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Abstract 

The use of kerosene-based jet fuels for all military applications has been 

mandated by U.S. military’s single fuel forward concept. Recently, interest in non-

petroleum-derived alternative jet fuels has also been increasing as a way to diversify the 

source of jet fuels. However, wide variations in physical and chemical properties within 

various types of jet fuels have shown significant impact on the operation of diesel engine. 

Surrogate fuels are needed for CFD simulations with detailed kinetic modeling to 

represent the combustion behavior of the real fuels, which are very complex mixtures. 

However, currently existing jet fuel surrogates for CFD simulation are not developed to 

capture the liquid fuel physical properties that influence the spray characteristics and 

ignition delay times during the diesel combustion process. This work address the need for 

comprehensive jet fuel surrogates that successfully emulate physical and chemical 

properties of conventional and alternative jet fuels. The developed surrogate fuels are 

then utilized within CFD simulation to obtain insights on how the fuel properties affect 

the fundamental processes of diesel ignition.  

For the optimization-based surrogate formulation methodology, it is essential to 

identify the target properties for the surrogate fuel to match. In the first part of the 

dissertation, a sensitivity analysis was conducted with CFD simulations of pure n-
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dodecane spray in a constant volume chamber to identify temperature dependent liquid 

physical properties that are of significance to the diesel ignition process. Out of six 

physical properties that were tested, density, viscosity, volatility, and specific heat 

showed major impact on liquid penetration length and ignition delay time.  

In order to formulate surrogate mixtures that emulate multiple target properties 

including those found through the sensitivity analysis, a surrogate optimizer was 

developed. The optimizer uses models and correlations to estimate mixture properties and 

finds the mixture composition that best matches the properties of the targeted fuels. Using 

a six component surrogate palette (n-dodecane, n-decane, iso-cetane, iso-octane, decalin, 

and toluene), the surrogate optimizer generated surrogate mixtures for Jet-A POSF-4658, 

a petroleum-derived conventional jet fuel, IPK POSF-5642, a coal-derived synthetic jet 

fuel, and S-8 POSF-4734, a natural-gas-derived synthetic jet fuel. Kinetic modeling of 

the developed surrogate fuels were enabled by a detailed chemical mechanism. Utilizing 

the developed surrogates and the kinetic mechanism, a numerical experiment was 

conducted with CFD simulations to evaluate the relative importance of physical and 

chemical properties to the ignition process of the fuel spray for two fuels, Jet-A and S-8. 

This study indicates that the fuel's chemical properties are much more important to the 

duration of the ignition delay period than the physical properties, which emphasizes the 

chemical aspect of the diesel ignition phenomena. 
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          Chapter 1  
 
 

Introduction 

1.1 Jet Fuel in Diesel Engine 

The U.S. military’s single fuel forward concept [1] mandates the use of kerosene-

based jet fuels for battlefield deployed aircraft and ground vehicles for the simplification 

of supply chain logistics. As a result, military diesel engines must be capable of operating 

with jet fuels. Of these fuels, the primary military jet fuel is JP-8, which meets the fuel 

specifications identical to a civilian aviation fuel Jet A-1 with a military-specific additive 

package [2]. Gas turbines and jet engines are the main consumers of JP-8, and 

combustion within these devices is only marginally affected by the auto-ignition 

characteristics of fuel, which is measured by the Cetane Number (CN) for diesel 

applications. The resulting lack of a JP-8 CN specification can result in CN ranging from 

36 ~ 50 for petroleum-derived JP-8’s [3].  

Recently, interest in alternative or synthetic jet fuels has been increasing in the 

military and civilian sectors as a way to diversify the source of jet fuels to resolve energy 

security issues. A number of different Synthetic Paraffinic Kerosenes (SPKs), produced 

through the Fischer-Tropsch process or by vegetable oil hydroprocessing have been 
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tested as alternative jet fuels [4]. While SPKs are produced to have molecular size 

distributions similar to petroleum-derived jet fuels, significant property discrepancies 

exist between the fuels which may negatively affect diesel engine operation. SPKs are 

predominantly paraffinic in nature, which leads to significantly lower liquid density for 

SPKs compared to petroleum-derived jet fuels. In turn, these liquid fuel density variations 

can influence injection related parameters, such as injection velocity, which can impact 

the rate of fuel air mixing and the diesel ignition process [5]. Also, marginal to non-

existent aromatic content of SPKs is reported to cause leaks in fuel system, as some 

elastomers used for sealing shrink when wetted with non-aromatic fuels [6]. Another 

significant problem is the extreme variation in ignition quality observed for the different 

SPKs. In particular, the CN of SPKs under consideration by the U.S. military can range 

from 15 to 59 [7], which is far greater variation compared to petroleum-derived jet fuels. 

Such CN variation impacts diesel engine ignition and combustion phasing, leading to 

difficulties with cold starting and fuel economy [8]. Due to such a significant difference 

in density, aromatic content, and the ignition quality, blends of conventional and 

alternative fuels are currently being used for diesel engines to mitigate those problems [8].  

Early engine tests with jet fuels focused on its cumulative effects on performance 

and emissions, and investigated the overall impact of replacing baseline diesel fuel with 

jet fuels [9–12]. More recently, the ignition behavior of various types of conventional and 

alternative jet fuels within diesel engines has been reported in [8,13–19]. While engine 

experiments enable some global understanding of this behavior through heat release 

analysis, detailed understanding of how these physical and chemical phenomena of the 

fuel variation affect the ignition delay cannot be determined from the engine experiments. 
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Combustion simulations with Computational Fluid Dynamics (CFD) and detailed kinetic 

modeling can complement metal engine experiments and provide insight into spray and 

gas phase combustion behaviors. 

1.2 Surrogate Fuel Background 

Current mainstream transportation fuels, such as jet fuel, diesel, or gasoline, are 

fractional distillates of crude oil. These real fuels are very complex mixtures of various 

types of hydrocarbons (linear alkanes, cyclic alkanes, aromatics, etc.) and are composed 

of hundreds to thousands of hydrocarbon species. Figure 1.1 shows the gas 

chromatograms  of JP-8, diesel fuel, and gasoline fuel [20], where the complex nature of 

these real fuels is demonstrated by having numerous peaks in a wide range of retention 

time; the gas chromatogram of a single-component liquid produces only a single peak.  

There are a few challenges when it comes to detailed kinetic modeling of these 

real transportation fuels. First, since these fuels are very complex mixtures, it is nearly 

impossible to identify all of the hydrocarbon species and their compositions. Also, kinetic 

data and mechanism are currently limited to only a few hydrocarbon molecules. 

Moreover, even if all fuel species are identified and their kinetic mechanisms are 

available, simulations of the combustion process would be prohibitively long when all 

species are included.  

In order to overcome such challenges, surrogate fuels of these real fuels have been 

developed and utilized to model the diesel combustion processes. The surrogate fuel is 

formulated with a handful of well-characterized pure components to emulate the 

combustion behavior of the targeted real fuel. Recent progress in surrogate development 
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for common transportation fuels is extensively reviewed in [21–26]. One of the surrogate 

examples is pure n-heptane, which has been used to represent the ignition quality of 

conventional diesel fuel; other characteristics, such as liquid density, volatility, or 

aromatic content, are poorly represented with a single component fuel such as n-heptane. 

More comprehensive surrogate mixtures capable of emulating physical properties and 

combustion characteristics can be formulated using more surrogate components, but at 

the same time, the number of surrogate components must be limited, based in part upon a 

limited number of species available within leading kinetic mechanisms.  

Surrogate fuels can be formulated through experimental trial and error to find the 

model mixture that matches certain properties or combustion behavior of the target fuel. 

While this methodology has been widely used, it is ineffective in finding the mixture that 

emulates multiple target properties. More recently, optimization-based formulation 

methodologies have had success in formulating surrogate mixtures that successfully 

match multiple combustion-related target fuel properties [27–31]. This approach 

incorporates mathematical optimization using models and correlations to estimate the 

model mixture properties to find the surrogate composition that best matches the target 

fuel properties.  

One of the keys to successful surrogate formulation with the optimization-based 

approach is defining target properties relevant to the targeted device and processes. Since 

combustion physics and thermodynamic regimes differ from device to device, fuel 

properties influencing the combustion process are not necessarily the same. For instance, 

combustion in conventional spark-ignited gasoline engines is entirely in the gas phase 

and the liquid fuel properties do not have significant effects on the engine’s combustion 
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characteristics. On the other hand, for a diesel engine with direct fuel injection, the liquid 

fuel physical properties determine the spray characteristics by influencing the various 

physical processes within the liquid phase. Thus, it is very important in the surrogate 

development process to understand which fuel properties have major impact on the 

combustion physics of the targeted device, and to emulate those properties accordingly. 

1.3 Ignition Delay in Diesel Engines 

The diesel combustion process used within Direct Injection (DI) Compression 

Ignition (CI) engines is composed of several phases, including the ignition delay period, 

the premixed combustion phase, the mixing-controlled combustion or diffusion burning 

phase, and the late combustion phase, as illustrated in Figure 1.2 [32]. The ignition delay 

period, which is defined as the time between the start of injection (SOI) and the start of 

combustion (SOC), is quite important for diesel engine calibration. The onset of 

combustion in diesel engines is controlled through the fuel injection timing, and the 

ignition delay period changes drastically depending on the operating conditions and the 

properties of the fuel. Since optimal combustion phasing is critical for achieving high 

efficiency, understanding the ignition delay phenomena is essential for the engine control 

scheme.  

It is well known that the ignition delay period is governed by complex fuel 

dependent physical and chemical phenomena, which prepare the injected fuel for 

combustion [32,33]. Figure 1.3 conceptually illustrates some of the major physical and 

chemical phenomena during the ignition delay period of diesel engine. Initially, the liquid 

fuel is injected and starts to break down, generating small liquid droplets 
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(breakup/atomization). These liquid droplets are decelerated (drag) and deformed 

(distortion) by the ambient charge; the droplets also collide and merge 

(collision/coalescence). At the same time, liquid fuel droplets are heated up by hotter 

ambient charge and eventually vaporized (evaporation). Air entrained into the fuel jet is 

mixed with the vaporized fuel to within combustible limits (fuel/air mixing). These are 

the physical processes required for fuel ignition, which are influenced by temperature 

dependent liquid physical properties of the fuel, in addition to injection parameters 

(injection pressure, orifice diameter, etc.) and geometric factors (combustion 

chamber/piston bowl design, etc.). 

As soon as the liquid fuel is vaporized and the gas phase fuel meets oxygen, 

oxidation chemistry begins to prepare the fuel-air charge for ignition, which is enhanced 

by the high temperature and pressure within the combustion chamber. Decomposition of 

the fuel molecules into smaller hydrocarbons and active radicals initiates the spontaneous 

ignition of the properly mixed air/fuel charge, leading to the premixed combustion phase. 

These processes are influenced by the fuel’s chemical properties such as ignitability 

(Cetane Number for diesel application), the energy content (Lower Heating Value), and 

the hydrogen/carbon ratio (local fuel/air stoichiometry).  

Thus, the ignition phenomena within diesel engines have both physical and 

chemical aspects that are affected by the physical and chemical properties of the fuel. 

This indicates that diesel combustion surrogates must consider the emulation of both the 

physical and chemical properties of the target fuel.  
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1.3.1 Cetane Number and Derived Cetane Number 

The auto-ignition quality of fuels for use in diesel combustion is often represented 

by Cetane Number (CN). A high CN indicates a highly reactive fuel, which results in 

short ignition delay times. Traditionally, CN has been measured by using a variable 

compression ratio Cooperative Fuel Research (CFR) engine with a standardized operating 

method (ASTM D613). This method attempts to find the blending ratio of the two 

reference fuels, n-hexadecane (n-cetane) and 2,2,4,4,6,8,8-heptamethylnonane (iso-

cetane), that gives an identical ignition delay time to the sample fuel. The CN is 

determined based on this blending ratio.   

Recently, alternative methods for measuring fuel ignition quality have been 

developed. A standardized procedure (ASTM D6890) using an Ignition Quality Tester 

(IQT), which is a bench-top constant volume spray chamber, is one of the most widely 

used methods. The test fuel is directly injected to a heated, pressurized (818 K, 2.137 

MPa) IQT combustion chamber and ignited. Then the measured ignition delay time is 

converted to CN by a correlation. The Derived Cetane Number (DCN) obtained from this 

approach has shown good agreement with CN for mid-range CN fuels [34]. Similar 

constant volume spray chambers are also available, including the Fuel Ignition Tester 

(FIT) with ASTM D7170 and Cetane Ignition Delay (CID) with ASTM D7668. When 

compared to the CFR method, these alternative methods require much smaller amounts of 

sample fuel and much shorter test times. Also, better reproducibility is reported for these 

methods compared to the CN measured with the CFR method [34]. 

Throughout this dissertation, DCN refers to the measurement from IQT.  
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1.4 Review of Previous Jet Fuel Surrogates 

One of the earliest studies on developing fuel surrogates for petroleum-derived jet 

fuels is found in Wood et al. [35], where 14 surrogate components were used to replicate 

the distillation curve and hydrocarbon class composition of a military jet fuel JP-4. Since 

then, several surrogate mixtures with mated chemical mechanism were proposed. Guéret 

et al. [36] proposed a surrogate mixture of n-undecane/n-propylcyclohexane/1,2,4-

trimethylbenzene along with a quasi-global kinetic mechanism to capture the combustion 

behavior of Jet A-1 in Jet-Stirred Reactor (JSR). Patterson et al. [37] studied a mixture of 

n-decane and toluene with a kinetic mechanism and showed that computation results 

were in good agreement with experimental premixed flame data and JSR data of kerosene. 

Dagaut et al. [38]  showed that of all the candidate mixtures they tested, a three 

component mixture of n-decane/n-propylbenzene/n-propylcyclohexane produced the best 

agreement with the JSR and flame data of Jet-A 1. Violi et al. [39] formulated surrogates 

targeting the volatility and sooting tendency of JP-8. When Vasu et al. [40] evaluated the 

ignition delay predictions from some of the existing surrogates, Violi surrogate #3 (n-

dodecane/ iso-octane/methylcyclohexane/benzene/toluene) coupled with the Ranzi 

mechanism [41] gave the closest agreement with their measured ignition delay times 

from shock tube experiments at temperatures above 1000K. Honnet et al. [42] reported a 

two component kerosene surrogate (n-decane/1,2,4-trimethylbenzene) and its chemical 

mechanism, which was formulated to match the critical kerosene extinction conditions 

and auto-ignition. Dooley et al. [29] formulated a surrogate mixture composed of n-

dodecane/iso-octane/1,3,5-trimethylbenzene/n-propylbenzene which reproduced the DCN, 

hydrogen carbon ratio (H/C), molecular weight (MW), and Threshold Sooting Index (TSI) 
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of a representative Jet-A POSF-4658, while ignition delay modeling studies of this 

surrogate were conducted in [43]. This surrogate mixture by Dooley et al. was 

extensively tested in various combustion devices, including a shock tube, rapid 

compression machine, counter flow diffusion flame, pre-mixed flame, and wick-fed 

laminar diffusion flame. Compositions of these previous surrogates are summarized in 

Table 1.1. More recently, surrogate mixtures for alternative jet fuels (SPKs) were 

proposed. Surrogates for natural-gas-derived SPKs and their kinetic mechanisms are 

found in Mzé-Ahmed et al. [44], Naik et al. [31], and Dooley et al. [45]. Additionally, 

Allen et al. [46] proposed surrogates for SPK produced through the hydroprocessing of 

vegetable oils.  

While all the surrogates mentioned above were targeted to mimic gas phase 

combustion characteristics and agreed reasonably well with experimental data, little or no 

consideration were given to temperature dependent physical properties of the liquid fuel. 

Huber and coworkers formulated surrogates for petroleum-derived Jet-A POSF-4658 [30], 

natural-gas-derived [47] and coal-derived SPKs [48] considering various temperature-

dependent physical properties. However, since these surrogates were not intended for use 

in combustion modeling studies, most of the molecules used in these surrogates lack 

chemical mechanisms, making their use in reacting CFD problematic. Hence there is a 

need for jet fuel surrogates for CFD applications that are capable of capturing both 

physical and chemical properties of jet fuels.  

In addition, existing jet fuel surrogates have been developed to represent a certain 

type of jet fuel. Noting that a wide range of jet fuels are expected to be used in the future 

and their properties vary significantly, developing a new surrogate formulation 
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methodology using a common surrogate palette that is capable of emulating properties of 

various types jet fuels is necessary. By having a common palette, one chemical 

mechanism can be shared amongst any surrogates formulated using the species in the 

palette. 

1.5 Objectives and Document Organization  

The first objective of this thesis is to develop a surrogate formulation 

methodology using a common palette that is able to emulate both physical and chemical 

properties of various conventional and alternative jet fuels. Then, using the developed 

surrogates, the complex diesel ignition processes will be explored with CFD simulation 

to improve fundamental understanding on how liquid fuel physical and chemical 

properties influence the ignition behavior, which will provide critical knowledge for 

designing engines and its operating strategies. 

The research questions that will be addressed throughout this thesis are: 

- Which temperature dependent physical properties of liquid fuel have 

significant effects on the spray characteristics and ignition delay time of 

reacting sprays? Which liquid fuel physical properties should be emulated by 

diesel combustion surrogates? 

- How these properties affect the ignition process of reacting sprays? 

- Can a surrogate palette with a reasonable number of surrogate components 

emulate physical and chemical properties of various types of jet fuels? 

- Which has more dominant impact on the diesel ignition process, liquid fuel 

physical properties or chemical properties? 
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The document is organized as follows. 

Chapter 2 investigates the effect of liquid physical properties on spray 

characteristics and ignition behavior using CFD simulation. Through this numerical study, 

fuel physical properties that should be emulated by the surrogate fuel are identified. Also, 

a detailed analysis on how these liquid physical properties influence the spray ignition 

process is carried out.  

Chapter 3 outlines the surrogate optimization framework including the 

development of the surrogate optimizer and the surrogate palette. The physical properties 

that were identified as being important to diesel ignition in Chapter 2 are included as the 

surrogate target properties. New surrogate fuels for conventional and alternative jet fuels 

formulated by the surrogate optimizer are also reported here.   

Chapter 4 presents the kinetic modeling results of the newly developed surrogates 

in Chapter 3 using a detailed kinetic mechanism. Also, the skeletal version of the detailed 

chemical mechanism is generated.  

In Chapter 5, the CFD simulations of reacting sprays using the fuel surrogates 

from Chapter 3 and the skeletal mechanism from Chapter 4 are conducted to examine the 

relative importance of physical and chemical aspects of the spray ignition process.   

