would guarantee this behavior.

Chapter 3 describes the other direction of my work on the dilaton effective action in which

we address an implicit subtlety in the 4d proof of the a-theorem. In the presence of broken

symmetries beyond conformal symmetry, one expects additional massless Goldstone bosons

to appear in the low energy theory. If these interfere with the 2 → 2 dilaton amplitude,

then this could cause problems for the proof of the a-theorem. However, we classify all

terms that could affect the amplitude and explicitly show that no problematic quantities

survive the restrictions imposed by the a-theorem proof. The discussion in Chapter 3 is

specific to four dimensions, but if higher dimensional a-theorems are eventually proven,

similar considerations will be important in those cases as well.

1.3.2 Chapter 2

In eight dimensions, the relevant 8-derivative portion of the 4-point amplitude survives the

forward limit (A4 ∼ s4 + t4 + u4), which suggests that an 8d a-theorem might be attainable

by direct extension of the methods from [5]. With this in mind, we construct the dilaton

effective action up to eight derivatives in Chapter 2. Although motivated by the 8d story,

most of my work in Chapter 2 is presented in arbitrary d dimensions. As a result, much

of the previous work on the dilaton effective actions in four and six dimensions is wrapped

into a common framework.4 In particular, combining the previous stories into the unified

4Of course, the dilaton effective action in odd (and fractional) dimensions is also contained in these results,
but there is no anomaly in those cases, so one should not expect a corresponding a-theorem.
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d-dimensional action makes it very clear that things are fundamentally different in 8d than

in 4d and 6d as we are about to see.

The on-shell dilaton effective action through 8-derivative order can be completely and

compactly specified solely in terms of a special class of functions Wk,

Sτ =

∫
ddx
√−g

[
(d−2)2

8
fd−2W1+α(d)W2+β(d)W3+γ(d)W4+γ̃(d) (d−4)2

4
ed τ (W2)2+. . .

]∣∣∣∣
gµν=ηµν

with Wk =
(

2
d−2k

)2
e−(d/2−k)τPk e

−(d/2−k)τ , (1.14)

where the dots stand for higher derivatives and terms that vanish on-shell, and Pk = (�k +

curvature terms) is a GJMS operator (named for the mathematicians who discovered these

operators, Graham, Jenne, Mason, and Sparling [33]). The GJMS operators Pk are higher-

derivative generalizations of the conformal Laplacian (k = 1); in flat space they are simply

�k. From the action (1.14), one can see that there is exactly one nonvanishing operator

at each order in derivatives up to and including six derivatives,5 which is why the 2 → 2

amplitudes in 4d and 6d were specified completely by the anomaly. However, with eight

derivatives a new feature appears in the form of a second nonvanishing term, ed τ (W2)2.

This structure has important consequences for the a-theorem analysis. In fewer than eight

dimensions, the only contribution to the on-shell action at the relevant derivative order

comes from Wd/2 with a coefficient fixed by the a-anomaly, e.g., (1.11) in 4d, while in eight

dimensions there is an anomaly-fixed piece from W4 plus additional contributions from the

other nonvanishing term. Crucially, the coefficient of the latter piece is generally unrelated

to the anomaly. Hence the 4-point dilaton amplitude still provides a sum rule similar to

(1.13), but the resulting positive quantity is not obviously connected to the anomaly flow.

Nonetheless, we show that ∆a can be disentangled from the new structures through higher-

point amplitudes, which suggests it may be possible to prove an 8d a-theorem with only a

slight generalization of the methods.

As a consistency check, we work out the example of a free massive scalar in d = 3, 4, . . . , 10

dimensions and match the dilaton effective action up to eight derivatives. This is a highly

nontrivial check because it requires matching the coefficients of 19 independent polynomials

with just three parameters. In addition, we derive a zeta-regularized expression for the

anomaly of a scalar in d-dimensions and verify the results against known values from the

literature. One of the parameters used to match the free massive scalar example with the

dilaton effective action in 8d is the anomaly flow ∆a , and we show that it agrees exactly

with the zeta-regularized expression as expected.

5The zeroth order cosmological constant must be zero or else the dilaton would be massive [5].
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Key takeaways: The dilaton effective action is constructed and checked in d dimensions;

connections to GJMS operators are observed; and obstructions to direct extension of 4d

a-theorem methods to eight dimensions are identified.

1.3.3 Chapter 3

In Chapter 3, we discuss and close a small potential loophole in the 4d a-theorem. Con-

ceivably, the presence of other massless modes in the IR theory (perhaps arising from other

broken symmetries) could pollute the dilaton amplitudes and potentially invalidate the proof

in such situations. However, we show in Chapter 3 that no such conspiracy can occur. After

writing down all possible contributions from other massless Goldstone bosons arising from

broken U(1) symmetries, we work out the flat space limit under the equations of motion.

As expected, none of the new terms affect the 2 → 2 dilaton amplitude, so the a-theorem

remains valid. In the special case of broken R-symmetry in N = 1 supersymmetric theories,

a complicated expression for the joint dilaton-axion action was worked out from superspace

in [26]. Using the framework developed in Chapter 3, a more compact form is presented. As

a bonus, the amplitude arising from scattering four axions provides an alternate route to the

a-theorem.

Key takeaways: The 4d a-theorem is shown to be unaffected by other massless modes from

broken U(1) symmetries; the joint dilaton-axion action is matched to existing literature and

collected into a compact form.

1.4 Background for Part II

So far, the primary use of amplitudes in this thesis has been to constrain QFTs and RG

flows. In the second part, the focus shifts to using symmetries and other properties of specific

QFTs to expand on a new formulation of scattering amplitudes and gain greater insight into

the underlying mathematical structure.

1.4.1 Symmetry as a Guiding Principle

The 4d dilaton effective action from Part I has a fairly restricted form due to the strong

constraints imposed by scale symmetry and because the dilaton is a single scalar. In more

general theories, there can be additional interactions that contribute to the dynamics, making

it much more difficult to compute amplitudes in the traditional way using Feynman diagrams.

For instance, the self-interactions of pure gluons (gauge bosons transforming in the adjoint of

SU(N)) are complicated enough to make even tree level calculations with Feynman diagrams
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impractical. Table 1.1 counts the minimal number of Feynman diagrams needed to compute

the n-gluon tree amplitude; the actual number required would be higher if not for the fact

that a single-trace group theory factor can be split off so that one needs only to compute

the color-ordered (tree) amplitude, An(1 2 . . . n), for a fixed labeling of the external legs and

then sum over permutations,

Afull (tree)
n = gn−2

∑

perms σ

An
(
1σ(2 3 . . . n)

)
Tr
(
T a1 T σ(a2 . . . T an)

)
, (1.15)

where the Yang-Mills (YM) coupling g has been factored out, and T a are the gauge group

generators.6

Table 1.1: Examples of the rapidly growing number of diagrams required to compute the
n-gluon color-ordered tree amplitude.

External gluons (n): 3 4 5 6 7 . . . 10 . . . 15 . . .
Diagrams for An: 1 3 10 38 154 . . . 12,925 . . . 30,142,360 . . .

Despite the enormous number of Feynman diagrams, maximally helicity violating (MHV)

gluon amplitudes actually take a very compact form (1.16) discovered by Parke and Taylor

[35]. MHV amplitudes are color-ordered amplitudes in which n − 2 external gluons have

positive helicity, and the other two have negative helicity.7 If i and j label the two negative

helicity legs, then the Parke-Taylor amplitude is

AMHV
n (1+ 2+ . . . i− . . . j− . . . n+) =

〈i j〉4
〈1 2〉〈2 3〉 . . . 〈n 1〉 . (1.16)

The angle bracket notation is explained below in the Box on spinor-helicity formalism.

The incredible simplicity of the Parke-Taylor amplitude (1.16) despite the rapidly grow-

ing number of diagrams in Table 1.1 is an indication that Feynman diagrams are highly

redundant and therefore not the optimal tools for computing scattering amplitudes. The

principal source of redundancy is the dependence of individual diagrams on gauge choices.

Information can be shuffled between diagrams by gauge/symmetry transformations and field

redefinitions, even though the sum of diagrams (i.e., the amplitude) must remain invariant.

The situation is analogous to holding a collection of misshapen pieces and finding that, al-

6At loop-level, additional trace structures appear. More details and references can be found in [34].
7Other gluon helicity configurations are named by how close they are to MHV. Next-to-MHV, or NMHV,

amplitudes have three negative helicity gluons, and in general NkMHV amplitudes have k+2 negative helicity
gluons. One can equivalently count from the anti-MHV amplitude which has exactly two positive helicity
gluons. Amplitudes with fewer than two positive or negative helicities vanish at tree-level in Yang-Mills
theories and at all loop orders in super Yang-Mills theories [34].
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most miraculously, they combine into a perfect disk (Figure 1.4). If, on the other hand,

the initial pieces were annular, then it would be no great surprise that the final shape is a

circular disk (Figure 1.5).

→

Figure 1.4: A collection of puzzle pieces that make a circular disk when they are prop-
erly joined together. Feynman diagrams are similar insofar as they tend to obfuscate the
underlying structure.

→

Figure 1.5: A collection of rotationally symmetric puzzle pieces that also make a circular disk
when they are properly assembled. Using symmetry as a guide can reveal the fundamental
structure more clearly from the start.

The key is symmetry. Building blocks that individually obey the rotational symmetry

of a circle are much more easily merged into a circular disk than a jumble of random-edged

pieces. Likewise, one can seek to calculate scattering amplitudes in terms of objects that

independently obey the symmetries of the theory so that the final answer is guaranteed to

have the right properties.
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Box: Spinor-Helicity Formalism

The angle brackets in (1.16) represent momentum contractions via the 4d spinor-helicity

formalism through which the 4-momentum pµ of the ith massless gluon is represented as a

product of 2-component spinors λa and λ̃ḃ:

paḃ = pµ(σµ)aḃ = λaλ̃ḃ, (1.17)

and similarly for pȧb. Indices are raised and lowered with 2-index Levi Civita symbols εȧḃ
and εab. Closed pairs of angle and square brackets are shorthand for contracted indices:

〈i j〉 = εabλ
aλb = det(λaλb), and [i j] = εȧḃλ̃

ȧλḃ = det(λ̃ȧλ̃ḃ). (1.18)

They are antisymmetric in the labels i and j. More details about the spinor helicity

formalism can be found in the reviews [34, 36]. The brief appearance of momentum spinors

in Chapter 3 uses the conventions defined in [34], while the conventions in Chapters 4 and

5 agree with [37].

1.4.2 Superamplitudes in N = 4 SYM

More symmetry implies more constraints on the building blocks, so it makes sense to start

in a theory with the maximal amount of symmetry. In four dimensions, that theory is

N = 4 Super Yang-Mills (SYM) theory, and it is especially constraining in the planar limit.8

Although our universe does not obey N = 4 SYM theory, as a toy model it serves as a

useful testing ground for new theoretical approaches. It is a superconformal field theory

with four supersymmetries (N = 4). The on-shell field content consists of positive and

negative helicity gluons g±, gluinos ΛA,ΛABC , and scalars SAB. The antisymmetric indices

A = 1, 2, 3, 4 encode their symmetry transformation properties.9

Supersymmetry implies relations among the amplitudes known as supersymmetric Ward

Identities (which coincidentally appear also in the a-theorem discussion of Chapter 3). Su-

persymmetrically related amplitudes can be combined into a single quantity called the scat-

tering superamplitude that encodes all of the individual component amplitudes and their

relations. The field content is organized into an on-shell superfield Ω via the introduction of

8The planar limit of a gauge theory means observables depend only on planar Feynman diagrams while
nonplanar diagrams are suppressed [38]. In this context, the gauge group is SU(N), and N → ∞ leads to
the planar limit.

9The fields transform in the antisymmetric representation of the SU(4)R R-symmetry.
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anticommuting Grassmann variables η̃A whose indices match those of the fields [34]:

Ω = g+ + η̃AΛA − 1

2!
η̃Aη̃BS

AB − 1

3!
η̃Aη̃B η̃CΛABC + η̃1η̃2η̃3η̃4g

−. (1.19)

Acting with a supersymmetry transformation on a particular component has the effect of

adding or removing an η̃A, so reading from left to right in (1.19) is like climbing a ladder

defined by the four supersymmetries. We write the superamplitude as An(Ω1,Ω2, . . . ,Ωn) to

indicate that it encodes all scattering amplitudes for the components of the superfields Ωi.

Particle states are in correspondence with Grassmann monomials, so for instance η̃i1η̃i3

means particle i is a scalar S13. In momentum space using the spinor-helicity formalism

(see the Box for details), the external data for each particle is therefore specified by a set

of bosonic momentum spinors and fermionic state variables, (λai , λ̃
ȧ
i |η̃iA). For example, the

Parke-Taylor amplitude (1.16) has n − 2 positive helicity gluons and two negative helicity

gluons. The latter pair each contribute exactly four η̃’s from (1.19) while the positive helicity

gluons have no η̃’s. Therefore, the Parke-Taylor amplitude (1.16) appears in the expansion

of the superamplitude as the coefficient of η̃i1η̃i2η̃i3η̃i4η̃j1η̃j2η̃j3η̃j4:

An(Ω1,Ω2, . . . ,Ωn) = . . .+
n∑

i,j

〈i j〉4
〈1 2〉〈2 3〉 . . . 〈n 1〉 η̃i1η̃i2η̃i3η̃i4η̃j1η̃j2η̃j3η̃j4 + . . . , (1.20)

where the sum over i and j appears because the superamplitude contains the Parke-Taylor

amplitude for any i and j. The dots to the left and right denote other components of the

superamplitude with different Grassmann monomials.

Just as the MHV Parke-Taylor amplitude appears as a component in the superampli-

tude, supersymmetry implies that all NkMHV gluon scattering amplitudes An(1, 2, . . . , n)

are components of complete NkMHV superamplitudes A(k)
n (Ω1,Ω2, . . . ,Ωn):

An(Ω1,Ω2, . . . ,Ωn) =
n−2∑

k=2

A(k)
n (Ω1,Ω2, . . . ,Ωn). (1.21)

Each NkMHV superamplitude A(k)
n is a degree-4(k + 2) polynomial in the Grassmann vari-

ables; for example, the Parke-Taylor amplitude has k = 0, and the sum in (1.20) denotes a

degree-4(0 + 2) = 8 polynomial in the η̃ variables.

Recall that the goal is to write down building blocks of amplitudes that are invariant

under the symmetries of a theory. This is a highly nontrivial problem because many of

the symmetry operators act nonlinearly on the momentum space data. Consequently the

building blocks may need to be fairly complicated in order to remain invariant under the
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nonlinear symmetries. To partially address that problem, there are two other common ways

of representing the external data that at least simplify a subset of the symmetries:

• The (super)twistor space representation linearizes the action of the standard super-

conformal symmetry.10 It employs a half-Fourier transform of the momentum data,

so the twistors Wi are defined as Wi(µ̃
a
i , λ̃

ȧ
i |η̃iA) where µ̃ai is the Fourier conjugate to

λai . When the amplitude is written in twistor space, the superconformal symmetry is

manifest.

• Tree level amplitudes and loop-level integrands in planar N = 4 SYM also have a hid-

den symmetry called dual superconformal symmetry that is completely independent

of the standard superconformal symmetry. The momentum (super)twistor representa-

tion linearizes the dual symmetry. Momentum twistors Zi(λi, µi|ηi) are related to the

momentum space data by algebraic incidence relations defined in Section 4.2.2.

A thorough review of the three descriptions and their relationships is presented in Chapter

4, including a streamlined proof of the equivalence between amplitudes computed in twistor

and momentum twistor space. The momentum twistor representation tends to produce more

compact expressions, so for the remainder of this introduction the formulas will be displayed

in those variables. See Chapter 4 for the other variables.

1.4.3 Grassmannian Integral Representation

We now turn to constructing N = 4 SYM scattering superamplitudes from the symmetry-

oriented point of view (from now on we will use “amplitude” interchangeably with “superam-

plitude” unless the context requires extra clarity). Tree-level amplitudes should be invariant

under the joint superconformal × dual superconformal symmetry, which together form an

infinite dimensional symmetry group called the Yangian [39]. Furthermore, tree amplitudes

should by cyclically symmetric, meaning that the amplitude does not change under relabeling

all external legs i→ (i+ 1) mod n, cf. the super-Parke-Taylor amplitude (1.20).

It was shown in [37] that starting from a simple 3-point amplitude and recursively adding

legs and changing the MHV degree k through a well-defined procedure, one arrives at a

contour integral representation (1.22) of the n-point NkMHV tree-level amplitude. Residues

of the integral have exactly the right symmetry properties to be building blocks of the

amplitude:

A(k)
n = AMHV

n

∮

Γ

dk×nC

GL(k)M1M2 . . .Mn

δ4k|4k(C · Z
)
. (1.22)

10“There is another...” –Yoda
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Each piece is explained in the following list:

• The AMHV
n prefactor is the supersymmetric Parke-Taylor amplitude (the sum in (1.20)

along with momentum-conserving delta functions). It ensures that for MHV ampli-

tudes (k = 0), the integral is trivial and the result is simply the super Parke-Taylor

amplitude.

• The C in the numerator is a full-rank k × n matrix whose entries are to be integrated

over.

• The denominator contains a product of the n consecutive minors Mi of C, which

are determinants of k × k submatrices of C constructed out of cyclically consecutive

columns ~ca,

Mi = det
(
~ci ~ci+1 . . . ~ci+k−1

)
. (1.23)

• The notation 1
GL(k)

is shorthand for modding out the left action of GL(k). This is

essential11 because in order to properly encode scattering amplitudes, the matrix C

actually needs to be an element of the Grassmannian Gr(k, n), which is the space of

k-planes in n dimensions. The equivalence with k × n matrices modulo GL(k) follows

by treating the rows of a given matrix C as k vectors defining a k-plane, and any

rotation of those vectors by a GL(k) matrix defines the same plane.

• The 4k bosonic and 4k fermionic delta functions encode the external data in terms of

momentum twistors Zi = (Zi|ηi).

• The bosonic delta functions impose 4k constraints on the integral, and modding out

the GL(k) fixes an additional k2 degrees of freedom. Therefore, since tree amplitudes

contain no free integrals, the remaining (k(n−k−4)) degrees of freedom must be fixed

by the contour Γ wrapping poles where the minors Mi vanish. The set of wrapped

poles is determined by locality considerations discussed below. Thus the amplitude is

a sum over residues at the poles enclosed by the contour Γ:

A(k)
n =

∑

poles p

Residue [p]. (1.24)

At MHV level (k = 0), the integral (1.22) is trivial, and the answer is just the Parke-

Taylor prefactor. For k > 1 in the NkMHV classification, the minors in the denominator

11That is, it follows from the derivation of the integral representation [40].
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are nonlinear functions of the variables; hence the pole structure is very complicated and

standard contour integral techniques are insufficient. At NMHV level (k = 1), however, C

is a 1× n matrix whose consecutive minors are simply its entries,

NMHV: C =
(
c1 c2 . . . cn

)
, Mi = ci, (1.25)

so the integral can be evaluated directly. That calculation is one of the results presented in

Chapter 4.

Beyond NMHV level (k > 1) the nonlinear pole structure introduces composite singular-

ities and other obstructions to straightforward evaluation of the integral [40]. Nevertheless,

a technique was developed in [37] to generate coordinate charts from which codimension-

1 residues can be reached as simple logarithmic singularities. By recursively applying the

method to submanifolds of the Grassmannian, the complicated measure12 in (1.22) is con-

verted to a product of dα/α = dlogα forms:

dk×nC

GL(k)M1M2 . . .Mn

→ dlogαd ∧ dlogαd−1 ∧ . . . ∧ dlogα1. (1.26)

This structure leads to an alternative technique for evaluating residues that leads to the

problem and solution of Chapter 5.

Aside from evaluating the residues themselves, we also want to combine them into the

amplitude sum (1.24) by proper choice of the contour Γ. However, as part of the search for

symmetric building blocks, we had to give up the manifest locality provided by Feynman

diagrams. Individual residues of (1.22) can have nonlocal and hence unphysical singularities,

but the sum (1.24) should not have any such nonlocalities. In principle, the contour Γ restores

locality by selecting residues such that all nonlocal poles cancel in the sum. The locality

constraints are explained in [37] and reviewed here in Chapter 4 for NMHV amplitudes and

in Chapter 5 for general NkMHV amplitudes. It was shown in [37] that using their method

for simplifying the measure (1.26), all nonlocal poles would necessarily appear in pairs so

they at least cancel mod 2, but it remained to prove that the signs are always correct to

cancel exactly. The issue of exact cancellation is the subject of Chapter 5.

Contour integrals also imply relations among residues through Cauchy-like residue the-

orems. By extension, the residue theorems produce relationships among amplitudes which

resolves the puzzle of why a single amplitude can have many distinct but equivalent rep-

resentations [37, 41]. The residue theorems play a crucial role in the locality discussion of

Chapter 5.

12The measure in (1.22) is everything inside the integral except the delta functions.
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Ultimately, it is hoped that these developments lead to a new understanding of the physics

that describes our universe, perhaps even a reformulation of quantum field theory itself [37].

Although such a dream is seemingly very distant, we can begin by exploring which features

of the new formulation are specific to N = 4 SYM theory and which are more broadly

applicable. Along this line of thought, it is very intriguing that many of the Grassmannian

calculations in 4d N = 4 SYM have analogues in a 3-dimensional N = 6 superconformal

field theory called ABJM theory. The main difference is that the 3d version requires an

additional orthogonality constraint on the matrices, CCT = 0, which defines a submanifold

of Gr(k, n) known as the orthogonal Grassmannian OG(k, n) [42, 43, 44]. In Chapter 4 of

this thesis, several additional ideas from 4d N = 4 SYM are extended to 3d ABJM theory.

1.5 New Results in Part II

1.5.1 Preview

Many interesting discoveries have arisen out of research into properties of the Grassman-

nian and its connections to physics, including unexpected combinatorial relations among

amplitudes [37], the geometrization of tree and loop-level amplitudes in the amplituhedron

[45, 46], and much more. While my work has overlap with the above categories, it is mostly

complementary. My main contributions are to clarify the mathematical structure underlying

the connection between amplitudes and the Grassmannian and extend the formalism beyond

4d N = 4 SYM theory, and to resolve a sign ambiguity in the calculation of residues thereby

leading to a proof that the tree amplitude computed from the Grassmannian contour integral

(1.22) has no unphysical singularities.

1.5.2 Chapter 4

This chapter covers two separate Grassmannian formulations of amplitudes: one is relevant

to 4d N = 4 SYM theory and the other applies to 3d ABJM theory.

4d Results

The 4d section contains a detailed review of the three representations of the external data

for N = 4 SYM theory: momentum space, twistor space, and momentum twistor space.

It was previously known that amplitudes can be equivalently derived in any of the three

formulations, but we provide a new streamlined presentation of the relationship between the

Grassmannian contour integrals in twistor and momentum twistor space.
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In addition, we present the first complete and self-contained derivation of the general n-

point NMHV amplitude directly from the contour integral (1.22). In Section 4.4 we explain

how to consistently choose the contour Γ and impose theGL(1) and delta function constraints

to explicitly evaluate (1.22); Appendix G provides a more careful derivation including the

sign of each residue. A key observation that allow the integral to be solved in general is that

any five 4-dimensional vectors Za are linearly dependent,13

〈
ijkl

〉
Zm +

〈
jklm

〉
Zi +

〈
klmi

〉
Zj +

〈
lmij

〉
Zk +

〈
mijk

〉
Zl = 0 . (1.27)

The 4-bracket coefficient of each vector in (1.27) denotes the determinant of the other four

vectors,

〈
ijkl

〉
= det

(
Zi Zj Zk Zl

)
. (1.28)

To see why this is useful, suppose the contour Γ fixes all ci = 0 except for i ∈ {a, b, c, d, e}.
Then the bosonic delta functions simplify to δ4(caZa+cbZb+ccZc+cdZd+ceZe). The Schouten

identity (1.27) guarantees that the argument vanishes if the matrix entries ca,b,c,d,e are chosen

to be the complementary 4-brackets. This leaves the residue,

δ(4)
(〈
bcde

〉
ηa +

〈
cdea

〉
ηb +

〈
deab

〉
ηc +

〈
eabc

〉
ηd +

〈
abcd

〉
ηe

)

〈
bcde

〉〈
cdea

〉〈
deab

〉〈
eabc

〉〈
abcd

〉 =:
[
abcde

]
. (1.29)

In general, the contour Γ can enclose multiple poles, so the general NMHV amplitude derived

from (1.22) will be

A(1)
n =

∑
cabcde

[
abcde

]
, (1.30)

where the coefficients cabcde are ±1 or 0 depending on whether the pole is enclosed by Γ. The

contour is chosen such that the linear combination satisfies the locality constraints explained

in Section 4.4.3.

Since (1.22) is a contour integral, there are residue theorems that relate the residues

(1.29). We provide a new geometric interpretation of the residue theorems in terms of hyper-

plane arrangements in Section 4.4.2, and connections to known identities among 5-brackets

are derived in Section 4.4.3. An interpretation of the NMHV results from a combinatorial

perspective a la [37] is discussed in Section 4.4.4.

13This is also known as a 5-term Schouten identity (or more generally Cramer’s rule).
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3d Results

As mentioned in the background section above, it is interesting to ask what aspects of the

Grassmannian formulation generalize beyond 4d N = 4 SYM theory. A framework for

computing 3d AJBM theory amplitudes from the orthogonal Grassmannian is known in

momentum space [42, 43, 44]. However, a corresponding momentum twistor representation

was previously unknown. Fortunately, a similar strategy to the streamlined derivation of

the N = 4 SYM momentum twistor Grassmannian (Section 4.3) can be applied to derive

a novel 3d ABJM version of momentum twistors. The details are worked out in Section

4.5. Moreover, just as NMHV amplitudes in N = 4 SYM theory are calculable by direct

evaluation of (1.22), the ABJM counterparts are also attainable from the 3d ABJM momen-

tum twistor space integral; the derivation is presented in Section 4.5 with a few additional

subtleties discussed in Appendix H.

Key takeaways: Aspects of the Grassmannian representation of 4d N = 4 SYM theory

amplitudes are clarified and extended to 3d ABJM theory

1.5.3 Chapter 5

Chapter 5 returns to 4d N = 4 SYM theory to carefully derive the signs of residues from

(1.22) and prove that indeed all nonlocal poles cancel exactly in the amplitude sum, not

just mod 2. The sign question arises because the procedure of converting the measure to

a simple dlog form (1.26) does not preserve orientation information. Relating a given pair

of coordinate charts (i.e., dlog forms) generated by the procedure is not trivial, which can

introduce critical sign ambiguities in the amplitude sum (1.24). Without the appropriate

signs, certain unphysical nonlocalities would not cancel appropriately in the sum. Previously

it was shown that the problematic nonlocalities appear in pairs, so they at least cancel mod

2 [37], but a proof of exact cancellation was not known. This issue is resolved in Chapter

5 where an algorithm is developed that reconstructs the relative orientation between a pair

of dlog charts. Furthermore, consistency with residue theorems unambiguously fixes the

signs of all residues appearing in the amplitude (up to an overall sign) and guarantees the

cancellation of all nonlocal poles.

The proof that the algorithm generates the correct signs relies on the fact that the

relevant submanifolds of the Grassmannian can be arranged into a partially ordered set

(poset) according to the consecutive linear dependencies in the matrix C that define each

submanifold. The vertices represent submanifolds, and edges indicate that the vertex at one

end represents a codimension-1 residue attainable from the other vertex. Each dlog chart

corresponds to a path through the poset, and the paths representing a pair of distinct charts
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on a given submanifold together define a closed loop, e.g., Figure 1.6. Edges in the poset are

assigned weights ±1 such that the product of signs around every quadrilateral is −1 (Figure

1.7), and the relative orientation of the two charts is the product of those weights on the

edges in the closed loop defined by the paths.14

To illustrate that this convention produces the correct signs, a simple example is in order.

Every step in the construction of a dlog chart is labeled by an ordered pair of indices, so charts

can be represented as sequences of ordered pairs. Each step also appends a corresponding

coordinate and its dlog form to the chart. The meaning the behind the labeling is explained

in Chapter 5. For this example, suppose two charts on a given submanifold are defined by

the sequences (a b)(c d) and (c d)(a b). Let α represent the coordinate corresponding to (a b)

and β represent the coordinate corresponding to (c d). Then the two charts form a closed

quadrilateral in the poset as shown in Figure 1.6 together with their respective forms.

ωleft = dlogα ∧ dlog β

(cd)

(ab) (cd)

(ab)

ωright = dlog β ∧ dlogα

Figure 1.6: The poset paths and dlog forms for a pair of distinct 2-dimensional charts on a
submanifold. On the left, coordinate α corresponding to (a b) was added first, while on the
right, coordinate β corresponding to (c d) was added first.

The wedge product is antisymmetric, so it is clear that ωleft = −ωright. This is also

encoded in the poset because the edges are weighted such that the product around the

quadrilateral is −1; Figure 1.7 shows a possible set of weights. Thus the product of signs

around the closed loop formed by the paths (the quadrilateral) is equivalent to the relative

orientation between the forms.

(cd)

(ab) (cd)

(ab) (cd)

(ab) (cd)

(ab)
+1

+1

-1

+1

Figure 1.7: A suitable choice of edge weights. The product of weights around the quadrilat-
eral must be −1.

14A method for generating a consistent set of edge weights was developed by University of Michigan
mathematicians Lam and Speyer [47]. It is reviewed in Appendix J.
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In the context of the Grassmannian poset, two vertices (i.e., residues) are related by a

residue theorem if they have a common neighbor of higher dimension in the poset. This allows

the edge weights to serve a second purpose beyond relating charts on a single submanifold.

The relative sign between two residues is equal to the product of signs on the edges connecting

them to the shared parent. A similar argument fixes the signs between the residues’ children,

which represent singularities of the amplitude. Every nonphysical singularity appears twice

[37], and this edge-weighting procedure guarantees that they always appear with opposite

signs (I prove that this is a consistent assignment in Section 5.4.1). Hence amplitudes derived

from the Grassmannian contour integral (1.22) are always local as required.

The algorithm has been verified by implementing it in Mathematica and applying it

to a variety of charts whose orientations are known by other methods. This includes 500

distinct charts on the 10d cell {5, 3, 8, 9, 6, 7, 12, 10, 14, 11} ∈ Gr(3, 10) whose orientations

were computed using an independent method due to J. Bourjaily and A. Postnikov [48].

The results agreed perfectly with my algorithm.

Key takeaways: Orientation information is reconstructed for dlog coordinate charts on the

Grassmannian; and locality of the tree amplitude is proven to be exact.

1.6 Summary of Results and Publications

• In Chapter 2, we extend the dilaton-based methods of the 4d a-theorem to higher

dimensions. In eight dimensions, new structures appear at the relevant order in the

dilaton effective action and interfere with a direct extension of the 4d proof, but we

show that the anomaly flow can be disentangled in higher-point amplitudes. The

intermediate results are presented in a compact form that depends on the dimension

d only as a parameter. This facilitates a connection between the new material and

existing literature on the a-theorem in four and six dimensions. We check the results

through a highly non-trivial match to an explict example in multiple dimensions and

work out a zeta-regularized expression for the scalar anomaly in d-dimensions.

— Based on H. Elvang and T. M. Olson, “RG flows in d dimensions, the dilaton

effective action, and the a-theorem,” JHEP 1303, 034 (2013) [arXiv:1209.3424 [hep-

th]] [49].

• In Chapter 3, the focus returns to the a-theorem in four dimensions where we consider

the effect of other massless modes in the low energy theory. A supersymmetric Ward

identity relates dilaton and axion scattering amplitudes in N = 1 theories with broken

R-symmetry, and we work out a compact version of the low energy dilaton-axion
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effective action. Furthermore, we prove that no Goldstone bosons arising from broken

U(1) symmetries in the UV can affect the essential 4-dilaton amplitude.

— Based on N. Bobev, H. Elvang, and T. M. Olson, “Dilaton effective action with

N = 1 supersymmetry,”, JHEP 1404, 157 (2014) [arXiv:1312.2925 [hep-th]] [50].

• Chapter 4 turns to calculations of tree-level scattering amplitudes in 4d N = 4 SYM

theory via a correspondence with the Grassmannian Gr(k, n). The relationships be-

tween three different formulations of the external data are clarified and presented in

a streamlined manner. Our approach facilitates an extension to 3d ABJM theory and

the orthogonal Grassmannian OG(k, n). The latter result leads us to introduce a novel

momentum twistor formalism in 3d. To demonstrate the technology in both ABJM

and N = 4 SYM, we explicitly calculate the first nontrivial amplitudes corresponding

to k = 1 in the NkMHV classification. We also discuss geometric and combinatorial

interpretations of the results.

— Based on H. Elvang, Y-t. Huang, C. Keeler, T. Lam, T. M. Olson, S. Roland,

and D. E Speyer, “Grassmannians for scattering amplitudes in 4d N = 4 SYM and 3d

ABJM,” JHEP 1412, 181 (2014) [arXiv:1410.0621 [hep-th]] [51].

• In Chapter 5, I resolve an important puzzle in N = 4 SYM regarding the relative signs

of residues from the Grassmannian integrals. I develop and prove correctness of an

algorithm that reconstructs the relative orientation of distinct charts by identifying an

intuitive relationship between the charts and an underlying weighted poset structure.

Furthermore, by requiring consistency with residue theorems I prove conclusively that

nonlocal poles will always appear with opposite signs and cancel exactly in the ampli-

tude sum.

— Based on T. M. Olson, “Orientations of BCFW Charts on the Grassmannian,”

JHEP 1508, 120 (2015) [arXiv:1411.6363 [hep-th]] [52].
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Part I

Constraining QFTs: Dilaton Effective

Action and the a-theorem

Chapter 2

RG Flows in d Dimensions and the

Dilaton Effective Action

2.1 Motivation and Preview

The proof of the 4d a-theorem by Komargodski and Schwimmer (KS) [5] makes exquisite

use of the low-energy effective interactions of the dilaton, a field that can be thought of

as the Goldstone mode of spontaneously broken conformal symmetry or as a compensator

background field. KS showed, following earlier work [26], that the form of the dilaton effective

action is dictated by its Weyl-transformation properties and that the low-energy behavior of

the 4-point dilaton scattering amplitude

A4(s, t) = ∆a
4

f 4
(s2 + t2 + u2) (2.1)
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encodes the flow of the a-anomaly ∆a = aUV − aIR. In the forward limit t→ 0, A4(s, 0)/s3

has a simple pole at s = 0 whose residue is 4∆a/f 4. A contour integral argument then gives

∆a =
f 4

4π

∫ ∞

0

ds
ImA(s, 0)

s3
> 0 . (2.2)

Since the integrand on the RHS is positive definite, this proves aIR < aUV for an RG flow

from a 4d UV CFT to a 4d IR CFT. The convergence of the dispersion integral has been

clarified in [6, 25].

Zamolodchikov’s c-theorem [2] and the Cardy-KS a-theorem [5, 24] demonstrate the irre-

versibility of the RG flow between 2d and 4d CFT fixed points, respectively. It is interesting

to ask if this property generalizes to other dimensions. Holographic arguments indicate

that it does generalize, and they provide an interesting connection to entanglement entropy

[11, 12, 53]. In even dimensions, the irreversibility of the flow can be encoded in an a-

theorem for the ‘type A’ anomaly a associated with the Euler density term in the trace

anomaly polynomial [20]1

〈Tµµ〉 =
∑

i

ciIi − (−)d/2aEd . (2.4)

In odd dimensions, the constant term in the free energy F = − logZ offers a candidate for

an analogous F -theorem; for recent work see [13, 14, 15, 16, 17, 18].

The dilaton can be introduced in even as well as in odd dimensions, and one may ask

what information can be extracted from its low-energy effective action: in particular if it

can be used to prove a higher-d a-theorem and whether it plays a role for odd-d RG flows.

The focus of this chapter is to study the structure of the dilaton effective action in general

d dimensions.

The dilaton-based approach [5, 6] to the a-theorem was examined recently in [55] for RG

flows between 6-dimensional CFTs. The 6d dilaton effective action was constructed up to

6-derivative order and its structure verified in explicit examples. The examples also served

to clarify the distinctive roles of the dilaton in the cases of spontaneous and explicit breaking

of the conformal symmetry. In the former case, the dilaton is a dynamical field of the low-

energy theory and it contributes as such to the scattering amplitudes via Feynman diagrams

with internal dilaton lines; this was demonstrated explicitly with the example of the 6d (2,0)

1We normalize the d = 2k-dimensional Euler density as

E2k(gµν) =
1

2k
Rµ1ν1

ρ1σ1 . . . Rµkνk
ρkσk ερ1σ1...ρkσk

εµ1ν1...µkνk . (2.3)

The ‘type B’ anomalies ci multiply a set of independent Weyl-invariant scalars
√−gIi; there is 1 in 4d, 3 in

6d, and [54] found 12 in 8d. The c-anomalies do not always decrease along an RG flow.
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theory on the Coulomb branch [55]. (See also [56].) On the other hand, when the conformal

symmetry is broken explicitly, the dilaton is introduced as a compensator field which can be

made arbitrarily weakly coupled such that in the low-energy scattering amplitudes it may

be treated as a source field. This case was illustrated in [55] by the example of the 6d free

massive scalar.

The simple KS approach to proving aIR < aUV in 4d does not directly carry over to 6d

[55], and no general proof of the 6d a-‘theorem’ has yet been offered. One technical difficulty

with generalizing the KS dispersion relation argument is that in 6d the anomaly flow ∆a

is associated with the 6-derivative terms in the action: the 4-dilaton amplitude is then

A4(s, t) ∼ ∆a stu, and since it vanishes in the forward limit no clean positivity statement is

extracted; for details see [55].

It would seem easier to derive a positivity result based on a 4-point amplitude of the

form A4(s, t) ∼ (s4 + t4 + u4). Indeed in 8d, the a-anomaly is associated with 8-derivative

terms in the action, and at order O(p8) the 4-dilaton amplitude takes this form. However,

the 8d dilaton effective action also contains an 8-derivative Weyl-invariant that contributes

non-trivially to the scattering amplitudes [55]. In fact, proving positivity of the coefficient

of the O(p8)-terms in the 4-dilaton amplitude amounts to proving only that the coefficient

of this new Weyl-invariant is positive and does not yield ∆a > 0.

One purpose of this chapter is to clarify the structure of the terms in the dilaton effective

action in 8d up to and including 8-derivative terms. We will also show that despite the

pollution from the 8-derivative Weyl-invariant, the flow ∆a can be extracted systematically.

We demonstrate this explicitly for the example of the 8d free massive scalar. The result for

∆a = ascalar,8d agrees with that found using zeta-function regularization of the coefficient of

the log-term in the free energy.

It must be noted that the study of 8d RG flows is motivated by the wish to understand

the structure of the dilaton effective action and the generality of the dilaton-based approach

of KS in even dimensions. We know of no examples of interacting 8-dimensional conformal

theories (and there can be no superconformal ones [32]), so an 8d (or higher-d) a-theorem

may be of limited applicability.

The analysis in 8d is part of our more general study of the dilaton effective action in d

dimensions, with d even or odd. The trace-anomaly exists only for even d, and therefore it

is a priori clear that for d odd, the low-energy dilaton effective action simply consists of a

derivative-expansion of Weyl-invariants.2 Such Weyl-invariants must also be included when

writing down the dilaton effective action in even d, in addition to the Wess-Zumino action

whose Weyl-variation produces the integral of the trace anomaly polynomial (2.4).

2A holographic approach to the dilaton effective action in d-dimensions was recently discussed in [57].
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Despite the obvious difference between even and odd d, we find a compact unifying form

for the terms in the dilaton effective action that contribute with non-vanishing local matrix

elements to the on-shell dilaton amplitudes; these are the terms that are non-vanishing under

the equations of motion. For flows induced by explicit breaking of conformal symmetry this

is all that is needed. The unified form is given in terms of

Wk =
(

2
d−2k

)2
e−(d/2−k)τPk e

−(d/2−k)τ , (2.5)

where τ is the dilaton field and Pk = (�k + curvature terms) is a GJMS-operator [33].

The GJMS operators Pk are higher-derivative generalizations of the conformal Laplacian

(k = 1) and the Paneitz operator (k = 2) [58].3 The ‘covariance’ of Pk under conformal

transformations (see (2.46)) ensures thatWk behaves well under Weyl-transformations, τ →
τ + σ and gµν → e2σgµν : for k 6= d/2 it transforms as Wk → e−d σWk so that

√−gWk

is Weyl-invariant. We find that up to and including 8-derivative terms, the d-dimensional

action in flat space can be written

Sτ =

∫
ddx
√−g

[
(d−2)2

8
fd−2W1+α(d)W2+β(d)W3+γ(d)W4+γ̃(d) (d−4)2

4
ed τ (W2)2+. . .

]∣∣∣∣
gµν=ηµν

,

(2.6)

where the ellipses stand for terms that vanish on-shell. If d is even,
√−gWd/2 reduces to

τ�d/2τ in flat space. This is not Weyl-invariant, and it is known from d = 4 [6] and d = 6

[55] that this form encodes4 the anomaly flow as d
2
∆a τ�d/2τ . We demonstrate it in this

chapter for d = 8. So in d = 4, 6, 8 one simply re-interprets the coefficient of Wd/2 as d
2
∆a.

The action (2.6) should be thought of as a generator of the dilaton amplitudes for the

case of flows induced by explicit breaking of conformal symmetry. In general backgrounds,

the GJMS-operators Pk exist for all k for d odd, but only for k ≤ d/2 when d is even [33];

k = d/2 is of course the order where the trace anomaly enters. However, for conformally flat

backgrounds, the GJMS-operators exist for all k in both even and odd dimensions [63].

We carry out a non-trivial test of the result for the dilaton effective action (2.6) using the

example of the d-dimensional free massive scalar. In this example, the dilaton is introduced

as a compensator to restore conformal symmetry. The massive scalar couples quadratically

to the dilaton, so the n-dilaton amplitudes can be calculated as 1-loop amplitudes with the

massive scalar running in the loop. The low-energy expansion of these 1-loop amplitudes can

3Although commonly referred to as the Paneitz operator in the math literature, this 4-derivative operator
actually first appeared in Fradkin and Tseytlin’s work [59, 60] from 1982.

4The d-dimensional results can be obtained from a generalization of the analysis in Section 2 of [6]; or it
can be motivated by an argument [61] based on Branson’s Q-curvature [62].
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then be compared with the dilaton amplitudes produced by S in (2.6). We obtain a perfect

match; the specific coefficients α(d), β(d), γ(d) and γ̃(d) of the action (2.6) are listed in table

2.1 in Section 2.5 for d = 3, 4, 5, . . . , 10.

We discuss the structure of the action (2.6) further in Sections 2.2.5 and 2.5.2; and we

show that at the order of 10- and 12-derivatives, the GJMS-based building blocks Wk are

not sufficient and new structures are needed. Perhaps this points to possible generalizations

of the GJMS-operators.

The chapter is structured as follows. In Section 2.2 we analyze the dilaton effective action

in d dimensions order by order in derivatives up to O(∂8) and calculate the corresponding

dilaton matrix elements, assuming the context of explicit breaking and hence an arbitrarily

weakly coupled dilaton. In Section 2.3 we study the example of the free massive scalar in

8d and show how to systematically extract ∆a from the dilaton amplitudes. We review in

Section 2.4 how the d-dimensional anomaly can be calculated as the coefficient of the log-

term in the free energy for the free massive scalar and explicitly verify a compact formula

for ascalar by Diaz [64] for d = 4, 6, . . . , 20. In particular, the d = 8 result matches that of our

dilaton amplitude calculation in Section 2.3. We generalize the analysis of the free massive

scalar to d-dimensions in Section 2.5 and use it to verify the general result for the dilaton

effective action. Details of our calculations can be found in four appendices.

2.2 Dilaton Effective Action and Scattering in d Di-

mensions

The dilaton effective action S consists of diff×Weyl invariant terms and in even dimensions

the Wess-Zumino action whose Weyl variation produces the trace anomaly,

δσSWZ =

∫
ddx
√−g σ 〈Tµµ〉 =

∫
ddx
√−g σ

(∑

i

ciIi − (−)d/2aEd

)
. (2.7)

The construction of SWZ was detailed in [5, 26, 55] and results given explicitly for d = 4, 6;

we outline the construction for d = 8 in appendix A and discuss the result in Section 2.2.4.

In a spacetime with fixed background metric gµν , the diff×Weyl invariant terms are

curvature scalars constructed from the ‘hatted’ metric ĝµν = e−2τgµν , where τ is the dilaton

field. Here we are concerned with the dilaton effective action in flat space, so in the following

we take

ĝµν = e−2τηµν . (2.8)

For a conformally flat background, any appearance of the Riemann tensor can be replaced
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by the Weyl tensor plus Ricci scalar and tensor terms via (A.2). Thus we can construct

our Weyl-invariants from the Ricci scalar, Ricci tensor and covariant derivatives thereof.

Examples are R̂µνR̂
µν and R̂�R̂.