Finally, Chapter 6 presents summaries, conclusions, and recommendations for 

future work.  

1.6 Relevant Publications 

The topics in this dissertation have been reported in the following publications. 
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1. Doohyun Kim, Jason Martz, and Angela Violi, “A surrogate for emulating 
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Combustion Meeting, Paper # 070IC-0269 

2. Doohyun Kim, Jason Martz, and Angela Violi, “A surrogate for emulating 
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Tables 

Table 1.1. Compositions of previous jet fuel surrogates. 

 Guéret Patterson Dagaut Violi Honnet Dooley 

Reference [36] [37] [38] [39] [42] [29] 

 Vol % Mol % Mol % Vol % Wt % Mol % 

n-undecane 79      

n-dodecane    73.5  40.41 

n-decane  89 74  80  

iso-octane    5.5  29.48 

methylcyclohexane    10   

n-propylcyclohexane 10  11    

benzene    1   

toluene  11  10   

1,2,4-trimethylbenzene 11    20  

1,3,5-trimethylbenzene      7.28 

n-propylbenzene   15   22.83 
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Figures 

 

Figure 1.1. Gas chromatograms of JP-8, diesel fuel, and motor gasoline [20].  

 

Figure 1.2. Typical diesel engine heat release rate profile from Heywood [32] illustrating 
different combustion phases. 
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Figure 1.3. Conceptual schematics of physical and chemical processes during ignition 
delay period in direct-injected diesel engine. 
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          Chapter 2  
 
 

Effects of Fuel Physical Properties on Spray Ignition Behavior 

2.1 Background 

For modern compression ignited diesel engines, which employ direct fuel 

injection, the physical properties of liquid fuel influence the spray, mixture development 

and ultimately the ignition and combustion process [49]. To date, most studies into the 

importance of liquid fuel physical properties to compression ignited combustion behavior 

have been experimental. Studies by Naber and Siebers [50] and Siebers [51,52] 

investigated the effect of various parameters on liquid penetration and observed that 

lower fuel volatility resulted in longer liquid length. Higgins et al. [53] tested nine 

different fuels and proposed a liquid penetration correlation as a function of fuel density 

and the energy required to vaporize the liquid fuel. Genzale et al. [54] compared diesel 

and biodiesel sprays under conditions relevant to late-cycle post-injection and showed 

~15 % longer liquid penetration lengths for biodiesel. Kook and Pickett [55] tested a 

variety of jet fuels and showed that while the variations in vapor penetration lengths of 

the different fuels were within the experimental uncertainties, liquid penetration length 

was affected by liquid density and volatility. Wu et al. [56] observed that the viscosity of 
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oxygenated fuels influenced spray atomization behavior. Other experimental comparisons 

have been made to assess the sensitivity of engine performance, emissions, and spray 

characteristics to the properties of alternative diesel fuels, such as dimethyl ether (DME), 

biodiesel, and jet fuels, which are significantly different from those of petroleum derived 

diesel fuel [14,57–60].  

While these experiments provided valuable insights, it is difficult to isolate the 

effect of each property by comparing experimental results using different fuels where 

several fuel physical properties are varying simultaneously. Computational studies can be 

used to isolate these effects and their influence on the complex processes occurring 

during spray combustion. Only a limited number of numerical investigations have 

examined liquid fuel property effects, including the work of Som et al. [61], which 

quantified the differences between the injection and spray characteristics of biodiesel and 

diesel fuel. Pei et al. [62] conducted a sensitivity analysis with a diesel engine simulation 

to assess the relative effects of various physical properties including density, heat of 

vaporization, vapor pressure, and viscosity. While parameters other than fuel properties 

(such as select model constants and injector-related parameters) were shown to be the 

most sensitive variables, the liquid fuel density was shown to affect ignition delay, 

combustion phasing, and emissions. CFD simulations by Ra et al. [63] predicted that 

density, vapor pressure, and surface tension had the largest effect on cylinder pressure 

and combustion phasing. However, these studies focused on engine performance 

parameter sensitivity rather than on understanding how physical property variations affect 

spray formation and ignition behaviors.  
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This chapter investigates the effects of temperature-dependent liquid fuel physical 

properties (such as density and viscosity) on spray penetration, the evolution of local 

thermodynamic states within the jet, and the ignition delay period of compression ignited 

combustion.  These effects are predicted using a validated CFD simulation of a free fuel 

jet.  Through such efforts, the surrogate optimization processes can be better informed 

during the development of future surrogate fuels.  

2.2 Model Configuration 

Spray characteristics were predicted under diesel-relevant conditions with the 

CFD package CONVERGE [64]. The Reynolds Averaged Navier Stokes (RANS) 

equations with the RNG k-ε model were utilized to model the turbulence in the gas-phase 

flow field. Automatic mesh refinement and fixed embedding near the nozzle were used to 

increase the solution's spatial resolution with a minimum increase in computational 

expense [64]. 

The two-phase processes within the spray were modeled with the Lagrangian-

Droplet and Eulerian-Fluid approach. The dynamics of the fuel spray droplet were 

described with a number of phenomenological and physical models. The blob injection 

method of Reitz and Diwakar [65] was employed. The Kelvin-Helmholtz – Rayleigh-

Taylor (KH-RT) model, without the use of an ad hoc breakup length definition, was used 

to predict the breakup and atomization of the injected fuel parcels [64]. Liquid droplet 

collision and coalescence was modeled with the No Time Counter collision model [66] in 

conjunction with the Post collision outcome model [67]. The dynamic drop drag model of 

Liu et al. [68] was utilized to account for the change of the drag coefficient due to droplet 
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deformation. A standard droplet turbulent dispersion model [69] was included, while 

droplet evaporation was predicted with the Frossling correlation [69]. Based on the work 

of Senecal et al. [70] that showed asymptotic convergence of the spray characteristics 

with grid refinement, the minimum grid size in the adaptive mesh refinement algorithm 

and the total number of injected parcels were set to 0.25 mm and 512,000, respectively; 

the base mesh size was 2 mm.   

Pure n-dodecane, which is often used as an n-alkane representative within jet fuel 

and diesel fuel surrogates [21,25], was used as the fuel in the current work. Temperature-

dependent liquid n-dodecane physical properties were taken from the DIPPR database 

[71]. A recently published reduced mechanism with 255 species and 2289 reactions was 

used to model n-dodecane oxidation [72]. The mechanism was validated against several 

experimental data sets reported in [72], including ignition delay times from shock tube 

and rapid compression machine studies, species time histories obtained from shock tube 

experiments, concentration profiles from a pressurized flow reactor, and laminar flame 

speed. Specifically, the ignition delay times calculated with the mechanism were shown 

to follow the experimental measurements over a wide range of temperatures (750 K ~ 

1400 K), pressures (12 atm ~ 46 atm) and equivalence ratios ( Φ = 0.5 ~ 1).  

2.3 Model Validation 

The model was validated by comparison with experimental data from a constant-

volume combustion vessel at Sandia National Laboratories [73–75] that utilized the 

Spray A injector (serial number 210677). The computational mesh was a 108 mm cubic 

chamber, which was identical to the geometry of Sandia’s combustion vessel. 
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Liquid/vapor penetration lengths and vaporized fuel mass fraction distributions from two 

non-reacting spray experiments (ambient conditions of 900 K 6.1 MPa 22.8 kg/m3 and 

1100 K 5.0 MPa 15.2 kg/m3) were used, along with ignition location and ignition delay 

times from three reacting spray experiments at ambient density of 22.8 kg/m3 (750 K 4.9 

MPa, 900 K 6.1 MPa, and 1200 K 7.9 MPa). The ambient temperatures and pressures of 

the validation cases are relevant to the ignition conditions within diesel engines. More 

details of the n-dodecane spray experiments are summarized in Table 2.1. The injector 

specifications, the rate of injection profile and all of the simulation boundary conditions 

were taken from the experiments. In the CFD simulations, the liquid penetration length 

was defined as the axial distance from the nozzle exit to the region that encompassed the 

95th percentile of the total liquid fuel mass at a given time, while the vapor penetration 

length was defined as the maximum axial distance from the nozzle exit to where the fuel 

mass fraction is 0.1 %. The ignition delay in the simulations was defined as the time 

between start of the injection and the maximum rise rate of peak temperature [62]. A 

model constant in the KH-RT breakup model (B1) was set at 8.5 for all simulations.   

Figure 2.1 shows good agreement between the predicted and experimental liquid 

and vapor penetration lengths as a function of time for non-reacting spray simulations. 

The uncertainties associated with the experimental measurements were less than 1 mm 

for the bulk of this data [73]. While improvements are necessary in the initial liquid 

length predictions, the model is able to predict stabilized liquid penetration lengths and 

overall vapor penetration trends. The root mean squared errors of the stabilized liquid 

penetration and vapor penetration lengths were 0.4 mm and 2.8 mm for the 900 K 22.8 

kg/m3 case, and 0.8 mm and 2.9 mm for the 1100 K 15.2 kg/m3 case.  
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The steady-state radial and axial distributions of the vapor fuel mass fraction are 

compared in Figure 2.2, again for the non-reacting cases. The simulation results were 

taken at 1.4 ms after the start of injection, when the jet was steady. As shown in Figure 

2.2, the model was capable of capturing the general radial and axial fuel vapor 

distribution trends. At 25 mm downstream from the injector tip, the predicted radial mass 

fractions for the two test cases were largely within the experimental uncertainties. For the 

axial distributions at the jet centerline, the fuel vapor mass fraction for the 900 K, 22.8 

kg/m3 case was within the experimental uncertainties from ~20 mm to ~30 mm, however 

the fuel vapor mass fraction was under-predicted for larger axial distances. The 

calculated axial vapor fuel mass fraction was in better agreement with the experiments 

for the 1100 K, 15.2 kg/m3 case.  

For the reacting spray simulations, the n-dodecane reaction mechanism [72] was 

included without changing any of the spray model parameters used in the non-reacting set 

up. All of the ambient conditions were taken from the experiments, with the exception of 

the ambient temperature of 750 K 22.8 kg/m3 case, which needed to be increased by 30 K 

for agreement with the experimental ignition delay time. Figure 2.3 shows the ignition 

delays from the simulation and the experiments. Although ignition delay times were 

slightly over-predicted, the model was capable of capturing the ignition delay trend over 

a wide range of temperatures. To validate the spatial ignition location, Figure 2.4 

compares high temperature chemiluminescence images from the experiments to the local 

temperatures from simulation. As can be seen for all three cases, the model was capable 

of qualitatively predicting the spatial location of high temperature chemiluminescence, 

with the highest temperature regions near the start of the ignition.  
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These comparisons show that the model successfully captures the experimental 

liquid and vapor penetration lengths, the spatial fuel vapor distribution at steady state for 

non-reacting spray, along with the ignition delay time and ignition location for reacting 

sprays. This modeling set up is used as the baseline for the following simulations where 

the physical properties of the liquid fuel are perturbed. 

2.4 Liquid Physical Property Perturbation Methodology 

A sensitivity analysis was conducted with reacting spray simulations at two 

ambient conditions (900 K, 22.8 kg/m3, and 750 K, 22.8 kg/m3) to identify the liquid fuel 

properties that are of significance to the liquid spray penetration length and ignition delay. 

The vapor penetration length was not analyzed in detail here, given that the change in 

vapor penetration due to fuel liquid physical property perturbation was very small in the 

simulations, which is consistent with the experimental observations in Kook and Pickett 

[55], where the variation in vapor penetration length for fuels with different liquid 

properties was shown to be smaller than the experimental uncertainties.  

Six liquid physical properties appearing in the spray models of the current work 

were examined, including density, vapor pressure, viscosity, surface tension, heat of 

vaporization, and specific heat capacity. Beginning with the baseline n-dodecane 

properties, the individual fuel properties were perturbed one at a time by multipliers 

which were determined to cover the minimum and maximum property values of the 

various hydrocarbons used in recent diesel and jet fuel surrogate studies [27–29]. n-

heptane, n-decane, iso-octane and iso-cetane were considered for linear alkanes; 

methylcyclohexane and decalin for cycloalkanes; and toluene, 1,3,5-trimethylbenzene 
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and n-propylbenzene for aromatics. The reason for implementing this method rather than 

the more conventional approach of using consistent relative changes of each property was 

that the properties considered in this study have a drastically different range of 

magnitudes among the various species. For example, decalin has the highest density 

among the above pure components, which is about 20% greater than that of n-dodecane. 

However, n-heptane has highest vapor pressure, which is 10 ~ 20 times greater than that 

of n-dodecane, depending on temperature. Due to this significant difference among the 

properties, perturbing the properties with a common multiplier does not represent the real 

property variations within the surrogate components. Therefore, multiplier perturbations 

of varying relative differences were performed with this approach and are summarized in 

Table 2.2.  

The modeling parameters were maintained from the baseline case for all of the 

perturbation simulations, with the exception of the injected fuel mass flow rate and the 

injection velocity for the density perturbation study. The relationship among the mass 

flow rate (ṁfuel), the fuel injection velocity (Ufuel), the pressure drop across orifice (Pfuel - 

Pamb), the momentum flow rate of the liquid fuel through the orifice (Ṁfuel), and liquid 

fuel density (ρfuel) can be expressed using mass conservation and Bernoulli’s equation, as 

shown in [50,73]: 
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where Cd is the discharge coefficient, Cv is the velocity coefficient, and Aorifice is the 

orifice exit area. As seen in Equation 1 and 2, the mass injection rate (ṁfuel) and the 

injection velocity (Ufuel), which are the key injection related parameters, are coupled by 

the pressure drop across the orifice and the liquid fuel density. Thus, it is impossible to 

keep all of the injection parameters constant when the liquid density is perturbed, and 

only one of the parameters can be chosen to be the same as the baseline case.  

To be consistent with spray experiments [53–55] where constant injection 

pressure is applied regardless of the liquid fuel density, the density perturbation in this 

study was made while maintaining the pressure drop across orifice (Pfuel - Pamb). As a 

result, the fuel mass flow rate was proportional to ρfuel
0.5, and the injection velocity was 

proportional to ρfuel
-0.5 for the density perturbation cases, as indicated by Equations 1 and 

2. Also, a constant pressure drop resulted in constant jet momentum flow rate (Equation 

3). This relationship has been experimentally validated by Genzale et al. [54] for sprays 

of regular diesel and higher density biodiesel at a constant injection pressure.  

2.5 Results – Liquid Penetration Length 

Figure 2.5 summarizes the relative change in the liquid penetration length for the 

physical property perturbations. While perturbations of density, vapor pressure, viscosity, 

and specific heat resulted in ± 4 ~ 10 % changes in liquid penetration for the 900 K case 

and ± 5 ~ 18 % changes for the 750 K case, surface tension and heat of vaporization 

perturbations caused a at most a ± 2 % change in liquid penetration length. Although all 

six physical properties considered in this study are included in one or more spray 

submodels (breakup model, evaporation model, etc.) as model parameters, this 
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observation indicates that the impact of surface tension and heat of vaporization on the 

predicted liquid penetration length is considerably smaller than the other four properties 

under the conditions studied. When the sensitivity factor, which is defined as the % 

change in liquid penetration length over the % change in physical property, is plotted as 

shown in Figure 2.6, liquid penetration length was most sensitive to density and specific 

heat for both conditions. Details on how these property perturbations affect liquid 

penetration are discussed in the following sections. 

2.5.1 Viscosity and Surface Tension Effects 

It has been shown that greater liquid fuel viscosity and surface tension slow the 

droplet breakup and atomization process [76,77] which in turn contribute to longer liquid 

penetration lengths. From a modeling standpoint, both viscosity and surface tension play 

a significant role in spray breakup, as they determine the Reynolds and Weber numbers, 

which are key model parameters. The results in Figure 2.5 replicated the expected 

experimental trends – the liquid penetration length gets longer as viscosity and surface 

tension increase. However, the variation in surface tension over the relatively large range 

of hydrocarbon molecules considered in this study did not have a significant effect on 

liquid penetration length. The magnitudes of the surface tension and viscosity sensitivity 

factors shown in Figure 2.6 were not significantly different, which also confirms that the 

substantial difference in liquid penetration length shown in Figure 2.5 is caused by much 

larger variations in viscosity. The more significant effect of viscosity is consistent with 

previous experimental analysis [77], where viscosity, and not surface tension, was the 
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dominating factor to changes in the Sauter Mean Diameter (SMD) of various liquid fuel 

sprays.  

2.5.2 Specific Heat and Heat of Vaporization Effects 

Another physical factor influencing liquid penetration length is the total thermal 

energy required to heat up and vaporize liquid fuel, as experimentally shown in Siebers 

[52] and Higgins et al. [53]. The correlation from these experiments implies that higher 

fuel specific heat and latent heat of vaporization result in longer liquid lengths. An energy 

balance for a single liquid droplet with a uniform temperature that vaporizes when heated 

by the ambient can be used to understand the importance of these properties: 

 vap
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where Ad is the droplet surface area, qd is the heat flux from the ambient to the droplet, Td 

is the droplet temperature, Cp,liq is the specific heat of the fuel at Td, md is the droplet 

mass at Td, and hvap is the heat of vaporization at Td. Equation 4 implies that the heat 

transferred from the ambient to the liquid fuel is used either for increasing the liquid 

temperature or for causing the phase to change from liquid to vapor. Integrating Equation 

4 over the lifetime of the evaporating liquid droplet provides Qtotal, the total heat transfer 

needed from the ambient to vaporize the liquid droplet: 
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where tinit, Td,init and md,init are the initial time, temperature, and mass of the droplet, and 

tend and Td,end are the final time and droplet temperature when the droplet mass reaches 

zero. Note Cp,liq, md, and hvap are all functions of the droplet temperature. Since 
d

d
dT

dm  

is negative for a vaporizing droplet, it is clear from Equation 5 that higher specific heat 

and heat of vaporization will result in a greater amount of heat transfer from the ambient 

to vaporize the liquid fuel. As seen in Figure 2.5, the simulation results were consistent 

with this analysis and the experimental observations, where greater specific heat and heat 

of vaporization resulted in longer liquid penetration lengths.  