We organize the dilaton low-energy effective action as a derivative expansion

S = S∂
2

︸ ︷︷ ︸
(2.15)

+ S∂
4

︸ ︷︷ ︸
(2.17)

+ S∂
6

︸ ︷︷ ︸
(2.26)

+ S∂
8

︸ ︷︷ ︸
(2.34)

+ . . . (2.9)

compact form: (2.20) (2.29) (2.42)

SWZ is included as part of the d-derivative action for d even. In the following, we systemat-

ically construct S∂
2k

for k = 1, 2, 3, 4 in d-dimensions.5 The equation reference given below

each term in (2.9) indicates where to find the result at order O(∂2k). The compact form

refers to the terms in GJMS-form (2.6) discussed in the Introduction. Before we analyze each

S(∂2k) and calculate the O(p2k) scattering amplitudes, let us make a few general comments:

• Physical dilaton. In order to calculate dilaton scattering amplitudes, we introduce

the physical dilaton field ϕ defined by

e−
d−2
2
τ = 1− ϕ

f (d−2)/2
= Ω f−(d−2)/2 . (2.10)

This definition ensures that the physical dilaton has on-shell condition k2 = 0.

• Explicitly broken conformal symmetry. In this chapter, we focus entirely on the

scenario of explicitly broken conformal symmetry. This means that we treat the dilaton

as arbitrarily weakly coupled, so that any contributions to the dilaton amplitudes from

diagrams with internal dilaton lines are suppressed [55]. As a result, the low-energy

dilaton amplitudes at O(p2k) derive solely from the contact-terms with 2k derivatives.

The only terms in the action that contribute to the amplitudes are therefore those that

do not vanish on the leading order (i.e. 2-derivative) dilaton equations of motion.

• From action to amplitudes. In the dilaton effective action we find terms such as

e−
d−2k

2
τ �ke−

d−2k
2

τ . (2.11)

Expanding (2.11) in powers of ϕ gives terms ϕn2�kϕn1 whose contributions to the

5All tensor manipulations were done through a combination of pencil, paper, and the Mathematica
package xAct [65].

31



n-point matrix elements are easy to compute:

ϕn2�kϕn1 → n1!n2!
∑

1≤i1<i2<···<in1≤n
ski1 i2 ... in1 . (2.12)

Here n = n1 + n2 and the Mandelstam invariants are defined as

si1 i2 ... i` = −(pi1 + pi2 + . . . pi`)
2 . (2.13)

The simplicity of (2.12) was exploited previously in [55] for the calculation of the

dilaton matrix elements in 4d and 6d. In this chapter, the action also contains terms

such as ϕ�2ϕ2�2ϕ2 which produce polynomials of the form (s2
12s

2
34 + perms).

2.2.1 Kinetic Term and Dilaton Equations of Motion

The kinetic term for the dilaton is generated by the unique 2-derivative diff×Weyl invariant√−ĝR̂. In a flat background we have

√
−ĝ R̂ = 2(d− 1)

(
�τ − d− 2

2
(∂τ)2

)
e−(d−2)τ , (2.14)

so after partial integration we can write

S∂
2

= −1
8
d−2
d−1

fd−2

∫
ddx
√
−ĝ R̂

= − (d−2)2

8
fd−2

∫
ddx (∂τ)2 e−(d−2)τ = −1

2

∫
ddx (∂ϕ)2.

(2.15)

The constant f has dimension of mass, and the overall factor is chosen such that the physical

dilaton, ϕ defined in (2.10), has a canonically normalized kinetic term.

It follows from (2.15) that the dilaton equation of motion is

�τ =
d− 2

2
(∂τ)2 or �ϕ = 0 . (2.16)

The latter form tells us that the on-shell condition for the physical dilaton is k2 = 0, as

noted below (2.10). Note that by (2.14), R̂ vanishes on-shell.
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2.2.2 4-Derivative Action

There are two 4-derivative Weyl-invariants,
√−ĝ R̂2 and

√−ĝ
(
R̂µν

)2 ≡ √−ĝ R̂µνR̂
µν , so

we write the 4-derivative action

S∂
4

=

∫
ddx
√
−ĝ
[
α1R̂

2 + α2

(
R̂µν

)2
]
− δd,4 ∆aSWZ , (2.17)

where αi are constants. In 4d, the flat-space limit of SWZ is [5, 26]

SWZ =

∫
d4x

[
− 4(∂τ)2�τ + 2(∂τ)4

]
. (2.18)

The Weyl-invariant R̂2 is zero on-shell, but

√
−ĝ
(
R̂µν

)2
= (d−2)2

2

[
2d(d−1)
(d−2)2

(�τ)2 − 3d2−8d+8
(d−2)

(�τ)(∂τ)2 +
(
d2 − 4d+ 6

)
(∂τ)4

]
e−(d−4)τ

EOM−−−→ −1

4
(d− 4)(d− 2)2 (∂τ)4 e−(d−4)τ . (2.19)

This vanishes in d = 4, as found in [5], so the WZ term is the only contribution to the O(p4)

matrix elements in 4d. This feature facilitated KS’s proof of the a-theorem. For d 6= 4, the

Weyl-invariant (2.19) gives non-vanishing contributions to the O(p4) matrix elements, as in

6d [55].

The 4-derivative action (2.17) can be written compactly as

S∂
4

=

∫
ddx

[
α

(
2

d− 4

)2

e−
d−4
2
τ �2e−

d−4
2
τ + . . .

]
, (2.20)

where the “. . . ” refer to terms that vanish on-shell. To see how (2.20) can be compatible

with the WZ term, note:

• For d 6= 4, the WZ term is absent, and straightforward algebra with the expressions in

(B.2) shows that e−
d−4
2
τ �2e−

d−4
2
τ = 4−d

(d−2)2

√−ĝ
(
R̂µν

)2
+ terms that vanish on-shell.

• In d = 4, the only contributions to the O(p4) dilaton matrix elements come from the

WZ action. As noted in [6], the flat-space limit of the SWZ can be written in terms of

−2∆a τ�2τ+ terms that vanish on-shell. But this is exactly the expression recovered

in the limit d→ 4 of (2.20) with α = 2∆a.

Practically both cases above require solving a system of 3 equations, matching the coefficients

of each unique type of term in (B.2) — (�τ)2, (∂τ)2�τ , and (∂τ)4 — with (2.20), using only

the 2 variables α1 and α2 [6]. It is noteworthy that a solution exists.
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The n-point matrix elements at order O(p4) can be expressed in terms of a basis of

polynomials in the Mandelstam invariants (2.13) as

P (4)
n ≡

∑

1≤i<j≤n
s2
ij . (2.21)

As an example, consider the O(p4) to the amplitudes determined by S∂
4

in (2.20). Chang-

ing variables from τ to ϕ via (2.10) gives

α

(
2

(d− 2)2

)2
1

f 2d−4
ϕ2�2ϕ2 + O(ϕ5) , (2.22)

so using (2.12) we can directly read off the 4-point amplitude

A(4)
4 = α

(
2

(d− 2)2

)2
1

f 2d−4
2! 2!

∑

1≤i<j≤4

s2
ij = α

32

(d− 2)4

1

f 2d−4

(
s2 + t2 + u2

)
. (2.23)

For d = 4, we identify α = 2∆a, so (2.23) agrees with the result (2.1). Taking d = 6, we

find A(4)
4 = α

8f8

(
s2 + t2 + u2

)
. This matches the result in eq. (3.18) of [55] in which A(4)

4 was

expressed in terms of a coefficient b related to α by α = 4b.

The higher-point matrix elements of S∂
4

are straightforward to extract from (2.20). To

avoid cluttering the main text, we list the O(p4) matrix elements in (C.1) for the general

d-dimensional case.

2.2.3 6-Derivative Action

For a d-dimensional conformally flat metric, any 6-derivative Weyl-invariant can be written

in terms of

R̂3 , R̂
(
R̂µν

)2 ≡ R̂
(
R̂µ

νR̂
ν
µ

)
, R̂ �̂R̂ , and

(
R̂µν

)3 ≡
(
R̂µ

νR̂
ν
ρR̂

ρ
µ

)
, (2.24)

up to total derivatives. For example [66],

R̂µν�̂R̂µν =
1

(d− 2)(d− 1)
R̂3 − 2d− 1

(d− 2)(d− 1)
R̂
(
R̂µν

)2

+
d

4(d− 1)
R̂�̂R̂ +

d

d− 2

(
R̂µν

)3
+ total derivatives . (2.25)
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Using the basis (2.24), the 6-derivative action takes the form:

S∂
6

=

∫
ddx
√
−ĝ
[
β1 R̂

3 + β2 R̂
(
R̂µν

)2
+ β3 R̂�̂R̂ + β4

(
R̂µν

)3
]

+ δd,6 ∆aSWZ , (2.26)

where βi are constants.6 A curved-space derivation of the WZ action in d = 6 dimensions is

given in [55] and [56]. The flat space limit is

SWZ =

∫
d6x

[
− 24(�τ)2(∂τ)2 + 24(∂τ)2(∂∂τ)2 + 36�τ(∂τ)4 − 24(∂τ)6

]
. (2.27)

Explicit expressions for each of the four Weyl-invariants are available in appendix B. The

three invariants proportional to R̂ vanish on-shell, so only
(
R̂µν

)3
contributes to the O(p6)

dilaton matrix elements:

(
R̂µν

)3 EOM−−−→ − 1

4
e−(d−6)τ (d− 6)(d− 2)3

(
(∂∂τ)2(∂τ)2 − 2(∂τ)6

)
. (2.28)

This vanishes in d = 6, hence for the case of explicitly broken conformal symmetry, only the

WZ action generates contact-term contributions to the 6d matrix elements at O(p6).7

The 6-derivative action (2.26) can be written in the compact form

S∂
6

=

∫
ddx

[
β

(
2

d− 6

)2

e−
d−6
2
τ �3e−

d−6
2
τ + . . .

]
, (2.29)

where the “. . . ” refer to terms that vanish on-shell. When d→ 6, the action (2.29) reduces

to 3∆a τ�3τ and we identify β = 3∆a. The equivalence of (2.26) and (2.29) requires a

solution to an overconstrained system of 8 equations (from matching the coefficients of the

8 distinct terms in the expressions of (B.3)-(B.6), e.g. (�τ)(�2τ), with (2.29)) using only

the 4 variables β1, . . . , β4 from (2.26).

The local matrix elements with n ≤ 8 external dilatons can at O(p6) be expressed in

terms of two linearly independent symmetric Mandelstam polynomials,

P
(6)
n,A =

∑

1≤i<j≤n
s3
ij , P

(6)
n,B =

∑

1≤i<j<k≤n
s3
ijk . (2.30)

6The observant reader may notice that the 6-derivative action for d = 6 in [55] contains only three
curvature invariants. This is sufficient in 6d because one can use that the Euler density E6 is a total
derivative to eliminate one of the four invariants.

7In the case of spontaneous breaking, the 4-derivative terms also contribute through pole diagrams [55].
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Writing the amplitudes in this basis requires identities such as

∑

1≤i<j<k<l≤8

s3
ijkl = − 2P

(6)
8,A + 2P

(6)
8,B . (2.31)

We list the O(p6) amplitudes in (C.2). In 6d, the 4-, 5- and 6-point amplitudes reproduce

(3.19)-(3.21) of [55] with β = 3∆a. For example,

A(6)
6 =

64(d+ 2)

(d− 2)6

β

f 3d−6

(
4 dP

(6)
6,A + (d+ 2)P

(6)
6,B

)
d→6−−→ 3∆a

f 12

(
3P

(6)
6,A + P

(6)
6,B

)
. (2.32)

In 8d, we have

A(6)
6

d→8−−→ 20β

729f 18

(
16P

(6)
6,A + 5P

(6)
6,B

)
. (2.33)

We match this and the other O(p6) n-point amplitudes, n ≤ 8, for the example of the free

massive scalar in Sections 2.3 and 2.5.

2.2.4 8-Derivative Action

For a d-dimensional, conformally flat metric, we find nine independent Weyl-invariants (up

to total derivatives) by explicit calculation, so the off-shell action can be written as

S∂
8

=

∫
ddx
√
−ĝ
[
γ1R̂

4 + γ2R̂
2
(
R̂µν

)2
+ γ3R̂

(
R̂µν

)3
+ γ4

(
(R̂µν)

2
)2

+ γ5

(
R̂µν

)4
+ γ6

(
�̂R̂
)2

+γ7

(
�̂R̂µν

)2
+ γ8R̂

(
∇̂µR̂

)2
+ γ9

(
R̂µν

)2
�̂R̂
]
− δd,8 ∆aSWZ , (2.34)

with constants γi. We have abbreviated some index contractions using the conventions

defined in equation (B.8), e.g. (R̂µν

)4 ≡ (R̂µ
νR̂

ν
ρR̂

ρ
λR̂

λ
µ

)
.

In flat space, the 8d WZ action is

SWZ = 48

∫
d8x
[
3(�2τ)(∂τ)4+6(�τ)3(∂τ)2+36(�τ)2(∂∂τ∂τ∂τ)+16(�τ)(∂∂∂τ∂τ∂τ∂τ)

−12(�τ)(∂∂τ)2(∂τ)2 − 24(∂∂τ∂τ∂τ)(∂∂τ)2

+12(�τ)2(∂τ)4 − 12(∂∂τ)2(∂τ)4 − 20(�τ)(∂τ)6 + 15(∂τ)8
]
. (2.35)

Details of the derivation are described in appendix A. Applying the equations of motion, we

find

SWZ
EOM−−−→ 144

∫
d8x
[
− 8(∂∂τ∂τ∂τ)

(
∂∂τ)2 − 32(∂∂τ∂τ∂τ)2 − 2

(
∂∂τ)2 (∂τ)4 + 3(∂τ)8

]
.

(2.36)

36



It is clear from (2.35) and (2.36) that SWZ contributes to 5- and higher-point amplitudes,

but not to the 4-point amplitude.

We have obtained explicit expressions for the d-dimensional Weyl-invariants in (2.34);

the procedure for calculating them is straightforward, though to simplify them requires

some effort with multiple applications of partial integration. Since the general-d results are

rather involved, we present them in appendix B only for d = 8.

Six of the nine Weyl-invariants in (2.34) vanish on-shell; the only non-vanishing ones are(
(R̂µν)

2
)2

,
(
R̂µν

)4
, and

(
�̂R̂µν

)2
. These three are also related on-shell; for d > 2:

√
−ĝ
(
�̂R̂µν

)2 EOM←−−−→ d

(d− 2)2

(
−
√
−ĝ
(
(R̂µν)

2
)2

+ d
√
−ĝ
(
R̂µν

)4
)
. (2.37)

The two Weyl-invariants on the RHS give distinct expressions

√
−ĝ
(
(R̂µν)

2
)2 EOM−−−→ 1

48
e−(d−8)τ (d− 2)4

(
48(∂∂τ)4+192(∂∂τ∂τ∂τ)

(
∂∂τ)2+192(∂∂τ∂τ∂τ)2

− 24(d− 4)(∂τ)4
(
∂∂τ)2 − (d− 4)(d− 44)(∂τ)8

)
, (2.38)

√
−ĝ
(
R̂µν

)4 EOM−−−→ 1

96
e−(d−8)τ (d− 2)4

(
48(∂∂τ)4 − 48(d− 12)(∂∂τ∂τ∂τ)

(
∂∂τ)2

−192(d− 9)(∂∂τ∂τ∂τ)2 + 6
(
d2 − 22d+ 96

)
(∂τ)4

(
∂∂τ)2

+
(
d3 − 48d2 + 626d− 2304

)
(∂τ)8

)
, (2.39)

except in d = 8:

√
−ĝ
(
R̂µν

)4 EOM←−−−→
d=8

1

2

√
−ĝ
(
(R̂µν)

2
)2

(2.40)

EOM−−−→
d=8

648
(
(∂∂τ)4+4(∂∂τ∂τ∂τ)(∂∂τ)2+4(∂∂τ∂τ∂τ)2−2

(
∂∂τ)2 (∂τ)4+3(∂τ)8

)
.

So in general d > 2, the on-shell matrix elements at O(p8) depend on two free parameters:

for d = 8 they are ∆a and the coefficient of (say)
(
R̂µν

)4
, while for d 6= 8 they are the

coefficients of
(
R̂µν

)4
and

(
(R̂µν)

2
)2

. We can summarize this as

S∂
8

=

∫
ddx
[

Γ1

(
(R̂µν)

2
)2

+ Γ2

(
R̂µν

)4
+ . . .

]
− δd,8 ∆aSWZ , (2.41)

where the “. . . ” stand for terms that vanish on-shell. In 8d the amplitudes depend only on

∆a and the combination Γ8d ≡ 2Γ1 + Γ2.

As with 4- and 6-derivatives, the 8-derivative action can also be written in an alternative
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form,

S∂
8

=

∫
ddx

[
γ
(

2
d−8

)2
e−(d−8)τ/2�4e−(d−8)τ/2 + γ̃

(
2
d−4

)2
e4τ
(
�2 e−

d−4
2
τ
)2

+ . . .

]
, (2.42)

which encodes the same O(p8) on-shell amplitudes as (2.41), with the understanding that

for d = 8 we have γ = 4∆a and γ̃ = 162(Γ8d − 2
9
∆a). The equality of (2.41) and (2.42) is

found by matching the coefficients of the 23 distinct terms in (B.9)-(B.17) with the similar

terms in (2.42) using only 9 variables, γ1, . . . , γ9.

For d 6= 8, the translation between coefficients in (2.41) and (2.42) is

Γ1 =
36d

(d− 8)(d− 2)4
γ +

4

(d− 2)4
γ̃ , Γ2 = − 576

(d− 8)(d− 2)4
γ . (2.43)

Note that the linear combination Γ8d is finite in the limit d→ 8.

The n = 4, 5, . . . , 8-point amplitudes at O(p8) are given in general d dimensions in (C.3).

Let us here list the results for d = 8, using γ = 4∆a:

A(8)
4 =

2

81f12

(
36∆a+ γ̃

)(
s4 + t4 + u4

)
= Γ8d

4

f12

(
s4 + t4 + u4

)
,

A(8)
5 =

8

243f15

[(
54∆a+ γ̃

)
P

(8)
5,A + γ̃ P

(8)
5,B

]
,

A(8)
6 =

8

729f18

[(
486∆a+ 7γ̃

)
P

(8)
6,A + 2

(
81∆a+ γ̃

)
P

(8)
6,B + 7γ̃ P

(8)
6,C + 4γ̃ P

(8)
6,D

]
,

A(8)
7 =

16

243f21

[(
324∆a+ 7γ̃

)
P

(8)
7,A + 162∆aP

(8)
7,B + 7γ̃ P

(8)
7,C + 4γ̃ P

(8)
7,D

]
,

A(8)
8 =

16

2187f24

[(
14580∆a+ 301γ̃

)
P

(8)
8,A +

(
5832∆a+ 77γ̃

)
P

(8)
8,B +

(
2187∆a− 7γ̃

)
P

(8)
8,C

+ 189γ̃ P
(8)
8,D + 126γ̃ P

(8)
8,E

]
, (2.44)

where for instance,

P
(8)
5,A =

∑

1≤i<j≤5

s4
ij , P

(8)
5,B = s2

12s
2
34 + perms , (2.45)

and the definitions of the other basis polynomials for n ≥ 6 are given in (C.5)-(C.7).

We noted below (2.36) that information about the anomaly cannot enter until the 5-point

amplitude. This is verified by the second equality for the 4-point amplitude in (2.44) where

we used γ̃ = 162(Γ8d − 2
9
∆a) to demonstrate that the 4-dilaton amplitude indeed captures

no information about the anomaly flow ∆a.

It is a new feature in 8d, compared with 4d and 6d, that there is a non-vanishing contribu-
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tion from the Weyl-invariants at the same order in momentum as the flow in the a-anomaly.

In 4d and 6d, the WZ action provided the unique contributions to, respectively, the O(p4)

and O(p6) matrix elements. In 8d, the O(p8) dilaton matrix elements are “polluted” by the

Weyl-invariant, which does not contain information about the flow of a in general. However,

note that even from just the 5-dilaton amplitude one can determine ∆a and γ̃ uniquely,

since there are two independent Mandelstam polynomials. The match to the higher-point

amplitudes is then a strong consistency check. We check consistency explicitly in Section

2.3.

2.2.5 Dilaton Effective Action and GJMS Operators

We found above that the relevant terms in the flat-space dilaton effective action were ex-

pressed in terms of �k up to and including O(p8). The derivation required solutions to

over-constrained systems of equations. A solution could be found in each case because �k

is the flat-space limit of the GJMS operator, Pk, which transforms in the following simple

manner under conformal transformations:

Pk[e
2σg] = e−(d/2+k)σ Pk[g] e(d/2−k)σ ; Pk[η] = �k . (2.46)

The GJMS operators are the higher-order generalizations of the well-known conformal Lapla-

cian (the Yamabe operator) P1 = � − (d−2)
4(d−1)

R and the Paneitz operator P2 = �2 + . . .

[58, 59, 60].

Let us define

Wk ≡
(

2
d−2k

)2
e−(d/2−k)τPk e

−(d/2−k)τ . (2.47)

Under a Weyl-transformation, τ → τ + σ and gµν → e2σgµν , and it follows from (2.46) that

Wk
Weyl−−→ e−d σWk , (k 6= d/2) , (2.48)

so that
√−gWk is a Weyl-invariant for k 6= d/2. It is the flat-space limit of

√−gWk we have

encountered in the our analysis of the O(∂2k)-derivative terms.

The results for the 2k-derivative actions of the previous subsections can now be summa-

rized as

S =
∫
ddx
√−g

[
(d−2)2

8
fd−2W1 + αW2 + βW3 + γW4 + γ̃ (d−4)2

4
ed τ (W2)2 + . . .

]∣∣∣∣,gµν=ηµν

(2.49)
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where the ellipses stand for 1) terms that vanish upon application on the equations of motion,

and 2) terms with more than 8 derivatives.

The normalization in (2.47) was chosen such that for even d we get

∫
ddx
√−gWd/2

flat space−−−−−→
∫
ddx τ �d/2τ . (2.50)

As discussed in the previous subsections, this means the coefficient of Wd/2 is (d/2)∆a for d

even; i.e. α = 2∆a for d = 4, β = 3∆a for d = 6, and γ = 4∆a for d = 8.8

Note also that

(d−4)2

4
ed τ (W2)2 =

(
2
d−4

)2
e4τ
(
P2 e

− d−4
2
τ
)2 flat space−−−−−→

(
2
d−4

)2
e4τ
(
�2 e−

d−4
2
τ
)2

. (2.51)

In the limit d→ 4, this simply becomes e4τ (�2τ)2.

In this section, we have shown that in the case of flows induced by explicit breaking of the

conformal symmetry, the terms that matter for extracting the on-shell dilaton amplitudes

from the flat-space dilaton effective action can be written in the “GJMS-form” (2.49). In

the following sections, we will verify this form explicitly using the example of the RG flow of

the free massive scalar field. It is tempting to propose that this is also the form of the action

that matters in the conformally flat case, for example the d-sphere, for which the GJMS

operators exist for all k [63].

2.3 Example: Free Scalar in 8d

The example of the free conformal scalar was studied for d = 4 in [5] and d = 6 in [55].

Here we consider d = 8 with the purpose of testing the 8d form of the dilaton effective

action derived in the previous section. We also show how the flow of the anomaly, ∆a, can

be separated systematically from the non-vanishing contribution of the 8-derivative Weyl-

invariant e8τ (W2)2 .

Consider the action for a free massive scalar in 8d,

S =

∫
d8x

(
−1

2
(∂Φ)2 − 1

2
M2Φ2

)
. (2.52)

The presence of the mass-term operator explicitly breaks the conformal symmetry of the

action. We can restore that symmetry by promoting the coupling to a scalar function of

8One should be aware that terms like τ�d/2τ can be produced by more than just the Wd/2 operator.

For instance, when d = 8, edτ (W2)2 contains τ�4τ . However, the Weyl transformation of this term is
compensated by the other terms produced by that operator so that the whole expression is invariant.
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spacetime as

M2 →M2e−2τ = λΩ2/3 , (2.53)

with λ = M2/f 2.

Introducing a kinetic term for the compensator field Ω, we write

S =

∫
d8x

(
−1

2
(∂Φ)2 − 1

2
(∂Ω)2 − 1

2
λΩ2/3Φ2

)
. (2.54)

The 8d scalar fields Φ and Ω have mass dimension 3, so the exponent of 2/3 in (2.53) is

compatible with the coupling λ being dimensionless.

When the compensator acquires a VEV, 〈Ω〉 = f 3, the mass-term for Φ is recovered.

The fluctuation, ϕ, defined as Ω = f 3 − ϕ (cf. (2.10)) is the physical dilaton. This way

the explicitly broken conformal symmetry can be treated as spontaneously broken and the

anomaly matching argument of KS [5, 6] applies. The key difference between the truly

spontaneously broken scenario and explicit breaking is that in the latter case we are free to

choose the scale f such that the dilaton is arbitrarily weakly coupled.

The fractional exponent of Ω = f 3 − ϕ means that unlike the 4d and 6d cases [5, 55],

there are an infinite number of interaction vertices Φ2ϕk in the action (2.54):

S =

∫
d8x

[
−1

2
(∂Φ)2 − 1

2
M2Φ2 − 1

2
(∂ϕ)2 +

M2

3f
Φ2ϕ+

M2

18f 2
Φ2ϕ2 +

2M2

81f 3
Φ2ϕ3 + . . .

]
.

(2.55)

The massive Φ can be integrated out to leave the effective action for the dilaton ϕ. To

compare with our general 8d action, an easy approach [55] is to calculate the n-point on-

shell dilaton scattering amplitudes from (2.55) and compare with those of the general 8d

dilaton effective action (2.44). Taking f � M means that the calculation is effectively

1-loop: no internal ϕ’s are exchanged. (This is the case of explicit breaking, and we can

view the dilaton as a source [55].) The low-energy expansion of the amplitudes in powers of

external momenta results in divergent diagrams at O(p4); the coupling of the O(∂4) terms

are renormalized in 8d, and we do not attempt to match them to the general effective action.

At order O(p6) and O(p8) (and higher) the results of the 1-loop calculation are finite and a

precise match is obtained up to 8-point order.

As an example of the match, consider the 6-point O(p6) amplitudes. The calculation of

the 1-loop amplitude with 6 external ϕ’s and an internal loop of Φ’s makes use of 3-, 4-,

5-, and 6-point interactions from (2.55) and involves sums of hexagon diagrams, pentagon

diagrams, 3 types of box diagrams (with topology of “1-mass”, “2-mass-easy” and “2-mass-
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hard”), 3 types of triangle diagrams, and 2 types of bubble diagrams.9 The result can be

expressed in terms of the Mandelstam basis polynomials (2.30) as

d = 8: A(6)
6 =

23M2

310 7 (4π)4 f 18

(
16P

(6)
6,A + 5P

(6)
6,B

)
. (2.56)

Comparing this with (2.33) one immediately sees that the functional form matches, and

we can read off β = 2M2/(2835(4π)4). We have explicitly checked that all the other n =

4, 5, 6, 7, 8-point amplitudes (C.1) with d = 8 are also reproduced exactly with this value of

β. While β itself has no particular interest to us10 — it is a model-dependent dimensionful

coefficient — the fact that we reproduce the O(p6) amplitudes is a strong consistency check

on the 1-loop calculation and on the structure of the dilaton effective action at O(∂6).

Next, move ahead to the O(p8) amplitudes which in d = 8 contain information about the

flow of the trace anomaly. Details of the calculation are given in appendix D; here we quote

the 4- and 5-point 1-loop amplitudes:

A(8)
4 =

17

3 061 800 (4π)4 f 12

(
s4 + t4 + u4

)
,

A(8)
5 =

16

27f 15

[
13

777 600 (4π)4
P

(8)
5,A +

11

5 443 200 (4π)4
P

(8)
5,B

]
. (2.57)

Comparing A(8)
5 in (2.57) and (2.44), we find both ∆a and γ̃ thanks to the two indepen-

dent Mandelstam polynomials. The result is

∆a =
23

5 443 200 (4π)4
=

23

27 35 52 7 (4π)4
(2.58)

and

γ̃ =
11

151 200 (4π)4
. (2.59)

This is consistent with the matching of A(8)
4 in (2.57) and (2.44) with

Γ8d =
γ̃

162
+

2

9
∆a =

17

12 247 200 (4π)4
. (2.60)

Note that ∆a > 0 in accordance with a possible 8d a-theorem. Also, the coefficient of

9For comparison, the equivalent calculation [55] in 6d was much easier since with only a cubic vertex, the
only diagram involved was the hexagon diagram.

10Other than we note that β is positive.
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(s4 + t4 + u4) is positive as expected, Γ8d > 0 (cf. discussion in the Introduction). As a

further non-trivial consistency check, we have calculated the 1-loop 6, 7, 8-point amplitudes

and matched them exactly to the O(p8) amplitudes in (2.44) with the same values (2.58)

and (2.59).

The UV theory is that of a free massless scalar with the corresponding Weyl anomaly

aUV = ascalar,8d. The mass term ignites the flow and in the deep IR the massive scalar Φ

decouples. Hence the IR theory is trivial, aIR = 0. Thus we expect that ∆a = aUV − aIR =

ascalar,8d. The anomaly ascalar,8d of a free conformal scalar can be calculated from the free

energy on a d-sphere, so our value (2.58) for ∆a = ascalar,8d is easily checked. Read on.

2.4 Scalar Anomaly from Zeta-Function Regulariza-

tion of the Free Energy

The action for a free conformal scalar is

S =

∫
d8x
√−g

(
−1

2
(∇Φ)2 − d− 2

4(d− 1)
RΦ2

)
. (2.61)

Consider now the theory on a d-sphere Sd. In the notation of [15], we can write the free

energy

F = − log |Z| =
1

2
log detµ−2

0

(
−∇2 +

d− 2

4(d− 1)
R
)

=
1

2

∞∑

n=0

mn

[
− 2 log(µ0r0) + log(n+ d/2) + log(n− 1 + d/2)

]
, (2.62)

where r0 is the radius of the Sd, µ0 is the UV cutoff, and

mn =
(2n+ d− 1)(n+ d− 1)!

(d− 1)!n!
(2.63)

are the multiplicities of the eigenvalues {λn}n≥0 of the conformal Laplacian on Sd. The

coefficient of the log(µ0r0)-term in (2.62) is the a-anomaly of the free conformal scalar.

Normalizing by the integral of the Euler density over Sd, we have

ascalar,d = −
∑∞

n=0mn∫
Sd
√
g Ed

. (2.64)
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In our conventions (2.3) for the Euler density this is

∫

Sd

√
g Ed = d! Ωd , (2.65)

where Ωd = 2π(d+1)/2/Γ
(
d+1

2

)
is the surface volume of the d-sphere.

The sum in (2.64) is formally divergent, but can be evaluated via zeta-function regular-

ization. This gives ascalar,d odd = 0 as well as the familiar values

ascalar,4d =
1

360 (4π)2
, and ascalar,6d =

1

9072 (4π)3
. (2.66)

This method was used already in 1979 to calculate the functional determinant (2.62) [67];

explicit values for d = 4, 6, 8, 10 were given by Copeland and Toms in 1986 [68].11 More

recently, Cappelli and D’Appollonio [69] extended the list of explicit values up to d = 14.

A compact formula for ascalar,d was presented by Diaz [64], and it is easily translated to our

conventions using (2.65):

d even: ascalar,d =
a(d)

d!
(
d
2

)
! (4π)d/2

, with a(d) = −
∫ 1

0

dt

d/2−1∏

i=0

(i2 − t2) . (2.67)

For d = 4, 6, . . . , 20 one finds

a(d) =
{

2
15
, 10

21
, 184

45
, 2 104

33
, 2 140 592

1365
, 2 512 144

45
, 2 075 529 088

765
, 344 250 108 032

1 995
, 6 884 638 343 936

495

}
. (2.68)

We have checked explicitly that these values agree with the result of zeta-function regular-

ization of the sum (2.64).

Note that for d = 8, we have

ascalar,8d =
1

8! 4! (4π)4
× 184

45
=

23

5 443 200 (4π)4
. (2.69)

This is in perfect agreement with our 1-loop calculation (2.58).12

11Table 1 in [68] quotes an incorrect value for d = 12.
12Let us note that for odd-d, the O

(
(r0)0

)
-terms in (2.62) produce the F -coefficient for a free conformal

scalar; this is also evaluated using zeta-function regularization and explicit values can be found in [15]. An
approach using entanglement entropy for even-d and odd-d spheres was studied in [70] and [71].
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2.5 Free Scalar in d Dimensions and the Dilaton Effec-

tive Action

In this section, we generalize to d dimensions the example of the 8d free scalar from Section

2.3. We match the dilaton effective action up to 8-derivative terms for d = 3, 4, . . . , 10.

Finally, we comment on the structure of higher-derivative terms.

2.5.1 Free Scalar in d Dimensions

Consider a free massless scalar, Φ. Introducing a mass term in the action,

S =

∫
ddx

(
−1

2
(∂Φ)2 − 1

2
M2Φ2

)
, (2.70)

breaks the conformal symmetry explicitly. The symmetry can be restored by promoting the

mass to a spacetime dependent quantity with the introduction of a compensator field Ω:

S =

∫
ddx

(
−1

2
(∂Φ)2 − 1

2
(∂Ω)2 − 1

2
λΩ

4
d−2 Φ2

)
. (2.71)

The coupling λ = M2/f 2 is dimensionless (as is compatible with the mass-dimension (d−2)/2

of d-dimensional scalars). To see that this makes the classical theory conformal, calculate

the stress tensor from the action (2.71),

Tµν = − 2√−g
δS

δgµν
= ∂µΦ∂νΦ + ∂µΩ∂νΩ−

1

2
ηµν

[
(∂Φ)2 + (∂Ω)2 + λΩ

4
d−2 Φ2

]
, (2.72)

and improve it to

Θµν = Tµν −
1

4

d− 2

d− 1
(∂µ∂ν − ηµν�)(Φ2 + Ω2) . (2.73)

Then upon application of the equations of motion

�Φ = λΩ
4
d−2 Φ and �Ω = λ

2

d− 2
Ω

4
d−2
−1 Φ2 (2.74)

one finds Θµ
µ = 0.

The model (2.71) has a moduli space along Ω when 〈Φ〉 = 0. At the origin, 〈Ω〉 = 0,

the theory is conformal, but the conformal symmetry is spontaneously broken at 〈Ω〉 =

f (d−2)/2 6= 0. In this vacuum, the original mass term is recovered since λ = M2/f 2, and the

physical dilaton ϕ is the fluctuation, Ω = f (d−2)/2 − ϕ. The scale of f is unrelated to M , so
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we choose f �M to make the model perturbative, λ� 1.

We are interested in calculating the n-point dilaton amplitudes in a leading order (in λ)

low-energy expansion and comparing the results with the matrix elements extracted from

the dilaton effective action in Section 2.2. With Ω = f (d−2)/2 − ϕ, the action (2.71) gives

n-point interaction terms between Φ and ϕ for all n, unless d = 3, 4, 6 when there are a finite

number of terms. At leading order in λ, the dilaton scattering amplitudes are given by the

1-loop diagrams with n-external dilatons ϕ and the massive scalar Φ running in the loop.

The Feynman rule for the vertex with two Φ’s and k ϕ’s is

Vk = i(−1)k+1 M2

fk(d−2)/2

( k−1∏

n=0

( 4

d− 2
− n

))
. (2.75)

We refer the reader to appendix D for practical details of the 1-loop calculation.

The results of the 1-loop calculation of the n-point dilaton amplitudes for the free massive

scalar can be compared to the general form of the amplitudes discussed in Section 2.2 and

listed in appendix C. Since to O(∂8) there are only few parameters, α, β, γ, and γ̃, in the

dilaton effective action (2.49), this provides a very non-trivial check of the structure. We

find perfect consistency for d = 3, 4, 5, . . . , 10. Specifically:

• At O(p4) and O(p6) we have checked the form of the action (2.49) for d = 3, 4, . . . , 7

(and also d = 8, 9 for O(p6)) by matching the amplitudes with n = 4, 5, 6, 7, 8 external

dilatons. To illustrate the non-triviality of the match, note that for O(p6) this requires

matching the coefficients of a total of 8 independent momentum polynomials of (C.2)

in terms of just a single free parameter, β.

• At O(p8), we have matched the d = 3, 4, . . . , 10 dilaton n-point amplitudes with

n = 4, 5, 6, 7. This requires matching the coefficients of 11 independent Mandelstam

polynomials in (C.3) using just two parameters γ and γ̃.13 For d = 8, we also matched

the 8-point amplitude with its 5 independent momentum polynomials. And as noted

in Sections 2.3-2.4, the 8d anomaly flow ∆a = γ/4 for the free massive scalar was

correctly reproduced by this calculation.

Thus the 1-loop calculation for the free massive scalar offers a highly non-trivial check of the

dilaton effective action.

In Table 2.1, we summarize the results for the coefficients α, β, γ, and γ̃ in d =

13Note that the constrained 3d kinematics leave fewer independent Mandelstam polynomials than for
d > 3.
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Table 2.1: Results for the coefficients α, β, γ, and γ̃ of the effective action (2.49) for the
case of the d-dimensional free massive scalar flow. The subscript ◦ in the table indicates that
a factor of (4π)−bd/2c was taken out, e.g. α = α◦(4π)−bd/2c. The label “div” indicates that
the 1-loop scalar integral diverges at and beyond this order. The boxed results are those
encoding the d = 4, 6, 8 anomaly flows for the free massive scalar; see (2.76). Terms with
negative mass-dimension are not needed for our study of RG flows, but we include them here
to illustrate that the amplitudes match even in those higher-derivative cases

d α◦ β◦ γ◦ γ̃◦

3 1
960M

− 1
43 008M3 − 1

92 160M5
1

7 680M5

4 1
180

1
7 560M2 − 1

85 050M4
11

37 800M4

5 M
480

67
967 680M

1
1 935 360M3

1
18 432M3

6 M2

90
1

3 024

1
113 400M2

1
7 560M2

7 M3

144
61M

483 840
1

272 160M
13

483 840M

8 div 2M2

2 835
23

1 360 800

11
151 200

9 113M3

241 920
47M

7 257 600
41M

2 419 200

10 div 151M2

4 082 400
M2

18 144

3, 4, 5, . . . , 10. Note that the boxed values in the table correspond to the anomaly flows

∆a4d =
1

2
α◦(4π)−2 =

1

360(4π)2
,

∆a6d =
1

3
β◦(4π)−3 =

1

9072(4π)3
,

∆a8d =
1

4
γ◦(4π)−4 =

23

5 443 200(4π)4
. (2.76)

The successful match of the amplitudes for the free massive scalar and the simplicity of

the dilaton effective action S in the form (2.49) encourages us to speculate about the higher-

derivative terms in S. We outline some ideas and tests of this in the following section.

2.5.2 Higher-Order Effective Action?

In Section 2.2.5 we wrote the flat space dilaton effective action

S =

∫
ddx
√−g

[
(d−2)2

8
fd−2W1 + αW2 + βW3 + γW4 + γ̃ (d−4)2

4
ed τ (W2)2 + . . .

]∣∣∣∣
gµν=ηµν

,

(2.77)
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with the ellipses standing for terms that vanish upon application on the equations of motion,

plus terms with more than 8 derivatives. Recall that its definition in terms of the GJMS

operators Pk in (2.46) makes the behavior ofWk ≡
(

2
d−2k

)2
e−(d/2−k)τPk e

−(d/2−k)τ under Weyl

transformations particularly simple, Wk
Weyl−−→ e−d σWk. This ensures Weyl-invariance of the

action (2.77), except for d = 2k where it produces the correct trace anomaly; the relation

between the coefficients in (2.77) and the anomaly flow was given in (2.76).

The simplicity of (2.77) encourages a guess for the 10-derivative terms, namely

S∂
10

=

∫
ddx
√−g

[
δ W5 + δ̃ (d−4)(d−6)

4
ed τW2W3 + . . .

]∣∣∣∣
gµν=ηµν

. (2.78)

The “. . . ” denote terms that vanish on-shell.14 For d = 3, 4, . . . , 10, we have checked explicitly

that the 4, 5, 6-point amplitudes produced by the action (2.78) are matched exactly by the

O(p10) dilaton amplitudes produced by the free massive scalar 1-loop computation. For each

d, this requires the coefficient of 9 distinct Mandelstam polynomials to be matched using

just two constants, δ and δ̃, and it is therefore encouraging that this guess works. However,

those two constants are not sufficient to match the 7-point amplitude; the guess in (2.78) is

incomplete. Moreover, following the pattern of the lower-order terms, we would expect the

anomaly flow in d = 10 to be encoded as ∆a = 1
5
δ. Instead, we find that 1

5
δ 6= ∆a10d. Hence

at least one other term is required in (2.78).

A further complication (or feature) arises for the 12-derivative terms. The GJMS con-

struction suggests that we can write

S∂
12

=

∫
ddx
√−g

[
ε1W6 + ε2

(d−6)2

4
ed τ (W3)2 + ε3

(d−4)(d−8)
4

ed τW2W4

+ ε4
(d−4)3

8
e2d τ (W2)3 + . . .

]∣∣∣∣
gµν=ηµν

.
(2.79)

However, this cannot be the full answer, because starting at O(p12), the 4-point amplitude

has two independent Mandelstam polynomials.15 For example in d = 12 we find for the free

massive scalar flow:

A(12)
4 =

1

25 33 57 72 111 131

(
− 7s2t2u2 + 2250(s6 + t6 + u6)

)
. (2.80)

The polynomial s6 + t6 + u6 can be produced by the terms in (2.79), but s2t2u2 cannot.

This means that new structures appear in the effective action at 12-derivative order. This

14Note that terms with W1 vanish on-shell.
15This follows the same structure as the matrix elements of the candidate counterterm operators D2kR4

in supergravity; see for example Table 1 in [28].
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may be evidence for the existence of a new class of curved-space GJMS-type operators

whose “leading” components are not �k but are perhaps composed of various contractions

of Gµνρ = (∇µ∇ν∇ρ). For instance, a term in the action that also produces s2t2u2 could be:

ϕ Gµνρ ϕ Gµνρ Gσλκ ϕ Gσλκ ϕ . (2.81)

Such new operators may also enter the 10-derivative action and account for the mismatch of

the 1-loop amplitudes predicted by extrapolating the GJMS-type action. It would be inter-

esting to explore further the connections between RG flows, conformal geometry, functional

determinants, and the a- and F -theorems.
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Chapter 3

Dilaton Effective Action with N = 1

Supersymmetry

3.1 Motivation and Preview

The dilaton-based proof [5, 6] of the four-dimensional a-theorem has provided new insights

into the behavior of quantum field theories under renormalization group (RG) flows. The

arguments in [5, 6, 25] exploit that the structure of the effective action for the dilaton —

introduced as a conformal compensator or as the Goldstone boson for spontaneously broken

conformal symmetry — is determined by symmetries up to and including four-derivative

terms. This is used to extract the change in the Euler central charge ∆a = aUV − aIR in

an RG flow between UV and IR CFTs. The form of the dilaton action shows that the low-

energy expansion of the scattering process of four dilatons is proportional to ∆a and a sum

rule then allowed the authors of [5] to argue that ∆a > 0, thus proving the a-theorem.

It is worth exploring if this argument can be affected by the presence of other massless

modes in the low-energy theory, such as Goldstone bosons arising from the spontaneous

breaking of other continuous global symmetries. This situation arises in N = 1 supersym-

metric theories, because the stress tensor is in the same supermultiplet as the R-current, so

the Goldstone boson β for the broken U(1) R-symmetry accompanies the dilaton τ . In the

low-energy effective action, there are couplings between τ and β, even in the flat-space limit,

so one may wonder if this affects the proof of the a-theorem.

Since the Goldstone boson β is a pseudo-scalar (an axion), we are quickly relieved of

our worries: its presence cannot change the scattering of four scalars (the dilatons) through

single-axion exchanges, which would be the only option in the low-energy effective action.

But precisely how this works is less trivial, since the “naive” dilaton field τ is non-linearly
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coupled to the axion β, and to identify the physical modes one must disentangle the fields

via a field redefinition. The result of course still holds true: the axion does not spoil the

proof of the four-dimensional a-theorem presented in [5].

In this chapter, we consider in detail the form of the bosonic terms in the N = 1

supersymmetric extension of the four-dimensional dilaton effective action in order to fully

illuminate the above questions and to clarify results in the previous work [26].1 Our focus

is four-dimensional N = 1 superconformal theories in which the conformal symmetry is

broken by a relevant operator that preserves the N = 1 supersymmetry. We assume that

the induced flow terminates in another N = 1 superconformal theory in the deep IR. The

fields τ and β form a complex scalar field which is the lowest component of a chiral Goldstone

superfield Φ = (τ + iβ)+ . . . . We are interested in writing down the most general low-energy

effective action for τ and β in a general rigid four-dimensional curved space with background

metric gµν and background U(1) R-symmetry gauge potential Aµ. Such an action has been

studied previously by Schwimmer and Theisen using a superspace approach [26]. One of our

goals is to derive the action in component form from basic symmetry principles and use this

to clarify the structure of the result presented in [26].

The fundamental ideas we use to determine the effective action S[τ, β] are diffeomorphism

invariance and the following three properties:

1. Weyl variation (δσgµν = 2σgµν and δστ = σ) produces the trace anomaly, i.e.

δσS =

∫
d4x
√−g σ 〈Tµµ〉 . (3.1)

The expectation value of the trace of the stress tensor, 〈Tµµ〉, is a functional of the

background fields, namely the metric gµν and the U(1)R gauge field Aµ. It does not

depend on τ or β. The full trace anomaly for an N = 1 SCFT with central charges a

and c is2

〈Tµµ〉 = cW 2 − aE4 + b′�R− 6 c (Fµν)
2 . (3.2)

The coefficient of�R is non-physical as it can be removed by adding a local counterterm

in the UV theory. Thus it is not an anomaly and we drop it henceforth.