However, contrary to the specific heat cases, varying the heat of vaporization 

caused only a very small change in liquid length. Not only was the relative change in 

liquid penetration length small, but the sensitivity factor for the heat of vaporization was 

significantly smaller than the specific heat, as shown in Figure 2.6. This is mainly due to 

the ambient pressures of the test conditions, which were much higher than the critical 

pressure of liquid n-dodecane. Note that while the vapor pressure of n-dodecane increases 

exponentially until it reaches its critical pressure of 1.8 MPa at 658 K, the ambient 

pressures were ~6 MPa for the 900 K case and ~5 MPa for the 750 K case, which are 

relevant to the TDC conditions in compression ignition engines [52]. Under such high 

pressures, the evaporation model used in the current study [69] predicts that the bulk of 

evaporation occurs at liquid temperatures close to the critical temperature where the 

vapor pressure is the highest, because the ratio between the vapor pressure of the liquid 

fuel and the ambient pressure (pvap/pamb) is the key model parameter driving the 

evaporation process. In other words, when the droplet temperature is not close to the 

critical temperature, pvap/pamb is too small and causes a negligibly small amount of 
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evaporation to occur. Figure 2.7 illustrates the fraction of evaporating mass within each 

liquid temperature bin (10 K) relative to the total evaporating mass at a given time (0.2 

ms) for the 900 K 22.8 kg/m3 case, and clearly shows that the bulk of the phase change 

occurred at droplet temperatures over 600 K, which is in proximity to the critical 

temperature. Cp,liq increases with liquid temperature, however hvap decreases and 

eventually becomes zero at the critical temperature, as shown in Figure 2.8 for n-

dodecane. Thus, when the liquid temperature approaches the critical temperature, the heat 

transfer needed for vaporization (Qtotal) in Equation 5 is dominated by Cp,liq, with a much 

smaller contribution from hvap. Therefore, in proximity to the critical temperature, the 

perturbation of the heat of vaporization has only a marginal effect on Qtotal, resulting in a 

much smaller change in liquid penetration relative to the specific heat perturbations.   

2.5.3 Density Effects 

Increasing liquid fuel density has been shown to increase liquid penetration length 

in spray experiments [50,53–55]. The current simulation results in Figure 2.5 captured 

the expected trend, showing that the liquid penetration length is sensitive to liquid density 

variations. Also, the sensitivity factor of liquid length to fuel density was the highest 

among all the physical properties considered for both test conditions, as shown in Figure 

2.6. This effect was a result of the entrainment rate, which is defined as the ratio of 

entrained ambient mass to the fueling rate, which is inversely proportional to the square 

root of the fuel density as analyzed in [50,54,55]. Thus, a higher liquid density requires 

the entrainment of additional ambient air, which demands more mixing time or a greater 

mixing length to complete the vaporization process. 
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2.5.4 Vapor Pressure Effects 

Vapor pressure, a measure of liquid volatility, is a well-known fuel property that 

affects liquid penetration [52,53,55] by influencing the vaporization process. Higher 

vapor pressure enhances liquid fuel vaporization, resulting in shorter liquid penetration, 

which was well captured by the current model as shown in Figure 2.5 and Figure 2.6. An 

interesting observation is that the effect of vapor pressure was much more significant in 

the lower temperature case. Figure 2.5 shows that the same perturbations in vapor 

pressure resulted in a 4 ~ 6 % relative change in the 900 K case, but in a 13 ~ 18 % 

change in the 750 K case. Because of the faster heat transfer to the liquid fuel for the 

higher ambient temperature case, the effect of fuel volatility on liquid penetration is less 

pronounced in the 900 K case. 

2.6 Results – Ignition Delay Time 

To better understand the effect of the liquid fuel properties on the spray ignition 

characteristics under the simulated conditions, the calculated global heat release rates for 

the baseline cases are shown in Figure 2.9 (a) at 900 K 22.8 kg/m3 and (b) at 750 K 22.8 

kg/m3. Two-stage ignition is predicted for both cases, including low temperature heat 

release (LTHR), negative temperature coefficient (NTC) behavior, and high temperature 

ignition chemistry. The LTHR phase in Figure 2.9 is defined as the period between the 

start of heat release and the first heat release rate peak, while the NTC period is defined 

as the time from the first heat release rate peak to the start of high temperature ignition, 

which is defined as the time when the maximum rise rate of peak temperature occurs [20]. 
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The ignition process takes much longer for the 750 K case, primarily due to the longer 

duration of the LTHR and NTC phases of ignition.  

Figure 2.10 shows the time evolution of the local temperatures during the ignition 

process for the 900 K 22.8 kg/m3 case. In the temperature contours at 0.37 ms and 0.41 

ms after the start of injection, the temperature rise is observed at the periphery of the 

spray where the equivalence ratio is 1~2.  A similar initial temperature rise at the spray 

periphery was predicted in the work of Som and Aggarwal [78]. At 0.45 ms, high 

temperature chemistry, which leads to the ignition of the fuel spray, is about to start in the 

interior of the spray where the fuel/air mixture is slightly rich and local temperature is the 

highest. A similar ignition process was predicted for the 750 K case (not shown), with the 

initial heat release at the periphery of the spray and the onset of high temperature heat 

release in the spray interior.  

The two stage ignition process within the n-dodecane spray can be better 

understood when the time evolution of local reactivity is determined during the ignition 

delay period, as shown in Figure 2.11. The local reactivity was calculated using a 

methodology similar to the one shown in Kodavasal et al. [79]. In this case, the local 

reactivity was represented by the inverse of the ignition delay time calculated from 

constant volume homogeneous reactor simulations initialized with the local temperature, 

pressure, and gas phase composition at a given instance of time in each cell of the fuel 

spray. These ignition delay calculations were performed using the zero dimensional 

chemistry solver included in the CFD package CONVERGE [64] with the same chemical 

mechanism as the CFD simulations. A shorter ignition delay time is indicative of higher 

mixture reactivity, hence the inverse of the calculated ignition delay time can be used to 
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gauge local reactivity and the preferential ignition sites within the spray. Figure 2.11 

illustrates the local reactivity distribution during the ignition delay period for the 900 K 

22.8 kg/m3 case. During the LTHR phase (0.33 ms ~ 0.39 ms), it can be seen that the 

most reactive charge is located at the periphery of the spray where the temperature is 

greater than that of the jet interior and the equivalence ratio is near stoichiometric or 

slightly rich, which is in agreement with the location of the initial temperature rise 

observed in Figure 2.10. As time progresses (from 0.41 ms ~ 0.43 ms), ignition process 

enters the NTC regime and approaches high temperature ignition - the regions of peak 

reactivity gradually shift into the interior of the spray as a result of heat and mass transfer, 

where high temperature ignition eventually occurs. 

Figure 2.12 summarizes the relative changes in ignition delay time with physical 

property perturbations for the (a) 900 K 22.8 kg/m3 case and (b) 750 K 22.8 kg/m3 case. 

For both conditions, the perturbations of specific heat and density have significant impact 

on the calculated ignition delay (-10 % ~ 9 % for specific heat, -7 % ~ 7 % for density); 

vapor pressure and the latent heat of vaporization have a small effect (-2 % ~ 1 %), while 

variations in viscosity and surface tension marginally affect ignition delay (less than 0.5 % 

at most). No meaningful deviations from the baseline cases could be observed for the 

viscosity and surface tension cases when local temperatures and equivalence ratio within 

the spray are compared, despite their effect on liquid length. On the other hand, the 

ignition delay time is much more sensitive to perturbations in specific heat and density 

than rest of the properties, which is also clearly seen in the sensitivity factors plotted in 

Figure 2.13. The reason for these behaviors is discussed in the following sections. 
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2.6.1 Specific Heat Effects 

Figure 2.14 shows the calculated global heat release rates for the specific heat 

perturbation cases. For both test conditions, the specific heat perturbation had the largest 

impact on the calculated ignition delay, causing a -10 % to ~ 9 % deviation from the 

baseline cases. The entire ignition process from the start of low temperature heat release 

to the transition to high temperature chemistry was slowest for the perturbation with the 

greatest specific heat.  

To understand this behavior’s root cause, reactivity contours for n-dodecane/air 

mixtures were calculated for each test condition just prior to heat release in the 

equivalence ratio – temperature domain as shown in Figure 2.15; markers noting the Φ 

and T in each cell are plotted onto the contours.  For both cases, it is clear that the local 

temperatures decrease with an increase in specific heat at a given equivalence ratio. This 

local temperature difference is caused by the change in the amount of heat that should be 

transferred from the ambient charge to the liquid fuel for its vaporization (Qtotal in 

Equation 5) as a result of the liquid specific heat perturbation. With a higher specific heat, 

a larger increase in liquid sensible internal energy is required for a given liquid fuel 

temperature increase - this causes the lower local mixture temperature at a given time. 

These local temperature variations influence the local reactivity, where from the 

reactivity contour it is evident that the higher fuel specific heat case is colder and less 

reactive overall, resulting in a longer ignition delay.   

Deviations in the ignition delay time caused by the specific heat perturbations, 

especially for the 750 K case, are ± ~0.2 ms, which is equivalent to ± ~2.4 crank angle 

degree at 2000 rpm. Such a change in ignition delay time or combustion phasing will 
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have an effect on engine performance. Thus, emulating the specific heat of the liquid fuel 

should be considered for surrogates intended for spray/compression ignited combustion.  

2.6.2 Density Effects 

Figure 2.16 shows the calculated global heat release rates for the density 

perturbation cases. Density affects the ignition delay time, showing up to a 7% deviation 

from the baseline case for the perturbations shown in Figure 2.12. An important 

observation is that the ignition delay time was retarded for the higher density 900 K case 

(3.6 % increase in ignition delay), while ignition was advanced with higher density for 

the 750 K condition (7.1 % decrease in ignition delay).  Although the overall change in 

ignition delay time was not consistent, a common trend for each ignition event was the 

observation of slower progress in the first stage LTHR and faster transition to high 

temperature ignition during NTC period (or shorter NTC duration) with greater liquid 

density. One of the major reasons for these variations was the change in air/fuel mixing 

resulting from the density variations. In the following sections, the influence of liquid 

fuel density on air/fuel mixing and ignition behavior are investigated. 

 

Liquid Density Effect on Turbulent Mixing 

As discussed previously, the injection velocity (Ufuel) and the mass injection rate 

(ṁfuel) were changed as a result of the density perturbation while maintaining the injection 

momentum flow rate (ṁfuelUfuel) and injection pressure. Since fuel injection is the driving 

force for turbulent mixing within the initially quiescent spray chamber, the change in fuel 

injection related parameters such as Ufuel and ṁfuel impacts turbulent mixing rates. The 
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changes in mixing rates for the density perturbation cases are evident in the turbulent 

transport coefficients used within the RANS turbulence model of the current CFD 

simulations.  Here, the turbulent diffusion of heat and mass are governed by the turbulent 

thermal diffusivity (Kt) and turbulent mass diffusivity (Dt) obtained from turbulent 

viscosity (μt ) and turbulent Prandtl (Pr) and Schmidt (Sc) numbers:  
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where K is the molecular thermal conductivity, cp is the gaseous specific heat, ρ is the 

gaseous density, Prt is the turbulent Prandtl number, and Sct is the turbulent Schmidt 

number. Figure 2.17 compares the turbulent viscosities of the density perturbations for 

the 900 K case at 0.25 ms and clearly shows that μt is inversely proportional to the liquid 

fuel density. Since the turbulent thermal and mass diffusivities are determined by the 

turbulent viscosity as shown in Equation 6 and 7, the turbulent transport of heat and 

species should be slower for the higher fuel density case as a result of lower turbulent 

viscosity.  

Similarities are observed when the mixing perturbation cases are simulated and 

compared against the density perturbation cases. The turbulent thermal and mass 

transport rates of the baseline case are adjusted by changing the turbulent Prt and Sct 

numbers. As indicated by Equation 6 and 7, higher Pr and Sc numbers reduce the rate of 

turbulent thermal and mass transport. Figure 2.18 compares the turbulent mass 

diffusivities of (a) the density perturbation cases and (b) the mixing perturbation cases. 

As shown in Figure 2.18 (a) and (b), these mixing perturbations and the liquid density 
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perturbations have a similar effect on the turbulent mass diffusivities, indicating that the 

different effects have a similar impact on mixing rates.   

Although the momentum flow rate of the fuel injection was kept constant for 

these density perturbations, notable change in turbulent mixing was still observed as 

shown in Figure 2.17, which implies that an injection parameter other than ṁfuelUfuel 

caused such a deviation. To identify which injection parameter change caused this 

difference, three other density perturbations were performed (identical density 

perturbation range) with different parameters kept constant, which were the mass 

injection rate (ṁfuel), the injection velocity (Ufuel), and the kinetic energy flow rate from 

the fuel injection event (ṁfuelUfuel
2). The relationship between these parameters and the 

liquid density depends on the density perturbation method as summarized in Table 2.3. 

For example, when the liquid density is perturbed while maintaining the kinetic energy 

flow rate from the fuel injection event of the baseline case, the momentum flowrate (ṁfuel 

·Ufuel), the mass injection rate (ṁfuel), and the injection velocity (Ufuel) were proportional 

to ρ1/3, ρ2/3, and ρ-1/3, respectively.  

Figure 2.19 compares the local turbulent viscosities of four different density 

perturbations for the 900 K case at 0.25 ms after fuel injection. Of all the density 

perturbation methods investigated, the case that maintained the injection velocity of the 

baseline case (Figure 2.19 (c)) showed the smallest deviation from the baseline case in 

turbulent viscosity. Also, the level of deviations for all four methods correlates with the 

change in injection velocity as a result of density perturbation. Based upon the 

relationship shown in Table 2.3, the change in the injection velocity from the baseline 

case is in the order of the case with constant injection mass (Ufuel ≈ ρ-1), constant 
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momentum (Ufuel ≈ ρ-0.5), constant kinetic energy (Ufuel ≈ ρ-1/3), and finally constant 

injection velocity (Ufuel ≈ constant), which is in the same order to the deviations in the 

turbulent viscosity as shown in Figure 2.19. In Figure 2.20, the turbulent viscosities of the 

density perturbation with constant velocity shown in Figure 2.19 (c) are compared in 

spatial image, which also confirms the similar level of turbulent viscosities. As a result, 

the global heat release rates of the density perturbations with constant injection velocity, 

especially during the first stage LTHR period, were the closest to the baseline case 

among the tested density perturbation methods as shown in Figure 2.21. Note the global 

heat release rates during LTHR phase (0.25 ms ~ 0.4 ms for the 900 K case in Figure 

2.21 (a), 1 ms ~ 1.4 ms for the 750 K case in Figure 2.21 (b)) were virtually identical to 

the baseline cases. Also, the timing of the first peak of the heat release rate (or the end of 

the LTHR) did not shift as much as the density perturbations with constant injection 

momentum (Figure 2.16). The difference in the magnitude of heat release rate at the end 

of LTHR and during NTC period in Figure 2.21 may be attributed to the difference in the 

injected fuel mass, which was proportional to the liquid density. Such an effect is more 

obvious in the 750 K case in Figure 2.21 (b), where higher heat release rate due to 

increased injected fuel mass resulted in earlier onset of high temperature chemistry 

leading to shorter NTC duration. 

From this analysis, it can be concluded that the major reason for the change in 

turbulent mixing rate as a result of liquid density perturbations with constant momentum 

flow rate (density perturbations in Figure 2.16) was the change in the injection velocity. 

Higher density reduces the injection velocity (Ufuel ≈ ρ-0.5), which results in slower 

turbulent mixing rates. This conclusion is consistent with analytic turbulent jet theories 
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[80]. For a free turbulent jet, theoretical analysis with the turbulent mixing length 

approach indicates that turbulent thermal and mass transport are proportional to the radial 

gradient of the mean velocity. Since the turbulence model used in this study (RNG k-ε 

model) incorporates the same approach, the generation of the turbulent kinetic energy and, 

consequently, the intensity of turbulent mixing depend on the radial gradient of the mean 

velocity. Thus, higher liquid density with slower injection velocity results in smaller 

radial velocity gradient, which leads to slower turbulent mixing.   

 

Density Perturbation Effects on Mixing and LTHR 

To see the effects of turbulent mixing on LTHR progress, the temperature-

equivalence ratio distributions just before the start of heat release are shown in Figure 

2.22 for the density perturbation with constant injection momentum. Unlike the specific 

heat perturbations, which showed three distinct bands clustered in the T and Φ domain of 

Figure 2.15, there were no such large deviations in the T - Φ distributions of the density 

perturbations, as the bands approximately overlapped.  Thus, the reactivity of the spray 

before LTHR cannot be compared solely based upon the T - Φ distribution.   

Alternatively, using the method shown in [79], the mass distributions in the local 

reactivity dimension can be used to distinguish the differences in overall charge reactivity. 

Taking the local pressure, temperature and composition from the sprays in Figure 2.22, 

the local reactivity of the density perturbation with constant injection momentum was 

calculated with the same method used for Figure 2.11. Figure 2.23 illustrates the mass 

distribution in the local reactivity space before the start of LTHR. The 900 K case as 

shown in Figure 2.23  (a) indicates that the spray with higher liquid fuel density has less 
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mass in the most reactive regime relative to the baseline case. This trend is more obvious 

for the 750 K case in Figure 2.23 (b), where the mixing effect is more pronounced due to 

the much longer ignition delay period. This reactivity distribution indicates that while the 

T - Φ distributions were overlapped to the baseline case as in Figure 2.15, the cell 

markers are for higher density case are less densely populated at the region where 

reactivity is the highest (Φ of 1~1.5 for the 900 K case, Φ of ~1 for the 750 K case). Thus, 

the slower turbulent mixing for the higher density case prepares the charge more slowly, 

creating a smaller mass of high reactivity mixture, which results in the slower LTHR 

reaction rates at a given time during the LTHR regime within Figure 2.16. Such an effect 

of the turbulent mixing rate on reactivity distribution before the start of LTHR is also 

observed in Figure 2.24, where the reactivity distributions of the density perturbations 

with constant injection velocity are shown. Since the change in turbulent mixing was the 

smallest when the injection velocity was kept constant as shown in Figure 2.19, the 

deviations in reactivity distribution was much smaller than the density perturbation with 

injection momentum constant as shown in Figure 2.23, in particular in the highest 

reactivity region. The tendency of higher density case to have more mass of mixture in 

lower reactivity region may be attributed to more injected fuel mass for higher density 

case. Above analysis confirms that the change in turbulent mixing was the key factor for 

the change in the progress of LTHR. 