1See also [72] for important early work on the subject as well as [73] for a discussion of the dilaton effective
action in four-dimensional theories with N = 2 supersymmetry.

2In Appendix E we discuss why no other terms involving the gauge field are allowed.
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2. Gauge transformations (δαAµ = ∇µα and δαβ = α) generate the gauge anomaly:

δαS =

∫
d4x
√−g α

(
2 (5a− 3c)Fµν F̃

µν + (c− a)Rµνρσ R̃
µνρσ

)
, (3.3)

where the tilde denotes Hodge dualization with respect to the curved metric gµν ,

R̃µνρσ ≡
1

2
εµνλδR

λδ
ρσ , F̃µν ≡

1

2
εµνρσF

ρσ . (3.4)

The second line of (3.3) gives the gauge anomaly3 for the case of an N = 1 supercon-

formal theory; it was derived in [22] with slightly different normalization of a and c

(see also [26, 74, 75]).

3. The low-energy effective action must be invariant under N = 1 supersymmetry. In

this chapter, we mostly ignore the fermionic degrees of freedom and focus entirely on

the bosonic part of the action.

The first and second properties allow us to split the action into two parts S = SWZ +Sinv

where Weyl and gauge variations of SWZ produce the trace and gauge anomalies, respectively,

while Sinv is gauge and Weyl invariant. The general form of Sinv is a linear combination of all

possible gauge and Weyl invariant operators and the principles 1 and 2 above do not allow us

to constrain the constant coefficients in this linear combination. However, the third property

(supersymmetry) does fix certain relationships between the two parts of the action: some of

the coefficients in Sinv are determined in terms of the central charges a and c. This still leaves

the possible freedom of having gauge and Weyl invariant operators that are independently

supersymmetric. We will show that no such operators contribute to the flat-space scattering

process of four-particle dilaton and Goldstone modes at the four-derivative order. This means

that such independently supersymmetric terms in the dilaton effective action (if they exist)

cannot affect the proof of the a-theorem.

It is not easy to check whether a given four-derivative operator is supersymmetrizable.

Thankfully the power of supersymmetry Ward identities allow us to test this question indi-

rectly and to the extent we need it. As we show in Section 3.2, the supersymmetry Ward

identities require that the scattering process of four dilatons is identical to the scattering

process of the four associated R-symmetry Goldstone modes. This means that if an operator

contributes only to one of these processes, it cannot possibly be supersymmetrizable on its

own. We use this to exclude contributions from Weyl and gauge invariant operators that

3This is the ’t Hooft anomaly for the global U(1)R symmetry present in any N = 1 SCFT. With slight
abuse of notation we will refer to it as the gauge anomaly.
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could otherwise affect the proof of the a-theorem in four-dimensional N = 1 supersymmetric

theories.4

Our work suggests several natural avenues for further exploration. First it will be in-

teresting to analyze the effective actions for conformal field theories (not neccessarily su-

persymmetric) with larger continuous global symmetry groups. For superconformal theories

with N = 1 supersymmetry and more than one Abelian global symmetry one may hope that

such an effective action will offer a new perspective on the principle of a-maximization [74].

It will also be of great interest to construct the dilation effective action for four-dimensional

SCFTs with extended supersymmetry, in particular for N = 4 SYM. In this context, one

may be able to establish a more precise connection between the dilation effective action

and the Dirac-Born-Infeld action for SCFTs with holographic duals. Finally, one can also

study the supersymmetric dilation effective action for SCFTs in two and six dimensions.5

The methods of this chapter should extend readily to two-dimensional SCFTs with (0, 2)

or (2, 2) supersymmetry since these theories have Abelian R-symmetry. The extension to

six-dimensional (1, 0) or (2, 0) SCFTs may prove more subtle, although in the latter case

holography should provide useful insights.

Before delving into the construction of the dilaton effective action, we start by deriving

supersymmetry Ward identities for on-shell scattering amplitudes in Section 3.2. In Section

3.3 we derive the most general form of the dilaton effective action for N = 1 SCFTs up

to four-derivative terms. We compare this action to the results of Schwimmer-Theisen in

Section 3.4 to clarify the structure of their superspace-based result. In Section 3.5, we show

that the Ward identities from Section 3.2 confirm the supersymmetry of our result for the

action in the flat-space limit. The resulting dilaton-axion effective action gives an explicit

verification that the dilaton-based proof is not affected by β. Furthermore, we show that

supersymmetry is actually not needed to reach this conclusion: the Goldstone mode of any

broken global U(1) symmetry cannot spoil the proof of the a-theorem. Finally, we note that

supersymmetry requires that the 2 → 2 axion scattering amplitude must equal the 2 → 2

dilaton amplitude, and this allows for a proof of the a-theorem based on the axion scattering

for N = 1 SCFTs. In Appendix E, we present a way to derive the conformal anomaly for

four-dimensional CFTs from basic principles.

4Very similar arguments were developed in [28] to test supersymmetrization of candidate counterterms
in N = 8 supergravity.

5There are no SCFTs in dimension greater than six and there are no conformal anomalies in odd dimen-
sions. thus dimensions two, four and six exhaust all cases of interest.
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3.2 Scattering Constraints from Supersymmetry

Scattering amplitudes in supersymmetric theories obey supersymmetry Ward identities [76,

77]. We consider here an N = 1 chiral model with a complex scalar ζ and its fermionic

superpartner λ. In Section 3.5, the chiral scalar will be related to the dilaton and U(1)

Goldstone modes. As a result of the supersymmetry transformations of the free fields, it can

be shown [34] that the supersymmetry generators Q and Q† act on the states as6

[Q, ζ] = [p|λ , [Q†, λ] = |p〉 ζ ,
[Q, λ] = 0 , [Q†, ζ] = 0 ,

[Q, ζ] = 0 , [Q†, λ] = 0 ,

[Q, λ] = [p| ζ , [Q†, ζ] = |p〉λ ,

(3.5)

where the (anti)commutators are graded Lie brackets. The two-component spinors |p〉 and

[p| represent components of the particle momentum in the spinor-helicity formalism.7 More

precisely, the on-shell four-momentum pµ for a massless particle can be written in terms of

a pair of two-component spinors |p〉ȧ and [p|b as

pµ (σµ)ȧb = −|p〉ȧ[p|b , and pµ (σµ)aḃ = −|p]a〈p|ḃ . (3.6)

For two light-like four-vectors, pµ and qµ, angle- and square-brackets are defined as

[pq] = [p|a|q]a , and 〈pq〉 = 〈p|ȧ|q〉ȧ . (3.7)

These brackets are antisymmetric, [pq] = −[qp] and 〈pq〉 = −〈qp〉, because spinor indices are

raised and lowered with the two-dimensional Levi-Civita symbol.

Now assuming the vacuum is supersymmetric, i.e.Q|0〉 = Q†|0〉 = 0, we can derive

supersymmetry Ward identities for the amplitudes. For example (treating λ and ζ as creation

operators),8

0 = 〈0|
[
Q†, λ ζ ζ ζ

]
|0〉 = 〈0|

[
Q†, λ

]
ζ ζ ζ |0〉 = |p1〉 〈0| ζ ζ ζ ζ |0〉 , (3.8)

where we have used that Q† annihilates ζ. The free-field commutators (3.5) can be used here

6We are abusing notation by using the same symbols to represent the fields and their corresponding
creation and annihilation operators. Hopefully it is clear enough from context what we mean.

7See the reviews [34, 36] for more details about the spinor-helicity formalism and supersymmetry Ward
identities.

8We are not including explicit momentum labels, but assume that the first state in the list has momentum
pµ1 , the next pµ2 etc.
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because the supercharges are acting on the asymptotic states. This is simply the statement

that at any loop-order, the on-shell four-scalar amplitude A4(ζ ζ ζ ζ) must vanish (where

now we mean the particles created by the field ζ). Similarly, A4(ζ ζ ζ ζ) = 0.

The four-scalar amplitudes with three ζ and one ζ also vanish. To see this, we write

0 = 〈0|
[
Q†, ζ λ ζ ζ

]
|0〉 = |p1〉 〈0|λλ ζ ζ |0〉+ |p2〉 〈0| ζ ζ ζ ζ

]
|0〉 . (3.9)

Now dot in 〈p1| and use the antisymmetry of the angle bracket to eliminate the first term

on the right hand side in (3.9). For generic momenta, this leads to the statement that

A4( ζ ζ ζ ζ ) = 0.

A similar story applies to scalar amplitudes with three ζ’s. Altogether, supersymmetry

requires the following amplitudes to vanish:

A4(ζ ζ ζ ζ) = A4(ζ ζ ζ ζ) = 0 ,

A4(ζ ζ ζ ζ) = A4(ζ ζ ζ ζ) = . . . = A4(ζ ζ ζ ζ) = 0 .
(3.10)

The second line includes all four-point amplitudes with an odd number of ζ’s. Amplitudes

with two ζ’s and two ζ’s, such as A4(ζ ζ ζ ζ), are permitted to be non-vanishing by su-

persymmetry. The reader may be puzzled: surely a supersymmetric Lagrangian can have

interactions terms of the form ζ4 + ζ
4
, so how can that be compatible with our claim above

that for massless scalars A4(ζ ζ ζ ζ) = 0? To see this in an example, consider an N = 1

theory with a canonical kinetic term Φ†Φ and a superpotential W = fΦ + 1
5
Φ5. The scalar

potential V = |dW/dζ|2 = |f |2 + fζ4 + f̄ ζ
4

+ ζ4ζ
4

has exactly the four-scalar interaction

terms that our supersymmetry Ward identity argument appears to be incompatible with.

However, the origin ζ = ζ = 0 is obviously not a supersymmetric vacuum, so the Ward

identity — which used Q†|0〉 = 0 — is not valid. If we expand around another vacuum,

we generate mass-terms and we are only interested in the case of massless particles. This

resolves the puzzle.

Now suppose we decompose the complex scalar field ζ into its real and imaginary parts,

ζ = ϕ + iξ and denote the corresponding scalar, ϕ, and pseudo-scalar, ξ, states by the

same symbols. Expanding the supersymmetry constraints (3.10) then leads to the following
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non-trivial constraints on the amplitudes:9

A4(ϕϕϕϕ) = A4(ξ ξ ξ ξ) , (3.11)

A4(ϕϕϕϕ) = A4(ϕϕ ξ ξ) + A4(ϕ ξ ϕ ξ) + A4(ϕ ξ ξ ϕ) . (3.12)

These linear relations between amplitudes will be very valuable in the analysis of the

N = 1 low-energy effective action for the dilaton. In this context, ϕ will be associated with

the physical dilaton and ξ with the R-symmetry Goldstone mode. Thus, without knowing

any details of the form of the N = 1 supersymmetric dilaton effective action, we have already

learned from the first identity (3.11) that the four-dilaton amplitude must be equal to the

four-axion amplitude. The second identity (3.12) is important for testing that the explicit

action we derive in Section 3.5 is supersymmetric.

The identities in (3.11)–(3.12) can also be used to test if a given candidate Weyl and

gauge invariant operator is compatible with supersymmetry. If the on-shell four-point am-

plitudes resulting from the operator do not satisfy (3.11)–(3.12), then the operator cannot

be supersymmetrized. On the other hand, if the resulting amplitudes are compatible with

(3.11)–(3.12), then the operator has a supersymmetric extension at the level of four fields

(though not necessarily beyond that order).

3.3 Dilaton Effective Action

We turn now to the construction of an N = 1 supersymmetric effective action for the dilaton

and axion fields τ and β in the presence of a curved background metric gµν and background

gauge field Aµ. As noted in the Introduction, the dilaton effective action can be split into

two parts

S = SWZ + Sinv , (3.13)

depending on whether gauge and Weyl transformations act non-trivially.

3.3.1 Wess-Zumino Action

The Wess-Zumino part of the action is defined such that its gauge variation produces the

anomaly for the U(1)R symmetry and its Weyl variation results in the conformal anomaly. It

9The Ward identities also imply certain relationships between the four-point amplitudes containing only
one ϕ or one ξ, e.g. A4(ϕϕϕξ) = −A4(ξξξϕ). These relations are independent from those in (3.11)–(3.12).
However, they are trivially satisfied for our application because any amplitude with an odd number of
pseudo-scalars ξ vanishes in a parity-invariant theory.
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can be obtained either by iteratively applying transformations and adding terms to cancel ex-

tra variations, or by integrating the anomalies directly [78]. The result is the four-dimensional

Wess-Zumino action for the dilaton and axion:

SWZ =

∫
d4x
√−g

[
∆c τ W 2 − ∆a τ E4 − 6 ∆c τ F 2

+ β
(

2 (5 ∆a − 3 ∆c )FF̃ + ( ∆c − ∆a )RR̃
)

− ∆a

(
4
(
Rµν − 1

2
Rgµν

)
∇µτ ∇ντ − 2 (∇τ)2

(
2�τ − (∇τ)2

))]
.

(3.14)

Here F = dA is the flux for the background U(1)R gauge field. Under a Weyl transformation,

the variation of τ on the first line produces the conformal anomaly, while the Weyl tensor

and field strength are inert. However, E4 is not inert, but the Weyl variation of the third

line cancels the contributions from τ δσ(
√−gE4). The second line is Weyl invariant. Gauge

transformations shift β → β+α, hence the second line in (3.14) produces the U(1)R anomaly.

When the flux and the axion vanish, one recovers the WZ action for the dilaton [5, 6, 26]. The

coefficients ∆a = aUV−aIR and ∆c = cUV−cIR are the difference between the corresponding

central charges of the UV and IR SCFTs, as required by the anomaly matching conditions

[5, 26].

3.3.2 Gauge and Weyl invariants

Since SWZ is determined by its variation, it is only specified up to terms whose gauge and

Weyl variations vanish. We define Sinv to be the sum of all independent gauge and Weyl

invariant combinations of τ , β, gµν , and Aµ. To facilitate the analysis, we define a Weyl

invariant metric ĝµν = e−2τgµν , so that any curvature terms computed in terms of ĝµν will

be invariant. This procedure appeared in the analysis in [5] (see also [49, 55, 79] for ana-

logues in higher dimensions) where there were three possible four-derivative Weyl invariants

with independent coefficients:
√−ĝŴ 2,

√−ĝR̂2, and
√−ĝÊ4. (The Euler density Ê4 is

total derivative in four dimensions so it can be dropped.) In the present context, there

are additional fields that can be used to construct invariants. Specifically, the combination

(A−∇β)µ is both gauge and Weyl invariant. This combination also suggests that we should

treat Aµ on the same footing as a derivative in the low-energy effective action. With these

building blocks we find the most general Ansatz for Sinv including terms with at most four
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derivatives:

Sinv =

∫
d4x

√
−ĝ
[
− f 2

2

(
R̂

6
+ ĝµν (A−∇β)µ (A−∇β)ν

)
+

9∑

i=1

γiWi +O(∇6)

]
,

(3.15)

where we have dropped total derivatives such as
√−ĝÊ4. The hatted two-derivative gauge-

Weyl invariants produce the kinetic terms for the scalars when expanded in terms of the

unhatted metric and the dilaton. The real constants γ1, . . . , γ9 are arbitrary coefficients of

the independent four-derivative gauge and Weyl invariant terms,
√−ĝWi, defined by

W1 ≡ Ŵ 2 , W2 ≡ R̂2 ,

W3 ≡ (A−∇β)µ ∇̂µR̂ , W4 ≡
(
∇̂µ(A−∇β)µ

)2

,

W5 ≡ ĝµν (A−∇β)µ �̂ (A−∇β)ν , W6 ≡ R̂µν (A−∇β)µ (A−∇β)ν ,

W7 ≡ R̂ ĝµν (A−∇β)µ (A−∇β)ν , W8 ≡
(
ĝµν (A−∇β)µ (A−∇β)ν

)2

,

W9 ≡ ĝµν (A−∇β)µ (A−∇β)ν ∇̂λ(A−∇β)λ .

(3.16)

All other invariants can be written as linear combination of the Wi and total derivatives,

e.g. the Bianchi identity implies R̂µν ∇̂µ(A−∇β)ν = ∇̂µ

(
R̂µν (A−∇β)ν

)
− 1

2
W3.

This is the most general possible action written in terms of natural gauge and Weyl

invariant objects constructed from the basic fields. So far, we have not imposed any super-

symmetry on the Weyl+gauge invariant action Sinv. As we will see in the following sections,

the constraints implied by N = 1 supersymmetry and the consequences for the a-theorem

are easily expressed and understood in terms of the Wi and their coefficients.

3.4 Matching to Superspace Calculation

The bosonic terms in the N = 1 supersymmetric version of the Wess-Zumino action were

derived earlier by Schwimmer and Theisen [26]. They started with the Weyl anomaly in

superspace and integrated it directly using the Wess-Zumino method [78]. This gives a

superspace form of the Wess-Zumino action which was then expanded in component fields;

the result is given in equation (3.23) of [26]. In that expression, it is easy to pick out the

terms that match SWZ in (3.14). The two-derivative terms in (3.15) are also easily recognized.

However, it is not a priori clear how to interpret the rest of the 4-derivative terms in (3.23)

of [26]. Indeed, at first sight it may seem almost miraculous that these additional terms

would not contribute to the anomaly under a gauge/Weyl transformation.
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The correct interpretation of the rest of the terms in (3.23) of [26] is that they are a

combination of gauge and Weyl invariants required for the supersymmetric completion of

SWZ in (3.14). Thus, the extra terms in (3.23) of [26] are a particular linear combination

of the operators Wi from (3.16): there is a unique choice of γi in Sinv (3.15) such that our

action S = SWZ + Sinv agrees with (3.23) in [26].10 This choice is to set

γ6 = −6 γ7 = 2 γ8 = −4 ∆a (3.17)

and drop the other Wi’s. This yields the following action:

S0 =

∫
d4x

{
− f 2

√
−ĝ
[

1

12
R̂ +

1

2

(
ĝµν (A−∇β)µ (A−∇β)ν

)]

+
√−g

[
∆c τ W 2 − ∆a τ E4 − 6 ∆c τ F 2

+ β
(

2 (5 ∆a − 3 ∆c )FF̃ + ( ∆c − ∆a )RR̃
)

− ∆a

(
4
(
Rµν − 1

2
Rgµν

)
∇µτ ∇ντ − 2 (∇τ)2

(
2�τ − (∇τ)2

))]

− 4 ∆a
√
−ĝ
[(
R̂µν − 1

6
R̂ ĝµν

)
(A−∇β)µ (A−∇β)ν

+
1

2

(
ĝµν (A−∇β)µ (A−∇β)ν

)2
]

+O(∇6)

}
.

(3.18)

The first line contains the kinetic terms. The second through fourth lines are the WZ

action, (3.14), whose Weyl and gauge variations respectively produce the conformal and

U(1)R anomaly. The last two lines are gauge and Weyl invariant and can be viewed as the

supersymmetric completion of the Wess-Zumino action.

Although the other γi and Wi do not appear in (3.18), this should not be interpreted as

setting them equal to zero. Rather, the remaining γi do not contribute to (3.18) because

the superspace calculation in [26] derived only the terms related to the anomaly in a general

N = 1 theory. At present, the rest of the γi are not fixed. We will see later that the

supersymmetry Ward identities imply additional constraints.

10Our sign conventions differ from those of [26]. We use the curvature convention [∇µ,∇ν ]V ρ = Rµν
ρ
σ V

σ.
All equations shown here can be translated into the conventions of [26] by flipping the signs of the curvature
tensors. We use a different normalization for f and Aµ, namely f2here = 2f2ST and Ahere = 2

3AST. Also, our
result (3.19) fixes minor typos in [26].
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One can now expand (3.18) to facilitate comparison with equation (3.23) in [26]:

S0 = −f 2

∫
d4x
√−g e−2τ

(1

2
(∇τ)2 +

1

12
R +

1

2

(
∇β − A

)2
)

+

∫
d4x
√−g

[
∆c τ W 2 − ∆a τ E4 − 6 ∆c τ (Fµν)

2

+ β
(

2 (5 ∆a − 3 ∆c )F µν F̃µν + ( ∆c − ∆a )Rµνρσ R̃µνρσ

)]

+ 8 ∆a

∫
d4x
√−g

([
RµνAν −

1

6
RAµ + A2Aµ

]
∇µβ − AµAν ∇µ∇ντ

)

+ 2 ∆a

∫
d4x
√−g

{[(
R + 2A2

)
gµν − 2

(
Rµν + 2AµAν

)]
∇µτ ∇ντ

+

[(1

3
R− 2A2

)
gµν − 2

(
Rµν + 2AµAν

)]
∇µβ∇νβ + 8Aν∇µβ∇ν∇µτ

}
+ . . . .

(3.19)

Here the dots denote terms with either no β’s and τ ’s, or more than two of them. Higher-

derivative terms are also suppressed.

The comparison between our dilaton effective action and the result in [26] uniquely selects

the three gauge-Weyl invariants W6, W7, and W8 and fixes their coefficients as in (3.17). If

there are any other gauge-Weyl invariants in the low-energy dilaton-axion effective action,

then their linear combination must be independently supersymmetrizable. We analyze this

in the next section.

3.5 Dilaton and Axion Scattering in Flat Space

For the purposes of testing supersymmetry and investigating the a-theorem, we now take

the theory on a flat background with vanishing gauge field. Then τ and β will be the only

fields involved. For the moment, we continue to ignore the other Wi that did not contribute

to (3.18). We will explain later why this is justified. The action (3.18) encodes the familiar

dilaton interactions, as well as new couplings to the axion β. These new interactions are

present even in the flat-space limit with no background gauge field. Up to total derivatives,

we find

S0 =

∫
d4x

{
− f 2

2
e−2τ

[
(∂τ)2 + (∂β)2

]
+ 2 ∆a

[
2�τ

(
(∂τ)2 − (∂β)2

)
+ 4�β (∂τ · ∂β)

− 4 (∂τ · ∂β)2 −
(
(∂τ)2 − (∂β)2

)2
]

+O(∂6)

}
.

(3.20)
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The fields τ and β are coupled already at the two-derivative level through e−2τ (∂β)2, so the

equations of motion mix τ and β:

�τ = (∂τ)2 − (∂β)2 , and �β = 2(∂τ · ∂β) . (3.21)

3.5.1 Field Redefinition

To facilitate the calculation of scattering amplitudes, we make a field redefinition to decouple

the kinetic terms. This is easiest when we identify the complex scalar field Z that produces

the kinetic terms

Z ≡ e−(τ+i β) ⇒ |∂Z|2 = e−2τ
(

(∂τ)2 + (∂β)2
)
. (3.22)

The action (3.20) can be rewritten in terms of Z and its complex conjugate Z and takes a

very simple form

S0 =

∫
d4x

{
− f 2

2

∣∣∣∂Z
∣∣∣
2

+ 2∆a

[
−
(
∂Z

Z

)2�Z

Z
−
(
∂Z

Z

)2�Z
Z

+

∣∣∣∣
∂Z

Z

∣∣∣∣
4 ]

+O(∂6)

}
.

(3.23)

Note that when the Goldstone mode β vanishes we have a real scalar Z → e−τ ≡ Ω and the

action (3.23) reduces to the familiar form for the dilaton effective action in the flat space

limit (see, for example, equation (2.8) in [25]).

The field Z is the compensator we introduce to restore the broken symmetries. We can

expand about its constant vev11 f with the fluctuating field ζ,

Z = 1− ζ

f
, ζ = ϕ+ i ξ , (3.24)

where ϕ and ξ are real scalar fields. Plugging this into the action (3.23) and expanding up

11Note that one can always choose the vev of Z to be real using the global U(1) symmetry in the action
(3.23).
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to fourth order in the fields, we find

S0 →
∫
d4x

{
− 1

2

(
(∂ϕ)2 + (∂ξ)2

)
+

4 ∆a

f 3

(
�ϕ

(
(∂ϕ)2 − (∂ξ)2

)
+ 2�ξ (∂ϕ · ∂ξ)

)

+
2 ∆a

f 4

[
2�ϕ

(
3ϕ
(

(∂ϕ)2 − (∂ξ)2
)
− 2 ξ (∂ϕ · ∂ξ)

))

+ 2�ξ
(
ξ
(

(∂ϕ)2 − (∂ξ)2
)

+ 6ϕ (∂ϕ · ∂ξ)
))

+
(

(∂ϕ)2 − (∂ξ)2
)2

+ 4 (∂ϕ · ∂ξ)2

]
+O(∂6)

}
.

(3.25)

This parameterization decouples the equations of motion into those of free massless scalars

�ϕ = 0 , �ξ = 0 . (3.26)

Treating this as an effective action with a derivative expansion, we only include the two-

derivative quadratic terms in the equations of motion. All other terms in the action involve

three or more fields and give rise to interaction terms in the quantized theory. In (3.25), all

such interactions involve at least four derivatives, so the amplitudes have no local contribu-

tions from pole diagrams until at least O(p6).

3.5.2 Amplitudes

We are interested in the four-point amplitudes. From the action (3.25), we see that the

low-energy expansion starts at O(p4). The equations of motion (3.26) make it easy to read

off the amplitudes from the contact terms in the last line of (3.25), which yield at O(p4):

A4(ϕϕϕϕ) =
4∆a

f 4
(s2 + t2 + u2) ,

A4(ξ ξ ξ ξ) =
4∆a

f 4
(s2 + t2 + u2) ,

A4(ϕϕ ξ ξ) =
4∆a

f 4
(−s2 + t2 + u2) ,

A4(ϕ ξ ϕ ξ) =
4∆a

f 4
(s2 − t2 + u2) ,

A4(ϕ ξ ξ ϕ) =
4∆a

f 4
(s2 + t2 − u2) .

(3.27)

We can now use these results to check if the action (3.23) is compatible with supersymmetry.

Combining the corresponding results from (3.27), we see that indeed the constraints (3.11)–
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(3.12) from the supersymmetry Ward identities are obeyed.

All three Weyl invariants, W6,7,8, contributed to the amplitudes (3.27) in a non-trivial

way that ensures that the supersymmetry Ward identities are satisfied. Hence, this tests the

supersymmetry of (3.18). The combination of Weyl invariants Wi in (3.18)-(3.19) was fixed

via comparison with the superspace form given by Schwimmer and Theisen [26]. The match

was obtained by comparing the last three lines of (3.19) with the corresponding expressions

in [26]. Note that all the terms used explicitly in the match vanish in the flat-space limit with

the background gauge potential turned off. However, as we have seen, W6,7,8 also have flat-

space contributions, so supersymmetry could also be tested via the Ward identities. Thus,

in that limit, we have tested that our completion of the Schwimmer-Theisen terms does obey

the supersymmetry constraints.

3.5.3 Supersymmetry and the Other Weyl Invariants

So far we have considered only the part of the action that matched the superspace derivation

of the Wess-Zumino action, fixing the values of γ6, γ7, and γ8. The full dilaton effective action

may have contributions from the other invariants Wi as well. This is important because their

flat-space limits could include additional dilaton and axion scattering beyond what we have

considered so far, with potentially dangerous consequences for the a-theorem.

With that in mind, let us return to the list of gauge-Weyl invariants (3.16) and evaluate

them in the flat background. Applying the equations of motion (3.26), we find:

W1 → 0 , W2 → 36
f4

(∂ξ)4 ,

W3 → 0 , W4 → 0 ,

W5 → − 2
f4

(
(∂ξ)4 + (∂ϕ · ∂ξ)2

)
, W6 → − 2

f4

(
(∂ξ)4 + (∂ϕ · ∂ξ)2

)
,

W7 → − 6
f4 (∂ξ)4 , W8 → 1

f4 (∂ξ)4 ,

W9 → 0 ,

(3.28)

where the three expressions in boldface are those already included in (3.18).

The first key feature to notice is that none of the invariants contain a (∂ϕ)4 interaction.

Hence the four-scalar amplitude, A4(ϕϕϕϕ) in (3.27), receives contributions only from the

dilaton part of the Wess-Zumino action. It is completely blind to the presence of the axion.

Thus it is not surprising that the resulting amplitude in (3.27) matches exactly the one

found in [5]. Moreover, this implies that the proof of the a-theorem using the four-dilaton

amplitude is unaffected by the presence of the axion.

The second key feature is that any gauge+Weyl+supersymmetry invariant four-derivative

term has to be a linear combination of the Wi’s, sayW =
∑9

i=1 biWi. Since (3.28) tells us that
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the four-dilaton amplitude has zero contribution fromW , the supersymmetry Ward identity

(3.12) requires b5 + b6 = 0, and consequently (3.11) enforces b2 − 6b7 + 36b8 = 0. There

are no constraints on the other bi’s from four-particle supersymmetry Ward identities. In

conclusion, any gauge+Weyl+supersymmetry invariant four-derivative operator (if it exists)

does not contribute at all to the four-particle scattering processes, so from that point of view

we can completely neglect it.

Using general principles, we have shown that — up to four-derivative terms — the dilaton-

axion effective action for N = 1 SCFTs takes the form S = SWZ + Sinv, with SWZ and Sinv

given by (3.14) and (3.15) respectively. The results of [26] fix the coefficients γi as in (3.17)

to complete the Wess-Zumino action to an N = 1 supersymmetric form. The supersym-

metry Ward identities can be applied in the flat-space limit to see that no supersymmetric

linear combination of the Wi’s contribute to any four-particle process. However, we cannot

eliminate the possibility of such supersymmetric combinations; we can only say that in the

flat-space limit their four-field terms must be proportional to total derivatives and the EOM.

It would be curious to know if such fully supersymmetric operators do exists, although we

have established that for the proof of the a-theorem in four dimensions they do not matter.

We have demonstrated that the four-point axion scattering amplitude is given by the

second line in (3.27). One can now use the same positivity arguments as in [5, 6] to show

that for N = 1 SCFTs ∆a = aUV − aIR > 0. This can be regarded as an alternative route

to the a-theorem for four-dimensional SCFTs with N = 1 supersymmetry.

3.5.4 No Supersymmetry

Suppose we do not assume N = 1 supersymmetry. Then the coefficients in the gauge

anomaly (3.3) are no longer fixed in terms of the trace anomalies a and c. This affects only

the second line of the WZ action (3.14), now with β interpreted as the Goldstone mode of

some broken U(1) symmetry. Nothing else changes in the WZ action. The general form of

the Weyl and gauge invariant action (3.15) is unchanged in the flat-space limit with Aµ = 0.

(The relative normalization between Aµ and β may change, but we do not have to worry

about this when Aµ = 0.) Of course, there is no supersymmetry or other principle to fix

the coefficients γi. However, that is not important for the Komargodski-Schwimmer proof of

the a-theorem because (3.28) shows that none of the Weyl+gauge invariants Wi affect the

2→ 2 scattering amplitude of the physical dilaton at order p4. Hence we conclude that even

in the absence of supersymmetry the proof of the a-theorem is unaffected by the presence of

Goldstone bosons for Abelian global symmetries.12

12The fact that the presence of extra Goldstone bosons will not affect the 2 → 2 dilaton scattering was
also mentioned in [80] as well as in Section 3.5.1 of [81].
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Part II

Modern Methods for Amplitudes:

Grassmannians and Plabic Graphs

Chapter 4

Grassmannians for Amplitudes

4.1 Motivation and Preview

Recent years have brought remarkable progress in our understanding of the mathematical

structure of scattering amplitudes, especially in the planar limit of N = 4 super Yang-Mills

theory (SYM). Among the new approaches are the Grassmannian formulations [40, 82, 83],

on-shell diagrams [37], and the geometrization of amplitudes in the “amplituhedron” [45, 46,

84]. Many of the ideas from planar N = 4 SYM carry over to the superconformal 3d N = 6

Chern-Simons matter theory constructed by Aharony, Bergman, Jafferis and Maldacena

(ABJM) [85]; see also [86]. In this chapter we study the Grassmannian descriptions of

amplitudes in both 4d N = 4 SYM and in 3d ABJM theory.

The Grassmannian Gr(k, n) is the set of all k-planes in n-dimensional space; in the

context of scattering amplitudes, n counts the number of external particles while k refers

to a classification of amplitudes. The Grassmannian description of amplitudes depends on
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how the external data — particle momenta and type — are encoded. For n-particle NkMHV

amplitudes in 4d planar N = 4 SYM there are three formulations [40, 82]:

• The momentum space formulation uses the spinor helicity representation for the

external momenta, e.g. paḃ = λaλ̃ḃ. The relevant Grassmannian is Gr(k + 2, n).

• The twistor space formulation encodes the data via a half-Fourier transform of the

external momenta, i.e. a Fourier transform of λ, but not λ̃. This representation makes

the superconformal symmetry SU(2, 2|4) manifest. As in momentum space, the Grass-

mannian is Gr(k + 2, n).

• The momentum twistor formulation is applicable in the planar limit and makes

the dual superconformal symmetry SU(2, 2|4) manifest. The relevant Grassmannian is

Gr(k, n).

In Section 4.2, we provide a pedagogical review of these three representations of the 4d

external data and present the corresponding Grassmannian integrals explicitly.

The three Grassmannian descriptions are directly related. The relation between the 4d

SYM twistor space and momentum space integrals was utilized already in the early literature

[40] on the subject. The momentum twistor Grassmannian was introduced shortly after in

[82]. Its relation to the two other formulations was given in [83] using a set of intricate

integral manipulations. In particular, the argument of [83] uses a gauge fixing that breaks

little group scaling and therefore results in very complicated Jacobians that are difficult to

write explicitly. In Section 4.3, we present a new version of the proof, valid for all n and k,

that manifestly preserves the little group scaling at each step of the calculation and yields

all Jacobians as simple explicit expressions.

In Section 4.4 we address how the Grassmannian integrals are evaluated as contour

integrals and demonstrate this with the explicit computation of the residues in the n-point

NMHV sector using the momentum twistor Grassmannian integral. The results for the

individual residues are known to be the dual superconformal invariant building blocks of the

tree amplitudes, i.e. the “R-invariants” [87] or “5-brackets” [82]. These invariants obey a set

of linear relations, which in the Grassmannian formulation simply follow from global residue

theorems. We provide a homological interpretation of the residue theorems for the NMHV

residues. We then review the structure of physical versus spurious (unphysical) poles of the

residues and how this gives a specification of contours for which the Grassmannian integral

exactly produces the tree-level amplitudes. The results are then rephrased in the context of

on-shell diagrams and the positroid stratification of the Grassmannian, and we show how the

‘boundary operation’ in the Grassmannian integral is related to both the residue theorems

and the pole structure.
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In Section 4.5, we turn to the Grassmannian descriptions of amplitudes in 3d ABJM

theory. We briefly review the momentum space spinor helicity formalism in 3d and the

associated Grassmannian integral for ABJM amplitudes, which was introduced previously

in [42, 43, 44, 88]. It encodes the n=(2k+4)-point NkMHV amplitudes of ABJM theory as

contour integrals in the orthogonal Grassmannian OG(k + 2, 2k + 4). The space OG(k, n)

is equipped with the metric gij = δij, i, j = 1, 2, . . . , n, and consists of k-dimensional null

planes in Cn; in other words, the k × n matrices B ∈ OG(k, n) satisfy BgBT = 0.

A momentum twistor version of the ABJM Grassmannian integral has not previously

been constructed. We achieve this goal in Section 4.5, which is an important first step

towards developing an amplituhedron for the ABJM theory. To this end, we first introduce

another formulation of the 3d spinor helicity formalism that facilitates the definition of 3d

momentum twistors. They are simply the 4d momentum twistors ZA
i (A = 1, 2, 3, 4) subject

to the bi-local SO(2, 3) ∼ Sp(4)-invariant constraint ZA
i Z

B
i+1ΩAB = 0 for all i = 1, 2, . . . , n.

Next, our streamlined proof of the relation between the 4d Grassmannian integral rep-

resentations in Section 4.3 allows us to derive the desired momentum twistor version of

the Grassmannian integral for ABJM theory. Just like the momentum space Grassmannian

integral, the new integral has an orthogonality constraint, but a novel feature is that the

k-dimensional planes are now null with respect to a metric defined by Sp(4)-invariant inner

products of the momentum twistors, ZA
i Z

B
j ΩAB.

Orthogonal Grassmannians defined by non-trivial metrics for Grassmannians have been

encountered previously in the mathematics literature in the context of electrical networks

and related combinatorics [89, 90]. However, the dependence of the metric on external data

appears to be a new property that would be exciting to explore further. In particular, it

plays a crucial role for the boundary properties needed for the physical poles of the 6-point

ABJM tree-amplitude, as we discuss in some detail.

We end in Section 4.6 with a brief outlook to Grassmannians beyond the NMHV level

and open questions. A few technical results are relegated to appendices.

4.2 N = 4 SYM and the Grassmannian

This section is intended as a short review of the Grassmannian formulation of amplitudes

in planar N = 4 SYM. Sections 4.2.1 and 4.2.2 introduce the basic definitions and concepts

needed for (super)amplitudes in N = 4 and present the three different forms of the external

data: momentum space, twistor space, and momentum twistor space. See (4.12) for an

overview. Section 4.2.3 presents the Grassmannian integrals. Experts can skip ahead to

Section 4.3.
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4.2.1 External Data: Momentum Space and Superamplitudes

The external data for an amplitude encodes the information about the initial and final state

particles in the scattering process; practically we take all states to be outgoing. We are here

considering only amplitudes in N = 4 SYM, so each of the n external particles — labeled

i = 1, 2, . . . , n — is specified by a null momentum pi, i.e. p2
i = 0, along with a specification

of the particle type (e.g. gluon, gluino, or scalar). The scattering amplitude An takes this

external data as input and returns a complex number on the support of a delta function that

enforces momentum conservation δ4(p1 + . . .+ pn).

In 4d, a null vector pµi is conveniently written as a 2 × 2 matrix pȧai with vanishing

determinant. Because it has rank 1, the matrix can be expressed as a product of two 2-

component vectors:1 pȧai = λaλ̃ȧ. Thus, for an n-particle amplitude with n external massless

particles, the on-shell momenta pi with p2
i = 0 are specified as

(
λi, λ̃i

)
. For the purpose

of exploring the mathematical properties of amplitudes, it is useful to work with complex-

valued momenta. In that case, λi and λ̃i are independent. (Alternatively, we can keep pi

real and work with a metric with signature (−,−,+,+).)

The scattering amplitudes are built from Lorentz-invariant contractions of the spinors,

such as the angle bracket

〈ij〉 := εabλ
a
i λ

b
j , (4.1)

constructed with the help of the antisymmetric Levi-Civita symbol, here ε12 = −ε21 = 1 =

−ε12 = ε21, of the SL(2) subgroup of the 4d Lorentz group SO(3, 1). Lorentz indices are

often suppressed in our presentation.

The physical spectrum of N = 4 SYM consists of 16 massless particles: the gluon g±

with helicity states h = ±1, four gluinos ΛA and ΛA with h = ±1
2
, and six scalars SAB with

h = 0; A,B = 1, 2, 3, 4. The helicity h states transform in rank r = 2−2h fully antisymmetric

representations of the global SU(4) R-symmetry of N = 4 SYM. It is very convenient to

encode the states using anticommuting Grassmann variables η̃iA, with fundamental SU(4)

index A = 1, 2, 3, 4 and particle label i = 1, 2, . . . , n; Grassmann monomials are in one-to-

one correspondence with the states, e.g. η̃31η̃33η̃34 means that particle 3 is a negative helicity

gluino Λ134 ∼ Λ2.

The n-point component amplitudes An combine into superamplitudes ANkMHV
n (or

more generally An), which are polynomials of degree 4(k + 2) in the Grassmann variables.

R-symmetry requires An to be an SU(4) singlet, hence the Grassmann degree of each term

must be a multiple of 4. The label NkMHV stands for (Next-to)k Maximally Helicity Vi-

1The spinor helicity conventions used in this chapter are chosen to conform with much of the literature
on Grassmannians. They differ from those used in the recent review [34].
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olating — this sector of amplitudes consists of all gluon amplitudes with k + 2 negative

helicity gluons and n − k − 2 positive helicity gluons, as well as all amplitudes related to

those via supersymmetry. The sector with k = 0 is simply called MHV. The coefficient of

a given Grassmann monomial in An is a component amplitude whose external states are

those dictated by the Grassmann variables; for example, the coefficient of the monomial

(η̃11η̃12η̃13η̃14)(η̃23η̃24)(η̃41η̃42) is the component amplitude

An
[
g−(p1)S34(p2)g+(p3)S12(p4)g+(p6) . . . g+(pn)

]
. (4.2)

The SU(N) gauge group of N = 4 SYM dresses the amplitudes with a color-structure

that factorizes from the kinematic information. Amplitudes in the planar theory have a

single trace of SU(N) generators,2 and as a result the planar n-particle superamplitudes are

invariant under cyclic permutations of the external labels, i.e. under i→ i+ 1 mod n.

The MHV sector is the simplest. The tree-level MHV superamplitude is given by the

supersymmetrization of the Parke-Taylor gluon amplitude [35, 91]:

AMHV
n =

δ4
(∑n

i=1 λiλ̃i
)
δ(8)
(∑n

i=1 λiη̃i
)

〈12〉〈23〉 · · · 〈n1〉 . (4.3)

The four bosonic delta functions in (4.3) encode momentum conservation via pi = λiλ̃i, while

the Grassmann delta function,3 defined as

δ(8)
( n∑

i=1

λiη̃i

)
:=

1

24

4∏

A=1

n∑

i,j=1

〈ij〉 η̃iAη̃jA , (4.4)

ensures conservation of N = 4 supermomentum, qiA := λiη̃iA. The superamplitude (4.3)

clearly has cyclic symmetry.

To summarize, for n-particle superamplitudes in N = 4 SYM, the external data is spec-

ified in terms of the set
(
λi, λ̃i | η̃iA

)
for i = 1, 2, . . . , n. We call this the momentum space

representation of the external data (or sometimes ‘on-shell superspace’).

2For further details, see Section 2.5 of the review [34].
3The bosonic delta functions are defined as standard in distribution theory [92], i.e. they have the

property that
∫
Rm dmx δm(x − x0) f(x) = f(x0) for any suitable test function f . Similarly, we use∫

dmx dny δn
(
g(x, y)

)
f(x, y) =

∫
dmx

∑
g(x,y)=0 f(x, y)/det(dg/dy). The Grassmann delta functions are

defined by the same property,
∫
dη δ(1)(η − η0) f(η) = f(η0), but using the Berezin integral

∫
dη η = 1 and∫

dη 1 = 0. Thus, the Grassmann delta function is simply δ(1)(η) = η and δ(2)
(∑

i λiηi
)

= 1
2

∑
i,j〈ij〉ηiηj .

The superscript on the Grassmann delta-function indicates its polynomial Grassmann degree.
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The momentum space external data has a redundancy known as little group scaling:

λi → tiλi , λ̃i → t−1
i λ̃i , η̃i → t−1

i η̃i , (4.5)

for each i = 1, 2, . . . , n. A component amplitude scales homogeneously under little group

scaling with weight t−2hi
i , where hi is the helicity of the ith particle. The scaling of the

Grassmann variables ensures uniform weight for all external states in a superamplitude:

An → t−2
i An . (4.6)

for each i = 1, 2, . . . , n. Little group scaling plays a key role in several explorations of

scattering amplitudes, including the work we present in this chapter.

4.2.2 External Data: Twistors and Momentum Twistors

In addition to the momentum space representation, we will be using two other formulations

for the 4d external data, namely twistor space and momentum twistor space. We describe

each in turn.

Twistor space is obtained from momentum space via a Fourier transform of λj, formally

via ∫
d2λj exp(−iµ̃ajλja) • , (4.7)

for each j = 1, 2, . . . , n. The bullet indicates the expression that is Fourier transformed. (We

are ignoring factors of 2π in all Fourier transforms here and henceforth as these only amount

to overall normalizations.) The external data is then encoded in the 4-component twistor

Wi = (µ̃i, λ̃i) and its companion, the supertwistor Wi = (µ̃i, λ̃i | η̃i). Under little group

scaling (4.5), we have µ̃i → t−1
i µ̃i, so the (super)twistor scales uniformly, e.g. Wi → t−1

i Wi.

The measure in the integral (4.7) scales as t2i , so this exactly compensates the little group

scaling of the superamplitude (4.6). Thus, after the half-Fourier transformation for all j =

1, 2, . . . , n, the superamplitude is invariant under little group scaling. In other words, the

superamplitude in twistor space is defined projectively, and the twistors Wi and supertwistors

Wi are homogeneous coordinates of projective space, CP3 and CP3|4, respectively.

The third description of the external data uses the 4-component momentum twistors

Zi = (λi, µi) [93] and their momentum supertwistor extensions Zi = (λi, µi | ηi). The 2-

component spinors µi are defined via incidence relations4

µi := λiyi = λiyi+1 , (4.8)

4For a more comprehensive review of dual space and momentum twistors, see Section 5.4 of [34].
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where the dual space coordinates yi are defined in terms of the momenta as

pi = yi − yi+1 . (4.9)

The second relation in (4.8) follows from the Weyl equation, piλi = 0. The definition (4.9)

makes momentum conservation automatic via the identification yn+1 = y1. The on-shell

condition p2
i = 0 requires ‘adjacent’ points yi and yi+1 to be null separated. Dual conformal

symmetry acts on the dual space variables yi in the familiar way, e.g. under dual inversion

we have yi → yi/y
2
i .

The geometric interpretation of the incidence relations (4.8) is that a point Zi = (λi, µi)

in momentum twistor space corresponds to a null line defined by the points yi and yi+1 in

dual space. Similarly, the line defined by Zi−1 and Zi in momentum twistor space maps to

a point in dual space via

yi =
λiµi−1 − λi−1µi
〈i− 1, i〉 . (4.10)

This follows from (4.8).

In our applications, we need to be able to map directly from momentum space variables

(λi, λ̃i | η̃i) to momentum twistor variables Zi = (λi, µi | ηi). This is done via the relations

λ̃i =
〈i+ 1, i〉µi−1 + 〈i, i− 1〉µi+1 + 〈i− 1, i+ 1〉µi

〈i− 1, i〉〈i, i+ 1〉 ,

η̃iA =
〈i+ 1, i〉ηi−1,A + 〈i, i− 1〉ηi+1,A + 〈i− 1, i+ 1〉ηiA

〈i− 1, i〉〈i, i+ 1〉 .

(4.11)

It follows from (4.11) that both µi and ηi scale linearly with ti under little group trans-

formations, so the momentum (super)twistors scale uniformly, e.g. Zi → tiZi. Therefore,

the Zi naturally live in projective space, CP3 and CP3|4. With the external data given in

momentum twistor space, the superamplitude still scales uniformly as in (4.6). However, as

we shall see, one can split off the MHV superamplitude (4.3) as an overall factor; it takes

care of the scaling properties and leaves behind an object that is invariant under little group

scaling and therefore projectively well-defined.

The relations between the three different forms of the external data can be summarized

compactly as follows:

twistor space momentum space momentum twistor space

Wi = (µ̃i, λ̃i | η̃i) ←→ (λi, λ̃i | η̃i) ←→ Zi = (λi, µi | ηi)
Fourier transform incidence relations

eq (4.7) eq (4.11)

(4.12)
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Superamplitudes in N = 4 SYM enjoy superconformal symmetry SU(2, 2|4); the action of

this symmetry is linearized in (super)twistor variables. In the planar limit, the superam-

plitudes (at tree-level or more generally the loop-integrands) also have dual superconformal

symmetry SU(2, 2|4) whose action is linearized in the momentum twistor description. The

generators of the ‘ordinary’ and dual superconformal symmetries can be arranged to gen-

erate an infinite-dimensional algebra called the SU(2, 2|4) Yangian. Further details of the

representation of the amplitudes and their symmetries can be found in [34].

4.2.3 Grassmannian Integrals

The complex Grassmannian Gr(k, n) is the space of k-planes in Cn. A k-plane can be

described as a collection of k n-component vectors. Since any GL(k) rotation of the vectors

yield the same k-plane, the Grassmannian Gr(k, n) can be given equivalently in terms of k×n
matrices modulo GL(k). The dimension of Gr(k, n) is therefore kn − k2 = k(n − k). Here,

we will list and briefly describe the three Grassmannian integrals relevant for amplitudes in

N = 4 SYM; the actual connection to the amplitudes is made in Section 4.4.

Grassmannian with Twistor Space Data W

In terms of twistor variables, W , the relevant Grassmannian integral was first presented in

[40]. For the NkMHV sector of n-point superamplitudes, the associated Grassmannian is

Gr(k + 2, n) and in this space we study the integral

L̃n;k(W) =

∫
dk̃×nB

GL(k̃)

δ4k̃|4k̃(B · W
)

m1m2 . . .mn

. (4.13)

Here k̃ = k + 2 and the mi’s are the k̃ × k̃ consecutive minors of the matrix B, i.e. m1 =

(1 2 . . . k̃)B, m2 = (2 3 . . . k̃ + 1)B, . . . , mn = (n 1 . . . k̃ − 1)B. The integral (4.13) should be

understood as a contour integral; this will be discussed in Section 4.2.3 and more concretely

in Section 4.4.1.5 The external data enters the integral (4.13) only via the argument of the

5The integral (4.13) exhibits two conventions typical of this field. First, we write an integral over a
parameter space with r complex parameters to mean that the integral will be taken over a real r-dimensional
contour to be specified later. Second, let X be a parameter space on which some connected group G acts, let
dX be a G-invariant volume form on X and choose a left invariant volume form µG on G. We write dX/G
for the volume form on X/G so that, if we locally identify a patch on X with a product of a patch on X/G
and a patch on G, then dX = (dX/G)× µG. We do not actually specify the measure µG, since it only adds
a global constant factor.
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delta-functions B · W =
∑n

i=1BαiWi with α = 1, 2, . . . , k̃. Specifically, we have

δ4k̃|4k̃(B · W
)

=
k̃∏

α=1

δ4
(∑

i

BαiWi

)
δ(4)
(∑

i

Bαiη̃i

)
(4.14)

with the sum over i = 1, 2, . . . , n. Note two simple properties of (4.13):

• Little group scaling, Wi → t−1
i Wi, can be absorbed via a scaling of the ith column of

B: Bαi → tiBαi for all α = 1, . . . , k̃. The ith column is included in exactly k̃ minors,

so the scaling of the product of minors is tk̃i and this precisely cancels the scaling of

the measure dk̃×nB. Thus, L̃n;k̃ is invariant under little group scaling; it is projectively

defined, just as are the superamplitudes in twistor space.

• L̃n;k̃ produces objects of Grassmann degree 4k̃ = 4(k + 2) which is the same as for

superamplitudes in the NkMHV sector.

Grassmannian with Momentum Space Data (λ, λ̃ | η̃)

In momentum space, the Grassmannian for n-point NkMHV amplitudes is also Gr(k+ 2, n).

The integral can be written

Ln;k

(
λ, λ̃, η̃

)
=

∫
dk̃×nB

GL(k̃)

δ2k̃
(
Bαi λ̃i

)
δ2(n−k̃)

(
B⊥αiλi

)
δ(4k̃)

(
Bαi η̃iA

)

m1m2 · · ·mn

, (4.15)

where k̃ = k+2 and B⊥ is the (n− k̃)×n matrix parameterizing the (n− k̃)-plane orthogonal

to the k̃-plane defined by B; i.e. B(B⊥)T = 0.6

The momentum space Grassmannian integral (4.15) has 2n bosonic delta-functions while

the twistor space version (4.13) has 4(k + 2); the difference arises from the Fourier trans-

formations that relate (4.13) and (4.15), as we review in detail in Section 4.3. The first

2k̃ delta functions in (4.15) require that the 2-plane defined by the n λ̃i’s must lie in the

orthogonal complement to the k̃-plane defined by B. The remaining 2(n− k̃) delta functions

require the λ 2-plane to be in the orthogonal complement of B⊥; i.e. the λ-plane must be

contained in B. Hence, the bosonic delta functions require the 2-planes defined by λ and λ̃

to be orthogonal:
∑

i λiλ̃i = 0. This is just momentum conservation. We conclude that 4

of the 2n bosonic delta-functions in (4.15) simply enforce a condition on the external data,

thus leaving constraints only on 2n− 4 of the integration variables B.

6B⊥ is defined only up to a GL(n − k̃) redundancy, but after fixing the GL(k̃) of B we can choose a
canonical B⊥ to avoid ambiguities.
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Grassmannian with Momentum Twistor Space Data Z

The Gr(k, n) Grassmannian integral with external data given in momentum twistor space

was introduced in [82]. For the NkMHV sector with n external particles it is

Ln;k(Z) = AMHV
n

∫
dk×nC

GL(k)

δ4k|4k(C · Z
)

M1M2 · · ·Mn

. (4.16)

The k × k minors of the matrix C are M1 = (1 2 . . . k)C , etc., and the overall factor is the

MHV superamplitude (4.3).

As above we note that

• The integral on the RHS of (4.16) is invariant under little group scaling Zi → tiZi
after a compensating scaling by t−1

i of the ith column of C. However, the MHV factor

scales as t−2
i . Thus Ln;k(Z)→ t−2

i Ln;k(Z); this is precisely the scaling (4.6) needed for

superamplitudes in momentum twistor space.

• Ln;k produces objects of Grassmann degree 4k + 8, with the “+8” arising from the

MHV factor. This is the correct count for superamplitudes in the NkMHV sector.

Contours

Beyond the comments about little group scaling and Grassmann degrees, we have not yet

established the connection between the Grassmannian integrals and superamplitudes. The

first step is to define what is actually meant by the integrals. The idea is the same in all

three cases, so we focus on the momentum twistor integral (4.16).

Fixing the GL(k) invariance of Ln;k in (4.16) leaves an integral over k(n − k) variables.

Of these, the bosonic delta functions localize 4k. Thus, we are left with k(n−k−4) variables

to be integrated. The prescription is to interpret the integrals as k(n − k − 4)-dimensional

contour integrals. We can consider contours that select k(n − k − 4) simultaneous zeros of

the minors. For each such contour γ, the integral (4.16) computes a k(n−k−4)-dimensional

residue L(γ)
n;k. The sum of certain sets of such residues turns out to be exactly the NkMHV

tree superamplitude in momentum twistor space: denoting the corresponding contour Γtree,

we therefore have L(Γtree)
n;k (Z) = ANkMHV

n,tree (Z). We demonstrate the explicit calculation of the

individual NMHV residues in Section 4.4 and discuss the associated global residue theorems

in Section 4.4.2. The NMHV ‘tree-contour’ Γtree is described in Section 4.4.3.

The Grassmannian integrals (4.13), (4.15), and (4.16) are directly related. This was

argued in [83] and we now provide a streamlined proof.
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4.3 Relating the Three Grassmannian Formulations

The twistor space and momentum space Grassmannian integrals (4.13) and (4.15) are easily

related via the half-Fourier transform (4.7); for completeness we review this below. The

derivation of the momentum twistor Grassmannian integral (4.16) from either of the other

two integrals requires more effort since one needs to reduce the Grassmannian Gr(k + 2, n)

to Gr(k, n). As noted in the Introduction, this was first done in [83]. We present here

a streamlined and more explicit version of the proof; this will be useful for deriving the

equivalent momentum twistor Grassmannian integral for ABJM theory in Section 4.5.

4.3.1 From Twistor Space to Momentum Space

The Grassmannian integral in twistor space L̃n;k

(
W
)

is converted to momentum space via

the inverse of the Fourier transform (4.7) that relates momentum space and twistor space.

Thus, the momentum space Grassmannian integral is given as

Ln;k

(
λ, λ̃, η̃

)
=

( n∏

i=1

∫
d2µ̃i e

iλi.µ̃i

)
L̃n;k

(
W
)
. (4.17)

Since L̃n;k

(
W
)

is invariant under little group scaling, the expression Ln;k scales as t−2
i thanks

to the scaling of the measure of the Fourier transform.

The only µ̃-dependent part of L̃n;k

(
W
)

is δ2k̃
(
B · µ̃

)
, as can be seen from (4.13). This

δ-function enforces that B must be orthogonal to the 2-plane defined by µ̃a (viewed as two

n-component vectors). It is convenient to introduce the B⊥ as the (n − k̃) × n matrix

parameterizing the (n − k̃)-plane orthogonal to the k̃-plane defined by B; i.e. it satisfies

B(B⊥)T = 0. The constraints of δ2k̃
(
B · µ̃

)
can then be reformulated as µ̃ ⊂ B⊥. In other

words, µ̃a is some linear combination of the rows of B⊥:

δ2k
(
Bαiµ̃i

)
=

∫
d2(n−k̃)σᾱ δ

2n
(
µ̃i − σᾱB⊥ᾱi

)
, (4.18)

where ᾱ = 1, . . . , n − k̃. We can now easily perform the inverse-Fourier transform back

to momentum space. The delta functions (4.18) localize the Fourier integral (4.17) to give

eiσ·B
⊥·λ, so that integration of the σ’s then yields 2(n− k̃) new delta functions δ2(n−k̃)

(
B⊥ ·λ

)
.

The result is the momentum space Grassmannian integral (4.15).
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4.3.2 Derivation of the Momentum Twistor Grassmannian

Having derived the momentum space integral (4.15) from the twistor space one (4.13), we

now continue to momentum twistor space. The key step is the reduction of the integral from

Gr(k + 2, n) to Gr(k, n).

The bosonic delta functions δ2(n−k̃)
(
B⊥ · λ

)
in (4.15) require that the λ 2-plane lies in

the orthogonal complement of B⊥, so

k̃∏

β=1

∫
d2ρβ δ

2n
(
λj − ραBαj

)
, (4.19)

where ρaα is a 2× k̃ array of dummy integration variables.

As an aside, let us note that we could easily have found (4.19) directly from the inverse

Fourier integral of the twistor space integral (4.17) by writing δ2k̃
(
B · µ̃

)
as
∫
d2ρα e

−iραBαj µ̃j

and then carrying out the 2n Fourier integrals in (4.17) to find (4.19).

The GL(k̃) = GL(k + 2) redundancy of the B’s is transferred to the ρ’s. So we can go

ahead and fix part of GL(k + 2) by choosing

ρ =

(
0 · · · 0 1 0

0 · · · 0 0 1

)
. (4.20)

The 2n delta functions (4.19) then fix the last two rows of B to be the λ’s:

B =




B11 B12 · · · B1n

...
...

. . .
...

Bk1 Bk2 · · · Bkn

λ1
1 λ1

2 · · · λ1
n

λ2
1 λ2

2 · · · λ2
n



. (4.21)

Thus, after evaluating the ρ integrals, we find

Ln;k

(
λ, λ̃, η̃

)
= δ4

(
λiλ̃i

)
δ(8)
(
λiη̃i

)
×
∫

dk×nBα̂i

GL(k) n Tk

δ2k
(
Bα̂iλ̃i

)
δ(4k)

(
Bα̂iη̃i

)

m1m2 · · ·mn

, (4.22)

with α̂ = 1, 2, . . . , k. The gauge choice (4.21) preserves little group scaling. Note that all the

delta functions in (4.22) are little group invariant using Bα̂i → tiBα̂i. Again, the n minors

scale as tk̃i = tk+2
i , but now the measure only contributes tki . So overall, the expression (4.22)

for Ln;k scales as t−2
i , as anticipated.

In (4.22), Tk indicates the translational redundancy in the Bα̂i-variables. The transla-

76



tional symmetry acts as

Bα̂i → Bα̂i + r1α̂λ
1
i + r2α̂λ

2
i for all i simultaneously, (4.23)

where r1α̂ and r2α̂ are any numbers. This is a mixing of the last two rows in the B-matrix

(4.21) with the other rows, and this leaves the minors mi unchanged. It is also clear that

on the support of the two delta functions δ4
(
λiλ̃i

)
δ(8)
(
λiη̃i

)
(that encode momentum and

supermomentum conservation), the delta-functions in the integral (4.22) are invariant under

such a shift.

So far, what we have done parallels the work [83]. At this stage, the authors of [83] fix

the translation invariance Tk via 2k delta functions δ(Bα̂iλi). This breaks the little group

scaling and the associated Jacobian is therefore unpleasant. We proceed here in a way that

preserves little group scaling at every step and gives very simple Jacobians that can be

presented explicitly.

We change variables in the external data to go from momentum space to momentum

twistor space. The momentum supertwistors Zi = (λi, µi | ηi) are related to the momentum

space variables via the relations (4.11). Using these relations, we directly find for each

α̂ = 1, 2, . . . , k:

n∑

i=1

Bα̂iλ̃i = −
n∑

i=1

Cα̂iµi ,
n∑

i=1

Bα̂iη̃i = −
n∑

i=1

Cα̂iηi , (4.24)

where the reorganization on the RHS directly gives

Cα̂i =
〈i, i+ 1〉Bα̂,i−1 + 〈i− 1, i〉Bα̂,i+1 + 〈i+ 1, i− 1〉Bα̂i

〈i− 1, i〉〈i, i+ 1〉 . (4.25)

A sign was absorbed which flipped the angle brackets relative to (4.11). The expression

(4.25) implies that Cα̂i → t−1
i Cα̂i under little group scaling.

We can rewrite the (k + 2) × (k + 2) minors mi of the B-matrix in terms of the k × k
minors of the C-matrix as [83]

m1 = (B1 . . . Bk+2) = −〈12〉 · · · 〈k + 1, k + 2〉(C2 . . . Ck+1) etc. (4.26)

Defining the k × k minors of the k × n C-matrix to be M1 := (C1 . . . Ck) etc, we thus have

m1m2 · · ·mn = (−1)n
(
〈12〉〈23〉 · · · 〈n1〉

)k+1
M1M2 · · ·Mn . (4.27)

(We drop the signs (−1)n just as we drop 2π’s in the Fourier transforms.) Thus, we now
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have

Ln;k

(
λ, λ̃, η̃

)
=

δ4
(
λiλ̃i

)
δ(8)
(
λiη̃i

)
(
〈12〉〈23〉 · · · 〈1n〉

)k+1

∫
dk×nBα̂i

GL(k) n Tk

δ2k
(
Cα̂iµi

)
δ(4k)

(
Cα̂iηi

)

M1M2 · · ·Mn

. (4.28)

It is here understood that the C’s are functions of the B’s as given by (4.25).

Note that the Schouten identity guarantees the following two important properties:

• The C’s are invariant under the translations (4.23).

• The expression (4.25) implies that Cα̂iλi = 0.

We would now like to do two things: fix the translational redundancy and rewrite the integral

in terms of C’s instead of B’s.

Because of the translational invariance, the B’s are not independent variables: for exam-

ple we can use translations to set 2k of them to zero (see below). So after fixing translational

invariance, we will have kn− 2k = k(n− 2) variables to integrate over.

Step 1: Fixing translation invariance.

Let us use the translation invariance Tk to fix the first two columns in Bα̂i to be zero, i.e. for

all α̂ = 1, . . . , k we set Bα̂1 = Bα̂2 = 0. This gives

dk×nBα̂i

Tk
= 〈12〉k dk×(n−2)Bα̂i , (4.29)

where the included prefactor preserves the scaling properties of the measure. (This can be

derived more carefully as a Jacobian of the gauge fixing.)

Step 2: Changing variables from B to C

We know how Cα̂i is related to Bα̂i from equation (4.25). We can use that relation to solve

for k(n−2) of the components of C in terms of the k(n−2) unfixed components of B. Given

our choice to set Bα̂1 = Bα̂2 = 0, we have the following system of k(n− 2) equations:

Cα̂i =





〈i, i+ 1〉Bα̂,i−1 + 〈i+ 1, i− 1〉Bα̂i + 〈i− 1, i〉Bα̂,i+1

〈i− 1, i〉〈i, i+ 1〉 for 3 < i < n

〈42〉Bα̂3 + 〈23〉Bα̂4

〈23〉〈34〉 for i = 3

〈n1〉Bα̂,n−1 + 〈1, n− 1〉Bα̂n

〈n− 1, n〉〈n1〉 for i = n

. (4.30)

We can write this as Cα̂ĵ = Bα̂îQîĵ, with î, ĵ = 3, . . . , n, for a square symmetric matrix Qîĵ

with nonzero entries only on and adjacent to the main diagonal. In Appendix F.1, we show
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that

| detQ | = 〈12〉2
〈12〉〈23〉 · · · 〈n1〉 . (4.31)

Therefore the measure transforms as

dk(n−2)Bα̂î =
dk(n−2)Cα̂î
| detQ |k =

(〈12〉〈23〉 · · · 〈n1〉
〈12〉2

)k
dk(n−2)Cα̂î . (4.32)

We take the absolute value of the determinant since the overall sign is irrelevant. Once again,

the little group scaling of dC is compensated by the Jacobian factor so that the overall scaling

of the right-hand side matches that of dB on the left.

Step 3: Restoring the full set of C variables

With the help of (4.29) and (4.32), the integral (4.28) now takes the form

Ln;k

(
Z
)

=
δ4
(
λiλ̃i

)
δ(8)
(
λiη̃i

)

〈12〉〈23〉 · · · 〈1n〉
1

〈12〉k
∫
dk×(n−2)Cα̂i
GL(k)

δ2k
(
Cα̂iµi

)
δ(4k)

(
Cα̂iηi

)

M1M2 · · ·Mn

∣∣∣∣
Cα̂1,2=C

(0)
α̂1,2

.

(4.33)

We recognize the first factor as the MHV superamplitude AMHV
n from (4.3).

The restriction of Cα̂1 and Cα̂2 in (4.33) follows from the relation (4.25) between the B

and C; it was used above to solve for k(n− 2) components of C in terms of the B’s, but the

remaining 2k components of C are then fixed as

Cα̂1 =
Bα̂n

〈n1〉 =
n∑

j=3

〈2j〉
〈12〉Cα̂j =: C

(0)
α̂1 , Cα̂2 =

Bα̂3

〈23〉 = −
n∑

j=3

〈1j〉
〈12〉Cα̂j =: C

(0)
α̂2 . (4.34)

To verify the second equality in each relation, use (4.30) and rejoice in the beauty of the

sum telescoping under the Schouten identity.

Thus, when evaluating the integral (4.33), Cα̂1 and Cα̂2 are functions of the other k(n−2)

C-components. This is a restriction of the region of integration that we can also impose via

2k delta functions δ
(
Cα̂i − C(0)

α̂i

)
for i = 1, 2. Moreover, it follows from the explicit solution

(4.34) that the constraints are equivalent to Cα̂iλi = 0. Thus we can rewrite the delta

function restriction as

δ
(
Cα̂1 − C(0)

α̂1

)
δ
(
Cα̂2 − C(0)

α̂2

)
= 〈12〉 δ2

(
Cα̂iλi

)
. (4.35)

for each α̂ = 1, 2, . . . , k.
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We then have

Ln;k

(
Z
)

= AMHV
n

∫
dk×nCα̂i
GL(k)

δ2k
(
Cα̂iλi

)
δ2k
(
Cα̂iµi

)
δ(4k)

(
Cα̂iηi

)

M1M2 · · ·Mn

. (4.36)

Although we chose to fix the first two columns of B to be zero, the answer is independent

of that choice; the factors of 〈12〉 cancel out. We can now write the result directly in terms

of the momentum supertwistors Zi = (Zi|ηi) = (λi, µi|ηi) as

Ln;k

(
Z
)

= AMHV
n

∫
dk×nCα̂i
GL(k)

δ4k
(
Cα̂iZi

)
δ(4k)

(
Cα̂iηi

)

M1M2 · · ·Mn

= AMHV
n

∫
dk×nCα̂i
GL(k)

δ4k|4k(Cα̂iZi
)

M1M2 · · ·Mn

.

(4.37)

This completes our derivation of the N = 4 SYM Grassmannian integral in momentum

twistor space from that in momentum space. A very similar procedure leads to an analogous

result in 3d ABJM theory as we explain below in Section 4.5. In the intervening section, we

demonstrate an explicit evaluation of the N = 4 SYM momentum twistor integral (4.37) in

the NMHV sector.

4.4 NMHV Integrals and Residues

In this section we evaluate the NMHV Grassmannian integral in momentum twistor space

and discuss some properties of the residues and their relations to on-shell diagrams. While

part of this is review, new material includes recasting the residue theorems in terms of the

homology and a precise description of how the residue relations and pole structures relate

to the boundary operation and the boundaries of cells in the Grassmannian.

4.4.1 Evaluation of the NMHV Residues

We focus on the momentum twistor Grassmannian, so for NMHV we have k = 1 and (4.16)

is a contour integral in the Grassmannian G(1, n). The elements C ∈ G(1, n) are 1 × n

matrices modulo a GL(1) scaling,

C =
[
c1 c2 . . . cn

]
, (4.38)

with complex numbers ci. The Grassmannian integral is Ln;1(Z) = AMHV
n In;1(Z) with

I(Γ)
n;1 (Z) :=

∮

Γ

d1×nC

GL(1) c1c2 · · · cn
δ4
(
ciZi

)
δ(4)
(
ciηi
)
. (4.39)
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The oriented volume form on Cn is dnC =
n∧
i=1

dci, and the contour Γ will be specified below.

The bosonic delta function δ4(ciZi) fixes four ci’s, and the GL(1) redundancy fixes an-

other. This leaves an integral with n − 5 variables. Now suppose the contour Γ encircles a

pole where exactly n−5 of the ci’s vanish. Such a contour can be characterized by specifying

which five ci’s are non-vanishing at the pole. Let us denote these five non-vanishing ci’s by

ca, cb, cc, cd, and ce, and the corresponding contour γabcde.

We now evaluate Iγabcden;1 (Z) “by inspection”. Appendix G gives a more careful evaluation

that also computes the sign of the residue correctly. It follows from (4.39) that the residue

where all ci vanish for i 6= a, b, c, d, e is, up to a sign, simply

Iγabcden;1 (Z) =
δ4
(
caZa + cbZb + ccZc + cdZd + ceZe

)
δ(4)
(
caηa + cbηb + ccηc + cdηd + ceηe

)

cacbcccdce
.

(4.40)

Now, the constraint enforced by the bosonic delta-function is trivially solved by

ca = 〈bcde〉 , cb = 〈cdea〉 , cc = 〈deab〉 , cd = 〈eabc〉 , ce = 〈abcd〉 , (4.41)

using the 5-term Schouten identity (or Cramer’s rule) that states that five 4-component

vectors are necessarily linearly dependent:

〈
ijkl

〉
Zm +

〈
jklm

〉
Zi +

〈
klmi

〉
Zj +

〈
lmij

〉
Zk +

〈
mijk

〉
Zl = 0 . (4.42)

The 4-brackets are the fully antisymmetric SU(2, 2)-invariants

〈ijkl〉 := −εABCDZA
i Z

B
j Z

C
kZ

D
l = det

(
ZiZjZkZl

)
. (4.43)

We conclude that

Iγabcden;1 =
δ(4)
(〈
bcde

〉
ηa +

〈
cdea

〉
ηb +

〈
deab

〉
ηc +

〈
eabc

〉
ηd +

〈
abcd

〉
ηe

)

〈
bcde

〉〈
cdea

〉〈
deab

〉〈
eabc

〉〈
abcd

〉 =:
[
abcde

]
, (4.44)

The expression (4.44) is manifestly antisymmetric in the five labels a, b, c, d, e. This fol-

lows from the standard evaluation of higher-dimensional contour integrals, as we review in

Appendix G. In addition, the general results in the appendix tell us that the residue is

also fully antisymmetric in the labels i 6= a, b, c, d, e. We can incorporate that by labeling

the residue (4.40), including the appropriate signs from the appendix, by the n − 5 values

i1, i2, . . . , in−5 6= a, b, c, d, e as {i1, i2, . . . , in−5}, which is antisymmetric in its indices. Then
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the final answer, which includes all of the signs from Appendix G, is

Iγabcden;1 =
1

(n− 5)!
εa b c d e i1 i2 ... in−5 {i1, i2, . . . , in−5} =

[
abcde

]
. (4.45)

This completes the calculation of the residues of the Grassmannian integral Ln;1 in momen-

tum twistor space. The result,

Lγabcden;1 = AMHV
n

[
abcde

]
, (4.46)

shows that the individual residues produced by Ln;1 are the 5-brackets
[
abcde

]
. These are

the known building blocks of NMHV amplitudes, both at tree and loop-level.

4.4.2 NMHV Residue Theorems

Since the residues
[
abcde

]
of the NMHV Grassmannian integral (G.5) are characterized by

five labels, a, b, c, d, e ∈ {1, 2, 3, . . . , n}, as in (4.45), it follows that there are a total of
(
n
5

)

NMHV residues. These, however, are not independent. While it is difficult to derive the

residue relations — or even verify them — by direct computations, the constraints among

them follow quite straightforwardly from the Grassmannian residue theorems, as first noted

in [40]. In this section, we count the number of independent NMHV residues
[
abcde

]
and

examine the linear relations among them. Since the only input is residue theorems, these

relationships are also true off the support of the external momentum and supermomentum

delta functions in the overall MHV factor in the momentum twistor Grassmannian integral.

Let us begin by taking an abstract view of the integral (G.5). We are integrating over

C =
[
c1 . . . cn

]
modulo a GL(1) that identifies C ∼ sC for any s ∈ C− {0}. Thus C can be

viewed as homogeneous coordinates of CPn−1. We are interested in the residues associated

with simultaneously vanishing ‘minors’ ci. Each condition ci = 0 defines a hyperplane in

CPn−1. In other words, we are interested in the n hyperplanes hi := {C ∈ CPn−1|ci =

0}. This is called a hyperplane arrangement in CPn−1. Specifically, the residue
[
abcde

]

corresponds to picking up the residue from the (n− 5)-dimensional toroidal contour (S1)n−5

surrounding the intersection of the n− 5 hyperplanes hi with i 6= a, b, c, d, e.

The bosonic delta functions in the momentum twistor integral (G.5) impose four condi-

tions among the n components of C. These homogeneous linear relations respect the GL(1)

scaling, so they reduce the space of interest from CPn−1 to CPn−5. Consequently, we are

interested in the arrangement of n hyperplanes in CPn−5.

Now, suppose we focus on the complement of hn, i.e. cn 6= 0. We fix cn to be some

non-vanishing value to eliminate the projective freedom, so CPn−5 → Cn−5. The problem

82



then reduces to the study of n− 1 hyperplanes {hi}i=1,...,n−1 in Cn−5. This step is equivalent

to fixing the GL(1) redundancy in the Grassmannian integral. The (n − 5)-dimensional

contours of (G.5) must therefore live in the hyperplane arrangement complement

X = Cn−5 −
⋃

i<n

hi . (4.47)

A residue does not change under continuous deformation of the contour, so the result only

depends on the homology class of the contour. Thus, the key observation is that the number

of possible independent residues is the dimension of the homology class Hn−5(X,C).

The geometry of hyperplane arrangements is well-studied in the mathematics literature

and the results include the following theorem [94]:

Theorem 2. Let X = CN −
r⋃
i=1

hi be a hyperplane arrangement complement. Then

1. The cohomology H∗(X,C) is generated by the forms dαi
αi

.

2. Suppose {hi} is generic.7 Then Hk(X,C) is zero for k ≥ N , and for k ∈ {0, 1, . . . , N},
a basis for Hk(X,C) is given by the forms

dαi1
αi1
∧ · · · ∧ dαik

αik

ranging over subsets {i1, i2, . . . , ik} ⊂ {1, 2, . . . , r}. In particular,

dimHk(X,C) =

(
r

k

)
. (4.48)

The algebra H∗(X,C) (generic arrangement or otherwise) can be described in a combi-

natorial fashion and is called the Orlik-Solomon algebra.

For our purpose, the ambient space has dimension N = n − 5, there are r = n − 1

hyperplanes, and we are interested in the dimension of the homology Hn−5(X,C). It is of

course the same dimension as the corresponding cohomology Hn−5(X,C). Hence, by the

above theorem, the number of independent residues is

R = dimHn−5(X) =

(
n− 1

n− 5

)
=

(
n− 1

4

)
. (4.49)

7When the ambient space is CN , we say that the hyperplane arrangement is generic if hi1 ∩hi2 ∩ · · · ∩hir
has dimension N − r, for r ≤ n. In other words, a hyperplane arrangement is generic if all intersections of
hyperplanes have the expected dimension.
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The residue relations have a simple geometrical interpretation (see also the discussion

in [40]). Let {i1, i2, . . . , in−5} denote the residue corresponding to the intersection of n − 5

hyperplanes hi1 ∩ hi2 ∩ · · · ∩ hin−5 . As explained in the Section 4.4.1, the residue is fully

antisymmetric in its labels. For example, when n = 6, the “hyperplanes” are just individual

points {i} in CP1; there are six such points. Since CP1 is isomorphic to a two-sphere S2,

any contour surrounding all six can be contracted to a point. Hence the residue theorem

states that the sum of the six residues is zero. Thus there is one relation among six residues,

leaving five independent. This clearly agrees with the counting (4.49) for n = 6.

Let us now use this to understand the relations under which only
(
n−1

4

)
of the

(
n
5

)
residues

are independent. Consider a choice of n − 6 hyperplanes, hik with k = 1, 2, . . . , n − 6, in

CPn−5. Imagine that we take the S1 contours surrounding each of these hi very small so that

we effectively look at the subspace CP1 = S2 of the intersection of those n− 6 hyperplanes.

This subspace is (generically) intersected by the other hyperplanes hj at 6 distinct points.

Just as for the n = 6 case, a contour in CP1 that surrounds these six points can be contracted

a point, and the sum of the six residues must vanish: the resulting residue theorem is

n∑

j=1

{i1, i2, . . . , in−6, j} = 0 . (4.50)

This holds for any choice of n−6 labels i1, i2, . . . , in−6; hence we get a web of linear relations

among the
(
n
5

)
residues. The statement (4.49) is that under these relations, only

(
n−1

4

)

residues are independent.

The counting of independent residues can be verified directly from the relations (4.50).

While there may appear to be
(
n
n−6

)
constraints in (4.50), some of them are redundant.

Without loss of generality, consider only those for which all ik 6= n, k = 1, 2, . . . , n − 6.

There are
(
n−1
n−6

)
distinct constraints of that sort. In each such sum, the index n will appear

exactly once, namely when j = n, so we can solve for each residue that includes n in terms

of residues which do not:

{i1, i2, . . . , in−6, n} = −
n−1∑

j=1

{i1, i2, . . . , in−6, j} (4.51)

where i1, i2, . . . , in−6 6= n. This determines all of the residues labeled by n in terms of all of

the others. Furthermore, since the first n− 6 indices form a unique set, all
(
n−1
n−6

)
equations

in (4.51) are independent.

The remaining equations in (4.50) have ik = n for some k, but they do not provide any
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further constraints. To see this, use the antisymmetry and (4.51) to eliminate the index n:

n∑

j=1

{i1, i2, . . . , in−7, n, j} = −
n∑

j=1

n−1∑

m=1

{i1, i2, . . . , in−7,m, j}

= −
n−1∑

m=1

( n∑

j=1

{i1, i2, . . . , in−7,m, j}
)

= 0 . (4.52)

We conclude that all of the constraints with a fixed index n are redundant with the ones in

(4.51). Hence, the number of independent constraints are
(
n−1
n−6

)
and therefore the number of

independent residues is

R =

(
n

n− 5

)
−
(
n− 1

n− 6

)
=

(
n− 1

n− 5

)
=

(
n− 1

4

)
, (4.53)

in agreement with the dimension of the homology (4.49).

4.4.3 Applications

Residue Theorems as Boundary Operations

Let us now consider some applications of the NMHV residue theorems. The case of n = 6 is

very well-known. There is just one constraint from (4.50),

{1}+ {2}+ {3}+ {4}+ {5}+ {6} = 0 , (4.54)

or via (4.45) in terms of the 5-brackets it is the six-term identity

[
23456

]
−
[
13456

]
+
[
12456

]
−
[
12356

]
+
[
12346

]
−
[
12345

]
= 0 . (4.55)

The LHS of this identity can be succinctly abbreviated as defining the boundary operation

∂
[
123456

]
; the relation to boundaries is explain in Section 4.4.4. More generally, we can

write the boundary operation as

∂
[
abcdef

]
= 0 ←→

n∑

a′,b′,c′,d′,e′,f ′=1

εi1i2...in−6a′b′c′d′e′f ′ [a′b′c′d′e′] = 0 , (4.56)

where {i1, . . . , in−6} are the complement of {a, b, c, d, e, f} in the set {1, 2, . . . , n}. The

relation (4.45) between the 5-brackets and the residues now makes it clear that the boundary
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conditions are equivalent to the residue theorems (4.50):

n∑

j=1

{i1, i2, . . . , in−6, j} = 0
{i1,i2,...,in−6} = {a,b,c,d,e,f}←−−−−−−−−−−−−−−−−→ ∂

[
abcdef

]
= 0 . (4.57)

Identities Among R-Invariants

Prior to the introduction of momentum twistors, the momentum space versions of the 5-

brackets were denoted as R-invariants [87]:

Rijk :=
[
i, j − 1, j, k − 1, k

]
. (4.58)

It was observed that the R-invariants obey the two identities

Ri,i+2,j = Ri+2,j,i+1 and
k−2∑

s=3

k∑

t=s+2

R1st =
k−3∑

s=2

k−1∑

t=s+2

Rkst . (4.59)

for any k = 1, 2, . . . , n. These identities have been used in various applications, such as

proving dual conformal invariance of the 1-loop ratio function in N = 4 SYM [87, 95, 96].

Let us now review how these arise as a consequence of the symmetries and residue theorems

of the 5-brackets.

The first identity in (4.59) follows straightforwardly from the antisymmetry of the 5-

bracket [82]:

Ri,i+2,j =
[
i, i+ 1, i+ 2, j − 1, j

]
=
[
i+ 2, j − 1, j, i, i+ 1

]
= Ri+2,j,i+1 . (4.60)

For the second identity in (4.59), note that R1st =
[
1, s − 1, s, t − 1, t

]
vanishes for s = 2,

so on the LHS of (4.59) the sum can trivially be extended to include s = 2. Then using the

six-term identity resulting from ∂
[
1, s− 1, s, t− 1, t, k

]
= 0, the 5-bracket

[
1, s− 1, s, t− 1, t

]

can be eliminated in favor of the five other 5-brackets appearing in the identity. This includes[
s−1, s, t−1, t, k

]
=
[
k, s−1, s, t−1, t

]
, which vanishes trivially for t = k and for s = k−2.

Hence this part of the sum gives the desired RHS of (4.59). We are left to show that the

sum of the remaining four terms vanishes; they are

k−2∑

s=2

k∑

t=s+2

([
1, s−1, s, t−1, k

]
−
[
1, s−1, s, t, k

]
+
[
1, s−1, t−1, t, k

]
−
[
1, s, t−1, t, k

])
. (4.61)

The sum of the first two terms telescopes to
∑k−2

s=3

[
1, s− 1, s, s+ 1, k

]
while the sum of the

last two terms collapses to −∑k−3
s=2

[
1, s, s + 1, s + 2, k

]
. These two sums are identical and
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thus the sum (4.61) vanishes. This completes the derivation of the identities (4.59).

Locality and the NMHV Tree Superamplitude

For k = n, the second identity in (4.59) can be written

∑

i<j

[
1, i− 1, i, j − 1, j

]
=
∑

i<j

[
n, i− 1, i, j − 1, j

]
. (4.62)

Note that in this representation, the first label on the LHS plays no special role and can be

replaced with any momentum twistor Z∗. Hence the sum of
[
∗, i−1, i, j−1, j

]
over all i < j

is independent of Z∗.

Let us now study the pole structure of the 5-brackets. A given 5-bracket has five

poles, namely where each of the five 4-brackets in the denominator vanish. Consider two

5-brackets that differ by just one momentum twistor, e.g.
[
abcdx

]
and

[
abcdy

]
. They share

one common pole, namely
〈
abcd

〉
. The singularity occurs on the subspace where the four

momentum twistors Za,b,c,d become linearly dependent. Since Zy ∈ CP3 can be expressed as

a linear combination of any four other (linearly independent) momentum twistors, we can

write Zy = wxZx + waZa + wbZb + wcZc. Using this, it is straightforward to show that the

residue at the pole
〈
abcd

〉
= 0 is the same for

[
abcdx

]
and

[
abcdy

]
. In other words, the

residue of the pole
〈
abcd

〉
vanishes in the combination

[
abcdx

]
−
[
abcdy

]
.

It is natural to associate a boundary operation with the residues of the poles of the

5-brackets, written as

∂
[
abcde

]
:=
[
bcde

]
−
[
acde

]
+
[
abde

]
−
[
abce

]
+
[
abcd

]
. (4.63)

The signs keep track of the relative signs of the residues.

It now follows that the cancellation of
[
abcd

]
in ∂

([
abcdx

]
−
[
abcdy

])
is equivalent to

the statement that the residue of the pole at
〈
abcd

〉
= 0 vanishes in the difference of the two

five-brackets.

Physical poles in color-ordered tree-level scattering amplitudes are exactly those associ-

ated with vanishing Mandelstam invariants (pi + pi+1 + . . .)2 involving a sum of a subset of

adjacent momenta. These are precisely associated with poles in the 5-brackets of the form〈
i− 1, i, j − 1, j

〉
because of the identity [82, 93]

(
pi + pi+1 + . . . pj−1

)2
=

〈
i− 1, i, j − 1, j

〉

〈i− 1, i〉〈j − 1, j〉 . (4.64)

Poles not of the form
〈
i−1, i, j−1, j

〉
are spurious: they cannot appear in the tree-amplitude.
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A straightforward algebraic exercise shows that

∂
∑

i<j

[
∗, i− 1, i, j − j, j

]
=
∑

i<j

[
i− 1, i, j − j, j

]
. (4.65)

This means that all spurious poles in the LHS sum telescope to zero, leaving just the mani-

festly local poles. For ∗ = q = 1, 2, . . . , n, this sum — times the MHV superamplitude — is

exactly the expression one finds [97] as the solution to the BCFW recursion relation based

on a [q, q + 1〉-supershift of the tree NMHV superamplitude

ANMHV
n = AMHV

n

∑

i<j

[
∗, i− 1, i, j − j, j

]
, (4.66)

for Z∗ = Zq.
8 From the point of view of the Grassmannian, we see that (4.66) results from a

certain choice of contour. Thus, there are choices of contours for the Grassmannian integral

such that the result is exactly the NMHV tree amplitude; such a contour what we called the

‘tree contour’. Note that the insistence of locality, in the sense of having only physical poles,

allowed us to identify the tree contours.

It may seem puzzling that only a small subset of the residues produced by the Grassman-

nian integral appear in the BCFW-form (4.66) of the NMHV tree superamplitude: residues

of the form
[
q, i− 1, i, j − 1, j

]
are used, while residues such as

[
1, 2, 4, 6, 8

]
or
[
1, 3, 5, 7, 9

]

do not seem to play a role, other than through the residue theorems. It would be peculiar

if the other residues of the same Grassmann degree were not relevant for NMHV ampli-

tudes; it turns out that they are. It has been conjectured [40] that — in addition to the

tree superamplitudes — the Grassmannian integral also produces all the Leading Singu-

larities of all amplitudes in planar N = 4 SYM at any loop order. The 1-loop NMHV

ratio function [87, 95, 96] can be written in terms of the exactly the same types of residues[
q, i− 1, i, j − 1, j

]
as at tree-level, so one has to go to 2-loop order to encounter ‘non-tree’

residues in the Leading Singularities [40]. Also, it has been demonstrated that no new Lead-

ing Singularities appear beyond 3-loop order in the NMHV sector [98, 99], so the first three

loop-orders of the NMHV amplitudes are expected to utilize the full set of residues produced

by the Grassmannian integral Ln;1.

8When Z∗ is not selected to be one of the n momentum twistors Zi of the external data, the expression
(4.66) is a CSW-like representation of the NMHV superamplitude.
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4.4.4 Cells, Permutations, and On-Shell Diagrams

So far we have described the evaluation of NMHV amplitudes in the language of contour

integrals and residue theorems, but we find that it is also instructive to take a more ab-

stract view and consider how it fits into the context of on-shell diagrams, permutations,

and cells of the Grassmannian. Since the calculations in Section 4.4 were performed in the

momentum twistor formulation, we will discuss that case first, and subsequently develop the

corresponding story in the momentum space formulation.

Before delving into the details, it will be helpful to quickly review some terminology from

[37]. Subspaces of the Grassmannian Gr(k, n) can be classified into cells by specifying the

ranks of cyclically consecutive columns Ci, that is rank
(
span(Ci, Ci+1, . . . , Cj)

)
for all cyclic

intervals [i, j]. The dimension of a cell is the number of parameters it takes to specify a ma-

trix representative modulo the GL(k) redundancy. Cells are uniquely labeled by decorated

permutations, which are “permutations” of the set {1, 2, . . . , n} in which k of the elements

are shifted beyond n.9 Throughout the remainder of this text, we will use ‘permutation’ and

‘decorated permutation’ interchangeably, but we will always mean the latter. Each permu-

tation labels a cell by encoding the linear dependencies of the columns in a representative

matrix of the cell. Treating the matrix columns ci as k-vectors, a given permutation

σ = {σ(1), σ(2), . . .} = {a, b, . . .} (4.67)

encodes that ca is the first column with a > 1 (mod n) such that c1 is in the span of

{c2, c3, . . . , ca}. Similarly, c2 is spanned by {c3, . . . , cb}, and so on. Entries for which σ(i) = i

imply that the ith column is identically zero. As an example, consider the 5-dimensional cell

in Gr(2, 6) with representative matrix

(
1 0 c11 c12 0 c14

0 1 c21 c22 0 0

)
. (4.68)

One can easily verify that this cell is labeled by the permutation σ = {3, 4, 6, 8, 5, 7}.
The cell with maximal dimension k(n− k) in Gr(k, n) is known as the top cell, and it is

the unique cell in which at a generic point none of the k×k minors vanish in a representative

matrix. Since none of the consecutive minors vanish, each column must be spanned by the

next k columns, and therefore the top cell is labeled by a permutation of the form

σtop = {1 + k, 2 + k, . . . , n+ k} . (4.69)

9The decorated permutations will be familiar to practitioners of the juggling arts, where they are also
referred to as “juggling patterns.” The decoration encodes that balls can only be thrown forward.
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Momentum Twistor Space

The n-particle NMHV integral in momentum twistor space (4.39) is an integral over the

(n − 1)-dimensional top cell of Gr(1, n), which has a representative 1 × n matrix C, as in

(4.38). Since the minors of C are determinants of 1× 1 matrices (i.e. numbers), the top cell

is represented by matrices with all non-zero entries.