 

Density Perturbation Effects on Mixing and NTC duration 

Despite the slower LTHR progress, the NTC duration becomes shorter for the 

higher density case as shown in Figure 2.16. This behavior can be better understood 
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through a numerical experiment where the turbulent thermal and mass diffusivities of the 

baseline case are artificially perturbed during the NTC period to isolate the effect of 

mixing on the NTC duration. Figure 2.25 compares the global heat release rate and peak 

temperature evolution of the 750 K case when the turbulent thermal and mass transport 

coefficients are perturbed at the start of the NTC period, indicated by the "perturbation 

start" line in the figure. The ranges of the Prt and Sct perturbations (x 0.9 ~ 1.1) reflect 

the change in turbulent thermal and mass diffusivity predicted for the density perturbation 

cases shown in Figure 2.18 (b). While the heat release rate profile is virtually unchanged 

until 1.8 ms in Figure 2.25  (a), it is evident that the local peak temperatures begin to 

diverge in Figure 2.25  (b) starting at 1.6 ms, with the slower mixing cases (higher Prt 

and Sct) achieving significantly higher peak temperatures and heat release rate at a given 

time. The T - Φ distributions during the NTC period (at 1.8 ms) are shown in Figure 2.26, 

where the slower mixing case (Sc, Pr x 1.1) achieves a ~ 30 K higher peak temperature 

than the faster mixing (Sc, Pr x 0.9) case. Since the cumulative heat release at 1.8 ms is 

very similar for both cases (see Figure 2.25 (a)), the local temperature difference is 

caused in part by the change in the rate of turbulent transport, where the slower mixing 

case reduces mixing rates with the colder surroundings, resulting in higher local 

temperature. Such an effect leads to the earlier onset of high temperature chemistry and is 

a prime reason for the shorter NTC durations with higher density. An identical trend was 

observed for the 900 K case when the turbulent mixing was perturbed during the NTC 

period (not shown). 

As shown above, the liquid density perturbation with constant injection 

momentum influenced turbulent mixing rates, which have competing effects on LTHR 
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progress and NTC duration. Greater density makes the LTHR phase longer because it 

shifts the T - Φ distributions to favor lower reactivities (Figure 2.23), however the NTC 

duration is shorter with higher density, given that slower turbulent mixing rates allow 

peak temperatures to remain elevated during NTC (Figure 2.25). In addition, higher mass 

fueling rate of higher liquid density also results in shorter NTC duration due to increased 

chemical energy available from fuel. These effects are consistent for the 900 K and 750 K 

cases, as shown in Figure 2.27, which summarizes the deviations in LTHR peak timing 

(corresponding to the start of NTC) and NTC duration from the baseline case. Since the 

contribution of these two competing effects to the total ignition delay time measured by 

the onset of high temperature ignition changes drastically, the effect of fuel liquid density 

on ignition delay reverses when transitioning from 900 K to 750 K. As seen in Figure 

2.27, the contribution from the deviations in LTHR progress is greater than that of NTC 

during the NTC duration for the 900 K case, while the change in NTC duration dominates 

the overall ignition delay change for the 750 K case. For this reason, the density effect on 

ignition delay could either increase or decrease the total ignition delay of the 900 K and 

750 K cases. 

2.7 Summary and Conclusions 

CFD spray simulations were conducted to evaluate the effects of liquid fuel 

properties on liquid penetration length and ignition delay during compression ignited 

combustion. The perturbation of the liquid fuel physical properties was made to reflect 

the property ranges expected from hydrocarbon molecules that are frequently used in 
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petroleum-derived diesel and jet fuel surrogates. The following conclusions can be drawn 

from the current study: 

1. Among the six physical properties considered in this study, density, viscosity, vapor 

pressure and specific heat had a significant impact on the liquid penetration length 

(from 4 % to ~ 18 %). The impact of surface tension and heat of vaporization on 

liquid penetration length were minimal.  

2. Vapor penetration length was not significantly affected by any of the liquid physical 

property perturbations, which is consistent with experimental observations. 

3. Under the simulated ambient conditions, ignition delay was very sensitive to 

perturbations in the liquid fuel’s specific heat. -30 % ~ +20 % change in liquid 

specific heat resulted in -10 % to 9 % change in ignition delay time. A greater 

specific heat increased the energy required for fuel vaporization, resulting in lower 

mixture temperatures, a less reactive fuel spray and a longer ignition delay. This is an 

important finding since liquid specific heat has been often neglected as a target 

property during the development of surrogates for diesel/spray combustion.  

4. Liquid density also had a significant effect on ignition delay time through its 

competing effects on LTHR and NTC duration. -8 % ~ + 20 % change in liquid 

density caused up to 7% change in ignition delay. With higher density, LTHR 

progress was slower, but NTC duration was also shorter. The main cause of this 

behavior was the change in turbulent thermal and mass transport rates due to the 

effect of liquid density on injection velocity. When different density perturbation 

methods were investigated, the density perturbation cases with constant injection 

velocity resulted in smallest deviations from the baseline case, in terms of the 

turbulent mixing rates and reactivity distribution before the start of initial heat release. 

This observation indicates the change in injection velocity was the primary reason for 

the change in turbulent mixing for the density perturbation cases. A lower mixing rate 
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in the higher liquid density case was slower to form a reactive mixture for the LHTR, 

however during the NTC period, it was beneficial for the earlier onset of high 

temperature chemistry by allowing higher local temperatures. In addition, increased 

available chemical energy by higher fueling rate also caused shorter NTC duration.  

5. The relative contribution of these competing effects to the total ignition delay time 

changed depending on the ambient gas temperature, causing the importance of 

density to ignition delay to vary with ambient temperature. 

6. Liquid fuel properties other than specific heat and density do not have significant 

impact on the ignition delay time.  

7. Surrogates for spray/diesel combustion should consider emulating liquid density, 

specific heat, viscosity, and volatility of the target fuel to properly capture the liquid 

penetration and ignition delay characteristics of the target fuel. 
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Tables 

Table 2.1. Details of experimental spray data from Sandia National Laboratories [73–75]. 

 Non-reacting Reacting 

Temperature 

(K) 

900 1100 900 1200 750 

Density 

(kg/m3) 

22.8 15.2 22.8 22.8 22.8 

Pressure 

(MPa) 

6.1 5.0 6.1 7.9 4.9 

Ignition 

Delaya (ms) 

- - 0.398 0.147 1.723 

Injection 

Duration 

(ms) 

1.5 1.5 1.5 1.5 2.5 

Ambient 

Composition 

(N2/CO2/ 

H2O/O2, 

molar) 

0.8971/0.0652/0.0377/0 0.7515/0.0622/0.0362/0.15 

Fuel n-dodecane, 373 K 

Injector Spray A (Serial # 210677), Common rail, Single hole, 90 µm diameter 

Injection 

Pres. (MPa) 

150 MPa 

a From the average of three optically measured ignition delays in [75] 
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Table 2.2. Multipliers assigned to baseline properties for their perturbations. 

 Perturb Min Perturb Max 

Density 0.92 1.2 

Vapor Pressure 0.41 10 

Viscosity 0.4 2 

Surface Tension 0.7 1.25 

Heat of Vaporization 0.8 1.16 

Specific Heat Capacity 0.7 1.2 

 

 

Table 2.3. Effects of liquid fuel density on injection-related parameters for different 
density perturbation methods. 

Density 

perturbation 

methods 

Controlled 

parameter 

Relationship with the liquid density 

ṁfuel ·Ufuel ṁfuel Ufuel ṁfuel ·Ufuel
2 

Constant injection 

momentum  
ṁfuel ·Ufuel

  - ρ0.5 ρ-0.5 ρ-0.5 

Constant injection 

mass flow rate 
ṁfuel ρ-1 - ρ-1 ρ-2 

Constant injection 

velocity 
Ufuel ρ ρ - ρ 

Constant injection 

kinetic energy 
ṁfuel ·Ufuel

2 ρ1/3 ρ2/3 ρ-1/3 - 
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Figures 

 

(a) 

 

(b) 

Figure 2.1. Comparison of predicted and experimental liquid/vapor penetration lengths. 

 

  

Figure 2.2. Comparison of predicted and experimental vapor fuel mass fraction [74] at (a) 
25mm downstream from the injector tip and (b) at the jet centerline. The steady-state 
experimental data is compared against the simulation results at 1.4 ms after the start of 
the injection, when the jet was steady. 
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Figure 2.3. Comparison of measured and calculated ignition delays. Error bars show the 
minimum and maximum values from three experimental runs [75]. 

 

 

Figure 2.4. Comparison of high temperature chemiluminescence images from 
experiments [73] with the predicted local temperatures near the time of ignition for the 
reacting spray cases at a given time.  Image times are noted for each case in the figure. 
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Figure 2.5. Relative change in liquid penetration length due to physical property 
perturbations at (a) 900 K 22.8 kg/m3  and (b) 750 K 22.8 kg/m3. The baseline liquid 
penetration length is 9.8 mm for (a) and 11.5 mm for (b). 

 

 

 

  

Figure 2.6. The sensitivity factor for liquid penetration length due to physical property 
perturbations at (a) 900 K 22.8 kg/m3 and (b) 750 K 22.8 kg/m3. 
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Figure 2.7. The evaporating mass fraction of each liquid droplet relative to the total 
evaporating mass at 0.2 ms after start of injection for the 900 K 22.8 kg/m3 case. 

 

 

 

Figure 2.8. Temperature-dependent specific heat and heat of vaporization of liquid n-
dodecane normalized to the 300 K value. 
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Figure 2.9. Calculated global heat release rates at (a) 900 K 22.8 kg/m3 and (b) 750 K 
22.8 kg/m3 for the baseline cases. The ignition timing shown on the figure is defined as 
the time of the maximum rise rate of peak temperature. The baseline ignition delay is 
0.47 ms for (a) and 2.10 ms for (b). 

 

 

Figure 2.10. Calculated local temperatures and equivalence ratio contours at 900 K 22.8 
kg/m3 with the baseline fuel properties. 
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Figure 2.11. The local reactivity distributions and equivalence ratio contours during 
LTHR at 900 K 22.8 kg/m3 with the baseline fuel properties. 
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Figure 2.12. Relative change in ignition delay time due to physical property perturbations 
at (a) 900 K 22.8 kg/m3 and (b) 750 K 22.8 kg/m3. The baseline ignition delay is 0.47 ms 
for (a) and 2.10 ms for (b). 

 

 

  

Figure 2.13. The sensitivity factor for ignition delay time due to physical property 
perturbations at (a) 900 K 22.8 kg/m3 and (b) 750 K 22.8 kg/m3. 
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Figure 2.14. Comparisons of the calculated global heat release rates for the specific heat 
perturbation cases at (a) 900 K 22.8 kg/m3 and (b) 750 K 22.8 kg/m3. 

 

 

(a) 
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Figure 2.15. The n-dodecane reactivity contour and temperature-equivalence ratio 
distribution within the spray before the start of LTHR for the specific heat perturbation 
cases. (a) 900 K 22.8 kg/m3 at 0.25 ms after injection with the reactivity contour at 60 
atm and (b) 750 K 22.8 kg/m3 at 1 ms after injection with the reactivity contour at 50 atm. 
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Figure 2.16. Comparisons of the calculated global heat release rates for the density 
perturbation with constant injection momentum at (a) 900 K 22.8 kg/m3 and (b) 750 K 
22.8 kg/m3. 
  

 

 

Figure 2.17. Comparisons of turbulent viscosities for the 900 K 22.8 kg/m3 case at 
0.25ms after the start of injection of the density perturbation cases.  

 

 

0.2 0.3 0.4 0.5
0

10

20

30

40

50

60

Time (ms)

G
lo

ba
l H

ea
t R

el
ea

se
 R

at
e 

(k
J/

se
c)

 

 

baseline
Den min
Den max

(a) 900 K 22.8 kg/m3

Constant mfuelUfuel
.

1 1.2 1.4 1.6 1.8 2 2.2
0

20

40

60

80

100

120

140

Time (ms)

G
lo

ba
l H

ea
t R

el
ea

se
 R

at
e 

(k
J/

se
c)

 

 

baseline
Den min
Den max

(b) 750 K 22.8 kg/m3

Constant mfuelUfuel
.



54 

 

(a) 

 

(b) 

Figure 2.18. Comparisons of turbulent mass diffusivity for the 900 K 22.8 kg/m3 case at 
0.25ms after the start of injection of (a) density perturbation cases with constant injection 
momentum, and (b) mixing perturbation cases. 
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Figure 2.19. Comparisons of turbulent viscosities for the 900 K 22.8 kg/m3 case at 
0.25ms after the start of injection from different density perturbation methods. In (a) the 
momentum flow rate is held constant, (b) the mass injection rate is held constant, (c) the 
injection velocity is held constant, and (d) the kinetic energy flow rate from injection is 
held constant. 



56 

 

Figure 2.20. Comparisons of turbulent viscosities for the 900 K 22.8 kg/m3 case at 
0.25ms after the start of injection of the density perturbation with constant injection 
velocity.  
 

 

 

  

Figure 2.21. Comparisons of the calculated global heat release rates for the density 
perturbation with constant injection velocity at (a) 900 K 22.8 kg/m3 and (b) 750 K 22.8 
kg/m3. 
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(a) 

 

(b) 

Figure 2.22. The n-dodecane reactivity contour and temperature-equivalence ratio 
distribution within the spray before the start of LTHR for the density perturbation with 
constant injection momentum. (a) 900 K 22.8 kg/m3 at 0.25 ms after injection with the 
reactivity contour at 60 atm and (b) 750 K 22.8 kg/m3 at 1 ms after injection with the 
reactivity contour at 50 atm. 
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Figure 2.23. Mixture mass distributions in the local reactivity domain just prior to the 
start of low temperature heat release for the density perturbation with constant injection 
momentum for (a) 900 K 22.8 kg/m3 at 0.25 ms after injection and (b) 750 K 22.8 kg/m3 
at 1 ms after injection. The reactivity bin size is 0.25 and 0.025 1/ms for the 900 K case 
and the 750 K case, respectively. 
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(a) 

 

(b) 

Figure 2.24. Mixture mass distributions in the local reactivity domain just prior to the 
start of low temperature heat release for the density perturbation with constant injection 
velocity for (a) 900 K 22.8 kg/m3 at 0.25 ms after injection and (b) 750 K 22.8 kg/m3 at 1 
ms after injection. The reactivity bin size is 0.25 and 0.025 1/ms for the 900 K case and 
the 750 K case, respectively. 

 

(a) 

 

(b) 

Figure 2.25. (a) Global heat release rate and (b) peak temperature within the 
computational domain of the mixing perturbation study during the NTC period at 750 K 
22.8 kg/m3. 
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Figure 2.26. Temperature – equivalence ratio distributions at 1.8 ms after start of 
injection for the mixing perturbation cases in Figure 2.23. 

 

 

  

Figure 2.27. Deviations from the baseline in LTHR peak timing, NTC duration, and total 
ignition delay time for the density perturbation cases at (a) 900 K 22.8 kg/m3 and (b) 750 
K 22.8 kg/m3. The deviation in total ignition delay time is the sum of the deviations in 
LTHR peak timing and NTC duration. The contribution from LTHR is greater for the 900 
K case, but dominated by the contribution from NTC duration for the 750 K case. 
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          Chapter 3  
 
 

Surrogate Formulation for Conventional and Alternative Jet Fuels  

In this chapter reports the optimization-based surrogate formulation methodology 

and surrogate formulation results for conventional and alternative jet fuels.  

3.1 Target Fuels  

Three target fuels were examined in the current work as shown in Table 3.1, 

including petroleum-derived Jet-A POSF-4658, Iso-Paraffinic Kerosene (IPK) POSF-

5642, a coal-derived SPK with very low DCN, and S-8 POSF-4734, a natural-gas-derived 

SPK with very high DCN. Also, 50/50 vol% blends of Jet-A/IPK and Jet-A/S-8 were 

considered. The carbon number distributions are similar for the three fuels [81], but their 

hydrocarbon class compositions and resulting fuel properties differ significantly. While 

petroleum-derived Jet-A is a complex mixture of linear alkanes, cyclic alkanes, and 

aromatic compounds [82], IPK and S-8 are composed of entirely linear alkanes (mostly 

iso-alkanes) except for IPK’s small cyclic alkane fraction [81]. Despite their similar and 

dominant iso-alkane composition, IPK and S-8 have drastically different ignition quality 

(DCN of 31 vs 60), which stems from the difference in the degree of iso-alkane 
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branching in these fuels, with IPK having less-ignitable highly-branched iso-alkane 

species, and S-8 with mostly high ignition quality mono- or di-methyl alkanes [47,83]. 

The absence of aromatics in SPK’s can explain in part the property differences of these 

fuels compared to petroleum derived Jet-A, which contains up to ~20% aromatics by 

volume [82]. For instance, due to the aromatic’s molecular structure with single or 

multiple benzene rings, these compounds generally have a lower H/C ratio and a higher 

liquid density than linear alkanes. These differences result in higher H/C and lower liquid 

density for SPK’s relative to Jet-A. The current surrogate formulation effort seeks to 

capture the diverse range of compositional and property characteristics present within the 

target jet fuels. 

3.2 Target Property Selection 

The surrogate formulation for these target fuels focused on emulating various 

properties affecting the compression ignited combustion process. As concluded in 

Chapter 2, four temperature dependent liquid physical properties, which are density, 

viscosity, volatility, and specific heat, have significant impact on the spray characteristics 

and its ignition behavior. Also, the chemical processes which prepare the fuel-air charge 

for ignition depend on the chemical properties of the fuel. The ignitability of the fuel, 

often represented by DCN for diesel application determines the reactivity of the fuel. The 

MW affects the liquid/vapor phase diffusive transport of fuel species, while the LHV 

determines the energy that can be released through the oxidation of the fuel.  Finally, the 

local air/fuel ratio and adiabatic flame temperature are influenced by the H/C ratio. 
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In order to properly address the dependency of the diesel ignition processes on 

various liquid fuel properties, eight properties were chosen as the target properties for the 

surrogates, which are DCN, LHV, H/C ratio, MW, density, viscosity, specific heat, and 

distillation curve as summarized in Table 3.1 

3.3 Surrogate Component Palette 

Since the properties of surrogate mixtures depend on the properties of the 

surrogate components, appropriate surrogate component selection is critical for 

successful property emulation for surrogate fuels. The surrogate components were 

selected based upon the following considerations: 

1. The relevance to the hydrocarbon molecules in real jet fuels in terms of hydrocarbon 

class and molecular size. 

2. The existence of chemical mechanism that is capable of predicting the ignition process 

of the neat components. 

3. Previous use in other jet fuel surrogate studies or use that has been suggested in the 

literature [24]. 

Based upon these criteria, a palette of six pure components is formed which is n-

dodecane/n-decane/iso-cetane/iso-octane/decalin/toluene. Note that decalin (CAS 91-17-

8) used throughout this study is approximately a 60/40 vol% mixture of trans- and cis- 

isomers. By sharing a common palette, the oxidation of any surrogates formulated within 

the palette can be simulated with a common chemical mechanism, which is an important 

benefit considering the application of these surrogates and their blends to a range of 

target fuels. It should be noted that based on the composition of IPK in [81] and its low 
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ignition quality, it is ideal to represent the IPK’s iso-alkane components with highly-

branched iso-alkane molecules in the C10~C12 range, not with iso-octane (C8) and iso-

cetane (C16). However, chemical mechanisms for those C10~C12 highly-branched iso-

alkanes are not currently available. Thus, any progress in kinetic modeling of highly-

branched iso-alkanes between iso-octane and iso-cetane will benefit future surrogate 

development for SPKs. 