The external data enters through the delta functions δ4|4(C · Z). The four independent

bosonic delta functions fix all degrees of freedom for any 4-dimensional cell of Gr(1, n). In

order to reach a 4d cell from the top cell, one must set n−5 of the minors to zero. This is done

in practice by choosing an (n − 5)-dimensional contour γabcde that encircles a point where

only five of the coordinates, i.e. minors, are non-vanishing. For a given choice of a, b, c, d, e,

the result of evaluating the contour integral is an integral (that will be fully localized by the

delta functions) over a unique 4d cell labeled by the decorated permutation

a b c d e

σabcde = {1, 2, . . . , a− 1, b, a+ 1, . . . , c, . . . , d, . . . , e, . . . , a+ n, . . . , n} , (4.70)

where all entries are self-identified except those at positions a, b, c, d, e (marked above).

The bosonic delta functions fix the remaining degrees of freedom and leave the residue

{i1, i2, . . . , in−5}, which is related to the five-bracket
[
abcde

]
via equation (4.45). In the mo-

mentum twistor Grassmannian integral, all 4d cells meet the support of the delta-function

at NMHV level thanks to the 5-term Schouten identity (4.42). (This is specific to NMHV

level; it is not the case for higher k amplitudes.)

Momentum Space

The momentum space version of the Grassmannian integral was given in (4.15). For NMHV

we have k̃ = k + 2 = 3, so the relevant Grassmannian is Gr(3, n). The top cell of Gr(3, n) is

(3n− 9)-dimensional and is labeled by the decorated permutation

σ̃top = {4, 5, . . . , n+ 3} . (4.71)

The representative matrices are 3×n and for the top cell all 3× 3 minors are non-vanishing.

The momentum space Grassmannian integral (4.15) has 2n bosonic delta functions, and

as we noted in Section 4.2.3, four of them ensure external momentum conservation; similarly,

eight of the fermionic delta functions impose supermomentum conservation. The remaining

bosonic delta functions fix all degrees of freedom in (2n − 4)-dimensional cells of Gr(3, n).

Each of these cells is labeled by a unique decorated permutation of the appropriate dimension.
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Each permutation is also associated with a representative on-shell diagram (or plabic

graph) following the techniques introduced in [37]. For example, the permutation σ̃ =

{3, 5, 6, 7, 9, 8, 11} is represented by the graph in Figure 4.1. The permutation is obtained

from the graph by following the ‘left-right paths’ from each external leg, turning left at white

vertices and right at black vertices; Figure 4.1 shows one such path, yielding σ̃(4) = 7.

1

2
3

4

5
6

7

Figure 4.1: An on-shell diagram representation of the permutation σ̃ = {3, 5, 6, 7, 9, 8, 11}.
The ‘left-right path’ between external vertices 4 and 7 shows σ̃(4) = 7.

The value of each on-shell diagram is computed by associating each black/white vertex

with a 3-point superamplitude, MHV or anti-MHV, respectively. External lines carry the

information of the external data while for each internal line an integral must be performed

over the corresponding momentum and Grassmann-variables. For details, see [37]. The point

that will be important for us in the following is that the vertices enforce special 3-particle

kinematics, namely a white vertex with legs has λa ∝ λb ∝ λc while a black vertex imposes

the equivalent condition on the λ̃’s.

In order to go from the (3n−9)-dimensional top cell in Gr(3, n) to a (2n−4)-dimensional

cell, we need to eliminate (3n−9)− (2n−4) = n−5 degrees of freedom by taking an (n−5)-

dimensional contour around singularities of the integrand. Of course one could evaluate

the integral by first changing variables following the procedure of Section 4.3 and treating

the resulting integral in momentum twistor space, but we would like to treat the integral

directly in momentum space. Unfortunately, this turns out to be a difficult problem due

to the non-linear nature of the n consecutive minors in the denominator. It is not a priori

sufficient to simply take n− 5 of the minors to vanish. While this would land in a cell of the

correct dimension, there are many (2n − 4)-dimensional cells which cannot be reached by

this technique. This failure is due to the appearance of so-called ‘composite singularities’,

which occur when one or more of the minors factorize on the zero-locus of a subset of the

coordinates [40]. The dlog forms constructed in [37] resolve many of these difficulties, but

there are still some challenges associated with such forms as we mention in the Outlook.
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Relating the Spaces

In general, there are more (2n− 4)-dimensional cells in Gr(3, n) than 4-dimensional cells in

Gr(1, n), so it may seem puzzling at first that the twistor and momentum twistor integrals

of Section 4.3 are supposed to be equivalent. However, at this point we have not yet imposed

the bosonic delta functions. NMHV cells are special because all 4d momentum twistor cells

meet the support of the delta function. The same is not true of the momentum space cells;

all, and only those, cells which meet the delta function support also have momentum twistor

duals, but there are some momentum space cells of the correct dimension (2n − 4) which

do not intersect the delta function support and therefore have no corresponding cell in the

Grassmannian with momentum twistor formulation.

From the associated on-shell diagrams it is easy to see which NMHV momentum space

cells will not be supported for generic momenta: any two external legs that are connected

by a path containing vertices of only one color are forced by the delta functions at each

vertex to have parallel momenta. This condition is not satisfied for generic external data;

hence those residues vanish. For example, consider the 10d cell in Gr(3, 7) labeled by the

permutation σ̃ = {4, 5, 6, 7, 9, 10, 8}. A representative on-shell diagram is shown in Figure

4.2. Since the momenta on legs 1 and 7 are not generically parallel, this cell is not supported

by the delta functions.

1

2
3

4

5
6

7

⇒ λ1 ∝ λ7

Figure 4.2: An on-shell diagram representation of the permutation σ̃ = {4, 5, 6, 7, 9, 10, 8}.
External legs 1 and 7 are connected by a path with all white vertices, which forces their
respective momenta to be parallel.

This feature can also be seen from the permutations associated with such cells. Going

from twistors to momentum twistors in Section 4.3, we required that the B plane contains

the λ 2-plane; see equation (4.21). If B does not contain a generic 2-plane, this imposes a

constraint on the external momenta; in other words, this cell does not intersect the delta

function support for generic external momenta. In terms of the permutations, the require-

ment that B contains a generic 2-plane is that (σ̃(i) − i) ≥ 2 for all i (no column may be

in the span of its nearest neighbor, and in particular no column may be zero). To see why,

suppose that there exists some i such that (σ̃(i)− i) = 0 or 1. Then bi ∈ span{bi+1} where

bi is the ith column of B. Any 2-plane λ ⊂ B would have to satisfy 〈i, i + 1〉 = 0, which
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is clearly not satisfied for generic momenta. Furthermore, recall that the overall Jacobian

of the transformation from twistors to momentum twistors, which is just the MHV super-

amplitude (see equation (4.37)), is singular precisely when 〈i, i + 1〉 = 0 for some i. In the

example permutation above, σ̃(7) = 8, so for the λ plane to be contained in this cell it would

have to satisfy 〈71〉 = 0. Hence such a cell cannot have a momentum twistor dual.

Given that the number of cells that meet the support of the delta functions is identical

in both spaces, it is not surprising that the permutations which label such cells are related.

The permutations for supported momentum space cells σ̃ can be obtained directly from

momentum twistor labels σ by the following map:

σ̃(i) = σ(i+ 1) + 1 . (4.72)

The inverse map from momentum space permutations to momentum twistor permutations,

when it exists, was presented in eq. (8.25) of [37]. Since the momentum space permutations

have physically meaningful on-shell diagram representatives, this map also provides a way

to associate representative on-shell diagrams with momentum twistor cells of dimension 4.10

It is perhaps more surprising that non-vanishing residues in momentum space can also

be labeled by (n − 5)-index sequences similar to those which label the momentum twistor

residues (4.45). From (4.26), we see that the vanishing of the ith minor in momentum twistor

space implies that the (i − 1)th (consecutive) minor in momentum space vanishes as well.

Since there are no composite singularities in NMHV momentum twistor space, those residues

are uniquely labeled by the set of vanishing minors, {i1, i2, . . . , in−5}C (not to be confused

with a permutation label). By (4.26), we can label the non-vanishing momentum space

residues by a similar list of vanishing momentum space minors:

{i1, i2, . . . , in−5}C ∼ {i1 − 1, i2 − 1, . . . , in−5 − 1}B . (4.73)

However, setting a collection of (n− 5) distinct consecutive minors to vanish in momentum

space does not uniquely specify a cell in the Grassmannian. Instead one obtains a union of

cells, of which exactly one will have kinematical support. For example, suppose n = 7 and

we take the cell labeled by σ = {2, 3, 4, 5, 8, 6, 7}, given by the vanishing of the 6th and 7th

minors. Then by (4.72), we have σ̃ = {4, 5, 6, 9, 7, 8, 10}, and the minors labeled by columns

(5, 6, 7) and (6, 7, 1) vanish. There is exactly one other cell of dimension 2n − 4 = 10 for

which exactly these same minors vanish, namely σ̃′ = {4, 5, 6, 8, 9, 7, 10}. However, σ̃′ does

not have kinematical support. This can be seen directly from the two corresponding on-shell

10A diagrammatic representation directly in momentum twistor space has also been recently developed
[100].
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diagrams in Figure 4.3. The second one vanishes for generic external data since it requires

λ6 ∝ λ7.

1

2
3

4

5
6

7

1

2
3

4

5
6

7

σ̃ = {4, 5, 6, 9, 7, 8, 10} σ̃′ = {4, 5, 6, 8, 9, 7, 10} .

Figure 4.3: Two diagrams representing cells of the appropriate dimension for which the 6th

and 7th minors vanish. Only the left diagram has kinematical support for generic momenta.

In general, the momentum space residue {i1− 1, i2− 1, . . . , in−5− 1}B is just the residue

for the cell σ̃. Recalling the Jacobian from Section 4.3, we have the following relationship

between residues in momentum twistor and momentum space:

AMHV
n {i1, i2, . . . , in−5}C = {i1 − 1, i2 − 1, . . . , in−5 − 1}B . (4.74)

It is also suggestive that, even though the general contours may be difficult to handle, the

residues relevant for physics may be easier to study since they will not involve any composite

residues. We leave this for future work.

Pushing the Boundaries

In Section 4.4.3 we used the boundary operation in two different contexts: one encoded

the residue theorems that give linear relations among 5-brackets, the other selected residues

of poles in the five brackets. Let us now see how these arise as boundary limits in the

momentum twistor space Grassmannian.

Let us begin with a 4d cell in the NMHV Grassmannian Gr(1, n). It is characterized

by having precisely five non-vanishing entries in the representative matrix, say ca,b,c,d,x. The

boundaries of this 4d cell are the 3d cells obtained by setting one extra entry of the repre-

sentative matrix to zero, i.e. there are five 3d boundaries. Suppose we go on the boundary

characterized by cx = 0. Then there is not generically support on the delta functions in the

Grassmannian integral, because they then enforce caZa + cbZb + ccZc + cdZd = 0. This is a

constraint on the external data that requires the momentum twistors Za,b,c,d to be linearly

dependent. That is equivalent to the statement that the 4-bracket
〈
abcd

〉
vanishes and, as

we know from (4.44), this is precisely one of the poles in 5-bracket
[
abcdx

]
associated with

the residue of our 4d cell. Similarly, we see that the five poles of
[
abcdx

]
are precisely in
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1-1 correspondence with the 3d boundaries of the corresponding 4d cell. This justifies the

terminology “boundary operation” used in the discussion in Section 4.4.3. The relative signs

in (4.63) come from the orientations of the boundaries.

Two 4d cells labeled by non-vanishing entries ca,b,c,d,x and ca,b,c,d,y, respectively, share one

common 3d boundary characterized by cx = 0 and cy = 0. As we know from the analysis

in Section 4.4.3, the residue of the associated pole at
〈
abcd

〉
cancels in the difference of the

associated 5-brackets,
[
abcdx

]
−
[
abcdy

]
. Analogously, the shared boundary between the

cells cancels in the sum if they are oppositely oriented. The locality condition of having no

pole 〈abcd〉 for (a, b, c, d) not of the form (i, i+ 1, j, j + 1) translates to the requirement that

all shared boundaries not of the corresponding form must be oppositely oriented. These

locality conditions, together with the fact that the amplitude is a sum of 4d cells, determine

the formula (4.66).

The residue theorems (4.56) also have a boundary interpretation in the Grassmannian:

boundaries of 5d cells give different equivalent ways of writing the same amplitude formula.

We interpret the 4d cells associated with the 5-bracket residues as the boundary of a 5d

cell defined by having precisely six non-vanishing entries in the representative matrices, say

ca,b,c,d,e,f . The six 4d boundaries of this 5d cell are associated with sending one of these six

entries to zero. Meanwhile, the Grassmannian integral on the 5d cell is a contour integral

on CP1 with six poles, corresponding to the 4d boundaries above. The sum of the residues

at these six poles must therefore be zero by Cauchy’s theorem. This is our familiar residue

theorem (4.50), and we see now why it is natural to associate it with a boundary operation.

4.5 3d ABJM Grassmannian

The fascinating relation between cells of Grassmannian and scattering amplitudes of 4d

N = 4 SYM has a parallel in 3d ABJM theory [85, 86]. Previously, an ABJM Grassmannian

was developed for external data in momentum space [42, 43, 44, 88]. The purpose of this

section is to apply the strategy from Section 4.3 to derive the ABJM Grassmannian in

momentum twistor space.

4.5.1 Momentum Space ABJM Grassmannian

ABJM theory is a 3-dimensional N = 6 superconformal Chern-Simons matter theory with

4 complex fermions ψA and 4 complex scalars XA, transforming in the 4 and 4̄ under the

SU(4) ∼ SO(6) R-symmetry. The physical degrees of freedom are the matter fields, and

the symmetries imply that the only non-vanishing amplitudes have even multiplicity, in
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particular one can show that n = 2k + 4 for the NkMHV sector. (For further discussion of

3d kinematics and ABJM amplitudes, see Chapter 11 of the review [34].)

A 3d momentum vector pi can be encoded in a symmetric 2 × 2 matrix pabi . The on-

shell condition requires it to have vanishing determinant, so we can write pabi = λ′ai λ
′b
i , with

a, b = 1, 2 being SL(2,R) indices. One version of the 3d spinor helicity formalism uses these

2-component commuting spinors λ′ to encode the two on-shell degrees of freedom needed

for a null 3d momentum vector. As in 4d, we can form the antisymmetric angle-bracket

product 〈ij〉 := εabλ
′a
i λ
′b
j, although in 3d there are no square-spinors. The N = 6 on-shell

superspace for 3d ABJM theory involves three Grassmann variables η′iI with SU(3) ⊂ SU(4)

R-symmetry indices I = 1, 2, 3. We are denoting the λ′is (and η′iIs) with primes to distinguish

them from a different formulation of the 3d spinor helicity formalism to be introduced in

Section 4.5.2.

In on-shell superspace, the states of ABJM theory are organized in two on-shell super-

multiplets

Φ = X4 + η′A ψ
A − 1

2
εABC η′Aη

′
BXC − η′1η′2η′3 ψ4 ,

Ψ̄ = ψ̄4 + η′AX̄
A − 1

2
εABC η′Aη

′
B ψ̄C − η′1η′2η′3 X̄4 .

(4.75)

The superfield Φ is thus bosonic in nature while Ψ is fermionic. The states of the color-

ordered tree-level superamplitude in planar ABJM are arranged with alternating Φ and Ψ,

e.g. An(ΦΨΦΨ . . . ), and as a result they do not obey the cyclic invariance i → i + 1 of

superamplitudes in planar N = 4 SYM. Instead, the planar ABJM superamplitudes are

invariant under i→ i+ 2, up to a sign of (−1)n/2+1.

The leading singularities of ABJM theory, and consequently the tree-level amplitudes,

enjoy an OSp(6|4) Yangian symmetry [101, 102], and are given as residues of the following

Grassmannian integral [42, 43, 44, 88]:

L2k̃;k̃ =

∫
d2k̃2B′

GL(k̃)

δk̃(k̃+1)/2
(
B′ ·B′T

)
δ2k̃|3k̃(B′ · Λ′

)

m′1m
′
2 · · ·m′k̃

, (4.76)

where k̃ = k+2 = n
2

and Λ′i = (λ′i|η′i) is the external data given in 3d momentum space. The

denominator contains the product of the first k̃ consecutive minors m′i of B′.11 The bosonic

11We note here that for k even this means that the states of the superamplitude are An(ΦΨΦΨ . . . )
while for k odd they are An(ΨΦΨΦ . . . ). This ensures the correct little group scaling in 3d, for which
the superamplitude is invariant for Φ states and changes signs for Ψ states. Alternatively, one can replace
m1m2 · · ·mk̃ by

√
m1m2 · · ·mn. The two forms are equivalent up to signs depending on the branch of

solutions to the orthogonal constraint [42].
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delta-functions enforce the 1
2
k̃(k̃ + 1) constraints

0 = B′ ·B′T =
∑

i

B′αiB
′
βi =

∑

i,j

B′αiB
′
βjg

ij , (4.77)

with gij = δij is the trivial metric and α, β = 1, 2, . . . , k̃. Thus, in momentum space, the

Grassmannian for ABJM theory is an orthogonal Grassmannian (also known as an

isotropic Grassmannian in the mathematics literature) defined as the space of null k̃-

planes in an n-dimensional space equipped with an internal metric gij. The metric is trivial

in momentum space. We will denote an orthogonal Grassmannian as OG(k̃, n).12 Because

of the quadratic condition B′ · B′T = 0, the orthogonal Grassmannian has two distinct

components.

The dimension of the integral (4.76) is

2k̃2 − k̃2 − 1

2
k̃(k̃ + 1)− 2k̃ + 3 =

(k̃ − 2)(k̃ − 3)

2
, (4.78)

where the “+3” is because momentum conservation is automatically encoded in the bosonic

delta-functions; this will become evident in the following.

Note that in general the metric for a Grassmannian need not be diagonal nor proportional

to the identity. For example, positivity for cells of OG(k̃, n) is defined with the metric of

alternating signs (+,−,+, · · · ,−) [44]. In the following we will see that in converting (4.76)

into momentum twistor space, we will naturally encounter more general metrics g and denote

the corresponding orthogonal Grassmannian as OGg(k̃, n).

4.5.2 3d Momentum Twistors

We would now like to introduce 3d momentum twistors.13 A natural way to define momentum

twistor variables in 3d is to reduce it from 4d. With the 4d conformal group SO(2, 4) ∼
SU(4), a natural way to introduce momentum twistors is to first define 4d spacetime as a

projective plane in 6d. This “embedding space” formalism [104, 105, 106, 107] introduces

a 6d coordinate Y AB, which is anti-symmetric in the SU(4) indices A,B. 4d spacetime is

then defined to be the subspace Y 2 = εABCDY
ABY CD = 0 with the projective identification

Y ∼ rY (for r a real or complex number, depending on the context). A solution to the

12We remark that in the theory of planar electrical networks, the orthogonal Grassmannian defined with
respect to the metric gij = δi,j+k̃+δi,j−k̃ appears [89, 90]. Curiously, the combinatorics of ABJM amplitudes
and of planar electrical networks are very closely related, but there is as yet no conceptual explanation of
this.

13See [103] for an alternative definition.
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constraint Y 2 = 0 is to write Y AB as a bi-twistor:

Y AB
i = Z

[A
i Z

B]
i−1 . (4.79)

To honor the projective constraint Yi ∼ rYi, the Zis must be defined projectively, Zi ∼ rZi.

Here i = 1, 2, . . . , n label n points Yi in the embedding space.

Consider now the 3d analogue for which the embedding space is 5d. We can start with

the 6d space and introduce an SO(2, 3)-invariant constraint to remove the extra degree of

freedom. A natural choice is to impose a SO(2, 3) ∼ Sp(4) tracelessness condition on Y :

Y ABΩAB = 0 , ΩAB =

(
0 −I
I 0

)
. (4.80)

This also implies that the bi-twistors Zi must satisfy:

ZA
i Z

B
i+1ΩAB = 0 . (4.81)

Note that (4.81) is projectively well-defined, so we can construct the 3d momentum twistor

as a familiar 4d momentum twistor Zi = (λi, µi) subject to the constraint:

〈〈i, i+1〉〉 := ZA
i Z

B
i+1ΩAB = 〈µiλi+1〉 − 〈µi+1λi〉 = 0 . (4.82)

We now need to identify the relation between λi and λ′i. Recall that in three dimensions, a

massless momentum can be parameterized as pi = Ei(1, sin θi, cos θi), where Ei is the energy.

In bi-spinor notation, we can deduce:

λ′iaλ
′
ib = piab = Ei

(
−1 + cos θi sin θi

sin θi −1− cos θi

)
→ λ′ia = i

√
2Ei

(
− sin θi

2

cos θi
2

)
. (4.83)

Now since Zi is defined projectively, the components of Zi must have well-defined projective

scalings. This is not possible with Zi = (λ′i, µi) because pi is not invariant under the scaling

λ′i → tiλ
′
i. Consequently, yi = pi − pi+1 cannot have any nice homogenous scaling property

and neither can µi, since the latter is defined through the incidence relation µai = yabi λ
′
ib.

The resolution is to parameterize the 3d kinematics in a fashion that is similar to 4d. We

define

λia =

(
− sin θi

2

cos θi
2

)
, λ̃ia = −2Eiλia (4.84)

such that we now have pi = λiλ̃i. For simplicity, we set Ẽi = −2Ei in the following. Note
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that the number of degrees of freedom for each particle is still 2 and that pi is now invariant

under the following scaling rules:

λi → tiλi, Ẽi → t−2
i Ẽi . (4.85)

Since pi (and hence yi) is invariant, µi has the same scaling property as λi through the new

incidence relation

µai = yabi λib = yabi+1λib : µi → tiµi . (4.86)

With the incidence relation (4.86) and the symmetry of the yi-matrices, the constraint (4.82)

is automatically satisfied

〈µiλi+1〉 − 〈µi+1λi〉 = λiay
ab
i λi+1,b − λi+1,ay

ab
i+1λib = 0 . (4.87)

Thus we have deduced a suitable form of 3d momentum twistor which has a well defined

projective property. It has many of the same properties as its 4d cousin, for example (4.10)

holds, and one can directly derive the 3d versions of the relations (4.11):

λ̃i =
〈i+ 1, i〉µi−1 + 〈i, i− 1〉µi+1 + 〈i− 1, i+ 1〉µi

〈i− 1, i〉〈i, i+ 1〉 ,

η̃iA =
〈i+ 1, i〉ηi−1,A + 〈i, i− 1〉ηi+1,A + 〈i− 1, i+ 1〉ηiA

〈i− 1, i〉〈i, i+ 1〉 .

(4.88)

where we define η̃i := η′i
√
Ẽi.

In summary, we have found that the new momentum space variables

λi =
1√
Ẽi
λ′i , λ̃i =

√
Ẽiλ

′
i , η̃i = η′i

√
Ẽi (4.89)

facilitate the introduction of 3d momentum supertwistors Zi = (λi, µi|ηi), which are just like

the 4d ones but subject to the constraints (4.82). Also, in addition to the SL(4)-invariant

〈ijkl〉 defined in (4.43), we now have a 2-bracket invariant

〈〈ij〉〉 := ZA
i Z

B
j ΩAB . (4.90)

As noted in (4.82), the projection from 4d momentum twistors to 3d ones is defined by

〈〈i, i + 1〉〉 = 0. The 4-brackets and 2-brackets are related via a version of the Schouten

identity:

〈ijkl〉 = 〈〈ij〉〉〈〈kl〉〉+ 〈〈ik〉〉〈〈lj〉〉+ 〈〈il〉〉〈〈jk〉〉 . (4.91)
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This follows from the identity εABCD = −ΩABΩCD − ΩACΩDB − ΩADΩBC . Note that the

RHS of (4.91) has the same form as the 2d Schouten identity for angle-brackets, but the

LHS has the non-vanishing contraction with the Levi-Civita symbol because the momentum

twistors are 4-component objects.

As a side-remark, we note that just as the parameterization in (4.84) can be viewed as

a descendant from the 4d spinor helicity variables, it also has another 2d sibling: the 2d

momentum twistors that correspond to taking θ = 0 or π in (4.84):

λi|θi=0 =

(
0

1

)
=: λ+, λ̃+ = Ẽiλ

+, λi|θi=π =

(
−1

0

)
=: λ−, λ̃− = Ẽiλ

− . (4.92)

The superscript (+,−) indicates which of the two distinct light-cone directions contains the

corresponding momentum:

λ+
i λ̃

+
i = p+

i =

(
0 0

0 Ẽi

)
, λ−i λ̃

−
i = p−i =

(
Ẽi 0

0 0

)
. (4.93)

These 2d momentum variables have been used to study scattering amplitudes of planar

N = 4 SYM limited to 2d kinematics [108, 109].

4.5.3 Derivation of ABJM Momentum Twistor Space Grassman-

nian

We are now ready to convert the integral formula in (4.76) to momentum twistor space.14

First we change variables B′αi =
√
ẼiBαi, λ

′
i = λ̃i/

√
Ẽi, η

′
i = η̃i/

√
Ẽi, so that only the

variables in (4.84) appear in the bosonic delta functions:

L2k̃;k̃ = JE

∫
d2k̃2B

GL(k̃)m1m2 · · ·mk̃

δk̃(k̃+1)/2
(
BαiBβjg

ij
)
δ2k̃
(
B · λ̃

)
δ(3k̃)

(
B · η̃

)
, (4.94)

where the factor

JE =

∏n
i=1 Ẽ

k̃/2
i(

Ẽ1Ẽ2
2Ẽ

3
3 · · · Ẽ k̃

k̃
Ẽ k̃−1

k̃+1
· · · Ẽ2

n−2Ẽn−1

)1/2
(4.95)

14A similar attempt was initiated in [110] with a different definition of 3d momentum twistors. As a result,
projectivity was not well defined.

100



comes from the scaling of the measure and the minors. The 2k̃-dimensional metric gij is

gij =




Ẽ1 0 0 0

0 Ẽ2 0 0

0 0
. . . 0

0 0 0 Ẽ2k



. (4.96)

Just as in 4d, the delta function δ2k̃(B · λ̃) requires B to be orthogonal to the λ̃-plane, and

by momentum conservation (
∑

i λiλ̃i = 0), the B-plane must therefore contain the λ-plane.

We can use this to gauge-fix part of the GL(k̃) as in 4d:

Bαi =




Bα̂i

λ1
i

λ2
i


 , (4.97)

where α̂ = 1, . . . , k and k = k̃ − 2. With this gauge choice, the remaining delta functions

become15

δk̃(k̃+1)/2
(
BαiBβjg

ij
)
δ3k̃
(
B · η̃

)
→ δ3(P)δ6(Q) δk(k+1)/2

(
Bα̂iBβ̂jg

ij
)
δ2k|3k(Bâ · Λ̃

)
, (4.98)

where Λ̃ = (λ̃|η̃), P is the total momentum, and Q is the total supermomentum.

Now we can follow the steps from the N = 4 SYM analysis in Section 4.3 to convert the

Grassmannian integral to one with momentum twistor external data:

1. The relation between the momentum space data and the momentum twistor variables

allow us to introduce a new variable Cα̂i = Bα̂jQji, with Q defined in (4.30) (see also

(F.2)).

2. Rewrite the minors using (4.26).

3. To invert the relation Bα̂jQji, we use translation invariance Tk to fix Bα̂1 = Bα̂2 = 0,

thus obtaining Bα̂ĵ = Cα̂î(Q
−1)îĵ, with î = 3, . . . , n. A simple expression for Q−1 is

given in (F.13), and we verify its form in Appendix F.2. This allows us to change

variables from Bα̂ĵ to Cα̂ĵ. We restore the integration variables to include Cα̂1, Cα̂2 by

introducing δ2k(C · λ).

15Note that for α = k̃ − 1, k̃, we have λiBβ̂jg
ij = λiBβ̂iẼi = λ̃iBβ̂i
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This brings us to the following final form of the Grassmannian integral (n = 2k + 4):

Ln;k = J × δ3(P) δ(6)(Q)×
∫

dknC

GL(k)

δk(k+1)/2
(
Cα̂î(Q

−1)îĵCβ̂k̂(Q
−1)k̂l̂ g

ĵ l̂
)
δ4k|3k(C · Z

)

M2M3 · · ·Mk+3

,

(4.99)

where Zi = (Zi|ηi) and

J =
(
〈12〉〈23〉 · · · 〈n1〉

)k
∏n

i=1 Ẽ
(k+2)/2
i

Ẽ
(k+2)/2
k+2

∏k+1
i=1

(
Ẽ

1/2
i 〈i, i+ 1〉〈n− i− 1, n− i〉Ẽ1/2

n−i

)i . (4.100)

It is straightforward to verify that the GL(1) weight of the integral in (4.99) cancels. It

should be noted that here and in the remainder of this section, the angle-brackets 〈ij〉 are

now composed of the λ-spinors, not the λ′’s.

There is an unsatisfactory feature in (4.99): the sum in the constraint CQ−1CQ−1g =

0 only runs over î, ĵ = 3, . . . , n, and therefore (Q−1Q−1g)îĵ cannot be interpreted as an

orthogonal constraint on the Grassmannian C. This is because an orthogonal Grassmannian

is defined with a metric Gij whose indices run over the full n-dimensional space. However,

using the delta function support we can rewrite CQ−1CQ−1g in terms of a non-degenerate

effective metric Gij specified by the external data. To see this note that on the support of

the δ(C · λ), we have

Cα̂î(Q
−1)îĵ =

ĵ−1∑

i=2

Cα̂i〈iĵ〉 . (4.101)

For example, for k = 1, we have î, ĵ = 3, . . . , 6 and

Cα̂î(Q
−1)îĵ =




Cα̂2〈23〉
Cα̂2〈24〉+ Cα̂3〈34〉

Cα̂2〈25〉+ Cα̂3〈35〉+ Cα̂4〈45〉
Cα̂2〈26〉+ Cα̂3〈36〉+ Cα̂4〈46〉+ Cα̂5〈56〉



. (4.102)

Note that Cα̂1 and Cα̂6 do not appear in (4.102). We can use C · λ = 0 to get an expression

in terms of a ‘conjugate’ set of Cα̂i’s, e.g.

Cα̂î(Q
−1)îĵ = −




Cα̂1〈13〉+ Cα̂4〈43〉+ Cα̂5〈53〉+ Cα̂6〈63〉
Cα̂1〈14〉+ Cα̂5〈54〉+ Cα̂6〈64〉

Cα̂1〈15〉+ Cα̂6〈65〉
Cα̂1〈16〉



. (4.103)
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To reveal the symmetric form of the effective (inverse) metric G̃ij defined via Cα̂iCβ̂jG̃
ij =

(Cα̂Q
−1)(Cα̂Q

−1)g, we take the symmetric (in α̂ and β̂) product of two copies of Cα̂î(Q
−1)îĵ,

one in the form (4.102) and one in the conjugate form (4.103). For k = 1, we find

G̃ij =
1

2




0 0 −〈1|2|3〉 −〈1|2 + 3|4〉 −〈1|2 + 3 + 4|5〉 0

0 0 0 〈2|3|4〉 〈2|3 + 4|5〉 〈2|3 + 4 + 5|6〉
∗ 0 0 0 〈3|4|5〉 〈3|4 + 5|6〉
∗ ∗ 0 0 0 〈4|5|6〉
∗ ∗ ∗ 0 0 0

0 ∗ ∗ ∗ 0 0




, (4.104)

where the terms denoted by ∗ are related to the ones explicitly written via symmetry, G̃ji =

G̃ij. The notation 〈i|l|j〉 = 〈i|pl|j〉 uses λig
ilλl = pi (only l summed over). To rewrite the

entries of the effective matrix in terms of the momentum twistors, note that

〈i|(pi + pi+1 + . . .+ pj−1)|j〉 = 〈i|(yi − yj)|j〉 = ZA
i Z

B
j ΩAB =: 〈〈ij〉〉 (4.105)

The constraints (4.82) on the external data is 〈〈i, i+1〉〉 = 0, so in terms of the double-bracket

(4.105), we can write the effective metric as

G̃ij = 〈〈ij〉〉 for 2 ≤ i < j ≤ n , G̃1j = −〈〈1j〉〉 for 2 ≤ j ≤ n . (4.106)

This defines a non-degenerate metric only for n > 4, since for n = 4 the only non-trivial

elements are C1〈〈13〉〉C3 and C2〈〈24〉〉C4 which vanishes under the support of δ(C · Z).

While the metric is non-degenerate for n > 4, it is not manifestly cyclic symmetric. Let

us first inspect the orthogonality condition:

0 =
∑

1≤i,j≤n
Cα̂iCβ̂jG̃

ij =
∑

3≤i<j≤n
Cα̂iCβ̂j〈〈ij〉〉+ (α̂←→ β̂) . (4.107)

The second equality is obtained using C · Z = 0. Now, to see that the orthogonality con-

straint is indeed cyclic invariant, one uses C ·Z = 0 to show that
∑

4≤i<j≤n+1Cα̂iCβ̂j〈〈ij〉〉 =∑
3≤i<j≤nCα̂iCβ̂j〈〈ij〉〉, with the understanding that n + 1 equals 1. This suffices to prove

that the condition CGCT = 0 is cyclic invariant.

Next, we can simplify the sum of n cyclic copies of the orthogonality condition to find
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an equivalent, manifestly cyclic invariant, form of the metric:





Gi,i+2 = k
n
〈〈i, i+2〉〉

Gi,i+3 = k−1
n
〈〈i, i+3〉〉

...

Gi,i+k+1 = 1
n
〈〈i, i+k+1〉〉

(4.108)

while Gij = 0 for all other cases.

We then have the final form for the cyclically invariant momentum twistor Grassmannian

integral for 3d ABJM. It is an orthogonal Grassmannian whose metric (4.108) depends on

the external data:

Ln;k = J × δ3(P) δ(6)(Q)×
∫

dknC

GL(k)

δ
k(k+1)

2

(
Cα̂iG

ijCβ̂j

)
δ4k|3k(C · Z)

M2M3 · · ·Mk+3

, (4.109)

with n = 2k + 4 and the Jacobian J given in (4.100). Note that the integral is indeed

projectively invariant under rescaling of Zi → tiZi due to the form of the effective metric

Gij in (4.106).

The momentum twistor space Grassmannian integral for ABJM theory and N = 4 SYM

both have 4k bosonic delta functions δ4k(C · Z), but in addition the ABJM integral (4.109)

has the extra orthogonal constraint. In N = 4 SYM, the
(
k(n−k)−4k

)
remaining degrees

of freedom in the momentum twistor Grassmannian are localized by the minors. For ABJM,

k(k+1)/2 of the
(
k(n−k)−4k

)
degrees of freedom are localized by the orthogonal constraint,

so the dimension of the integral (4.109) is

2(k + 2)k − k2 − 4k − 1

2
k(k + 1) =

k(k − 1)

2
, (4.110)

the same as the dimension (4.78) of the momentum space Grassmannian integral (4.76). In

particular, we note that for n = 6 (i.e. k = 1) the integral localizes completely. Because

the orthogonality constraint is quadratic, there are two solution branches that the integral

localizes on and we must add them to obtain the n = 6 tree-level ABJM superamplitude.

This matches the observation that there is only one BCFW-diagram for the n = 6 ABJM

amplitude, but the kinematic constraint is quadratic, so the diagram yields a two-term

contribution. Those are the two terms given by the two branches of the orthogonal Grass-

mannian. In the following, we study the orthogonality condition and evaluate the integral

(4.109) explicitly for n = 6.
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4.5.4 The 6-point ABJM Amplitude in Momentum Twistor Space

For n = 6, the integral (4.109) becomes

L6;1 = J234 × δ3(P) δ(6)(Q)

∫
d6c

GL(1)

δ
(
ciG

ijcj
)
δ4
(
c · Z

)
δ(3)
(
c · η

)

c2c3c4

, (4.111)

where the Jacobian is given by (4.100) and is

J234 =
〈12〉〈23〉〈34〉〈45〉〈56〉〈61〉∏6

i=1 Ẽ
3/2
i

Ẽ
3/2
3 Ẽ

1/2
1 〈12〉〈45〉Ẽ1/2

5 Ẽ2〈23〉2〈34〉2Ẽ4

. (4.112)

If we had picked a representation of the original momentum space Grassmannian integral

with a different product of 3 consecutive minors in the denominator, the integral L6;1 would

have a denominator cici+1ci+2 and the associated Jacobian Ji,i+1,i+2 would be obtained from

(4.112) by relabeling of the lines.

Orthogonality Constraint and Symmetry Under i→ i+ 2

In the momentum space Grassmannian (4.76), the orthogonality condition B′ · B′T = 0

implies the following relation among the minors:

m′im
′
i+1 = (−1)k̃−1m′

i+k̃
m′
i+1+k̃

, (4.113)

with k̃ = k + 2 and indices mod n. The relation (4.113) is key for proving that the Grass-

mannian integral (4.111) has the appropriate cyclic invariance under i→ i+ 2.

The equivalent relation for the minors of the momentum twistor space Grassmannian will

depend on the external data. Let us work out what it is for n = 6 and how it can be used

to prove that our momentum twistor Grassmannian (4.111) has cyclic symmetry i→ i+ 2.

Using C · Z = 0, direct evaluation of the orthogonality condition gives

0 = ciG
ijcj =

1

6

(
c1〈〈13〉〉c3 + c2〈〈24〉〉c4 + c3〈〈35〉〉c5 + c4〈〈46〉〉c6 + c5〈〈51〉〉c1 + c6〈〈62〉〉c2

)

=
1

2
c3〈〈35〉〉c5 −

1

2
c2〈〈26〉〉c6 . (4.114)

Since the metric Gij is cyclic invariant, other forms of the constraint can be obtained from

cyclic symmetry: there are three distinct ones:

c3〈〈35〉〉c5 = c2〈〈26〉〉c6 , c4〈〈46〉〉c6 = c3〈〈31〉〉c1 , c5〈〈51〉〉c1 = c4〈〈42〉〉c2 . (4.115)
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It follows from the first two identities in (4.115) that

c1c2 =
〈〈35〉〉〈〈46〉〉
〈〈26〉〉〈〈31〉〉c4c5 =

〈
3456

〉
〈
6123

〉c4c5 . (4.116)

The second equality follows from (4.91). The property (4.116) is the equivalent of (4.113) in

momentum twistor space. The other relations cici+1 ∝ ci+3ci+4 (indices mod 6) are obtained

from cyclic relabeling of (4.116).

Let us now examine the cyclic symmetry i → i + 2. The only part that changes in

the integral of (4.111) is the product c2c3c4, which becomes c4c5c6. It follows from a cyclic

version of (4.116) that
1

c2c3c4

=

〈
1234

〉
〈
4561

〉 1

c4c5c6

(4.117)

It is not hard to see that the factor
〈
1234

〉
/
〈
4561

〉
is exactly compensated by the non-trivial

Jacobian: by (4.112) and its version with i→ i+ 2

J456

J234

=
〈12〉Ẽ2〈23〉2Ẽ3〈34〉
〈45〉Ẽ5〈56〉2Ẽ6〈61〉

=
〈〈13〉〉〈〈24〉〉
〈〈46〉〉〈〈51〉〉 =

〈
1234

〉
〈
4561

〉 . (4.118)

Here we use the form (4.105) of the Sp(4)-product to write

〈〈i, i+ 2〉〉 = 〈i|pi+1|i+ 2〉 = 〈i, i+ 1〉Ẽi+1〈i+ 1, i+ 2〉. (4.119)

Then, with the identity (4.91), we conclude that

J234

c2c3c4

=
J456

c4c5c6

(4.120)

and that the n = 6 integral is invariant under i → i + 2; the non-trivial orthogonality

condition and the overall Jacobian factor nicely conspire to give this result.

Evaluation of the n = 6 Integral

To evaluate the integral (4.111), we first use the bosonic delta function constraints for the

six-point momentum twistor space Grassmannian, which fixes four of the integrations. As in

Section 4.4.1, we use the 5-term Schouten identity (4.42) to expand the constraint C ·Z = 0
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on a basis of four Z’s, although now we find it convenient to solve for c2, c3, c5, c6:

c2 =
c1〈3561〉+ c4〈3564〉

〈2356〉 , c3 =
c1〈5612〉+ c4〈5642〉

〈2356〉 ,

c5 =
c1〈6123〉+ c4〈6423〉

〈2356〉 , c6 =
c1〈1235〉+ c4〈4235〉

〈2356〉 .

(4.121)

Evaluating the delta-function this way will generate a Jacobian factor of 1/
〈
2356

〉
. The

orthogonal constraint (4.114) becomes

0 = ciG
ijcj =

〈〈42〉〉
〈
3456

〉

2
〈
2356

〉
(
c2

4 − c2
1

〈〈31〉〉2
〈
5612

〉
〈
1234

〉〈
3456

〉
)
. (4.122)

We fix the GL(1) gauge by setting c1 =
〈
2356

〉
; the result is going to be independent of the

gauge, but this choice will simplify the other ci’s. The solution to (4.122) is then:

c±4 = ±〈〈31〉〉
〈
5612

〉〈
2356

〉
√
D

, (4.123)

where D = 〈1234〉〈3456〉〈5612〉 = −∏6
i=1〈〈i, i+ 2〉〉.

The Grassmannian integral localizes on the two solutions (4.123):

Ii =

∫
δ
(
ciG

ijcj
)
δ4
(
c · Z

)
δ(3)
(
c · η

)

cici+1ci+2

=
∑

s=±1

2
〈
2356

〉

2cs4 〈〈42〉〉
〈
3456

〉
〈
2356

〉
〈
2356

〉 δ
(3)
(
c · η

)

cici+1ci+2

∣∣∣∣
c4=cs4

,

(4.124)

where i depends on the organization of the external states (i.e. which 3 minors we se-

lected at the starting point in momentum space). It is implicitly understood that on

the RHS, c1 =
〈
2356

〉
and c2,3,5,6 are given by (4.121) with c4 as in (4.123). The factor

2〈2356〉/2cs4 〈〈42〉〉
〈
3456

〉
is the Jacobian of the orthogonality condition (see footnote 3), the

second
〈
2356

〉
in the numerator is the gauge-fixing Jacobian, and the 1/〈2356〉 comes from

evaluating δ4(c · Z). The prefactors readily simplify and we get

Ii =
δ(3)
(
c · η

)
√
D cici+1ci+2

∣∣∣∣
c4=c+4

− δ(3)
(
c · η

)
√
D cici+1ci+2

∣∣∣∣
c4=c−4

. (4.125)

It is clear from (4.121) and (4.123) that the individual ci’s are expressions with square roots.

It may be worrisome to see such denominator terms arise from the Grassmannian integral;

after all, we would expect the denominators to be a product of physical poles. However, the
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expectation is warranted; for each i, just write

1

c±i
=

c∓i
c±i c

∓
i

, where c±i := ci|c4=c±4
for i = 2, 3, 5, 6 . (4.126)

The combinations c+
i c
−
i are manifestly free of any square roots. Furthermore, after appli-

cations of the Schouten identities (4.42) and (4.91), one finds that each c+
i c
−
i has a nice

factorized form involving only 4-brackets:

c+
1 c
−
1 = 〈2356〉2 , c+

2 c
−
2 = 〈5613〉〈6134〉〈2356〉

〈6234〉 , c+
3 c
−
3 = 〈1245〉〈5612〉〈2356〉

〈2345〉 ,

c+
4 c
−
4 = 〈1235〉〈5612〉〈2356〉2

〈2456〉〈2345〉 , c+
5 c
−
5 = 〈6123〉〈6134〉〈2356〉

〈3456〉 , c+
6 c
−
6 = 〈1235〉〈1245〉〈2356〉

〈2456〉 .
(4.127)

Choosing i = 2 in (4.125) and using (4.127), we find

I2 =
∑

s=±

〈〈24〉〉2δ(3)
(
c(s) · η

)

〈1234〉〈5612〉2〈1245〉〈3461〉〈2356〉3 (4.128)

×
[
〈〈35〉〉

(
〈1236〉〈2456〉 − 〈5612〉〈2346〉

)
+ s
√
D
(
〈〈26〉〉〈〈35〉〉+ 〈〈25〉〉〈〈36〉〉

)]
.

The result (4.128) for the 6-point amplitude has two terms because the orthogonal Grass-

mannian has two branches. To compare, the BCFW calculation of the 6-point amplitude

involves only one diagram, but it gives rise to two terms, just as in (4.128), because the

on-shell condition for 3d BCFW is not linear in the shift parameter z. See Chapter 11 of

[34] for a review of 3d BCFW and its application in ABJM theory.

The expression (4.128) is probably not the ideal form of the 6-point residue, since its

expected properties are not manifest. For example, the result for the n = 6 ABJM superam-

plitude should have i→ i+ 2 cyclic symmetry of the integral, as discussed in Section 4.5.4;

dressing (4.128) with the Jacobian from (4.112) should make it invariant under i → i + 2,

but this is not obvious.

Another point of concern about (4.128) are the apparent higher-order poles from the

denominator-factors
〈
5612

〉2
and

〈
2356

〉3
. The former is not too worrisome: using the

identity (4.91) gives
〈
5612

〉
= −〈〈51〉〉〈〈62〉〉 = −〈56〉Ẽ6〈61〉2Ẽ1〈12〉. Numerator factors can

then cancel the individual angle brackets so that there are not double poles. The triple-

pole at
〈
2356

〉
= 0 would appear to be a worse problem because

〈
2356

〉
= 〈23〉〈56〉y2

63 ∝
(p6 + p1 + p2)2, which is not just a simple product of angle-brackets. However, it is not hard

to show that the numerator factors conspire to cancel the extra powers in
〈
2356

〉
so that at

most we have a simple pole at
〈
2356

〉
= 0. A detailed argument is given in Appendix H.