3.4 Surrogate Optimizer 

An optimizer was developed and utilized to determine the surrogate composition 

of targeted jet fuels. The optimization process starts with an initial guess for the 

composition of a model mixture. Based upon the properties of the individual surrogate 

components, the optimizer calculates or estimates the chemical and physical properties of 

the model mixture using models and correlations included in the optimizer. Then, the 

properties of the model mixture are compared against the properties of the target fuel. 

The deviation between the model mixture and the target fuel defines the objective 

function of the optimization problem. The optimization algorithm determines the 

composition of the next model mixture. This process is automatically iterated until the 

composition of the surrogate components with the best match to the target fuel properties 

is found. 

Table 3.2 summarizes the models that were used in the optimizer for estimating 

the mixture properties. Note that a model is not required for calculating the mixture MW 

and H/C ratio. The LHV of the mixture was calculated with a mass fraction average of 

the individual LHV’s of each surrogate component. The density of the mixture was 



64 

estimated with the volume fraction average. The viscosity of the mixture was estimated 

using the Grunberg-Nissan equation [84] with the regression term Gij set to zero, which 

is applicable to hydrocarbon mixtures as suggested in [85] with expected errors of about 

15 percent. The parachor correlation [86] was used to estimate the mixture surface 

tension, neglecting the vapor mixture molar density which is very small compared to the 

liquid mixture molar density. The uncertainty of the parachor correlation is 3 ~ 10 

percent according to [85]. 

3.4.1 Regression Equation Development for Mixture DCN Estimation 

Initially, the DCN of the model mixture was estimated by taking a linear average 

of the pure components’ DCNs based upon their respective volume fraction. While this 

linear method has been widely used in other optimization-based surrogate development 

studies [30,31], it cannot capture non-linear blend effects influencing mixture DCN. In 

particular, it has been reported that the non-linear effect is significant when n-alkane is 

blended with low ignition quality iso-alkane; the increase in DCN resulting from n-alkane 

addition is much greater than the linear effect [29,87]. To properly incorporate this non-

linearity into the optimization process, a non-linear regression equation correlating the 

mixture composition to DCN was implemented in the surrogate optimizer. For the 

formulation of the regression equation and the design of experiments, the simplex-lattice 

design of Scheffé [87,88] was utilized with a 36-term polynomial to capture the linear 

and non-linear blending effects among six surrogate components: 
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 (Eq. 8) 

where xi is the volume fraction of the ith surrogate component and βi, βi,j, and δi,j are the 

coefficients of the regression equation. It includes a linear average term ( ) along 

with second ( ) and third order ( ) binary interaction 

terms.  

This regression equation was fit to DCN measurements of 76 surrogate 

component mixtures covering a range of DCN from 13 ~ 74 obtained from new IQT 

experiments. The IQT experiments were performed by Professor Marcis Jansons’ group 

at Wayne State University. The full data matrix is provided Table 3.3. These 76 data 

include points for the regression equation, along with the DCN of the target fuels and the 

final surrogate mixtures used for model confirmation. Details on the experimental setup 

and its standard operating procedure are found in [89].  The data matrix started from the 

simplex-lattice design for second order mixtures (pure components and 50/50 binary 

mixtures) of the 6 components. The data matrix was then expanded to include 13 

additional binary mixtures (n-dodecane/iso-octane or iso-cetane or toluene) and 46 

mixtures (tertiary, 4-, 5-, and 6-component mixtures) to improve the reliability of the 

regression model.  

The polynomial regression coefficients were determined with the method of least 

squares and are compared against the previous linear average method in Figure 3.1. The 

coefficients of the regression equation are summarized Table 3.4. The regression 

equation fits well to the experimental data as indicated by the R2 of 0.998 and with an 
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average absolute error of 1.36 % and a maximum absolute error of 1.8 DCN. Figure 3.1 

also clearly shows that the regression equation predictions are much more accurate than 

those from the linear average method; the average and the maximum absolute error from 

the linear average method were 10.4 % and 11.3 DCN, respectively. This regression 

equation was utilized to estimate the surrogate mixture DCN during the optimization 

process. 

3.4.2 Model for Distillation Curve Estimation 

The distillation curve of the mixture was estimated by calculating the temperature 

of the bubble point. The procedure of mixture distillation was modeled, by assuming that 

a constant volume of liquid mixture leaves the liquid phase into vapor phase at each 

volume step, which is similar to the approach shown in Huber et al. [47]. The volume of 

the liquid mixture is initially set to be 100, which decreases by 1 every volume step. At 

the first volume step, the bubble point of the liquid mixture and the composition of 

resulting equilibrium vapor phase is calculated by solving liquid-vapor equilibrium 

equations with Raoult’s law as shown in Table 3.2. Considering the amount and the 

composition of the vapor that left the liquid phase, the composition of the liquid phase for 

the next volume step is derived. This process is repeated until all the liquid has 

evaporated into the vapor phase. The calculated distillation curve was shifted for 

validation against experimental data from the Advanced Distillation Curve metrology as 

suggested by Huber et al. [47] to account for the time it takes for the vaporized fluid to 

reach the collecting vessel after evaporation at the surface of the liquid mixture. The 

model was validated against the experimental distillation curve of 75/25 and 50/50 
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mixtures of n-decane and n-tetradecane [47,90] and the measured distillation curves of 

surrogates in Bruno and Smith [91]. As shown in Figure 3.2, the calculated distillation 

curves were able to successfully capture the experimental trend from the Advanced 

Distillation Curve metrology. In Figure 3.3, the distillation curves of 9 surrogate mixtures 

in [91] were also estimated and the agreement with the measured data was very good 

showing the average absolute deviation from the measured data being less than 2% for all 

9 surrogates. Solving the vapor-liquid equilibrium at the vaporizing surface with the 

rather simple Raoult’s law, which neglects transport effects, is thought to be the main 

reason for the discrepancies between the experiments and the predictions. 

3.4.3 Objective Function 

The objective function of the optimization problem was defined as the weighted 

sum of the squared relative difference between the experimental data and the estimated 

values, which is expressed with the following equations. 
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(Eq. 10) 

where i is the index for target properties, j is the index for experimental data points, xi,j,calc 

is calculated/estimated model mixture property,  xi,j,exp is the experimental data of the 

target fuel, Ntarget is the number of total target properties, Ndata,i is the number of total 

experimental data points for the target property i, and wi is weight for the target property i. 
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The weight assigned to each target property within the objective function, as shown in 

Table 3.1, was determined to emphasize certain properties. DCN, density, and specific 

heat were given higher weights, since these properties have been shown to be most 

influential to the spray and combustion characteristics of compression ignition engines 

[5,92]. The optimization problem was solved with sequential use of the genetic algorithm, 

a global search method, and the MATLAB function fmincon, a local search method. The 

genetic algorithm explores the entire search space to find the approximate location of the 

global minima, at which point the local search method is used to complete the 

optimization process. 

3.5 Formulation Results and Discussions 

Table 3.5 summarizes the newly formulated surrogate compositions for Jet-A, 

IPK, and S-8. These surrogates are each 4-component mixtures that draw from several of 

the 6 hydrocarbon components within the surrogate palette. In general, the surrogates 

successfully captured the compositional characteristics of the target fuels. The Jet-A 

surrogate includes a substantial amount of cyclo-alkane and aromatic compounds, similar 

to the targeted Jet-A POSF-4658. Also, the small cyclo-alkane content of IPK and the 

purely paraffinic S-8 is well emulated by the respective surrogates.  

Table 3.6 shows a comparison among the temperature-independent target 

properties (DCN, LHV, H/C, and MW) of the surrogates and the target fuels. The three 

surrogates successfully emulated all of the targeted temperature-independent properties 

with a maximum deviation of ~ 4% from MW. Most notably, the measured DCNs of the 

actual surrogate mixtures agreed well with the DCNs of the target fuels, proving the 
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effectiveness of the new regression equation. The surrogate mixtures were also able to 

emulate DCN of Jet-A/SPK blends. Measured DCN of 50/50 vol% blends of Jet-A/IPK 

surrogates and Jet-A/S-8 surrogates were 40.1 and 52.3, which agreed well with DCN of 

40.2 and 53.1 for Jet-A/IPK and Jet-A/S-8 real blends.  

The current Jet-A surrogate shows notably different composition when compared 

to UM2, our initial Jet-A POSF-4658 surrogate [27] that includes identical surrogate 

components (n-dodcane/iso-cetane/decalin/toluene). For the formulation of UM2, the 

linear average method for mixture DCN was used, while the components’ DCNs are from 

the literature [27]. The DCN of the actual UM2 mixture was measured at 40.6, which is 

significantly lower than the targeted DCN of 47.3. Besides the uncertainty from the linear 

average method, the uncertainty in pure component CNs reported in the literature was 

another reason for the large DCN deviations of UM2. In particular, the decalin CN of 

46.5 [93] used in our previous optimizer [27] is originally from a measurement dating 

back to 1930s which used a different experimental method (Cetene number measurement) 

[93] from the currently used ASTM D6890 method. Our measured decalin (~60/40vol% 

trans/cis) DCN was 32.9, which agrees better with others’ recent measurements [94,95]. 

Such a large error in the decalin CN resulted in much lower measured DCN for UM2 

relative to the optimizer prediction. For the current study, where a DCN regression 

equation generated by a single IQT machine was utilized [96], the device-to-device 

uncertainty in the pure-component DCN's from the literature was eliminated, resulting in 

significantly better ignition quality emulation for the new Jet-A surrogate. 

Figure 3.4 shows the temperature-dependent liquid fuel density, viscosity, and 

specific heat of the surrogate and target fuels. Target fuel density and viscosity were well 
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matched by all three surrogates, with average absolute deviations of less than 1 %. For 

specific heat, the Jet-A and IPK surrogates displayed 2.5 % average absolute deviations 

from their target fuels, while the S-8 surrogate was within 5.6 %. These variations are 

well within the variability of specific heat measurements of the targeted fuels [97,98], 

which displayed up to 20 % measurement-to-measurement variance. The densities of 

50/50 vol% surrogate blends were also well-matched to the real blends: at 313 K, the 

surrogate blends of Jet-A/IPK and Jet-A/S-8 were 762.3 kg/m3 and 757.0 kg/m3, while 

the corresponding real blends were 766 kg/m3 and 761 kg/m3. 

Figure 3.5 compares the calculated distillation curves of the surrogate fuels and 

the corresponding target fuels measured by the NIST’s Advanced Distillation Curve 

metrology [83,99,100]. As seen in Figure 3.5 (a) and (c), the Jet-A and S-8 surrogates 

successfully emulate the volatility of the target fuels as well as the overall shape of the 

distillation curve. This indicates that not only the molecular size of the surrogate 

components but also that their vapor pressure distribution was appropriate for the Jet-A 

and S-8 surrogates. It is important for simple surrogate mixtures to have well-distributed 

vapor pressures among the surrogate components to avoid drastic curvature in the 

distillation curve [27]. On the other hand, Figure 3.5 (b) shows that the calculated 

distillation curve of the IPK surrogate only captures the mean volatility of the fuel and 

that the shape of the distillation curve is not well emulated. As previously discussed, IPK 

is comprised of ~ 90 % of iso-alkane molecules, which are mostly C10~C14. As there is 

a correlation between the molecular weight and volatility in general, the vapor pressure of 

iso-octane is too high and that of iso-cetane is too low to represent the volatility of the 

C10~C14 iso-alkanes in the target IPK. Such a large difference in volatility between iso-
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octane and iso-cetane is observed when the composition of the evaporated mixture 

leaving the liquid phase during the distillation process is monitored as shown in Figure 

3.6. The evaporating composition of the IPK surrogate until ~ 30 % distilled volume is 

more than 90 % iso-octane, which is significantly more volatile than other surrogate 

components. The majority of iso-cetane starts to vaporize only after ~ 40 % distilled 

volume is reached. Such a discrete distillation characteristics are not observed for the real 

target fuels including IPK. Thus, emulating the distillation characteristics of these iso-

alkanes with iso-octane (C8) and iso-cetane (C16) in the surrogate palette is 

fundamentally a challenging task. A new highly-branched iso-alkane surrogate 

component in the range of C10~C12 is therefore required for better IPK distillation curve 

emulation.  

3.6 Summary and Conclusions 

The surrogate optimizer was developed and utilized to formulate surrogates for 

various types of jet fuels, including conventional petroleum-derived and SPK jet fuels. A 

six-component surrogate palette was proposed that is capable of capturing a wide range 

of property variations within conventional and alternative jet fuels. For the optimizer, a 

DCN regression equation was developed, which generated more accurate mixture DCN 

prediction compared to the previously used volume fraction average method. In addition, 

a distillation curve model was implemented within the optimizer to estimate the 

distillation characteristics of the surrogate mixture. The newly formulated surrogates for 

Jet-A, IPK, and S-8 successfully emulate the various chemical and physical properties 

known to affect liquid spray phenomena and the chemical ignition behavior within the 
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diesel combustion process. The successful formulation results show that the surrogate 

framework, which is composed of the six component surrogate palette and the surrogate 

optimizer, is an effective tool to develop surrogates for various types of jet fuels.   
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Tables 

Table 3.1. Measured target properties and their weights assigned for the optimization 
process. DCN measurements are from IQT experiments. 

Target properties 
Jet-A  

POSF-4658 

IPK  

POSF-5642 

S-8  

POSF-4734 
Weight 

DCN (IQT) 47.3 30.7 60.36 10 

LHV (MJ/kg) 42.8 [101] 44.0 [101] 44.1 [101] 1 

H/C  1.957 [101] 2.119 [101] 2.152 [101]  1 

MW 142 [101] 156 [101]  168 [101]  1 

Density [98] [97] [102] 25 

Viscosity [98] [97] [103] 1 

Specific heat 

capacity 
[97] [97]  [98] 5 

Distillation curve [100] [83] [99] 5 
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Table 3.2. Mixture property estimation methods used in the surrogate optimizer. 

Target 

property 
Estimation method Reference 

CN 

 

36 term regression equation 
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LHV 
Mass fraction average 

∑= iimix LHVyLHV  
 

Density 

Volume fraction average 

∑= iimix TTT )()()( ρυρ  

Where ρ(T) = liquid density 

 

Viscosity 

Grunberg-Nissan equation 

( ) ( ) ∑∑∑ += ijjiiimix GxxTxT 5.0)(ln)(ln ηη  

Where η(T) = liquid viscosity, Gij = binary interaction 

parameter 

[84] 

Distillation 
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Bubble point calculation with Raoult’s Law 
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Where p(T)vap = vapor pressure, ptot = ambient pressure 

 

υi=volume fraction of component i, yi=mass fraction of component i, xi=mole fraction of 

component i, T=liquid temperature 
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Table 3.3. Data matrix that were used for DCN regression equation. 

# n-dodecane n-decane iso-cetane iso-octane decalin toluene 
DCN 
Measured Estimated 

1 1 0 0 0 0 0 74.2 75.3 
2 0 1 0 0 0 0 67.8 67.6 
3 0 0 1 0 0 0 12.0 13.8 
4 0 0 0 1 0 0 15.4 15.9 
5 0 0 0 0 1 0 32.9 32.9 
6 0.5 0.5 0 0 0 0 70.7 71.1 
7 0.5 0 0.5 0 0 0 51.2 51.4 
8 0.5 0 0 0.5 0 0 53.9 55.4 
9 0.5 0 0 0 0.5 0 48.4 48.1 
10 0.5 0 0 0 0 0.5 44.7 45.8 
11 0 0.5 0.5 0 0 0 48.3 47.2 
12 0 0.5 0 0.5 0 0 49.6 49.6 
13 0 0.5 0 0 0.5 0 45.7 46.5 
14 0 0.5 0 0 0 0.5 39.5 39.5 
15 0 0 0.5 0 0.5 0 25.8 24.7 
16 0 0 0 0.5 0.5 0 26.5 26.6 
17 0 0 0 0 0.5 0.5 22.9 22.9 
18 0.75 0 0.25 0 0 0 64.4 62.5 
19 0.75 0 0 0.25 0 0 66.5 65.4 
20 0.75 0 0 0 0 0.25 62.4 62.1 
21 0.25 0 0.75 0 0 0 37.6 36.8 
22 0.25 0 0 0.75 0 0 41.3 40.5 
23 0.25 0 0 0 0 0.75 24.2 24.1 
24 0.15 0 0.85 0 0 0 29.4 28.9 
25 0.15 0 0 0.85 0 0 32.0 32.1 
26 0.15 0 0 0 0 0.85 13.6 13.4 
27 0.1 0 0.9 0 0 0 25.4 24.4 
28 0.1 0 0 0.9 0 0 27.4 27.2 
29 0.05 0 0.95 0 0 0 19.8 19.3 
30 0.05 0 0 0.95 0 0 22.2 21.8 
31 0.5 0.1 0.1 0.1 0.1 0.1 53.2 53.8 
32 0.1 0.5 0.1 0.1 0.1 0.1 49.9 49.7 
33 0.1 0.1 0.5 0.1 0.1 0.1 31.1 31.6 
34 0.1 0.1 0.1 0.5 0.1 0.1 33.6 33.5 
35 0.1 0.1 0.1 0.1 0.5 0.1 34.8 34.5 
36 0.1 0.1 0.1 0.1 0.1 0.5 26.4 26.3 
37 0.167 0.167 0.167 0.167 0.167 0.167 39.3 39.3 
38 0.1 0.8 0.1 0 0 0 63.8 64.5 
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39 0.2 0.6 0.2 0 0 0 62.0 61.8 
40 0.1 0 0.1 0.8 0 0 27.3 27.5 
41 0.2 0 0.2 0.6 0 0 36.2 36.1 
42 0.1 0 0.1 0 0.8 0 34.5 34.9 
43 0.2 0 0.2 0 0.6 0 37.1 37.2 
44 0.1 0 0.1 0 0 0.8 10.6 10.9 
45 0.2 0 0.2 0 0 0.6 22.7 23.6 
46 0.3 0 0.3 0 0 0.4 33.7 33.9 
47 0.4 0 0.4 0 0 0.2 43.1 42.8 
48 0.45 0 0.45 0 0 0.1 47.2 47.0 
49 0.3 0.4 0.3 0 0 0 58.1 59.0 
50 0.4 0.2 0.4 0 0 0 54.8 55.7 
51 0.45 0.1 0.45 0 0 0 52.8 53.7 
52 0.3 0 0.3 0.4 0 0 42.2 42.3 
53 0.4 0 0.4 0.2 0 0 47.4 47.2 
54 0.45 0 0.45 0.1 0 0 49.5 49.3 
55 0.3 0 0.3 0 0.4 0 39.7 40.3 
56 0.4 0 0.4 0 0.2 0 43.6 44.8 
57 0.45 0 0.45 0 0.1 0 47.1 47.8 
58 0.45 0.45 0 0 0.1 0 65.9 65.3 
59 0.4 0.4 0 0 0.2 0 61.2 60.2 
60 0.3 0.3 0 0 0.4 0 52.1 51.4 
61 0.2 0.2 0 0 0.6 0 44.5 44.3 
62 0.1 0.1 0 0 0.8 0 38.5 38.3 
63 0.28 0 0.12 0 0 0.6 30.9 29.6 
64 0.42 0 0.18 0 0 0.4 42.5 41.8 
65 0.56 0 0.24 0 0 0.2 51.7 51.8 
66 0.63 0 0.27 0 0 0.1 56.3 56.2 
67 0.4545 0 0.1425 0 0.2673 0.1357 46.2 46.2 
68 0.3888 0.0671 0.1408 0 0.2815 0.1218 45.8 45.7 
69 0.1505 0 0.3222 0.3922 0.1352 0 31.6 31.3 
70 0.2332 0.4599 0.2683 0.0386 0 0 58.2 58.7 
71 0.2349 0.2027 0.1218 0.0169 0.3391 0.0846 43.5 44.2 
72 0.4658 0.2899 0.1823 0.062 0 0 61.3 61.5 
73 0.1134 0.1969 0.3658 0 0.1881 0.1357 37.5 37.6 
74 0.44425 0.14495 0.15795 0.031 0.15305 0.0688 52.7 52.6 
75 0.3287 0.429 0.2177 0.0245 0 0 62.2 61.4 
76 0.3027 0.4097 0.2432 0.0443 0 0 59.9 59.9 
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Table 3.4. Coefficients of DCN regression equation. 

coefficients  Value 
β1 x1 75.31 
β2 x2 67.59 
β3 x3 13.82 
β4 x4 15.90 
β5 x5 32.86 
β6 x6 -5.39 
β12 x1 x2 -1.37 
β13 x1 x3 27.25 
β14 x1 x4 39.06 
β15 x1 x5 -23.93 
β16 x1 x6 43.54 
β23 x2 x3 25.87 
β24 x2 x4 31.25 
β25 x2 x5 -15.04 
β26 x2 x6 33.58 
β34 x3 x4 15.20 
β35 x3 x5 5.25 
β36 x3 x6 10.36 
β45 x4 x5 8.74 
β46 x4 x6 -26.69 
β56 x5 x6 36.61 
δ12 x1 x2 (x1 – x2) -37.29 
δ13 x1 x3 (x1 – x3) -26.84 
δ14 x1 x4 (x1 – x4) -25.34 
δ15 x1 x5 (x1 – x5) 11.91 
δ16 x1 x6 (x1 – x6) -12.62 
δ23 x2 x3 (x2 – x3) -50.03 
δ24 x2 x4 (x2 – x4) 29.59 
δ25 x2 x5 (x2 – x5) -26.91 
δ26 x2 x6 (x2 – x6) -109.79 
δ34 x3 x4 (x3 – x4) 2.36 
δ35 x3 x5 (x3 – x5) -29.06 
δ36 x3 x6 (x3 – x6) -17.52 
δ45 x4 x5 (x4 – x5) -88.38 
δ46 x4 x6 (x4 – x6) 211.76 
δ56 x5 x6 (x5 – x6) -194.83 
1=n-dodecane, 2=n-decane. 3=iso-cetane, 4=iso-octane, 5=decalin, 6=toluene 
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Table 3.5. Compositions of optimized surrogate fuels in volume fractions. 

 UM2 [27] Jet-A  IPK  S-8  

n-dodecane 0.3577 0.4784 0.1416 0.3073 

n-decane 0 0 0 0.4234 

iso-cetane 0.2234 0.1129 0.3141 0.2309 

iso-octane 0 0 0.4016 0.0384 

decalin 0.2753 0.2821 0.1427 0 

toluene 0.1436 0.1266 0 0 

 

 

 

Table 3.6. Temperature-independent properties of the target fuels and their surrogates. 

 Jet-A POSF-4658 IPK POSF-5642 S-8 POSF-4734 

 Target Surrogate Target Surrogate Target Surrogate 

DCN 47.3 47.3/47.8a 30.7 30.7/31.9a 60.4 60.5/61.1a 

LHV (MJ/kg) 42.8 43.34 44.0 44.21 44.1 44.42 

H/C 1.957 1.900 2.119 2.121 2.152 2.173 

MW (g/mol) 142 146.8 156 149.6 168 163.9  

a predicted / measured by IQT 
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Figures 

 

Figure 3.1. DCN estimations using the regression equation and the linear average method. 
R2

reg is from the DCN regression fitting. 

 

Figure 3.2. Experimental and calculated distillation curves for 75/25 and 50/50 mole 
fraction mixtures of n-decane and n-tetradecane. The experimental data is from Huber et 
al. [47] and Bruno [90]. 
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Figure 3.3. Experimental and calculated distillation curves for 9 surrogate mixtures in 
[91].  
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Figure 3.4. Temperature-dependent (a) density, (b) viscosity, and (c) specific heat of the 
surrogates compared with measured target fuel properties. 

250 300 350 400

1

5

K
in

em
at

ic
 V

is
co

si
ty

 (m
m

2 /s
)

 

 

Jet-A
Jet-A surr
IPK
IPK surr
S-8
S-8 surr

(b) Viscosity

200 250 300 350 400 450
1.5

2

2.5

3

S
pe

ci
fic

 H
ea

t (
kJ

/k
g-

K
)

Temperature (K)

(c) Specific Heat

250 300 350 400
700

750

800

850

Li
qu

id
 D

en
si

ty
 (k

g/
m

3 )
(a) Density



82 

 

Figure 3.5. Calculated distillation curves of surrogates for (a) Jet-A, (b) IPK, and (c) S-8 
compared with the measured distillation curves of the respective target fuels. 

440

460

480

500

520

540

Te
m

pe
ra

tu
re

 (K
)

 

 

Jet-A
Jet-A surr

(a)

400

420

440

460

480

500

520

Te
m

pe
ra

tu
re

 (K
)

 

 

IPK
IPK surr

(b)

0 20 40 60 80 100
440

460

480

500

520

540

Te
m

pe
ra

tu
re

 (K
)

Distilled Volume (%)

 

 

S-8
S-8 surr

(c)



83 

 

Figure 3.6. Calculated evaporating composition of Jet-A, IPK, and S-8 surrogates during 
the distillation process.  
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          Chapter 4  
 
 

Kinetic Modeling for the Surrogate Palette and Mechanism 
Reduction for CFD Applications 

One of the common approaches for modeling the oxidation process of 

hydrocarbon fuels within CFD simulations is using a kinetic mechanism. The mechanism 

includes the elementary reactions and their reaction rate parameters involved in the 

oxidation process. In spite of their complexity and high computational expense, chemical 

mechanism enables more physics-based high fidelity combustion modeling when 

compared to simpler phenomenological models. In this chapter, the kinetic modeling of 

the developed surrogates using a detailed kinetic mechanism is presented. In addition, a 

skeletal version of the detailed mechanism is derived for the use in CFD.  

4.1 Ignition Delay Calculation with a Detailed Kinetic Mechanism 

Gas phase ignition delays of the developed surrogates were calculated with 

CHEMKIN’s  constant volume homogeneous reactor model [104] and a detailed 

chemical mechanism from the Model Fuel Consortium (MFC) [105]. This comprehensive 

detailed mechanism includes low and high temperature oxidation pathways for all of the 
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hydrocarbon species within the proposed six-component surrogate palette, containing 

4236 species and 18000 reactions. The modular structure of the detailed mechanism is 

illustrated in Figure 4.1. The mechanism is composed of four submechanisms for each 

hydrocarbon class (n-alkane, iso-alkane, cycloalkanes, and aromatics), which share a 

common core mechanism for the kinetics of C0~C4 system. The construction of reaction 

pathways for n-, iso-, and cyclo-alkanes in this mechanism followed the approach 

originally suggested by Curran et al. [106] as illustrated in Figure 4.2. It is an updated 

version of the one used in [27]. The most notable change from the previous mechanism is 

the iso-cetane chemistry, which provides significantly improved agreement for pure iso-

cetane ignition delay predictions versus shock tube measurements. The ignition delay 

calculations were compared to available ignition delay measurements for the target Jet-A, 

IPK and S-8 fuels from shock tubes [40,107] and a rapid compression machine [28]. The 

uncertainty in the ignition delay measurements is reported to be in the range of ±10 ~ 25% 

[28,40,107]. 

Figure 4.3 compares the calculated and experimental ignition delays of Jet-A/air 

mixtures. For the 20 atm cases in Figure 4.3 (a), the Jet-A surrogate with the MFC 

mechanism successfully captures the overall ignition delay trend of the target POSF-4658 

in all of the temperature range investigated. Calculated ignition delay times for the 

stoichiometric mixture agree very well with the experimental measurements in the high 

temperature and Negative Temperature Coefficient (NTC) regime (T > 750 K), while a 

longer ignition delay time is predicted in the low temperature regime (T < 750 K). For the 

slightly rich mixture (Φ = 1.5), the agreement with the experimental data is also very 

good in the high temperature regime (T > 950 K), however shorter ignition delays are 
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predicted within the NTC regime, and longer ignition delays are predicted at low 

temperatures. For the stoichiometric 40 atm case shown in Figure 4.3 (b), good 

agreement is observed at high temperatures, but the calculated NTC ignition delay times 

are considerably shorter than the experiments, by up to a factor of 3.  

One of the primary reasons for the shorter NTC regime ignition delays of the Jet-

A surrogate at 40 atm is the MFC mechanism's n-dodecane chemistry. Figure 4.4 shows 

ignition delay predictions of Jet-A surrogate components, compared against shock tube 

measurements [108–111] at 40 atm for n-dodecane and iso-cetane, and at 50 atm for 

decalin and toluene. Most notably, the predicted NTC regime for n-dodecane is at higher 

temperatures with significantly shorter ignition delay times. Noting that the n-dodecane 

content is highest within the Jet-A surrogate, these mechanism shortcomings likely affect 

the Jet-A surrogate ignition delay predictions at high pressures. The effect of other 

surrogate components’ chemistry, in particular for iso-cetane and toluene, is uncertain, 

since ignition delay measurements for those two molecules do not exist in the 

temperature range where NTC behavior is observed for Jet-A (700 K ~ 950 K).  

Figure 4.5 compares the calculated ignition delays of the three surrogates against 

shock tube ignition delay measurements of three target jet fuels at 20 atm, the only 

pressure where shock tube ignition delay measurements [107] are currently available for 

IPK and S-8. Although the NTC regime for both IPK and S-8 is predicted to be within 

higher temperature regions, the calculated ignition delay times for both surrogates 

successfully capture the overall measurement trends. In the high temperature regime 

above 1000 K, the difference in measured ignition delay times between the three fuels is 

small - similar behaviors are also observed in the kinetic modeling results. In the low and 
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NTC temperature regime where the ignition delay times are distinguishable, the relative 

order of the calculated ignition delay times corresponds to the relative reactivity of the 

surrogates; the quantitative ignition delay agreement however needs to be improved. As 

the measured DCN indicates, the reactivity of the S-8 surrogate is the highest (DCN of 

61.1), followed by the Jet-A surrogate (DCN of 47.8), and finally the IPK surrogate 

(DCN of 31.9), which align well with the relative ignition delay times from the 

simulation. 

4.2 Skeletal Mechanism Development 

For the utilization of the developed surrogates in CFD simulations, a skeletal 

version of the detailed MFC mechanism was generated by using Directed Relation Graph 

with Error Propagation and Sensitivity Analysis (DRGEPSA) [112], an automated 

reduction algorithm implemented in the commercial CFD package CONVERGE [113]. 

The original DRG algorithm [114,115] and its various derivatives including  DRGEPSA 

[112,116,117] generates skeletal versions of detailed mechanisms for large hydrocarbons 

by identifying and removing unimportant species. For the current study, the DRGEPSA 

reduction algorithm was configured to remove species in the detailed mechanism that 

have a small impact on the ignition delay calculation in the homogeneous reactor setup. 

The ignition delay calculations monitored for the mechanism reduction were for all three 

surrogates (Jet-A, IPK, S-8) in the low to high temperature regime (700 K ~ 1100 K), 

with equivalence ratios from 1 to 2, and pressures from 20 atm to 40 atm to account for 

the thermodynamic conditions relevant to the ignition of direct injected diesel engine.  
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It was found that the preliminary skeletal mechanism generated by the reduction 

algorithm included some species without consumption reactions, making certain 

pathways ‘dead-ended’. This may be a significant problem for the completeness of the 

kinetic mechanism. In order to fix this issue, the consumption pathways of those ‘dead-

ended’ species were restored if it could be done by recovering a few species and reactions 

in the parent detailed mechanism. Otherwise, the ‘dead-ended’ species and associated 

reactions were removed. The initial skeletal mechanism from the reduction algorithm 

included 12 ‘dead-ended’ species. After restoring and eliminating these pathways, the 

final skeletal mechanism for the six-component surrogate palette was generated, which 

includes 360 species and 1851 reactions. 

Figure 4.6 compares the ignition delay times calculated by the skeletal mechanism 

against those from the detailed mechanism, while Table 4.1 summarizes the deviations 

from the detailed mechanism. Overall, the skeletal mechanism maintains the ignition 

delay characteristics of the surrogates predicted by the detailed MFC mechanism. For Jet-

A, the average absolute deviation (8.0%) and the maximum deviation (+23.2%) from the 

parent detailed mechanism was the smallest among the three surrogate fuels over the 

range of conditions examined in the reduction. For IPK, the deviation was well under ±20% 

for temperatures above 775 K for all pressures and equivalence ratios, while up to +44% 

deviation is observed in the region below 775 K. The most notable discrepancy for the S-

8 surrogate is within the NTC regime, where the skeletal mechanism under predicts 

ignition delay with a maximum deviation of -33.8%. The reduction in computational 

expense with the skeletal mechanism is drastic. For example, while the parent detailed 

mechanism took approximately 3 to 5 hours to complete a single homogeneous reactor 
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simulation, the 360 species mechanism required less than one minute to run the identical 

case. 

4.3 Summary and Conclusions 

Ignition delay calculations for the newly developed jet fuel surrogates were 

carried out using a detailed kinetic mechanism and compared against experimentally 

measured ignition delay times from shock tubes. Calculated ignition delays of the Jet-A 

surrogate at 20 atm showed very good agreements with the experimental measurement. 

At 40 atm, however, the calculated ignition delays of Jet-A surrogate were notably 

shorter than experiments in NTC regime which can be attributed to the n-dodecane 

chemistry in the detailed mechanism. Estimating the effects of other surrogate 

components’ chemistry is challenging, due to the scarcity of experimental ignition delay 

data in high pressure condition. Since pressures higher than 40 atm are expected at the 

time of fuel injection in Diesel engine, more experimental ignition delay data from shock 

tube or rapid compression machine as well as improvements in chemical mechanism at 

such high pressure is necessary. For IPK and S-8 surrogates, the calculated ignition delay 

times captured the general experimental ignition delay trends, while the agreements with 

experimental data, in particular in NTC and low temperature regime, could be improved 

in the future.  

Also, a skeletal version of the detailed mechanism was generated using an 

automated reduction algorithm for the utilization of the surrogates in CFD simulation. 

After the mechanism reduction (4236 species to 360 species), the time needed for a 

homogeneous reactor simulation to complete drastically decreased, from 3 ~ 5 hours to 
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less than a minute, which makes the use of the developed surrogates possible for reacting 

CFD simulation.  
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Tables 

Table 4.1. Deviations from the detailed mechanism for the 360 species skeletal 
mechanism. Avg.Abs indicates the average of absolute deviations for all 100 simulated 

points for each fuel, while Max indicates the largest deviation among those 100 simulated 
points. 

Jet-A POSF-4658 IPK POSF-5642 S-8 POSF-4734 

Avg.Abs. Max Avg.Abs Max Avg.Abs Max 

8.0% +23.2% 9.8% +43.9% 13.6% -33.8% 
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Figures 

 

Figure 4.1. Modular structure of the detailed chemical mechanism.  

 

 

Figure 4.2. Reaction path diagram for n-, iso-, and cyclo-alkane submechanisms of the 
detailed mechanism [118].  
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Figure 4.3. Comparisons of Jet-A/air mixture ignition delay measurements [28,40,107] 
with the calculated ignition delays with the Jet-A surrogates and the detailed mechanism 
at (a) 20 atm and (b) 40 atm. 

 

 

Figure 4.4. Comparison of stoichiometric fuel/air mixture ignition delay measurements 
for the Jet-A surrogate constituents [108–111] with calculated ignition delays using the 
detailed mechanism. 40 atm for n-dodecane (dode) and iso-cetane (hmn), and 50 atm for 
decalin and toluene (tol). 
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Figure 4.5. Comparison of stoichiometric fuel/air mixture ignition delay measurements at 
20 atm with the calculated ignition delays with the detailed mechanism of the Jet-A, IPK, 
and S-8 surrogates. 
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Figure 4.6. Comparisons of ignition delay predictions from the 360 species skeletal 
mechanism against the detailed MFC mechanism for (a) Jet-A, (b) IPK, and (c) S-8. 
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          Chapter 5  
 
 

The Relative Importance of Liquid Fuel Physical and Chemical 
Properties to Reacting Spray Ignition Delays  

In this chapter, the developed surrogate mixtures and their skeletal mechanism are 

utilized within reacting spray simulations to investigate the relative importance of the 

physical and chemical properties to the ignition process within a reacting spray. 

5.1 Background 

Previously, the relative importance of physical and chemical properties to the 

ignition process has been experimentally investigated using spray bombs. One of the 

approaches was to differentiate the physical and chemical processes by comparing the 

pressure trace from a reacting case with fuel injection into air against a pressure trace 

from an inert case with fuel injection to inert nitrogen.  The instance when the two 

pressure traces diverge is defined as the end of the physical delay period and the start of 

the chemical delay [119,120]. While this simple methodology attempts to isolate the 

closely-coupled physical and chemical processes, the physical delay time is significantly 

over-estimated. By their definition, the time needed for the vaporized fuel to be prepared 
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by oxidation chemistry to achieve noticeable heat release is regarded as physical delay. 