We leave further analysis of the momentum twistor form of the n = 6 ABJM amplitude for
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future work.

Singularities of the Residues

As a warm up, let us briefly review how poles of the NMHV residues could be understood

as boundaries of cells in the N = 4 SYM Grassmannian. Choose a contour γabcde such that

the integral (4.38) picks up the residue where n−5 ci’s with i 6= a, b, c, d, e vanish. The

remaining five ci’s are then fixed by the four bosonic delta functions δ4(c ·Z) and the GL(1)

scaling, as discussed in Section 4.4.1; the result is the 5-bracket [abcde]. Its five poles can

be described in the Grassmannian integral by forcing an extra ci to be zero (as discussed in

Section 4.4.4): for example, if ca = 0, the delta-function δ4(c · Z) says that Zb, Zc, Zd, and

Ze are linearly dependent, and hence
〈
bcde

〉
= 0. This is precisely one of the five poles of

the residue [abcde].

Now consider the ABJM momentum twistor space Grassmannian (4.111) for n = 6. Since

the integral is completely fixed by the bosonic delta functions and GL(1), there is no contour

to choose and the result is simply two terms that are conjugate to each other, one for each

of the two branches determined by the orthogonal constraint. Let us gauge-fix the GL(1) by

setting c1 = 1 and then analyze the constraints of the bosonic delta-functions when c2 = 0.

Via (4.114) and (4.115), the orthogonality condition with c2 = 0 can be written

c5〈〈51〉〉 = c4〈〈42〉〉c2 = 0 . (4.129)

So we must have c5 = 0, or 〈〈51〉〉 = 0. Examining each in turn:

• c2 = c5 = 0: using ΩAB to dot Z3 and Z4 into the constraint c · Z = 0, we find

〈〈13〉〉+ c6〈〈63〉〉 = 0 and 〈〈14〉〉+ c6〈〈64〉〉 = 0 . (4.130)

For this to hold true with non-vanishing c6 requires
〈
6134

〉
= 0. The relations in

c · Z = 0 can then be solved to find

c3 =
〈〈51〉〉
〈〈35〉〉 , c4 =

〈
6123

〉
〈
2346

〉 , c6 =
〈〈13〉〉
〈〈36〉〉 . (4.131)

Thus c2 = c5 = 0 leaves the four other ci non-zero but imposes the constraint
〈
6134

〉
=

0 on the external data. This is precisely one of the poles in (4.128).

• c2 = 0 and 〈〈51〉〉 = 0. Dotting Z5 into c · Z = 0 now gives c3〈〈35〉〉 = 0.

If c3 = 0, then c · Z = 0 gives c4〈〈41〉〉 = 0 and c4〈〈46〉〉 = 0. If also c4 = 0 then
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we get a lower-dimensional subspace (c2 = c3 = c4 = 0). If c4 6= 0, we must have

〈〈41〉〉 = 〈〈46〉〉 = 0 which in addition to 〈〈51〉〉 = 0 renders multiple 4-brackets to be

zero.

If instead c3 6= 0, we must have 〈〈35〉〉 = 0. Consistency of c · Z = 0 then requires〈
6134

〉
= 0 and this combined with 〈〈51〉〉 = 〈〈35〉〉 = 0 puts several constraints on the

external data. The remaining conditions in c · Z = 0 do not completely fix the rest of

the ci’s.

We conclude from the above that the three ‘bounderies’ ci = ci+3 = 0 in the n = 6 orthog-

onal Grassmannian integral (4.111) correspond to poles of the form
〈
i+1, i+2, i+4, i+5

〉
= 0.

These are exactly the three different 3-particle poles P 2
i+2,i+3,i+4 of the amplitudes: for ex-

ample P 2
123 = y2

14 ∝
〈
6134

〉
. One the other hand, boundaries of the form ci = ci+1 = 0

impose constraints among two-brackets (e.g. 〈〈51〉〉 = 〈〈41〉〉 = 〈〈46〉〉 = 0) which are akin to

soft limits. Thus, as in the 4d case, we find that the cell boundaries of the Grassmannian

correspond to poles in the residues.

The fact that locality is partially hidden in the orthogonal constraint was already ob-

served in the derivation of the twistor string formula for ABJM theory [111],16 where locality

is achieved as the momentum space Grassmannian is localized onto a Veronese map [41],

Bα,i(ai, bi) = ak̃−αi bα−1
i . This reduces a Gr(k, n) down to a Gr(2, n) Grassmannian, param-

eterized by (ai, bi). At 6-point, this localization was achieved by the orthogonal constraint.

For higher-points, only part of the orthogonal constraint is relevant to the localization to the

Veronese map. Thus we anticipate that for higher-points, the effective metric will continue

to play an important role for the realization of locality.

4.6 Outlook

In this chapter, we presented a detailed review of the relationship between Grassmannian

integral formulas of different external data and provided a new derivation to establish their

equivalence. Using the new approach, we derived the momentum twistor version of the

Grassmannian integral for ABJM theory. Contrary to the momentum space representation,

which is an orthogonal Grassmannian with constant metric, the momentum twistor space

representation corresponds to an orthogonal Grassmannian whose metric depends on the

external data.

There are a number of interesting questions that can be tackled at this point. Recently

the planar amplitudes of N = 4 SYM have been identified as a single geometric object, the

16A twistor string whose vertex operators give the corresponding formula was later presented in [112].
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amplituhedron [45, 46]. It is defined in the Grassmannian Gr(k, k + 4) via

Y I
α = C+,αiZ

I
+i , (4.132)

where C+,αi are cells in the positive Grassmannian17 Gr(k, n) and ZI
+,i are (k+4)-component

vectors, i = 1, . . . , n, built linearly from the momentum supertwistors (see [45] for details).

The array of n vectors ZI
+,i are viewed as elements in the positive Grassmannian Gr(k+4, n).

The amplituhedron is then the “volume-form” in this space, and it has logarithmic singu-

larities at the boundaries of Y . It would be very appealing to derive this definition from

the momentum twistor space Grassmannian integral. As a first step, one should be able to

prove that the BCFW terms in momentum twistor space are associated with dimension 4k

positive cells in Gr(k, n). In principle, this is accomplished by the momentum twistor space

on-shell diagrams introduced by He and Bai [100], where the individual cells are associated

with diagrams that are again iteratively built from the fundamental 3-point vertices. On

the other hand, from our analysis one might expect the existence of a straightforward map

from cells in the momentum space Grassmannian to cells in the momentum twistor space

Grassmannian. However as the minors of the two Grassmannians are related by a multi-

plicative string of spinor brackets, a priori it is not clear that positivity in one Grassmannian

can be related to that of the other, even for the top-cell. Thus we see that positivity of the

BCFW terms in momentum twistor space is non-trivial result, and should warrant further

investigation.

Given that we have derived the momentum twistor space Grassmannian for ABJM theory,

one can ask if there exists a geometric entity like the amplituhedron for ABJM? Supporting

evidence for its existence includes the realization that BCFW recursion relations for the

theory exists both at tree- and at loop-level, and when represented in terms of on-shell

diagrams, stratifies the positive orthogonal Grassmannian. Unlike N = 4 SYM, where

positivity ensures locality, we have already seen that the orthogonal condition plays an

important role as well. What is unclear is whether or not the condition is to be viewed as

a condition on the cells, or on the space Y where the amplituhedron lives, perhaps both.

Another interesting question is if there exist on-shell diagrams for cells in ABJM momentum

twistor space Grassmannian such as those found forN = 4 SYM [100]. One of the remarkable

results in the on-shell diagram approach for cells of the momentum space Grassmannian, is

that the gluing and merging of diagrams preserves orthogonality [37, 42]. In momentum

twistor space, the orthogonality is now defined with a momentum twistor dependent metric.

It would be very interesting if an iterative way of constructing cells exists such that the

17The positive Grassmannian, or non-negative Grassmannian to be precise, refers to the property that the
k × n matrices are real-valued with all minors are greater or equal to zero.
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orthogonality property of the smaller cells ensures that of the higher-dimenions ones.

In this chapter, we also studied residue theorems for the NMHV level in momentum

twistor space and showed that an abstract homological point of view offered a clear geo-

metric description. For amplitudes beyond NMHV, the combinatorics and geometry become

much more difficult, and it is no longer the case that every momentum twistor cell of the ap-

propriate dimension (d = 4k) has support for generic external data. Composite singularities

become the norm, even in momentum twistor space, so the residue calculation outlined in

Appendix G cannot be applied directly. Moreover, whereas the entries in the k = 1 matrix

(4.38) can be interpreted as homogeneous coordinates on CPn−1, higher k Grassmannians do

not have such simple geometric structure. Even the locations of poles become more compli-

cated for k > 1 due to the non-linear dependence of the minors on the matrix entries. Instead

of cutting out hyperplanes as in Section 4.4.2, the minors vanish on generally complicated

surfaces. Understanding the geometric and homological structure of such spaces in a general

sense remains a subject of active research in the mathematics community.

Despite the inherent mathematical challenges, the BCFW bridge decompositions of [37]

suggest a possible route forward. The technique provides a robust way to generate coordi-

nates on any cell of Gr(k, n) with the useful property that all singularities of the integration

measure are manifestly of the form dα/α (similar to the dc/c structure of (4.39)). This

eliminates the issue of composite residues at the cost of requiring multiple charts to cover

all singularities.18 The existence of such a convenient representation of the Grassmannian

integral offers compelling motivation to pursue higher k generalizations, and it will almost

certainly lead to further insights regarding residues, residue theorems, superamplitudes, and

locality constraints for all k and n.

18Until recently it was not known how to compare the orientations of those charts, but the resolution of
this problem is the subject of [52] and is covered in the next chapter.
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Chapter 5

Orientations of BCFW Charts on the

Grassmannian

5.1 Motivation and Preview

Scattering amplitudes in 4d planar N = 4 super Yang-Mills (SYM) theory can be formulated

as contour integrals in the space of k × n matrices, modulo multiplication by a GL(k) matrix;

this is the Grassmannian manifold Gr(k, n) [37]. Reformulating scattering amplitudes in

this new framework has led to many interesting and unexpected mathematical structures in

N = 4 SYM such as on-shell diagrams [37, 100, 113] and the amplituhedron [45, 46, 114].

Many of the results extend also to 3d N = 6 ABJM theory [85, 86] where several novel

properties have emerged [42, 44, 51].

This chapter will focus on planar N = 4 SYM theory, where the n-particle NkMHV tree

amplitude can be obtained by evaluating the following integral:

A(k)
n = AMHV

n

∮

Γ

dk×nC

GL(k)M1M2 . . .Mn

δ4k|4k(C · Z
)
. (5.1)

The prefactor AMHV
n is the n-particle MHV amplitude, C is a k × n matrix of full rank, and Z

encodes the external data (momentum, particle type, etc.) as super-momentum twistors. In

the denominator of the measure, Mi is the ith consecutive k-minor of C, which means that it is

the determinant of the submatrix of C with ordered columns i, i+ 1, . . . , i+ k − 1 (mod n).

The contour on which the integral should be evaluated is designated by Γ. The result is a

sum over residues computed at poles of the integrand. There are generally many families of

contours which produce equivalent representations of the amplitude due to residue theorems.

Each contour can be thought of as a product of circles wrapping around poles of the
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integrand, the points where certain minors vanish. The minors are degree-k polynomials

in the variables of integration, so the pole structure is generally very difficult to describe

in the formulation (5.1). However, a technique was presented in [37] for generating charts

on the space such that any individual codimension-1 residue occurs at a simple logarithmic

singularity. Using one of those charts, the measure on a d-dimensional submanifold can be

decomposed into a product of dα/α = dlogα quantities. We call this measure ω for future

reference:

ω =
dk×nC

GL(k)M1M2 . . .Mn

→ dlogαd ∧ dlogαd−1 ∧ . . . ∧ dlogα1. (5.2)

Advantages to this formulation are that such charts are easy to generate and that every

codimension-1 residue can be reached as a dlog singularity using only a small atlas of charts.

A potential disadvantage is that directly relating two distinct charts is non-trivial; this could

lead to sign ambiguities when combining individual residues into the amplitude. This is

especially important because the residues contain non-local singularities that should cancel

in the tree amplitude sum. Previously, such divergences were shown to appear in pairs,

so they at least cancel mod 2 [37]. In Section 5.4 of this chapter, we demonstrate that

for doubly-appearing poles the cancellation is exact,1 which follows from the main result

of this chapter: the Master Algorithm introduced in Section 5.3. However, we observe

the presence of other non-physical singularities that appear to contribute individually in

some Grassmannian representations of tree amplitudes but not in others. We describe the

sources of such poles and explain how momentum conservation allows one to eliminate those

apparently problematic singularities.

Summary of Results

The key development of this chapter is a systematic algorithm that generates the relative

sign between any two BCFW charts on a submanifold, or cell, of the Grassmannian. Each

chart is defined by a sequence of transpositions (a1b1)(a2b2) . . . (adbd) acting on a permuta-

tion labeling a 0-dimensional cell. Equivalently, each chart can be represented by a path

through the poset (partially ordered set) of Grassmannian cells. Every transposition (aibi)

corresponds to a factor of dlogαi in (5.2).

To get a sense of the result, it is illustrative to consider the simple example of two charts

defined by the sequences (ab)(cd) and (cd)(ab) with a < b < c < d < a+n. In the poset of

cells, these sequences define distinct paths from a 0-dimensional cell labeled by σ0 to a 2-

dimensional cell labeled by σ, shown in Figure 5.1 with edges labeled by the corresponding

transpositions:

1The relative signs between NMHV residues were derived in [51], but that method does not easily gener-
alize to higher-k amplitudes.
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(cd)

(ab) (cd)

(ab)

σ0

σ

Figure 5.1: Two distinct sequences of transpositions connecting the 0-dimensional cell σ0 to
the 2-dimensional cell σ.

If we associate the coordinate α1 with (ab) and α2 with (cd), then the dlog forms generated

by the sequences are, respectively,

ω = dlogα1 ∧ dlogα2, and ω′ = dlogα2 ∧ dlogα1. (5.3)

Clearly the two forms differ by an overall sign, so the two coordinate charts are oppositely

oriented. We can encode this property in the poset by weighting the edges with ±1 such

that the product of the edge weights around the loop in Figure 5.1 is −1. One choice of

suitable signs is shown in Figure 5.2. Then the relative orientation is given by the product

of edge signs along the two paths.

(cd)

(ab) (cd)

(ab)

σ0

σ
(cd)

(ab) (cd)

(ab)
+1

+1

-1

+1

σ0

σ

Figure 5.2: A choice of edge weights such that the product around the loop is −1.

We show in Section 5.3.3 that the relative orientation between any two charts is equal to

the product of edge signs around a closed loop in the poset. All the edges can be weighted

such that the product of signs around every quadrilateral is −1, just as in the example 5.2.2

The closed loop is obtained by concatenating each input path (blue and green solid lines

in Figure (5.3 A)) together with a sawtooth path connecting their 0d cells (thick red line

in (5.3 A)) times −1 for each 1d cell along the connecting path. We call this method the

Master Algorithm.

To prove that the Master Algorithm correctly yields the relative orientation, we introduce

two preliminary algorithms in Section 5.3.1. When the two paths meet at a common 0d cell,

illustrated in (5.3 B) with blue and green solid lines, Algorithm 1 splits the big loop into

smaller loops, e.g. using the dashed black lines in (5.3 B), for which the relative orientations

2A technique developed by T. Lam and D. Speyer for assigning edge weights is presented in Appendix J
[47].
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can be computed directly from the corresponding plabic networks.3 If the paths end in

different 0d cells, e.g. (5.3 C), Algorithm 2 additionally computes the relative sign between

the source cells: We then use Algorithms 1 and 2 in Section 5.3.2 to demonstrate that the big

…
 

…
 

σ

σ0

… 
σ0’ 

…
 

…
 

σ

σ0
…

 
σ0 σ0’ 

…
 

σ

(A) Concatenated paths (B) Shared 0d cell (C) Different 0d cells

Figure 5.3: Different types of paths through the poset of cells.

loop (5.3 A) can always be split up into quadrilaterals, each of which contributes a factor of

−1 to the overall sign. Finally in Section 5.3.3 it is shown that if the edges are appropriately

decorated with ±1, then only those that make up the loop contribute to the end result (in

addition to −1 from each 1d cell along the sawtooth path).

In Section 5.4, we show that the edge-weighting rules can also be used to compute relative

signs between distinct residues by requiring further that all residue theorems are mutually

consistent. Consequently, residues contributing to the tree amplitude are always decorated

with signs so that all non-physical singularities that appear in pairs cancel exactly in the sum

of residues. In the context of the on-shell BCFW recursion relations described in [37], this

forces every term to have an appropriate sign whereby all non-local poles are guaranteed

to cancel. A similar argument demonstrates the existence of a boundary operator that

manifestly squares to zero. Some individual non-physical poles appear with unit multiplicity

in the boundary of amplitude representations and thus do not cancel, so we identify the

origin of those poles and demonstrate that the associated residues vanish. In addition,

we present an interpretation of charts corresponding to decompositions with non-adjacent

transpositions. We review the necessary background in Section 5.2 before presenting the

algorithms in Section 5.3, and a few details are relegated to appendices.

During the development of this analysis, a different method for determining relative ori-

entations was proposed independently by J. Bourjaily and A. Postnikov using determinants

3We thank R. Karpman for many helpful ideas and discussions regarding the details of the graph
transformations.[115]
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of certain large matrices. We computed the orientations of 500 distinct charts on the 10d

cell {5, 3, 8, 9, 6, 7, 12, 10, 14, 11} ∈ Gr(3, 10) with both methods and found perfect agreement

[48]. The algorithms presented in this chapter have also been verified by checking a variety

of charts whose orientations are known by other methods. The cancellation of all doubly-

appearing poles in the tree amplitude has been confirmed explicitly for all n = 5, . . . , 13

and k = 3, . . . , bn/2c, and the elimination of all individual non-physical poles using the cri-

teria defined in Section 5.4 have been checked for the same set of parameters. All of the

algorithms described here have been implemented in Mathematica as an extension of the

positroids package included with the arXiv version of [116].

5.2 Background

5.2.1 Positroid Stratification

The positroid stratification is a decomposition of the Grassmannian Gr(k, n) into subman-

ifolds called positroid cells (or just cells). Cells can be classified according to the ranks of

submatrices constructed out of cyclically consecutive columns of a representative matrix.

The top cell of Gr(k, n) is the unique cell of highest dimension, d = k(n− k). All maximal

(k × k) minors are non-vanishing in the top cell, so all chains of consecutive columns will be

full rank. For example, a representative matrix of the top cell of Gr(2, 4) is

C =

(
1 0 c13 c14

0 1 c23 c24

)
, (5.4)

where cij ∈ C are coordinates on the manifold such that none of the 2× 2 minors vanish.

All four parameters must be fixed to specify a point in the top cell, which is consistent with

the expected dimension d = 2(4− 2) = 4.

Lower dimensional cells are reached by fixing relations among the entries so that addi-

tional linear dependencies arise among consecutive columns. From a given cell, the accessible

codimension-1 submanifolds are called the boundaries of that cell. The extra linear relations

imply that various minors vanish in the measure of (5.1). Thus going to the boundary should

be interpreted as taking a residue at the corresponding pole. Note that choosing a particular

representative matrix amounts to selecting a chart on the cell, so some poles may not be

accessible in certain charts. In the example above, the boundary where columns ~c2 and ~c3

are parallel is accessible by setting c13 = 0, but there is no way to reach the boundary where

columns ~c1 and ~c2 are parallel in the stated chart. The latter boundary could be accessed in

a GL(2)-equivalent chart where a different set of columns were set to the identity.
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A partial order can be defined on the set of positroid cells by setting C ≺ C ′ whenever

C is a codimension-1 boundary of C ′ [117]. The poset structure is interesting for a number

of reasons, several of which will be mentioned throughout the text. One such reason is that

the poset of positroid cells in Gr(k, n) is isomorphic to a poset of decorated permutations.

Decorated permutations are similar to standard permutations of the numbers 1, . . . , n, but

differ in that k of the entries are shifted forward by n. To simplify the notation, we will

use often ‘permutation’ to mean ‘decorated permutation’ since only the latter are relevant

to us. Permutations will be written single-line notation using curly brackets; an example

is given in (5.5). When referencing specific elements of a permutation, we will use the

notation σ(i) to mean the ith element of the permutation σ, and with the understanding

that σ(i+n) = σ(i)+n. A decorated permutation encodes the ranks of cyclically consecutive

submatrices by recording, for each column ~ca, the first column cb with a ≤ b ≤ a+n such that

~ca ∈ span(~ca+1,~ca+2, . . . ,~cb). The first inequality is saturated when ~ca = 0, and the second is

saturated when ~ca is linearly independent of all other columns. Continuing with the example

(5.4), the top cell of Gr(2, 4) corresponds to the permutation

σtop = {3, 4, 5, 6}, (5.5)

which says that 1→ 3, 2→ 4, 3→ 5 ≡ 1, and 4→ 6 ≡ 2. In terms of the linear dependen-

cies among columns of a representative matrix, it means ~c1 ∈ span(~c2,~c3), ~c2 ∈ span(~c3,~c4),

~c3 ∈ span(~c4,~c5) ≡ span(~c4,~c1), and ~c4 ∈ span(~c5,~c6) ≡ span(~c1,~c2).

Going to the boundary of a cell involves changing the linear relations among consecutive

columns, so in permutation language, the boundary is accessed by exchanging two entries in

σ. The transposition operation that swaps the elements at positions a and b is denoted by

(ab), with a < b < a+n; we call this the boundary operation. Note that σ only has positions

1, . . . , n, but b can be greater than n, To account for this, we use

σ′(a) = σ(b) = σ(b−n) + n and σ′(b) = σ(a)⇒ σ′(b−n) = σ(a)−n. (5.6)

In the example (5.4), taking the boundary where c13 = 0 lands in a cell with linear depen-

dencies specified by

σ′ = {4, 3, 5, 6}. (5.7)

This corresponds to exchanging the first and second elements of σtop, i.e. the transposition

(1 2).

Not all exchanges are allowed; for instance, applying the same transposition twice would
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revert back to the initial cell, which is clearly not a boundary. The allowed boundary

transpositions satisfy the following criteria:

a < b ≤ σ(a) < σ(b) ≤ a+n and σ(q) 6∈ (σ(a), σ(b)) ∀q ∈ (a, b), (5.8)

where (a, b) means the set {a+ 1, b+ 2, . . . b− 1}. We will call (ab) an adjacent transposition

if all q ∈ (a, b) satisfy σ(q) ≡ q mod n [37]. The reason for this distinction will become

clear in the next section. A strictly adjacent transposition is of the form (a a+1). For

notational purposes, we define (ab) to act on the right, so if σ is a boundary of σ̃, then

we write σ = σ̃ · (ab). Of course, (ab) is its own inverse, so acting on the right with (ab)

again yields the inverse boundary operation σ · (ab) = σ̃. The boundary operation reduces

the dimension by one, while the inverse boundary operation increases the dimension by one.

Although the notation is identical, it should be clear what we mean from the context. Taking

additional (inverse) boundaries leads to expressions like ρ = σ · (a1b1)(a2b2) . . ., which means

first exchange σ(a1) and σ(b1), then swap the elements at positions a2 and b2, etc.4

5.2.2 Plabic Graphs

Permutations and positroid cells can be represented diagrammatically with plabic (planar-

bicolored) graphs and plabic networks.5 Plabic graphs are planar graphs embedded in a disk,

in which each vertex is colored either black or white. Any bicolored graph can be made

bipartite by adding oppositely-colored bivalent vertices on edges between two identically-

colored vertices, so we will assume all graphs have been made bipartite. Some edges are

attached to the boundary; we will call these external legs and number them in clockwise

order 1, 2, . . . , n. If a monovalent leaf is attached to the boundary, it will be called a lollipop

together with its edge. Plabic networks are plabic graphs together with weights (t1, t2, . . . , te)

assigned to the edges. The weights are related to coordinates on the corresponding cell, as

will be discussed in the next subsection.

Given a plabic graph G, one can define a trip permutation by starting from an external leg

a and traversing the graph, turning (maximally) left at each white vertex and (maximally)

right at each black vertex until the path returns to the boundary at some vertex b. When

4To avoid any confusion with accessing elements of the permutation, e.g. σ(i), we use the · after σ to
indicate that σ is a permutation, and (ab) is a transposition. The · operation is implicit between neighboring
transpositions.

5Physical interpretations of certain plabic networks, also known as ‘on-shell diagrams,’ have been explored
in several recent papers, including [37, 100].
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a 6= b, the permutation associated with this trip has

σG(a) =

{
b b > a

b+n b < a
. (5.9)

We will explain the case a = b momentarily.

For tree amplitudes, we will be concerned with reduced plabic graphs. A plabic graph is

reduced if it satisfies the following after deleting all lollipops [118]:

1. It has no leaves;

2. No trip is a cycle;

3. No trip uses a single edge twice;

4. No two trips share two edges e1 and e2 in the same order.

It follows that any external leg a for which σG(a) ≡ a mod n must be a lollipop [118]. Specif-

ically, we define σG(a) = a to be a black lollipop, and σG(a) = a+n to be a white lollipop.

Thus each reduced plabic graph/network corresponds to a unique decorated permutation.

However, the correspondence is not a bijection; rather each permutation labels a family of

reduced plabic graphs/networks. Members of each family are related by equivalence moves

that modify the edge weights but leave the permutation unchanged [37, 119]:

(E1) GL(1) rotation: At any vertex, one can perform a GL(1) rotation that uniformly

scales the weights on every attached edge, e.g. Figure 5.4 shows the transformation for

a scaling factor f .

t1
t2

t3

t4

f t1
f t2

f t3

f t4

Figure 5.4: A GL(1) transformation with scaling factor f .

(E2) Merge/delete: Any bivalent vertex whose edges both have weight 1 can be eliminated

by merging its neighbors into one combined vertex and deleting the bivalent vertex and

its edges, e.g. Figure 5.5.

1 1

Figure 5.5: A merge operation.

120



If one of its neighbors is the boundary, then the bivalent vertex should be merged with

the boundary instead. The inverse operation can also be used to ‘unmerge’ a vertex or

boundary.

(E3) Square move: A four-vertex square with one pattern of coloring is equivalent to the

four-vertex square with opposite coloring. The edge weights in Figure 5.6 are related

(using the sign conventions of [113]):

t′1 =
t3

t1t3 + t2t4
, t′2 =

t4
t1t3 + t2t4

, t′3 =
t1

t1t3 + t2t4
, t′4 =

t2
t1t3 + t2t4

. (5.10)

1

1
1

1
1

1
1

1 t4’ 
t1’ 

t2’ 

t3’ 

t4

t1

t2

t3

Figure 5.6: A square move operation.

From the plabic network, one can also read off a representative k × n matrix for the

corresponding positroid cell, which is called the boundary measurement matrix (or bound-

ary measurement map). Several related methods exist for defining boundary measurements

such as using perfect orientations [37, 113, 119] or perfect matchings [113, 118, 120]. The

equivalence moves above can be derived by requiring that the boundary measurements are

unchanged by each transformation. In the next subsection, we will show how to construct

the boundary measurements systematically for the types of plabic networks relevant to am-

plitudes. We refer the reader to the above references for more details, though we caution

that the transformation rules are presented slightly differently.

These three moves are sufficient to transform any plabic network into any other in its

equivalence class. In addition, using these moves one can always fix all but d of the edge

weights to unity in any network that represents a d-dimensional cell; throughout the rest

of this chapter, edges with unspecified weights will have weight 1. As we will see shortly,

certain planar networks lead to especially convenient paramaterizations of positroid cells.

The equivalence moves will allow us to compare the resulting oriented forms.
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5.2.3 Bridge Decompositions and Charts

To write down a coordinate chart on a given cell, it is sufficient to construct a representative

matrix with the appropriate linear dependencies among its columns. However, in a general

chart the boundary structure could be very difficult to identify. Fortunately, there is a

straightforward method to construct charts with simple dlog forms as in (5.2) [37]; we review

this technique below and how it relates to paths in the poset of cells. Some paths through

the poset do not correspond to any such charts, so we suggest an interpretation for those

paths in Section 5.2.3 and explain the consequences for residues in Section 5.4.1.

Standard BCFW Bridge Decompositions

Positroid cells of dimension zero in Gr(k, n) correspond to unique plabic graphs made solely

out of lollipops with edge weight 1. The k legs with σ(a) = a+n have white vertices while the

rest are black. The boundary measurement matrix is zero everywhere except the submatrix

composed out of the k columns corresponding to the white vertices, which together form

a k × k identity matrix. There are no degrees of freedom, so the differential form (5.2) is

trivial, ω = 1.

Since there is a unique representative plabic network for each 0d cell, we will build higher-

dimensional representatives out of the set of 0d networks. In the poset, higher-dimensional

cells can be reached from 0d cells by repeatedly applying the inverse boundary operation

defined below (5.8). Equivalently, a d-dimensional cell can be decomposed into a sequence

of adjacent transpositions acting on a 0d permutation, e.g.6

{3, 5, 4, 6} = {5, 6, 3, 4} · (24)(23)(12). (5.11)

This is called a BCFW decomposition and leads to a convenient graphical representation. In

a planar network, an adjacent transposition (aibi) amounts to simply adding a white vertex

on leg ai, a black vertex on leg bi, and an edge between them with weight αi as illustrated

in Figure 5.7. This is called a (BCFW) bridge. Note that if one of the legs is initially a

lollipop, then the resulting leaf should be deleted after adding the bridge [118, 119].

The example (5.11) generates the sequence of graphs shown in Figure 5.8. Many simpli-

fications are possible using the equivalence moves (E1)-(E3).

Adding a BCFW bridge affects the trip permutation by exchanging σG(a)↔ σG(b) as

6The transposition (24) is adjacent because it acts on a permutation whose third element is self-identified.
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ai

bi

ai

biαi

Figure 5.7: Adding a BCFW bridge.

4 1

23

α1

α2

α3

4 1

23

α1

4 1

23

α1

α2

4 1

23

Figure 5.8: The sequence of diagrams produced by (5.11). We have added a black vertex
between the first two bridges to make the graph bipartite; it is drawn slightly smaller to
distinguish it from the bridge vertices.

desired, and the boundary measurement matrix transforms in a simple way [37],

cb → cb + αica. (5.12)

One can easily check that the linear dependencies of the shifted matrix agree with the

expected permutation as long as (aibi) is an adjacent transposition. If ωi−1 is the differential

form associated with the initial cell, then after adding the bridge, the new form is

ωi = dlogαi ∧ ωi−1. (5.13)

This prescription provides a robust way to generate coordinates on any cell in Gr(k, n).

There are generally many ways to decompose a d-dimensional permutation σ into a

sequence of adjacent transpositions acting on a 0d cell. In fact, no single chart covers all

boundaries of a generic cell. However, an atlas of at most n standard BCFW charts is

sufficient to cover all boundaries [37]. Every such chart defines a unique path through the

poset from σ to some σ0. In the example (5.11), the path was

σ = {3, 5, 4, 6} (12)−−→ {5, 3, 4, 6} (23)−−→ {5, 4, 3, 6} (24)−−→ {5, 6, 3, 4} = σ0. (5.14)

Not all BCFW decompositions of σ end in the same 0d cell, however. Another BCFW
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decomposition of {3, 5, 4, 6} ends in σ′0 = {5, 2, 7, 4}:

σ = {3, 5, 4, 6} (12)−−→ {5, 3, 4, 6} (46)−−→ {5, 2, 4, 7} (34)−−→ {5, 2, 7, 4} = σ′0. (5.15)

The important point is that every BCFW decomposition corresponds to a unique path of

length d that starts at σ and ends in a 0d cell. The converse is not true; some paths of length

d that start at σ and end in a 0d cell do not correspond to any BCFW decomposition.

Generalized Decompositions

When evaluating residues, one will often encounter paths through the poset that do not

coincide with any single standard chart. These paths contain edges that represent non-

adjacent transpositions. Continuing with the earlier example, the following path ends in the

same 0d cell as (5.11), but the first transposition (13) crosses a non-self-identified leg:

σ = {3, 5, 4, 6} (13)−−→ {4, 5, 3, 6} (24)−−→ {4, 6, 3, 5} (14)−−→ {5, 6, 3, 4} = σ0. (5.16)

Nevertheless, this path is certainly a possible route when evaluating residues since every

codimension-1 boundary is accessible from some adjacent chart [37]. We could, for instance,

take the decomposition from (5.11), and take α2 → 0. It is easy to see from the boundary

measurement matrix that this yields the desired linear dependencies among columns:

(
1 α3 0 0

0 1 α2 α1

)
α2→0−−−→

(
1 α3 0 0

0 1 0 α1

)
. (5.17)

The generalization to any path through the poset is clear; each successive step involves

computing the residue at a logarithmic singularity in some chart. Thus every path corre-

sponds to some dlog form, not just the paths for which we have explicit plabic graphical

representations. We will call these generalized decompositions and their coordinates gener-

alized charts. In practice, computing residues along a particular path through the poset can

always be done using standard adjacent charts, though it may involve changing coordinates

at several steps along the way. As we will see in Section 5.4.1, the sign of the resulting

residue depends only on the path taken, and not on the choice of reference charts along the

way.
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5.3 Relating Distinct Charts

Recall that a decomposition for a d-dimensional cell C corresponds to a sequence of transpo-

sitions applied to a permutation σ0 labeling a 0-dimensional cell C0. Each sequence defines a

particular path through the poset with endpoints at C and C0. In this section, we will show

that the relative sign between the dlog forms generated by two distinct charts can be ob-

tained systematically. We will first show this result for standard BCFW charts constructed

using only adjacent transpositions. Subsequently, we will discuss the generalized situation

where we do not always have a simple graphical representation; the convention for deriving

signs will be extended to cover the additional possibilities while maintaining consistency

with the standard setup. The extended conventions will also lead to a simpler method for

comparing charts.

5.3.1 Standard BCFW Charts

There are two cases that we need to address depending on whether the decompositions end

in identical 0d cells or distinct ones. We will cover the identical case first and then deal with

the other situation.

Charts with Identical 0d Cells

We assume first that the 0d cell labeled by σ0 is the same for both paths. The d-dimensional

cell labeled by σ is connected to σ0 by two sequences of transpositions

σ = σ0 · (a1b1)(a2b2) . . . (adbd) = σ0 · (a′1b′1)(a′2b
′
2) . . . (a′db

′
d). (5.18)

Graphically, the concatenation of the two paths creates a closed loop of length 2d in the

poset, shown schematically in Figure 5.9 with one path denoted by a blue solid line and the

other by a green dashed line.

The relative orientation of the two dlog forms corresponding to the sequences can be

obtained by a simple algorithm. Before presenting that result, we will need the following

lemma:

Lemma 1. The top cell can be reached from any cell, C, of dimension d by a sequence of

k(n− k)− d strictly adjacent transpositions.

Proof. Let σ be the permutation labeling C ∈ Gr(k, n). When σ contains two neighboring

elements satisfying σ(i) > σ(i+ 1) (with σ(n+ 1) = σ(1)+n), this is called an inversion.

Such an inversion can be removed by applying the (strictly adjacent) transposition (i i+ 1).
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…
 

…
 

σ

σ0

Figure 5.9: Two paths representing sequences of transpositions connecting the permutations
σ0 and σ. Together the paths form a closed loop.

Since all entries in σtop are ordered, one can reach the top cell by iteratively eliminating all

inversions.

For example, the top cell of Gr(2, 6) can be reached from the 5-dimensional cell labeled

by {2, 3, 4, 6, 7, 11} by the sequence of transpositions (6 7)(1 2)(2 3):

{2, 3, 4, 6, 7, 11} (6 7)−−→ {5, 3, 4, 6, 7, 8} (1 2)−−→ {3, 5, 4, 6, 7, 8} (2 3)−−→ {3, 4, 5, 6, 7, 8}. (5.19)

Using this procedure, any BCFW sequence can be extended to reach the top cell using only

strictly adjacent transpositions. We thank R. Karpman for pointing this out.

Since (i, i+ 1) does not cross any legs, the resulting sequence will be a valid BCFW

sequence. Therefore, we may assume without loss of generality that the cell on which we

seek to compare orientations is the top cell because two sequences which lead to a cell

of lower dimension can be trivially extended to top cell sequences by appending the same

transpositions to both paths. This will not affect the relative sign of the forms since both

will have identical pieces appended to them.

We turn now to the sign-comparison algorithm. The idea is to compare each BCFW chart

to specially chosen reference charts whose relative orientation is easy to compute. They are

chosen so that at each iteration, the loop in the poset (initially of length 2d) is shortened.

Then the final relative orientation is the product over all the intermediate orientations.
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Algorithm 1

Input: Two BCFW sequences of length d = k(n− k): w = (a1b1)(a2b2) . . . (adbd) and

w′ = (a′1b
′
1)(a′2b

′
2) . . . (a′db

′
d)

Output: ±1

Procedure:

1) Let j be the smallest index such that (ajbj) 6= (a′jb
′
j). The transpositions with i > j

yield a closed loop of length ` ≤ 2d. If there is no such position, then the paths are

identical, so return +1.

2) Let σ label the j-dimensional cell reached by the sequence of transpositions

(a1b1)(a2b2) . . . (ajbj) and σ′ label that reached by (a′1b
′
1)(a′2b2)′ . . . (a′jb

′
j). Using

the following rules, construct reference charts to which the initial charts should be

compared. Comparing the two reference charts produces a known sign; the relevant

parts are displayed with each step, and their relative signs are derived in Appendix

I. There are several cases to consider (with a < b < c < d < a+n):

i) (ajbj) = (ab), (a′
jb

′
j) = (cd)

The j-dimensional cells σ and σ′ have a shared (j + 1)-dimensional neighbor

σ̃ = σ · (cd) = σ′ · (ab). Let u be the sequence generated by Lemma 1 for the

cell labeled by σ̃. Then the reference sequences and relative sign are:

• Ref. sequence 1: w̃ = (a1b1)(a2b2) . . . (aj−1bj−1)(ab)(cd)u

• Ref. sequence 2: w̃′ = (a′1b
′
1)(a′2b

′
2) . . . (a′j−1b

′
j−1)(cd)(ab)u

• The relative sign between reference charts is −1.

(cd) (ab)

(cd)(ab)

ii) (ajbj) = (ab), (a′
jb

′
j) = (ac)

In this case, cells σ and σ′ have a shared (j + 1)-dimensional neighbor

σ̃ = σ · (bc) = σ′ · (ab). Let u be the sequence generated by Lemma 1 for the

cell labeled by σ̃. Then the reference sequences and relative sign are:

• Ref. sequence 1: w̃ = (a1b1)(a2b2) . . . (aj−1bj−1)(ab)(bc)u

• Ref. sequence 2: w̃′ = (a′1b
′
1)(a′2b

′
2) . . . (a′j−1b

′
j−1)(ac)(ab)u

• The relative sign between reference charts is −1.

(bc) (ab)

(ac)(ab)

iii) (ajbj) = (ac), (a′
jb

′
j) = (bc)

Once again, cells σ and σ′ have a shared (j + 1)-dimensional neighbor
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σ̃ = σ · (bc) = σ′ · (ab). Let u be the sequence generated by Lemma 1 for the

cell labeled by σ̃. Then the reference sequences and relative sign are:

• Ref. sequence 1: w̃ = (a1b1)(a2b2) . . . (aj−1bj−1)(ac)(bc)u

• Ref. sequence 2: w̃′ = (a′1b
′
1)(a′2b

′
2) . . . (a′j−1b

′
j−1)(bc)(ab)u

• The relative sign between reference charts is −1.

(bc) (ab)

(bc)(ac)

iv) (ajbj) = (ab), (a′
jb

′
j) = (bc)

Using only adjacent transpositions, σ and σ′ do not have a common (j + 1)-

dimensional neighbor. However, certain neighbors of σ and σ′ do have a

common neighbor of dimension (j + 2). Specifically, let σ̃ = σ · (bc) and

σ̃′ = σ′ · (ab). Then σ̃ and σ̃′ have a common (j + 2)-dimensional neighbor

ρ = σ̃ · (ab) = σ̃′ · (bc). Let u be the sequence generated by Lemma 1 for the

cell labeled by ρ. Then the reference sequences and relative sign are:

• Ref. sequence 1: w̃ = (a1b1)(a2b2) . . . (aj−1bj−1)(ab)(bc)(ab)u

• Ref. sequence 2: w̃′ = (a′1b
′
1)(a′2b

′
2) . . . (a′j−1b

′
j−1)(bc)(ab)(bc)u

• The relative sign between reference charts is +1.

(ab) (bc)

(ab)(bc)

(bc)(ab)
v) (ajbj) = (ac), (a′

jb
′
j) = (bd)

Similar to the previous case, σ and σ′ do not have a common (j + 1)-

dimensional neighbor using only adjacent transpositions. Nonetheless, with

σ̃ = σ · (bc) and σ̃′ = σ′ · (bc), then σ̃ and σ̃′ have a common (j + 2)-

dimensional neighbor ρ = σ̃ · (cd) = σ̃′ · (ab). Let u be the sequence generated

by Lemma 1 for the cell labeled by ρ. Then the reference sequences and rela-

tive sign are:

• Ref. sequence 1: w̃ = (a1b1)(a2b2) . . . (aj−1bj−1)(ac)(bc)(cd)u

• Ref. sequence 2: w̃′ = (a′1b
′
1)(a′2b

′
2) . . . (a′j−1b

′
j−1)(bd)(bc)(ab)u

• The relative sign between reference charts is −1.

(cd) (ab)

(bc)(bc)

(bd)(ac)

vi) (ajbj) = (bc), (a′
jb

′
j) = (ad)

In this case, we must look further to find a shared cell above σ and σ′ using

only adjacent transpositions. They have a shared (j + 3)-dimensional great-

grandparent ρ̃ = σ · (ab)(cd)(bc) = σ′ · (bc)(ab)(cd). Let u be the sequence

generated by Lemma 1 for the cell labeled by ρ̃. Then the reference sequences

and relative sign are:
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• Ref. sequence 1: w̃=(a1b1)(a2b2). . .(aj−1bj−1)(bc)(ab)(cd)(bc)u

• Ref. sequence 2: w̃′=(a′1b
′
1)(a′2b

′
2). . .(a′j−1b

′
j−1)(ad)(bc)(ab)(cd)u

• The relative sign between reference charts is −1.

(bc) (cd)

(ab)(cd)

(ad)(bc)

(bc)(ab)

3) Repeat this algorithm to compare w to w̃ and w′ to w̃′.

4) Return the product of the relative sign from step (2) times

the result of each comparison in step (3).

The relative orientation of any two BCFW charts with identical endpoints can be com-

pared with this algorithm. In the second part of the proof below, we show that the signs and

reference charts presented in step (2i) are correct; this should also serve as an illustrative

example of the algorithm in action.

Proof. We need to show that the algorithm will terminate in a finite number of iterations,

and that the sign generated at each step is correct.

• We will first show that the algorithm will terminate after a finite number of iterations.

The reference sequences constructed in step (2) are chosen so that when the algorithm

is called again in step (3) to compare w to w̃, the new inputs satisfy (aibi) = (a′ib
′
i) for

all i ≤ j. The same is true for the comparison of w′ and w̃′. Step (1) searches for the

first point at which the input sequences differ, so by construction, the next position

will be at least j + 1, which is larger than in the previous iteration. Since j is bounded

by d, the algorithm will eventually terminate.

• Next we will explain the results presented in step (2i). Since a < b < c < d < a+n,

the two transpositions can be applied in either order without violating the adja-

cent requirement of BCFW sequences. Therefore σ and σ′ have a common neighbor

σ̃, and both (a1b1)(a2b2) . . . (aj−1bj−1)(ab)(cd)u and (a′1b
′
1)(a′2b

′
2) . . . (a′j−1b

′
j−1)(cd)(ab)u

are valid BCFW sequences for the top cell. Moreover, since (a′ib
′
i) = (aibi) for all i < j,

their corresponding forms differ only in positions j and j + 1:

ω = dlogαd ∧ dlogαd−1 . . . ∧ dlogαj+2 ∧ dlogαj+1 ∧ dlogαj ∧ dlogαj−1 . . . ∧ dlogα1,

ω′ = dlogαd ∧ dlogαd−1 . . . ∧ dlogαj+2 ∧ dlog βj+1 ∧ dlog βj ∧ dlogαj−1 . . . ∧ dlogα1,

(5.20)
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where αj and αj+1 are the weights associated with (ab) and (cd) in the first sequence,

while βj and βj+1 are associated with (cd) and (ab) in the second sequence. To deter-

mine the relationship between the two forms, we will use the plabic graph representa-

tions of the transpositions as BCFW bridges. Focusing on the j and j + 1 parts of the

graphs in Figure 5.10, the only differences are the labels of the jth and (j+1)th bridges.

The left and right diagrams can only be equivalent if βj = αj+1 and βj+1 = αj, which

implies

ω′ = dlogαd ∧ . . . ∧ dlogαj+2 ∧ dlogαj ∧ dlogαj+1 ∧ dlogαj−1 . . . ∧ dlogα1 = −ω.
(5.21)

Thus the relative sign between the reference charts is −1.

a

b

d

c

αj

αj+1

a

b

d

c

βj+1

βj

Figure 5.10: Graphs representing the sequences defined in step (2i) of Algorithm 1.