However, in principle, that period should be chemical delay. A similar study using a 

constant volume spray chamber with optical access called Cetane Ignition Delay (CID) 

has been reported [121]. Experimental studies using an Ignition Quality Tester (IQT) 

with isomeric fuels [92,122,123] concluded that the resulting difference in oxidation 

chemistry, and not physical property differences, was the dominating factor for the 

change in ignition delay time under the normal IQT operating condition (ambient charge 

of ~ 818 K at ~2.1 MPa). Bogin et al. [92] also observed that the change in liquid phase 

physical processes, which were perturbed by changing either the orifice diameter, 

injection pressure, or injected fuel mass, only caused small changes in ignition delay 

times (maximum 14%), while changes in the fuel auto-ignition quality resulted in a 

greater than 100% longer ignition delay relative to the baseline case. These temperatures 

may differ significantly from the start of injection temperatures in diesel engines, which 

have been estimated to range from approximately 850 to 1100 K [52]. The relative 

importance of physical and chemical processes to the ignition delay time may be 

therefore different from those previously investigated within IQT experiments. A series 

of numerical experiments under engine-relevant pressures and temperatures are therefore 

performed to understand the relative importance of liquid fuel chemical and physical 

properties to the ignition delay period. 

5.2 Model Configuration 

CFD simulations of reacting sprays within the Sandia National Laboratories’ 

constant volume chamber with optical access were conducted using the CFD package 
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CONVERGE [124]. The models and meshing used for these simulations are identical to 

those within Chapter 2, and only brief descriptions are given here. The turbulence in the 

gas-phase flow field was modeled with RANS RNG k-ε model. The modified Kelvin-

Helmholtz – Rayleigh-Taylor (KH-RT) model was used to predict the breakup and 

atomization of the liquid fuel. Droplet evaporation was modeled with Frossling 

correlation. For the 108mm cubic chamber, a computational mesh of 0.25 mm minimum 

grid size was used; the base mesh size of 2 mm was refined with an automatic mesh 

refinement algorithm; fixed embedding was used near the nozzle to increase the spatial 

resolution. 

The 360 species skeletal mechanism developed in Chapter 4 was utilized for the 

simulation of chemical kinetics. The fuels simulated here (Jet-A, S-8) utilized this 

chemical mechanism along with select species from the six-component surrogate palette 

(n-dodecane/n-decane/iso-cetane/iso-octane/decalin/toluene) described previously.  

Identical definitions to those in Chapter 2 were used for predicted liquid/vapor 

penetration lengths and ignition delay times. The liquid penetration length was defined as 

the axial distance from the nozzle exit to the region that encompassed the 95th percentile 

of the total liquid fuel mass at a given time. The vapor penetration length was defined as 

the maximum axial distance from the nozzle exit to where the fuel mass fraction is 0.1%. 

The ignition delay was defined as the time between start of the injection and the 

maximum rise rate of peak temperature.  
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5.3 Model Validation 

Reacting spray simulations were compared against Sandia’s reacting spray 

experiments [55,125,126] for the validation of the CFD model and the chemical 

mechanism. Details of the experiments are summarized in Table 5.1. Among the three jet 

fuels for which the surrogates were developed in Chapter 3, experimental data from 

Sandia’s combustion chamber exists for Jet-A POSF-4658 and S-8 POSF-4734 in 

[55,125] which was used for validation; no data could be found for IPK POSF-5642. 

Another reason for excluding IPK surrogate for current study is that as expected from 

Figure 4.5 where the calculated ignition delay times for IPK in homogeneous reactor 

model were notably longer than shock tube measurements, ignition delay time from spray 

simulation was excessively longer than Sandia’s measurements of similar CN fuels from 

their spray chamber. Further modifications in chemical mechanism may be necessary in 

the future for the IPK surrogate. 

For additional validation, spray experiments using a conventional JP-8 batch with 

CN of 38 [126] were also used. For the simulation of this specific JP-8, a surrogate 

mixture was formulated using the surrogate optimizer in Chapter 3 to match the JP-8 

properties from the reference [126]. The surrogate mixture for JP-8 with 38 CN was n-

dodecane/n-decane/iso-cetane/decalin/toluene = 0.1417/0.1699/0.2989/0.2487/0.1408 in 

volume fractions.  

Figure 5.1 compares the calculated and experimental liquid/vapor penetration of 

JP-8 fuel sprays at the 850 K 14.8 kg/m3 ambient condition. The JP-8 spray experiments 

used injectors with 0.180 mm orifice diameter. For this injector, the model constant B1 in 

KH-RT spray breakup model, which varies depending on the injector, was set at 10.5. In 
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general, the model captured the liquid and vapor penetration length trends. Figure 5.2 

shows the calculated liquid penetration length with the Jet-A surrogate and the S-8 

surrogate at 900 K, 22.8 kg/m3.  Note that the orifice diameter is half the size of the 

injector used for JP-8 experiments (0.18 mm vs 0.09 mm). For Jet-A and S-8 simulations, 

the KH-RT model constant was set at 8.5, which is identical to the value used in Chapter 

2, where the same injector was used. When compared to the stabilized liquid penetration 

lengths in experimental data in [55], which are 10.5 mm for Jet-A and 10.4 mm for S-8, 

the predicted liquid penetration lengths in Figure 5.2 (10.9 mm for Jet-A, 9.9 mm for S-8) 

are in good agreement. In particular, the model was capable of capturing the slightly 

shorter liquid penetration length of S-8 compared to Jet-A, which can be attributed to the 

successful emulation of the various liquid physical properties. 

Figure 5.3 compares the predicted and experimental ignition delay times of the 

JP-8 sprays over a range of temperature at two ambient densities. Ignition delay 

predictions for both density conditions were in reasonable agreement at the highest 

temperature condition at 1200 K. At 1000 K, while the higher density case (30 kg/m3) 

agreed reasonably well with the experimental data, the ignition delay time at 14.8 kg/m3 

was significantly over-predicted. When lower temperature cases were simulated, the JP-8 

surrogate sprays were predicted to be significantly slower to ignite than experiments or 

even failed to achieve ignition (not shown).  

Figure 5.4 shows the simulated heat release rates of Jet-A and S-8 fuel sprays at 

900 K and 1000 K at 22.8 kg/m3 ambient density. To achieve reasonable agreement with 

the experimental ignition delay times, the ambient temperatures were increased by 80 K 

for the 900 K case, and 30 K for the 1000 K case. When the ambient temperatures 
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corresponding to experiments were used in the simulations, the ignition delay times were 

considerably longer than measured values. Such slower ignition processes in CFD 

simulation is consistent with the observation in Figure 5.3. The calculated/measured 

ignition delay times were 0.925/0.70 ms for Jet-A and 0.608/0.58 ms for S-8 at 900 K as 

shown in Figure 5.4 (a), and 0.539/0.47 ms for Jet-A and 0.428/0.40 ms at 1000 K case in 

Figure 5.4 (b). 

These comparisons show that the model captures the trends in experimental 

liquid/vapor penetration lengths for all three surrogates tested. For the ignition delay 

times, the CFD simulation results agree well with experimental measurements at 

temperatures higher than 1000 K in general, while improvements in the ignition 

predictions are needed at lower temperatures. The modeling set up with the Jet-A and S-8 

surrogates is used as the baseline cases for the following numerical studies, which seek to 

identify the importance of physical and chemical processes to the ignition delay period.  

5.3 Surrogate Property Modification Method 

In order to investigate the relative importance of physical and chemical liquid fuel 

properties to spray ignition, a numerical experiment was designed to isolate the impact of 

liquid fuel physical and chemical properties on ignition delay using in part the baseline 

CFD cases as illustrated in Figure 5.5. The objective of this numerical study is to quantify 

the change in the ignition processes and ignition delay times as a result of assigned 

variations in physical and chemical processes. The baseline case for comparison was the 

original Jet-A surrogate (JetA_base in Figure 5.5). Then, either the physical properties or 
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the oxidation chemistry of the original Jet-A was swapped with that of S-8 

(JetA_chem_S8_phy or JetA_phy_S8_chem in Figure 5.5).  

In CONVERGE, the temperature dependent liquid physical properties of 

surrogate components are defined with a tabulated data file. It includes liquid viscosity, 

surface tension, heat of vaporization, vapor pressure, conductivity, density, and specific 

heat of each surrogate components as a function of temperature up to their respective 

critical temperatures. To achieve the variations in physical properties of the baseline Jet-

A surrogate (JetA_chem_S8_phy), the Jet-A surrogate components’ density, viscosity, 

specific heat, and vapor pressure in the tabulated data were manipulated to match those 

properties of S-8 as illustrated in Figure 5.6, while keeping the composition of the 

baseline Jet-A surrogate unchanged. Note that the four physical properties adjusted here 

were identified to have significant effects on the spray ignition process in Chapter 2. For 

example, to match the density of S-8 with the Jet-A surrogate, liquid densities of n-

dodecane, iso-cetane, decalin, and toluene (Jet-A surrogate components) were multiplied 

by 0.924. Viscosity, specific heat, and vapor pressure were adjusted with the same 

manner. For the oxidation chemistry variation (JetA_phy_S8_chem), the surrogate 

composition was replaced with that of S-8 to obtain the gas phase chemistry of S-8, and 

the four physical properties of its surrogate components were modified to match those of 

Jet-A, as shown in Figure 5.7.  

The premise of this method is that when the surrogate fuel physical properties are 

matched, the physical phenomena governing the spray ignition process are also closely 

matched regardless of the surrogate components and composition. In order to verify this 

premise, all the injection related parameters such as injection mass flow rate, injection 
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velocity, and injection pressure were monitored and the difference was negligible 

between JetA_base and JetA_phy_S8_chem (different surrogate components but matched 

physical properties). In particular, the injection velocities of JetA_base and 

JetA_phy_S8_chem were nearly identical as shown in Figure 5.8, which was achieved by 

matching density of the two surrogate mixtures – this relationship was demonstrated in 

Chapter 2. As a result, the turbulent mixing rates were similar for these two cases. Figure 

5.9 compares the turbulent viscosities of JetA_base, JetA_phy_S8_chem, and S8_base at 

1000 K 22.8 kg/m3 at 0.3 ms after the start of the injection. For this comparison, non-

reacting simulations were performed to examine the fuel property effects on turbulent 

mixing without the effects from heat release. Note that the turbulent viscosity (μt) 

determines the turbulent thermal and mass mixing rates for the RANS turbulence 

modeling used for this study as shown in the Equation 6 and 7 in Chapter 2.  
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where Kt  is the turbulent thermal diffusivity,  Dt is turbulent mass diffusivity, K is the 

molecular thermal conductivity, cp is the gaseous specific heat, Prt is the turbulent Prandtl 

number, and Sct is the turbulent Schmidt number. It is clearly shown in Figure 5.9 that the 

distribution of local turbulent viscosity of JetA_phy_S8_chem is more similar to 

JetA_base than to the baseline S-8 case, indicating that the turbulent thermal and mass 

mixing rates of JetA_phy_S8_chem is closely matched to JetA_base.  
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These comparisons confirm that the current method is valid to isolate the effect of 

either physical or chemical properties to the ignition process. This numerical study was 

conducted under three different ambient conditions (900 K, 1000K, 1200 K at 22.8 kg/m3) 

where the model showed reasonable agreement with experimental data. 

5.4 Results – Physical Property vs Oxidation Chemistry 

Table 5.2 summarizes the expected changes in ignition processes when the 

physical properties or oxidation chemistry of S-8 are assigned to the baseline Jet-A 

surrogate. S-8 has faster oxidation chemistry than Jet-A as shown in experiments and 

zero dimensional simulations in Figure 4.3. Thus, JetA_phy_S8_chem is expected to 

have a shorter ignition delay than JetA_base. 

As discussed in Chapter 2, liquid specific heat affects ignition delay time by 

influencing the local temperature. S-8 has higher liquid specific heat than Jet-A, which 

will result in lower local temperature throughout the ignition process and longer ignition 

delay period. In addition, the liquid volatility also affects the local temperature, which 

was not discussed in Chapter 2 due to its smaller effect than specific heat. Higher 

volatility of S-8 lowers the liquid temperature at which the evaporation occurs. In such 

case, although the specific heat curve itself does not change, the total energy needed for 

vaporization of the fuel (Qtotal in Equation 5) will decrease since the final droplet 

temperature (Td,end) is lower. Note Cp,liq increase as liquid temperature increase, as shown 

in Figure 2.8.  
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Thus, higher volatility of S-8 will increase the local temperature which will offset some 

of the effect coming from higher specific heat of S-8.  

In addition, the turbulent mixing rates were influenced by liquid density, which 

showed significant impact on ignition delay time. S-8 has significantly lower density than 

Jet-A, which is shown to have competing effects on the total ignition delay time. As 

concluded in Chapter 2, lower density results in faster turbulent thermal and mass mixing 

rates, which advances the first stage heat release (LTHR) by enhanced initial charge 

preparation. On the other hand, it retards the onset of high temperature chemistry because 

of the enhanced mixing of the high temperature zones with cooler ones within the jet, 

which limits local peak temperatures.  

Figure 5.10 compares the global heat release rates and ignition delay times for the 

physical property/oxidation chemistry variation studies, with the time axis normalized by 

the ignition delay time of the baseline Jet-A case. Calculated ignition delay times and the 

relative change from the baseline Jet-A case are summarized in Table 5.3. Under all three 

conditions tested, it is observed that the changes in ignition delay times are larger when 

the oxidation chemistry is varied (JetA_phy_S8_chem) compared to the physical property 

variations (JetA_chem_S8_phy). While the ignition delay times were shortened by 36.6% 

for the 900 K case, 23.1% for the 1000 K case, and 12.3% for the 1200 K case when the 

oxidation chemistry of S-8 was assigned to Jet-A, the physical properties of S-8 only 

caused + 12.2%, + 5.6%, and + 1.0% increase in ignition delay time at the respective 

ambient conditions. It can be concluded from this observation that the effect of oxidation 
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chemistry on the spray ignition process is more important than the effect of liquid fuel 

physical properties, which is in agreement with conclusions from previous experimental 

studies [92,122,123].  

To investigate how these changes in ignition delay times occurred, a local 

reactivity analysis similar to the one shown in Chapter 2 is performed for the 1000 K case. 

The local reactivity distributions within the fuel spray were calculated at 0.07 ms after the 

start of the injection as marked in Figure 5.11, which is prior to start of noticeable low 

temperature heat release. The reactivity of each computational cell was represented by 

the inverse of ignition delay time calculated by the zero dimensional homogeneous 

reactor using the local pressure, temperature, and composition of each cell as the reactor 

solution’s initial condition. Figure 5.12 shows the cumulative mass distribution within the 

local reactivity domain at 0.07 ms for the 1000 K case, which illustrates that the fuel 

spray with faster oxidation chemistry (JetA_phy_S8_chem) contains significantly more 

charge with elevated reactivity, while the physical property effects on the reactivity 

distribution is much smaller, considering the overlapping distributions. The increase in 

reactivity for the chemistry swap case (JetA_phy_S8_chem) is due to faster oxidation 

kinetics of S-8. Significantly larger change in the reactivity of the fuel spray from the 

oxidation chemistry swap proves the dominant effect of the chemical property on the 

spray ignition. 

The local temperature – equivalence ratio distributions were also analyzed for the 

spray at 0.07 ms to examine the effect of S-8’s specific heat and volatility on local 

temperature. Figure 5.13 (a) compares the temperature – equivalence ratio distributions 

for the physical property/oxidation chemistry variation studies at 0.07 ms after the start of 
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the injection when the heat release effect is negligible. It shows that all three cases have 

similar local temperature distribution within the spray. When the temperature – 

equivalence ratio distributions from non-reacting simulations are plotted at 0.2 ms as 

shown in Figure 5.13 (b), which shows the fuel property effects on temperature 

distributions within the spray without the effect from heat release, the local temperature 

distributions are still very similar when the spray is fully developed, although slightly 

lower local temperature is observed for JetA_chem_S8_phy. When compared to the large 

local temperature change shown in the specific heat perturbation cases from Chapter 2 in 

Figure 5.13 (c), the local temperature change for the JetA_chem_S8_phy case is 

significantly smaller and its impact on ignition delay time should be very limited. This 

observation indicates the effects from S-8’s higher specific heat and higher volatility 

negate each other and resulted in only small decrease in local temperature, and, 

consequently, produce a very small change in local reactivity relative to the Jet-A spray.  

Despite having minimal effect on LTHR in Figure 5.10, the heat release rate 

indicates that liquid fuel physical properties have a more prominent effect later in the 

ignition process, in and around high temperature ignition. As shown in Figure 5.11, the 

heat release rates for JetA_base and JetA_chem_S8_phy are virtually the same until 0.45 

ms, but JetA_chem_S8_phy ignites later than the JetA_base. At this later phase of 

ignition, the enhanced mixing caused by the lower density of S-8 retards the onset of high 

temperature ignition chemistry as previously discussed in Chapter 2 and Table 5.2. To 

confirm, the temperature-equivalence ratio distributions of JetA_base and 

JetA_chem_S8_phy are plotted at 0.45 ms in Figure 5.14, where JetA_chem_S8_phy 

achieves ~ 50 K lower peak temperature than JetA_base. Since the cumulated heat 
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release is nearly the same for both cases at 0.45 ms, the lower local peak temperature and 

longer ignition delay time of JetA_chem_S8_phy is caused by S-8’s higher rate of 

turbulent mixing due to lower liquid density. 

Figure 5.15 compares the local heat release rates and the local temperatures with 

equivalence ratio contours (Φ = 1,2) for the 1000 K case prior to the start of the heat 

release (top figure), during the first stage LTHR phase (middle figure) and at the time of 

ignition (bottom figure) for the respective cases. For all three cases, the initial first stage 

LTHR are observed at the periphery of the jet (see middle figures) where the equivalence 

ratio is approximately 1 ~ 3, which is consistent with the local reactivity analysis in 

Figure 2.10  in Chapter 2. Prior to the start of the heat release (see top figures), the local 

temperatures in the periphery of the spray are approximately 850 K ~ 950 K. These 

observations implies that the relevant thermodynamic conditions for the initial first stage 

LTHR is fuel rich (Φ = 1~3), and 50 K ~ 150 K lower than the ambient charge 

temperature. At the time of ignition (bottom figures), all three cases showed that large 

portion of air/fuel mixture at the tip of the spray igniting at once, which is essentially 

premixed combustion. The equivalence ratio of the igniting charge at the tip of the spray 

is approximately 1 ~ 2, which agrees with the general understanding on the ignition sites 

being rich for the diesel/spray combustion.  

5.5 Results – Temperature Dependency of Property Effects 

Another conclusion that can be drawn from Figure 5.10 and Table 5.3 is that the 

effects of liquid fuel chemical and physical properties increase as the ambient 

temperatures decrease. As seen in Table 5.3, the relative ignition delay time change of 
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JetA_phy_S8_chem (oxidation chemistry effect) increased from 12.3% to 36.6%, and 

that of JetA_chem_S8_phy (physical property effect) increased from 1% to 12% as 

temperature goes down from 1200 K to 900 K. This is a particularly important finding, 

since it indicates fuel property effects on ignition delay will be more prominent during 

low load engine operation when the charge temperature is expected to be colder. In the 

opposite perspective, the negative effect of variations in DCN and physical properties on 

diesel engine can be minimized when the engine is operated with a strategy to have 

higher charge temperature at the time of injection.   

5.5.1 Temperature Dependency of Oxidation Chemistry Effects 

It is well known that the effect of Derived Cetane Number on gas phase ignition 

delay time is small in the high temperature regime, typically at temperatures above 1000 

K. This can be seen in Figure 5.16 (a) [107,127] which are for fuels with a wide range of 

auto-ignition quality (DCN of 31 ~74). Note that the shock tube ignition delays are for 

fuels entirely in the gas phase, hence these ignition delay times represent only the 

chemical aspect of the ignition process. Meaningful differences in ignition delays are 

observed for temperatures lower than 1000 K. Such a trend is also captured by the 

calculated ignition delay times of these fuels using a zero dimensional homogeneous 

reactor model with a detailed chemical mechanism as shown in Figure 5.16 (b). For this 

reason, the effect of oxidation chemistry on the ignition process of fuel spray decreases at 

higher ambient temperature as shown for the JetA_phy_S8_chem case.   
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5.5.2 Temperature Dependency of Physical Property Effects 

As discussed in the previous section, the dominant physical property effects on 

ignition delay time were associated with liquid density differences that influenced 

turbulent mixing rates and local temperatures during the later phase of the ignition delay. 

To investigate the reason for density’s negligibly small effect at high temperature, 

evolution of the turbulent viscosities for the 1200 K cases is shown in Figure 5.17. When 

the turbulent viscosities of JetA_base and JetA_chem_S8_phy are compared, the 

difference between those two cases becomes significant only after 0.16 ms; during the 

very early phase of fuel injection, the difference in turbulent mixing rate is shown to be 

minimal. However, due to very fast oxidation chemistry at 1200 K ambient temperature, 

ignition is reached at ~ 0.19 ms for both JetA_base and JetA_chem_S8_phy, which 

implies that only short amount of time (~ 0.03 ms) was allowed for the deviations in 

turbulent mixing to influence the transition to high temperature ignition. As the ambient 

temperature decrease and the oxidation chemistry gets slower, there are more time for 

such mixing effects to be accumulated on the local temperature distribution, which results 

in greater change in ignition delay. Thus, the effect of variations in physical property on 

ignition delay time increases in lower ambient temperature.  

5.6 Conclusions 

CFD simulations of reacting fuel spray were performed with surrogates emulating 

various physical and chemical properties of JP-8, Jet-A, and S-8 fuels. Numerical 
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experiments were carried out to investigate the importance of liquid fuel physical and 

chemical properties to the ignition delay period.  

1. Under the ambient conditions examined, the effect of variation in oxidation chemistry 

(12.3% ~ 36.6% change in ignition delay time) was significantly greater than the 

effect of physical properties (1.0% ~ 12.2% change in ignition delay time). It can be 

concluded that the chemical aspects of the ignition process dominate the physical 

aspects under the diesel-relevant conditions examined here. 

2. The effects of physical properties on the first stage LTHR were minimal, as shown by 

negligibly small differences in global heat release rates between JetA_base and 

JetA_chem_S8_phy until the onset of high temperature ignition. It was also evident 

from very similar reactivity distributions before the start of heat release. This may be 

attributed to S-8’s higher specific heat, higher volatility, and lower density compared 

to Jet-A have competing effects on the first stage LTHR. However, significant effects 

of these physical properties, in particular the turbulent mixing from the liquid density, 

were observed during the transition phase to high temperature ignition. 

3. An analysis with the local heat release rate, temperature, and equivalence ratio 

showed that the thermodynamic condition relevant to the initial first stage LTHR is 

approximately 50 K ~ 150 K lower than the ambient charge temperature with the 

equivalence ratio of 1 ~ 3 under the conditions investigated in this study. The high 

temperature ignition was observed at the tip of the spray where the equivalence ratio 

is approximately 1 ~ 2.  

4. Both oxidation chemistry effect and physical property effect diminished as the 

ambient temperature increases. In high temperature regime over 1000 K, the chemical 
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ignition delay time difference among fuels with different ignition quality is small. 

Also, since the oxidation chemistry gets faster exponentially, the time allowed for the 

deviations in turbulent mixing (liquid density effect) to influence the ignition process 

significantly decreases. 
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Tables 

Table 5.1. Details of experimental spray data from Sandia National Laboratories. 

Fuel Jet-A  

POSF-4658 

S-8     

POSF-4734 

JP-8b JP-8 b 

Cetane Number 47.3a 60.4a 38 38 

Temperature (K) 900, 1000 900, 1000 850 1000, 1200 

Density (kg/m3) 22.8 22.8 14.8 14.8, 30 

Pressure (MPa) 6.1, 6.7 6.1, 6.7 3.58 4.23 ~ 10.34 

Orifice Diameter (mm) 0.09 0.09 0.180 0.180 

Injection Pressure (MPa) 150 150 110 138 

Ambient Composition  N2/CO2/ H2O/O2 = 

0.7515/0.0622/0.0362/0.15 

N2/CO2/ H2O/O2 = 

0.6933/0.0611 /0.0356/0.21 

Reference [55,125] [126] 

a Derived Cetane Number from IQT 

b The batch that was used in Pickett and Hoogterp [126], POSF number unknown  
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Table 5.2. Effects of S-8’s physical properties and oxidation chemistry relative to those 
of Jet-A on ignition delay time. 

 
S-8 compared 

to Jet-A 
Effects on ignition delay time 

Oxidation chemistry Faster ↓↓↓ 

Specific Heat Higher ↑↑  

Volatility Higher ↓  

Density Lower ↓↓ (enhanced initial charge preparation) 

  
↑↑ (slower onset of high temperature 

chemistry)  

 

 

 

Table 5.3. Ignition delay times and the change in ignition delay times relative to the 
baseline Jet-A the physical property/oxidation chemistry variation studies. 

 JetA_base JetA_chem_S8_phy JetA_phy_S8_chem 

 ID (ms) ID (ms) ID change (%) ID (ms) ID change (%) 

900 K 0.931 1.045 + 12.2 0.590 - 36.6 

1000 K 0.549 0.581 + 5.6 0.422 - 23.1 

1200 K 0.193 0.195 + 1.0 0.170 - 12.3 

 

 

 

  



115 

Figures 

 

(a) 

 

(b) 

Figure 5.1. Comparisons of predicted and experimental (a) liquid penetration lengths and 
(b) vapor penetration lengths of JP-8 spray at 850 K, 14.8 kg/m3 [126]. 

 

 

 

Figure 5.2. Calculated liquid penetration lengths using the Jet-A surrogate and the S-8 
surrogate at 900 K 22.8 kg/m3. Measured/calculated liquid lengths were 10.5/10.7 mm 
and 10.4/9.9 mm for Jet-A and S-8, respectively [55]. 
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Figure 5.3. Comparisons of predicted and experimental ignition delay times for JP-8 
spray over a range of temperature at two ambient densities (14.8 kg/m3, 30 kg/m3) [126]. 

 

 

 

 

(a) 

 

(b) 

Figure 5.4. Calculated global heat release rates and ignition timings of Jet-A and S-8 
surrogates at (a) 900 K 22.8 kg/m3 and (b) 1000 K 22.8 kg/m3. Measured ignition delays 
were 0.70 ms for Jet-A and 0.58 ms for S-8 for the 900 K case, and 0.47 ms for Jet-A and 
0.40 ms for S-8 for the 1000K case [125].  
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Figure 5.5. Schematics of the properties and oxidation chemistry swap study. 

 

 

Figure 5.6. Physical property modifications to achieve a surrogate fuel of the oxidation 
chemistry of Jet-A with physical properties of S-8 (JetA_chem_S8_phy).  
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Figure 5.7. Physical property modifications to achieve a surrogate fuel of the physical 
properties of Jet-A with the oxidation chemistry of S-8 (JetA_phy_S8_chem).  

 

 

Figure 5.8. Comparisons of injection velocities of JetA_base, JetA_phy_S8_chem, and 
S8_base at 1000 K 22.8 kg/m3.  
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Figure 5.9. Comparisons of turbulent viscosities of JetA_base, JetA_phy_S8_chem, and 
S8_base at 1000 K 22.8 kg/m3 at 0.3 ms after the start of the injection. Non-reacting 
simulations were performed. 
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Figure 5.10. Comparisons of global heat release rates and ignition delay times for the 
physical property/oxidation chemistry variation studies. At each temperature condition, 
the time after the start of injection is normalized by the ignition delay time of the baseline 
Jet-A case. Determined ignition delay times of JetA_chem_S8_phy and 
JetA_phy_S8_chem relative to JetA_base are noted in the figures. 
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Figure 5.11. Global heat release rates for the physical property/oxidation chemistry 
variation studies at 1000 K 22.8 kg/m3. 

 

 

 

Figure 5.12. Accumulative mass distribution in the local reactivity domain just prior to 
the start of heat release (0.07 ms after start of the injection).   
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Figure 5.13. Comparisons of temperature – equivalence ratio distribution for the physical 
property/oxidation chemistry variation studies at 1000 K 22.8 kg/m3. (a) is from the 
reacting simulations in Figure 5.12, while (b) is from non-reacting simulations. (c) is 
from the perturbation studies in Chapter 2 at 900 K 22.8 kg/m3 where the local 
temperature change due to the specific heat perturbation is well-observed. 
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Figure 5.14. Comparisons of temperature - equivalence ratio distribution of the baseline 
Jet-A (JetA_base) and Jet-A surrogate with physical properties of S-8 
(JetA_chem_S8_phy) for the 1000 K case at 0.45 ms after the start of the injection.  



124 

 

Figure 5.15. Comparisons of local heat release rates and local temperature with 
equivalence ratio contours for the physical property/oxidation chemistry variation studies 
at 1000 K 22.8 kg/m3. The top figure of each case is during the first stage LTHR, the 
bottom is at the time of ignition. 
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(a) 

 

(b) 

Figure 5.16. Ignition delay comparisons for fuels with different autoignition qualities 
(DCN of 31 ~ 74). Measured ignition delay times from shock tube [107,127] is shown in 
(a), while calculated ignition delay times within homogeneous reactor model with a 
detailed chemistry is shown in (b). 

 

 

Figure 5.17. The evolution of the turbulent viscosities for JetA_base and 
JetA_chem_S8_phy cases at 1200 K 22.8 kg/m3. The ignition timings for both cases were 
~ 0.19 ms.  
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          Chapter 6  
 
 

Conclusions and Recommendations for Future Work 

6.1 Conclusions and Contributions 

The conclusions and original contributions of the dissertation are summarized as 

follows.  

In Chapter 2, the effect of liquid physical property variations on direct injected 

diesel sprays and their ignition behavior was investigated with 3-dimensional CFD 

simulations. Six liquid physical properties were perturbed one at a time in order to isolate 

the effect of each property, which is not viable in experimental approaches. Rather than 

assigning the same relative perturbations for all properties, the range of perturbations for 

each property was determined to reflect the drastically different physical properties 

within hydrocarbon species often used in surrogate studies. Through this study, four 

liquid physical properties were identified that have significant impact on liquid 

penetration length and ignition delay time; these properties were density, viscosity, 

specific heat, and volatility. This study provides important insights for the development 

of future diesel combustion surrogates. In particular, a novelty of this work was the 

identification of the substantial effect of the liquid fuel’s specific heat on liquid 
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penetration and ignition delay time, since this property has not been previously 

considered as a target property for emulation.    

Chapter 2 also provided novel insight into the influence of liquid fuel physical 

properties on the ignition process. Local thermodynamic conditions, compositions, and 

resulting reactivity of the fuel spray were analyzed in order to understand how liquid fuel 

specific heat and density variations affect the ignition process. Higher liquid specific heat 

increases the amount of energy that should be transferred from the fresh charge to the 

liquid fuel for its vaporization, which results in lower charge temperatures and longer 

ignition delays. Liquid density influenced turbulent mixing rates, where higher density 

resulted in lower injection velocities hence turbulent mixing rates at constant injection 

pressure. Lower turbulent mixing rates caused slower progress in the first stage LTHR 

phase due to slower initial charge preparation. However, the lower mixing rates caused 

an earlier onset of high temperature oxidation chemistry by allowing higher peak 

temperatures during the transition from the NTC period to high temperature ignition.   

In Chapter 3, a surrogate optimizer was developed that is capable of emulating 

various fuel properties including chemical properties and temperature-dependent liquid 

physical properties (DCN, LHV, H/C, MW, density, viscosity, specific heat, and 

volatility). The results from Chapter 2 were applied here for determining the target 

properties and their respective weights used within the optimizer’s objective function. A 

surrogate palette composed of six components (n-dodecane/n-decane/iso-cetane/iso-

octane/decalin/toluene) was proposed which is capable of capturing physical and 

chemical properties of petroleum-derived conventional jet fuels as well as non-

petroleum-derived alternative jet fuels. For the optimizer, a regression equation was 
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developed to correlate the composition of a mixture within the surrogate palette to 

mixture DCN. Also, a distillation curve model was implemented within the optimizer that 

solves the liquid-vapor equilibrium equations with Raoult’s law. Using the surrogate 

optimizer, surrogate mixtures were formulated targeting the physical and chemical 

properties of a representative petroleum-derived Jet-A POSF-4658, a coal-derived IPK 

POSF-5642, and a natural gas-derived S-8 POSF-4734. Of particular significance, the jet 

fuel surrogates developed in this work are the only surrogates targeted for chemical 

kinetic modeling while matching both physical and chemical properties of jet fuels. 

Moreover, by sharing a common palette, combustion modeling of any surrogate mixtures 

formulated within the surrogate development framework can be carried out with a 

common chemical mechanism.   

In Chapter 4, a state-of-the-art detailed kinetic mechanism that includes all the 

surrogate components in the six component surrogate palette was used to calculate the 

ignition delay times of the developed surrogates. While improvements to the chemical 

mechanism are necessary in the future, in particular under high pressure condition, the 

surrogates with the kinetic mechanism successfully captured the experimental ignition 

delay trends with simulations in a zero dimensional homogeneous reactor model. A 

skeletal version of the detailed mechanism was developed using an automated 

mechanism reduction algorithm for the use of developed surrogates in reacting CFD 

simulation.  

Chapter 5 demonstrated how the CFD simulation framework with comprehensive 

surrogates and its chemical mechanism can be utilized to improve fundamental 

understanding on the ignition phenomena of reacting spray. In Chapter 5, a numerical 
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experiment was conducted with CFD simulations using the developed surrogates to 

evaluate the relative importance of physical and chemical properties of the ignition 

process of the fuel spray for two fuels, Jet-A and S-8. Either the physical properties or the 

oxidation chemistry of the baseline Jet-A surrogate was replaced with those of S-8 to 

quantify the deviations in ignition delay time resulting from physical and chemical 

property variations. Based upon these results, it can be concluded that the fuel’s chemical 

properties are much more important to the duration of the ignition delay period than the 

physical properties. It was also found that the effects of both physical properties and 

oxidation chemistry diminished as the ambient charge temperatures increase. Such a 

finding implies that the negative effects of variations in CN and physical properties 

expected from alternative jet fuels can be minimized if the engine is controlled to have 

higher charge temperature at the time of injection. 

6.2 Recommendations for Future Work 

6.2.1 Surrogate Development 

Due to the maturity of the chemical mechanism and available experimental data, 

this work used toluene as the aromatic representative surrogate component. However, 

regarding the actual molecules present in real jet fuels and their mean molecular weight, 

other single ring aromatic compounds with a longer alkyl chain (such as n-propyl- or n-

butyl-benzene) or multiple methyl groups (such as 1,2,4- or 1,3,5- trimethylbenzene) will 

better represent aromatics in real jet fuels. As recent kinetic studies focus on developing 

reliable kinetic mechanisms for aromatic compounds larger than toluene, the surrogate 
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palette can be refined with these aromatic species in the future. Significant improvements 

in MW and distillation curve emulation are expected with such a modification.  

There is a need for a highly branched linear alkane molecule as a surrogate 

component other than currently available species such as iso-octane (C8) and iso-cetane 

(C16). Based upon the hydrocarbon size distributions within conventional and alternative 

jet fuels, the ideal molecular size for the new highly branched linear alkane is ~ C12. Any 

progress in experimental characterization and kinetic modeling of such a molecule will 

benefit future surrogates for conventional and alternative jet fuels.  

In addition, further experimental validation of the proposed surrogates is 

necessary. While the DCNs of the surrogates were closely matched to those of the target 

jet fuels under the nominal IQT operating condition, the surrogates’ ignition delay 

characteristics at different temperature, pressure, and equivalence ratio conditions are not 

guaranteed to match the target fuels. Thus, in addition to currently on-going experimental 

validation studies by companion projects (optical diesel engine at Wayne State University, 

the CFR engine and CID at University of Michigan), more fundamental experiments 

using shock tubes or rapid compression machines will be beneficial for future analysis.  

6.2.2 Thermodynamic Regime for Spray Ignition Process 

It is often said that the thermodynamic regime for spray/diesel ignition process is 

intermediate/low temperature, fuel rich, and high pressure. Identifying this regime is 

important for determining future directions for generating experimental ignition data, 

which is critical for the development of future chemical kinetic schemes. When the time 

evolution of the local conditions calculated by the CFD simulation are investigated 
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throughout the spray ignition delay period, general insights on relevant thermodynamic 

regime can be provided as discussed with Figure 5.15 in Chapter 5. Understanding on the 

thermodynamic regime responsible for diesel spray ignition can be further improved if 

the time history of thermodynamic conditions for the igniting fuel mass can be estimated 

with Lagrangian-type tracking. For such a study, the use of turbulence models that better 

resolve the turbulent flow structure than current RANS simulation may be necessary such 

as Large Eddy Simulations (LES) or Direct Numerical Simulation (DNS). 
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