The remaining cases are described in Appendix I.

Thus we now have an algorithm that correctly computes the relative signs for BCFW

forms generated from identical 0d cells.

Charts with Distinct 0d Cells

The next step will be to extend the result to decompositions that terminate in distinct 0d

cells. Let us start with the simplest case: finding the relative sign between two charts on

a 1d cell labeled by σ1. Since it is 1-dimensional, all but two entries in σ are self-identified

mod n. The two non-trivial positions can be labeled a and b such that a < b < a+n.

As illustrated in Figure 5.11, the 1d cell has exactly two boundaries, which can be

accessed respectively by (ab) or (b a+n), so the two BCFW sequences whose charts we will
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σ1

σ0 σ0’ 

(ab) (b a+n)

Figure 5.11: Boundaries of a 1-dimensional cell σ1.

compare are (ab) and (b a+n). It is straightforward to find the relative orientations of the

corresponding forms,

ω1 = dlogα and ω′1 = dlog β, (5.22)

using basic plabic graph manipulations. Figure 5.12 demonstrates that several GL(1) ro-

tations (E1) combined with a merge and unmerge with the boundary (E2) are sufficient to

discover that β = 1/α, Therefore, the forms are oppositely oriented, i.e. ω′1 = −ω1.

a

bα

a

b
1/α

a

b1/α

Figure 5.12: A sequence of equivalence moves relating the two representative graphs for a
1d cell.

More generally, we could consider charts on d-dimensional cells whose corresponding

BCFW sequences are identical everywhere except for the first transposition, e.g. Figure

5.13. The associated forms are

ωd = dlogαd ∧ dlogαd−1 ∧ . . . ∧ dlogα1,

ω′d = dlogαd ∧ dlogαd−1 ∧ . . . ∧ dlog β1.
(5.23)

To construct a pair of sequences like these, we could find a Lemma 1 sequence, u, for the

1d cell in Figure 5.11 and compare the two charts defined by σ0 · (ab)u and σ′0 · (b a+n)u.

Since BCFW sequences such as u use only adjacent transpositions, no bridge will ever be

attached to legs a and b further from the boundary than the first bridge (ab), resp., (b a+n).

Therefore, one can apply very similar logic as in the 1d case7 to find that β1 = 1/α1, so

ω′d = −ωd.
7The only difference being that the merge/unmerge moves may be with other vertices instead of the

boundary.
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σ0 σ0’ 

(ab) (b a+n)

…
 

σ

u

Figure 5.13: Two sequences that are identical except for the first transposition.

We can easily extend this to any two charts whose 0d endpoints share a common 1d

neighbor, σ1, by applying Algorithm 1. Each sequence can be related to a reference sequence

with the same 0d cell, but which goes through σ1 and then follows some arbitrarily chosen

path, say u, to the top cell. If the same path is chosen to compare to both charts, then the

relative orientation of the reference charts is −1.

Finally, this can be extended to any two charts terminating in arbitrarily separated

0d cells by iterating the previous step together with Algorithm 1. We combine this into

Algorithm 2.

Algorithm 2

Input: Two BCFW sequences of length d = k(n− k): w = (a1b1)(a2b2) . . . (adbd) and

w′ = (a′1b
′
1)(a′2b

′
2) . . . (a′db

′
d); and their 0d endpoints: σ0 and σ′0.

Output: ±1

Procedure:

1) If σ0 = σ′0, compute the relative sign of the two forms using Algorithm 1. Return

the result.

2) Else, let a be the smallest index such that σ0(a) < σ′0(a), and let b be the smallest

index such that σ0(b) > σ′0(b). We assume that a < b; if not, then the roles of

σ0 and σ′0 should be exchanged. Let σ̃ = σ0 · (ab), whose boundaries are σ0 and

σ̃0 = σ̃ · (b a+n), and define u to be the Lemma 1 sequence from σ̃ to the top cell.

Construct two reference sequences: w̃ = (ab)u and w̃′ = (b a+n)u.

3) Repeat this algorithm to compare (w, σ0) to (w̃, σ0), and (w′, σ′0) to (w̃′, σ̃0).

4) Return the product of the results from step (3) times −1 due to the relative sign

between w̃ and w̃′.
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Proof. Assuming that the cells and edges in step (2) exist, the sign at each iteration is valid

because it uses Algorithm 1 to compare charts with identical 0d cells, and it returns −1 for

each pair of sequences that differ only in the first position. It remains to show that step (2)

is correct. Since all entries in the permutations labeling 0d cells are self-identified mod n,

the definitions of a and b imply that:

σ0(a) = a, σ0(b) = b+n, σ′0(a) = a+n, and σ′0(b) = b. (5.24)

There exists another 0d cell σ̃0, which is identical to σ0 except

σ̃0(a) = σ0(a)+n = a+n = σ′0(a) and σ̃0(b) = σ0(b)−n = b = σ′0(b). (5.25)

The new cell σ̃0 has two important properties:

• The first is that σ0 and σ̃0 have a common 1d neighbor, σ̃ = σ0 · (ab) = σ̃0 · (b a+n).

Since all other entries in σ0 and σ̃0 are self-identified mod n, both (ab) and (b a+n)

are adjacent. Thus the cells and reference sequences of step (2) are uniquely defined

and satisfy the standard adjacency requirements.

• The second is that σ̃0 differs from σ′0 at fewer sites than σ0 differs. If there are

m ≥ 1 locations where σ0(i)− σ′0(i) 6= 0, then there are only m− 2 locations where

σ̃0(i)− σ′0(i) 6= 0. Since all entries in 0d cells are self-identified mod n, and k entries

are greater than n, then m must be even and no larger than 2k. Hence, Algorithm 2

will complete after at most k iterations.

Therefore, Algorithm 2 computes the correct sign.

Therefore Algorithms 1 and 2 are together sufficient to find the relative orientation of any

two standard BCFW charts.

5.3.2 Generalized Decompositions

The plabic graph representation explained in Section 5.2.3 is convenient for the study of

standard BCFW charts. They are a subset of the generalized decompositions, so the rules for

defining reference charts and relative signs in Algorithms 1 and 2 will still apply. Since cases

(i)-(vi) in step (2) of Algorithm 1 cover all possible comparisons, the techniques introduced

in the previous section are in fact sufficient to find the relative orientation of any two charts.

However, there is an advantage to studying the generalized charts more closely. Cases

(iv)-(vi) in Algorithm 1 were distinctly different than the other three cases because the
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reference charts required two or three steps to meet at a common cell as opposed to only

one step in the earlier cases. Comparing the reference paths of the first three cases shows

that they define quadrilaterals, while cases (iv) and (v) define hexagons, and (vi) defines

an octagon. The relevant sections of the poset are depicted in Figure 5.14 with the solid

lines indicating the paths used in Algorithm 1, and the dashed lines showing the additional

edges that were not used (the finely dotted lines indicate edges that do not always exist).

We include the quadrilaterals from cases (i)-(iii) for completeness.

(cd) (ab)

(cd)(ab)

(bc) (ab)

(ac)(ab)

(bc) (ab)

(bc)(ac)

(ab) (bc)

(ab)(bc)

(bc)(ab)

(ac)

(ac)

(cd) (ab)

(bc)(bc)

(bd)(ac)

(ab) (cd)

(bc)

(ac)(bd)

(bc)

(bc) (cd)

(ab)(cd)

(ad)(bc)

(ad)

(bd)

(bc)(ab)

Figure 5.14: Reference paths from Algorithm 1 and interior quadrilaterals.

The extra transpositions permitted in generalized charts allow the hexagons and octagons

to be refined into quadrilaterals. Some of the internal quadrilaterals are equivalent to those

from cases (i)-(iii), but there are also new ones. The relative orientation of two charts which

differ only by one of the new quadrilaterals needs to be determined. To fix the signs, we

require that the refined polygons produce the same signs as above when split into charts

that differ by the interior quadrilaterals.

The hexagon from case (iv) can be split into a pair of quadrilaterals two ways. Either

way, the top quadrilateral appears in one of the first three cases, which implies that the

relative orientation around the lower quadrilateral must be −1 in order to agree with the

overall sign of +1 derived in Appendix I.

In case (v), the edges shown with dashed lines always exist, so the hexagon can be split

into three quadrilaterals. The one on the lower left is equivalent to case (iii), the lower right

is equivalent to case (ii), and the top quadrilateral is identical to case (i). Hence the product

of the three individual signs is (−1)3 = −1, in agreement with the result found in Appendix
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I. In some situations, the hexagon can also be split up using the finely dotted lines. Then

the top two hexagons are equivalent to cases (ii) and (iii), which implies that the relative

orientation around the lower quadrilateral must also be −1.

Finally, the octagon from case (vi) can be also be split into three quadrilaterals. The top

one matches case (iii), and the middle is equivalent to case (ii), so the relative orientation

around the lower one must be −1 to agree with Appendix 1. This is unsurprising considering

that the two transpositions are completely disjoint, so applying them in opposite order would

suggest that the forms differ by a minus signs, similar to example 5.2 in the Preview.

This exhausts all possible quadrilaterals that could appear in the poset. Hence the

relative orientation between any two charts that differ by a quadrilateral is −1. A significant

consequence of this result is the existence of a boundary operator which manifestly squares

to zero, as we discuss further in Section 5.4.

5.3.3 The Master Algorithm

Before proceeding to discuss various applications, we present a more efficient method to

compute the relative orientation of any two charts. In each iteration of Algorithm 1, every

edge in the reference charts enters into two comparisons (once to the corresponding initial

chart, and once to the other reference chart), while the edges in the initial charts enter only

one comparison (to the associated reference chart). Therefore, if we assign ±1 to each edge

such that the product of signs around any quadrilateral is −1, then the signs on the reference

chart edges will appear twice and hence square to 1, while the product of signs on the initial

chart edges will combine to produce the same overall sign as found by Algorithm 1. One

method for producing a consistent set of edge signs is presented in Appendix J [47].

When changing 0d cells with Algorithm 2, one should think of taking a closed loop that

traverses down and back each branch in Figure 5.13, thus encountering each edge twice.

Consequently, every edge sign appears twice, thus squaring to 1, so the only sign from this

step will be −1 due to the relative sign between the reference charts. However, one can

easily check that applying Algorithm 1 will introduce one additional copy of each branch, so

those edges should be included in the overall loop. The result of chaining several of these

together is a sawtooth path between the two 0d cells (the bold red line in Figure 5.15) that

contributes signs from each edge along the way and a minus sign for each 1d cell along

the path. Schematically, the combined loop will look like Figure 5.15. This method for

computing signs is summarized in the Master Algorithm.
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…
 

…
 

σ

σ0

… 
σ0’ 

Figure 5.15: The two 0d cells at the end of the paths are connected by a sawtooth path
between 1d and 0d cells. Combining this path with the input paths yields a closed loop.

Master Algorithm

Input: Two BCFW sequences of length d = k(n− k): w = (a1b1)(a2b2) . . . (adbd) and

w′ = (a′1b
′
1)(a′2b

′
2) . . . (a′db

′
d)

Output: ±1

Procedure:

1) If both BCFW paths terminate in the same 0-dimensional cell, then the relative

orientation is given by the product of edge signs along the paths. Equivalently, it

is the product of signs around the closed loop of length 2d obtained by traversing

down one path and back up the other.

2) If they terminate in different 0d cells, then the relative orientation also depends

on the signs along a path connecting the two 0d cells. One can obtain such a

path by a sawtooth pattern between 0d and 1d cells. The sign of this path is

given by the product of edge signs along the path, times (−1)m/2, where m is the

number of locations i satisfying σ0(i)− σ′0(i) 6= 0 (m/2 is the number of 1d cells in

the sawtooth path). Thus the relative orientation is given by the product of signs

along each BCFW path, times the connecting path sign. Equivalently, it is the

product of signs around the closed loop obtained by concatenating the three paths

in Figure 5.15, times the signs for the 1d cells.

So far, all the charts have been assumed to have minimal length, i.e. k(n− k) for charts

on the top cell. In other words, each transposition in the sequence increases the dimension

by 1. However, the Master Algorithm indicates that any path through the poset can be
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compared to any other path, even if they zig-zag up and down.

The algorithm has been verified by implementing it in Mathematica and applying it to

a variety of charts whose orientations are known by other methods. This includes pairs of

randomly generated NMHV charts of the type studied in [51], as well as higher k charts whose

matrix representatives have identical GL(k) gauge fixings; the latter can be compared by

directly equating the entries. In addition, the orientations of 500 distinct charts on the 10d

cell {5, 3, 8, 9, 6, 7, 12, 10, 14, 11} ∈ Gr(3, 10) were computed using an independent method

due to J. Bourjaily and A. Postnikov [48]. The results agreed perfectly with our algorithm.

5.4 Applications

In the remainder of this chapter, we will discuss several areas in which the relative orien-

tations are important. The end results are not surprising; they were anticipated and used

in several previous works. The new contribution of this section will be to put these ideas

on firm combinatorial footing, so for example, spurious poles in the tree contour will cancel

exactly instead of mod 2 as in [37].

5.4.1 Comparing Residue Orientations

We have shown that any two charts can be compared by taking the product of edge signs

around a closed loop in the poset of cells. This applies to any charts, even those corresponding

to generalized decompositions with non-adjacent transpositions. As explained in Section

5.2.3, one can follow any path through the poset by taking residues out of order in standard

BCFW charts and changing coordinates as needed. Due to the Master Algorithm, the final

sign on the residue depends only on the path, not on the intermediate choices of charts. We

will demonstrate this with a convincing example.

There is a standard chart on {4, 3, 6, 5} obtained by the path P1:

{4, 3, 6, 5} (23)−−→ {4, 6, 3, 5} (14)−−→ {5, 6, 3, 4}. (5.26)

Both transpositions are adjacent. The corresponding matrix representative and form are

C =

(
1 0 0 α1

0 1 α2 0

)
ω = dlogα2 ∧ dlogα1. (5.27)

Taking either coordinate to vanish lands in a codimension-1 boundary, so we are allowed to

take them to zero in either order. There is also a non-adjacent path P2 that ends in the
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same 0d cell:

{4, 3, 6, 5} (14)−−→ {5, 3, 6, 4} (23)−−→ {5, 6, 3, 4}. (5.28)

We will now evaluate the 0d residue along both paths using the coordinate chart (5.27),

ignoring the delta functions in (5.1). The convention for evaluating residues is to take a

contour around αi = 0 only when αi is the first variable in the form. Along P1 we first take

α2 → 0 and then α1 → 0, which is the order they appear in the form; hence the residue is

+1. We can follow P2 by taking α1 → 0 first, so we pick up a factor of −1 from reversing

the order of the wedge product. Thus the residue along P2 is −1. The relative sign is −1,

exactly as our algorithm predicts because the paths differ by a quadrilateral.

In terms of edge signs, there is a Z2 symmetry at every vertex that allows us to flip the

signs on all the attached edges without changing the overall sign of any closed loop. Since

the product of signs around a quadrilateral is −1, we can use the symmetry to fix the edge

signs so they exactly agree with the above computation at each step as in Figure 5.16. The

generalization to more complicated charts is straightforward.

+1

{5, 6, 3, 4}

{4, 6, 3, 5} {5, 3, 6, 4}

{4, 3, 6, 5}

+1 +1

-1

Figure 5.16: A set of edge weights that locally match the signs obtained by direct computa-
tion.

5.4.2 Boundary Operator

Define the signed boundary operator ∂ acting on a cell C to be the sum of all boundaries of

C weighted by the ±1 weight on the edge connecting each boundary to C,

∂C =
∑

i

w
(
C,C ′i

)
C ′i, (5.29)

where the sum is over all cells C ′i in the boundary of C and w(C,C ′i) = ±1 is the weight

on the edge between C and C ′i. Equivalently, we could take the sum over all cells of the
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appropriate dimension and define w(C,C ′i) = 0 whenever there is no edge between them.8

Applying the boundary operator again therefore yields a sum of codimension-2 boundaries

of C, each one weighted by the product of the sign on the edge connecting it to its parent

times the sign on its parent from the first application of ∂:

∂2C =
∑

i

∑

j(i)

w
(
C,C ′i

)
w
(
C ′i, C

′′
j(i)

)
C ′′j(i), (5.30)

where i runs over boundaries C ′i of C and j(i) runs over boundaries C ′′j(i) of C ′i. In order for

this result to vanish, every codimension-2 cell must appear twice and with opposite signs.

We will first show that each cell appears twice,9 and then it will be clear from our setup

that that signs are opposite. Let σ be the permutation labeling C. Each edge represents

a transposition acting on σ, so codimension-2 cells will arise from pairs of transpositions

(ab)(cd). If a, b, c, d are all distinct, then the transpositions can be applied in either order

and thus each cell appears twice. If only three are distinct, then there are a few cases to

consider:

(ac)(ab) ≡ (ab)(bc) σ(a) < σ(c) < σ(b)

(ac)(bc) ≡ (bc)(ab) σ(b) < σ(a) < σ(c)

(bc)(ac) ≡ (ab)(bc) and (ab)(ac) ≡ (bc)(ab) σ(a) < σ(b) < σ(c).

(5.31)

Thus there are two unique routes from C to every codimension-2 cell in ∂2C. Each pair of

routes defines a quadrilateral in the poset, which we have seen implies a relative minus sign

between the residues. Hence the boundary operator manifestly squares to zero.

5.4.3 Locality of Tree Contours

The n-particle NkMHV tree amplitude can be computed as a linear combination of residues

of (5.1) with coefficients ±1. Each residue appearing in the amplitude corresponds to a

4k-dimensional cell, whose the remaining degrees of freedom are fixed by the 4k bosonic

delta functions in (5.1). A tree contour is defined as any choice of contour on the top

cell that produces a valid representation of the tree amplitude; there are many equivalent

representations due to residue theorems. Tree-level BCFW recursion relations [121, 122, 123]

written in terms of on-shell diagrams [37] provide one technique to find an appropriate set

of cells, but the on-shell diagram formulation does not generate the relative signs between

8This is not a unique definition since the edge weights can be flipped without affecting signs around closed
loops, but any consistent set of signs such as those defined in Appendix J will be sufficient for our purposes.

9See also Section 6.3 of [37] for a similar proof that they appear twice.
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them. This will be resolved shortly.

The tree amplitude diverges for certain configurations of the external momenta; these are

called local poles — physically, they are interpreted as factorization channels in which an

internal propagator goes on-shell such that the diagram splits into two on-shell subamplitudes

L and R, e.g. all cyclic permutations of Figure 5.17.

…
1

j

…

n

j+1

L R

Figure 5.17: A factorization channel representing a physical, local pole.

In the Grassmannian residue representation, such poles correspond to cells of dimension

(4k − 1), i.e. boundaries of the 4k-dimensional cells. The amplitude is not manifestly local

in this formulation, meaning that some boundary cells translate to non-local poles, which are

momentum configurations with non-physical divergences. A key feature of the tree contour is

that all of the local poles appear precisely once in the residue representation of the amplitude,

while non-local poles appear twice [37]. It was conjectured that the two appearances of each

non-local pole should come with opposite signs so they cancel in the sum, similar to the

vanishing of ∂2. We are now equipped to prove that claim.

The boundary operator (5.29) can be used to define signed residue theorems. Even

though the sign of each term in (5.29) is not fixed, the relative sign between any two cells in

the boundary, say C ′1 and C ′2, will always agree whenever they both appear in the boundary

of a cell. It is easy to see that this is true if C ′1 and C ′2 share a common boundary since they

form a quadrilateral in the poset. The edges connecting C ′1 and C ′2 to their shared boundary

are the same no matter which C is used in the initial boundary operation, so the relative

sign between the edges connecting C to C ′1 and C ′2 must not depend on that choice either.

There is one situation in which they may not share a boundary, but in that case there will

always be a third cell C ′3 which has common boundaries with both of them; cf. case (v) in

Section 5.3.2. Now following the intuition of [37], we find residue theorems by requiring that

the boundary of every (4k + 1)-dimensional cell vanishes:

∂C(4k+1) =
∑

i

w
(
C(4k+1), C

(4k)
i

)
C

(4k)
i = 0. (5.32)
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We define the tree contour to encircle each enclosed singularity of the measure exactly

once, so any residue appearing in the amplitude will have a coefficient ±1. The residue

theorems (5.32) can change which poles are included in the contour, but they will never

cause residues to appear more than once. This implies that the relative sign between any

two cells in the amplitude must match the relative sign of those cells in the residue theorems.

Therefore, by the same logic that showed ∂2 = 0, it follows that any (4k − 1)-dimensional

cell appearing twice in the boundary of the tree amplitude will show up with opposite signs.

Hence every doubly-appearing pole cancels in the sum.

Note that we have presented these results in terms of the momentum twistor represen-

tation in which the amplitude is a linear combination of 4k-dimensional cells. The method

works analogously in the twistor version where the amplitude is described by (2n − 4)-

dimensional cells. We have checked numerically that this choice of signs correctly cancels

all paired poles for BCFW representations of the tree amplitude with n = 5, . . . , 13 and

k = 3, . . . , bn/2c.

5.4.4 Other Non-Physical Poles

After canceling all pairs of poles as described above, all remaining terms in the boundary

sum will have unit multiplicity as expected for local poles. However, some of the surviving

boundaries may yet correspond to non-physical divergences. For example, one representa-

tion of the 7-particle N2MHV amplitude (accessible by treeContour[7, 4] in the positroids

package [116]) has 52 terms in the boundary. Eight of them appear twice and hence cancel in

the sum leaving 36 unit multiplicity poles. One of those poles is labeled by the permutation

{4, 5, 6, 8, 9, 10, 14} and can be represented graphically diagram in Figure 5.18. The diagram

does not indicate any internal propagators going on-shell, so it does not represent a physical

singularity of the form of Figure 5.17.

1

2
3

4

5
6

7

Figure 5.18: A diagram for the permutation {4, 5, 6, 8, 9, 10, 14}. It represents an unphysical,
nonlocal singularity.

Since the boundary of the amplitude is ultimately expected to contain all (and only)
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physical poles, it is therefore not surprising that some Grassmannian representations of the

amplitude do not contain a pole of this form. However, we must then explain how such a

diagram can apparently contribute to the boundary of any representations. In fact, we will

see that momentum conservation forces this diagram to vanish.

To illustrate the result, let us group legs 6 and 7 together in Figure 5.18 so that it looks

schematically like Figure 5.17. We add two bivalent vertices on leg 6 and group those vertices

with leg 7 in the subamplitude L shown in Figure 5.19. The other subamplitude R contains

all other vertices from Figure 5.18. No extra internal propagators have gone on-shell since

leg 6 was already an on-shell external propagator and adding the two bivalent vertices does

not affect the momentum flowing through them.

6

7

…
5

1

L R

Figure 5.19: Grouping legs 6 and 7 in Figure 5.18 leads to a diagram of the form in Figure
5.17.

Recall that momentum conservation requires both L and R to be on-shell subamplitudes

in Figure 5.17, but in Figure 5.19 the left-hand subamplitude (Figure 5.20) does not have

support for generic “external” momenta and therefore vanishes. Consequently, the whole

diagram in Figure 5.18 is identically zero and can be neglected in the boundary sum whenever

it appears.

L

Figure 5.20: A closeup of the left-hand subamplitude in Figure 5.19.

The example in Figure 5.19 is a special case of a much more general phenomenon wherein

an apparently valid boundary term with unit multiplicity actually vanishes after taking into
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account momentum conservation on the left and right subamplitudes independently. Any

boundary labeled by a permutation with a self-identified element will have a lollipop in its

diagram and thus vanish by the same logic as above. In addition, for Grassmannian ampli-

tude representations with large enough k and n there will be many lollipop-free boundary

diagrams that factorize in the form of Figure 5.17 yet still fail to satisfy momentum con-

servation on the left or right. Those diagrams evaluate to zero due to the momentum delta

functions and can be dropped from the sum. Given an arbitrary diagram of the form of

Figure 5.17, it is straightforward to check whether the left and right subamplitudes have

kinematical support by computing their respective intersection numbers as defined in Sec-

tion 10 of [37]. If either intersection number is zero, then the whole diagram vanishes and

can be dropped from the boundary sum.10

After removing from the boundary of the amplitude any cells with an unsupported sub-

amplitude, the remaining terms will all correspond to physical, local poles of the form in

Figure 5.17 with non-vanishing residues. Note that there exist multiple equivalent repre-

sentations of amplitudes, so the subamplitudes that appear in the boundaries of different

representations of the full amplitude may not be manifestly identical. Residue theorems en-

sure that as long as the boundary cells can be grouped into subamplitudes as in Figure 5.17,

then every amplitude representation will have the same number of supported boundaries in

every channel of Figure 5.17. We have checked for multiple Grassmannian BCFW represen-

tations of n-particle NkMHV amplitudes with n = 5, . . . , 13 and k = 3, . . . , bn/2c that the

above method for removing unsupported poles produces boundaries with matching numbers

of terms in every factorization channel.

The same principles must be valid for each of the subamplitudes as well, namely they must

be local on-shell amplitudes. Therefore, given an arbitrary list of 4k-dimensional cells,11 one

can determine whether that list represents a physical amplitude by recursively checking that

the number of supported boundaries of each subamplitude matches the number of boundaries

of a known local BCFW bridge representation of the same amplitude. However, this is not a

very efficient solution in practice. We expect there should be a more straightforward method

to test whether a given set of cells forms an amplitude directly at the level of those cells and

their boundaries. We leave this as an open question for the reader to explore.

10This is the simplest method to check the kinematical support for subamplitudes with at least four
particles. A 3-particle subamplitude is either equivalent to a single black or white 3-vertex, in which case it
is non-vanishing due to special 3-particle kinematics, or it is zero as in Figure 5.20.

11Or (2n− 4)-dimensional cells in momentum space.
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Appendix A

Euler Density and the WZ Action

We begin by constructing the d = 2k dimensional Euler density for a metric gµν from its

definition:

E2k(gµν) =
1

2k
Rµ1ν1

ρ1σ1 . . . Rµkνk
ρkσk ερ1σ1...ρkσk ε

µ1ν1...µkνk

=
d!

2k
Rµ1ν1

ρ1σ1 . . . Rµkνk
ρkσkδµ1[ρ1

. . . δνkσk] . (A.1)

The Euler density can be written in terms of Ricci scalars and Ricci tensors plus terms

involving the Weyl tensor using the identity

Rµνρσ = Wµνρσ +
2

d− 2

(
gµ[ρRσ]ν − gν[ρRσ]µ

)
− 2

(d− 2)(d− 2)
Rgµ[ρgσ]ν , (A.2)

where Wµνρσ is the Weyl tensor. The 8-dimensional Euler density for conformally flat space

is then:

E8(gµν) = −16

9

(
Rµν

)4
+

8

9

(
(Rµν)

2
)2

+
32

21
R
(
Rµν

)3− 344

441
R2
(
Rµν

)2
+

208

3087
R4 + Weyl-terms .

(A.3)

We are interested in the Wess-Zumino action in a flat background, so we pick e−2tτηµν and

integrate t over the interval [0, 1]:

SWZ =

∫
d8x

∫ 1

0

dt τ E8(e−2tτηµν)

= 48

∫
d8x
[
3(�2τ)(∂τ)4+6(�τ)3(∂τ)2+36(�τ)2(∂∂τ∂τ∂τ)+16(�τ)(∂∂∂τ∂τ∂τ∂τ)

−12(�τ)(∂∂τ)2(∂τ)2 − 24(∂∂τ∂τ∂τ)(∂∂τ)2

+12(�τ)2(∂τ)4 − 12(∂∂τ)2(∂τ)4 − 20(�τ)(∂τ)6 + 15(∂τ)8
]
. (A.4)
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Appendix B

Diff×Weyl Invariants in d Dimensions

The diff×Weyl invariants in flat space are constructed as curvature scalars of the ‘hatted’

metric ĝµν = e−2τ ηµν . We need only work with the scalars constructed from the Ricci tensor,

Ricci scalar and covariant derivatives thereof, since the Riemann tensor can be eliminated

with (A.2).

The results for the diff×Weyl invariants are expressed in terms of the dilaton τ and its

derivatives. Since these terms will appear in the dilaton effective action, we use partial

integration to simplify the expressions. This is indicated with “
PI−→” below. The 2-derivative

terms were discussed in Section 2.2; here we present the details for 4, 6, and 8-derivative

Weyl invariants.

4 Derivatives

There are two 4-derivative invariants:

√
−ĝR̂2 PI−→ e−(d−4)τ

(
4(d− 1)2(�τ)2 − 4(d− 1)2(d− 2)(�τ)(∂τ)2

+ (d− 1)2(d− 2)2(∂τ)4
)
, (B.1)

√
−ĝ
(
R̂µν

)2 PI−→ e−(d−4)τ
(
d (d− 1)(�τ)2 − 1

2
(d− 2)(3d2 − 8d+ 8)(�τ)(∂τ)2

+
1

2
(d− 2)2(d2 − 4d+ 6)(∂τ)4

)
. (B.2)
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6 Derivatives

In general dimension d, there are 4 independent 6-derivative invariants:

√
−ĝR̂3 PI−→ e−(d−6)τ (d− 1)3

(
8(�τ)3 − 12(d− 2)(�τ)2(∂τ)2 + 6(d− 2)2(�τ)(∂τ)4

− (d− 2)3(∂τ)6
)
, (B.3)

√
−ĝR̂

(
R̂µν

)2 PI−→ 1

2
e−(d−6)τ (d− 1)

(
4(3d− 4)(�τ)3 + 4(d− 2)2(�τ)(∂∂τ)2

+ 8(d− 2)2(�τ)(∂∂τ∂τ∂τ)− 2(d− 2)(11d− 16)(�τ)2(∂τ)2

− 2(d− 2)3(∂∂τ)2(∂τ)2 + (13d− 18)(d− 2)2(�τ)(∂τ)4

− (d− 2)3(3d− 8)(∂τ)6
)
, (B.4)

√
−ĝR̂�̂R̂ PI−→ 1

2
e−(d−6)τ (d− 1)2

(
8(�2τ)(�τ) + 12(d− 2)(�τ)3 − 16(d− 2)(�τ)(∂∂τ)2

+ 8(d− 10)(d− 2)(�τ)(∂∂τ∂τ∂τ)− 16(d2 − 6d− 10)(�τ)2(∂τ)2

+ 4(d− 2)2(∂∂τ)2(∂τ)2 + (5d2 − 20d− 12)(d− 2)(�τ)(∂τ)4

− (d2 − 8d+ 20)(d− 2)2(∂τ)6
)
, (B.5)

√
−ĝ
(
R̂µν

)3 PI−→ 1

8
e−(d−6)τ

(
− 4(d3 − 6d2 + 4d+ 4)(�τ)3 + 12 d (d− 2)2(�τ)(∂∂τ)2

+ 24 d (d− 2)2(�τ)(∂∂τ∂τ∂τ)− 4(2d− 3)(d− 2)3(∂∂τ)2(∂τ)2

+ 4(d− 2)(2d3 − 17d2 + 26d− 6)(�τ)2(∂τ)2

− (d− 2)2(5d3 − 55d2 + 126d− 96)(�τ)(∂τ)4

+ (d− 2)4(d2 − 13d+ 32)(∂τ)6
)
. (B.6)

8 Derivatives

At the level of 8 derivatives, we have found 9 independent diff×Weyl invariants:

R4, R2(Rµν)
2, R(Rµν)

3,
(
(Rµν)

2
)2
, (Rµν)

4, (�R)2, (�Rµν)
2, R(∇µR)2, (Rµν)

2�R,(B.7)

where
√−ĝ is implicit and we use the shorthand notation

(Rµν)
2 ≡ RµνR

µν , (Rµν)
3 ≡ Rµ

νR
ν
ρR

ρ
µ , (Rµν)

4 ≡ Rµ
νR

ν
ρR

ρ
σR

σ
µ ,

(∇µR)2 ≡ (∇µR)(∇µR) , (�Rµν)
2 ≡ (�Rµν)(�R

µν) . (B.8)

Due to the complexity of the off-shell expressions in general d dimensions, we have opted to
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display only the d = 8 forms:

R̂4 PI−−→ 38416
[
(�τ)4 − 12(�τ)3(∂τ)2 + 54(�τ)2(∂τ)4 − 108(�τ)(∂τ)6 + 81(∂τ)8

]
, (B.9)

R̂2
(
R̂µν

)2 PI−−→ 784
[
5(�τ)4 + 9(�τ)2(∂∂τ)2 + 18(�τ)2(∂∂τ∂τ∂τ)− 69(�τ)3(∂τ)2 − 54(�τ)(∂∂τ)2(∂τ)2

+ 342(�τ)2(∂τ)4 + 81(∂∂τ)2(∂τ)4 − 108(�τ)(∂∂τ∂τ∂τ)(∂τ)2 − 756(�τ)(∂τ)6 + 567(∂τ)8
]
, (B.10)

R̂
(
R̂µν

)3 PI−−→ 28
[
13(�τ)4+108(�τ)(∂∂τ∂∂τ∂∂τ)+54(�τ)2(∂∂τ)2+648(�τ)(∂∂∂τ∂τ∂τ∂τ)+1728(�τ)2(∂∂τ∂τ∂τ)

− 972(∂∂τ∂τ∂τ)(∂∂τ)2 + 162(�2τ)(∂τ)4 + 276(�τ)3(∂τ)2 − 1620(�τ)(∂∂τ)2(∂τ)2 + 972(�τ)2(∂τ)4

+ 1215(∂∂τ)2(∂τ)4 − 1620(�τ)(∂∂τ∂τ∂τ)
(
∂τ)2 − 3024(�τ)(∂τ)6 + 2268(∂τ)8

]
, (B.11)(

(R̂µν)2
)2 PI−−→ 16

[
25(�τ)4 + 90(�τ)2(∂∂τ)2 + 81(∂∂τ)4 + 180(�τ)2(∂∂τ∂τ∂τ) + 324(∂∂τ∂τ∂τ)(∂∂τ)2

− 390(�τ)3(∂τ)2 − 702(�τ)(∂∂τ)2(∂τ)2 + 324(∂∂τ∂τ∂τ)2 + 2151(�τ)2(∂τ)4

+ 1134(∂∂τ)2(∂τ)4 − 1404(�τ)(∂∂τ∂τ∂τ)(∂τ)2 − 5292(�τ)(∂τ)6 + 3969(∂τ)8
]
, (B.12)(

R̂µν
)4 PI−−→ 8

[
31(�τ)4 + 324(�τ)(∂∂τ∂∂τ∂∂τ) + 81(∂∂τ)4 − 135(�τ)2(∂∂τ)2 + 1944(�τ)(∂∂∂τ∂τ∂τ∂τ)

+ 4590(�τ)2(∂∂τ∂τ∂τ)− 2592(∂∂τ∂τ∂τ)(∂∂τ)2 + 486(�2τ)(∂τ)4 + 1221(�τ)3(∂τ)2

− 3240(�τ)(∂∂τ)2(∂τ)2 + 324(∂∂τ∂τ∂τ)2 + 189(�τ)2(∂τ)4 + 1296(∂∂τ)2(∂τ)4

− 1620(�τ)(∂∂τ∂τ∂τ)(∂τ)2 − 1512(�τ)(∂τ)6 + 1134(∂τ)8
]
, (B.13)

(
�̂R̂
)2 PI−−→ 196

3

[
3(�2τ)2 + 48(�2τ)(�τ)2 + 48(�τ)(∂∂∂τ)2 − 60(�2τ)(∂∂τ)2+140(�τ)4+192(�τ)(∂∂∂τ∂∂τ∂τ)

+ 384(�τ)(∂∂τ∂∂τ∂∂τ)− 120(�2τ)(∂∂τ∂τ∂τ) + 108(∂∂τ)4 − 456(�τ)2(∂∂τ)2 − 84(�2τ)(�τ)(∂τ)2

+ 576(�τ)(∂∂∂τ∂τ∂τ∂τ) + 624(�τ)2(∂∂τ∂τ∂τ)− 432(∂∂τ∂τ∂τ)(∂∂τ)2 + 288(�2τ)(∂τ)4τ)

− 216(�τ)3(∂τ)2 − 72(�τ)(∂∂τ)2(∂τ)2 + 432(∂∂τ∂τ∂τ)2 + 2028(�τ)2(∂τ)4 − 864(∂∂τ)2(∂τ)4

+ 3600(�τ)(∂∂τ∂τ∂τ)(∂τ)2 − 2304(�τ)(∂τ)6 + 1728(∂τ)8
]
, (B.14)

(
�̂R̂µν

)2 PI−−→ 2

3

[
84(�2τ)2 + 777(�2τ)(�τ)2 + 156(�τ)(∂∂∂τ)2 − 762(�2τ)(∂∂τ)2 + 662(�τ)4

− 8448(�τ)(∂∂∂τ∂∂τ∂τ)− 1272(�τ)(∂∂τ∂∂τ∂∂τ)− 1524(�2τ)(∂∂τ∂τ∂τ) + 2376(∂∂τ)4

− 2454(�τ)2(∂∂τ)2 − 3432(�2τ)(�τ)(∂τ)2 − 8064(�τ)(∂∂∂τ∂τ∂τ∂τ)− 25 080(�τ)2(∂∂τ∂τ∂τ)

− 5616(∂∂τ∂τ∂τ)(∂∂τ)2 + 2016(�2τ)(∂τ)4 − 15012(�τ)3(∂τ)2 + 7488(�τ)(∂∂τ)2(∂τ)2

− 17712(∂∂τ∂τ∂τ)2 + 45444(�τ)2(∂τ)4 − 540(∂∂τ)2(∂τ)4

+ 59328(�τ)(∂∂τ∂τ∂τ)(∂τ)2 − 64512(�τ)(∂τ)6 + 48384(∂τ)8
]
, (B.15)

R̂
(
∇̂µR̂

)2 PI−−→ −1372

3

[
3(�2τ)(�τ)2 + 14(�τ)4 − 18(�τ)2(∂∂τ)2 − 18(�2τ)(�τ)(∂τ)2 − 108(�τ)2(∂∂τ∂τ∂τ)

+ 27(�2τ)(∂τ)4 − 150(�τ)3(∂τ)2 + 108(�τ)(∂∂τ)2(∂τ)2 + 594(�τ)2(∂τ)4

− 162(∂∂τ)2(∂τ)4 + 648(�τ)(∂∂τ∂τ∂τ)(∂τ)2 − 864(�τ)(∂τ)6 + 648(∂τ)8
]
, (B.16)(

R̂µν
)2�̂R̂ PI−−→ 56

3

[
15(�2τ)(�τ)2 + 27(�2τ)(∂∂τ)2 + 70(�τ)4 + 432(�τ)(∂∂∂τ∂∂τ∂τ) + 54(�2τ)(∂∂τ∂τ∂τ)

− 162(∂∂τ)4 + 180(�τ)2(∂∂τ)2 − 117(�2τ)(�τ)(∂τ)2 + 432(�τ)(∂∂∂τ∂τ∂τ∂τ) + 216(�τ)2(∂∂τ∂τ∂τ)

+ 297(�2τ)(∂τ)4 − 696(�τ)3(∂τ)2 − 108(�τ)(∂∂τ)2(∂τ)2 + 648(∂∂τ∂τ∂τ)2 + 3888(�τ)2(∂τ)4

− 486(∂∂τ)2(∂τ)4 + 3888(�τ)(∂∂τ∂τ∂τ)(∂τ)2 − 6048(�τ)(∂τ)6 + 4536(∂τ)8
]
. (B.17)

147



Appendix C

Dilaton Amplitudes in d Dimensions

Here we list the dilaton amplitudes at O(p4), O(p6), and O(p8) for n = 4, 5, . . . , 8 as derived

from the general d-dimensional dilaton effective action (2.49):

I O(p4) amplitudes:

A(4)
4 =

32

(d− 2)4

α

f 2d−4

(
s2 + t2 + u2

)
, A(4)

5 =
32 d

(d− 2)5

α

f 5d/2−5
P

(4)
5 ,

A(4)
6 =

32 d (3d− 2)

(d− 2)6

α

f 3d−6
P

(4)
6 , A(4)

7 =
128 d (d− 1)(3d− 2)

(d− 2)7

α

f 7d/2−7
P

(4)
7 ,

A(4)
8 =

128 d (d− 1)(3d− 2)(5d− 6)

(d− 2)8

α

f 4d−8
P

(4)
8 , (C.1)

where P
(4)
n ≡

∑

1≤i<j≤n
s2
ij .

I O(p6) amplitudes:

A(6)
4 =

128

(d− 2)4

β

f 2d−4

(
s3 + t3 + u3

)
,

A(6)
5 =

128(d+ 2)

(d− 2)5

β

f 5d/2−5
P

(6)
5 ,

A(6)
6 =

64(d+ 2)

(d− 2)6

β

f 3d−6

(
4 dP

(6)
6,A + (d+ 2)P

(6)
6,B

)
,

A(6)
7 =

256 d (d+ 2)

(d− 2)7

β

f 7d/2−7

(
(3d− 2)P

(6)
7,A + (d+ 2)P

(6)
7,B

)
,

A(6)
8 =

256 d (d+ 2)(5d− 2)

(d− 2)8

β

f 4d−8

(
2(d− 2)P

(6)
8,A + (d+ 2)P

(6)
8,B

)
, (C.2)
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where P
(6)
n,A =

∑
1≤i<j≤n

s3
ij and P

(6)
n,B =

∑
1≤i<j<k≤n

s3
ijk .

I O(p8) amplitudes:

A(8)
4 =

1

f2d−4

32

(d− 2)4
(9γ + γ̃)

(
s4 + t4 + u4

)
,

A(8)
5 =

1

f
5d
2
−5

32

(d− 2)5

(
[9(d+ 4)γ + dγ̃] P

(8)
5,A + 8γ̃ P

(8)
5,B

)

A(8)
6 =

1

f3d−6

16

(d− 2)6

(
4 [9(d+ 4)(d+ 1)γ + d (d− 1)γ̃] P

(8)
6,A +

[
9(d+ 4)2γ + d2γ̃

]
P

(8)
6,B

+16 (d+ 6) γ̃ P
(8)
6,C + 16 d γ̃ P

(8)
6,D

)

A(8)
7 =

1

f
7d
2
−7

64(d+ 1)

(d− 2)7

(
d [27 (d+ 4)γ + (3d+ 4)γ̃]P

(8)
7,A +

[
9(d+ 4)2γ + d (d− 8)γ̃

]
P

(8)
7,B

+16(d+ 6)γ̃ P
(8)
7,C + 16 d γ̃ P

(8)
7,D

)

A(8)
8 =

1

f4d−8

64 (d+ 1)

3(d− 2)8

(
2 d
[
81
(
2d2 + 7d− 4

)
γ +

(
18d2 + 7d− 4

)
γ̃
]
P

(8)
8,A

+ d
[
81(d+ 4)2 γ +

(
9d2 + 4d+ 8

)
γ̃
]
P

(8)
8,B

+
[
27 (d+ 1)(d+ 4)2 γ + d

(
3d2 − 29d− 16

)
γ̃
]
P

(8)
8,C

+ 288 (5d+ 2) γ̃ P
(8)
8,D + 24 d (5d+ 2) γ̃ P

(8)
8,E

)
, (C.3)

where

P
(8)
5,A =

∑

1≤i<j≤5

s4
ij , P

(8)
5,B = s2

12s
2
34 + perms , (C.4)

P
(8)
6,A =

∑

1≤i<j≤6

s4
ij , P

(8)
6,B =

∑

1≤i<j<k≤6

s4
ijk ,

P
(8)
6,C = s2

12s
2
34 + perms , P

(8)
6,D = s2

123s
2
45 + perms (C.5)

P
(8)
7,A =

∑

1≤i<j≤7

s4
ij , P

(8)
7,B =

∑

1≤i<j<k≤7

s4
ijk ,

P
(8)
7,C = s2

12s
2
34 + perms , P

(8)
7,D = s2

123s
2
456 + perms , (C.6)

P
(8)
8,A =

∑

1≤i<j≤8

s4
ij , P

(8)
8,B =

∑

1≤i<j<k≤8

s4
ijk , P

(8)
8,C =

∑

1≤i<j<k<l≤8

s4
ijkl ,

P
(8)
8,D = s2

12s
2
34 + perms , P

(8)
8,E = s2

123s
2
456 + perms . (C.7)

Here “+perms” includes all inequivalent permutations of the external particle labels.
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Appendix D

Free Massive Scalar: 1-Loop Dilaton

Scattering

Here we provide some practical details of the calculation of the 1-loop dilaton scattering

amplitudes in the example of the free massive scalar in d-dimensions.

Consider a 1-loop diagram with the n external outgoing momenta p1, p2, . . . , pn in

canonical order; all other diagrams of the same topology are obtained from the one with

canonical ordering by simple permutations of the momentum labels in the result. Momentum

conservation is enforced as
∑n

i=1 p
µ
i = 0 with all momenta outgoing as in Figure D.1.

l 

l -P j 

pj 

p2 

p1 

pN  

P j+1  

Figure D.1: All external momenta are outgoing. Loop momentum flows clockwise.

The n external ϕ’s connect to a Φ-loop via Φ2ϕk terms generated by expanding the action

(2.71) with Ω = f (d−2)/2 − ϕ, as discussed in Section 2.5.1. We denote a canonical diagram

with V vertices by {N1, N2, . . . , NV }, where Nj are the number of external ϕ’s at the jth

vertex and
∑V

j=1Nj = n. For example, two distinct box diagrams for n = 6 are shown in

Figure D.2.

Let ` be the loop momentum flowing into the vertex associated with p1. The momentum

of the jth internal propagator (going out of the jth vertex) is ` − Pj, where by momentum

conservation Pj ≡
N1+N2+...+Nj∑

r=1

pr.
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6 

2 
1 

3 
4 

5 4 
5 

6 

1 
2 3 

{2, 2, 1, 1} {2, 1, 2, 1}

Figure D.2: Two distinct n = 6 box diagrams with canonical labels.

The expression for a canonical diagram {N1, N2, . . . , NV } can be written

I{N1,N2,...NV } =
1

S

∫
dd`

(2π)d

V∏

j=1

VNj
−i

(`− Pj)2 +M2
, (D.1)

where VNj is the vertex factor (2.75) associated with the jth vertex. The symmetry factor

S takes into account exchanges of identical internal propagators. All diagrams we consider

have S = 1 except the bubble diagrams with exactly two vertices, which have S = 2.

It is useful to Feynman-parameterize (D.1) as

I{N1,N2,...NV } (D.2)

=
(−1)V+N

S

M2V

fN



Nj−1∏

n=0

(
4
d−2
− n

)


∫

dd`

(2π)d

(
V∏

j=1

∫ 1

0

dxj

)
Γ(V ) δ

(
1−

V∑
k=1

xk

)

[
V∑

m=1

xm ((`− Pm)2 +M2)

]V .

We are interested in the low-energy expansion of the amplitudes, so we expand the integrals

(D.2) in the Mandelstam invariants of the external momenta. Practically this is done by

shifting the loop-momentum ` such that the integrand can be expanded in powers of P2/(`2 +

M2), where

P2 ≡
( V∑

m=1

xmPm
)2

−
V∑

m=1

xmP2
m . (D.3)

A little algebra shows that the O(p2k) part of the diagram is

I
O(p2k)
{N1,N2,...NV } =

(−1)V+N

S

M2V

fN
Γ(V + k)

k!



Nj−1∏

n=0

(
4
d−2
− n

)


(∫

dd`

(2π)d
1

[`2 +M2]V+k

)

×
[( V∏

j=1

∫ 1

0

dxj

) (
P2
)k
δ
(

1−
V∑
k=1

xk

)]
. (D.4)
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The momentum integral is finite for V + k > d/2 and gives (in Euclidean signature)

∫ ∞

−∞

dd`

(2π)d
1

[`2 +M2]V+k
=

∫
dΩd−1

∫ ∞

0

d`

(2π)d
`d−1

[`2 +M2]V+k

=
1

(4π)d/2M2(V+k−d/2)

Γ(V + k − d/2)

Γ(V + k)
(D.5)

So we arrive at the Mathematica-friendly expression:

I
O(p2k)
{N1,N2,...NV } (D.6)

=
(−1)V+N

S

Γ(V + k − d/2)

k!

Md−2k

fN(4π)d/2



Nj−1∏

n=0

(
4
d−2
− n

)


[( V∏

j=1

1−
j−1∑
q=1

xq
∫

0

dxj

) (
P2
)k
]
.

To obtain the full contribution from diagrams of a given topology {N1, N2, ...NV }, we

must sum over inequivalent permutations of the external momenta, i.e. over arrangements

of the external momentum labels not related by cyclic permutations or reflection symmetry.

The final result can be written in terms of a basis of Mandelstam polynomials which are

fully symmetric in the external momenta, e.g. the O(p8) basis of (C.4)-(C.7).

Example: 4-point amplitude. Consider the 4-point amplitude at O(p8) in d = 8 di-

mensions. There are 3 types of diagrams, a bubble, a triangle and a square. The canonical

diagram {2, 1, 1} gives

1 

2 

4 

3 
=

s4

612 360 (4π)4 f 12
. (D.7)

There are
(

4
2

)
= 6 distinct permutations of the momentum labels of this diagram, and

summing them gives the result in the first row of Table D.1. The sum of the contributions

from the three classes of diagrams in the table gives the 4-point 1-loop amplitude at O(p8)

in 8d, as also listed in (2.57),

A(8)
4 =

17

3 061 800 (4π)4 f 12
. (D.8)
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Table D.1: Diagrams contributing to the 4-point 1-loop amplitude at O(p8) in 8d.

Diagram
Unique

Permutations
Symmetry

Factor

Partial
Amplitude at
O(p8) in 8d

6 1
s4 + t4 + u4

612 360 (4π)4 f 12

3 2
s4 + t4 + u4

382 725 (4π)4 f 12

3 1
s4 + t4 + u4

765 450 (4π)4 f 12
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Appendix E

Conformal Anomaly

The conformal anomaly in four-dimensional CFTs in the presence of background metric and

gauge field is well-known (see, for example, [124] for a summary). The goal here is to show

how this result arises from imposing the WZ consistency condition [78] and compatibility

with the anomaly for the global U(1) symmetry associated with the background gauge field.

The trace anomaly 〈Tµµ〉 should be a function only of the background fields gµν , Aµ, and

their derivatives. Since the gauge symmetry is broken, it is conceivable that one could have

new gauge-noninvariant contributions to the trace anomaly in addition to the standard W 2,

E4, (Fµν)
2, and �R terms.1 The possible new quantities should be constructed out of the

following list with various choices of the coefficients di:

d1∇µ(R)Aµ + d2R∇µA
µ + d3∇µ�A

µ + d4R
µν ∇µAν + d5R (Aµ)2 + d6RµνA

µAν

+ d7∇µ(Aµ)∇ν(A
ν) + d8∇µ(Aν)∇ν(A

µ) + d9∇µ(Aν)∇µ(Aν) + d10Aµ∇ν∇νAµ

+ d11A
ν∇µ∇νA

µ + d12(Aµ)2∇νA
ν + d13A

µAν ∇µAν + d14 (Aµ)4 . (E.1)

We will find, however, that none of these possibilities are allowed in the trace anomaly.

WZ consistency conditions

The full action S should satisfy the Wess-Zumino consistency conditions [78] (see also [125]

for further discussion). In particular, since the Weyl variation of S is the trace anomaly, the

WZ conditions amount to the requirement

∫
d4x

(
σ2δσ1 − σ1δσ2

)√−g 〈Tµµ〉 = 0 . (E.2)

1The �R “anomaly” is non-physical because it can be removed by a local counterterm, but we include it
here for completeness.
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The usual anomalies, W 2, E4, (Fµν)
2, and �R, satisfy that constraint, but it remains to

check whether any combination of the terms in (E.1) might also work. In fact, one can verify

that each of the following independently satisfies the constraint:

K1 = ∇µ

(
3Rµν Aν −RAµ + 3�Aµ

)
,

K2 = ∇µ

(
Aν ∇νA

µ
)
,

K3 = ∇µ

(
Aµ∇νA

ν
)
,

K4 = Aµ∇ν(F
µν) ,

K5 = ∇µ

(
Aµ (Aν)

2
)
,

K6 = (Aµ)4 .

(E.3)

Therefore based on the WZ consistency conditions alone, the trace anomaly can take the

form

cW 2 − aE4 + b′�R + κ0(Fµν)
2 + κ1K1 + κ2K2 + κ3K3 + κ4K4 + κ5K5 + κ6K6 , (E.4)

where the first four terms are the standard conformal anomalies in the presence of a back-

ground gauge field and curved background for a theory with central charges c and a [124].

The coefficient of (Fµν)
2 is generally an independent physical quantity, although for N = 1

theories it is fixed in terms of c and a.

Constraints on 〈Tµµ〉 from the gauge anomaly

Just as the Weyl anomaly does not depend on either τ or β, the gauge anomaly (3.3) should

also be a function of just the background fields. Thus there cannot be gauge dependent

fields in (E.4); under a gauge variation those terms generate τ -dependent contributions to

the gauge anomaly. To illustrate this point, let us consider an example. Suppose κ6 6= 0,

so 〈Tµµ〉 includes an (A)4 anomaly. Since
√−g(A)4 is Weyl invariant, the action whose

variation produces this anomaly is simply

SWZ,A4 = κ6

∫
d4x
√−g τ (A)4 . (E.5)

Now consider a gauge variation of this action, which should produce the gauge anomaly as

in (3.3)

δαSWZ,A4 ∼ κ6

∫
d4x
√−g τ (A)3∇α , (E.6)

155



which is τ -dependent. The other new quantities have similar issues; in fact, no linear combi-

nation of K1, . . . , K6 in (E.3) is gauge invariant. This forces us to set κ1 = κ2 = . . . = κ6 = 0

so that the trace anomaly is gauge invariant.

Since none of the new possibilities can contribute, we find that the trace anomaly for any

N = 1 superconformal theory is

〈Tµµ〉 = cW 2 − aE4 + b′�R− 6 c (Fµν)
2 , (E.7)

where the coefficient κ0 = −6c of the last term is fixed by supersymmetry as in [26, 22, 75]

(though with different normalization for the gauge field).
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Appendix F

Matrix Q Details

F.1 Derivation of detQ

Let Q
(0)
ij be the full (degenerate) n×n transformation matrix from B to C variables, i.e. Cα̂j =

BâiQ
(0)
ij . It can be obtained from (4.25) as

Q
(0)
ij =

∂Cα̂i
∂Bα̂j

. (F.1)

Define Q
(m)
ij to be the (n−m)× (n−m) matrix obtained from Q

(0)
ij by deleting the first m

rows and m columns. For example, the matrix needed in (4.31) is obtained by deleting the

first two rows and columns:

Q = Q(2) =




〈42〉
〈23〉〈34〉

1
〈34〉 0 0 · · · 0

1
〈34〉

〈53〉
〈34〉〈45〉

1
〈45〉 0 · · · 0

0 1
〈45〉

. . . . . . . . .
...

0 0
. . . 0

...
... 0 1

〈n−2,n−1〉
〈n,n−2〉

〈n−2,n−1〉〈n−1,n〉
1

〈n−1,n〉
0 · · · 0 1

〈n−1,n〉
〈1,n−1〉
〈n−1,n〉〈n1〉




. (F.2)

With the definition Q(n) = 1, we will prove the following claim by induction:

Claim: For i > 0 , detQ(n−i) = (−1)i−1 〈1, n− i〉
〈n− i, n− i+ 1〉 · · · 〈n1〉 . (F.3)
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Proof: For i = 1, we trivially have

Q(n−1) =
(

〈1,n−1〉
〈n−1,n〉〈n1〉

)
=⇒ detQ(n−1) =

〈1, n− 1〉
〈n− 1, n〉〈n1〉 , (F.4)

i.e. the determinant satisfies the claim (F.3).

For i = 2, the determinant of

Q(n−2) =

( 〈n,n−2〉
〈n−2,n−1〉〈n−1,n〉

1
〈n−1,n〉

1
〈n−1,n〉

〈1,n−1〉
〈n−1,n〉〈n1〉

)
. (F.5)

is calculated easily with a single application of the Schouten identity, and the answer is

detQ(n−2) = − 〈1, n− 2〉
〈n− 2, n− 1〉〈n− 1, n〉〈n1〉 . (F.6)

The result satisfies the claim. This establishes the base of the induction.

For the inductive argument, assume that the claim (F.3) is satisfied for all i < m < n.

We will prove it for i = m. The matrix Q(n−m) is of the form

Q(n−m) =

A Derivation of det Q

Let Q
(0)
ij be the full transformation matrix from C to D variables, i.e. D↵̂j = CâiQ

(0)
ij . It

can be obtained from (3.7) as

Q
(0)
ij =

@D↵̂i

@C↵̂j

(A.1)

Define Q
(m)
ij to be the matrix obtained from Q

(0)
ij by deleting the first m rows and m columns.

For example, the matrix needed in (3.13) is obtained by deleting the first two rows and

columns:

Qîĵ = Q
(2)

îĵ
=

0
BBBBBBBBBB@

h42i
h23ih34i

1
h34i 0 0 · · · 0

1
h34i

h53i
h34ih45i

1
h45i 0 · · · 0

0 1
h45i

. . . . . . . . .
...

0 0
. . . 0

...
... 0 1

hn�2,n�1i
hn,n�2i

hn�2,n�1ihn�1,ni
1

hn�1,ni
0 · · · 0 1

hn�1,ni
h1,n�1i

hn�1,nihn1i

1
CCCCCCCCCCA

. (A.2)

With the definition Q(n) = 1, we will prove the following claim by induction:

Claim: For i > 0 , det Q(n�i) = (�1)i�1 h1, n� ii
hn� i, n� i + 1i · · · hn1i . (A.3)

Proof: For i = 1, we trivially have

Q(n�1) =
⇣

h1,n�1i
hn�1,nihn1i

⌘
, =) det Q(n�1) =

h1, n� 1i
hn� 1, nihn1i , (A.4)

i.e. the determinant satisfies the claim (A.3).

For i = 2, the determinant of

Q(n�2) =

 hn,n�2i
hn�2,n�1ihn�1,ni

1
hn�1,ni

1
hn�1,ni

h1,n�1i
hn�1,nihn1i

!
. (A.5)

is calculated easily with a single application of the Schouten identity, and the answer is

det Q(n�2) = � h1, n� 2i
hn� 2, n� 1ihn� 1, nihn1i . (A.6)

The result satisfies the claim.

A B C D E Q(n�m) Q(n�m+1) Q(n�m+2) (A.7)

14

A Derivation of det Q

Let Q
(0)
ij be the full transformation matrix from C to D variables, i.e. D↵̂j = CâiQ

(0)
ij . It

can be obtained from (3.7) as

Q
(0)
ij =

@D↵̂i

@C↵̂j

(A.1)

Define Q
(m)
ij to be the matrix obtained from Q

(0)
ij by deleting the first m rows and m columns.

For example, the matrix needed in (3.13) is obtained by deleting the first two rows and

columns:

Qîĵ = Q
(2)

îĵ
=

0
BBBBBBBBBB@

h42i
h23ih34i

1
h34i 0 0 · · · 0

1
h34i

h53i
h34ih45i

1
h45i 0 · · · 0

0 1
h45i

. . . . . . . . .
...

0 0
. . . 0

...
... 0 1

hn�2,n�1i
hn,n�2i

hn�2,n�1ihn�1,ni
1

hn�1,ni
0 · · · 0 1

hn�1,ni
h1,n�1i

hn�1,nihn1i

1
CCCCCCCCCCA

. (A.2)

With the definition Q(n) = 1, we will prove the following claim by induction:

Claim: For i > 0 , det Q(n�i) = (�1)i�1 h1, n� ii
hn� i, n� i + 1i · · · hn1i . (A.3)

Proof: For i = 1, we trivially have

Q(n�1) =
⇣

h1,n�1i
hn�1,nihn1i

⌘
, =) det Q(n�1) =

h1, n� 1i
hn� 1, nihn1i , (A.4)

i.e. the determinant satisfies the claim (A.3).

For i = 2, the determinant of

Q(n�2) =

 hn,n�2i
hn�2,n�1ihn�1,ni

1
hn�1,ni

1
hn�1,ni

h1,n�1i
hn�1,nihn1i

!
. (A.5)

is calculated easily with a single application of the Schouten identity, and the answer is

det Q(n�2) = � h1, n� 2i
hn� 2, n� 1ihn� 1, nihn1i . (A.6)

The result satisfies the claim.
0
BBBBBBBBBBB@

A B 0 0 · · · 0

B C D 0 · · · ...

0 D

0 0

...
... Q(n�m+2)

0 0

1
CCCCCCCCCCCA

. (A.7)

14

(F.7)

with

A = 〈n−m+2,n−m〉
〈n−m,n−m+1〉〈n−m+1,n−m+2〉 , B = 1

〈n−m+1,n−m+2〉 etc. (F.8)

To evaluate the determinant, we expand on the first row of (F.7), and subsequently on the

second row, to find

detQ(n−m) = A detQ(n−m+1) −B2 detQ(n−m+2) . (F.9)

By the inductive hypothesis, we may replace the two determinants on the right-hand side
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and obtain:

detQ(n−m) = (−1)m
[

〈n−m+2,n−m〉
〈n−m,n−m+1〉〈n−m+1,n−m+2〉

〈1,n−m+1〉
〈n−m+1,n−m+2〉···〈n1〉

+ 1
〈n−m+1,n−m+2〉2

〈1,n−m+2〉
〈n−m+2,n−m+3〉···〈n1〉

]

= (−1)m

〈n−m+1,n−m+2〉
〈1,n−m+1〉〈n−m+2,n−m〉+〈1,n−m+2〉〈n−m,n−m+1〉

〈n−m,n−m+1〉···〈n1〉

= (−1)m−1 〈1, n−m〉
〈n−m,n−m+ 1〉 · · · 〈n1〉 .

(F.10)

In the last line we used the Schouten identity. Thus by induction we have proven the claim

(F.3). �

The determinant given in (4.31) is simply the result for i = n− 2, so

| detQ(2)| = 〈12〉
〈23〉 · · · 〈n1〉 =

〈12〉2
〈12〉 · · · 〈n1〉 . (F.11)

F.2 Verification of Q−1

The square, symmetric matrix Q is given by (for î, p̂ ∈ [3, n])

Qîp̂ =





〈̂i+1,̂i−1〉
〈̂i−1,̂i〉〈̂i,̂i+1〉 , p̂ = î

1
〈̂i,̂i+1〉 , p̂ = î+ 1

1
〈̂i−1,̂i〉 , p̂ = î− 1

0 , else.

(F.12)

The determinant is non-vanishing as shown above, so it is invertible. We claim that its

inverse is given by (for p̂, ĵ ∈ [3, n])

Q−1

p̂ĵ
=

{
− 〈1ĵ〉〈2p̂〉〈12〉 , ĵ ≥ p

− 〈1p̂〉〈2ĵ〉〈12〉 , ĵ ≤ p .
(F.13)

It is straightforward to verify the claim by a direct computation of Qîp̂Q
−1

p̂ĵ
. The sum over p̂
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produces three terms due to the three non-zero entries in each row of (F.12).

Qîp̂Q
−1

p̂ĵ
=

1

〈̂i− 1, î〉

{
− 〈1ĵ〉〈2,̂i−1〉

〈12〉 , ĵ ≥ î

− 〈1,̂i−1〉〈2ĵ〉
〈12〉 , ĵ < î

}

p̂=î−1

+
〈̂i+ 1, î− 1〉
〈̂i− 1, î〉〈̂i, î+ 1〉

{
− 〈1ĵ〉〈2,̂i〉〈12〉 , ĵ ≥ î

− 〈1,̂i〉〈2ĵ〉〈12〉 , ĵ < î

}

p̂=î

+
1

〈̂i, î+ 1〉

{
− 〈1ĵ〉〈2,̂i+1〉

〈12〉 , ĵ > î

− 〈1,̂i+1〉〈2ĵ〉
〈12〉 , ĵ ≤ î

}

p̂=î+1

.

(F.14)

Examining the limits on ĵ in each term, we see that there are three cases that should be

considered: ĵ < î, ĵ = î, ĵ > î. We begin with ĵ < î. Taking the relevant pieces from each of

the three terms in (F.14), we find

Qîp̂Q
−1

p̂ĵ
|ĵ<î = −〈2ĵ〉〈1, î− 1〉〈̂i, î+ 1〉+ 〈2ĵ〉〈1̂i〉〈̂i+ 1, î− 1〉+ 〈2ĵ〉〈1, î+ 1〉〈̂i− 1, î〉

〈12〉〈̂i− 1, î〉〈̂i, î+ 1〉

= −−〈2ĵ〉〈1, î+ 1〉〈̂i− 1, î〉+ 〈2ĵ〉〈1, î+ 1〉〈̂i− 1, î〉
〈12〉〈̂i− 1, î〉〈̂i, î+ 1〉

= 0 , (F.15)

where we used the Schouten identity to combine the first two terms. Note that when î = n,

the third term in (F.15) would not be present in the sum as there is no p̂ = n+ 1. This does

not lead to any inconsistencies because 〈1, n+ 1〉 ≡ 〈1, 1〉 = 0, so the term vanishes anyway.

A similar computation shows that the product also vanishes for ĵ > î (here the first î = 3

term vanishes as needed since there is no p̂ = 2).

Thus we are left to consider the case when ĵ = î. Replacing all the ĵ’s with î’s, we find

Qîp̂Q
−1

p̂ĵ
|ĵ=î = −〈1̂i〉〈2, î− 1〉〈̂i, î+ 1〉+ 〈1̂i〉〈2̂i〉〈̂i+ 1, î− 1〉+ 〈2̂i〉〈1, î+ 1〉〈̂i− 1, î〉

〈12〉〈̂i− 1, î〉〈̂i, î+ 1〉

= −−〈1̂i〉〈2, î+ 1〉〈̂i− 1, 1〉+ 〈2̂i〉〈1, î+ 1〉〈̂i− 1, î〉
〈12〉〈̂i− 1, î〉〈̂i, î+ 1〉

= 1 , (F.16)

where we have used the Schouten identity once to combine the first two terms, and again

to combine the remaining terms (as above, the respective î = 3, n terms cause no issues).

Hence Qîp̂Q
−1

p̂ĵ
= δîĵ, so Q−1 is the inverse of Q as claimed.
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Appendix G

Calculations of Higher-Dimensional

Residues

We present here a more detailed evaluation of the NMHV residues of the momentum twistor

Grassmannian integral (4.16).

The starting point is the integral (4.39) with contour γabcde, as defined in Section 4.4.1.

To begin with, fix the GL(1) redundancy by setting

ca = c(0)
a 6= 0 . (G.1)

We can use a delta-function δ(ca − c
(0)
a ) to enforce this choice. It comes with a Jacobian

factor c
(0)
a that compensates the little-group scaling.

Next we turn our attention to the bosonic delta functions δ4(ciZi). They enforce the

condition
∑n

i=1 ci Zi = 0. Since the Zi’s are 4-component vectors, we can use Cramer’s rule

(4.42) to write all Zj for j 6∈ {b, c, d, e} in terms of Zb, Zc, Zd, and Ze:

〈
bcde

〉
Zj = −

(〈
cdej

〉
Zb +

〈
dejb

〉
Zc +

〈
ejbc

〉
Zd +

〈
jbcd

〉
Ze

)
. (G.2)

For generic external data, Zb, Zc, Zd, and Ze are linearly independent, so for
∑n

i=1 ci Zi = 0

to hold, the coefficients of each must vanish. This gives four constraints

cb =
∑

j 6=b,c,d,e
cj

〈
cdej

〉
〈
bcde

〉 =: c
(0)
b , cc =

∑

j 6=b,c,d,e
cj

〈
dejb

〉
〈
bcde

〉 =: c(0)
c ,

cd =
∑

j 6=b,c,d,e
cj

〈
ejbc

〉
〈
bcde

〉 =: c
(0)
d , ce =

∑

j 6=b,c,d,e
cj

〈
jbcd

〉
〈
bcde

〉 =: c(0)
e .

(G.3)
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Thus we can write

δ4
(
ciZi

)
=

1

〈bcde〉
∏

i=b,c,d,e

δ
(
ci − c(0)

i

)
. (G.4)

Now, enforcing a delta function δ(z− z0) can also be done by re-interpreting the integral

as a contour integral
∮

dz
z−z0 with a contour that surrounds only z0. We can therefore write

the NMHV Grassmannian integral as

Iγabcden;1 (Z) =

∮

Γabcde

d1×nC
∏

i=a,b,c,d,e

(
ci − c(0)

i

) ∏
j 6=a,b,c,d,e

cj
× δ(4)

(
ciηi
)

ca cb cc cd ce
, (G.5)

where Γabcde is the n-dimensional contour that encircles each c
(0)
a,b,c,d,e as well as cj = 0 for

each j 6= a, b, c, d, e. This contour extends the (n− 5)-dimensional contour γabcde to encircle

the delta function singularities in the other five dimensions.

It is straightforward to evaluate the contour integral (G.5) and obtain the residue. By

the choice of contour Γabcde, all ci’s vanish on the pole except ca,b,c,d,e, so we find from (G.1)

and (G.3) that

ca cb cc cd ce →
(

c
(0)
a〈

bcde
〉
)5〈

abcd
〉〈
bcde

〉〈
cdea

〉〈
deab

〉〈
eabc

〉
. (G.6)

Including all the Jacobian factors, the residue is therefore:

c
(0)
a〈

bcde
〉
δ(4)

((
c

(0)
a

/〈
bcde

〉)(〈
bcde

〉
ηa +

〈
cdea

〉
ηb +

〈
deab

〉
ηc +

〈
eabc

〉
ηd +

〈
abcd

〉
ηe

))

(
c

(0)
a

/〈
bcde

〉)5〈
bcde

〉〈
cdea

〉〈
deab

〉〈
eabc

〉〈
abcd

〉 .

(G.7)

We can pull out the multiplicative factor from the fermionic delta function, which combines

with the Jacobians to exactly cancel the extra factor in the denominator. Hence the residue

is simply the result given in (4.44): Iγabcden;1 =
[
abcde

]
. Note that this is independent of

the gauge choice c
(0)
a . The expression (4.44) is manifestly antisymmetric in the five labels

a, b, c, d, e.

We label the residue by the n− 5 values i1, i2, . . . , in−5 6= a, b, c, d, e as
{
i1, i2, . . . , in−5

}
.

This label is fully anti-symmetric and is related to the five-bracket via

Iγabcden;1 =
1

(n− 5)!
εa b c d e i1 i2 ... in−5 {i1, i2, . . . , in−5} =

[
abcde

]
. (G.8)
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To see this, we recall the following results from the calculus of higher-dimensional contour

integrals.1

Suppose we have a set of m functions fi(x) of m complex variables x = x1 . . . , xm, which

have an isolated common zero at the origin fi(0) = 0 and are holomorphic in a neighborhood

of a ball around the origin. Let g(x) be holomorphic in the same region and non-vanishing

at x = 0. Then we have a meromorphic m-form

ω =
g(x)dx1 ∧ . . . ∧ dxm
f1(x) . . . fm(x)

(G.9)

which has a simple pole at the origin. We define the residue:

Resx=0 = (2π i)−m
∫

Γ

ω =
g(0)

Jf (0)
, (G.10)

where Jf (x) is the Jacobian determinant for the functions f

Jf (x) =
∂(f1, . . . , fm)

∂(x1, . . . , xm)
. (G.11)

The contour Γ is given by

Γ = {x : |fi(x)| = εi} (G.12)

and oriented such that

d(argf1) ∧ . . . ∧ d(argfm) (G.13)

is positively oriented with respect to the volume form in (G.9). In other words, any sign that

would be produced by (G.13) is compensated by reversing one of the circles in Γ. Therefore,

the only signs can come from the Jacobian (G.11).

Now we are set to compute residues of the form (G.10). From (G.5), we have

g(c) = (2π i)−(n−5) δ(4)
(
ciηi)

ca cb cc cd ce
, (G.14)

where we have absorbed some numerical factors in the normalization for future simplic-

ity. As a convention, we assign the first five functions f1(c), . . . , f5(c) to the delta function

1The derivation given here is similar to the example given in Section 2.3 of [82]; see also Section 5.1 of
[40]. For a mathematical reference, see Chapter 5 of [126].
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singularities, i.e.

f1 = ca − c(0)
a , f2 = cb − c(0)

b , f3 = cc − c(0)
c , f4 = cd − c(0)

d , f5 = ce − c(0)
e . (G.15)

The rest of the fi’s are assigned to the n − 5 cj’s that vanish at the location of the pole

encircled by Γ such that fi = 0 corresponds to the vanishing of the jth minor of C.

The contour is oriented such that we first take f1 → 0, then f2 → 0, etc, which we can

use to define a labeling of the residues by the indices of the ci’s; for example, we can assign

them in increasing order

f6 = c1 , f7 = c2 , f8 = c3 , . . .→ Res = {1, 2, 3, . . .} , (G.16)

or with a different ordering τ on the labels i 6= a, b, c, d, e,

f6 = cτ(1) , f7 = cτ(2) , f8 = cτ(3) , . . .→ Res = {τ(1), τ(2), τ(3), . . .}
= sgn(τ)× {1, 2, 3, . . .} ,

(G.17)

where sgn(τ) is the signature of the permutation of the (n − 5) indices i 6= a, b, c, d, e. The

antisymmetry of the Jacobian Jf in (G.10) implies that the residue labels are antisymmetric

in their indices. Similarly, the residue is antisymmetric in the labels a, b, c, d, e. It follows

that the result is (G.8).
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Appendix H

Pole Structure of 6-Point ABJM

Amplitude

The result (4.128) appears to have a triple-pole at
〈
2356

〉
= 0. We show here that it is

actually no worse than at most a simple pole.

We first note that it follows directly from (4.91) that

〈
2356

〉
= 0 ←→ 〈〈25〉〉〈〈63〉〉+ 〈〈26〉〉〈〈35〉〉 = 0 , (H.1)

and employing the Schouten identity we also have

0 = 〈〈14〉〉
〈
2356

〉
= −〈〈13〉〉

〈
5642

〉
− 〈〈15〉〉

〈
6423

〉
= 〈〈13〉〉〈〈52〉〉〈〈64〉〉+ 〈〈15〉〉〈〈63〉〉〈〈42〉〉 . (H.2)

Thus, by (H.1) and (H.2), the D that appears in the localization of the ci’s become a perfect

square

D = −〈〈13〉〉〈〈24〉〉〈〈35〉〉〈〈46〉〉〈〈51〉〉〈〈62〉〉 〈2356〉→0−−−−−→ 〈〈13〉〉2〈〈52〉〉2〈〈46〉〉2 . (H.3)

Now, we examine how each c±i behaves in the limit
〈
2356

〉
= ε→ 0. With our gauge choice

c1 =
〈
2356

〉
it is clear that c±1 = O(ε) and by (4.123) we also have c±4 = O(ε). Now, the four

other ci’s are given by (4.121) and they may appear to be finite as ε→ 0; however, an extra

cancellation can occur between the two terms in the numerator. To see this, consider the

example of c±3 :

c±3 =

〈
5612

〉
√
D

(√
D ∓ 〈〈13〉〉〈〈52〉〉〈〈64〉〉

) 〈2356〉=ε→0−−−−−−−→
{
O(ε)

O(1)
, (H.4)

where the limit follows from (H.3) and the outcome, O(ε) and O(1), depends on the relative
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sign ± between the two terms and the sign of 〈〈13〉〉〈〈52〉〉〈〈64〉〉. This will be the same for

c2, c5, and c6, and it can easily be demonstrated, using (H.1) and (H.2), that in the limit

〈2356〉 = ε→ 0, we will either have

c+
2 , c

+
3 , c

+
5 , c

+
6 = O(ε) and c−2 , c

−
3 , c

−
5 , c

−
6 = O(1) (H.5)

or vice versa. Suppose 〈〈13〉〉〈〈52〉〉〈〈64〉〉 is such that we have the case (H.5): then

δ(3)
(
c+.η)

c+
2 c

+
3 c

+
4

〈2356〉=ε→0−−−−−−−→ O(ε3)

O(ε3)
∼ O(1) , (H.6)

while
δ(3)
(
c−.η)

c−2 c
−
3 c
−
4

〈2356〉=ε→0−−−−−−−→ O(ε3) or O(ε2) or O(ε1) or O(1)

O(ε)
, (H.7)

i.e. it is no worse than O(1/ε), which signifies the (expected) simple pole. Thus we have

shown that despite the apparent 1/ε3 pole in the limit 〈2356〉 = ε → 0 of the n = 6 result

(4.128), there is at most a simple pole.
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Appendix I

Details for Algorithm 1

In this appendix, we derive the reference sequences and compute the relative signs for step (2)

of Algorithm 1. Many of the transformations presented here were computed independently

by R. Karpman who found agreement with these results [115].

i) (ab) vs. (cd)

This case was discussed in the main text so we do not repeat the argument here.

ii) (ab) vs. (ac)

These transpositions share a leg, so they do not commute as simply as in the previous

case. Nonetheless, in this case we can use the fact that both (ab) and (ac) are allowed

transpositions on the initial permutation to find a common parent cell. Specifically,

since (ab) was the last transposition before σ, we know a < b ≤ σ(a) < σ(b) ≤ a+n

and there is no q ∈ (a, b) such that σ(q) ∈ (σ(a), σ(b)). Similarly from (ac) we know

a < c ≤ σ′(a) < σ′(c) ≤ a+n and there is no q ∈ (a, c) such that σ′(q) ∈ (σ′(a), σ′(c)).

Moreover, since σ and σ′ come from the same initial permutation, we also know that

σ(a) = σ′(b), σ(b) = σ′(c), σ(c) = σ′(a), and σ(q) = σ′(q) for all other legs.

To show that (bc) can be applied to σ, we need to show that σ(c) < σ(b) and that

there is no q ∈ (b, c) such that σ(q) ∈ (σ(c), σ(b)). The condition that σ(c) < σ(b) is

satisfied since it is equivalent to σ′(a) < σ′(c), and since no legs are touched between

b and c, the condition on q ∈ (a, c) implies that no q ∈ (b, c) has σ(q) ∈ (σ(c), σ(b)).

Thus (bc) is an allowed transposition on σ, so the path w̃ exists.

We also need to show that (ab) can be applied to σ′, so we must show σ′(b) < σ′(a) and

that there is no q ∈ (a, b) such that σ′(q) ∈ (σ′(b), σ′(a)). Since b ∈ (a, c), we must have

either σ′(b) < σ′(a) < σ′(c) or σ′(a) < σ′(c) < σ′(b). Since σ(a) < σ(b)⇒ σ′(b) < σ′(c),

only the former condition is allowed, hence σ′(b) < σ′(a). Furthermore, there is no
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q ∈ (a, b) such that σ′(q) ∈ (σ′(b), σ′(c)), and (σ′(b), σ′(a)) is a subset of that range.

Hence (ab) is allowed on σ′, and w̃′ exists.

Note that the above analysis was valid for any charts, not just adjacent ones. How-

ever, to compute the relative sign, we will focus on the restricted set of charts for which

all q ∈ (a, c) satisfy σ′(q) ≡ q mod n, namely the standard BCFW charts. The corre-

sponding plabic graphs can be manipulated to a common layout using the equivalence

moves (E1) and (E2). The results are displayed in Figure I.1.

αj+1

αj

αjαj+1

αj

a b c a b c

βj+1

βj

βj

βj+1

a b c a b c

Figure I.1: Graph manipulations used to compare the transposition sequences in case (ii).

We find that the graphs are equivalent only with the identifications

βj = αjαj+1, βj+1 = αj. (I.1)

Plugging this into the dlog forms and using that

dlogαj ∧ dlog(αjαj+1) = dlogαj ∧
(

dlogαj + dlogαj+1

)
= − dlogαj+1 ∧ dlogαj,

(I.2)

we find that the two forms are oppositely oriented.

iii) (ac) vs. (bc)

This situation is analogous to case (ii), so we can skip directly to comparing the

graphs. Restricting again to the standard BCFW situation where σ(q) ≡ q mod n for
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all q ∈ (a, c), we can perform a sequence of merge/delete and GL(1) rotations on the

corresponding plabic graphs as in Figure I.2.

αj+1

αj

a b c a b c
αj+1

αj

βj+1

βj

βj

βjβj+1

a b c a b c

Figure I.2: Graph manipulations used to compare the transposition sequences in case (iii).

We therefore identify

βj = αj+1, βj+1 = αj/αj+1. (I.3)

Then using that dlog(αj/αj+1) = dlogαj − dlogαj+1, we find that the two forms are

oppositely oriented.

iv) (ab) vs (bc)

Using only adjacent transpositions, σ and σ′ do not have a common parent cell.

However, we can show that ρ = σ · (bc)(ab) = σ′ · (ab)(bc) is a shared grandparent.

From the initial (ab), we know a < b ≤ σ(a) < σ(b) ≤ a+n, while from the initial

(bc), we have b < c ≤ σ′(b) < σ′(c) ≤ b+n. From their shared origin cell, we also have

σ(a) = σ′(c), σ(b) = σ′(a), and σ(c) = σ′(b). We will focus on adjacent charts wherein

σ(q) = σ′(q) ≡ q mod n for all q ∈ (a, b) ∪ (b, c). The general case is covered in Section

5.3.2.

Since σ′(b) < σ′(c) is equivalent to σ(c) < σ(a), and σ(a) < σ(b), we can apply (bc)

to reach σ̃ = σ · (bc). Now σ̃(b) < σ̃(a) < σ̃(c), so (ab) is a valid transposition, which

arrives at ρ. Hence the reference chart w̃ exists.
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On the other side, σ(a) < σ(b) is equivalent to σ′(c) < σ′(a), and σ′(b) < σ′(c), so (ab)

can be applied to σ′, yielding σ̃′ = σ′ · (ab). Since σ̃′(a) < σ̃′(c) < σ̃′(b), we can apply

(bc), which also arrives at ρ. Thus w̃′ is also a valid reference chart.

Finally, we can compare the plabic graphs to find their relative orientation. After

performing a square move (E3) on the bottom right diagram in Figure I.3, we find

βj =
αj+1αj+2

αj + αj+2

, βj+1 = αj + αj+2, βj+2 =
αjαj+1

αj + αj+2

. (I.4)

Chugging through a bit of algebra, the result is a positive relative orientation.

αj+1

αj

a b c

αj+2

1/αj+1

1/αj+1

a b c

αj+2

αj

βj+1

βj

a b c

βj+2

βj

a b c

1/βj+1

1/ βj+1

βj+2

Figure I.3: Simple graph manipulations used to compare the transposition sequences in case
(iv). A square move is required to complete the transformation.

v) (ac) vs. (bd)

There is no way to find a common parent using only adjacent transpositions. How-

ever, there is a common grandparent ρ = σ · (bc)(cd) = σ′ · (bc)(ab). Since σ and

σ′ come from a shared origin, we have the following: a < c ≤ σ(a) < σ(c) ≤ a+n

and b < d ≤ σ′(b) < σ′(d) ≤ b+n; and σ(a) = σ′(c), σ(b) = σ′(d), σ(c) = σ′(a), and

σ(d) = σ′(b). We focus on adjacent charts, so σ(q) = σ′(q) ≡ q mod n for all indices

q ∈ (a, d)\{b, c}. In addition, σ(b) = σ′(d) = b+n and σ′(c) = σ(a) = c.

Since σ(b) = b+n > a+n ≥ σ(c), the transposition (bc) is allowed, which leads to
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σ̃ = σ · (bc). Then σ̃(a) < σ̃(b) < σ̃(c) = b+n and σ̃(d) = σ(d) = σ′(b) < b+n. There-

fore (cd) is also allowed, and we arrive at ρ. Therefore w̃ is a valid reference chart.

For σ′, we use that σ′(c) = c < d ≤ σ′(b), so (bc) is allowed. Thus with σ̃′ = σ′ · (bc),
we have that c = σ̃′(b) < σ̃′(c) < ts′(d) and σ̃′(a) = σ′(a) = σ(c) > c. Hence we can

apply (ab), which yields ρ, so w̃′ is a good reference chart.

To compute the relative sign, we study the plabic graphs in Figure I.4. They are

equivalent under the identifications

βj = αj+1αj+2, βj+1 = αj+1, βj+2 = αj/αj+1. (I.5)

Plugging this into ω′, one finds that the two forms are oppositely oriented.

αj+1

αj

a b c

αj+2

d a b c d

αj+2αj

αj+1
 1

αj+1
 

βj+1

βj

βj+2

βj+2

a b c d

βj

βj+1
 

1
βj+1

 

a b c d

Figure I.4: Graph manipulations used to compare the transposition sequences in case (v).

vi) (bc) vs. (ad)

From the point of view of a graph embedded in a disk, these bridges can be added in

either order, i.e. there are no intersecting edges in Figure I.5. However, the adjacency

requirement forbids applying (ad) after (bc). Thus we must look further to find a

meeting point, ρ̃, for their reference charts. We will focus on adjacent charts, leaving

the general case for Section 5.3.2.
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a b

c

d

Figure I.5: An on-shell diagram with bridges (ad) and (bc).

Since b, c ∈ (a, d), we know σ(b), σ(c) ≡ c, b mod n, so it follows that σ(b) = c and

σ(c) = b+n. Then since σ(a) = σ′(d) ≥ d > c = σ(b), we can next apply (ab). Simi-

larly, σ(d) = σ′(a) ≤ a+ n < b+ n = σ(c), we could also apply (cd); this is unaffected

by applying (ab), so we apply it next to arrive at ρ = σ · (ab)(cd). Finally, (bc) is al-

lowed because the permutations satisfy both ρ(b) = σ(a) = σ′(d) > σ′(a) = σ(d) = ρ(c)

and c < d ≤ σ′(a) < σ′(d) ≤ a+n < b+n. Hence w̃ is a valid reference chart.

From σ′, we are certainly allowed to apply (bc) after (ad), thus arriving at σ̃ = σ · (bc).
We can add (ab) and then (cd) by essentially the same argument as above. Therefore

both w̃ and w̃′ are valid reference charts.

We compare the plabic graphs to find the relative sign. One can either use the equiva-

lence moves (E1)-(E3) or repeatedly apply the transformation rules from cases (ii)-(iv)

to derive Figure I.6. The graphs are equivalent after the following identifications:

βj =
αjαj+1αj+2αj+3

αj + αj+3

, βj+1 = αj + αj+3, βj+2 =
αjαj+1

αj + αj+3

, βj+3 =
αjαj+2

αj + αj+3

.

(I.6)

Rearranging the corresponding forms demonstrates that the relative orientation of the

reference charts is −1.

172



αj+2

αj

a b c d

αj+1

a b c d

αj+3

αjαj+2Δ

αjαj+1αj+2αj+3Δ

Δ

αjαj+1 

βj+3
βj+1βj+2

βj

1/βj+1

a b c da d

βj+2

βj

βj+3

βj+1

cb

Figure I.6: Graph manipulations used to compare the transposition sequences in case (vi),
where we have defined ∆ = 1

/
(αj + αj+3).
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Appendix J

Assigning Edge Weights

In this appendix we provide one technique for assigning weights ±1 to every edge in the

poset such that the product of signs around every quadrilateral is −1. The method was

developed by T. Lam and D. Speyer [47].

J.1 Reduced Words

Each decorated permutation can equivalently be represented by one or more reduced words :

minimal-length sequences of letters which obey certain equivalence relations. In this case,

the letters si are generators of the affine permutation group S̃n. They are defined with the

following properties and relations:

si :=

{
σ(i)→ σ(i+ 1)

σ(i+ 1)→ σ(i)
1 ≤ i ≤ n, si+n ≡ si,

s2
i ≡ 1, sisi+1si ≡ si+1sisi+1, sisj ≡ sjsi , |i− j| > 1.

(J.1)

We will refer to the relations in the second line as, respectively, the reduction move, the

braid move, and the swap move. As we showed in Lemma 1, any d-dimensional cell C in

Gr(k, n) can be reached from the top cell by a sequence of k(n− k)− d transpositions si,

and that sequence defines a reduced word labeling C. There are generally many distinct

reduced words for a given cell, but they are equivalent due to the relations in (J.1).

Any two cells C and C ′ of dimensions d and d+ 1, which share an edge in the poset, i.e. are

related by a single boundary operation, are straightforwardly connected in the language of

reduced words. Given a reduced word f of length δ = k(n− k)− d on the lower-dimensional

cell C, there is a unique reduced word f ′ on C ′ of length δ′ = δ − 1 obtained by deleting a sin-

gle letter from f [127]. Specifically, for f = si1si2 . . . sij . . . siδ , there is a unique sij such that
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f ′ = si1si2 . . . ŝij . . . siδ , where the hat denotes deletion. It is easy to construct a (generally

non-reduced) word t such that f ′ ≡ tf ; one can check that t = si1si2 . . . sij−1
sijsij−1

. . . si2si1

accomplishes the desired effect by repeated reduction moves. Given that the two cells are

also related by a transposition of the form (ab), it is not surprising that repeated applica-

tion of the relations (J.1) shows that t ≡ sasa+1 . . . sb−2sb−1sb−2 . . . sa+1sa, which is a reduced

word representation of (ab).

J.2 Decorating Edges

Choose a representative reduced word for every cell in the poset; we will refer to this as

the standard word on that cell. This is similar to choosing a particular Lemma 1 sequence

for each cell. From a cell C labeled by the standard word f , every cell C ′ that has C

as a boundary can be reached by deleting some sij from f . This yields a word f ′ on C ′ as

explained above. If f ′ is identical to the standard word on C ′, then weight the corresponding

edge with (−1)j. It is easy to check that deleting two letters sij1 and sij2 in opposite orders

will produce the desired factor of −1 around a quadrilateral. For one order, we would find

(−1)ij1+ij2 , while for the other order we would find (−1)ij1+ij2−1, so they differ by −1.

However, it is not always possible to delete both transpositions in either order. One

may have to delete different transpositions to reach the same cell by two different routes.

Moreover, the final reduced word in each case may be different. Thus, we need to find the

sign difference between two reduced words. Any two reduced words can be mutated into each

other using just the braid and swap moves defined in (J.1). By decorating these rules with

±1, we can find the desired difference between the words. In fact, we already determined

those signs in Appendix I because the generators act as adjacent transpositions. The braid

move is simply a special case of (iv), so it should be decorated with a +1, and the swap

move is a special case of (i), so it should be decorated with a −1. Hence, the relative sign

between two words is the number of swaps required to transform one into the other.

The number of swaps can be determined directly from the inversion list of each word. A

reduced word creates a unique ordering on the set of inversions in the permutation labeling

the cell (not all orderings are possible). The number of swap moves needed to transform

one word into another is the number of pairs of inversions (i, j) and (k, l), with all i, j, k, l

distinct, in different order in the two inversion lists.
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